Sample records for nanofiltration assistee par

  1. Modeles numeriques de la stimulation optique de neurones assistee par nanoparticules plasmoniques

    NASA Astrophysics Data System (ADS)

    Le Hir, Nicolas

    La stimulation de neurones par laser emerge depuis plusieurs annees comme une alternative aux techniques plus traditionnelles de stimulation artificielle. Contrairement a celles-ci, la stimulation lumineuse ne necessite pas d'interagir directement avec le tissu organique, comme c'est le cas pour une stimulation par electrodes, et ne necessite pas de manipulation genetique comme c'est le cas pour les methodes optogenetiques. Plus recemment, la stimulation lumineuse de neurones assistee par nanoparticules a emerge comme un complement a la stimulation simplement lumineuse. L'utilisation de nanoparticules complementaires permet d'augmenter la precision spatiale du procede et de diminuer la fluence necessaire pour observer le phenomene. Ceci vient des proprietes d'interaction entre les nanoparticules et le faisceau laser, comme par exemple les proprietes d'absorption des nanoparticules. Deux phenomenes princpaux sont observes. Dans certains cas, il s'agit d'une depolarisation de la membrane, ou d'un potentiel d'action. Dans d'autres experiences, un influx de calcium vers l'interieur du neurone est detecte par une augmentation de la fluorescence d'une proteine sensible a la concentration calcique. Certaines stimulations sont globales, c'est a dire qu'une perturbation se propage a l'ensemble du neurone : c'est le cas d'un potentiel d'action. D'autres sont, au contraire, locales et ne se propagent pas a l'ensemble de la cellule. Si une stimulation lumineuse globale est rendue possible par des techniques relativement bien maitrisees a l'heure actuelle, comme l'optogenetique, une stimulation uniquement locale est plus difficile a realiser. Or, il semblerait que les methodes de stimulation lumineuse assistees par nanoparticules puissent, dans certaines conditions, offrir cette possibilite. Cela serait d'une grande aide pour conduire de nouvelles etudes sur le fonctionnement des neurones, en offrant de nouvelles possibilites experimentales en complement des possibilites

  2. Partial desalination and concentration of glyphosate liquor by nanofiltration.

    PubMed

    Xie, Ming; Xu, Yanhua

    2011-02-15

    Partial desalination and concentration of glyphosate liquor by nanofiltration under different operation modes were investigated experimentally in this study. These operation modes were direct nanofiltration, diafiltration, dilute-diafiltration and interval washing-nanofiltration. The four different operation modes were evaluated and compared in terms of glyphosate recovery and NaCl removal. Diafiltration and dilute-diafiltration performed better than direct nanofiltration. The glyphosate loss was between 11.5% and 18.8% when the dilution factor varied from 0.4 to 0.8. Interval washing-nanofiltration alleviated the concentration polarization and membrane fouling to a certain extent. Dilute-diafiltration may be the best operation mode in terms of glyphosate recovery, salt removal and cost. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Concentrating phenolic acids from Lonicera japonica by nanofiltration technology

    NASA Astrophysics Data System (ADS)

    Li, Cunyu; Ma, Yun; Li, Hongyang; Peng, Guoping

    2017-03-01

    Response surface analysis methodology was used to optimize the concentrate process of phenolic acids from Lonicera japonica by nanofiltration technique. On the basis of the influences of pressure, temperature and circulating volume, the retention rate of neochlorogenic acid, chlorogenic acid and 4-dicaffeoylquinic acid were selected as index, molecular weight cut-off of nanofiltration membrane, concentration and pH were selected as influencing factors during concentrate process. The experiment mathematical model was arranged according to Box-Behnken central composite experiment design. The optimal concentrate conditions were as following: nanofiltration molecular weight cut-off, 150 Da; solutes concentration, 18.34 µg/mL; pH, 4.26. The predicted value of retention rate was 97.99% under the optimum conditions, and the experimental value was 98.03±0.24%, which was in accordance with the predicted value. These results demonstrate that the combination of Box-Behnken design and response surface analysis can well optimize the concentrate process of Lonicera japonica water-extraction by nanofiltration, and the results provide the basis for nanofiltration concentrate for heat-sensitive traditional Chinese medicine.

  4. Water reclamation during drinking water treatments using polyamide nanofiltration membranes on a pilot scale.

    PubMed

    Kukučka, Miroslav; Kukučka, Nikoleta; Habuda-Stanić, Mirna

    2016-09-01

    The aim of this study was to investigate the performances of polyamide nanofiltration membranes during water reclamation. The study was conducted using nanofiltration concentrates obtained from two different nanofiltration drinking water treatment plants placed in the northern part of Serbia (Kikinda and Zrenjanin). Used nanofiltration concentrates contained high concentrations of arsenic (45 and 451 μg/L) and natural organic matter (43.1 and 224.40 mgKMnO4/L). Performances of polyamide nanofiltration membranes during water reclamation were investigated under various fluxes and transmembrane pressures in order to obtain drinking water from nanofiltration concentrates and, therefore, reduce the amount of produced concentrates and minimize the waste that has to be discharged in the environment. Applied polyamide nanofiltration membranes showed better removal efficiency during water reclamation when the concentrate with higher content of arsenic and natural organic matter was used while the obtained permeates were in accordance with European regulations. This study showed that total concentrate yield can be reduced to ~5 % of the optimum flux value, in both experiments. The obtained result for concentrate yield under the optimum flux presents considerable amount of reclaimed drinking water and valuable reduced quantity of produced wastewater.

  5. Nanofiltration in the manufacture of liquid dyes production.

    PubMed

    Mikulásek, P; Cuhorka, J

    2010-01-01

    In the manufacture of liquid dyes, almost complete desalting, which helps to improve the stability of the product, enhances the solubility of the dye. Diafiltration is used to allow a high level of desalting to be achieved. The process of desalination of aqueous dye-salt solutions by polymeric nanofiltration membranes using commercially available modules was studied. The influence of dye and salt concentration on the salt rejection and pressure applied on the flux as well as comparison of individual NF membranes for desalting purposes is presented. The great interest is also devoted to the mathematical modelling of nanofiltration and description of discontinuous diafiltration by periodically adding solvent at constant pressure difference.

  6. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yan; Zhang, Chao; He, Ai

    Membrane fouling is one of the most severe problems restricting membrane separation technology for wastewater treatment. This work reports a photocatalytic nanofiltration membrane (NFM) with self-cleaning property fabricated using a facile biomimetic mineralization process. In this strategy, a polydopamine (PDA)/polyethyleneimine (PEI) intermediate layer is fabricated on an ultrafiltration membrane via a co-deposition method followed by mineralization of a photocatalytic layer consisting of beta-FeOOH nanorods. The PDA-PEI layer acts both as a nanofiltration selective layer and an intermediate layer for anchoring the beta-FeOOH nanorods via strong coordination complexes between Fe3+ and catechol groups. In visible light, the beta-(F)eOOH layer exhibits efficientmore » photocatalytic activity for degrading dyes through the photo-Fenton reaction in the presence of hydrogen peroxide, endowing the NFM concurrently with effective nanofiltration performance and self-cleaning capability. Moreover, the mineralized NFMs exhibit satisfactory stability under simultaneous filtration and photocatalysis processing, showing great potential in advanced wastewater treatment.« less

  7. Ultrafiltration and nanofiltration in the pulp and paper industry using cross-rotational (CR) filters.

    PubMed

    Mänttäri, M; Nyström, M

    2004-01-01

    Ultra- and nanofiltration with high shear CR-filters have been utilized for cleaning of clear filtrates and effluents from the pulp and paper industry. The aim was to find out how different nanofiltration membranes operate at high shear conditions. The filtration efficiency of the membranes was evaluated by measuring flux, retention and fouling at various recovery and pH conditions. High fluxes (approximately 100 L/(m2h)) for nanofiltration membranes were measured when circulation waters from the paper machine were filtered at neutral conditions. In the filtration of discharge of external activated sludge treatment plants we measured fluxes around 150 L/(m2h) even at a concentration factor of 12. The best NF membranes removed over 80% of the organic carbon and of the conductivity and almost completely eliminated the color. With acidic waters fluxes and retentions were significantly lower. The NF270 membrane from Dow and the Desal-5 membranes from Osmonics had the highest flux and retention properties. However, the Desal-5 membrane lost its retention properties slowly, which restricts its use in the high shear CR-filter. CR-nanofiltration can be used in the pulp and paper industry without feed pre-treatment by ultrafiltration. This increases the attractiveness of high shear CR-nanofiltration.

  8. Separate and Concentrate Lactic Acid Using Combination of Nanofiltration and Reverse Osmosis Membranes

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Williams, Karen; Wan, Caixia

    The processes of lactic acid production include two key stages, which are (a) fermentation and (b) product recovery. In this study, free cell of Bifidobacterium longum was used to produce lactic acid from cheese whey. The produced lactic acid was then separated and purified from the fermentation broth using combination of nanofiltration and reverse osmosis membranes. Nanofiltration membrane with a molecular weight cutoff of 100-400 Da was used to separate lactic acid from lactose and cells in the cheese whey fermentation broth in the first step. The obtained permeate from the above nanofiltration is mainly composed of lactic acid and water, which was then concentrated with a reverse osmosis membrane in the second step. Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97±1%). In the reverse osmosis process, the ADF membrane could retain 100% of lactic acid to obtain permeate with water only. The effect of membrane and pressure on permeate flux and retention of lactose/lactic acid was also reported in this paper.

  9. Evaluation of viral removal by nanofiltration using real-time quantitative polymerase chain reaction.

    PubMed

    Zhao, Xiaowen; Bailey, Mark R; Emery, Warren R; Lambooy, Peter K; Chen, Dayue

    2007-06-01

    Nanofiltration is commonly introduced into purification processes of biologics produced in mammalian cells to serve as a designated step for removal of potential exogenous viral contaminants and endogenous retrovirus-like particles. The LRV (log reduction value) achieved by nanofiltration is often determined by cell-based infectivity assay, which is time-consuming and labour-intensive. We have explored the possibility of employing QPCR (quantitative PCR) to evaluate LRV achieved by nanofiltration in scaled-down studies using two model viruses, namely xenotropic murine leukemia virus and murine minute virus. We report here the successful development of a QPCR-based method suitable for quantification of virus removal by nanofiltration. The method includes a nuclease treatment step to remove free viral nucleic acids, while viral genome associated with intact virus particles is shielded from the nuclease. In addition, HIV Armored RNA was included as an internal control to ensure the accuracy and reliability of the method. The QPCRbased method described here provides several advantages such as better sensitivity, faster turnaround time, reduced cost and higher throughput over the traditional cell-based infectivity assays.

  10. NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER

    EPA Science Inventory

    The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

  11. EVALUATION OF NANOFILTRATION PRETREATMENTS FOR FLUX LOSS CONTROL

    EPA Science Inventory

    Differing nanofiltration pretreatment approaches for Ohio River water were evaluated withthe intent of producing systems with varying degrees of biological fouling. The membrane feed water was alum-coagulated, settled, and filtered Ohio River water (SF-ORW). Five 1.8" x 12" N...

  12. EVALUATION OF NANOFILTRATION PRETREATMENTS FOR FLUX LOSS CONTROL.

    EPA Science Inventory

    The loss of membrane flux due to fouling is a major impediment to the development of membrane processes for use in drinking water treatment. The objective of this work was to evaluate fouling in nanofiltration (NF) pilot systems fed conventionally-treated (coagulation/sedimentati...

  13. Nanofiltration properties of PTMSP in binary organic solvents mixtures

    NASA Astrophysics Data System (ADS)

    Yushkin, A. A.; Kossov, A. A.; Volkov, V. V.

    2016-09-01

    In this study, the stability and nanofiltration performance of poly[1-(trimethylsilyl)- 1-propyne] (PTMSP) in ethanol solutions of butylaldehyde, 1-decanal, 1-hexene, 1-decene was evaluated. It was found that PTMSP was insoluble in all aldehyde solutions, but it was soluble at olefin concentration of 80% or higher. Nanofiltration experiments demonstrate that binary mixtures of 1-decanal and ethanol viscosity are not the parameter affecting on membrane permeability and rejection of solute as well as swelling degree. In the case of decanol/ethanol solutions both solution viscosity and molar volume demonstrate the best fit of experimental data. It was shown that with the decrease of ethanol content in the feed, the rejection of anionic solute Remazol Brilliant Blue R (MW 626) increases from 94 up to 97%.

  14. Financial Summary, Nanofiltration Data, and Lithium Uptake Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay Renew

    Integrated testing of nanofiltration and lithium uptake subsystems using synthetic geothermal brine. Also includes a financial summary (Pro Forma) of the proposed 'Geothermal Thermoelectric Generation (G-TEG) with Integrated Temperature Driven Membrane Distillation and Novel Manganese Oxide for Lithium Extraction' (first pass 500 gpm).

  15. Pilot scale nanofiltration treatment of olive mill wastewater: a technical and economical evaluation.

    PubMed

    Sanches, S; Fraga, M C; Silva, N A; Nunes, P; Crespo, J G; Pereira, V J

    2017-02-01

    The treatment of large volumes of olive mill wastewater is presently a challenge. This study reports the technical and economical feasibility of a sequential treatment of olive mill wastewater comprising a dissolved air flotation pre-treatment and nanofiltration. Different pilot nanofiltration assays were conducted in a concentration mode up to different volume reduction factors (29, 45, 58, and 81). Data attained demonstrated that nanofiltration can be operated at considerably high volume reduction factors and still be effective towards the removal of several components. A flux decline of approximately 50% was observed at the highest volume reduction factor, mainly due to increase of the osmotic pressure. Considerably high rejections were obtained across all experiments for total suspended solids (83 to >99%), total organic carbon (64 to 99%), chemical oxygen demand (53 to 77%), and oil and grease (67 to >82%). Treated water was in compliance with European legal limits for discharge regarding total suspended solids and oil and grease. The potential recovery of phenolic compounds was evaluated and found not relevant. It was demonstrated that nanofiltration is economically feasible, involving operation costs of approximately 2.56-3.08 €/m 3 , depending on the working plan schedule and volume reduction factor, and requiring a footprint of approximately 52 m 2 to treat 1000 m 3 of olive mill wastewater.

  16. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    PubMed

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  17. Wastewater treatment by nanofiltration membranes

    NASA Astrophysics Data System (ADS)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  18. Comparison of UV photolysis, nanofiltration, and their combination to remove hormones from a drinking water source and reduce endocrine disrupting activity.

    PubMed

    Sanches, Sandra; Rodrigues, Alexandre; Cardoso, Vitor V; Benoliel, Maria J; Crespo, João G; Pereira, Vanessa J

    2016-06-01

    A sequential water treatment combining low pressure ultraviolet direct photolysis with nanofiltration was evaluated to remove hormones from water, reduce endocrine disrupting activity, and overcome the drawbacks associated with the individual processes (production of a nanofiltration-concentrated retentate and formation of toxic by-products). 17β-Estradiol, 17α-ethinylestradiol, estrone, estriol, and progesterone were spiked into a real water sample collected after the sedimentation process of a drinking water treatment plant. Even though the nanofiltration process alone showed similar results to the combined treatment in terms of the water quality produced, the combined treatment offered advantage in terms of the load of the retentate and decrease in the endocrine-disrupting activity of the samples. Moreover, the photolysis by-products produced, with higher endocrine disrupting activity than the parent compounds, were effectively retained by the membrane. The combination of direct LP/UV photolysis with nanofiltration is promising for a drinking water utility that needs to cope with sudden punctual discharges or deterioration of the water quality and wants to decrease the levels of chemicals in the nanofiltration retentate.

  19. SOLVENT NANOFILTRATION USING LOW-COST INORGANIC MEMBRANE MODULES - PHASE I

    EPA Science Inventory

    This Phase I project addresses: (1) development of fully inorganic nanofiltration (NF) membrane modules that have the attributes of low-cost, excellent chemical resistance in aggressive organic and aqueous media and high thermal stability; and (2) demonstration of the perfo...

  20. Bio-inspired Ni2+-polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation.

    PubMed

    You, Fangjie; Xu, Yanchao; Yang, Xiaobin; Zhang, Yanqiu; Shao, Lu

    2017-06-01

    A novel Ni 2+ -polyphenol network was designed as an excellent bio-coating by a one-step strategy to obtain nanofiltration membranes, possessing unconventional high water flux up to 56.1 L m -2 h -1 bar -1 with rose bengal (RB) rejection above 95%. This study provides a facile approach to prepare highly-efficient nanofiltration membranes for wastewater remediation.

  1. Nanofiltration-Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous-Flow Synthesis.

    PubMed

    Fodi, Tamas; Didaskalou, Christos; Kupai, Jozsef; Balogh, Gyorgy T; Huszthy, Peter; Szekely, Gyorgy

    2017-09-11

    Solvent usage in the pharmaceutical sector accounts for as much as 90 % of the overall mass during manufacturing processes. Consequently, solvent consumption poses significant costs and environmental burdens. Continuous processing, in particular continuous-flow reactors, have great potential for the sustainable production of pharmaceuticals but subsequent downstream processing remains challenging. Separation processes for concentrating and purifying chemicals can account for as much as 80 % of the total manufacturing costs. In this work, a nanofiltration unit was coupled to a continuous-flow rector for in situ solvent and reagent recycling. The nanofiltration unit is straightforward to implement and simple to control during continuous operation. The hybrid process operated continuously over six weeks, recycling about 90 % of the solvent and reagent. Consequently, the E-factor and the carbon footprint were reduced by 91 % and 19 %, respectively. Moreover, the nanofiltration unit led to a solution of the product eleven times more concentrated than the reaction mixture and increased the purity from 52.4 % to 91.5 %. The boundaries for process conditions were investigated to facilitate implementation of the methodology by the pharmaceutical sector. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.

    PubMed

    Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud

    2009-09-15

    Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.

  3. Compatibility Study of Nanofiltration and Reverse Osmosis Membranes with 1 Cyclohexylpiperidenium Bicarbonate Solutions

    DOE Data Explorer

    Adhikari, Birendra; Jones, Michael G.; Orme, Christopher J.; Wendt, Daniel S.; Wilson, Aaron D.

    2015-10-01

    The switchable polarity solvent forward osmosis (SPS FO) desalination process requires use of a polishing filtration step to remove trace quantities of draw solution from the product water stream. Selected nanofiltration (NF) and reverse osmosis (RO) membranes were tested for their ability to recover water from 1-cyclohexylpiperidenium bicarbonate solutions in this application. This submission includes the experimental data used to calculate NF and RO membrane flux-normalized net driving pressure (FNNDP) and flux-normalized rejection (FNR) performance in recovering water from 1-cyclohexylpiperidenium bicarbonate solutions. This data is further described and visualized in the manuscript entitled "Compatibility study of nanofiltration and reverse osmosis membranes with 1 cyclohexylpiperidenium bicarbonate solutions" (see attached Compatibility Study Manuscript).

  4. Development of a nanofiltration method for bone collagen 14C AMS dating

    NASA Astrophysics Data System (ADS)

    Boudin, Mathieu; Boeckx, Pascal; Buekenhoudt, Anita; Vandenabeele, Peter; Van Strydonck, Mark

    2013-01-01

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased 14C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) ∼100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. 14C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant but incomplete

  5. Partial dealcoholization of red wine by nanofiltration and its effect on anthocyanin and resveratrol levels.

    PubMed

    Banvolgyi, Szilvia; Savaş Bahçeci, K; Vatai, Gyula; Bekassy, Sandor; Bekassy-Molnar, Erika

    2016-12-01

    The present work studies the use of nanofiltration for the production of red wine concentrate with low alcohol content. Factorial design was applied to measure the influences of transmembrane pressure (10-20 bar) and temperature (20-40 ℃) on the retention of valuable components such as anthocyanins and resveratrol, and on the nanofiltration membrane performance. The highest retention of anthocyanin and resveratrol was achieved at low temperature (20 ℃), while the high transmembrane pressure (20 bar) was found to increase the permeate flux considerably. The experiments demonstrated that nanofiltration appears as a valid technique for the production of low alcohol content red wine concentrate. Reduction of volume by a factor of 4, leads to 2.5-3 times more anthocyanins and resveratrol in the wine concentrates. The final new wine products - obtained by using various forms of reconstitution of the concentrated wine - had low alcohol content (4-6 % by volume) and their sensory attributes were similar to those of the original wine. © The Author(s) 2016.

  6. Synthesis and characterization of composite polysulfone membranes for desalination in nanofiltration technique.

    PubMed

    Akbari, A; Homayonfal, M; Jabbari, V

    2010-01-01

    Composite nanofiltration (NF) membrane was developed polyacrylic acid (PAA) in situ UV graft polymerization process using ultrafiltration (UF) polysulfone (PSF) membrane as porous support. FT-IR spectra indicated that grafting was performed and it show peaks at 1,732 cm⁻¹ and 3,396 cm⁻¹ region for CO and OH starching bond of acrylic acid (AA) monomer, respectively. AFM microscopy showed the roughness of surface was reduced by increase of UV irradiation times. Effect of irradiation time on the grafting of acrylic acid (AA) in the same concentration was discussed. The salts rejection increase was accompanied with grafting of polysulfone (PSF) ultrafiltration (UF) membrane. The rejection of Na₂SO₄, MgSO₄, NaCl and CaCl₂ salts by PSF-grafted-PAA nanofiltration (NF) membrane was in 98, 60, 52 and 30% respectively, under 0.3 MPa.

  7. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating

    NASA Astrophysics Data System (ADS)

    Wang, Chongbin; Li, Zhiyuan; Chen, Jianxin; Yin, Yongheng; Wu, Hong

    2018-01-01

    Graphene oxide (GO)-based membranes possess promising potential in liquid separation for its high flux. The state-of-art GO-based membranes need to be supported by a substrate to ensure that the ultra-thin GO layer can withstand transmembrane pressure in practical applications. The interfacial compatibility of this kind of composite membrane remains a great challenge due to the intrinsic difference in chemical/physical properties between the GO sheets and the substrate. In this paper, a structurally stable GO-based composite nanofiltration membrane was fabricated by coupling the mussel-inspired adhesive platform and filtration-assisted assembly of GO laminates. The water flux for the prepared GO-based nanofiltration membrane reached up to 85 L m-2 h-1 bar-1 with a high retention above 95% and 100% for Orange G and Congo Red, respectively. The membrane exhibited highly stable structure owing to the covalent and noncovalent interactions between GO separation layer and dopamine adhesive platform.

  8. Prediction of Physical Properties of Nanofiltration Membranes for Neutral and Charged Solutes

    EPA Science Inventory

    Two commercial nanofiltration (NF) membranes viz., NF 300 MWCO and NF 250 MWCO were used for neutral and charged solute species viz., glucose, sodium chloride and magnesium chloride to investigate their rejection rates using Donnan steric pore model (DSPM) and DSPM-dielectric exc...

  9. [Evaluation of the virus-elimination efficacy of nanofiltration (Viresolve NFP) for the parvovirus B19 and hepatitis A virus].

    PubMed

    Oh, Deok Ja; Lee, Yoo La; Kang, Jae Won; Kwon, So Yong; Cho, Nam Sun; Kim, In Seop

    2010-02-01

    The safety of plasma derivatives has been reinforced since 1980s by variable pathogen inactivation or elimination techniques. Nucleic acid amplification test (NAT) for the source plasma has also been implemented worldwide. Recently nanofiltration has been used in some country for ensuring safety of plasma derivatives to eliminate non-enveloped viruses such as parvovirus B19 (B19V) and hepatitis A virus (HAV). We evaluated the efficacy of nanofiltration for the elimination of B19V and HAV. To verify the efficacy of nanofiltration, we adopted a 20 nm Viresolve NFP (Millipore, USA) in the scaling down (1:1,370) model of the antithrombin III production. As virus stock solutions, we used B19V reactive plasma and porcine parvovirus (PPV) and HAV obtained from cell culture. And 50% tissue culture infectious dose was consumed as infectious dose. The methods used to evaluate the virus-elimination efficacy were reverse-transcriptase polymerase chain reaction for B19V and the cytopathic effect calculation after filtration for PPV and HAV. B19V was not detected by RT-PCR in the filtered antithrombin III solutions with initial viral load of 6.42 x 10(5) IU/mL and 1.42 x 10(5) IU/mL before filtration. The virus-elimination efficacy of nanofiltration for PPV and HAV were > or = (3.32) and > or = (3.31), respectively. Nanofiltration would be an effective method for the elimination of B19V and HAV. It may be used as a substitute for NAT screening of these viruses in source plasma to ensure safety of plasma derivatives in Korea.

  10. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    PubMed Central

    Buscio, Valentina; García-Jiménez, María; Vilaseca, Mercè; López-Grimau, Victor; Crespi, Martí; Gutiérrez-Bouzán, Carmen

    2016-01-01

    The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates). Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range. PMID:28773614

  11. Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes

    USGS Publications Warehouse

    Kharaka, Y.K.; Ambats, G.; Presser, T.S.; Davis, R.A.

    1996-01-01

    Seleniferous agricultural drainage wastewater has become a new major source of pollution in the world. In the USA, large areas of farmland in 17 western states, generate contaminated salinized drainage with Se concentrations much higher than 5 ??g/l, the US Environmental Protection Agency water-quality criterion for the protection of aquatic life; Se values locally reach 4200 ??g/l in western San Joaquin Valley, California. Wetland habitats receiving this drainage have generally shown Se toxicosis in aquatic birds causing high rates of embryonic deformity and mortality, or have indicated potential ecological damage. Results of our laboratory flow experiments indicate that nanofiltration, the latest membrane separation technology, can selectively remove > 95% of Se and other multivalent anions from > 90% of highly contaminated water from the San Joaquin Valley, California. Such membranes yield greater water output and require lower pressures and less pretreatment, and therefore, are more cost effective than traditional reverse osmosis membranes. Nanofiltration membranes offer a potential breakthrough for the management of Se contaminated wastes not only from agricultural drainage, but from other sources also.

  12. Conception et mises a l'essai d'un environnement d'apprentissage integrant l'experimentation assistee par ordinateur et la simulation assistee par ordinateur

    NASA Astrophysics Data System (ADS)

    Riopel, Martin

    To make science laboratory sessions more instructive, we have developed a learning environment that will allow students enrolled in a mechanics course at college or university level to engage in a scientific modelization process by combining computer-simulated experimentation and microcomputer-based laboratories. The main goal is to assist and facilitate both inductive and deductive reasoning. Within this computer application, each action can also be automatically recorded and identified while the student is using the software. The most original part of the environment is to let the student compare the simulated animation with the real video by superposing the images. We used the software with students and observed that they effectively engaged in a modelization process that included both inductive and deductive reasoning. We also observed that the students were able to use the software to produce adequate answers to questions concerning both previously taught and new theoretical concepts in physics. The students completed the experiment about twice as fast as usual and considered that using the software resulted in a better understanding of the phenomenon. We conclude that this use of the computer in science education can broaden the range of possibilities for learning and for teaching and can provide new avenues for researchers who can use it to record and study students' path of reasoning. We also believe that it would be interesting to investigate more some of the benefits associated with this environment, particularly the acceleration effect, the improvement of students' reasoning and the equilibrium between induction and deduction that we observed within this research.

  13. [Analyze nanofiltration separation rule of chlorogenic acid from low concentration ethanol by Donnan effect and solution-diffusion effect].

    PubMed

    Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping

    2017-07-01

    To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.

  14. Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair samples via cross-flow nanofiltrated amino acids.

    PubMed

    Boudin, Mathieu; Boeckx, Pascal; Vandenabeele, Peter; Van Strydonck, Mark

    2013-09-30

    Radiocarbon dating and stable isotope analyses of bone collagen, wool, hair and silk contaminated with extraneous carbon (e.g. humic substances) does not yield reliable results if these materials are pre-treated using conventional methods. A cross-flow nanofiltration method was developed that can be applied to various protein materials like collagen, hair, silk, wool and leather, and should be able to remove low-molecular and high-molecular weight contaminants. To avoid extraneous carbon contamination via the filter a ceramic filter (molecular weight cut-off of 200 Da) was used. The amino acids, released by hot acid hydrolysis of the protein material, were collected in the permeate and contaminants in the retentate (>200 Da). (14)C-dating results for various contaminated archaeological samples were compared for bulk material (pre-treated with the conventional methods) and for cross-flow nanofiltrated amino acids (permeate) originating from the same samples. Contamination and quality control of (14)C dates of bulk and permeate samples were obtained by measuring C:N ratios, fluorescence spectra, and δ(13)C and δ(15)N values of the samples. Cross-flow nanofiltration decreases the C:N ratio which means that contaminants have been removed. Cross-flow nanofiltration clearly improved sample quality and (14)C results. It is a quick and non-labor-intensive technique and can easily be implemented in any (14)C and stable isotope laboratory for routine sample pre-treatment analyses. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes.

    PubMed

    Ahmad, A L; Tan, L S; Shukor, S R Abd

    2008-02-28

    In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.

  16. Nanofiltration Membranes for Removal of Color and Pathogens in Small Public Drinking Water Sources

    EPA Science Inventory

    Small public water supplies that use surface water as a source for drinking water are frequently faced with elevated levels of color and natural organic matter (NOM) that are precursors for chlorinated disinfection byproduct (DBP) formation. Nanofiltration (NF) systems can preve...

  17. Membrane process treatment for greywater recycling: investigations on direct tubular nanofiltration.

    PubMed

    Hourlier, F; Massé, A; Jaouen, P; Lakel, A; Gérente, C; Faur, C; Cloirec, P Le

    2010-01-01

    On-site greywater recycling and reuse is one of the main ways to reduce potable water requirement in urban areas. Direct membrane filtration is a promising technology to recycle greywater on-site. This study aimed at selecting a tubular nanofiltration (NF) membrane and its operating conditions in order to treat and reuse greywater in buildings. To do so, a synthetic greywater (SGW) was reconstituted in order to conduct experiments on a reproducible effluent. Then, three PCI NF membranes (AFC30, AFC40 and AFC80) having distinct molecular weight cut-offs were tested to recycle this SGW with a constant concentration at 25°C at two different transmembrane pressures (20 and 35 bar). The best results were obtained with AFC80 at 35 bar: the flux was close to 50 L m⁻²  h⁻¹, retentions of 95% for chemical oxygen demand and anionic surfactants were observed, and no Enterococcus were detected in the permeate. The performances of AFC80 were also evaluated on a real greywater: fluxes and retentions were similar to those observed on SGW. These results demonstrate the effectiveness of direct nanofiltration to recycle and reuse greywater.

  18. A Mechanistic Study of Arsenic (III) Rejection by Reverse Osmosis and Nanofiltration Membranes

    ERIC Educational Resources Information Center

    Suzuki, Tasuma

    2009-01-01

    Reverse osmosis/nanofiltration (RO/NF) membranes are capable to provide an effective barrier for a wide range of contaminants (including disinfection by-products precursors) in a single treatment step. However, solute rejection mechanisms by RO/NF membranes are not well understood. The lack of mechanistic information arises from experimental…

  19. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  20. EFFECTS OF CHLORAMINATION AND SITE SPECIFIC ISSUES ON NANOFILTRATION FLUX LOSS AND FOULANT CHARACTERISTICS

    EPA Science Inventory

    The presence of chloramines or free ammonium ion was found to have little effect on the final specific flux and fouling cake-layer characteristics of nanofiltration membrances fed pretreated Little Miami Aquifer water. The system fed chloraminated water had the greatest amount o...

  1. Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene

    DOE PAGES

    O'Hern, Sean C.; Jang, Doojoon; Bose, Suman; ...

    2015-04-27

    Monolayer nanoporous graphene represents an ideal membrane for molecular separations, but its practical realization is impeded by leakage through defects in the ultrathin graphene. Here, we report a multiscale leakage-sealing process that exploits the nonpolar nature and impermeability of pristine graphene to selectively block defects, resulting in a centimeter-scale membrane that can separate two fluid reservoirs by an atomically thin layer of graphene. After introducing subnanometer pores in graphene, the membrane exhibited rejection of multivalent ions and small molecules and water flux consistent with prior molecular dynamics simulations. The results indicate the feasibility of constructing defect-tolerant monolayer graphene membranes formore » nanofiltration, desalination, and other separation processes.« less

  2. Development of chitosan/pluronic F108/polyethersulfone (PES) nanofiltration (NF) membrane for oily wastewater treatment

    NASA Astrophysics Data System (ADS)

    Hamzah, Norzakiah; Rohani, Rosiah; Hassan, Abdul Rahman; Sharifuddin, Syazrin Syima; Isa, Mohd Hafez Mohd

    2018-06-01

    This study discusses a new finding for nanofiltration membrane development using phase inversion technique whereby polyethersulfone (PES) polymer was added with surfactant and additive. This research focuses on the development of a membrane that is efficient in treating oily wastewater and reducing membrane's low permeation flux issues. Five PES nanofiltration membranes were synthesized with pluronic F108 surfactant and different amounts of chitosan additive for each formulation. Subsequently, the effect of adding surfactant and additive on membrane performance was studied. Results showed that the membrane with the optimal amount of chitosan gave the highest flux and the rejection of oily wastewater with up to 90%. In addition, Fourier transform-infrared (FTIR) spectroscopy technique was used to characterize and analyse the membrane's properties. Hence, the developed membranes were successfully characterized and proved to be a good treatment for oily wastewater.

  3. Cyanide removal from industrial wastewater by cross-flow nanofiltration: transport modeling and economic evaluation.

    PubMed

    Pal, Parimal; Bhakta, Pamela; Kumar, Ramesh

    2014-08-01

    A modeling and simulation study, along with an economic analysis, was carried out for the separation of cyanide from industrial wastewater using a flat sheet cross-flow nanofiltration membrane module. With the addition of a pre-microfiltration step, nanofiltration was carried out using real coke wastewater under different operating conditions. Under the optimum operating pressure of 13 bars and a pH of 10.0, a rate of more than 95% separation of cyanide was achieved. That model predictions agreed very well with the experimental findings, as is evident in the Willmott d-index value (> 0.95) and relative error (< 0.1). Studies were carried out with industrial wastewater instead of a synthetic solution, and an economic analysis was also done, considering the capacity of a running coking plant. The findings are likely to be very useful in the scale-up and design of industrial plants for the treatment of cyanide-bearing wastewater.

  4. Nanofiltration and nanostructured membranes--should they be considered nanotechnology or not?

    PubMed

    Mueller, Nicole C; van der Bruggen, Bart; Keuter, Volkmar; Luis, Patricia; Melin, Thomas; Pronk, Wouter; Reisewitz, Robert; Rickerby, David; Rios, Gilbert M; Wennekes, Wilco; Nowack, Bernd

    2012-04-15

    Nanofiltration is frequently associated with nanotechnology - obviously because of its name. However, the term "nano" in nanofiltration refers - according to the definition of the International Union of Pure and Applied Chemistry (IUPAC) - to the size of the particles rejected and not to a nanostructure as defined by the International Organisation of Standardisation (ISO) in the membrane. Evidently, the approach to standardisation of materials differs significantly between membrane technology and nanotechnology which leads to considerable confusion and inconsistent use of the terminology. There are membranes that can be unambiguously attributed to both membrane technology and nanotechnology such as those that are functionalized with nanoparticles, while the classification of hitherto considered to be conventional membranes as nanostructured material is questionable. A driving force behind the efforts to define nanomaterials is not least the urgent need for the regulation of the use of nanomaterials. Since risk estimation is the basis for nanotechnology legislation, the risk associated with nanomaterials should also be reflected in the underlying standards and definitions. This paper discusses the impacts of the recent attempts to define nanomaterials on membrane terminology in the light of risk estimations and the need for regulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Neurotoxic and hepatotoxic cyanotoxins removal by nanofiltration.

    PubMed

    Teixeira, Margarida Ribau; Rosa, Maria João

    2006-08-01

    This study investigates the influence of chemical feed characteristics on nanofiltration performance for cyanotoxins removal, namely the neurotoxic anatoxin-a (alkaloid of 166 g/mol, positively charged) and the hepatotoxic microcystins (cyclic peptides of approximately 1,000 g/mol, negatively charged). Results indicate that NF membranes are an effective barrier against anatoxin-a and microcystins in drinking water. Anatoxin-a and especially microcystins were almost completely removed, regardless of the variations in feed water quality (natural organic matter and competitive toxin), the water recovery rate and the pH values. Anatoxin-a removal was governed by electrostatic interactions and steric hindrance, whereas for microcystins the latter was the main mechanism. In turn, fluxes were significantly impacted by background organics and, especially, inorganics (pH, calcium).

  6. Enhancement of the natural organic matter removal from drinking water by nanofiltration.

    PubMed

    Matilainen, A; Liikanen, R; Nyström, M; Lindqvist, N; Tuhkanen, T

    2004-03-01

    Finnish surface waters are abundant in natural organic matter. Natural organic matter can be removed from drinking water in a water treatment process by coagulation and filtration. The standard treatment operations are not able to remove the smallest molar mass fraction of organic matter and the intermediate molar mass matter is only partly removed. The removal of residual natural organic matter from drinking water by nanofiltration was evalueted in this study. Three different nanofiltration membranes were compared in filtering six pre-treated surface waters. The total organic carbon content of the feed waters varied from 2.0 to 4.2 mg l(-1). Other water quality parameters measured were conductivity, alkalinity, hardness, UV-absorbance, SUVA, E2/E3 value and molecular size distribution by high-performance size-exclusion chromatography. The natural organic matter removal efficiencies of the membranes were good and varied between 100% and 49%, and between 85% and 47% according to molecular size distribution and total organic carbon measurements, respectively. Removal of different molecular size fractions varied from 100% to 56%, 100% to 54% and 88% to 19%, regarding high molar mass, intermediate molar mass and low molar mass organic matter, respectively. The Desal-5 DL membrane produced the highest natural organic matter removals.

  7. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    PubMed Central

    Mullett, Mark; Fornarelli, Roberta; Ralph, David

    2014-01-01

    Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met. PMID:24957170

  8. Naphthenic acids removal from high TDS produced water by persulfate mediated iron oxide functionalized catalytic membrane, and by nanofiltration.

    PubMed

    Aher, Ashish; Papp, Joseph; Colburn, Andrew; Wan, Hongyi; Hatakeyama, Evan; Prakash, Prakhar; Weaver, Ben; Bhattacharyya, Dibakar

    2017-11-01

    Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (Fe x O y nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent. Catalytic decomposition of persulfate by Fe x O y functionalized membranes followed pseudo-first order kinetics with an apparent activation energy of 18 Kcal/mol. Fe x O y functionalized membranes were capable of lowering the NA concentrations to less than discharge limits of 10 ppm at 40 °C. Oxidation state of iron during reaction was quantified. Membrane performance was investigated for extended period of time. A coupled process of advanced oxidation catalyzed by membrane and nanofiltration was also evaluated. Commercially available nanofiltration membranes were found capable of retaining NA from water containing high concentrations of dissolved salts. Commercial NF membranes, Dow NF270 (Dow), and NF8 (Nanostone) had NA rejection of 79% and 82%, respectively. Retentate for the nanofiltration was further treated with advanced oxidation catalyzed by Fe x O y functionalized membrane for removal of NA.

  9. Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water.

    PubMed

    Van der Bruggen, B; Milis, R; Vandecasteele, C; Bielen, P; Van San, E; Huysman, K

    2003-09-01

    In order to achieve stable groundwater levels, an equilibrium between the use of groundwater for drinking water production and natural or artificial groundwater recharge by infiltration is needed. Local governments usually require that the composition of the water used for artificial recharge is similar to the surface water that is naturally present in the specific recharge area. In this paper, electrodialysis (ED) and nanofiltration were evaluated as possible treatment technologies for surface water from a canal in Flanders, the North of Belgium, in view of infiltration at critical places on heathlands. Both methods were evaluated on the basis of a comparison between the water composition after treatment and the composition of local surface waters. The treatment generally consists of a tuning of pH and the removal of contaminants originating from industrial and agricultural activity, e.g., nitrates and pesticides. Further evaluation of the influence of the composition of the water on the characteristics of the artificial recharge, however, was not envisaged. In a case study of water from the canal Schoten-Dessel, satisfactory concentration reductions of Cl(-), SO(4)(2-), NO(3)(-), HCO(3)(-), Na(+), Mg(2+), K(+) and Ca(2+) were obtained by ultrafiltration pretreatment followed by ED. Nanofiltration with UTC-20, N30F, Desal 51 HL, UTC-60 and Desal 5 DL membranes resulted in an insufficient removal level, especially for the monovalent ions.

  10. Benchtop Antigen Detection Technique using Nanofiltration and Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2009-01-01

    The designed benchtop technique is primed to detect bacteria and viruses from antigenic surface marker proteins in solutions, initially water. This inclusive bio-immunoassay uniquely combines nanofiltration and near infrared (NIR) dyes conjugated to antibodies to isolate and distinguish microbial antigens, using laser excitation and spectrometric analysis. The project goals include detecting microorganisms aboard the International Space Station, space shuttle, Crew Exploration Vehicle (CEV), and human habitats on future Moon and Mars missions, ensuring astronaut safety. The technique is intended to improve and advance water contamination testing both commercially and environmentally as well. Lastly, this streamlined technique poses to greatly simplify and expedite testing of pathogens in complex matrices, such as blood, in hospital and laboratory clinics.

  11. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.

    PubMed

    Talaeipour, M; Nouri, J; Hassani, A H; Mahvi, A H

    2017-01-01

    As an appropriate tool, membrane process is used for desalination of brackish water, in the production of drinking water. The present study aims to investigate desalination processes of brackish water of Qom Province in Iran. This study was carried out at the central laboratory of Water and Wastewater Company of the studied area. To this aim, membrane processes, including nanofiltration (NF) and reverse osmosis (RO), separately and also their hybrid process were applied. Moreover, water physical and chemical parameters, including salinity, total dissolved solids (TDS), electric conductivity (EC), Na +1 and Cl -1 were also measured. Afterward, the rejection percent of each parameter was investigated and compared using nanofiltration and reverse osmosis separately and also by their hybrid process. The treatment process was performed by Luna domestic desalination device, which its membrane was replaced by two NF90 and TW30 membranes for nanofiltration and reverse osmosis processes, respectively. All collected brackish water samples were fed through membranes NF90-2540, TW30-1821-100(RO) and Hybrid (NF/RO) which were installed on desalination household scale pilot (Luna water 100GPD). Then, to study the effects of pressure on permeable quality of membranes, the simulation software model ROSA was applied. Results showed that percent of the salinity rejection was recorded as 50.21%; 72.82 and 78.56% in NF, RO and hybrid processes, respectively. During the study, in order to simulate the performance of nanofiltartion, reverse osmosis and hybrid by pressure drive, reverse osmosis system analysis (ROSA) model was applied. The experiments were conducted at performance three methods of desalination to remove physic-chemical parameters as percentage of rejections in the pilot plant are: in the NF system the salinity 50.21, TDS 43.41, EC 43.62, Cl 21.1, Na 36.15, and in the RO membrane the salinity 72.02, TDS 60.26, EC 60.33, Cl 43.08, Na 54.41. Also in case of the rejection in

  12. Role of pH in the recovery of bovine milk oligosaccharides from colostrum whey permeate by nanofiltration

    PubMed Central

    Cohen, Joshua L.; Barile, Daniela; Liu, Yan; de Moura Bell, Juliana M. L. N.

    2016-01-01

    Milk oligosaccharides are associated with improved health outcomes in infants. Nanofiltration (NF) is used for isolation of bovine milk oligosaccharides (BMO). The study aim was to improve the recovery of BMO from lactose-hydrolyzed colostrum whey permeate. The retention factors of carbohydrates at various pH and transmembrane pressures were determined for a nanofiltration membrane, which was used at pilot scale to purify BMO. Carbohydrates were quantified by liquid chromatography and characterized using nano-LC-Chip-QToF mass spectrometry. BMO purity was improved from an initial 4% in colostrum whey permeate to 98%, with 99.8% permeation of monosaccharides and 96% recovery of oligosaccharides, represented by 23 unique BMO compounds identified in the final retentate. The pH during NF was a determining factor in the selectivity of carbohydrate separation. This NF method can be applied to conventional cheese-whey permeate and other milk types for extraction of bioactive oligosaccharides providing new options for the dairy industry. PMID:28652648

  13. Studies on the integration of nanofiltration and soil treatment for municipal effluent reclamation as a groundwater supplement.

    PubMed

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2010-01-01

    Water shortage leads to increasing attention to artificial groundwater recharge by reclaimed water. An injection well is the most common recharge approach. In this paper, a new kind of integrated technology-short-term vadose soil treatment followed by nanofiltration-is recommended as pretreatment for artificial groundwater recharge by an injection well. Laboratory-scale experiments demonstrate that the short-term vadose soil can remove approximately 30% of the total dissolved organic carbon (DOC) content and 40% of dissolved organic matter with a molecular weight less than 1 kDa. As a compensatory process of soil treatment, nanofiltration offers a favorable desalination and additional organics removal. The removal efficiencies for total dissolved solids and conductivity amount to 45 and 48%, respectively. The residual DOC in the final effluent is below 1.0 mg/L. In addition, short-term vadose soil offers effective elimination of aromatic protein-like and polysaccharide-like substances, which are detected as components of the membrane foulant.

  14. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.

    PubMed

    Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir

    2015-01-01

    Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results.

  15. Selective recovery of salt from coal gasification brine by nanofiltration membranes.

    PubMed

    Li, Kun; Ma, Wencheng; Han, Hongjun; Xu, Chunyan; Han, Yuxing; Wang, Dexin; Ma, Weiwei; Zhu, Hao

    2018-06-20

    The selective extraction and concentration of salt from coal gasification brine (CGB) by nanofiltration membranes is a promising technology to achieve near-zero liquid discharge of coal gasification wastewater. To investigate the feasibility of recovery of salts and the interaction of organic compounds, multivalent ions and monovalent ions on the rejection ratio, three nanofiltration membranes (OWNF1, NF270 and Desal-5 DK) with an 1812 spiral-wound module were used in crossflow filtration. The rejection mechanism was analyzed by comparing the rejection performance as a function of the operation pressure (increasing from 1.0 MPa to 2.5 MPa), the concentration (increasing from 10,000 mg/L to 25,000 mg/L) and pH values (increasing from 3.0 to 10.0). The concentrations of anions and cations were determined using an ion chromatographic analyzer and an inductively coupled plasma emission spectrometer, respectively. The results show that the rejection of sulfate and the chemical oxygen demand were higher than 92.12% and 78.84%, respectively, at appropriate operation, while negative rejection of chloride was observed in the CGB. The decreasing rejection of organic compounds was due to swelling of the membrane pore in high-concentration solutions. Meanwhile, the organic compounds weakened the negative charge of the membrane active layer, consequently decreasing the ion rejection. More than 85% of the sodium chloride could be recovered, indicating that this technology is suitable for resource recovery from CGB and near-zero liquid discharge of coal gasification industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Nanofiltration Results: Membrane Removal of Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from Simulated Geothermal Brines

    DOE Data Explorer

    Jay Renew

    2016-02-06

    Results from a nanofiltration study utilizing simulated geothermal brines. The data includes a PDF documenting the process used to remove Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from simulated geothermal brines. Three different membranes were evaluated. The results were analyzed using inductively coupled plasma mass spectrometry (ICP-MS).

  17. Process analysis and economics of drinking water production from coastal aquifers containing chromophoric dissolved organic matter and bromide using nanofiltration and ozonation.

    PubMed

    Sobhani, R; McVicker, R; Spangenberg, C; Rosso, D

    2012-01-01

    In regions characterized by water scarcity, such as coastal Southern California, groundwater containing chromophoric dissolved organic matter is a viable source of water supply. In the coastal aquifer of Orange County in California, seawater intrusion driven by coastal groundwater pumping increased the concentration of bromide in extracted groundwater from 0.4 mg l⁻¹ in 2000 to over 0.8 mg l⁻¹ in 2004. Bromide, a precursor to bromate formation is regulated by USEPA and the California Department of Health as a potential carcinogen and therefore must be reduced to a level below 10 μg l⁻¹. This paper compares two processes for treatment of highly coloured groundwater: nanofiltration and ozone injection coupled with biologically activated carbon. The requirement for bromate removal decreased the water production in the ozonation process to compensate for increased maintenance requirements, and required the adoption of catalytic carbon with associated increase in capital and operating costs per unit volume. However, due to the absence of oxidant addition in nanofiltration processes, this process is not affected by bromide. We performed a process analysis and a comparative economic analysis of capital and operating costs for both technologies. Our results show that for the case studied in coastal Southern California, nanofiltration has higher throughput and lower specific capital and operating cost, when compared to ozone injection with biologically activate carbon. Ozone injection with biologically activated carbon, compared to nanofiltration, has 14% higher capital cost and 12% higher operating costs per unit water produced while operating at the initial throughput. Due to reduced ozone concentration required to accommodate for bromate reduction, the ozonation process throughput is reduced and the actual cost increase (per unit water produced) is 68% higher for capital cost and 30% higher for operations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A flux-enhancing forward osmosis-nanofiltration integrated treatment system for the tannery wastewater reclamation.

    PubMed

    Pal, Parimal; Chakrabortty, Sankha; Nayak, Jayato; Senapati, Suman

    2017-06-01

    Effective treatment of tannery wastewater prior to discharge to the environment as per environmental regulations remains a big challenge despite efforts to bring down the concentrations of the pollutants which are often quite high as measured in terms of chemical oxygen demand (7800 mg/L), total dissolved solids (5400 mg/L), chloride (4260 mg/L), sulphides (250 mg/L) and chromium. A pilot-scale forward osmosis and nanofiltration integrated closed loop system was developed for continuous reclamation of clean water from tannery wastewater at a rate of 52-55 L/m 2 /h at 1.6 bar pressure. The low-cost draw solution was 0.8 M NaCl solution. Continuous recovery for recycling the draw solute was done by nanofiltration of diluted draw solution at an operating pressure of 12 bar and volumetric cross-flow rate of 700 L/h. Fouling study revealed that the specific flat-sheet design of cross-flow forward osmosis module with counter current flow of feed and draw solution prevents the build-up of concentration polarization, thus enabling long-term filtration in continuous mode of operation without significant membrane fouling. This study culminates in the development of a compact, efficient and low-cost industrial wastewater treatment and reclamation technology.

  19. Temperature effects on separation of Gd3+ from Gd-DTPA-folate using nanofiltration method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Indraneli, R. P.; Yuliyati, Y. B.; Anggraeni, A.; Soedjanaatmadja, U. M. S.; Bahti, H. H.

    2018-05-01

    MRI is one of the best techniques in medical diagnostics. Contrast agents are used to improve the visual of organs that are difficult to distinguish through MRI. Gd-DTPA-folate is one of the specific contrast agents against cancer diagnosis, because it has a high affinity to folate receptors. In the complexing Gd-DTPA-folate, does not rule out the complexity step runs imperfectly, so there is still Gd3+ in the Gd-DTPA-folate complex. The separation of Gd3+ from the Gd-DTPA-folate complex is important to eliminate toxic effects on the contrast agent. This study aims to determine the effect of temperature on the separation of Gd-DTPA-folate from Gd3+ with nanofiltration. The method are preparation Gd-DTPA-folate from GdCl3.6H2O and DTPA-folate by reflux method, then separated Gd-DTPA-folate complex from Gd3+ with nanofiltration at variation temperature (40, 41, 42, 43, 44oC ). Then, the values of flux and rejection coefficients were analyzed. The results showed that the optimum temperature for the separation of Gd3+ from Gd-DTPA-folate was achieved at 42.6°C with the rejection coefficient of 24% and the permeate flux of 403 L.m-2.h-1.

  20. Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane

    PubMed Central

    Bejaoui, Imen; Mouelhi, Meral; Hamrouni, Béchir

    2017-01-01

    Nanofiltration and reverse osmosis are investigated as a possible alternative to the conventional methods of Cr(VI) removal from model water and industrial effluent. The influences of feed concentration, water recovery, pH, and the coexisting anions were studied. The results have shown that retention rates of hexavalent chromium can reach 99.7% using nanofiltration membrane (NF-HL) and vary from 85 to 99.9% using reverse osmosis membrane (RO-SG) depending upon the composition of the solution and operating conditions. This work was also extended to investigate the separation of Cr(VI) from car shock absorber factory effluent. The use of these membranes is very promising for Cr(VI) water treatment and desalting industry effluent. Spiegler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters, the reflection coefficient of the membrane (σ), and the solute permeability coefficient (Ps). The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution. PMID:28819360

  1. Polyamide nanofiltration membranes to remove aniline in aqueous solutions.

    PubMed

    Hidalgo, A M; León, G; Gómez, M; Murcia, M D; Bernal, M D; Ortega, S

    2014-01-01

    Aniline is commonly used in a number of industrial processes. It is known to be a harmful and persistent pollutant and its presence in wastewater requires treatment before disposal. In this paper, the effectiveness of nanofiltration (NF) to remove aniline from aqueous solutions is studied in a flat membrane test module using two thin-layer composite membranes of polyamide (NF97 and NF99HF). The influence of different operational variables (applied pressure, feed concentration and pH) on the removal of aniline from synthetic aqueous solutions was analysed. The experimental NF results are compared with results previously obtained by reverse osmosis. Based on this comparative study, the effective order for aniline rejection is: HR98PP > NF97 > DESAL3B > SEPA-MS05 > NF99HF.

  2. Performances of nanofiltration and low pressure reverse osmosis membranes for desalination: characterization and modelling

    NASA Astrophysics Data System (ADS)

    Boussouga, Y. A.; Lhassani, A.

    2017-03-01

    The nanofiltration and the reverse osmosis processes are the most common techniques for the desalination of water contaminated by an excess of salts. In this present study, we were interested in the characterization of commercial, composite and asymmetric membranes of nanofiltration (NF90, NF270) and low pressure reverse osmosis (BW30LE). The two types of characterization that we opted for our study: (i) characterization of electrical proprieties, in terms of the surface charge of various membranes studied by the measurement of the streaming potential, (ii) hydrodynamic characterization in terms of hydraulic permeability with pure water, mass transfer and phenomenological parameters for each system membrane/salt using hydrodynamic approaches. The irreversible thermodynamics allowed us to model the observed retention Robs of salts (NaCl and Na2SO4) for the different membranes studied, to understand and to predict a good filtration with a membrane. A study was conducted on the type of mass transfer for each system membrane/salt: convection and diffusion. The results showed that all tested membranes are negatively charged for the solutions at neutral pH, this is explained by their material composition. The results also showed competitiveness between the different types of membranes. In view of that the NF remains effective in terms of selective retention with less energy consumption than LPRO.

  3. Nanofiltration/reverse osmosis for treatment of coproduced waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, S.; Hsiao, C.L.; Wickramasinghe, S.R.

    2008-07-15

    Current high oil and gas prices have lead to renewed interest in exploration of nonconventional energy sources such as coal bed methane, tar sand, and oil shale. However oil and gas production from these nonconventional sources has lead to the coproduction of large quantities of produced water. While produced water is a waste product from oil and gas exploration it is a very valuable natural resource in the arid Western United States. Thus treated produced water could be a valuable new source of water. Commercially available nanofiltration and low pressure reverse osmosis membranes have been used to treat three producedmore » waters. The results obtained here indicate that the permeate could be put to beneficial uses such as crop and livestock watering. However minimizing membrane fouling will be essential for the development of a practical process. Field Emission Scanning Electron Microscopy imaging may be used to observe membrane fouling.« less

  4. Rejection of Tetracycline and Oxytetracycline in Water by a Nanofiltration Membrane

    NASA Astrophysics Data System (ADS)

    Li, Weiying; Sun, Xiuli; Wang, Qing; Xu, Jingjing; Lu, Junyu

    2010-11-01

    The removal of tetracycline (TC) and oxytetracycline (OTC) by a nanofiltration (NF) membrane was studied using synthetic solutions. The effects of operation parameters (recovery and flux), feed concentration and salinity on the rejection of tetracyclines and their adsorption on membranes were investigated. TC was observed to show a high adsorptive affinity for the membrane. Almost 80% of TC and 70% of OTC were adsorbed on the membrane surface after stirring for 2000 min and over 50% of them had been adsorbed just 120 min after stir. High removal efficiencies (>90%) were observed for TC and OTC with NF membrane. Rejection ratio of OTC by NF was slightly higher than that of TC.

  5. Development of polyethersulfone (PES)/silver nanoparticles (AgNPs)/polyethylene glycol (PEG) nanofiltration membrane

    NASA Astrophysics Data System (ADS)

    Johary, Fasihah; Jamaluddin, Nur Adibah; Rohani, Rosiah; Hassan, Abdul Rahman; Sharifuddin, Syazrin Syima; Isa, Mohd Hafez Mohd

    2018-06-01

    Nanofiltration is a membrane-based separation process that has been used widely in the separation and purification fields for various applications such as dye desalting, applications of water softening, pharmaceuticals and wastewater treatment. In this research, polyethersulfone (PES), polyethylene glycol (PEG), Pluronic F108 and silver nanoparticles (AgNPs) nanofiltration membrane was prepared using casting solution technique with N-methyl-2-pyrrolidone (NMP) was used as a solvent. The effects of Pluronic F108 and silver nanoparticles (AgNPs) concentrations in the casting solutions on the membrane performance/properties were also studied. The membrane pure water permeation (PWP) and salt rejection tests were carried out for membrane performance analysis. Scanning electron microscopy (SEM) was used for the membrane morphology characterization. Fourier transform infrared spectroscopy was utilized to identify functional groups in the membrane. Membrane with 2.0 wt.% of Pluronic F108 and 0.05 wt.% of AgNPs showed the best performances for both PWP (40.89 L/m2h) as well as permeation flux of salts solution of NaCl (43.95 L/m2h), Na2SO4 (21.16 L/m2h), MgCl2 (26.46 L/m2h) and MgSO4 (20.41 L/m2h). All fabricated membranes with different formulation of dope composition obtained high salts rejection in the range of 79% to 91%. SEM images showed addition of AgNPs has improved fabricated membrane morphology with higher pore density and larger macro-void structure.

  6. Enhanced surface hydrophilicity of thin-film composite membranes for nanofiltration: an experimental and DFT study.

    PubMed

    Lv, Zhiwei; Hu, Jiahui; Zhang, Xuan; Wang, Lianjun

    2015-10-07

    In the current study, thin-film composite (TFC) nanofiltration membranes desirable for water softening were successfully developed through interfacial polymerization using N-(2-hydroxyethyl)ethylenediamine (HEDA) as the amine monomer in the aqueous phase. The hydrophilicity of the membrane surface was greatly enhanced with the introduction of the residual hydroxyl groups during the fabrication process. The TFC membranes possessed a permeate flux of 15.8 L m(-2) h(-1) under 0.6 MPa, with a rejection of 85.9%, 73.8%, and 99.8% for Na2SO4, MgSO4 and Congo red, respectively. The interplays of the solvent, solute and polymer matrix on the separation performance were investigated by means of the solubility parameter study. Moreover, density functional theory was employed to calculate the Fukui function by the Hirshfeld charge, which gave the global and local softness values to predict the reactivity of the atomic sites in the HEDA molecule. The findings of this study support the possible forming mechanism of the barrier layer for the first time. The TFC membrane was found to be stable and displayed good separation ability over a week-long filtration process. The combined results of this work suggest that these HEDA/TMC TFC nanofiltration membranes are promising candidates for various applications, such as desalination and dye removal from wastewater.

  7. Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration.

    PubMed

    Chen, Qing; Yang, Ying; Zhou, Mengsi; Liu, Meihong; Yu, Sanchuan; Gao, Congjie

    2015-03-02

    Raw and biologically treated textile effluents were submerged filtrated using lab-fabricated hollow fiber nanofiltration membrane with a molecular weight cut-off of about 650 g/mol. Permeate flux, chemical oxygen demand (COD) reduction, color removal, membrane fouling, and cleaning were investigated and compared by varying the trans-membrane pressure (TMP) and volume concentrating factor (VCF). It was found that both raw and biologically treated textile effluents could be efficiently treated through submerged nanofiltration. The increase of TMP resulted in a decline in water permeability, COD reduction, color removal, and flux recovery ratio, while the increase of VCF resulted in both increased COD reduction and color removal. Under the TMP of 0.4 bar and VCF of 5.0, fluxes of 1.96 and 2.59 l/m(2)h, COD reductions of 95.7 and 94.2%, color removals of 99.0, and 97.3% and flux recovery ratios of 91.1 and 92.9% could be obtained in filtration of raw and biologically treated effluents, respectively. After filtration, the COD and color contents of the raw effluent declined sharply from 1780 to 325 mg/l and 1.200 to 0.060 Abs/cm, respectively, while for the biologically treated effluent, they decreased from 780 to 180 mg/l and 0.370 to 0.045 Abs/cm, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Selective demineralization of water by nanofiltration application to the defluorination of brackish water.

    PubMed

    Lhassani, A; Rumeau, M; Benjelloun, D; Pontie, M

    2001-09-01

    Nanofiltration is generally used to separate monovalent ions from divalent ions, but it is also possible to separate ions of the same valency by careful application of the transfer mechanisms involved. Analysis of the retention of halide salts reveals that small ions like fluoride are the best retained, and that this is even more marked under reduced pressure when selectivity is greatest. The selectivity desalination of fluorinated brackish water is hence feasible and drinking water can be produced directly at much lower cost than using reverse osmosis by optimizing the pressure for the type of water treated.

  9. Improved AOX degradation in UV oxidative waste water treatment by dialysis with nanofiltration membrane.

    PubMed

    Seiss, M; Gahr, A; Niessner, R

    2001-09-01

    In this article, the wastewater treatment by UV oxidation with and without preceding desalination is compared. The influence of different chloride concentrations on the TOC degradation and AOX concentration is analyzed. Nanofiltration membrane dialysis is used to separate the chloride ions from wastewater. It is demonstrated that a reduction of the chloride concentration leads to a faster TOC degradation compared to the treatment of non-desalinated wastewater. Furthermore, the additional formation of AOX during the process could be avoided in effect leading to a significant degradation of native AOX.

  10. Advanced treatment of municipal wastewater by nanofiltration: Operational optimization and membrane fouling analysis.

    PubMed

    Li, Kun; Wang, Jianxing; Liu, Jibao; Wei, Yuansong; Chen, Meixue

    2016-05-01

    Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration (NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations (i.e., 48 and 169hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure=12bar, pH=4 and flow rate=8L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6hr which is 175% longer than that of the 48-hr one. High molecular weight (MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment. Copyright © 2015. Published by Elsevier B.V.

  11. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources.

    PubMed

    Vergili, I

    2013-09-30

    Pharmaceutical active compounds (PhACs) are persistent during the process used to treat drinking water and, because drinking water treatment plants are not specifically designed to remove PhACs, these compounds are found in drinking water. Although there are currently no regulations or drinking water directives for PhACs, precautionary principles suggest ensuring maximal removal of PhACs through improved or existing treatment techniques. This study was designed to investigate the performance of a nanofiltration membrane in cross-flow filtration equipment for the removal of three PhACs [carbamazepine (CBZ), diclofenac (DIC) and ibuprofen (IBU)] that were spiked in water taken from a drinking water treatment plant using surface water. Because of their low solubilities, high log Kow values, low dipole moments and negative charges, higher rejection values were obtained for DIC and IBU. Low to moderate rejection values were most likely due to the small molecular sizes of the PhACs (i.e., MW < MWCO) and the divalent ions present in the raw water. Flux declines obtained from DIC studies was attributed to the adsorption of DIC ions inside the membrane pores, which decreases the flux. The most evident change in the FT-IR spectrum after nanofiltration was the appearance of new intense bands at 1072 cm(-1) and 1011 cm(-1), indicating the deposition of calcium salts on the membrane surface. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. PAR-1 and PAR-2 Expression Is Enhanced in Inflamed Odontoblast Cells.

    PubMed

    Alvarez, M M P; Moura, G E; Machado, M F M; Viana, G M; de Souza Costa, C A; Tjäderhane, L; Nader, H B; Tersariol, I L S; Nascimento, F D

    2017-12-01

    Protease-activated receptors (PARs) are G protein-coupled receptors, which are activated by proteolytical cleavage of the amino-terminus and act as sensors for extracellular proteases. We hypothesized that PAR-1 and PAR-2 can be modulated by inflammatory stimulus in human dental pulp cells. PAR-1 and PAR-2 gene expression in human pulp tissue and MDPC-23 cells were analyzed by quantitative polymerase chain reaction. Monoclonal PAR-1 and PAR-2 antibodies were used to investigate the cellular expression of these receptors using Western blot, flow cytometry, and confocal microscopy in MDPC-23 cells. Immunofluorescence assays of human intact and carious teeth were performed to assess the presence of PAR-1 and PAR-2 in the dentin-pulp complex. The results show for the first time that human odontoblasts and MDPC-23 cells constitutively express PAR-1 and PAR-2. PAR-2 activation increased significantly the messenger RNA expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MMP-14 in MDPC-23 cells ( P < 0.05), while the expression of these enzymes decreased significantly in the PAR-1 agonist group ( P < 0.05). The high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis showed the presence of MMP-13 activity cleaving PAR-1 at specific, noncanonical site TLDPRS 42 ↓F 43 LL in human dental pulp tissues. Also, we detected a presence of a trypsin-like activity cleaving PAR-2 at canonical site SKGR 20 ↓S 21 LIGRL in pulp tissues. Confocal microscopy analysis of human dentin-pulp complex showed intense positive staining of PAR-1 and PAR-2 in the odontoblast processes in dentinal tubules of carious teeth compared to intact ones. The present results support the hypothesis of activation of the upregulated PAR-1 and PAR-2 by endogenous proteases abundant during the inflammatory response in dentin-pulp complex.

  13. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis

    PubMed Central

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C Arnold

    2015-01-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease-activated receptor (PAR)-1 and PAR-2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin-induced lung fibrosis is diminished in both PAR-1 and PAR-2 deficient mice. We thus have been suggested that combined inactivation of PAR-1 and PAR-2 would be more effective in blocking pulmonary fibrosis. Human and murine fibroblasts were stimulated with PAR-1 and PAR-2 agonists in the absence or presence of specific PAR-1 or PAR-2 antagonists after which fibrotic markers like collagen and smooth muscle actin were analysed by Western blot. Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild-type and PAR-2 deficient mice with or without a specific PAR-1 antagonist (P1pal-12). Fibrosis was assessed by hydroxyproline quantification and (immuno)histochemical analysis. We show that specific PAR-1 and/or PAR-2 activating proteases induce fibroblast migration, differentiation and extracellular matrix production. Interestingly, however, combined activation of PAR-1 and PAR-2 did not show any additive effects on these pro-fibrotic responses. Strikingly, PAR-2 deficiency as well as pharmacological PAR-1 inhibition reduced bleomycin-induced pulmonary fibrosis to a similar extent. PAR-1 inhibition in PAR-2 deficient mice did not further diminish bleomycin-induced pulmonary fibrosis. Finally, we show that the PAR-1-dependent pro-fibrotic responses are inhibited by the PAR-2 specific antagonist. Targeting PAR-1 and PAR-2 simultaneously is not superior to targeting either receptor alone in bleomycin-induced pulmonary fibrosis. We postulate that the pro-fibrotic effects of PAR-1 require the presence of PAR-2. PMID:25689283

  14. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis.

    PubMed

    Lin, Cong; von der Thüsen, Jan; Daalhuisen, Joost; ten Brink, Marieke; Crestani, Bruno; van der Poll, Tom; Borensztajn, Keren; Spek, C Arnold

    2015-06-01

    Idiopathic pulmonary fibrosis is the most devastating diffuse fibrosing lung disease of unknown aetiology. Compelling evidence suggests that both protease-activated receptor (PAR)-1 and PAR-2 participate in the development of pulmonary fibrosis. Previous studies have shown that bleomycin-induced lung fibrosis is diminished in both PAR-1 and PAR-2 deficient mice. We thus have been suggested that combined inactivation of PAR-1 and PAR-2 would be more effective in blocking pulmonary fibrosis. Human and murine fibroblasts were stimulated with PAR-1 and PAR-2 agonists in the absence or presence of specific PAR-1 or PAR-2 antagonists after which fibrotic markers like collagen and smooth muscle actin were analysed by Western blot. Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild-type and PAR-2 deficient mice with or without a specific PAR-1 antagonist (P1pal-12). Fibrosis was assessed by hydroxyproline quantification and (immuno)histochemical analysis. We show that specific PAR-1 and/or PAR-2 activating proteases induce fibroblast migration, differentiation and extracellular matrix production. Interestingly, however, combined activation of PAR-1 and PAR-2 did not show any additive effects on these pro-fibrotic responses. Strikingly, PAR-2 deficiency as well as pharmacological PAR-1 inhibition reduced bleomycin-induced pulmonary fibrosis to a similar extent. PAR-1 inhibition in PAR-2 deficient mice did not further diminish bleomycin-induced pulmonary fibrosis. Finally, we show that the PAR-1-dependent pro-fibrotic responses are inhibited by the PAR-2 specific antagonist. Targeting PAR-1 and PAR-2 simultaneously is not superior to targeting either receptor alone in bleomycin-induced pulmonary fibrosis. We postulate that the pro-fibrotic effects of PAR-1 require the presence of PAR-2. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Electroviscous Effects in Ceramic Nanofiltration Membranes.

    PubMed

    Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard

    2015-11-16

    Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solvent-resistant nanofiltration for product purification and catalyst recovery in click chemistry reactions.

    PubMed

    Cano-Odena, Angels; Vandezande, Pieter; Fournier, David; Van Camp, Wim; Du Prez, Filip E; Vankelecom, Ivo F J

    2010-01-18

    The quickly developing field of "click" chemistry would undoubtedly benefit from the availability of an easy and efficient technology for product purification to reduce the potential health risks associated with the presence of copper in the final product. Therefore, solvent-resistant nanofiltration (SRNF) membranes have been developed to selectively separate "clicked" polymers from the copper catalyst and solvent. By using these solvent-stable cross-linked polyimide membranes in diafiltration, up to 98 % of the initially present copper could be removed through the membrane together with the DMF solvent, the polymer product being almost completely retained. This paper also presents the first SRNF application in which the catalyst permeates through the membrane and the reaction product is retained.

  17. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution

    NASA Astrophysics Data System (ADS)

    Nikooe, Naeme; Saljoughi, Ehsan

    2017-08-01

    In the present research, for the first time PVDF/Brij-58 blend nanofiltration membranes with remarkable performance in filtration of dye aqueous solution were prepared via immersion precipitation. A noticeable improvement in water permeation and fouling resistance of the PVDF membranes was achieved by using Brij-58 surfactant as a hydrophilic additive. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and water contact angle were applied for the investigation of membrane morphology, detection of the surface chemical composition and relative hydrophilicity/hydrophobicity, respectively. The membrane performance was studied and compared by determination of pure water flux (PWF) and filtration of synthetic reactive dye aqueous solutions as well as bovine serum albumin (BSA) as foulant model. It was found out that addition of 4 wt.% Brij-58 to the casting solution results in formation of membrane with remarkable hydrophilicity and fouling resistance (contact angle of 46° and flux recovery ratio (FRR) = 90%), higher porosity and consequently noticeable PWF (31.2 L/m2 h) and recognized dye rejection value (90%) in comparison with the pristine PVDF nanofiltration membrane. Addition of Brij-58 surfactant to the casting solution resulted in formation of NF membrane with higher hydrophilicity and permeability as well as higher dye rejection value in comparison with the addition of PEG 400 additive.

  18. Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process.

    PubMed

    Ahsan, Laboni; Jahan, M Sarwar; Ni, Yonghao

    2014-03-01

    This work investigated the feasibility of recovering and concentrating sugars and acetic acid (HAc) from prehydrolysis liquor (PHL) of the kraft-based dissolving pulp process prior to fermentation of hemicellulosic sugars, by the combination of activated carbon adsorption, nanofiltration (NF) and reverse osmosis (RO) processes. To reduce the fouling PHL was subjected to adsorption on activated carbon, then the treated PHL (TPHL) passed through a nanofiltration (NF DK) membrane to retain the sugars, and the permeate of acetic acid rich solution was passed through a reverse osmosis membrane (RO SG). It was found that for NF process sugars were concentrated from 48 to 227g/L at a volume reduction factor (VRF) of 5 while 80 to 90% of acetic acid was permeated. For the reverse osmosis process, 68% of acetic acid retention was achieved at pH 4.3 and 500 psi pressure and the HAc concentration increased from 10 to 50g/L. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    PubMed Central

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    2015-01-01

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA–nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos—an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria. PMID:26647183

  20. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system.

    PubMed

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2015-12-22

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos-an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  1. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    The segregation of DNA prior to cell division is essential for faithful genetic inheritance. In many bacteria, segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and its stimulator protein ParB. Recent experiments suggest that ParA/ParB system motility is driven by a diffusion-ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. We develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB bound cargo. Paradoxically, the resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work sheds light on a new emergent phenomenon in which non-motor proteins work collectively via mechanochemical coupling to propel cargos -- an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  2. The Effect of Pressure and Temperature on Separation of Free Gadolinium(III) From Gd-DTPA Complex by Nanofiltration-Complexation Method

    NASA Astrophysics Data System (ADS)

    Rahayu, Iman; Anggraeni, Anni; Ukun, MSS; Bahti, Husein H.

    2017-05-01

    Nowdays, the utilization of rare earth elements has been carried out widely in industry and medicine, one of them is gadolinium in Gd-DTPA complex is used as a contrast agent in a magnetic resonance imaging (MRI) diagnostic to increase the visual contrast between normal tissue and diseased. Although the stability of a given complex may be high enough, the complexation step couldnot have been completed, so there is possible to gadolinium(III) in the complex compound. Therefore, the function of that compounds should be dangerous because of the toxicity of gadolinium(III) in human body. So, it is necessarry to separate free gadolinium(III) from Gd-DTPA complex by nanofiltration-complexation. The method of this study is complexing of Gd2O3 with DTPA ligand by reflux and separation of Gd-DTPA complex from gadolinium(III) with a nanofiltration membrane on the variation of pressures(2, 3, 4, 5, 6 bars) and temperature (25, 30, 35, 40 °C) and determined the flux and rejection. The results of this study are the higher of pressures and temperatures, permeation flux are increasing and ion rejections are decreasing and gave the free gadolinium(III) rejection until 86.26%.

  3. Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration.

    PubMed

    Hedayatipour, Mostafa; Jaafarzadeh, Neemat; Ahmadmoazzam, Mehdi

    2017-12-01

    Oil and gas well drilling industries discharge large volumes of contaminated wastewater produced during oil and gas exploration process. In this study, the effect of different operational variables, including temperature, pH and transmembrane pressure on process performance of a commercially available nanofiltration membrane (JCM-1812-50N, USA) for removing Ba, Ni, Cr, NaCl and TDS from produced wastewater by dewatering unit of an oil and gas well drilling industry was evaluated. In optimum experimental conditions (T = 25 °C, P = 170 psi and pH = 4) resulted from Thaguchi method, 85.3, 77.4, 58.5, 79.6 and 56.3% removal efficiencies were achieved for Ba, Ni, Cr, NaCl and TDS, respectively. Also, results from a comparison of the Schuller and Wilcox diagrams revealed that the effluent of the membrane system is usable for drinking water, irrigating and agriculture purposes. Moreover, the process effluent quality showed a scaling feature, according to Langelier saturation index and illustrated that the necessary proceedings should be taken to prevent scaling for industrial application. The nanofiltration membrane process with an acceptable recovery rate of 47.17% represented a good performance in the wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nanofiltration membranes of poly(styrene- co-chloro-methylstyrene)- grafted-DGEBA reinforced with gold and polystyrene nanoparticles for water purification

    NASA Astrophysics Data System (ADS)

    Kausar, Ayesha; Siddiq, Muhammad

    2017-06-01

    The matrix material for nanofiltration membranes was prepared through chemical grafting of poly(styrene- co-chloromethylstyrene) (PSCMS) to DGEBA using hexamethylenediamine as linker. The phase inversion technique was used to form PSCMS- g-DGEBA membranes. This effort also involves the designing of gold nanoparticles and its composite nanoparticles with polystyrene microspheres as matrix reinforcement. The nanoporous morphology was observed at lower filler content and there was formation of nanopattern at increased nanofiller content. The tensile strength was improved from 32.5 to 35.2 MPa with the increase in AuNPs-PSNPs loading from 0.1 to 1 wt%. The glass transition temperature was also enhanced from 132 to 159 °C. The membrane properties were measured via nanofiltration set-up. Higher pure water permeation flux, recovery, and salt rejection were measured for novel membranes. PSCMS- g-DGEBA/AuNPs-PSNPs membrane with 1 wt% loading showed flux of 2.01 mL cm-2 min-1 and salt rejection ratio of 70.4 %. Efficiency of the gold/polystyrene nanoparticles reinforced membranes for the removal of Hg2+ and Pb2 was found to be 99 %. Novel hybrid membranes possess fine characteristics to be utilized in industrial water treatment units.

  5. Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration.

    PubMed

    Sasaki, Kengo; Okamoto, Mami; Shirai, Tomokazu; Tsuge, Yota; Fujino, Ayami; Sasaki, Daisuke; Morita, Masahiko; Matsuda, Fumio; Kikuchi, Jun; Kondo, Akihiko

    2016-09-01

    Rice straw was mechanically milled using a process consuming 1.9MJ/kg-biomass, and 10g/L of unmilled or milled rice straw was used as the carbon source for methane fermentation in a digester containing carbon fiber textile as the supporting material. Milling increased methane production from 226 to 419mL/L/day at an organic loading rate of 2180mg-dichromate chemical oxygen demand/L/day, corresponding to 260mLCH4/gVS. Storage of the fermentation effluent at room temperature decreased the weight of the milled rice straw residue from 3.81 to 1.00g/L. The supernatant of the effluent was subjected to nanofiltration. The black concentrates deposited on the nanofiltration membranes contained 53.0-57.9% lignin. Solution nuclear magnetic resonance showed that lignin aromatic components such as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) were retained primarily, and major lignin interunit structures such as the β-O-4-H/G unit were absent. This combinational process will aid the complete utilization of rice straw. Copyright © 2016. Published by Elsevier Ltd.

  6. Phosphorylation of Mycobacterium tuberculosis ParB Participates in Regulating the ParABS Chromosome Segregation System

    PubMed Central

    Baronian, Grégory; Ginda, Katarzyna; Berry, Laurence; Cohen-Gonsaud, Martin; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara; Molle, Virginie

    2015-01-01

    Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis. PMID:25807382

  7. Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system.

    PubMed

    Baronian, Grégory; Ginda, Katarzyna; Berry, Laurence; Cohen-Gonsaud, Martin; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara; Molle, Virginie

    2015-01-01

    Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.

  8. Molecular Simulation Evaluation of Macromolecular Transport through Nanofiltration Membranes

    NASA Astrophysics Data System (ADS)

    Almodovar Arbelo, Noelia; Boudouris, Bryan; Corti, David

    A hybrid Monte Carlo and Molecular Dynamics simulation technique was implemented to elucidate the equilibrium behavior and transport properties of a model macromolecule as it navigated across a nanoporous polymer thin film (i.e., a nanofiltration membrane). The model linear homopolymer chosen was one that had interactions that were representative of poly(ethylene oxide) (PEO) due to the known interactions of PEO with solution molecules when a PEO chain is dissolved in an aqueous environment. The structural rearrangements of the PEO chain as it passes through the nanopore under an imposed chemical potential gradient was quantified as a function of solvent quality, polymer chain length, nanopore diameter and shape, and PEO-nanopore wall interactions. Thus, these computational studies provide a more detailed picture of the underlying physical mechanisms that drive macromolecular transport through nanopores, and, in particular, how dimensionally-large macromolecules (i.e., with large radii of gyration) enter and move through dimensionally-small pores (i.e., small radii nanopores). The insights gained from these studies will aid in the development of more cost-effective water purification systems in separation technologies for myriad industrial applications.

  9. Dynamics of silver elution from functionalised antimicrobial nanofiltration membranes.

    PubMed

    Choudhari, S; Habimana, O; Hannon, J; Allen, A; Cummins, E; Casey, E

    2017-07-01

    In an effort to mitigate biofouling on thin film composite membranes such as nanofiltration and reverse osmosis, a myriad of different surface modification strategies has been published. The use of silver nanoparticles (Ag-NPs) has emerged as being particularly promising. Nevertheless, the stability of these surface modifications is still poorly understood, particularly under permeate flux conditions. Leaching or elution of Ag-NPs from the membrane surface can not only affect the antimicrobial characteristics of the membrane, but could also potentially present an environmental liability when applied in industrial-scale systems. This study sought to investigate the dynamics of silver elution and the bactericidal effect of an Ag-NP functionalised NF270 membrane. Inductively coupled plasma-atomic emission spectroscopy was used to show that the bulk of leached silver occurred at the start of experimental runs, and was found to be independent of salt or permeate conditions used. Cumulative amounts of leached silver did, however, stabilise following the initial release, and were shown to have maintained the biocidal characteristics of the modified membrane, as observed by a higher fraction of structurally damaged Pseudomonas fluorescens cells. These results highlight the need to comprehensively assess the time-dependent nature of bactericidal membranes.

  10. Effect of peracetic acid, ultraviolet radiation, nanofiltration-chlorine in the disinfection of a non conventional source of water (Tula Valley).

    PubMed

    Trujillo, J; Barrios, J A; Jimenez, B

    2008-01-01

    Water supply for human consumption requires certain quality that reduces health risks to consumers. In this sense, the process of disinfection plays an important role in the elimination of pathogenic microorganisms. Even though chlorination is the most applied process based on its effectiveness and cost, its application is being questioned considering the formation of disinfection by-products (DBPs). Therefore, alternative disinfectants are being evaluated and some treatment processes have been proposed to remove DBPs precursors (organic matter. This paper reports the results of disinfection of a non conventional source of water (aquifer recharged unintentionally with raw wastewater) with peracetic acid (PAA) and ultraviolet radiation (UV) as well as nanofiltration (NF) followed by chlorination to produce safe drinking water. The results showed that a dose of 2 mg/L PAA was needed to eliminate total and faecal coliforms. For UV light, a dose of 12.40 mWs/cm2 reduced total and faecal coliforms below the detection limit. On the other hand, chlorine demand of water before NF was 1.1-1.3 mg/L with a trihalomethane formation potential (THMFP) of 118.62 microg/L, in contrast with chlorination after NF where the demand was 0.5 mg/L and THMFP of 17.64 microg/L. The recommended scheme is nanofiltration + chlorination.

  11. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  12. A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater.

    PubMed

    Luo, Jianquan; Ding, Luhui; Qi, Benkun; Jaffrin, Michel Y; Wan, Yinhua

    2011-08-01

    A two-stage ultrafiltration and nanofiltration (UF/NF) process for the treatment of model dairy wastewater was investigated to recycle nutrients and water from the wastewater. Ultracel PLGC and NF270 membranes were found to be the most suitable for this purpose. In the first stage, protein and lipid were concentrated by the Ultracel PLGC UF membrane and could be used for algae cultivation to produce biodiesel and biofuel, and the permeate from UF was concentrated by the NF270 membrane in the second stage to obtain lactose in retentate and reusable water in permeate, while the NF retentate could be recycled for anaerobic digestion to produce biogas. With this approach, most of dairy wastewater could be recycled to produce reusable water and substrates for bioenergy production. Compared with the single NF process, this two-stage UF/NF process had a higher efficiency and less membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Nanofiltration for concentration of roasted coffee extract: From bench to pilot

    NASA Astrophysics Data System (ADS)

    Dat, Lai Quoc; Quyen, Nguyen Thi Ngoc

    2017-09-01

    This paper focused on the application of nanofiltration (NF) for concentration of the roasted coffee extract in instant coffee processing. Three kinds of NF membranes were screened for separation capacity of total dry solid (TDS), polyphenols (PPs) and caffeine in roasted coffee extract and NF99 membrane showed the good performance for the NF of the extract. The crossflow NF with NF99 membrane at pilot scale was investigated for technical assessment of concentration of roasted coffee extract. Maximum theoretical concentration was estimated as 6.06. Recovery yields of TDS, PPs and caffeine were higher than 70% at 4.4 of concentration factor. The content of TDS in accumulative permeate was lower than 2.0 g/L. The fouling of NF was also solved by the suitable cleaning procedure with recovery index being 97.7%. Results of research indicate that it is feasible to apply NF for concentration of the roasted coffee extract in instant coffee production.

  14. Nanofiltration technology in water treatment and reuse: applications and costs.

    PubMed

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals.

  15. Nanofiltration Membranes for Water Purification: structure-transport relationships and applications

    NASA Astrophysics Data System (ADS)

    Jons, Steven; Paul, Mou; Matthews, Tamlin; Hailemariam, Leaelaf

    Nanofiltration (NF) membranes are used for separating salts and small neutral molecules. NF membranes show unique selectivity properties compared to reverse osmosis membranes as it can selectively pass monovalent salts and neutral molecules as a function of charge and molecular weight cut-off which are dependent on membrane characteristics and operating conditions. Dow Water & Process solutions has been a pioneer in the membrane based water purification field and Dow's role was instrumental in developing several NF membranes for different applications. However, the characterization of NF membranes and hence the development of structure-property relationship is challenging due to the nanoscale thin, crosslinked nature of the membrane. Recently significant efforts were employed to develop analytical capabilities to understand polymer structure and composition and it had been possible to achieve a structure-property relationship for NF membranes. This paper will highlight similar relationships and will also focus on the relationships of membrane structure with membrane transport properties and how this relationship influences products for different application areas such as in oil field, sweetener and minimum liquid discharge etc.

  16. An Autopsy of Nanofiltration Membrane Used for Landfill Leachate Treatment

    PubMed Central

    Demir, Ibrahim; Koyuncu, Ismail; Guclu, Serkan; Yildiz, Senol; Balahorli, Vahit; Caglar, Suphi; Turken, Turker; Pasaoglu, Mehmet E.; Kaya, Recep; Sengur-Tasdemir, Reyhan

    2015-01-01

    Komurcuoda leachate treatment plant, Istanbul, which consists of membrane bioreactor (MBR) and nanofiltration (NF) system, faced rapid flux decline in membranes after 3-year successful operation. To compensate rapid flux decline in membranes, the fouled membranes were renewed but replacement of the membranes did not solve the problem. To find the reasons and make a comprehensive analysis, membrane autopsy was performed. Visual and physical inspection of the modules and some instrumental analysis were conducted for membrane autopsy. Membranes were found severely fouled with organic and inorganic foulants. Main foulant was iron which was deposited on surface. The main reason was found to be the changing of aerator type of MBR. When surface aerators were exchanged with bottom diffusers which led to increasing of dissolved oxygen (DO) level of the basin, iron particles were oxidized and they converted into particulate insoluble form. It was thought that probably this insoluble form of the iron particles was the main cause of decreased membrane performance. After the diagnosis, a new pretreatment alternative including a new iron antiscalant was suggested and system performance has been recovered. PMID:26137593

  17. Architecture of the ParF*ParG protein complex involved in prokaryotic DNA segregation.

    PubMed

    Barillà, Daniela; Hayes, Finbarr

    2003-07-01

    The mechanism by which low copy number plasmids are segregated at cell division involves the concerted action of two plasmid-encoded proteins that assemble on a centromere-like site. This study explores the topology of the DNA segregation machinery specified by the parFG locus of TP228, a partition system which is phylogenetically distinct from more well-characterized archetypes. A variety of genetic, biochemical and biophysical strategies revealed that the ParG protein is dimeric. ParF, which is more closely related to the cell division regulator MinD than to the prototypical ParA partition protein of plasmid P1, is instead multimeric and its polymeric state appears to be modulated by ATP which correlates with the proposed ATP-binding activity of ParF. ParG interacts in a sequence-specific manner with the DNA region upstream of the parFG locus and this binding is modulated by ParF. Intriguingly, the ParF and ParG proteins form at least two types of discrete complex in the absence of this region suggesting that the assembly dynamics of these proteins onto DNA is intricate.

  18. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    PubMed

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation

    PubMed Central

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta

    2016-01-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces. To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins. PMID:27248800

  20. Deep well injection of brine from Paradox Valley, Colorado: Potential major precipitation problems remediated by nanofiltration

    USGS Publications Warehouse

    Kharaka, Yousif K.; Ambats, Gil; Thordsen, James J.; Davis, Roy A.

    1997-01-01

    Groundwater brine seepage into the Dolores River in Paradox Valley, Colorado, increases the dissolved solids load of the Colorado River annually by ∼2.0 × 108 kg. To abate this natural contamination, the Bureau of Reclamation plans to pump ∼3540 m3/d of brine from 12 shallow wells located along the Dolores River. The brine, with a salinity of 250,000 mg/L, will be piped to the deepest (4.9 km) disposal well in the world and injected mainly into the Mississippian Leadville Limestone. Geochemical modeling indicates, and water-rock experiments confirm, that a huge mass of anhydrite (∼1.0 × 104 kg/d) likely will precipitate from the injected brine at downhole conditions of 120°C and 500 bars. Anhydrite precipitation could increase by up to 3 times if the injected brine is allowed to mix with the highly incompatible formation water of the Leadville Limestone and if the Mg in this brine dolomitizes the calcite of the aquifer. Laboratory experiments demonstrate that nanofiltration membranes, which are selective to divalent anions, provide a new technology that remediates the precipitation problem by removing ∼98% of dissolved SO4 from the hypersaline brine. The fluid pressure used (50 bars) is much lower than would be required for traditional reverse osmosis membranes because nanofiltration membranes have a low rejection efficiency (5–10%) for monovalent anions. Our results indicate that the proportion of treatable brine increases from ∼60% to >85% with the addition of trace concentrations of a precipitation inhibitor and by blending the raw brine with the effluent stream.

  1. Removal of Antibiotics From Water with an All-Carbon 3D Nanofiltration Membrane

    NASA Astrophysics Data System (ADS)

    Yang, Guo-hai; Bao, Dan-dan; Zhang, Da-qing; Wang, Cheng; Qu, Lu-lu; Li, Hai-tao

    2018-05-01

    Recent industrial developments and increased energy demand have resulted in significantly increased levels of environmental pollutants, which have become a serious global problem. Herein, we propose a novel all-carbon nanofiltration (NF) membrane that consists of multi-walled carbon nanotubes (MWCNTs) interposed between graphene oxide (GO) nanosheets to form a three-dimensional (3D) structure. The as-prepared membrane has abundant two-dimensional (2D) nanochannels that can physically sieve antibiotic molecules through electrostatic interaction. As a result, the prepared membrane, with a thickness of 4.26 μm, shows both a high adsorption of 99.23% for tetracycline hydrochloride (TCH) and a high water permeation of 16.12 L m- 2 h- 1 bar- 1. In addition, the cationic dye methylene blue (MB) was also removed to an extent of 83.88%, indicating broad applications of the prepared membrane.

  2. Dyes removal from textile wastewater using graphene based nanofiltration

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Rizki, Z.; Zunita, M.; Dharmawijaya, P. T.

    2017-05-01

    Wastewater produced from textile industry is having more strict regulation. The major pollutant of wastewater from textile industry is Dyes. Dyes have several harsh properties i.e toxic, volatile, complexing easily with mineral ions that are dissolved in water (decreasing the amount of important mineral ions in water), and hard to disintegrate, therefore it must be removed from the waste stream. There are several methods and mechanisms to remove dyes such as chemical and physical sorption, evaporation, biological degradation, and photocatalytic system that can be applied to the waste stream. Membrane-based separation technology has been introduced in dyes removal treatment and is well known for its advantages (flexibility, mild operating condition, insensitive to toxic pollutant). Graphene and its derivatives are novel materials which have special properties due to its ultrathin layer and nanometer-size pores. Thus, the materials are very light yet strong. Moreover, it has low cost and easy to fabricate. Recently, the application of graphene and its derivatives in nanofiltration membrane processes is being widely explored. This review investigates the potentials of graphene based membrane in dyes removal processes. The operating conditions, dyes removal effectiveness, and the drawbacks of the process are the main focus in this paper.

  3. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids.

    PubMed

    Appleman, Timothy D; Dickenson, Eric R V; Bellona, Christopher; Higgins, Christopher P

    2013-09-15

    Perfluoroalkyl acids (PFAAs) are of concern because of their persistence in the environment and the potential toxicological effects on humans exposed to PFAAs through a variety of possible exposure routes, including contaminated drinking water. This study evaluated the efficacy of nanofiltration (NF) and granular activated carbon (GAC) adsorption in removing a suite of PFAAs from water. Virgin flat-sheet NF membranes (NF270, Dow/Filmtec) were tested at permeate fluxes of 17-75 Lm(-2)h(-1) using deionized (DI) water and artificial groundwater. The effects of membrane fouling by humic acid on PFAA rejection were also tested under constant permeate flux conditions. Both virgin and fouled NF270 membranes demonstrated >93% removal for all PFAAs under all conditions tested. GAC efficacy was tested using rapid small-scale columns packed with Calgon Filtrasorb300 (F300) carbon and DI water with and without dissolved organic matter (DOM). DOM effects were also evaluated with F600 and Siemens AquaCarb1240C. The F300 GAC had <20% breakthrough of all PFAAs in DI water for up to 125,000 bed volumes (BVs). When DOM was present, >20% breakthrough of all PFAAs by 10,000 BVs was observed for all carbons. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Expression of protease-activated receptor (PAR)-2, but not other PARs, is regulated by inflammatory cytokines in rat astrocytes.

    PubMed

    Sokolova, Elena; Aleshin, Stepan; Reiser, Georg

    2012-02-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS) and are believed to play an important role in normal brain functioning as well as in development of various inflammatory and neurodegenerative disorders. Pathological conditions cause altered expression of PARs in brain cells and therefore altered responsiveness to PAR activation. The exact mechanisms of regulation of PAR expression are not well studied. Here, we evaluated in rat astrocytes the influence of LPS, pro-inflammatory cytokines TNFα and IL-1β and continuous PAR activation by PAR agonists on the expression levels of PARs. These stimuli are important in inflammatory and neurological disorders, where their levels are increased. We report that LPS as well as cytokines TNFα and IL-1β affected only the PAR-2 level, but their effects were opposite. LPS and TNFα increased the functional expression of PAR-2, whereas IL-1β down-regulated the functional response of PAR-2. Agonists of PAR-1 specifically increased mRNA level of PAR-2, but not protein level. Transcript levels of other PARs were not changed after PAR-1 activation. Stimulation of the cells with PAR-2 or PAR-4 agonists did not alter PAR levels. We found that up-regulation of PAR-2 is dependent on PKC activity, mostly via its Ca²⁺-sensitive isoforms. Two transcription factors, NFκB and AP-1, are involved in up-regulation of PAR-2. These findings provide new information about the regulation of expression of PAR subtypes in brain cells. This is of importance for targeting PARs, especially PAR-2, for the treatment of CNS disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4).

    PubMed

    Cunningham, Margaret R; McIntosh, Kathryn A; Pediani, John D; Robben, Joris; Cooke, Alexandra E; Nilsson, Mary; Gould, Gwyn W; Mundell, Stuart; Milligan, Graeme; Plevin, Robin

    2012-05-11

    Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease.

  6. Dynamic modelling of a forward osmosis-nanofiltration integrated process for treating hazardous wastewater.

    PubMed

    Pal, Parimal; Das, Pallabi; Chakrabortty, Sankha; Thakura, Ritwik

    2016-11-01

    Dynamic modelling and simulation of a nanofiltration-forward osmosis integrated complete system was done along with economic evaluation to pave the way for scale up of such a system for treating hazardous pharmaceutical wastes. The system operated in a closed loop not only protects surface water from the onslaught of hazardous industrial wastewater but also saves on cost of fresh water by turning wastewater recyclable at affordable price. The success of dynamic modelling in capturing the relevant transport phenomena is well reflected in high overall correlation coefficient value (R 2  > 0.98), low relative error (<0.1) and Willmott d-index (<0.95). The system could remove more than 97.5 % chemical oxygen demand (COD) from real pharmaceutical wastewater having initial COD value as high as 3500 mg/L while ensuring operation of the forward osmosis loop at a reasonably high flux of 56-58 l per square meter per hour.

  7. A Conserved Mode of Protein Recognition and Binding in a ParD−ParE Toxin−Antitoxin Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, Kevin M.; Crosson, Sean

    2010-05-06

    Toxin-antitoxin (TA) systems form a ubiquitous class of prokaryotic proteins with functional roles in plasmid inheritance, environmental stress response, and cell development. ParDE family TA systems are broadly conserved on plasmids and bacterial chromosomes and have been well characterized as genetic elements that promote stable plasmid inheritance. We present a crystal structure of a chromosomally encoded ParD-ParE complex from Caulobacter crescentus at 2.6 {angstrom} resolution. This TA system forms an {alpha}{sub 2}{beta}{sub 2} heterotetramer in the crystal and in solution. The toxin-antitoxin binding interface reveals extensive polar and hydrophobic contacts of ParD antitoxin helices with a conserved recognition and bindingmore » groove on the ParE toxin. A cross-species comparison of this complex structure with related toxin structures identified an antitoxin recognition and binding subdomain that is conserved between distantly related members of the RelE/ParE toxin superfamily despite a low level of overall primary sequence identity. We further demonstrate that ParD antitoxin is dimeric, stably folded, and largely helical when not bound to ParE toxin. Thus, the paradigmatic model in which antitoxin undergoes a disorder-to-order transition upon toxin binding does not apply to this chromosomal ParD-ParE TA system.« less

  8. Hot-pressed polymer nanofiber supported graphene membrane for high-performance nanofiltration.

    PubMed

    Wang, Zhao; Sahadevan, Rajesh; Yeh, Che-Ning; Menkhaus, Todd J; Huang, Jiaxing; Fong, Hao

    2017-08-04

    Graphene oxide (GO) sheets can be readily surface-overlaid on hot-pressed electrospun polyacrylonitrile (PAN) nanofiber membrane to form a continuous and crack-free layer; upon thermal reduction at 150 °C for 12 h, the resulting reduced GO (rGO) layer can reject ∼90% MgSO 4 with high water flux (due to the size exclusion mechanism), making the prepared PAN-rGO membranes promising nanofiltration media for water purification. It is important to note that no delamination of GO/rGO sheet layers has been observed throughout this study. We highlight that a simple processing method (i.e., hot pressing) is critical for the successful preparation of 2D materials (e.g., GO/rGO) based membranes/media. It is envisioned that the reported study can benefit many groups working on various membrane applications of 2D materials; in other words, the hot-pressed electrospun nanofiber membranes could be generally utilized as an innovative type of platform to support various 2D sheets for different separation applications such as highly efficient and cost-effective removal of dissolved components (e.g., organic molecules) and even (hydrated) ions from water.

  9. Par Pond vegetation status 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into themore » early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.« less

  10. Matrix metalloproteases and PAR1 activation

    PubMed Central

    Austin, Karyn M.; Covic, Lidija

    2013-01-01

    Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis. PMID:23086754

  11. Colloidal Fouling of Nanofiltration Membranes: Development of a Standard Operating Procedure

    PubMed Central

    Al Mamun, Md Abdullaha; Bhattacharjee, Subir; Pernitsky, David; Sadrzadeh, Mohtada

    2017-01-01

    Fouling of nanofiltration (NF) membranes is the most significant obstacle to the development of a sustainable and energy-efficient NF process. Colloidal fouling and performance decline in NF processes is complex due to the combination of cake formation and salt concentration polarization effects, which are influenced by the properties of the colloids and the membrane, the operating conditions of the test, and the solution chemistry. Although numerous studies have been conducted to investigate the influence of these parameters on the performance of the NF process, the importance of membrane preconditioning (e.g., compaction and equilibrating with salt water), as well as the determination of key parameters (e.g., critical flux and trans-membrane osmotic pressure) before the fouling experiment have not been reported in detail. The aim of this paper is to present a standard experimental and data analysis protocol for NF colloidal fouling experiments. The developed methodology covers preparation and characterization of water samples and colloidal particles, pre-test membrane compaction and critical flux determination, measurement of experimental data during the fouling test, and the analysis of that data to determine the relative importance of various fouling mechanisms. The standard protocol is illustrated with data from a series of flat sheet, bench-scale experiments. PMID:28106775

  12. Polishing Step Purification of High-Strength Wastewaters by Nanofiltration and Reverse Osmosis

    PubMed Central

    Zhou, Jinxiang; Baker, Brian O.; Grimsley, Charles T.; Husson, Scott M.

    2016-01-01

    This article reports findings on the use of nanofiltration (NF) and reverse osmosis (RO) for secondary treatment of high-strength rendering facility wastewaters following an ultrafiltration step. These wastewaters present significant challenges to classical treatment technologies. Constant-pressure, direct-flow membrane filtration experiments were done to screen for flux and effluent water permeate quality of ten commercial NF and RO membranes. All membranes tested were effective in reducing total dissolved salts (TDS) and chemical oxygen demand (COD); however, only two membranes (Koch MPF-34 and Toray 70UB) gave sufficiently stable flux values to warrant longer term cross-flow filtration studies. Cross-flow flux measurements, scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDS), and attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that both membranes were eventually fouled by organic and inorganic foulants; however, the Toray 70UB RO membrane yielded a capacity of 1600 L/m2 prior to cleaning. A preliminary economic analysis compared the estimated costs of energy and consumables for a dual-stage UF/RO membrane process and dissolved air floatation (DAF) and found membrane process costs could be less than about 40% of the current DAF process. PMID:26978407

  13. Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater

    NASA Astrophysics Data System (ADS)

    Sutedja, Andrew; Aileen Josephine, Claresta; Mangindaan, Dave

    2017-12-01

    This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.

  14. Permeability of low molecular weight organics through nanofiltration membranes.

    PubMed

    Meylan, Sébastien; Hammes, Frederik; Traber, Jacqueline; Salhi, Elisabeth; von Gunten, Urs; Pronk, Wouter

    2007-09-01

    The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay. Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.

  15. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif

    PubMed Central

    Barillà, Daniela; Carmelo, Emma; Hayes, Finbarr

    2007-01-01

    The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon–helix–helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF ≈30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal ΔParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization. PMID:17261809

  16. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif.

    PubMed

    Barillà, Daniela; Carmelo, Emma; Hayes, Finbarr

    2007-02-06

    The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon-helix-helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF approximately 30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal DeltaParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization.

  17. Control of cleavage spindle orientation in Caenorhabditis elegans: The role of the genes par-2 and par-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, N.N.; Kirby, C.M.; Kemphues, K.J.

    1995-02-01

    Polarized asymmetric divisions play important roles in the development of plants and animals. The first two embryonic cleavages of Caenorhabditis elegans provide an opportunity to study the mechanisms controlling polarized asymmetric divisions. The first cleavage is unequal, producing daughters with different sizes and fates. The daughter blastomeres divide with different orientations at the second cleavage; the anterior blastomere divides equally across the long axis of the egg, whereas the posterior blastomere divides unequally along the long axis. We report here the results of our analysis of the genes par-2 and par-3 with respect to their contribution to the polarity ofmore » these divisions. Strong loss-of-function mutations in both genes lead to an equal first cleavage and an altered second cleavage. Interestingly, the mutations exhibit striking gene-specific differences at the second cleavage. The par-2 mutations lead to transverse spindle orientations in both blastomeres, whereas par-3 mutations lead to longitudinal spindle orientations in both blastomeres. The spindle orientation defects correlate with defects in centrosome movements during both the first and the second cell cycle. Temperature shift experiments with par-2 (it5ts) indicate that the par-2(+) activity is not required after the two-cell stage. Analysis of double mutants shows that par-3 is epistatic to par-2. We propose a model wherein par-2(+) and par-3(+) act in concert during the first cell cycle to affect asymmetric modification of the cytoskeleton. This polar modification leads to different behaviors of centrosomes in the anterior and posterior and leads ultimately to blastomere-specific spindle orientations at the second cleavage. 44 refs., 5 figs., 5 tabs.« less

  18. Application of a new dynamic transport model to predict the evolution of performances throughout the nanofiltration of single salt solutions in concentration and diafiltration modes.

    PubMed

    Déon, Sébastien; Lam, Boukary; Fievet, Patrick

    2018-06-01

    Although many knowledge models describing the rejection of ionic compounds by nanofiltration membranes are available in literature, they are all used in full recycling mode. Indeed, both permeate and retentate streams are recycled in order to maintain constant concentrations in the feed solution. However, nanofiltration of real effluents is implemented either in concentration or diafiltration modes, for which the permeate stream is collected. In these conditions, concentrations progressively evolve during filtration and classical models fail to predict performances. In this paper, an improvement of the so called "Donnan Steric Pore Model", which includes both volume and concentration variations over time is proposed. This dynamic model is used here to predict the evolution of volumes and concentrations in both permeate and retentate streams during the filtration of salt solutions. This model was found to predict accurately the filtration performances with various salts whether the filtration is performed in concentration or diafiltration modes. The parameters of the usual model can be easily assessed from full batch experiments before being used in the dynamic version. Nevertheless, it is also highlighted that the variation of the membrane charge due to the evolution of feed concentration over time has to be taken into account in the model through the use of adsorption isotherms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. High flux nanofiltration membranes based on layer-by-layer assembly modified electrospun nanofibrous substrate

    NASA Astrophysics Data System (ADS)

    Xu, Guo-Rong; Liu, Xiao-Yu; Xu, Jian-Mei; Li, Lu; Su, Hui-Chao; Zhao, He-Li; Feng, Hou-Jun

    2018-03-01

    Herein, high flux nanofiltration (NF) membranes were fabricated by combined procedures of electrospinning, layer-by-layer (LBL) assembly, and phase inversion. The membranes displayed three-dual structure constituted polyether sulfone (PES) coating layer, LBL assembly modified electrospun polyester (PET) nanofibrous mats, and non-woven supports. High flux NF membranes thus prepared are characterized by ultrathin phase inversion layer (∼10 μm) while that of conventional membranes are 100-150 μm, implying that very high flux could be expected. Various factors including electrospinning conditions, chitosan (CHI)/alginate (ALG) concentration, PES concentration, exposed time, coagulating temperature, thermal treatment, and sulfonated poly ether ketone (SPEEK) content were systematically investigated. Structures of the membranes were characterized by field emission scanning electron microscopy (FESEM), mechanical properties test, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and static contact angle measurements. The separation experiments indicated that thus prepared membranes exhibited high flux of as high as ∼75 L m-2 h-1 with Mg SO4 rejection of ∼80%.

  20. Transport of water and solutes in reverse osmosis and nanofiltration membranes

    NASA Astrophysics Data System (ADS)

    Cahill, David

    2009-03-01

    The polyamide active layers of reverse osmosis and nanofiltration membranes used for water purification are real-world examples of nanoscale functional materials: the active layer is only ˜100 nm thick. Because the active layer is formed by a process of interfacial polymerization, the structure and composition of the membrane is highly inhomogeneous and even such basic physical and chemical properties as the atomic density, swelling in water, the distribution of charged species between water and membrane, and the mobility of water and ions, are poorly understood. We are using Rutherford backscattering spectrometry (RBS) to determine the composition, roughness, and thickness of the membrane; reveal the surprisingly high solubility of salt ions in the polymer active layer; analyze the acid-base chemistry of charged functional groups; and determine the degree of polymer cross-linking. Measurements of mass-uptake and adsorption-induced mechanical stress of membranes in humid air enable us to determine the water solubility, specific volume of water, and the mechanical strength of the membrane. Comparisons between these equilibrium data and the permeability of the membrane to water and salts show that the mobility of water molecules in the membrane approaches the mobility of bulk water, and that the rejection of salt ions is accomplished by low mobility, not low solubility. My collaborators in this work are Xijing Zhang, Orlando Coronell, and Prof. Benito Mariñas.

  1. PAR-2 regulates dental pulp inflammation associated with caries.

    PubMed

    Lundy, F T; About, I; Curtis, T M; McGahon, M K; Linden, G J; Irwin, C R; El Karim, I A

    2010-07-01

    Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.

  2. Par Pond vegetation status Summer 1995 -- Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar tomore » the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.« less

  3. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water

    PubMed Central

    Hoang, Anh T.; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D.

    2018-01-01

    A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection. PMID:29671797

  4. Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water.

    PubMed

    Fujioka, Takahiro; Hoang, Anh T; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D

    2018-04-19

    A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m²h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection.

  5. High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment

    NASA Astrophysics Data System (ADS)

    Liu, Baicang; Wang, Shuai; Zhao, Pingju; Liang, Heng; Zhang, Wen; Crittenden, John

    2018-03-01

    Nanofiltration (NF) membranes have many excellent applications (e.g., removing multivalent ions and pretreating water before reverse osmosis, RO), but their relatively high cost limits their application. Especially in recent years, researchers have paid substantial attention to reducing the cost of NF membranes. In this paper, high-performance NF membranes were fabricated using interfacial polymerization (IP) methods. The polymer concentration, IP solution concentration, and thermal treatment conditions were varied. The synthesized membranes were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), a contact angle goniometer, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, and performance tests. The results show that water flux was significantly improved using a hot-water thermal treatment method. Our fabricated thermal-treated NF membrane had an approximately 15% higher water permeability with a value of 13.6 L/(m2 h bar) than that of the commercially available GE HL membrane with a value of 11.8 L/(m2 h bar). Our membranes had the same MgSO4 rejection as that of the GE HL membrane. We found that the thermal treatment causes the NF membrane surface to be smoother and have a high crosslinking degree.

  6. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment.

    PubMed

    Radjenović, J; Petrović, M; Ventura, F; Barceló, D

    2008-08-01

    This paper investigates the removal of a broad range of pharmaceuticals during nanofiltration (NF) and reverse osmosis (RO) applied in a full-scale drinking water treatment plant (DWTP) using groundwater. Pharmaceutical residues detected in groundwater used as feed water in all five sampling campaigns were analgesics and anti-inflammatory drugs such as ketoprofen, diclofenac, acetaminophen and propyphenazone, beta-blockers sotalol and metoprolol, an antiepileptic drug carbamazepine, the antibiotic sulfamethoxazole, a lipid regulator gemfibrozil and a diuretic hydrochlorothiazide. The highest concentrations in groundwater were recorded for hydrochlorothiazide (58.6-2548ngL(-1)), ketoprofen (85%). Deteriorations in retentions on NF and RO membranes were observed for acetaminophen (44.8-73 %), gemfibrozil (50-70 %) and mefenamic acid (30-50%). Furthermore, since several pharmaceutical residues were detected in the brine stream of NF and RO processes at concentrations of several hundreds nanogram per litre, its disposal to a near-by river can represent a possible risk implication of this type of treatment.

  7. Accelerating Palladium Nanowire H2 Sensors Using Engineered Nanofiltration.

    PubMed

    Koo, Won-Tae; Qiao, Shaopeng; Ogata, Alana F; Jha, Gaurav; Jang, Ji-Soo; Chen, Vivian T; Kim, Il-Doo; Penner, Reginald M

    2017-09-26

    The oxygen, O 2 , in air interferes with the detection of H 2 by palladium (Pd)-based H 2 sensors, including Pd nanowires (NWs), depressing the sensitivity and retarding the response/recovery speed in air-relative to N 2 or Ar. Here, we describe the preparation of H 2 sensors in which a nanofiltration layer consisting of a Zn metal-organic framework (MOF) is assembled onto Pd NWs. Polyhedron particles of Zn-based zeolite imidazole framework (ZIF-8) were synthesized on lithographically patterned Pd NWs, leading to the creation of ZIF-8/Pd NW bilayered H 2 sensors. The ZIF-8 filter has many micropores (0.34 nm for gas diffusion) which allows for the predominant penetration of hydrogen molecules with a kinetic diameter of 0.289 nm, whereas relatively larger gas molecules including oxygen (0.345 nm) and nitrogen (0.364 nm) in air are effectively screened, resulting in superior hydrogen sensing properties. Very importantly, the Pd NWs filtered by ZIF-8 membrane (Pd NWs@ZIF-8) reduced the H 2 response amplitude slightly (ΔR/R 0 = 3.5% to 1% of H 2 versus 5.9% for Pd NWs) and showed 20-fold faster recovery (7 s to 1% of H 2 ) and response (10 s to 1% of H 2 ) speed compared to that of pristine Pd NWs (164 s for response and 229 s for recovery to 1% of H 2 ). These outstanding results, which are mainly attributed to the molecular sieving and acceleration effect of ZIF-8 covered on Pd NWs, rank highest in H 2 sensing speed among room-temperature Pd-based H 2 sensors.

  8. Increased mast cell expression of PAR-2 in skin inflammatory diseases and release of IL-8 upon PAR-2 activation.

    PubMed

    Carvalho, Ricardo Filipe da Silva; Nilsson, Gunnar; Harvima, Ilkka Tapani

    2010-02-01

    Mast cells are increasingly present in the lesional skin of chronic skin inflammatory diseases including psoriasis and basal cell carcinoma (BCC). It has previously been shown that proteinase-activated receptor (PAR)-2 is expressed by mast cells, and tryptase is a potent activator of this receptor. In this study, skin biopsies from both healthy-looking and lesional skin of patients with psoriasis and superficial spreading BCC were collected and the expression of PAR-2 immunoreactivity in tryptase-positive mast cells was analysed. PAR-2 expression was confirmed in vitro in different mast cell populations. Cord-blood derived mast cells (CBMC) were stimulated with a PAR-2 activating peptide, 2-furoyl-LIGRLO-NH(2). Consequently, IL-8 and histamine production was analysed in the supernatants. We observed a significant increase in the percentage of mast cells expressing PAR-2 in the lesional skin of psoriasis and BCC patients compared with the healthy-looking skin. HMC-1.2, LAD-2 and CBMC mast cells all expressed PAR-2 both intracellularly and on the cell surface. CBMC activation with the PAR-2 activating peptide resulted in an increased secretion of IL-8, but no histamine release was observed. Furthermore, both PAR-2 and IL-8 were co-localized to the same tryptase-positive mast cells in the lesional BCC skin. These results show that mast cells express increased levels of PAR-2 in chronic skin inflammation. Also, mast cells can be activated by a PAR-2 agonist to secrete IL-8, a chemokine which can contribute to the progress of inflammation.

  9. Magnetic activity and radial velocity filtering of young Suns: the weak-line T-Tauri stars Par 1379 and Par 2244

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Carmona, A.; Donati, J.-F.; Hussain, G. A. J.; Gregory, S. G.; Alencar, S. H. P.; Bouvier, J.; The Matysse Collaboration

    2017-12-01

    We report the results of our spectropolarimetric monitoring of the weak-line T-Tauri stars (wTTSs) Par 1379 and Par 2244, within the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets) programme. Both stars are of a similar mass (1.6 and 1.8 M⊙) and age (1.8 and 1.1 Myr), with Par 1379 hosting an evolved low-mass dusty circumstellar disc, and with Par 2244 showing evidence of a young debris disc. We detect profile distortions and Zeeman signatures in the unpolarized and circularly polarized lines for each star, and have modelled their rotational modulation using tomographic imaging, yielding brightness and magnetic maps. We find that Par 1379 harbours a weak (250 G), mostly poloidal field tilted 65° from the rotation axis. In contrast, Par 2244 hosts a stronger field (860 G) split 3:2 between poloidal and toroidal components, with most of the energy in higher order modes, and with the poloidal component tilted 45° from the rotation axis. Compared to the lower mass wTTSs, V819 Tau and V830 Tau, Par 2244 has a similar field strength, but is much more complex, whereas the much less complex field of Par 1379 is also much weaker than any other mapped wTTS. We find moderate surface differential rotation of 1.4× and 1.8× smaller than Solar, for Par 1379 and Par 2244, respectively. Using our tomographic maps to predict the activity-related radial velocity (RV) jitter, and filter it from the RV curves, we find RV residuals with dispersions of 0.017 and 0.086 km s-1 for Par 1379 and Par 2244, respectively. We find no evidence for close-in giant planets around either star, with 3σ upper limits of 0.56 and 3.54 MJup (at an orbital distance of 0.1 au).

  10. PAR-2 inhibition reverses experimental pulmonary hypertension.

    PubMed

    Kwapiszewska, Grazyna; Markart, Philipp; Dahal, Bhola Kumar; Kojonazarov, Baktybek; Marsh, Leigh Matthew; Schermuly, Ralph Theo; Taube, Christian; Meinhardt, Andreas; Ghofrani, Hossein Ardeschir; Steinhoff, Martin; Seeger, Werner; Preissner, Klaus Theo; Olschewski, Andrea; Weissmann, Norbert; Wygrecka, Malgorzata

    2012-04-27

    A hallmark of the vascular remodeling process underlying pulmonary hypertension (PH) is the aberrant proliferation and migration of pulmonary arterial smooth muscle cells (PASMC). Accumulating evidence suggests that mast cell mediators play a role in the pathogenesis of PH. In the present study we investigated the importance of protease-activated receptor (PAR)-2 and its ligand mast cell tryptase in the development of PH. Our results revealed strong increase in PAR-2 and tryptase expression in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline (MCT)-treated rats. Elevated tryptase levels were also detected in plasma samples from IPAH patients. Hypoxia and platelet-derived growth factor (PDGF)-BB upregulated PAR-2 expression in PASMC. This effect was reversed by HIF (hypoxia inducible factor)-1α depletion, PDGF-BB neutralizing antibody, or the PDGF-BB receptor antagonist Imatinib. Attenuation of PAR-2 expression was also observed in smooth muscle cells of pulmonary vessels of mice exposed to hypoxia and rats challenged with MCT in response to Imatinib treatment. Tryptase induced PASMC proliferation and migration as well as enhanced synthesis of fibronectin and matrix metalloproteinase-2 in a PAR-2- and ERK1/2-dependent manner, suggesting that PAR-2-dependent signaling contributes to vascular remodeling by various mechanisms. Furthermore, PAR-2(-/-) mice were protected against hypoxia-induced PH, and PAR-2 antagonist application reversed established PH in the hypoxia mouse model. Our study identified a novel role of PAR-2 in vascular remodeling in the lung. Interference with this pathway may offer novel therapeutic options for the treatment of PH.

  11. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Sik; Yu, Qingsong; Deng, Baolin

    2011-09-01

    Commercial nanofiltration (NF) thin-film composite (TFC) membranes were treated by low-pressure NH3 plasma, and the effects of the plasma treatment were investigated in terms of the membrane hydrophilicity, pure water flux, salt rejection, protein adsorption, and humic acid fouling. Experimental results indicated that the membrane surface hydrophilicity was increased by the plasma treatment, and changes in the hydrophilicity as well as membrane performance including permeate flux and fouling varied with the original membrane characteristics (e.g., roughness and hydrophilicity). Water flux of plasma treated membranes was the highest with 10 min and 90 W of plasma treatment, and salt rejection was mainly affected by the intensity of the plasma power. Results of bovine serum albumin (BSA) adsorption demonstrated that the protein adsorption decreased with increasing plasma treatment time. The plasma treatment that resulted in more negatively charged surfaces could also better prevent Aldrich humic acid (AHA) attachment on the membrane surface.

  12. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.

    PubMed

    Yüksel, Suna; Kabay, Nalan; Yüksel, Mithat

    2013-12-15

    The removal of an endocrine disrupting compound, bisphenol A (BPA), from model solutions by selected nanofiltration (NF) and reverse osmosis (RO) membranes was studied. The commercially available membranes NF 90, NF 270, XLE BWRO, BW 30 (Dow FilmTech), CE BWRO and AD SWRO (GE Osmonics) were used to compare their performances for BPA removal. The water permeability coefficients, rejection of BPA and permeate flux values were calculated for all membranes used. No significant changes in their BPA removal were observed for all tight polyamide based NF and RO membranes tested except for loose NF 270 membrane. The polyamide based membranes exhibited much better performance than cellulose acetate membrane for BPA removal. Almost a complete rejection (≥ 98%) for BPA was obtained with three polyamide based RO membranes (BW 30, XLE BWRO and AD SWRO). But cellulose acetate based CE BWRO membrane offered a low and variable (10-40%) rejection for BPA. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The role of protease-activated receptors PAR-1 and PAR-2 in the repair of 16HBE 14o(-) epithelial cell monolayers in vitro.

    PubMed

    Ewen, D; Clarke, S L; Smith, J R; Berger, C; Salmon, G; Trevethick, M; Shute, J K

    2010-03-01

    We recently reported that repair following mechanical wounding of epithelial cell layers in vitro is dependent on fibrin formation and the activity of locally expressed coagulation cascade proteins. Serine proteases of the coagulation cascade are an important group of protease-activated receptor (PAR) activators and PAR-1 to 4 are expressed by the normal bronchial epithelium. We tested the hypothesis that activation of PAR-1 and PAR-2 by coagulation cascade proteases stimulates epithelial repair via effects on fibrin formation. Using mechanically wounded 16HBE 14o(-) epithelial cell layers in culture, we investigated the effect of PAR-1 and PAR-2 agonist peptides, control partially scrambled peptides and PAR-neutralizing antibodies on the rate of repair and fibrin formation. Coagulation factors in culture supernatants were measured by immunoblot. RT-PCR was used to investigate PAR-1, PAR-2 and PGE2 receptor (EP-1 to EP-4) expression in this model and qRT-PCR to quantify responses to wounding. Additionally, we investigated the effect of exogenously added factor Xa (FXa) and neutrophil elastase and the influence of PGE2 and indomethacin on the repair response. PAR-1 and PAR-2 peptide agonists stimulated the rate of repair and enhanced the formation of a fibrin provisional matrix to support the repair process. Conversely, PAR-neutralizing antibodies inhibited repair. Under serum-free culture conditions, 16HBE 14o(-) cells expressed EP-2 and EP-3, but not EP-1 or EP-4, receptors. Wounding induced an increased expression of EP-3 but did not alter EP-2, PAR-1 or PAR-2 expression. In the absence of PAR agonists, there was no evidence for a role for PGE2 in fibrin formation or the repair process. Indomethacin attenuated fibrin formation in wounded cultures only in the presence of the PAR-2 peptide. FXa stimulated epithelial repair while neutrophil elastase reduced the levels of coagulation factors and inhibited repair. Locally expressed serine proteases of the coagulation

  14. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids.

    PubMed

    Pillet, Flavien; Passot, Fanny Marie; Pasta, Franck; Anton Leberre, Véronique; Bouet, Jean-Yves

    2017-01-01

    Bacterial centromeres-also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA-the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.

  15. La pelade par plaques

    PubMed Central

    Spano, Frank; Donovan, Jeff C.

    2015-01-01

    Résumé Objectif Présenter aux médecins de famille des renseignements de base pour faire comprendre l’épidémiologie, la pathogenèse, l’histologie et l’approche clinique au diagnostic de la pelade par plaques. Sources des données Une recension a été effectuée dans PubMed pour trouver des articles pertinents concernant la pathogenèse, le diagnostic et le pronostic de la pelade par plaques. Message principal La pelade par plaques est une forme de perte pileuse auto-immune dont la prévalence durant une vie est d’environ 2 %. Des antécédents personnels ou familiaux de troubles auto-immuns concomitants, comme le vitiligo ou une maladie de la thyroïde, peuvent être observés dans un petit sous-groupe de patients. Le diagnostic peut souvent être posé de manière clinique en se fondant sur la perte de cheveux non cicatricielle et circulaire caractéristique, accompagnée de cheveux en « point d’exclamation » en périphérie chez ceux dont le problème en est aux premiers stades. Le diagnostic des cas plus complexes ou des présentations inhabituelles peut être facilité par une biopsie et un examen histologique. Le pronostic varie largement et de mauvais résultats sont associés à une apparition à un âge précoce, une perte importante, la variante ophiasis, des changements aux ongles, des antécédents familiaux ou des troubles auto-immuns concomitants. Conclusion La pelade par plaques est une forme auto-immune de perte de cheveux périodiquement observée en soins primaires. Les médecins de famille sont bien placés pour identifier la pelade par plaques, déterminer la gravité de la maladie et poser le diagnostic différentiel approprié. De plus, ils sont en mesure de renseigner leurs patients à propos de l’évolution clinique de la maladie ainsi que du pronostic général selon le sous-type de patients.

  16. PH motifs in PAR1&2 endow breast cancer growth.

    PubMed

    Kancharla, A; Maoz, M; Jaber, M; Agranovich, D; Peretz, T; Grisaru-Granovsky, S; Uziely, B; Bar-Shavit, R

    2015-11-24

    Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes.

  17. Keratometric alterations following the 25-gauge transconjunctival sutureless pars plana vitrectomy versus the conventional pars plana vitrectomy.

    PubMed

    Citirik, Mehmet; Batman, Cosar; Bicer, Tolga; Zilelioglu, Orhan

    2009-09-01

    To assess the alterations in keratometric astigmatism following the 25-gauge transconjunctival sutureless pars plana vitrectomy versus the conventional pars plana vitrectomy. Sixteen consecutive patients were enrolled into the study. Conventional vitrectomy was applied to eight of the cases and 25-gauge transconjunctival sutureless vitrectomy was performed in eight patients. Keratometry was performed before and after the surgery. In the 25-gauge transconjunctival sutureless pars plana vitrectomy group, statistically significant changes were not observed in the corneal curvature in any post-operative follow-up measurement (p > 0.05); whereas in the conventional pars plana vitrectomy group, statistically significant changes were observed in the first postoperative day (p = 0.01) and first postoperative month (p = 0.03). We noted that these changes returned to baseline in three months (p = 0.26). Both 25-gauge transconjunctival sutureless and conventional pars plana vitrectomy are effective surgical modalities for selected diseases of the posterior segment. Surgical procedures are critical for the visual rehabilitation of the patients. The post-operative corneal astigmatism of the vitrectomised eyes can be accurately determined at least two months post-operatively.

  18. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids

    PubMed Central

    Pillet, Flavien; Passot, Fanny Marie

    2017-01-01

    Bacterial centromeres–also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA—the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres. PMID:28562673

  19. Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane

    NASA Astrophysics Data System (ADS)

    Karisma, Doni; Febrianto, Gabriel; Mangindaan, Dave

    2017-12-01

    Followed by rapid development of the textile industries since 19th century the dyeing technology is thriving ever since. However, its progress is followed by lack of responsibility and knowledge in treating the dye-containing wastewater. There are some emerging technologies in treating such kind of wastewater, where membrane technology is one of those technologies that has uniqueness in the performance of separating dyes from wastewater, accompanied with small amount of energy. The development of membrane technology is one of several eco-engineering developments for sustainability in water resource management. However, there are a lot of rooms for improvement for this membrane technology, especially for the application in treating textile wastewater in Indonesia. Based on the demand in Indonesia for clean water and further treatment of dye-containing wastewater, the purpose of this research is to fabricate nanofiltration (NF) membranes to accommodate those problems. Furthermore, the fabricated NF membrane will be modified by interfacial polymerization to impart a new selective layer on top of NF membrane to improve the performance of the separation of the dyes from dye-containing wastewater. This research was conducted into two phases of experiments. In the first phase the formulation of polymeric dope solution of PEI/Acetone/NMP (N-methyl-pyrollidone), using the variation of 15/65/20, 16/64/20, and 17/63/20. This research show that many areas still can be explored in textile wastewater treatment using membrane in Indonesia.

  20. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  1. Protease-activated receptor (PAR)2, but not PAR1, is involved in collateral formation and anti-inflammatory monocyte polarization in a mouse hind limb ischemia model.

    PubMed

    van den Hengel, Lisa G; Hellingman, Alwine A; Nossent, Anne Yael; van Oeveren-Rietdijk, Annemarie M; de Vries, Margreet R; Spek, C Arnold; van Zonneveld, Anton Jan; Reitsma, Pieter H; Hamming, Jaap F; de Boer, Hetty C; Versteeg, Henri H; Quax, Paul H A

    2013-01-01

    In collateral development (i.e. arteriogenesis), mononuclear cells are important and exist as a heterogeneous population consisting of pro-inflammatory and anti-inflammatory/repair-associated cells. Protease-activated receptor (PAR)1 and PAR2 are G-protein-coupled receptors that are both expressed by mononuclear cells and are involved in pro-inflammatory reactions, while PAR2 also plays a role in repair-associated responses. Here, we investigated the physiological role of PAR1 and PAR2 in arteriogenesis in a murine hind limb ischemia model. PAR1-deficient (PAR1-/-), PAR2-deficient (PAR2-/-) and wild-type (WT) mice underwent femoral artery ligation. Laser Doppler measurements revealed reduced post-ischemic blood flow recovery in PAR2-/- hind limbs when compared to WT, while PAR1-/- mice were not affected. Upon ischemia, reduced numbers of smooth muscle actin (SMA)-positive collaterals and CD31-positive capillaries were found in PAR2-/- mice when compared to WT mice, whereas these parameters in PAR1-/- mice did not differ from WT mice. The pool of circulating repair-associated (Ly6C-low) monocytes and the number of repair-associated (CD206-positive) macrophages surrounding collaterals in the hind limbs were increased in WT and PAR1-/- mice, but unaffected in PAR2-/- mice. The number of repair-associated macrophages in PAR2-/- hind limbs correlated with CD11b- and CD115-expression on the circulating monocytes in these animals, suggesting that monocyte extravasation and M-CSF-dependent differentiation into repair-associated cells are hampered. PAR2, but not PAR1, is involved in arteriogenesis and promotes the repair-associated response in ischemic tissues. Therefore, PAR2 potentially forms a new pro-arteriogenic target in coronary artery disease (CAD) patients.

  2. Positively charged and bipolar layered poly(ether imide) nanofiltration membranes for water softening applications

    NASA Astrophysics Data System (ADS)

    Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.

    2015-07-01

    Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.

  3. Three-Dimensionally Printed Microfluidic Cross-flow System for Ultrafiltration/Nanofiltration Membrane Performance Testing.

    PubMed

    Wardrip, Nathaniel C; Arnusch, Christopher J

    2016-02-13

    Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.

  4. Three-Dimensionally Printed Microfluidic Cross-flow System for Ultrafiltration/Nanofiltration Membrane Performance Testing

    PubMed Central

    Wardrip, Nathaniel C.; Arnusch, Christopher J.

    2016-01-01

    Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.  PMID:26968008

  5. Doxycycline directly targets PAR1 to suppress tumor progression.

    PubMed

    Zhong, Weilong; Chen, Shuang; Zhang, Qiang; Xiao, Ting; Qin, Yuan; Gu, Ju; Sun, Bo; Liu, Yanrong; Jing, Xiangyan; Hu, Xuejiao; Zhang, Peng; Zhou, Honggang; Sun, Tao; Yang, Cheng

    2017-03-07

    Doxycycline have been reported to exert anti-cancer activity and have been assessed as anti-cancer agents in clinical trials. However, the direct targets of doxycycline in cancer cells remain unclear. In this study, we used a chemical proteomics approach to identify the Protease-activated receptor 1 (PAR1) as a specific target of inhibition of doxycycline. Binding assays and single-molecule imaging assays were performed to confirm the inhibition of doxycycline to PAR1. The effect of doxycycline on multi-omics and cell functions were assessed based on a PAR1/thrombin model. Molecular docking and molecular dynamic simulations revealed that doxycycline interacts with key amino acids in PAR1. Mutation of PAR1 further confirmed the computation-based results. Moreover, doxycycline provides highly selective inhibition of PAR1 signaling in tumors in vitro and in vivo. Using pathological clinical samples co-stained for doxycycline and PAR1, it was found that doxycycline fluorescence intensity and PAR1 expression shown a clear positive correlation. Thus, doxycycline may be a useful targeted anti-cancer drug that should be further investigated in clinical trials.

  6. PAR -- Interface to the ADAM Parameter System

    NASA Astrophysics Data System (ADS)

    Currie, Malcolm J.; Chipperfield, Alan J.

    PAR is a library of Fortran subroutines that provides convenient mechanisms for applications to exchange information with the outside world, through input-output channels called parameters. Parameters enable a user to control an application's behaviour. PAR supports numeric, character, and logical parameters, and is currently implemented only on top of the ADAM parameter system. The PAR library permits parameter values to be obtained, without or with a variety of constraints. Results may be put into parameters to be passed onto other applications. Other facilities include setting a prompt string, and suggested defaults. This document also introduces a preliminary C interface for the PAR library -- this may be subject to change in the light of experience.

  7. An ELISA method detecting the active form of suPAR.

    PubMed

    Zhou, Xiaolei; Xu, Mingming; Huang, Hailong; Mazar, Andrew; Iqbal, Zafar; Yuan, Cai; Huang, Mingdong

    2016-11-01

    Urokinase plasminogen activator receptor (uPAR) exists in a number of formats in human plasma, including soluble uPAR (suPAR) and uPAR fragments. We developed an ELISA method to detect specifically the active form suPAR, which binds to its natural ligand uPA. The intra CV and inter CV of this ELISA assay is 8.5% and 9.6% respectively, and the assay can recover 99.74% of added recombinant suPAR from 10% plasma. This assay is quite sensitive, capable of detecting down to 15pg/ml of suPAR, and can measure suPAR concentrations in the range of 0.031-8ng/ml with high linear relationship. Plasma samples from pregnant women were also measured for the active form of suPAR with this assay, giving an averaged level of 1.39ng/ml, slightly higher than the level of pooled plasma from healthy donors (0.96ng/ml). This study demonstrates the feasibility to measure the active form of suPAR, which will likely have value in clinical applications. Copyright © 2016. Published by Elsevier B.V.

  8. Evaluation of a long-term operation of a submerged nanofiltration membrane bioreactor (NF MBR) for advanced wastewater treatment.

    PubMed

    Choi, J H; Fukushi, K; Ng, H Y; Yamamoto, K

    2006-01-01

    Nanofiltration (NF) is considered as one of the most promising separation technologies to obtain a very good-quality permeate in water and wastewater treatment. A submerged NF membrane bioreactor (NF MBR) using polyamide membranes was tested for a long-term operation and the performance of the NF MBR was compared with that of a microfiltration MBR (MF MBR). Total organic carbon (TOC) concentration in the permeate of the NF MBR ranged from 0.5 to 2.0 mg/L, whereas that of the MF MBR showed an average of 5 mg/L. This could be explained by the tightness of the NF membrane. Although the concentration of organic matter in the supernatant of the NF MBR was higher than that in the permeate due to high rejection by the NF membrane, the NF MBR showed excellent treatment efficiency and satisfactory operational stability for a long-term operation.

  9. Doxycycline directly targets PAR1 to suppress tumor progression

    PubMed Central

    Qin, Yuan; Gu, Ju; Sun, Bo; Liu, Yanrong; Jing, Xiangyan; Hu, Xuejiao; Zhang, Peng; Zhou, Honggang; Sun, Tao; Yang, Cheng

    2017-01-01

    Doxycycline have been reported to exert anti-cancer activity and have been assessed as anti-cancer agents in clinical trials. However, the direct targets of doxycycline in cancer cells remain unclear. In this study, we used a chemical proteomics approach to identify the Protease-activated receptor 1 (PAR1) as a specific target of inhibition of doxycycline. Binding assays and single-molecule imaging assays were performed to confirm the inhibition of doxycycline to PAR1. The effect of doxycycline on multi-omics and cell functions were assessed based on a PAR1/thrombin model. Molecular docking and molecular dynamic simulations revealed that doxycycline interacts with key amino acids in PAR1. Mutation of PAR1 further confirmed the computation-based results. Moreover, doxycycline provides highly selective inhibition of PAR1 signaling in tumors in vitro and in vivo. Using pathological clinical samples co-stained for doxycycline and PAR1, it was found that doxycycline fluorescence intensity and PAR1 expression shown a clear positive correlation. Thus, doxycycline may be a useful targeted anti-cancer drug that should be further investigated in clinical trials. PMID:28187433

  10. Proteinase-Activated Receptor 1 (PAR1) Regulates Leukemic Stem Cell Functions

    PubMed Central

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E.

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1−/− hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1−/− leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance. PMID:24740120

  11. Proteinase-Activated Receptor 1 (PAR1) regulates leukemic stem cell functions.

    PubMed

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E; Müller-Tidow, Carsten; Tickenbrock, Lara

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  12. PAR(2) and temporomandibular joint inflammation in the rat.

    PubMed

    Denadai-Souza, A; Cenac, N; Casatti, C A; Câmara, P R de Souza; Yshii, L M; Costa, S K P; Vergnolle, N; Muscará, M N

    2010-10-01

    The proteinase-activated receptor 2 (PAR(2)) is a putative therapeutic target for arthritis. We hypothesized that the early pro-inflammatory effects secondary to its activation in the temporomandibular joint (TMJ) are mediated by neurogenic mechanisms. Immunofluorescence analysis revealed a high degree of neurons expressing PAR(2) in retrogradely labeled trigeminal ganglion neurons. Furthermore, PAR(2) immunoreactivity was observed in the lining layer of the TMJ, co-localizing with the neuronal marker PGP9.5 and substance-P-containing peripheral sensory nerve fibers. The intra-articular injection of PAR(2) agonists into the TMJ triggered a dose-dependent increase in plasma extravasation, neutrophil influx, and induction of mechanical allodynia. The pharmacological blockade of natural killer 1 (NK(1)) receptors abolished PAR(2)-induced plasma extravasation and inhibited neutrophil influx and mechanical allodynia. We conclude that PAR(2) activation is pro-inflammatory in the TMJ, through a neurogenic mechanism involving NK(1) receptors. This suggests that PAR(2) is an important component of innate neuro-immune response in the rat TMJ.

  13. PAR proteins regulate maintenance-phase myosin dynamics during Caenorhabditis elegans zygote polarization

    PubMed Central

    Small, Lawrence E.; Dawes, Adriana T.

    2017-01-01

    Establishment of anterior–posterior polarity in the Caenorhabditis elegans zygote requires two different processes: mechanical activity of the actin–myosin cortex and biochemical activity of partitioning-defective (PAR) proteins. Here we analyze how PARs regulate the behavior of the cortical motor protein nonmuscle myosin (NMY-2) to complement recent efforts that investigate how PARs regulate the Rho GTPase CDC-42, which in turn regulates the actin-myosin cortex. We find that PAR-3 and PAR-6 concentrate CDC-42–dependent NMY-2 in the anterior cortex, whereas PAR-2 inhibits CDC-42–dependent NMY-2 in the posterior domain by inhibiting PAR-3 and PAR-6. In addition, we find that PAR-1 and PAR-3 are necessary for inhibiting movement of NMY-2 across the cortex. PAR-1 protects NMY-2 from being moved across the cortex by forces likely originating in the cytoplasm. Meanwhile, PAR-3 stabilizes NMY-2 against PAR-2 and PAR-6 dynamics on the cortex. We find that PAR signaling fulfills two roles: localizing NMY-2 to the anterior cortex and preventing displacement of the polarized cortical actin–myosin network. PMID:28615321

  14. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression.

    PubMed

    Ramsay, Andrew J; Dong, Ying; Hunt, Melanie L; Linn, MayLa; Samaratunga, Hemamali; Clements, Judith A; Hooper, John D

    2008-05-02

    Kallikrein-related peptidase 4 (KLK4) is one of the 15 members of the human KLK family and a trypsin-like, prostate cancer-associated serine protease. Signaling initiated by trypsin-like serine proteases are transduced across the plasma membrane primarily by members of the protease-activated receptor (PAR) family of G protein-coupled receptors. Here we show, using Ca(2+) flux assays, that KLK4 signals via both PAR-1 and PAR-2 but not via PAR-4. Dose-response analysis over the enzyme concentration range 0.1-1000 nM indicated that KLK4-induced Ca(2+) mobilization via PAR-1 is more potent than via PAR-2, whereas KLK4 displayed greater efficacy via the latter PAR. We confirmed the specificity of KLK4 signaling via PAR-2 using in vitro protease cleavage assays and anti-phospho-ERK1/2/total ERK1/2 Western blot analysis of PAR-2-overexpressing and small interfering RNA-mediated receptor knockdown cell lines. Consistently, confocal microscopy analyses indicated that KLK4 initiates loss of PAR-2 from the cell surface and receptor internalization. Immunohistochemical analysis indicated the co-expression of agonist and PAR-2 in primary prostate cancer and bone metastases, suggesting that KLK4 signaling via this receptor will have pathological relevance. These data provide insight into KLK4-mediated cell signaling and suggest that signals induced by this enzyme via PARs may be important in prostate cancer.

  15. Microtubules induce self-organization of polarized PAR domains in C. elegans zygotes

    PubMed Central

    Motegi, Fumio; Zonies, Seth; Hao, Yingsong; Cuenca, Adrian A.; Griffin, Erik; Seydoux, Geraldine

    2011-01-01

    A hallmark of polarized cells is the segregation of the PAR polarity regulators into asymmetric domains at the cell cortex1, 2. Antagonistic interactions involving two conserved kinases, atypical protein kinase C (aPKC) and PAR-1, have been implicated in polarity maintenance1, 2, but the mechanisms that initiate the formation of asymmetric PAR domains are not understood. Here, we describe one pathway used by the sperm-donated centrosome to polarize the PAR proteins in Caenorhabditis elegans zygotes. Before polarization, cortical aPKC excludes PAR-1 kinase and its binding partner PAR-2 by phosphorylation. During symmetry breaking, microtubules nucleated by the centrosome locally protect PAR-2 from phosphorylation by aPKC, allowing PAR-2 and PAR-1 to access the cortex nearest the centrosome. Cortical PAR-1 phosphorylates PAR-3, causing the PAR-3/aPKC complex to leave the cortex. Our findings illustrate how microtubules, independent of actin dynamics, stimulate the self-organization of PAR proteins by providing local protection against a global barrier imposed by aPKC. PMID:21983565

  16. Aspergillus fumigatus Increased PAR-2 Expression and Elevated Proinflammatory Cytokines Expression Through the Pathway of PAR-2/ERK1/2 in Cornea.

    PubMed

    Niu, Yawen; Zhao, Guiqiu; Li, Cui; Lin, Jing; Jiang, Nan; Che, Chengye; Zhang, Jie; Xu, Qiang

    2018-01-01

    To determine the role of protease-activated receptor-2 (PAR-2) in cornea infected by Aspergillus fumigatus. PAR-2 was tested in normal and infected corneas of C57BL/6 mice. Mice corneas were infected with A. fumigatus with or without pretreatment of PAR-2 antagonist (FSLLRY-NH2). Polymorphonuclear neutrophilic leukocytes (PMNs) were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of FSLLRY-NH2. Disease severity was documented by clinical score and photographs with a slit lamp. PCR, Western blot, and ELISA tested expression of PAR-2, IL-1β, TNF-α, IFN-γ, MIP-2, and p-ERK1/2. PMN infiltration was assessed by myeloperoxidase assay and immunofluorescent staining. PAR-2 expression was significantly elevated by A. fumigatus, whereas the upregulation was significantly inhibited by FSLLRY-NH2 in mice corneas. FSLLRY-NH2 decreased disease response, PMN infiltration, and proinflammatory cytokine expression compared with infected control. In PMNs, PAR-2 expression was also significantly increased by A. fumigatus, which was significantly inhibited by FSLLRY-NH2. FSLLRY-NH2 significantly inhibited proinflammatory cytokine protein expression, as compared with that in infected control cells, which may be modified by p-ERK1/2. These data provide evidence that A. fumigatus increased PAR-2 expression and elevated disease, PMN infiltration, and proinflammatory cytokine expression through PAR-2, which may be modified by p-ERK1/2.

  17. Effect of additives on the performance and morphology of sulfonated copoly (phthalazinone biphenyl ether sulfone) composite nanofiltration membranes☆

    NASA Astrophysics Data System (ADS)

    Guan, Shanshan; Zhang, Shouhai; Liu, Peng; Zhang, Guozhen; Jian, Xigao

    2014-03-01

    Sulfonated copoly (phthalazinone biphenyl ether sulfone) (SPPBES) composite nanofiltration membranes were fabricated by adding low molecular weight additives into SPPBES coating solutions during a dip coating process. Three selected additives: glycol, glycerol and hydroquinone were used in this work. The effect of additives on the membrane performance was studied and discussed in terms of rejection and permeation flux. Among all the composite membranes, the membrane prepared with glycol as an additive achieved the highest Na2SO4 rejection, and the membrane fabricated with glycerol as an additive exhibited the highest flux. The salts rejection of SPPBES composite membranes increased in the following order MgCl2 < NaCl ≤ MgSO4 < Na2SO4. The morphologies of the SPPBES composite membranes were characterized by SEM, it was found that the membrane prepared with hydroquinone showed a rough membrane surface. Composite membrane fabricated with glycol or glycerol as the additive showed very good chemical stability.

  18. Dishevelled-induced phosphorylation regulates membrane localization of Par1b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terabayashi, Takeshi; Funato, Yosuke; Miki, Hiroaki, E-mail: hmiki@protein.osaka-u.ac.jp

    2008-10-31

    Par1b is an evolutionarily conserved kinase that plays crucial roles in cell polarity. Controlling intracellular localization of Par1b is important for its biological activity. We previously reported that Wnt stimulation or expression of Dvl promotes accumulation of Par1b in the membrane (T. Terabayashi, T.J. Itoh, H. Yamaguchi, Y. Yoshimura, Y. Funato, S. Ohno, H. Miki, Polarity-Regulating Kinase Partitioning-Defective 1/Microtubule Affinity-Regulating Kinase 2 Negatively Regulates Development of Dendrites on Hippocampal Neurons, J. Neurosci. 27 (2007) 13098-13107). However, its molecular mechanism remains unclear. Here we show the importance of Par1b phosphorylation in the regulation of membrane localization. We find that Thr-324 ismore » phosphorylated in a Dvl-dependent manner. Interestingly, the conversion of Thr-324 to Glu results in a significant accumulation of Par1b in the membrane, without any effects on the kinase activity. Moreover, the phospho-mimicking Par1b mutant does not antagonistically function against Dvl in microtubule stabilization and neurite extension, although wildtype Par1b does. These results suggest that membrane accumulation of Par1b induced by Dvl is regulated by its phosphorylation status, which is important for Par1b to regulate the microtubule dynamics.« less

  19. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy.

    PubMed

    Rwibasira Rudinga, Gamariel; Khan, Ghulam Jilany; Kong, Yi

    2018-02-14

    Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.

  20. Reduction of intracerebral hemorrhage by rivaroxaban after tPA thrombolysis is associated with downregulation of PAR-1 and PAR-2.

    PubMed

    Morihara, Ryuta; Yamashita, Toru; Kono, Syoichiro; Shang, Jingwei; Nakano, Yumiko; Sato, Kota; Hishikawa, Nozomi; Ohta, Yasuyuki; Heitmeier, Stefan; Perzborn, Elisabeth; Abe, Koji

    2017-09-01

    This study aimed to assess the risk of intracerebral hemorrhage (ICH) after tissue-type plasminogen activator (tPA) treatment in rivaroxaban compared with warfarin-pretreated male Wistar rat brain after ischemia in relation to activation profiles of protease-activated receptor-1, -2, -3, and -4 (PAR-1, -2, -3, and -4). After pretreatment with warfarin (0.2 mg/kg/day), low-dose rivaroxaban (60 mg/kg/day), high-dose rivaroxaban (120 mg/kg/day), or vehicle for 14 days, transient middle cerebral artery occlusion was induced for 90 min, followed by reperfusion with tPA (10 mg/kg/10 ml). Infarct volume, hemorrhagic volume, immunoglobulin G leakage, and blood parameters were examined. Twenty-four hours after reperfusion, immunohistochemistry for PARs was performed in brain sections. ICH volume was increased in the warfarin-pretreated group compared with the rivaroxaban-treated group. PAR-1, -2, -3, and -4 were widely expressed in the normal brain, and their levels were increased in the ischemic brain, especially in the peri-ischemic lesion. Warfarin pretreatment enhanced the expression of PAR-1 and PAR-2 in the peri-ischemic lesion, whereas rivaroxaban pretreatment did not. The present study shows a lower risk of brain hemorrhage in rivaroxaban-pretreated compared with warfarin-pretreated rats following tPA administration to the ischemic brain. It is suggested that the relative downregulation of PAR-1 and PAR-2 by rivaroxaban compared with warfarin pretreatment might be partly involved in the mechanism of reduced hemorrhagic complications in patients receiving rivaroxaban in clinical trials. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Factor X/Xa elicits protective signaling responses in endothelial cells directly via PAR-2 and indirectly via endothelial protein C receptor-dependent recruitment of PAR-1.

    PubMed

    Bae, Jong-Sup; Yang, Likui; Rezaie, Alireza R

    2010-11-05

    We recently demonstrated that the Gla domain-dependent interaction of protein C with endothelial protein C receptor (EPCR) leads to dissociation of the receptor from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway. Thus, the activation of PAR-1 by either thrombin or PAR-1 agonist peptide elicited a barrier-protective response if endothelial cells were preincubated with protein C. In this study, we examined whether other vitamin K-dependent coagulation protease zymogens can modulate PAR-dependent signaling responses in endothelial cells. We discovered that the activation of both PAR-1 and PAR-2 in endothelial cells pretreated with factor FX (FX)-S195A, but not other procoagulant protease zymogens, also results in initiation of protective intracellular responses. Interestingly, similar to protein C, FX interaction with endothelial cells leads to dissociation of EPCR from caveolin-1 and recruitment of PAR-1 to a protective pathway. Further studies revealed that, FX activated by factor VIIa on tissue factor bearing endothelial cells also initiates protective signaling responses through the activation of PAR-2 independent of EPCR mobilization. All results could be recapitulated by the receptor agonist peptides to both PAR-1 and PAR-2. These results suggest that a cross-talk between EPCR and an unknown FX/FXa receptor, which does not require interaction with the Gla domain of FX, recruits PAR-1 to protective signaling pathways in endothelial cells.

  2. PAR1 activation affects the neurotrophic properties of Schwann cells.

    PubMed

    Pompili, Elena; Fabrizi, Cinzia; Somma, Francesca; Correani, Virginia; Maras, Bruno; Schininà, Maria Eugenia; Ciraci, Viviana; Artico, Marco; Fornai, Francesco; Fumagalli, Lorenzo

    2017-03-01

    Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice.

    PubMed

    Jones, Shannon M; Mann, Adrien; Conrad, Kelsey; Saum, Keith; Hall, David E; McKinney, Lisa M; Robbins, Nathan; Thompson, Joel; Peairs, Abigail D; Camerer, Eric; Rayner, Katey J; Tranter, Michael; Mackman, Nigel; Owens, A Phillip

    2018-06-01

    PAR2 (protease-activated receptor 2)-dependent signaling results in augmented inflammation and has been implicated in the pathogenesis of several autoimmune conditions. The objective of this study was to determine the effect of PAR2 deficiency on the development of atherosclerosis. PAR2 mRNA and protein expression is increased in human carotid artery and mouse aortic arch atheroma versus control carotid and aortic arch arteries, respectively. To determine the effect of PAR2 deficiency on atherosclerosis, male and female low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice (8-12 weeks old) that were Par2 +/+ or Par2 -/- were fed a fat- and cholesterol-enriched diet for 12 or 24 weeks. PAR2 deficiency attenuated atherosclerosis in the aortic sinus and aortic root after 12 and 24 weeks. PAR2 deficiency did not alter total plasma cholesterol concentrations or lipoprotein distributions. Bone marrow transplantation showed that PAR2 on nonhematopoietic cells contributed to atherosclerosis. PAR2 deficiency significantly attenuated levels of the chemokines Ccl2 and Cxcl1 in the circulation and macrophage content in atherosclerotic lesions. Mechanistic studies using isolated primary vascular smooth muscle cells showed that PAR2 deficiency is associated with reduced Ccl2 and Cxcl1 mRNA expression and protein release into the supernatant resulting in less monocyte migration. Our results indicate that PAR2 deficiency is associated with attenuation of atherosclerosis and may reduce lesion progression by blunting Ccl2 - and Cxcl1 -induced monocyte infiltration. © 2018 American Heart Association, Inc.

  4. Protease-activated receptor-2 (PAR(2)) in human periodontitis.

    PubMed

    Holzhausen, M; Cortelli, J R; da Silva, V Araújo; Franco, G C Nobre; Cortelli, S Cavalca; Vergnolle, N

    2010-09-01

    No evidence for the role of protease-activated receptor-2 (PAR(2)) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR(2) mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR(2) potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR(2) mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1alpha, IL-6, IL-8, and TNF-alpha, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR(2) mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR(2) may play a role in periodontal inflammation.

  5. StePar: an automatic code for stellar parameter determination

    NASA Astrophysics Data System (ADS)

    Tabernero, H. M.; González Hernández, J. I.; Montes, D.

    2013-05-01

    We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.

  6. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF.

    PubMed

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-04-06

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins.

  7. The role of pars flaccida in human middle ear sound transmission.

    PubMed

    Aritomo, H; Goode, R L; Gonzalez, J

    1988-04-01

    The role of the pars flaccida in middle ear sound transmission was studied with the use of twelve otoscopically normal, fresh, human temporal bones. Peak-to-peak umbo displacement in response to a constant sound pressure level at the tympanic membrane was measured with a noncontacting video measuring system capable of repeatable measurements down to 0.2 micron. Measurements were made before and after pars flaccida modifications at 18 frequencies between 100 and 4000 Hz. Four pars flaccida modifications were studied: (1) acoustic insulation of the pars flaccida to the ear canal with a silicone rubber baffle, (2) stiffening the pars flaccida with cyanoacrylate cement, (3) decreasing the tension of the pars flaccida with a nonperforating incision, and (4) perforation of the pars flaccida. All of the modifications (except the perforation) had a minimal effect on umbo displacement; this seems to imply that the pars flaccida has a minor acoustic role in human beings.

  8. PAR-1 contributes to the innate immune response during viral infection

    PubMed Central

    Antoniak, Silvio; Owens, A. Phillip; Baunacke, Martin; Williams, Julie C.; Lee, Rebecca D.; Weithäuser, Alice; Sheridan, Patricia A.; Malz, Ronny; Luyendyk, James P.; Esserman, Denise A.; Trejo, JoAnn; Kirchhofer, Daniel; Blaxall, Burns C.; Pawlinski, Rafal; Beck, Melinda A.; Rauch, Ursula; Mackman, Nigel

    2013-01-01

    Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3–induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1–/– mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1+/+ mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1–/– mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1+/+ mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection. PMID:23391721

  9. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF

    PubMed Central

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-01-01

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins. PMID:15775965

  10. Neo-Positivist Intrusions, Post-Qualitative Challenges, and PAR's Generative Indeterminacies

    ERIC Educational Resources Information Center

    Miller, Janet L.

    2017-01-01

    Although committed to PAR's overarching aspirations, many advocates also have noted myriad complexities of engaging in PAR, where ambiguities and disarrays--all kinds of inconclusive evidence--can proliferate. Uncertainties especially can erupt if PAR education-focused projects are positioned, oxymoronically, as expected to produce "high…

  11. Influence of volumetric reduction factor during ozonation of nanofiltration concentrates for wastewater reuse.

    PubMed

    Azaïs, Antonin; Mendret, Julie; Petit, Eddy; Brosillon, Stephan

    2016-12-01

    Global population growth induces increased threat on drinking water resources. One way to address this environmental issue is to reuse water from wastewater treatment plant. The presence of pathogenic microorganisms and potentially toxic organic micropollutants does not allow a direct reuse of urban effluents. Membrane processes such reverse osmosis (RO) or nanofiltration (NF) can be considered to effectively eliminate these pollutants. The integration of membrane processes involves the production of concentrated retentates which require being disposed. To date, no treatment is set up to manage safely this pollution. This work focuses on the application of ozonation for the treatment of NF retentates in the framework of the wastewater reuse. Ozonation is a powerful oxidation process able to react and degrade a wide range of organic pollutants. Four pharmaceutical micropollutants were selected as target molecules: acetaminophen, carbamazepine, atenolol and diatrozic acid. This study highlighted that NF represents a viable alternative to the commonly used RO process ensuring high retention at much lower operating costs. Ozonation appears to be effective to degrade the most reactive pollutants toward molecular ozone but is limited for the reduction of refractory ozone pollutants due to the inhibition of the radical chain by the high content of organic matter in the retentates. The ozonation process appears to be a promising NF retentate treatment, but additional treatments after ozonation are required to lead to a zero liquid discharge treatment scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.

    PubMed

    Dolar, Davor; Vuković, Ana; Asperger, Danijela; Kosutić, Kresimir

    2011-01-01

    This study explored the removal of five veterinary pharmaceuticals (VPs) (sulfamethoxazole (SMETOX), trimethoprim (TMP), ciprofloxacin (CIPRO), dexamethasone (DEXA) and febantel (FEBA)) from different water matrices (Milli-Q water, model water, tap water and real pharmaceutical wastewater using four types of nanofiltration (NF) membranes (NF90, NF270, NF and HL) and two reverse osmosis (RO) membranes (LFC-1 and XLE). All VPs were added to different water matrices at a concentration of 10 mg/L. Rejections of VPs and water flux were measured. The rejection increased with increase of molecular weight. The highest rejections were obtained with RO membranes (LFC-1, XLE) and tight NF (NF90) membrane. In general, the rejection of VPs was higher in model water and tap water than in Milli-Q water, but the water flux was lower. This was mainly explained by ion adsorption inside the membranes pores. Narrower pore size counteracted the effect of presence of low concentration of natural organic matter (NOM) in tap water. The NOM was assumed to enhance the adsorption of VPs onto membrane surface, increased the size exclusion and electrostatic repulsion also appeared during the transport. Investigated water matrices had influence on water flux decline due to their complexity.

  13. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery.

    PubMed

    Boo, Chanhee; Wang, Yunkun; Zucker, Ines; Choo, Youngwoo; Osuji, Chinedum O; Elimelech, Menachem

    2018-05-31

    We demonstrate the fabrication of a loose, negatively charged nanofiltration (NF) membrane with tailored selectivity for the removal of perfluoroalkyl substances with reduced scaling potential. A selective polyamide layer was fabricated on top of a polyethersulfone support via interfacial polymerization of trimesoyl chloride and a mixture of piperazine and bipiperidine. Incorporating high molecular weight bipiperidine during the interfacial polymerization enables the formation of a loose, nanoporous selective layer structure. The fabricated NF membrane possessed a negative surface charge and had a pore diameter of ~1.2 nm, much larger than a widely used commercial NF membrane (i.e., NF270 with pore diameter of ~0.8 nm). We evaluated the performance of the fabricated NF membrane for the rejection of different salts (i.e., NaCl, CaCl2, and Na2SO4) and perfluorooctanoic acid (PFOA). The fabricated NF membrane exhibited a high retention of PFOA (~90%) while allowing high passage of scale-forming cations (i.e., calcium). We further performed gypsum scaling experiments to demonstrate lower scaling potential of the fabricated loose porous NF membrane compared to NF membranes having a dense selective layer under solution conditions simulating high water recovery. Our results demonstrate that properly designed NF membranes are a critical component of a high recovery NF system, which provide an efficient and sustainable solution for remediation of groundwater contaminated with perfluoroalkyl substances.

  14. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A

    2015-08-15

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease.

  15. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals.

    PubMed

    Wang, Guang; Garvey, Christopher J; Zhao, Han; Huang, Kang; Kong, Lingxue

    2017-07-21

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  16. Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration.

    PubMed

    Sasaki, Kengo; Sasaki, Daisuke; Sakihama, Yuri; Teramura, Hiroshi; Yamada, Ryosuke; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2013-11-01

    Concentrating sugars using membrane separation, followed by ethanol fermentation by recombinant xylose-assimilating Saccharomyces cerevisiae, is an attractive technology. Three nanofiltration membranes (NTR-729HF, NTR-7250, and ESNA3) were effective in concentrating glucose, fructose, and sucrose from dilute molasses solution and no permeation of sucrose. The separation factors of acetate, formate, furfural, and 5-hydroxymethyl furfural, which were produced by dilute acid pretreatment of rice straw, over glucose after passage through these three membranes were 3.37-11.22, 4.71-20.27, 4.32-16.45, and 4.05-16.84, respectively, at pH 5.0, an applied pressure of 1.5 or 2.0 MPa, and 25 °C. The separation factors of these fermentation inhibitors over xylose were infinite, as there was no permeation of xylose. Ethanol production from approximately two-times concentrated liquid hydrolysate using recombinant S. cerevisiae was double (5.34-6.44 g L(-1)) that compared with fermentation of liquid hydrolysate before membrane separation (2.75 g L(-1)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Bench-Top Antigen Detection Technique that Utilizes Nanofiltration and Fluorescent Dyes which Emit and Absorb Light in the Near Infrared

    NASA Technical Reports Server (NTRS)

    Varaljay-Spence, Vanessa A.; Scardelletti, Maximilian C.

    2007-01-01

    This article discusses the development of a bench-top technique to detect antigens in fluids. The technique involves the use of near infrared NIR fluorescent dyes conjugated to antibodies, centrifugation, nanofilters, and spectrometry. The system used to detect the antigens utilizes a spectrometer, fiber optic cables, NIR laser, and laptop computer thus making it portable and ideally suited for desk top analysis. Using IgM as an antigen and the secondary antibody, anti-IgM conjugated to the near infrared dye, IRDye (trademark) 800, for detection, we show that nanofiltration can efficiently and specifically separate antibody-antigen complexes in solution and that the complexes can be detected by a spectrometer and software using NIR laser excitation at 778 nm and NIR dye offset emission at 804 nm. The peak power detected at 778 nm for the excitation emission and at 804 nm for the offset emission is 879 pW (-60.06 dBm) and 35.7 pW (-74.5 dBm), respectively.

  18. 12 CFR 925.19 - Par value and price of stock.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Par value and price of stock. 925.19 Section... ASSOCIATES MEMBERS OF THE BANKS Stock Requirements § 925.19 Par value and price of stock. The capital stock of each Bank shall be sold at par, unless the Board has fixed a higher price. ...

  19. Effect and mechanism of PAR-2 on the proliferation of esophageal cancer cells.

    PubMed

    Quanjun, D; Qingyu, Z; Qiliang, Z; Liqun, X; Jinmei, C; Ziquan, L; Shike, H

    2016-11-01

    Esophageal Cancer (EC) is a common malignant tumor occurred in the digestive tract. In this study, we investigated the mechanism of Protease Activated Receptor 2 (PAR-2) on the proliferation of esophageal cancer cell. Transfected esophageal cancer (EC) cell (PAR-2shRNA EC109) was established with low stable PAR-2 expression. EC109 cell was treated with PAR-2 agonist, PAR-2 anti-agonist and MAPK inhibitor respectively; Untreated EC109 cell (blank control) and PAR-2shRNA EC109 cell were used for analysis also. The mRNA expressions of PAR-2, ERK1, Cyclin D1, and c-fos in each group were detected by reverse transcript and polymerase chain reaction. Western blot was used to detect the protein expressions in each group. The cell growth curves were drawn to compare the cell growth. Compared with the blank control, the mRNA and protein expressions of PAR-2, Cyclin D1, and c-fos in PAR-2 agonist group increased significantly (p < 0.05), while decreased significantly in PAR-2shRNA EC109 cell and MAPK inhibitor group (p < 0.05). The mRNA expression of ERK1 and protein expression of p-ERK1 increased in PAR-2 agonist group, decreased in PAR-2shRNA EC109 cell and MAPK inhibitor group when compared with blank control (p < 0.05). The growth of cells was upward in PAR-2 agonist group at cell growth phase when compared with blank control, while decreased in PAR-2 shRNA EC109 cell and MAPK inhibitor group with statistical difference (p < 0.05). PAR-2 regulate cell proliferation through the MAPK pathway in esophageal carcinoma cell, and Cyclin D1, c-fos are involved in this process.

  20. The signaling adapter Gab1 regulates cell polarity by acting as a PAR protein scaffold

    PubMed Central

    Yang, Ziqiang; Xue, Bin; Umitsu, Masataka; Ikura, Mitsuhiko; Muthuswamy, Senthil K.; Neel, Benjamin G.

    2012-01-01

    Summary Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1 and PAR6 bind the PAR3 PDZ1 domain and thereby compete for PAR3 binding. Consequently, GAB1 depletion causes PAR3 hypo-phosphorylation and increases PAR3/PAR6 complex formation, resulting in accelerated and enhanced tight junction formation, increased trans-epithelial resistance and lateral domain shortening. Conversely, GAB1 over-expression, in a PAR1/PAR3-dependent manner, disrupts epithelial apical-basal polarity, promotes multi-lumen cyst formation, and enhances growth factor-induced epithelial cell scattering. Our results identify GAB1 as a novel negative regulator of epithelial cell polarity that functions as a scaffold for modulating PAR protein complexes on the lateral membrane. PMID:22883624

  1. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.

    PubMed

    Yang, Linyan; She, Qianhong; Wan, Man Pun; Wang, Rong; Chang, Victor W-C; Tang, Chuyang Y

    2017-06-01

    Recent studies report high concentrations of haloacetic acids (HAAs), a prevalent class of toxic disinfection by-products, in swimming pool water (SPW). We investigated the removal of 9 HAAs by four commercial reverse osmosis (RO) and nanofiltration (NF) membranes. Under typical SPW conditions (pH 7.5 and 50 mM ionic strength), HAA rejections were >60% for NF270 with molecular weight cut-off (MWCO) equal to 266 Da and equal or higher than 90% for XLE, NF90 and SB50 with MWCOs of 96, 118 and 152 Da, respectively, as a result of the combined effects of size exclusion and charge repulsion. We further included 7 neutral hydrophilic surrogates as molecular probes to resolve the rejection mechanisms. In the absence of strong electrostatic interaction (e.g., pH 3.5), the rejection data of HAAs and surrogates by various membranes fall onto an identical size-exclusion (SE) curve when plotted against the relative-size parameter, i.e., the ratio of molecular radius over membrane pore radius. The independence of this SE curve on molecular structures and membrane properties reveals that the relative-size parameter is a more fundamental SE descriptor compared to molecular weight. An effective molecular size with the Stokes radius accounting for size exclusion and the Debye length accounting for electrostatic interaction was further used to evaluate the rejection. The current study provides valuable insights on the rejection of trace contaminants by RO/NF membranes. Copyright © 2017. Published by Elsevier Ltd.

  2. PAR-2 expression in the gingival crevicular fluid reflects chronic periodontitis severity.

    PubMed

    Fukushima, Henrique; Alves, Vanessa Tubero Euzebio; Carvalho, Verônica Franco de; Ambrósio, Lucas Macedo Batitucci; Eichler, Rosangela Aparecida Dos Santos; Carvalho, Maria Helena Catelli de; Saraiva, Luciana; Holzhausen, Marinella

    2017-01-26

    Recent studies investigating protease-activated receptor type 2 (PAR-2) suggest an association between the receptor and periodontal inflammation. It is known that gingipain, a bacterial protease secreted by the important periodontopathogen Porphyromonas gingivalis can activate PAR-2. Previous studies by our group found that PAR-2 is overexpressed in the gingival crevicular fluid (GCF) of patients with moderate chronic periodontitis (MP). The present study aimed at evaluating whether PAR-2 expression is associated with chronic periodontitis severity. GCF samples and clinical parameters, including plaque and bleeding on probing indices, probing pocket depth and clinical attachment level, were collected from the control group (n = 19) at baseline, and from MP patients (n = 19) and severe chronic periodontitis (SP) (n = 19) patients before and 6 weeks after periodontal non-surgical treatment. PAR-2 and gingipain messenger RNA (mRNA) in the GCF of 4 periodontal sites per patient were evaluated by Reverse Transcription Polymerase Chain Reaction (RT-qPCR). PAR-2 and gingipain expressions were greater in periodontitis patients than in control group patients. In addition, the SP group presented increased PAR-2 and gingipain mRNA levels, compared with the MP group. Furthermore, periodontal treatment significantly reduced (p <0.05) PAR-2 expression in patients with periodontitis. In conclusion, PAR-2 is associated with chronic periodontitis severity and with gingipain levels in the periodontal pocket, thus suggesting that PAR-2 expression in the GCF reflects the severity of destruction during periodontal infection.

  3. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    PubMed

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  4. PAR-2 receptor-induced effects on human eccrine sweat gland cells.

    PubMed

    L Bovell, Douglas; Kofler, Barbara; Lang, Roland

    2009-01-01

    Serine proteases can induce cell signaling by stimulating G-protein-coupled receptors, called proteinase-activated receptors (PAR's) on a variety of epithelial cells. While PAR-2, one such receptor, activates cell signaling in a secretory cell line derived from human sweat glands, there was no information on their presence and effects on intact sweat glands. PAR-2 presence and activation of eccrine sweat glands isolated from human skin samples was investigated using Western blot analysis, immunohistochemistry, electron microscopy (EM) and Ca(2+) imaging. Anti-human PAR-2 antibody demonstrated the presence of these receptors in eccrine sweat glands. EM showed that PAR-2 activation resulted in degranulation of secretory cells. Ca(2+) imaging using PAR-2 activators demonstrated a two phase increase in [Ca(2+)](i) which was dependent on extracellular Ca(2+) for the second phase, and that the response could be blocked by prior incubation with xestospongin, the IP(3) receptor blocker. The results demonstrated that PAR-2 receptors are present in human sweat gland secretory cells and that these receptors are functionally active and can induce changes associated with secretory events in eccrine glands.

  5. Brulure par Plaque de Bistouri Electrique: a Propos de Quatre Cas

    PubMed Central

    Khales, A.; Achbouk, A.; Belmir, R.; Cherkab, L.; Ennouhi, M.A.; Ababou, K.; Ihrai, H.

    2010-01-01

    Summary La brûlure par plaque de bistouri électrique est un accident rare mais grave par la profondeur de la lésion et par sa localisation, surtout quand qu’elle survient dans un contexte chirurgical dont le vécu reste difficile de la part du malade et du chirurgien. Cette brûlure bien que imprévisible reste grave par la profondeur et la localisation de la brûlure et par sa survenue dans un contexte opératoire, chez des patients malades. La prise en charge de la brûlure doit se faire en milieu spécialisé. La prévention reste le seul moyen d’éviter ce type d’accident. PMID:21991216

  6. Expression of protease-activated-receptor 2 (PAR-2) in human esophageal mucosa.

    PubMed

    Inci, Kamuran; Edebo, Anders; Olbe, Lars; Casselbrant, Anna

    2009-01-01

    The role of duodenal reflux in gastroesophageal reflux disease (GERD) containing bile salts and pancreatic enzymes (with special attention to trypsin) is still under discussion. Proteinase-activated receptors (PARs) are a novel family and PAR-2 is a unique member of this family because it is activated by trypsin. The aim of the present study was to examine the presence and the position of the PAR-2 receptor in human esophageal mucosa in different subgroups of GERD. Distal biopsies taken from healthy controls, patients with erosive reflux disease (ERD), patients with specialized intestinal metaplasia (SIM) and adenocarcinoma were analyzed for the PAR-2 receptor with reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Gene transcripts for the PAR-2 receptor were found in all groups, with increased levels in SIM patients compared to controls. However, this visual pattern was not seen for the protein expression of the PAR-2 receptor showing no apparent quantitative differences between the groups. Immunohistochemistry revealed distinct staining for the PAR-2 receptor in the luminal part of the esophageal epithelium. The localization of the PAR-2 receptor indicates that the receptor can be cleaved and activated by trypsin in duodenogastric esophageal refluxate. The data thus suggest that the trypsin-PAR-2 pathway may be involved in the pathogenesis of GERD.

  7. Discovery of potent and selective small-molecule PAR-2 agonists.

    PubMed

    Seitzberg, Jimmi Gerner; Knapp, Anne Eeg; Lund, Birgitte Winther; Mandrup Bertozzi, Sine; Currier, Erika A; Ma, Jian-Nong; Sherbukhin, Vladimir; Burstein, Ethan S; Olsson, Roger

    2008-09-25

    Proteinase activated receptor-2 plays a crucial role in a wide variety of conditions with a strong inflammatory component. We present the discovery and characterization of two structurally different, potent, selective, and metabolically stable small-molecule PAR-2 agonists. These ligands may be useful as pharmacological tools for elucidating the complex physiological role of the PAR-2 receptors as well as for the development of PAR-2 antagonists.

  8. Endophthalmitis following pars plana vitrectomy for vitreous floaters

    PubMed Central

    Henry, Christopher R; Schwartz, Stephen G; Flynn, Harry W

    2014-01-01

    A case of Staphylococcus caprae endophthalmitis in a young patient following pars plana vitrectomy for symptomatic vitreous floaters is reported here. Recent literature suggests that there is an increasing trend of performing pars plana vitrectomy for symptomatic floaters. Although rare, the potential risk of endophthalmitis should be explicitly discussed with patients considering surgical intervention for vitreous floaters. PMID:25210434

  9. Endophthalmitis following pars plana vitrectomy for vitreous floaters.

    PubMed

    Henry, Christopher R; Schwartz, Stephen G; Flynn, Harry W

    2014-01-01

    A case of Staphylococcus caprae endophthalmitis in a young patient following pars plana vitrectomy for symptomatic vitreous floaters is reported here. Recent literature suggests that there is an increasing trend of performing pars plana vitrectomy for symptomatic floaters. Although rare, the potential risk of endophthalmitis should be explicitly discussed with patients considering surgical intervention for vitreous floaters.

  10. Expression of Par3 polarity protein correlates with poor prognosis in ovarian cancer.

    PubMed

    Nakamura, Hiroe; Nagasaka, Kazunori; Kawana, Kei; Taguchi, Ayumi; Uehara, Yuriko; Yoshida, Mitsuyo; Sato, Masakazu; Nishida, Haruka; Fujimoto, Asaha; Inoue, Tomoko; Adachi, Katsuyuki; Nagamatsu, Takeshi; Arimoto, Takahide; Oda, Katsutoshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-11-17

    Previous studies have shown that the cell polarity protein partitioning defective 3 (Par3) plays an essential role in the formation of tight junctions and definition of apical-basal polarity. Aberrant function of this protein has been reported to be involved in epithelial-mesenchymal transition (EMT) and cancer invasion. The aim of this study was to examine the functional mechanism of Par3 in ovarian cancer. First, we investigated the association between Par3 expression level and survival of 50 ovarian cancer patients. Next, we conducted an in vitro analysis of ovarian cancer cell lines, focusing on the cell line JHOC5, to investigate Par3 function. To investigate the function of Par3 in invasion, the IL-6/STAT3 pathway was analyzed upon Par3 knockdown with siRNA. The effect of siRNA treatment was assessed by qPCR, ELISA, and western blotting. Invasiveness and cell proliferation following treatment with siRNA against Par3 were investigated using Matrigel chamber, wound healing, and cell proliferation assays. Expression array data for ovarian cancer patient samples revealed low Par3 expression was significantly associated with good prognosis. Univariate analysis of clinicopathological factors revealed significant association between high Par3 levels and peritoneal dissemination at the time of diagnosis. Knockdown of Par3 in JHOC5 cells suppressed cell invasiveness, migration, and cell proliferation with deregulation of IL-6/STAT3 activity. Taken together, these results suggest that Par3 expression is likely involved in ovarian cancer progression, especially in peritoneal metastasis. The underlying mechanism may be that Par3 modulates IL-6 /STAT3 signaling. Here, we propose that the expression of Par3 in ovarian cancer may control disease outcome.

  11. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification

    NASA Astrophysics Data System (ADS)

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-01

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for

  12. ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity†

    PubMed Central

    Dubarry, Nelly; Pasta, Franck; Lane, David

    2006-01-01

    Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromosomes and one low-copy-number plasmid. A single parAB locus and a set of ParB-binding (parS) centromere sites are located near the origin of each replicon. ParA and ParB of the longest chromosome are phylogenetically similar to analogues in other multichromosome and monochromosome bacteria but are distinct from those of smaller chromosomes. The latter form subgroups that correspond to the taxa of their hosts, indicating evolution from plasmids. The parS sites on the smaller chromosomes and the plasmid are similar to the “universal” parS of the main chromosome but with a sequence specific to their replicon. In an Escherichia coli plasmid stabilization test, each parAB exhibits partition activity only with the parS of its own replicon. Hence, parABS function is based on the independent partition of individual chromosomes rather than on a single communal system or network of interacting systems. Stabilization by the smaller chromosome and plasmid systems was enhanced by mutation of parS sites and a promoter internal to their parAB operons, suggesting autoregulatory mechanisms. The small chromosome ParBs were found to silence transcription, a property relevant to autoregulation. PMID:16452432

  13. Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR-2.

    PubMed

    Zonies, Seth; Motegi, Fumio; Hao, Yingsong; Seydoux, Geraldine

    2010-05-01

    Polarization of the C. elegans zygote is initiated by ECT-2-dependent cortical flows, which mobilize the anterior PAR proteins (PAR-3, PAR-6 and PKC-3) away from the future posterior end of the embryo marked by the sperm centrosome. Here, we demonstrate the existence of a second, parallel and redundant pathway that can polarize the zygote in the absence of ECT-2-dependent cortical flows. This second pathway depends on the polarity protein PAR-2. We show that PAR-2 localizes to the cortex nearest the sperm centrosome even in the absence of cortical flows. Once on the cortex, PAR-2 antagonizes PAR-3-dependent recruitment of myosin, creating myosin flows that transport the anterior PAR complex away from PAR-2 in a positive-feedback loop. We propose that polarity in the C. elegans zygote is initiated by redundant ECT-2- and PAR-2-dependent mechanisms that lower PAR-3 levels locally, triggering a positive-feedback loop that polarizes the entire cortex.

  14. Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Fan, Lin; Yang, Zhen; Zhang, Runnan; Liu, Ya-nan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi

    2017-07-01

    In this study, a high flux nanofiltration (NF) membrane with hybrid polymer-nanoparticle active layer was fabricated by chemical crosslinking of piperazine (PIP) and 1, 3, 5-benzene tricarbonyl trichloride (TMC). An in-situ generated method was applied to deposit titanium dioxide (TiO2) nanoparticles uniformly on the membrane surface, leading to the enhancement of the surface hydrophilicity, roughness and relative surface area of the polyamide (PA) layer. The morphology of the modified membrane was investigated by scanning electron microscopy (SEM) and Atomic force microscopy (AFM), also energy dispersive X-ray microanalysis (EDX) was used to analyze the distribution of Ti element. Chemical structure was observed by Fourier transmission infrared attenuated total reflectance (FTIR-ATR) spectroscopy. Remarkably, the optimal water flux of the loose NF membrane was 65.0 Lm-2 h-1 bar-1 nearly 5 times as much as the pure PA membrane flux. The rejections of the loose NF membranes for dyes were almost all greater than 95.0%, while the rejection for sodium sulfate (Na2SO4) was only about 17.0%, which indicated that the modified membrane had an impressive potential application for dye desalination and purification.

  15. Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation

    PubMed Central

    Taylor, James A.; Pastrana, Cesar L.; Butterer, Annika; Pernstich, Christian; Gwynn, Emma J.; Sobott, Frank; Moreno-Herrero, Fernando; Dillingham, Mark S.

    2015-01-01

    The segregation of many bacterial chromosomes is dependent on the interactions of ParB proteins with centromere-like DNA sequences called parS that are located close to the origin of replication. In this work, we have investigated the binding of Bacillus subtilis ParB to DNA in vitro using a variety of biochemical and biophysical techniques. We observe tight and specific binding of a ParB homodimer to the parS sequence. Binding of ParB to non-specific DNA is more complex and displays apparent positive co-operativity that is associated with the formation of larger, poorly defined, nucleoprotein complexes. Experiments with magnetic tweezers demonstrate that non-specific binding leads to DNA condensation that is reversible by protein unbinding or force. The condensed DNA structure is not well ordered and we infer that it is formed by many looping interactions between neighbouring DNA segments. Consistent with this view, ParB is also able to stabilize writhe in single supercoiled DNA molecules and to bridge segments from two different DNA molecules in trans. The experiments provide no evidence for the promotion of non-specific DNA binding and/or condensation events by the presence of parS sequences. The implications of these observations for chromosome segregation are discussed. PMID:25572315

  16. Par Pond vegetation status Summer 1995 -- October survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-11-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this late October survey. Communities similar to the pre-drawdown Par Pond aquatic plant communitiesmore » are becoming re-established; especially, beds of maiden cane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.« less

  17. View from east to west of PAR site storage building; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from east to west of PAR site storage building; formerly PAR dispensary - Stanley R. Mickelsen Safeguard Complex, Storage Building, Across street from Family Housing Units 110 & 111, Nekoma, Cavalier County, ND

  18. Improved Satellite-based Photosysnthetically Active Radiation (PAR) for Air Quality Studies

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Cohan, D. S.; White, A.; Zhang, R.; Dornblaser, B.; Doty, K.; Wu, Y.; Estes, M. J.

    2015-12-01

    One of the challenges in understanding the air quality over forested regions has been the uncertainties in estimating the biogenic hydrocarbon emissions. Biogenic volatile organic compounds, BVOCs, play a critical role in atmospheric chemistry, particularly in ozone and particulate matter (PM) formation. In southeastern United States, BVOCs (mostly as isoprene) are the dominant summertime source of reactive hydrocarbon. Despite significant efforts in improving BVOC estimates, the errors in emission inventories remain a concern. Since BVOC emissions are particularly sensitive to the available photosynthetically active radiation (PAR), model errors in PAR result in large errors in emission estimates. Thus, utilization of satellite observations to estimate PAR can help in reducing emission uncertainties. Satellite-based PAR estimates rely on the technique used to derive insolation from satellite visible brightness measurements. In this study we evaluate several insolation products against surface pyranometer observations and offer a bias correction to generate a more accurate PAR product. The improved PAR product is then used in biogenic emission estimates. The improved biogenic emission estimates are compared to the emission inventories over Texas and used in air quality simulation over the period of August-September 2013 (NASA's Discover-AQ field campaign). A series of sensitivity simulations will be performed and evaluated against Discover-AQ observations to test the impact of satellite-derived PAR on air quality simulations.

  19. PAR(2) expression in peripheral blood monocytes of patients with rheumatoid arthritis.

    PubMed

    Crilly, A; Burns, E; Nickdel, M B; Lockhart, J C; Perry, M E; Ferrell, P W; Baxter, D; Dale, J; Dunning, L; Wilson, H; Nijjar, J S; Gracie, J A; Ferrell, W R; McInnes, I B

    2012-06-01

    Proteinase-activated receptor 2 (PAR(2)) is a G protein-coupled receptor activated by serine proteinases with proinflammatory activity. A study was undertaken to investigate the presence and functional significance of PAR(2) expression on rheumatoid arthritis (RA)-derived leucocyte subsets. Venous blood was obtained from patients with RA and osteoarthritis (OA) as well as healthy control subjects. Surface expression of PAR(2) on peripheral blood mononuclear cells (PBMCs) was analysed by flow cytometry and interleukin 6 (IL-6) generation by ELISA. Patients with RA had elevated but variable surface expression of PAR(2) on CD14+ monocytes compared with control subjects (median (1st to 3rd quartiles) 1.76% (0.86-4.10%) vs 0.06% (0.03-0.81%), p<0.0001). CD3+ T cells showed a similar pattern with significantly higher PAR(2) expression in patients with RA compared with controls (3.05% (0.36-11.82%) vs 0.08% (0.02-0.28%), p<0.0001). For both subsets, PAR(2) expression was significantly higher (p<0.00001) in patients with high levels of disease activity: PAR(2) expression for both CD14+ and CD3+ cells correlated to C reactive protein and erythrocyte sedimentation rate. Furthermore, in a cohort of patients with newly diagnosed RA, elevated PAR(2) expression in both CD14+ and CD3+ cells was significantly reduced 3 months after methotrexate or sulfasalazine treatment and this reduction correlated significantly with the reduction in the 28-joint Disease Activity Scale score (p<0.05). PAR(2) expression on cells from patients with OA was low, similar to levels seen in control subjects. Generation of IL-6 by monocytes in response to a selective PAR(2) agonist was significantly greater in patients with RA than in patients with OA and control subjects (p<0.05). These findings are consistent with a pathogenic role for PAR(2) in RA.

  20. PAR2 expression in peripheral blood monocytes of patients with rheumatoid arthritis

    PubMed Central

    Crilly, A; Burns, E; Nickdel, M B; Lockhart, J C; Perry, M E; Ferrell, P W; Baxter, D; Dale, J; Dunning, L; Wilson, H; Nijjar, J S; Gracie, J A; Ferrell, W R; McInnes, I B

    2012-01-01

    Objectives Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by serine proteinases with proinflammatory activity. A study was undertaken to investigate the presence and functional significance of PAR2 expression on rheumatoid arthritis (RA)-derived leucocyte subsets. Methods Venous blood was obtained from patients with RA and osteoarthritis (OA) as well as healthy control subjects. Surface expression of PAR2 on peripheral blood mononuclear cells (PBMCs) was analysed by flow cytometry and interleukin 6 (IL-6) generation by ELISA. Results Patients with RA had elevated but variable surface expression of PAR2 on CD14+ monocytes compared with control subjects (median (1st to 3rd quartiles) 1.76% (0.86–4.10%) vs 0.06% (0.03–0.81%), p<0.0001). CD3+ T cells showed a similar pattern with significantly higher PAR2 expression in patients with RA compared with controls (3.05% (0.36–11.82%) vs 0.08% (0.02–0.28%), p<0.0001). For both subsets, PAR2 expression was significantly higher (p<0.00001) in patients with high levels of disease activity: PAR2 expression for both CD14+ and CD3+ cells correlated to C reactive protein and erythrocyte sedimentation rate. Furthermore, in a cohort of patients with newly diagnosed RA, elevated PAR2 expression in both CD14+ and CD3+ cells was significantly reduced 3 months after methotrexate or sulfasalazine treatment and this reduction correlated significantly with the reduction in the 28-joint Disease Activity Scale score (p<0.05). PAR2 expression on cells from patients with OA was low, similar to levels seen in control subjects. Generation of IL-6 by monocytes in response to a selective PAR2 agonist was significantly greater in patients with RA than in patients with OA and control subjects (p<0.05). Conclusions These findings are consistent with a pathogenic role for PAR2 in RA. PMID:22294633

  1. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation

    PubMed Central

    McLeod, Brett N.; Allison-Gamble, Gina E.; Barge, Madhuri T.; Tonthat, Nam K.; Schumacher, Maria A.; Hayes, Finbarr

    2017-01-01

    Abstract Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells. PMID:28034957

  2. Croissance epitaxiale de GaAs sur substrats de Ge par epitaxie par faisceaux chimiques

    NASA Astrophysics Data System (ADS)

    Belanger, Simon

    La situation energetique et les enjeux environnementaux auxquels la societe est confrontee entrainent un interet grandissant pour la production d'electricite a partir de l'energie solaire. Parmi les technologies actuellement disponibles, la filiere du photovoltaique a concentrateur solaire (CPV pour concentrator photovoltaics) possede un rendement superieur et mi potentiel interessant a condition que ses couts de production soient competitifs. La methode d'epitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possede plusieurs caracteristiques qui la rendent interessante pour la production a grande echelle de cellules photovoltaiques a jonctions multiples a base de semi-conducteurs III-V. Ce type de cellule possede la meilleure efficacite atteinte a ce jour et est utilise sur les satellites et les systemes photovoltaiques a concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacite d'utilisation des materiaux source qui est superieur a celui de la technique d'epitaxie qui est couramment utilisee pour la production a grande echelle de ces cellules. Ce memoire de maitrise presente les travaux effectues dans le but d'evaluer le potentiel de la technique CBE pour realiser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la premiere etape de fabrication de nombreux modeles de cellules solaires a haute performance decrites plus haut. La realisation de ce projet a necessite le developpement d'un procede de preparation de surface pour les substrats de germanium, la realisation de nombreuses sceances de croissance epitaxiale et la caracterisation des materiaux obtenus par microscopie optique, microscopie a force atomique (AFM), diffraction des rayons-X a haute resolution (HRXRD), microscopie electronique a transmission (TEM), photoluminescence a basse temperature (LTPL) et spectrometrie de masse des ions secondaires (SIMS). Les experiences ont permis

  3. Effect of Par Frying on Composition and Texture of Breaded and Battered Catfish

    PubMed Central

    Woods, Kristin; Lea, Jeanne M.; Brashear, Suzanne S.; Boue, Stephen M.; Daigle, Kim W.; Bett-Garber, Karen L.

    2018-01-01

    Catfish is often consumed as a breaded and battered fried product; however, there is increasing interest in breaded and battered baked products as a healthier alternative. Par frying can improve the texture properties of breaded and battered baked products, but there are concerns about the increase in lipid uptake from par frying. The objective of this study was to examine the effect of different batters (rice, corn, and wheat) and the effect of par frying on the composition and texture properties of baked catfish. Catfish fillets were cut strips and then coated with batters, which had similar viscosities. Half of the strips were par fried in 177 °C vegetable oil for 1 min and the other half were not par fried. Samples were baked at 177 °C for 25 min. Analysis included % batter adhesion, cooking loss, protein, lipid, ash, and moisture, plus hardness and fracture quality measured using a texture analyzer. A trained sensory panel evaluated both breading and flesh texture attributes. Results found the lipid content of par fried treatments were significantly higher for both corn and wheat batters than for non-par fried treatments. Sensory analysis indicated that the texture of the coatings in the par fried treatments were significantly greater for hardness attributes. Fillet flakiness was significantly greater in the par fried treatments and corn-based batters had moister fillet strips compared to the wheat flour batters. Texture analyzer hardness values were higher for the par fried treatments. PMID:29570660

  4. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties.

    PubMed

    Mollahosseini, Arash; Rahimpour, Ahmad

    2013-01-01

    A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP-MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.

  5. Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA

    PubMed Central

    Minnen, Anita; Bürmann, Frank; Wilhelm, Larissa; Anchimiuk, Anna; Diebold-Durand, Marie-Laure; Gruber, Stephan

    2016-01-01

    Summary Smc/ScpAB promotes chromosome segregation in prokaryotes, presumably by compacting and resolving nascent sister chromosomes. The underlying mechanisms, however, are poorly understood. Here, we investigate the role of the Smc ATPase activity in the recruitment of Smc/ScpAB to the Bacillus subtilis chromosome. We demonstrate that targeting of Smc/ScpAB to ParB/parS loading sites is strictly dependent on engagement of Smc head domains and relies on an open organization of the Smc coiled coils. We find that dimerization of the Smc hinge domain stabilizes closed Smc rods and hinders head engagement as well as chromosomal targeting. Conversely, the ScpAB sub-complex promotes head engagement and Smc rod opening and thereby facilitates recruitment of Smc to parS sites. Upon ATP hydrolysis, Smc/ScpAB is released from loading sites and relocates within the chromosome—presumably through translocation along DNA double helices. Our findings define an intermediate state in the process of chromosome organization by Smc. PMID:26904953

  6. ParTIES: a toolbox for Paramecium interspersed DNA elimination studies.

    PubMed

    Denby Wilkes, Cyril; Arnaiz, Olivier; Sperling, Linda

    2016-02-15

    Developmental DNA elimination occurs in a wide variety of multicellular organisms, but ciliates are the only single-celled eukaryotes in which this phenomenon has been reported. Despite considerable interest in ciliates as models for DNA elimination, no standard methods for identification and characterization of the eliminated sequences are currently available. We present the Paramecium Toolbox for Interspersed DNA Elimination Studies (ParTIES), designed for Paramecium species, that (i) identifies eliminated sequences, (ii) measures their presence in a sequencing sample and (iii) detects rare elimination polymorphisms. ParTIES is multi-threaded Perl software available at https://github.com/oarnaiz/ParTIES. ParTIES is distributed under the GNU General Public Licence v3. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Fractionation of yeast extract by nanofiltration process to assess key compounds involved in CHO cell culture improvement.

    PubMed

    Mosser, Mathilde; Kapel, Romain; Chevalot, Isabelle; Olmos, Eric; Marc, Ivan; Marc, Annie; Oriol, Eric

    2015-01-01

    Yeast extract (YE) is known to greatly enhance mammalian cell culture performances, but its undefined composition decreases process reliability. Accordingly, in the present study, the nature of YE compounds involved in the improvement of recombinant CHO cell growth and IgG production was investigated. First, the benefits of YE were verified, revealing that it increased maximal concentrations of viable cells and IgG up to 73 and 60%, respectively compared to a reference culture. Then, the analyses of YE composition highlighted the presence of molecules such as amino acids, vitamins, salts, nucleobase, and glucose that were contained in reference medium, while others including peptides, trehalose, polysaccharides, and nucleic acids were not. Consequently, YE was fractionated by a nanofiltration process to deeper evaluate its effects on CHO cell cultures. The YE molecules already contained in reference medium were mainly isolated in the permeate fraction together with trehalose and short peptides, while other molecules were concentrated in the retentate. Permeate, which was free of macromolecules, exhibited a similar positive effect than raw YE on maximal concentrations. Additional studies on cell energetic metabolism underlined that dipeptides and tripeptides in permeate were used as an efficient source of nitrogenous substrates. © 2015 American Institute of Chemical Engineers.

  8. Improved separation and antifouling properties of thin-film composite nanofiltration membrane by the incorporation of cGO

    NASA Astrophysics Data System (ADS)

    Li, Hongbin; Shi, Wenying; Du, Qiyun; Zhou, Rong; Zhang, Haixia; Qin, Xiaohong

    2017-06-01

    Poly(piperazine amide) composite nanofiltration (NF) membranes were modified through the incorporation of carboxylated graphene oxide (cGO) in the polyamide layer during the interfacial polymerization (IP) process on the polysulfone (PSF)/nonwoven fabric (NWF) ultrafiltration (UF) substrate membrane surface. The composition and morphology of the prepared NF membrane surface were determined by means of ATR-FTIR, SEM-EDX and AFM. The effects of cGO contents on membrane hydrophilicity, separation performance and antifouling properties were investigated through Water Contact Angle (WCA) analysis, the permeance and three-cycle fouling measurements. The growth model of cGO-incorporated polyamide thin-film was proposed. Compared to the original NF membranes, the surface hydrophilicity, water permeability, salt rejection and antifouling properties of the cGO-incorporated NF membrane had all improved. When cGO content was 100 ppm, the MgSO4 rejection of composite NF membrane reached a maximum value of 99.2% meanwhile membrane obtained an obvious enhanced water flux (81.6 L m-2 h-1, at 0.7 MPa) which was nearly three times compared to the virginal NF membrane. The cGO-incorporated NF membrane showed an excellent selectivity of MgSO4 and NaCl with the rejection ratio of MgSO4/NaCl of approximately 8.0.

  9. View from west to east of PAR site resident engineer's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from west to east of PAR site resident engineer's office building (REOB) - Stanley R. Mickelsen Safeguard Complex, Resident Engineers Office Building, Southeast of intersection of PAR Access Road & Fourth Avenue, Nekoma, Cavalier County, ND

  10. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  11. The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration.

    PubMed

    Comerton, Anna M; Andrews, Robert C; Bagley, David M

    2009-02-01

    The impact of natural organic matter (NOM) and cations on the rejection of five endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs) (acetaminophen, carbamazepine, estrone, gemfibrozil, oxybenzone) by nanofiltration (NF) was examined. The water matrices included membrane bioreactor (MBR) effluent, Lake Ontario water and laboratory-prepared waters modelled to represent the characteristics of the Lake Ontario water. The impact of cations in natural waters on compound rejection was also examined by doubling the natural cation concentration (calcium, magnesium, sodium) in both the Lake Ontario water and the MBR effluent. The presence of Suwannee River NOM spiked into laboratory-grade water was found to cause an increase in compound NF rejection. In addition, the presence of cations alone in laboratory-grade water did not have a significant impact on rejection with the exception of the polar compound gemfibrozil. However, when cation concentration in natural waters was increased, a significant decrease in the rejection of EDCs and PhACs was observed. This suggests that the presence of cations may result in a reduction in the association of EDCs and PhACs with NOM.

  12. Estimating Photosynthetically Available Radiation (PAR) at the Earth's surface from satellite observations

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Current satellite algorithms to estimate photosynthetically available radiation (PAR) at the earth' s surface are reviewed. PAR is deduced either from an insolation estimate or obtained directly from top-of-atmosphere solar radiances. The characteristics of both approaches are contrasted and typical results are presented. The inaccuracies reported, about 10 percent and 6 percent on daily and monthly time scales, respectively, are useful to model oceanic and terrestrial primary productivity. At those time scales variability due to clouds in the ratio of PAR and insolation is reduced, making it possible to deduce PAR directly from insolation climatologies (satellite or other) that are currently available or being produced. Improvements, however, are needed in conditions of broken cloudiness and over ice/snow. If not addressed properly, calibration/validation issues may prevent quantitative use of the PAR estimates in studies of climatic change. The prospects are good for an accurate, long-term climatology of PAR over the globe.

  13. ParCAT: A Parallel Climate Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Haugen, B.; Smith, B.; Steed, C.; Ricciuto, D. M.; Thornton, P. E.; Shipman, G.

    2012-12-01

    Climate science has employed increasingly complex models and simulations to analyze the past and predict the future of our climate. The size and dimensionality of climate simulation data has been growing with the complexity of the models. This growth in data is creating a widening gap between the data being produced and the tools necessary to analyze large, high dimensional data sets. With single run data sets increasing into 10's, 100's and even 1000's of gigabytes, parallel computing tools are becoming a necessity in order to analyze and compare climate simulation data. The Parallel Climate Analysis Toolkit (ParCAT) provides basic tools that efficiently use parallel computing techniques to narrow the gap between data set size and analysis tools. ParCAT was created as a collaborative effort between climate scientists and computer scientists in order to provide efficient parallel implementations of the computing tools that are of use to climate scientists. Some of the basic functionalities included in the toolkit are the ability to compute spatio-temporal means and variances, differences between two runs and histograms of the values in a data set. ParCAT is designed to facilitate the "heavy lifting" that is required for large, multidimensional data sets. The toolkit does not focus on performing the final visualizations and presentation of results but rather, reducing large data sets to smaller, more manageable summaries. The output from ParCAT is provided in commonly used file formats (NetCDF, CSV, ASCII) to allow for simple integration with other tools. The toolkit is currently implemented as a command line utility, but will likely also provide a C library for developers interested in tighter software integration. Elements of the toolkit are already being incorporated into projects such as UV-CDAT and CMDX. There is also an effort underway to implement portions of the CCSM Land Model Diagnostics package using ParCAT in conjunction with Python and gnuplot. Par

  14. A three-dimensional ParF meshwork assembles through the nucleoid to mediate plasmid segregation.

    PubMed

    McLeod, Brett N; Allison-Gamble, Gina E; Barge, Madhuri T; Tonthat, Nam K; Schumacher, Maria A; Hayes, Finbarr; Barillà, Daniela

    2017-04-07

    Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Effects of silenced PAR-2 on cell proliferation, invasion and metastasis of esophageal cancer.

    PubMed

    Chen, Jinmei; Xie, Liqun; Zheng, Yanmin; Liu, Caihong

    2017-10-01

    The present study aimed to investigate the effect of protease-activated receptor 2 (PAR-2) on cell proliferation, invasion and metastasis in the esophageal EC109 cell line. Two short hairpin RNA (shRNA) expression plasmids were constructed based on the PAR-2 mRNA sequence in humans, and they were transfected into the EC109 esophageal cancer cell line, and the stable interference cell line (shRNA-PAR-2 EC109) was obtained by puromycin selection. Following transfection of PAR-2 shRNA-1, PAR-2 expression was significantly downregulated in mRNA level and protein level in EC109 cells (P<0.05). The proliferation of EC109 cells transfected with PAR-2 shRNA was significantly lower than the negative control group (P<0.05). At 24, 48 and 72 h, the ratio of proliferation inhibition was 15.92, 24.89 and 32.28%, respectively. Compared with the control group, S-phase arrest was observed in cells transfected with shRNA-PAR-2. The ratio of cells in the S phase was 32.79±4.06, 26.54±1.37 and 33.45±2.46% at 24, 48 and 72 h, respectively. For invasion, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.05). For metastasis assay, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.01). In the present study, the PAR-2 shRNA plasmid was constructed successfully, which can significantly downregulate PAR-2 expression in EC109 cells. Subsequent to silencing of PAR-2, the proliferation of EC109 cells was inhibited and the capabilities of invasion and migration were reduced. It is indicated that PAR-2 may be a potential target in esophageal cancer.

  16. Paternal age related schizophrenia (PARS): Latent subgroups detected by k-means clustering analysis.

    PubMed

    Lee, Hyejoo; Malaspina, Dolores; Ahn, Hongshik; Perrin, Mary; Opler, Mark G; Kleinhaus, Karine; Harlap, Susan; Goetz, Raymond; Antonius, Daniel

    2011-05-01

    Paternal age related schizophrenia (PARS) has been proposed as a subgroup of schizophrenia with distinct etiology, pathophysiology and symptoms. This study uses a k-means clustering analysis approach to generate hypotheses about differences between PARS and other cases of schizophrenia. We studied PARS (operationally defined as not having any family history of schizophrenia among first and second-degree relatives and fathers' age at birth ≥ 35 years) in a series of schizophrenia cases recruited from a research unit. Data were available on demographic variables, symptoms (Positive and Negative Syndrome Scale; PANSS), cognitive tests (Wechsler Adult Intelligence Scale-Revised; WAIS-R) and olfaction (University of Pennsylvania Smell Identification Test; UPSIT). We conducted a series of k-means clustering analyses to identify clusters of cases containing high concentrations of PARS. Two analyses generated clusters with high concentrations of PARS cases. The first analysis (N=136; PARS=34) revealed a cluster containing 83% PARS cases, in which the patients showed a significant discrepancy between verbal and performance intelligence. The mean paternal and maternal ages were 41 and 33, respectively. The second analysis (N=123; PARS=30) revealed a cluster containing 71% PARS cases, of which 93% were females; the mean age of onset of psychosis, at 17.2, was significantly early. These results strengthen the evidence that PARS cases differ from other patients with schizophrenia. Hypothesis-generating findings suggest that features of PARS may include a discrepancy between verbal and performance intelligence, and in females, an early age of onset. These findings provide a rationale for separating these phenotypes from others in future clinical, genetic and pathophysiologic studies of schizophrenia and in considering responses to treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Par Pond vegetation status Summer 1995 -- June survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-06-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments havemore » been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned.« less

  18. Provenance of the oil in par-fried French fries after finish frying.

    PubMed

    Al-Khusaibi, Mohammed; Gordon, Michael H; Lovegrove, Julie A; Niranjan, Keshavan

    2012-01-01

    Frozen par-fried French fries are finish-fried either by using the same type of oil used for par frying, or a different type. The nutritive quality of the final oil contained in the product depends on the relative amounts and the fatty acid (FA) composition of the oils used for par frying and finish frying. With the aim of understanding the provenance of the oil in the final product, par-fried French fries-either purchased ready or prepared in the laboratory-were finish fried in oils different from the ones used for par frying. The moisture content, oil content, and FA compositions of the par-fried and finish-fried products were experimentally determined, and the relative amounts of each of the oils present in the final product were calculated using the FAs as markers and undertaking a mass balance on each component FA. The results demonstrate that 89% to 93% of the total oil in the final product originates from the finish-frying step. The study also shows that a significant proportion of the oil absorbed during par frying is expelled from the product during finish frying. Further, the expulsion of par-frying oil was found to occur in the early stages of the finish-frying step. Experiments involving different combinations of par-frying and finish-frying oils showed that the relative proportions of the 2 oils did not depend on the individual fatty acid profiles. This study concludes that any positive health benefits of using an oil having a favorable FA profile for par frying, can potentially be lost, if the oil used for finish frying has a less favorable composition. This paper estimates the relative amounts of oil in French fries that have been fried in 2 stages-a par-frying step and a finish-frying step-which is commonly practiced in food service establishments as well as homes. The 2 key conclusions are: (1) nearly 90% of the oil content of the final product is the one used for finish frying; that is, a processor may use very good oil for par frying but if the

  19. [Four-port pars plana vitrectomy for severe proliferative diabetic retinopathy].

    PubMed

    Wei, Wen-bin; Yang, Qiong; Mo, Jing; Zhou, Dan

    2008-01-01

    To investigate the 4-port pars plana vitrectomy in eyes with severe proliferative diabetic retinopathy (PDR). It was a case-control study. Twenty-eight eyes in 27 patients with extensive fibrovascular proliferation associated with PDR were retrospectively collected, who were undergone 4-port pars plana vitreous surgery with bimanual manipulation techniques, such as membrane dissections and enbloc membranectomy. The control group consisted of 30 eyes in 30 patients with PDR which were undergone 3-port pars plana vitrectomy by the same surgeon. Twenty-eight eyes were undergone membrane dissection and enbloc membranectomy smoothly during 4-port pars plana vitrectomy, 2 iatrogenic holes occurred in 1 eye. During the follow up 7 months to 4.5 years, the retina was fully attached in all eyes, visual acuity had improved except 1 eye which complicated with neovascular glaucoma. In the control group, membranes partially remained in 2 eyes, 4 iatrogenic holes appeared in 3 eyes, neovascular glaucoma occurred in 3 eyes, the retina was reattached during the follow-up time from 12 to 34 months. For severe proliferative diabetic retinopathy, the 4-port pars plana vitrectomy with bimanual manipulations of membrane peeling is safe and efficiency.

  20. Reconstruction d’une Carbonisation du Pouce par Lambeau Chinois

    PubMed Central

    Khales, A.; Achbouk, J.A.; Moussaoui, A.; Belmir, R.; Tourabi, K.; Oufkir, A.; Ihrai, H.

    2010-01-01

    Summary La main en tant qu’organe majeur de la préhension peut être le siège de brûlures graves qui compromettent sa fonction. Bien qu’elle ne représente que 2% de la surface corporelle la brûlure de la main est grave et difficile à traiter, vu la vulnérabilité et la complexité de son appareil locomoteur. Nous rapportons dans ce travail le cas d’un patient victime d’une carbonisation de la main. Huit mois après le parage et la couverture par lambeau inguinal, le patient bénéficie d’une reconstruction du pouce par lambeau chinois associé à une greffe osseuse. Le résultat s’est avéré satisfaisant. Le lambeau chinois prouve par son apport vasculaire et par sa facilité technique qu’il est un moyen très intéressant dans la reconstruction du pouce - ou des doigts en général - surtout dans un contexte de brûlure. PMID:21991226

  1. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia

    PubMed Central

    Naeser, Margaret A.; Martin, Paula I.; Theoret, Hugo; Kobayashi, Masahito; Fregni, Felipe; Nicholas, Marjorie; Tormos, Jose M.; Steven, Megan S.; Baker, Errol H.; Pascual-Leone, Alvaro

    2011-01-01

    This study sought to discover if an optimum 1 cm2 area in the non-damaged right hemisphere (RH) was present, which could temporarily improve naming in chronic, nonfluent aphasia patients when suppressed with repetitive transcranial magnetic stimulation (rTMS). Ten minutes of slow, 1 Hz rTMS was applied to suppress different RH ROIs in eight aphasia cases. Picture naming and response time (RT) were examined before, and immediately after rTMS. In aphasia patients, suppression of right pars triangularis (PTr) led to significant increase in pictures named, and significant decrease in RT. Suppression of right pars opercularis (POp), however, led to significant increase in RT, but no change in number of pictures named. Eight normals named all pictures correctly; similar to aphasia patients, RT significantly decreased following rTMS to suppress right PTr, versus right POp. Differential effects following suppression of right PTr versus right POp suggest different functional roles for these regions. PMID:21864891

  2. Effects of silenced PAR-2 on cell proliferation, invasion and metastasis of esophageal cancer

    PubMed Central

    Chen, Jinmei; Xie, Liqun; Zheng, Yanmin; Liu, Caihong

    2017-01-01

    The present study aimed to investigate the effect of protease-activated receptor 2 (PAR-2) on cell proliferation, invasion and metastasis in the esophageal EC109 cell line. Two short hairpin RNA (shRNA) expression plasmids were constructed based on the PAR-2 mRNA sequence in humans, and they were transfected into the EC109 esophageal cancer cell line, and the stable interference cell line (shRNA-PAR-2 EC109) was obtained by puromycin selection. Following transfection of PAR-2 shRNA-1, PAR-2 expression was significantly downregulated in mRNA level and protein level in EC109 cells (P<0.05). The proliferation of EC109 cells transfected with PAR-2 shRNA was significantly lower than the negative control group (P<0.05). At 24, 48 and 72 h, the ratio of proliferation inhibition was 15.92, 24.89 and 32.28%, respectively. Compared with the control group, S-phase arrest was observed in cells transfected with shRNA-PAR-2. The ratio of cells in the S phase was 32.79±4.06, 26.54±1.37 and 33.45±2.46% at 24, 48 and 72 h, respectively. For invasion, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.05). For metastasis assay, the number of invasive cells was significantly lower in shRNA-PAR2-2 cells compared with the control group (P<0.01). In the present study, the PAR-2 shRNA plasmid was constructed successfully, which can significantly downregulate PAR-2 expression in EC109 cells. Subsequent to silencing of PAR-2, the proliferation of EC109 cells was inhibited and the capabilities of invasion and migration were reduced. It is indicated that PAR-2 may be a potential target in esophageal cancer. PMID:28943918

  3. Identification of a New Epitope in uPAR as a Target for the Cancer Therapeutic Monoclonal Antibody ATN-658, a Structural Homolog of the uPAR Binding Integrin CD11b (αM)

    PubMed Central

    Wei, Ying; Donate, Fernando; Juarez, Jose; Parry, Graham; Chen, Liqing; Meehan, Edward J.; Ahn, Richard W.; Ugolkov, Andrey; Dubrovskyi, Oleksii; O'Halloran, Thomas V.; Huang, Mingdong; Mazar, Andrew P.

    2014-01-01

    The urokinase plasminogen activator receptor (uPAR) plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin) to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268–275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR) regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM), a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR. PMID:24465541

  4. Plasmid partition system of the P1par family from the pWR100 virulence plasmid of Shigella flexneri.

    PubMed

    Sergueev, Kirill; Dabrazhynetskaya, Alena; Austin, Stuart

    2005-05-01

    P1par family members promote the active segregation of a variety of plasmids and plasmid prophages in gram-negative bacteria. Each has genes for ParA and ParB proteins, followed by a parS partition site. The large virulence plasmid pWR100 of Shigella flexneri contains a new P1par family member: pWR100par. Although typical parA and parB genes are present, the putative pWR100parS site is atypical in sequence and organization. However, pWR100parS promoted accurate plasmid partition in Escherichia coli when the pWR100 Par proteins were supplied. Unique BoxB hexamer motifs within parS define species specificities among previously described family members. Although substantially different from P1parS from the P1 plasmid prophage of E. coli, pWR100parS has the same BoxB sequence. As predicted, the species specificity of the two types proved identical. They also shared partition-mediated incompatibility, consistent with the proposed mechanistic link between incompatibility and species specificity. Among several informative sequence differences between pWR100parS and P1parS is the presence of a 21-bp insert at the center of the pWR100parS site. Deletion of this insert left much of the parS activity intact. Tolerance of central inserts with integral numbers of helical DNA turns reflects the critical topology of these sites, which are bent by binding the host IHF protein.

  5. Expression of proteinase-activated receptor (PAR)-2 in monocytes from allergic patients and potential molecular mechanism.

    PubMed

    Ge, Shuqing; Li, Tao; Yao, Qijian; Yan, Hongling; Huiyun, Zhang; Zheng, Yanshan; Zhang, Bin; He, Shaoheng

    2016-12-01

    Serine proteases play an important role in inflammation via PARs. However, little is known of expression levels of PARs on monocytes of allergic patients, and influence of serine proteases and PARs on TNF-α secretion from monocytes. Using quantitative real-time PCR (qPCR) and flowcytometry techniques, we observed that the expression level of PAR-2 in monocytes of patients with allergic rhinitis and asthma was increased by 42.9 and 38.2 %. It was found that trypsin, thrombin, and tryptase induced up to 200, 320, and 310 % increase in TNF-α release from monocytes at 16 h, respectively. PAR-1 agonist peptide, SFLLR-NH 2 , and PAR-2 agonist peptide tc-LIGRLO-NH 2 provoked up to 210 and 240 % increase in release of TNF-α. Since SCH 79797, a PAR-1 antagonist, and PD98059, an inhibitor of ERK inhibited thrombin- and SFLLR-NH 2 -induced TNF-α release, the action of thrombin is most likely through a PAR-1- and ERK-mediated signaling mechanism. Similarly, because FSLLRN-NH 2 , an inhibitor of PAR-2 diminished tryptase- and tc-LIGRLO-NH 2 -induced TNF-α release, the action of tryptase appears PAR-2 dependent. Moreover, in vivo study showed that both recombinant cockroach major allergens Per a 1 and Per a 7 provoked upregulation of PAR-2 and PAR-1 expression on CD14+ cells in OVA-sensitized mouse peritoneum. In conclusion, increased expression of PAR-2 in monocytes of AR and asthma implicates that PAR-2 likely play a role in allergy. PAR-2- and PAR-1-mediated TNF-α release from monocytes suggests that these unique protease receptors are involved in the pathogenesis of inflammation.

  6. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling

    PubMed Central

    Gur-Cohen, Shiri; Kollet, Orit; Graf, Claudine; Esmon, Charles T.; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/PAR1 signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR+ LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NOlow LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling which overcomes BM EPCR+ LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production. PMID:26928241

  7. Traumatismes Oculaires par Petards: Bilan sur Trois Annees

    PubMed Central

    Zouaoui-Kesraoui, N.; Derdour, A.

    2009-01-01

    Summary Les accidents dus aux pétards sont des accidents graves. Leur recrudescence ces dernières années en Algérie, essentiellement durant les fêtes du Mawlid Ennabaoui (fête de la naissance du prophète), mérite à notre sens d'entreprendre des bilans exhaustifs dont celui-ci dans le but d'une sensibilisation de toutes les compétences concernées. Nous avons réuni sur trois années consécutives (2002, 2003, 2004) 60 dossiers de malades ayant subi des accidents oculaires par pétards. Nos patients sont répartis en 42 consultations pour blessures légères et 18 hospitalisations pour blessures graves. Parmi ces derniers, neuf ont présenté des complications et séquelles graves (cinq cas de cécité par atrophie du globe oculaire, trois cas de cécité cornéenne et un cas de cécité par trou maculaire). Dans tous ces cas l'incapacité permanente partielle est au minimum de 30%. Au vu de ces données nous proposons des mesures d'éducation sanitaire et une sensibilisation du grand public aux traumatismes oculaires, par le biais de mé dias appropriés: radio, télévision, affiches. PMID:21991157

  8. PAR-1/MARK: a kinase essential for maintaining the dynamic state of microtubules.

    PubMed

    Hayashi, Kenji; Suzuki, Atsushi; Ohno, Shigeo

    2012-01-01

    The serine/threonine kinase, PAR-1, is an essential component of the evolutionary-conserved polarity-regulating system, PAR-aPKC system, which plays indispensable roles in establishing asymmetric protein distributions and cell polarity in various biological contexts (Suzuki, A. and Ohno, S. (2006). J. Cell Sci., 119: 979-987; Matenia, D. and Mandelkow, E.M. (2009). Trends Biochem. Sci., 34: 332-342). PAR-1 is also known as MARK, which phosphorylates classical microtubule-associated proteins (MAPs) and detaches MAPs from microtubules (Matenia, D. and Mandelkow, E.M. (2009). Trends Biochem. Sci., 34: 332-342). This MARK activity of PAR-1 suggests its role in microtubule (MT) dynamics, but surprisingly, only few studies have been carried out to address this issue. Here, we summarize our recent study on live imaging analysis of MT dynamics in PAR-1b-depleted cells, which clearly demonstrated the positive role of PAR-1b in maintaining MT dynamics (Hayashi, K., Suzuki, A., Hirai, S., Kurihara, Y., Hoogenraad, C.C., and Ohno, S. (2011). J. Neurosci., 31: 12094-12103). Importantly, our results further revealed the novel physiological function of PAR-1b in maintaining dendritic spine morphology in mature neurons.

  9. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  10. Par3L enhances colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Taiyuan; Liu, Dongning; Lei, Xiong

    Partitioning defective 3-like protein (Par3L) is a recently identified cell polarity protein that plays an important role in mammary stem cell maintenance. Previously, we showed that high expression of Par3L is associated with poor survival in malignant colorectal cancer (CRC), but the underlying mechanism remained unknown. To this end, we established a Par3L knockout colorectal cancer cell line using the CRISPR/Cas system. Interestingly, reduced proliferation, enhanced cell death and caspase-3 activation were observed in Par3L knockout (KO) cells as compared with wildtype (WT) cells. Consistent with previous studies, we showed that Par3L interacts with a tumor suppressor protein liver kinasemore » B1 (Lkb1). Moreover, Par3L depletion resulted in abnormal activation of Lkb1/AMPK signaling cascade. Knockdown of Lkb1 in these cells could significantly reduce AMPK activity and partially rescue cell death caused by Par3L knockdown. Furthermore, we showed that Par3L KO cells were more sensitive to chemotherapies and irradiation. Together, these results suggest that Par3L is essential for colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway, and is a putative therapeutic target for CRC. - Highlights: • Par3L knockout using the CRISPR/Cas system induces apoptosis in colorectal cancer cells. • Par3L interacts with Lkb1 and regulates the activity of AMPK signaling cascade. • Par3L knockout cells are more sensitive to treatment of different chemotherapy drugs and irradiation.« less

  11. Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kang, Hui; Shi, Jie; Liu, Liyan; Shan, Mingjing; Xu, Zhiwei; Li, Nan; Li, Jing; Lv, Hanming; Qian, Xiaoming; Zhao, Lihuan

    2018-01-01

    To tune interlayer spacing, regulate water channel and improve stability of composite membrane, graphene oxide (GO) and oxidized carbon nanotubes (OCNTs) were assembled alternately to form sandwich morphology on a polyacrylonitrile substrate by layer-by-layer self-assembly technique. Polyelectrolyte played a part in cross-linking between GO and OCNTs. The effects about concentration ratio of GO and OCNTs on nanofiltration performance were investigated in detail. The composite membrane was used for dye rejection. When composite membrane with concentration ratio of GO and OCNTs was 10:1, water flux and rejection rate for methyl blue reached 21.71 L/(m2 h) and 99.3%, respectively. Meanwhile, this composite membrane had higher flux compared with reported literatures in which rejection also reached up to 99%. When concentration ratio of composite membranes about GO and OCNTs were 10:1 and 15:1, dye rejection for methyl blue remained 99.3% and 99.6% respectively after operating time of 50 h. Irreversible fouling ratio of composite membrane in a concentration ratio of 10:1 was only 4.4%, indicating that composite membrane had excellent antifouling performance for Bovine Serum Albumin. It was speculated that proper distribution of OCNTs in the sandwich morphology formed proper support points and water channels which benefited for a more stable performance.

  12. Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration

    PubMed Central

    Williams, Julie C.; Lee, Rebecca D.; Doerschuk, Claire M.; Mackman, Nigel

    2011-01-01

    Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages. PMID:22175012

  13. Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration.

    PubMed

    Williams, Julie C; Lee, Rebecca D; Doerschuk, Claire M; Mackman, Nigel

    2011-01-01

    Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.

  14. BOREAS RSS-10 TOMS Circumpolar One-Degree PAR Images

    NASA Technical Reports Server (NTRS)

    Dye, Dennis G.; Holben, Brent; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-10 team investigated the magnitude of daily, seasonal, and yearly variations of Photosynthetically Active Radiation (PAR) from ground and satellite observations. This data set contains satellite estimates of surface-incident PAR (400-700 nm, MJ/sq m) at one-degree spatial resolution. The spatial coverage is circumpolar from latitudes of 41 to 66 degrees north. The temporal coverage is from May through September for years 1979 through 1989. Eleven-year statistics are also provided: (1) mean, (2) standard deviation, and (3) coefficient of variation for 1979-89. The PAR estimates were derived from the global gridded ultraviolet reflectivity data product (average of 360, 380 nm) from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS). Image mask data are provided for identifying the boreal forest zone, and ocean/land and snow/ice-covered areas. The data are available as binary image format data files. The PAR data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  15. Étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES)

    NASA Astrophysics Data System (ADS)

    Rahmani, A.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Moutte, J.; Gruffat, J. J.; Zahry, F.

    2004-11-01

    Dans ce travail, nous présentons une étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES). Les résultats de la calibration des spectromètres à dispersion d'énergie, à excitation par sources radioactives (55Fe, 109Cd et 241Am) et à excitation secondaire (cible secondaire Mo et Cu) du Centre National pour l'Energie, les Sciences et les Techniques Nucléaires (CNESTEN, Rabat, Maroc) sur des échantillons étalons de références de l'Agence International de l'Energie Atomique (AIEA) et du Community Bureau of Référence (BCR) ont été comparés aux résultats d'analyse des mêmes échantillons étalons par la spectrométrie X à dispersion de longueur d'onde (WD-XRF) et par spectrométrie d'émission atomique à source plasma couplé par induction (ICP-AES) au département GENERIC du centre SPIN à l'Ecole des Mines de Saint-Etienne (France). Les trois techniques d'analyse utilisées donnent des résultats comparables pour le dosage des éléments majeurs, alors que pour les traces on note des déviations importantes à cause des effets de matrice qui sont difficiles à corriger dans le cas de la fluorescence X.

  16. PAR-2 triggers placenta-derived protease-induced altered VE-cadherin reorganization at endothelial junctions in preeclampsia.

    PubMed

    Gu, Y; Groome, L J; Alexander, J S; Wang, Y

    2012-10-01

    PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial-specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. PAR-2 triggers placenta-derived protease-induced altered VE-cadherin reorganization at endothelial junctions in preeclampsia

    PubMed Central

    Gu, Yang; Groome, Lynn J.; Alexander, J. Steven; Wang, Yuping

    2014-01-01

    PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP-induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. PMID:22840244

  18. Is There an "F" in Your PAR? Understanding, Teaching and Doing Action Research

    ERIC Educational Resources Information Center

    Lorenzetti, Liza; Walsh, Christine Ann

    2014-01-01

    Participatory Action Research (PAR) is increasingly recognized within academic research and pedagogy. What are the benefits of including feminism within participatory action research and teaching? In responding to this question, we discuss the similarities and salient differences between PAR and feminist informed PAR (FPAR). There are eight themes…

  19. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Shi, Wenxin; Zhang, Lanhe; Zhang, Ruijun

    2017-09-01

    A novel polyester thin film composite nanofiltration (NF) membrane was prepared by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) on polyethersulfone (PES) supporting membrane. The performance of the polyester composite NF membrane was optimized by regulating the preparation parameters, including reaction time, pH of the aqueous phase solution, pentaerythritol concentration and TMC concentration. A series of characterization, including permeation experiments, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential analyzer and chlorine resistance experiments, were employed to study the properties of the optimized membrane. The results showed that the optimized polyester composite NF membrane exhibited very high rejection of Na2SO4 (98.1%), but the water flux is relatively low (6.1 L/m2 h, 0.5 MPa, 25 °C). The order of salt rejections is Na2SO4 > MgSO4 > MgCl2 > NaCl, which indicated the membrane was negatively charged, just consistent with the membrane zeta potential results. After treating by NaClO solutions with different concentrations (100 ppm, 500 ppm, 1000 ppm, 2000 ppm, 3000 ppm) for 48 h, the results demonstrated that the polyester NF membrane had good chlorine resistance. Additionally, the polyester TFC NF membrane exhibits good long-term stability.

  20. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification.

    PubMed

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-14

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m(-2) h(-1) bar(-1). Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.

  1. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boosen, Meike; Vetterkind, Susanne; Koplin, Ansgar

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm andmore » is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.« less

  2. mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer.

    PubMed

    Hau, Andrew M; Leivo, Mariah Z; Gilder, Andrew S; Hu, Jing-Jing; Gonias, Steven L; Hansel, Donna E

    2017-01-01

    Mammalian target of rapamycin complex 2 (mTORC2) has been identified as a major regulator of bladder cancer cell migration and invasion. Upstream pathways that mediate mTORC2 activation remain poorly defined. Urokinase-type plasminogen activator receptor (uPAR) is a GPI-anchored membrane protein and known activator of cell-signaling. We identified increased uPAR expression in 94% of invasive human bladder cancers and in 54-71% of non-invasive bladder cancers, depending on grade. Normal urothelium was uPAR-immunonegative. Analysis of publicly available datasets identified uPAR gene amplification or mRNA upregulation in a subset of bladder cancer patients with reduced overall survival. Using biochemical approaches, we showed that uPAR activates mTORC2 in bladder cancer cells. Highly invasive bladder cancer cell lines, including T24, J82 and UM-UC-3 cells, showed increased uPAR mRNA expression and protein levels compared with the less aggressive cell lines, UROtsa and RT4. uPAR gene-silencing significantly reduced phosphorylation of Serine-473 in Akt, an mTORC2 target. uPAR gene-silencing also reduced bladder cancer cell migration and Matrigel invasion. S473 phosphorylation was observed by immunohistochemistry in human bladder cancers only when the tumors expressed high levels of uPAR. S473 phosphorylation was not controlled by uPAR in bladder cancer cell lines that are PTEN-negative; however, this result probably did not reflect altered mTORC2 regulation. Instead, PTEN deficiency de-repressed alternative kinases that phosphorylate S473. Our results suggest that uPAR and mTORC2 are components of a single cell-signaling pathway. Targeting uPAR or mTORC2 may be beneficial in patients with bladder cancer. Copyright © 2016. Published by Elsevier Inc.

  3. Tryptase activates isolated adult cardiac fibroblasts via protease activated receptor-2 (PAR-2).

    PubMed

    Murray, David B; McLarty-Williams, Jennifer; Nagalla, Krishna T; Janicki, Joseph S

    2012-03-01

    Protease activated receptor-2 (PAR-2) derived cycloxygenase-2 (COX-2) was recently implicated in a cardiac mast cell and fibroblast cross-talk signaling cascade mediating myocardial remodeling secondary to mechanical stress. We designed this study to investigate in vitro assays of isolated adult cardiac fibroblasts to determine whether binding of tryptase to the PAR-2 receptor on cardiac fibroblasts will lead to increased expression of COX-2 and subsequent formation of the arachodonic acid metabolite 15-d-Prostaglandin J(2) (15-d-PGJ(2)). The effects of tryptase (100 mU) and co-incubation with PAR-2 inhibitor peptide sequence FSLLRY-NH(2) (10(-6)M) on proliferation, hydroxyproline concentration, 15-d-PGJ(2) formation and PAR-2/COX-2 expression were investigated in fibroblasts isolated from 9 week old SD rats. Tryptase induced a significant increase in fibroproliferation, hydroxyproline, 15-d-PGJ(2) formation and PAR-2 expression which were markedly attenuated by FSLLRY. Tryptase-induced changes in cardiac fibroblast function utilize a PAR-2 dependent mechanism.

  4. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions

    PubMed Central

    Cunningham, Orla; Andolfo, Annapaola; Santovito, Maria Lisa; Iuzzolino, Lucia; Blasi, Francesco; Sidenius, Nicolai

    2003-01-01

    The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion. PMID:14609946

  5. The Role of PAR2 in TGF-β1-Induced ERK Activation and Cell Motility

    PubMed Central

    Ungefroren, Hendrik; Witte, David; Fiedler, Christian; Gädeken, Thomas; Kaufmann, Roland; Lehnert, Hendrik

    2017-01-01

    Background: Recently, the expression of proteinase-activated receptor 2 (PAR2) has been shown to be essential for activin receptor-like kinase 5 (ALK5)/SMAD-mediated signaling and cell migration by transforming growth factor (TGF)-β1. However, it is not known whether activation of non-SMAD TGF-β signaling (e.g., RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) signaling) is required for cell migration and whether it is also dependent on PAR2. Methods: RNA interference was used to deplete cells of PAR2, followed by xCELLigence technology to measure cell migration, phospho-immunoblotting to assess ERK1/2 activation, and co-immunoprecipitation to detect a PAR2–ALK5 physical interaction. Results: Inhibition of ERK signaling with the MEK inhibitor U0126 blunted the ability of TGF-β1 to induce migration in pancreatic cancer Panc1 cells. ERK activation in response to PAR2 agonistic peptide (PAR2–AP) was strong and rapid, while it was moderate and delayed in response to TGF-β1. Basal and TGF-β1-dependent ERK, but not SMAD activation, was blocked by U0126 in Panc1 and other cell types indicating that ERK activation is downstream or independent of SMAD signaling. Moreover, cellular depletion of PAR2 in HaCaT cells strongly inhibited TGF-β1-induced ERK activation, while the biased PAR2 agonist GB88 at 10 and 100 µM potentiated TGF-β1-dependent ERK activation and cell migration. Finally, we provide evidence for a physical interaction between PAR2 and ALK5. Our data show that both PAR2–AP- and TGF-β1-induced cell migration depend on ERK activation, that PAR2 expression is crucial for TGF-β1-induced ERK activation, and that the functional cooperation of PAR2 and TGF-β1 involves a physical interaction between PAR2 and ALK5. PMID:29261154

  6. The intracellular carboxyl tail of the PAR-2 receptor controls intracellular signaling and cell death.

    PubMed

    Zhu, Zhihui; Stricker, Rolf; Li, Rong yu; Zündorf, Gregor; Reiser, Georg

    2015-03-01

    The protease-activated receptors are a group of unique G protein-coupled receptors, including PAR-1, PAR-2, PAR-3 and PAR-4. PAR-2 is activated by multiple trypsin-like serine proteases, including trypsin, tryptase and coagulation proteases. The clusters of phosphorylation sites in the PAR-2 carboxyl tail are suggested to be important for the binding of adaptor proteins to initiate intracellular signaling to Ca(2+) and mitogen-activated protein kinases. To explore the functional role of PAR-2 carboxyl tail in controlling intracellular Ca(2+), ERK and AKT signaling, a series of truncated mutants containing different clusters of serines/threonines were generated and expressed in HEK293 cells. Firstly, we observed that lack of the complete C-terminus of PAR-2 in a mutated receptor gave a relatively low level of localization on the cell plasma membrane. Secondly, the shortened carboxyl tail containing 13 amino acids was sufficient for receptor internalization. Thirdly, the cells expressing truncation mutants showed deficits in their capacity to couple to intracellular Ca(2+) and ERK and AKT signaling upon trypsin challenge. In addition, HEK293 cells carrying different PAR-2 truncation mutants displayed decreased levels of cell survival after long-lasting trypsin stimulation. In summary, the PAR-2 carboxyl tail was found to control the receptor localization, internalization, intracellular Ca(2+) responses and signaling to ERK and AKT. The latter can be considered to be important for cell death control.

  7. PAR-2 mediates increased inflammatory cell adhesion and neointima formation following vascular injury in the mouse.

    PubMed

    Tennant, Gail M; Wadsworth, Roger M; Kennedy, Simon

    2008-05-01

    Activation of PAR-2 in the vasculature affects vascular tone and adhesion of leukocytes to the endothelium. Since adhesion of leukocytes is increased following vascular injury and is important in determining the extent of neointima formation, we hypothesised that mice lacking PAR-2 may have reduced neointima formation following vascular injury. PAR-2 activating peptides and trypsin induced endothelium-dependent relaxation of mouse carotid artery which was absent in the knockout mouse. Lack of a PAR-2 receptor did not affect lymphocyte adhesion under basal conditions, but reduced the contractile response produced by lymphocytes. Twenty-eight days after denuding injury, vessel contraction to lymphocytes was reduced in both strains while lymphocyte adhesion was significantly greater in PAR-2(+/+) mice compared to the PAR-2 knockout mice. Neointimal area was markedly reduced in the PAR-2 knockout mouse. Our data show that PAR-2 modulates inflammatory cell adhesion when stimulated and in mice lacking the PAR-2 receptor, adhesion to injured vessels is reduced with a consequent reduction in neointima formation.

  8. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination.

    PubMed

    Zhu, Yuzhang; Xie, Wei; Gao, Shoujian; Zhang, Feng; Zhang, Wenbin; Liu, Zhaoyang; Jin, Jian

    2016-09-01

    Fabricating nanofiltration (NF) membranes with high permeating flux and simultaneous high rejection rate for desalination is rather significant and highly desired. A new avenue is reported in this work to design NF membrane by using polydopamine wrapped single-walled carbon nanotube (PD/SWCNTs) ultrathin film as support layer instead of the use of traditional polymer-based underlying layers. Thanks to the high porosity, smooth surface, and more importantly optimal hydrophilic surface of PD/SWCNTs film, a defect-free polyamide selective layer for NF membrane with thickness of as thin as 12 nm is achieved. The obtained NF membrane exhibits an extremely high performance with a permeating flux of 32 L m -2 h -1 bar -1 and a rejection rate of 95.9% to divalent ions. This value is two to five times higher than the traditional NF membranes with similar rejection rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Proteolytic Activation of the Protease-activated Receptor (PAR)-2 by the Glycosylphosphatidylinositol-anchored Serine Protease Testisin*

    PubMed Central

    Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.

    2015-01-01

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908

  11. [Ambroise Paré in French literature].

    PubMed

    Dumaitre, P

    1995-01-01

    The 16th century by its passionate side has been the favourite one of authors of historical novels in which among the heroes of "cloak and dagger stories" appears sometime Ambroise Paré. Alexandre Dumas (the father) has shown him at the court of Charles IX in La Reine Margot (1845) where he does not however play a great role. On the contrary, Balzac in Le Martyr calviniste (1842) has given him a capital part close to the dying François II, whom he intended to trepanize but had to give up this idea as a consequence of the opposition of the queen-mother Catherine de Médicis. In the present century, Robert Merle in Paris ma bonne ville (Fortune de France, 3, 1980) shows Paré at the time of the Saint Barthélemy.

  12. Removal of focal segmental glomerulosclerosis (FSGS) factor suPAR using CytoSorb.

    PubMed

    Schenk, Heiko; Müller-Deile, Janina; Schmitt, Roland; Bräsen, Jan Hinrich; Haller, Hermann; Schiffer, Mario

    2017-12-01

    Treatment of primary focal segmental glomerulosclerosis (FSGS) and its recurrence after kidney transplantation associated with rapid deterioration of kidney function remains to be challenging despite advances in immunosuppressive therapy. The presence of circulating factors has been postulated to be a pivotal player in the pathogenesis of FSGS, although suPAR and CLCF-1 have been identified as the most promising causative factors. The potential therapeutic effect of suPAR elimination in an FSGS patient using CytoSorb, a hemoadsorption device that gained attention in the cytokine elimination in septic patients, was studied. Efficiency of total plasma exchange to remove suPAR was determined. CytoSorb hemoadsorption caused a 27.33% reduction of the suPAR level in a single treatment, whereas total plasma exchange showed a suPAR level reduction of 25.12% (n = 3; 95% confidence interval, 0.2777-0.8090; P < 0.01), which may indicate therapeutic potential in the treatment of primary FSGS and its recurrence in a kidney transplant. © 2017 Wiley Periodicals, Inc.

  13. Tryptase - PAR2 axis in Experimental Autoimmune Prostatitis, a model for Chronic Pelvic Pain Syndrome

    PubMed Central

    Roman, Kenny; Done, Joseph D.; Schaeffer, Anthony J.; Murphy, Stephen F.; Thumbikat, Praveen

    2014-01-01

    Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine experimental autoimmune prostatitis (EAP). Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia lead to ERK1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS. PMID:24726923

  14. Discovery of potent peptide-mimetic antagonists for the human thrombin receptor, protease-activated receptor-1 (PAR-1).

    PubMed

    Maryanoff, Bruce E; Zhang, Han-Cheng; Andrade-Gordon, Patricia; Derian, Claudia K

    2003-03-01

    Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G-protein-coupled receptors, which are enzymatically cleaved to expose a new extracellular N-terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease alpha-thrombin, is expressed in various tissues (e.g. platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. By using a de novo design approach, we have discovered a series of potent heterocycle-based peptide-miimetic antagonists of PAR-1, exemplified by advanced leads RWJ-56110 (22) and RWJ-58259 (32). These compounds are potent, selective PAR-1 antagonists, devoid of PAR-1 agonist and thrombin inhibitory activity: they bind to PAR-1, interfere with calcium mobilization and cellular functions associated with PAR-1, and do not affect PAR-2, PAR-3, or PAR-4. RWJ-56110 was determined to be a direct inhibitor of PAR-1 activation and internalization, without affecting PAR-1 N-terminal cleavage. At high concentrations of alpha-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, but not in human platelets; whereas, at high concentrations of TRAP-6, RWJ-56110 blocked activation responses in both cell types. This result is consistent with the presence of another thrombin receptor on human platelets, namely PAR-4. RWJ-56110 and RWJ-58259 clearly interrupt the binding of a tethered ligand to its receptor. RWJ-58259 demonstrated antirestenotic activity in a rat balloon angioplasty model and antithrombotic activity in a cynomolgus monkey arterial injury model. Such PAR-1 antagonists should not only serve as useful tools to delineate the physiological and pathophysiological roles of PAR-1, but also may have therapeutic potential for treating thrombosis and restenosis in humans.

  15. Examining relational empowerment for elementary school students in a yPAR program.

    PubMed

    Langhout, Regina Day; Collins, Charles; Ellison, Erin Rose

    2014-06-01

    This paper joins relational empowerment, youth empowerment, and Bridging Multiple Worlds frameworks to examine forms of relational empowerment for children in two intermediary institutions-school and a youth participatory action research after-school program (yPAR ASP). Participants were twelve children, most of whom were Latina/o and from im/migrant families, enrolled in a yPAR ASP for 2 years. A mixed-method approach was utilized; we analyzed children's interviews, self-defined goals, and their social networks to examine their experiences of relational empowerment. We conclude that children experienced each of the five relational empowerment factors-collaborative competence, bridging social divisions, facilitating others' empowerment, mobilizing networks, and passing on a legacy-in the yPAR ASP setting, and some factors in school. These experiences, however, were more pronounced in the yPAR ASP setting. Additionally, social network analyses revealed that a small but meaningful percentage of actors bridged worlds, especially home and family, but by year 2, also school and the yPAR ASP. Finally, most helpers for school-based goals came from school, but a sizable number came from family, friends, and home worlds, and by year 2, also came from the yPAR ASP. Implications range from theoretical to methodological development, including the use of social network analysis as a tool to descriptively examine relational power in context.

  16. Role of the parCBA Operon of the Broad-Host-Range Plasmid RK2 in Stable Plasmid Maintenance

    PubMed Central

    Easter, Carla L.; Schwab, Helmut; Helinski, Donald R.

    1998-01-01

    The par region of the stably maintained broad-host-range plasmid RK2 is organized as two divergent operons, parCBA and parDE, and a cis-acting site. parDE encodes a postsegregational killing system, and parCBA encodes a resolvase (ParA), a nuclease (ParB), and a protein of unknown function (ParC). The present study was undertaken to further delineate the role of the parCBA region in the stable maintenance of RK2 by first introducing precise deletions in the three genes and then assessing the abilities of the different constructs to stabilize RK2 in three strains of Escherichia coli and two strains of Pseudomonas aeruginosa. The intact parCBA operon was effective in stabilizing a conjugation-defective RK2 derivative in E. coli MC1061K and RR1 but was relatively ineffective in E. coli MV10Δlac. In the two strains in which the parCBA operon was effective, deletions in parB, parC, or both parB and parC caused an approximately twofold reduction in the stabilizing ability of the operon, while a deletion in the parA gene resulted in a much greater loss of parCBA activity. For P. aeruginosa PAO1161Rifr, the parCBA operon provided little if any plasmid stability, but for P. aeruginosa PAC452Rifr, the RK2 plasmid was stabilized to a substantial extent by parCBA. With this latter strain, parA and res alone were sufficient for stabilization. The cer resolvase system of plasmid ColE1 and the loxP/Cre system of plasmid P1 were tested in comparison with the parCBA operon. We found that, not unlike what was previously observed with MC1061K, cer failed to stabilize the RK2 plasmid with par deletions in strain MV10Δlac, but this multimer resolution system was effective in stabilizing the plasmid in strain RR1. The loxP/Cre system, on the other hand, was very effective in stabilizing the plasmid in all three E. coli strains. These observations indicate that the parA gene, along with its res site, exhibits a significant level of plasmid stabilization in the absence of the parC and

  17. PAR-2 agonists induce contraction of murine small intestine through neurokinin receptors.

    PubMed

    Zhao, Aiping; Shea-Donohue, Terez

    2003-10-01

    Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor and is expressed throughout the gut. It is well known that PAR-2 participates in the regulation of gastrointestinal motility; however, the results are inconsistent. The present study investigated the effect and mechanism of PAR-2 activation on murine small intestinal smooth muscle function in vitro. Both trypsin and PAR-2-activating peptide SLIGRL induced a small relaxation followed by a concentration-dependent contraction. The sensitivity to trypsin was greater than that to SLIGRL (EC50 = 0.03 vs. 40 microM), but maximal responses were similar (12.3 +/- 1.6 vs. 13.7 +/- 1.3 N/cm2). Trypsin-evoked contraction (1 microM) exhibited a rapid desensitization, whereas the desensitization of response to SLIGRL was less even at high concentration (50 microM). Atropine had no effect on PAR-2 agonist-induced contractions. In contrast, TTX and capsaicin significantly attenuated those contractions, implicating a neurogenic mechanism that may involve capsaicin-sensitive sensory nerves. Furthermore, contractions induced by trypsin and SLIGRL were reduced by neurokinin receptor NK1 antagonist SR-140333 or NK2 antagonist SR-48968 alone or were further reduced by combined application of SR-140333 and SR-48968, indicating the involvement of neurokinin receptors. In addition, desensitizing neurokinin receptors with substance P and/or neurokinin A decreased the PAR-2 agonist-evoked contraction. We concluded that PAR-2 agonists induced a contraction of murine intestinal smooth muscle that was mediated by nerves. The excitatory effect is also dependent on sensory neural pathways and requires both NK1 and NK2 receptors.

  18. Activation of PAR-2 elicits NO-dependent and CGRP-independent dilation of the dural artery.

    PubMed

    Bhatt, Deepak K; Ploug, Kenneth B; Ramachandran, Roshni; Olesen, Jes; Gupta, Saurabh

    2010-06-01

    The goal of this study was to determine the vascular effects of protease-activated receptor-2 (PAR-2) activation in the rat cranial vasculature. The role of PAR-2 in pain and inflammatory conditions has been established but the information available on its effects and receptor distribution in the trigeminal vascular axis is limited. We studied the dilatory function and expression of PAR-2 in the neuro-vascular circuit, critical in migraine pathogenesis. We also investigated the interaction of PAR-2 with calcitonin gene-related peptide (CGRP) and dural mast cells. We used an improved model of intravital microscopy on the closed cranial window in rats to study the vascular effects of PAR-2 activating peptides (PAR-2 APs; SLIGRL-NH(2), 2-Furoyl-LIGRLO-NH(2)) in the dural vasculature. Measurement of immunoreactive CGRP in skull halves and in trigeminal nucleus caudalis was done by using an enzyme-linked immunosorbent assay. We also analyzed the presence of PAR-2 in different migraine relevant tissues by quantitative real-time PCR and Western blot analysis. PAR-2 APs and trypsin induced a dose-dependent increase in dural artery diameter. The topical application of a nonspecific nitric oxide synthase (NOS) inhibitor, L-N(G)-Nitroarginine methyl ester, attenuated SLIGRL-NH(2) responses. Olcegepant, a CGRP receptor antagonist, did not a have significant effect on the SLIGRL-NH(2) responses, though exogenous CGRP responses were completely blocked. There was no significant release of CGRP from skull halves incubated with SLIGRL-NH(2) as compared with those incubated with the corresponding negative peptide. Chronic mast cell degranulation did not change the vascular effects of PAR-2 APs. mRNA and protein expression of PAR-2 were found throughout trigeminovasuclar axis. PAR-2 activation leads to vasodilation of dural arteries and these responses are partially mediated by nitric oxide. As PAR-2 is present throughout trigeminovasuclar axis, it may have a role in migraine

  19. Proteolytic activation of the protease-activated receptor (PAR)-2 by the glycosylphosphatidylinositol-anchored serine protease testisin.

    PubMed

    Driesbaugh, Kathryn H; Buzza, Marguerite S; Martin, Erik W; Conway, Gregory D; Kao, Joseph P Y; Antalis, Toni M

    2015-02-06

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Actin dynamics regulate immediate PAR-2-dependent responses to acute epidermal permeability barrier abrogation.

    PubMed

    Roelandt, Truus; Heughebaert, Carol; Verween, Gunther; Giddelo, Christina; Verbeken, Gilbert; Pirnay, Jean-Paul; Devos, Daniel; Crumrine, Debra; Roseeuw, Diane; Elias, Peter M; Hachem, Jean-Pierre

    2011-02-01

    Lamellar body (LB) secretion and terminal differentiation of stratum granulosum (SG) cells are signaled by both protease activated receptor-2 (PAR-2) and caveolin-1 (cav-1). To address the early dynamics of LB secretion, we examined cytoskeletal remodeling of keratinocytes in 3 mouse models following acute barrier abrogation: hairless mice, PAR-2 knockout (-/-) and cav-1 -/-. Under basal conditions, globular (G)-actin accumulates in SG cells cytosol, while filamentous (F)-actin is restricted to peri-membrane domains. Barrier abrogation induces the apical movement of F-actin and the retreat of the SG-G-actin front, paralleled by upstream cytoskeletal kinases activation. This phenomenon was both enhanced by PAR-2 agonist, and inhibited by cytochalasin-D and in PAR-2 knockout mice. We found that plasma membrane conformational changes causing LB secretion are controlled by PAR-2-dependent cytoskeletal rearrangements. We next addressed the interaction dynamics between cytoskeleton and plasma membrane following PAR-2-induced actin stress fiber formation in both cav-1 -/- and wildtype cells. Actin stress fiber formation is increased in cav-1 -/- cells prior to and following PAR-2 agonist peptide-treatment, while absence of cav-1 inhibits E-cadherin-mediated cell-to-cell adhesion. PAR-2 drives cytoskeletal/plasma membrane dynamics that regulate early LB secretion following barrier abrogation, stress fiber formation and keratinocyte adhesion. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Prognosis in adenocarcinomas of lower oesophagus, gastro-oesophageal junction and cardia evaluated by uPAR-immunohistochemistry.

    PubMed

    Laerum, Ole Didrik; Ovrebo, Kjell; Skarstein, Arne; Christensen, Ib Jarle; Alpízar-Alpízar, Warner; Helgeland, Lars; Danø, Keld; Nielsen, Boye Schnack; Illemann, Martin

    2012-08-01

    Adenocarcinomas of lower oesophagus, gastro-oesophageal junction and cardia in humans are highly invasive tumours with poor prognosis. The localisation of urokinase-type plasminogen activator receptor (uPAR) was determined in 66 patients; 60 with adenocarcinomas and six cases with Barrett's oesophagus. uPAR was expressed in nearly all cases of invasive adenocarcinomas by populations of cancer cells, macrophages and myofibroblasts at both the invasion front and the tumour core. In areas with high-grade dysplasia or with Barrett's metaplasia adjacent to the tumour tissue, no uPAR-immunoreactivity was found. High local expression of uPAR, therefore, appears to be a characteristic marker for invasive behaviour in this tumour, suggesting that uPAR's contribution to matrix degradation during invasive growth is a late event in carcinogenesis. Using a scoring system for semiquantitative estimation of uPAR-positivity on immmunohistochemically stained specimens, a significant association was found between poor overall survival and high uPAR-score for cancer cells in the tumour core and for macrophages peripherally at the tumour invasion zone. In multivariate analysis, these two uPAR-scores were confirmed as highly significant prognostic parameters independent of Tumour, Node, Metastasis (TNM)-stage and World Health Organization (WHO) classification. The proteolytic action of these malignant and nonmalignant accessory cells thus seemed to follow two main patterns: one dominated by uPAR positive cancer cells and one by uPAR-positive macrophages. Scoring of uPAR-positivity might be a useful parameter for onset of invasion and prognosis in these adenocarcinomas. Copyright © 2011 UICC.

  2. Re-Signifying Participatory Action Research (PAR) in Higher Education: What Does "P" Stand for in PAR?

    ERIC Educational Resources Information Center

    Santos, Doris

    2016-01-01

    While carrying out a study aimed at understanding the contribution of participatory action research (PAR) to the political realm in contemporary higher education, a problematic situation was found when doing a literature review in the field of action research. This problem concerns the intermittent appearance of the "participatory"…

  3. Estimation of photosynthetically available radiation (PAR) from OCEANSAT-I OCM using a simple atmospheric radiative transfer model

    NASA Astrophysics Data System (ADS)

    Tripathy, Madhumita; Raman, Mini; Chauhan, Prakash

    2015-10-01

    Photosynthetically available radiation (PAR) is an important variable for radiation budget, marine and terrestrial ecosystem models. OCEANSAT-1 Ocean Color Monitor (OCM) PAR was estimated using two different methods under both clear and cloudy sky conditions. In the first approach, aerosol optical depth (AOD) and cloud optical depth (COD) were estimated from OCEANSAT-1 OCM TOA (top-of-atmosphere) radiance data on a pixel by pixel basis and PAR was estimated from extraterrestrial solar flux for fifteen spectral bands using a radiative transfer model. The second approach used TOA radiances measured by OCM in the PAR spectral range to compute PAR. This approach also included surface albedo and cloud albedo as inputs. Comparison between OCEANSAT-1 OCM PAR at noon with in situ measured PAR shows that root mean square difference was 5.82% for the method I and 7.24% for the method II in daily time scales. Results indicate that methodology adopted to estimate PAR from OCEANSAT-1 OCM can produce reasonably accurate PAR estimates over the tropical Indian Ocean region. This approach can be extended to OCEANSAT-2 OCM and future OCEANSAT-3 OCM data for operational estimation of PAR for regional marine ecosystem applications.

  4. Etude d'un modele de Boltzmann sur reseau pour la simulation assistee par ordinateur des fluides a plusieurs phases immiscibles

    NASA Astrophysics Data System (ADS)

    Leclaire, Sebastien

    The computer assisted simulation of the dynamics of fluid flow has been a highly rewarding topic of research for several decades now, in terms of the number of scientific problems that have been solved as a result, both in the academic world and in industry. In the fluid dynamics field, simulating multiphase immiscible fluid flow remains a challenge, because of the complexity of the interactions at the flow phase interfaces. Various numerical methods are available to study these phenomena, and, the lattice Boltzmann method has been shown in recent years to be well adapted to solving this type of complex flow. In this thesis, a lattice Boltzmann model for the simulation of two-phase immiscible flows is studied. The main objective of the thesis is to develop this promising method further, with a view to enhancing its validity. To achieve this objective, the research is divided into five distinct themes. The first two focus on correcting some of the deficiencies of the original model. The third generalizes the model to support the simulation of N-phase immiscible fluid flows. The fourth is aimed at modifying the model itself, to enable the simulation of immiscible fluid flows in which the density of the phases varies. With the lattice Boltzmann class of models studied here, this density variation has been inadequately modeled, and, after 20 years, the issue still has not been resolved. The fifth, which complements this thesis, is connected with the lattice Boltzmann method, in that it generalizes the theory of 2D and 3D isotropic gradients for a high order of spatial precision. These themes have each been the subject of a scientific article, as listed in the appendix to this thesis, and together they constitute a synthesis that explains the links between the articles, as well as their scientific contributions, and satisfy the main objective of this research. Globally, a number of qualitative and quantitative test cases based on the theory of multiphase fluid flows have highlighted issues plaguing the simulation model. These test cases have resulted in various modifications to the model, which have reduced or eliminated some numerical artifacts that were problematic. They also allowed us to validate the extensions that were applied to the original model.

  5. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula

    PubMed Central

    Verdier, Jerome; Zhao, Jian; Torres-Jerez, Ivone; Ge, Shujun; Liu, Chenggang; He, Xianzhi; Mysore, Kirankumar S.; Dixon, Richard A.; Udvardi, Michael K.

    2012-01-01

    MtPAR (Medicago truncatula proanthocyanidin regulator) is an MYB family transcription factor that functions as a key regulator of proanthocyanidin (PA) biosynthesis in the model legume Medicago truncatula. MtPAR expression is confined to the seed coat, the site of PA accumulation. Loss-of-function par mutants contained substantially less PA in the seed coat than the wild type, whereas levels of anthocyanin and other specialized metabolites were normal in the mutants. In contrast, massive accumulation of PAs occurred when MtPAR was expressed ectopically in transformed hairy roots of Medicago. Transcriptome analysis of par mutants and MtPAR-expressing hairy roots, coupled with yeast one-hybrid analysis, revealed that MtPAR positively regulates genes encoding enzymes of the flavonoid–PA pathway via a probable activation of WD40-1. Expression of MtPAR in the forage legume alfalfa (Medicago sativa) resulted in detectable levels of PA in shoots, highlighting the potential of this gene for biotechnological strategies to increase PAs in forage legumes for reduction of pasture bloat in ruminant animals. PMID:22307644

  6. Astrocytes Secrete Exosomes Enriched with Proapoptotic Ceramide and Prostate Apoptosis Response 4 (PAR-4)

    PubMed Central

    Wang, Guanghu; Dinkins, Michael; He, Qian; Zhu, Gu; Poirier, Christophe; Campbell, Andrew; Mayer-Proschel, Margot; Bieberich, Erhard

    2012-01-01

    Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease. PMID:22532571

  7. Plasma suPAR as a prognostic biological marker for ICU mortality in ARDS patients.

    PubMed

    Geboers, Diederik G P J; de Beer, Friso M; Tuip-de Boer, Anita M; van der Poll, Tom; Horn, Janneke; Cremer, Olaf L; Bonten, Marc J M; Ong, David S Y; Schultz, Marcus J; Bos, Lieuwe D J

    2015-07-01

    We investigated the prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) on day 1 in patients with the acute respiratory distress syndrome (ARDS) for intensive care unit (ICU) mortality and compared it with established disease severity scores on day 1. suPAR was determined batchwise in plasma obtained within 24 h after admission. 632 ARDS patients were included. Significantly (P = 0.02) higher median levels of suPAR were found with increasing severity of ARDS: 5.9 ng/ml [IQR 3.1-12.8] in mild ARDS (n = 82), 8.4 ng/ml [IQR 4.1-15.0] in moderate ARDS (n = 333), and 9.0 ng/ml [IQR 4.5-16.0] in severe ARDS (n = 217). Non-survivors had higher median levels of suPAR [12.5 ng/ml (IQR 5.1-19.5) vs. 7.4 ng/ml (3.9-13.6), P < 0.001]. The area under the receiver operator characteristic curve (ROC-AUC) for mortality of suPAR (0.62) was lower than the ROC-AUC of the APACHE IV score (0.72, P = 0.007), higher than that of the ARDS definition classification (0.53, P = 0.005), and did not differ from that of the SOFA score (0.68, P = 0.07) and the oxygenation index (OI) (0.58, P = 0.29). Plasma suPAR did not improve the discrimination of the established disease severity scores, but did improve net reclassification of the APACHE score (29%), SOFA score (23%), OI (38%), and Berlin definition classification (39%). As a single biological marker, the prognostic value for death of plasma suPAR in ARDS patients is low. Plasma suPAR, however, improves the net reclassification, suggesting a potential role for suPAR in ICU mortality prediction models.

  8. IFN-γ, CXCL16, uPAR: potential biomarkers for systemic lupus erythematosus.

    PubMed

    Wen, Si; He, Fang; Zhu, Xuejing; Yuan, Shuguang; Liu, Hong; Sun, Lin

    2018-01-01

    IFN-γ, CXCL16 and uPAR have recently been regarded as potential biomarkers in systemic lupus erythematosus (SLE). However, few researches have focused on the comparison of these three markers in SLE. We conducted this study to evaluate their role as biomarkers of disease activity and renal damage. We enrolled 50 SLE patients with or without lupus nephritis (LN) and 15 healthy control subjects. The levels of IFN-γ, CXCL16, uPAR in serum, urine and renal tissues were detected by ELISA or immunohistochemistry. Relevant clinical and laboratory features were recorded. Serum and urine IFN-γ, CXCL16 and suPAR levels in SLE patients were significantly higher than that in healthy controls. Moreover, LN patients had higher levels than non-LN patients. A positive correlation was observed between these markers, and disease activity and suPAR had a stronger association with disease activity. The expression of these biomarkers in renal tissues was significantly higher in LN patients and was also associated with the activity of pathological lesions. IFN-γ, CXCL16 and uPAR are promising as effective biomarkers of disease activity, renal damage, and the activity of pathological lesions in SLE.

  9. Participatory action research (PAR) in middle school: opportunities, constraints, and key processes.

    PubMed

    Ozer, Emily J; Ritterman, Miranda L; Wanis, Maggie G

    2010-09-01

    Late childhood and early adolescence represent a critical transition in the developmental and academic trajectory of youth, a time in which there is an upsurge in academic disengagement and psychopathology. PAR projects that can promote youth's sense of meaningful engagement in school and a sense of efficacy and mattering can be particularly powerful given the challenges of this developmental stage. In the present study, we draw on data from our own collaborative implementation of PAR projects in secondary schools to consider two central questions: (1) How do features of middle school settings and the developmental characteristics of the youth promote or inhibit the processes, outcomes, and sustainability of the PAR endeavor? and (2) How can the broad principles and concepts of PAR be effectively translated into specific intervention activities in schools, both within and outside of the classroom? In particular, we discuss a participatory research project conducted with 6th and 7th graders at an urban middle school as a means of highlighting the opportunities, constraints, and lessons learned in our efforts to contribute to the high-quality implementation and evaluation of PAR in diverse urban public schools.

  10. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology.

    PubMed

    Bache, Michael; Bosco, Filippo G; Brøgger, Anna L; Frøhling, Kasper B; Alstrøm, Tommy Sonne; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja

    2013-11-08

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.

  11. TGF-β induced PAR-1 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone.

    PubMed

    Wang, Ting; Jiao, Jian; Zhang, Hao; Zhou, Wang; Li, Zhenxi; Han, Shuai; Wang, Jing; Yang, Xinghai; Huang, Quan; Wu, Zhipeng; Yan, Wangjun; Xiao, Jianru

    2017-10-15

    Although protease activated receptor-1 (PAR-1) has been confirmed as an oncogene in many cancers, the role of PAR-1 in giant cell tumor (GCT) of bone has been rarely reported. The mechanism of PAR-1 in tumor-induced osteoclastogenesis still remains unclear. In the present study, we detected that PAR-1 was significantly upregulated in GCT of bone compared to normal tissues, while TGF-β was also overexpressed in GCT tissues and could promote the expression of PAR-1 in a dose and time dependent manner. Using the luciferase reporter assay, we found that two downstreams of TGF-β, Smad3 and Smad4, could activate the promoter of PAR-1, which might explain the mechanism of TGF-β induced PAR-1 expression. Meanwhile, PAR-1 was also overexpressed in microvesicles from stromal cells of GCT (GCTSCs), and might be transported from GCTSCs to monocytes through microvesicles. In addition, knockout of PAR-1 by TALENs in GCTSCs inhibited tumor growth, angiogenesis and osteoclastogenesis in GCT in vitro. Using the chick CAM models, we further showed that inhibition of PAR-1 suppressed tumor growth and giant cell formation in vivo. Using microarray assay, we detected a number of genes involved in osteoclastogenesis as the possible downstreams of PAR-1, which may partly explain the mechanism of PAR-1 in GCT. In brief, for the first time, these results reveal an upstream regulatory role of TGF-β in PAR-1 expression, and PAR-1 expression promotes tumor growth, angiogenesis and osteoclast differentiation in GCT of bone. Hence, PAR-1 represents a novel potential therapeutic target for GCT of bone. © 2017 UICC.

  12. The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein.

    PubMed

    Wu, Jui-Ching; Espiritu, Eugenel B; Rose, Lesilee S

    2016-04-15

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The 14-3-3 Protein PAR-5 Regulates the Asymmetric localization of the LET-99 Spindle Positioning Protein

    PubMed Central

    Rose, Lesilee S.

    2016-01-01

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in C. elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. PMID:26921457

  14. Simulating Carbon Flux Dynamics with the Product of PAR Absorbed by Chlorophyll (fAPARchl)

    NASA Astrophysics Data System (ADS)

    Yao, T.; Zhang, Q.

    2016-12-01

    A common way to estimate the gross primary production (GPP) is to use the fraction of photosynthetically radiation (PAR) absorbed by vegetation (FPAR). However, only the PAR absorbed by chlorophyll of the canopy, not the PAR absorbed by the foliage or by the entire canopy, is used for photosynthesis. MODIS fAPARchl product, which refers to the fraction of PAR absorbed by chlorophyll of the canopy, is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance by using an advanced leaf-canopy-soil-water-snow coupled radiative transfer model PROSAIL4. PROSAIL4 can retrieve surface water cover fraction, snow cover fraction, and physiologically active canopy chemistry components (chlorophyll concentration and water content), fraction of photosynthetically active radiation (PAR) absorbed by a canopy (fAPARcanopy), fraction of PAR absorbed by photosynthetic vegetation (PV) component (mainly chlorophyll) throughout the canopy (fAPARPV, i.e., fAPARchl) and fraction of PAR absorbed by non-photosynthetic vegetation (NPV) component of the canopy (fAPARNPV). We have successfully retrieved these vegetation parameters for selected areas with PROSAIL4 and the MODIS images, or simulated spectrally MODIS-like images. In this study, the product of PAR absorbed by chlorophyll (fAPARchl) has been used to simulate carbon flux over different kinds of vegetation types. The results show that MODIS fAPARchl product has the ability to better characterize phenology than current phenology model in the Community Land Model and it also will likely be able to increase the accuracy of carbon fluxes simulations.

  15. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.

    PubMed

    Laurenzana, Anna; Chillà, Anastasia; Luciani, Cristina; Peppicelli, Silvia; Biagioni, Alessio; Bianchini, Francesca; Tenedini, Elena; Torre, Eugenio; Mocali, Alessandra; Calorini, Lido; Margheri, Francesca; Fibbi, Gabriella; Del Rosso, Mario

    2017-09-15

    In this manuscript, we show the involvement of the uPA/uPAR system in the regulation of aerobic glycolysis of melanoma cells. uPAR over-expression in human melanoma cells controls an invasive and glycolytic phenotype in normoxic conditions. uPAR down-regulation by siRNA or its uncoupling from integrins, and hence from integrin-linked tyrosine kinase receptors (IL-TKRs), by an antagonist peptide induced a striking inhibition of the PI3K/AKT/mTOR/HIF1α pathway, resulting into impairment of glucose uptake, decrease of several glycolytic enzymes and of PKM2, a checkpoint that controls metabolism of cancer cells. Further, binding of uPA to uPAR regulates expression of molecules that govern cell invasion, including extracellular matrix metallo-proteinases inducer (EMPPRIN) and enolase, a glycolytyc enzyme that also serves as a plasminogen receptor, thus providing a common denominator between tumor metabolism and phenotypic invasive features. Such effects depend on the α5β1-integrin-mediated uPAR connection with EGFR in melanoma cells with engagement of the PI3K-mTOR-HIFα pathway. HIF-1α trans-activates genes whose products mediate tumor invasion and glycolysis, thus providing the common denominator between melanoma metabolism and its invasive features. These findings unveil a unrecognized interaction between the invasion-related uPAR and IL-TKRs in the control of glycolysis and disclose a new pharmacological target (i.e., uPAR/IL-TKRs axis) for the therapy of melanoma. © 2017 UICC.

  16. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding.

    PubMed

    Wong, Pancras C; Seiffert, Dietmar; Bird, J Eileen; Watson, Carol A; Bostwick, Jeffrey S; Giancarli, Mary; Allegretto, Nick; Hua, Ji; Harden, David; Guay, Jocelyne; Callejo, Mario; Miller, Michael M; Lawrence, R Michael; Banville, Jacques; Guy, Julia; Maxwell, Brad D; Priestley, E Scott; Marinier, Anne; Wexler, Ruth R; Bouvier, Michel; Gordon, David A; Schumacher, William A; Yang, Jing

    2017-01-04

    Antiplatelet agents are proven efficacious treatments for cardiovascular and cerebrovascular diseases. However, the existing drugs are compromised by unwanted and sometimes life-threatening bleeding that limits drug usage or dosage. There is a substantial unmet medical need for an antiplatelet drug with strong efficacy and low bleeding risk. Thrombin is a potent platelet agonist that directly induces platelet activation via the G protein (heterotrimeric guanine nucleotide-binding protein)-coupled protease-activated receptors PAR1 and PAR4. A PAR1 antagonist is approved for clinical use, but its use is limited by a substantial bleeding risk. Conversely, the potential of PAR4 as an antiplatelet target has not been well characterized. Using anti-PAR4 antibodies, we demonstrated a low bleeding risk and an effective antithrombotic profile with PAR4 inhibition in guinea pigs. Subsequently, high-throughput screening and an extensive medicinal chemistry effort resulted in the discovery of BMS-986120, an orally active, selective, and reversible PAR4 antagonist. In a cynomolgus monkey arterial thrombosis model, BMS-986120 demonstrated potent and highly efficacious antithrombotic activity. BMS-986120 also exhibited a low bleeding liability and a markedly wider therapeutic window compared to the standard antiplatelet agent clopidogrel tested in the same nonhuman primate model. These preclinical findings define the biological role of PAR4 in mediating platelet aggregation. In addition, they indicate that targeting PAR4 is an attractive antiplatelet strategy with the potential to treat patients at a high risk of atherothrombosis with superior safety compared with the current standard of care. Copyright © 2017, American Association for the Advancement of Science.

  17. Proteinase-Activated Receptor-1 and Immunomodulatory Effects of a PAR1-Activating Peptide in a Mouse Model of Prostatitis

    PubMed Central

    Stanton, M. Mark; Nelson, Lisa K.; Benediktsson, Hallgrimur; Hollenberg, Morley D.; Buret, Andre G.; Ceri, Howard

    2013-01-01

    Background. Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. Methods. Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. Results. Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. Conclusions. PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor. PMID:24459330

  18. Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division

    PubMed Central

    Jordan, Shawn N.; Davies, Tim; Zhuravlev, Yelena; Dumont, Julien; Shirasu-Hiza, Mimi

    2016-01-01

    Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation. PMID:26728855

  19. The pars intermedia: an anatomic basis for a coordinated vascular response to female genital arousal.

    PubMed

    Shih, Cheryl; Cold, Christopher J; Yang, Claire C

    2013-06-01

    The pars intermedia is an area of the vulva that has been inconsistently described in the literature. We conducted anatomic studies to better describe the tissues and vascular structures of the pars intermedia and proposed a functional rationale of the pars intermedia in the female sexual response. Nine cadaveric vulvectomy specimens were used. Each was serially sectioned and stained with hematoxylin and eosin and Masson's trichrome. Histologic ultrastructural description of the pars intermedia. The pars intermedia contains veins traveling longitudinally in the angle of the clitoris, supported by collagen-rich stromal tissues. These veins drain the different vascular compartments of the vulva, including the clitoris, the bulbs, and labia minora; also, the interconnecting veins link the different vascular compartments. The pars intermedia is not composed of erectile tissue, distinguishing it from the erectile tissues of the corpora cavernosa of the clitoris as well as the corpus spongiosum of the clitoral (vestibular) bulbs. The venous communications of the pars intermedia, linking the erectile tissues with the other vascular compartments of the vulva, appear to provide the anatomic basis for a coordinated vascular response during female sexual arousal. © 2012 International Society for Sexual Medicine.

  20. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis.

    PubMed

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C; Villares, Gabriel J; Bar-Eli, Menashe

    2011-11-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients. ©2011 AACR.

  1. Project Plan 7930 Cell G PaR Remote Handling System Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, Kathryn A

    2009-10-01

    For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulatorsmore » and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully

  2. Serologically Defined Variations in Malaria Endemicity in Pará State, Brazil

    PubMed Central

    Cunha, Maristela G.; Silva, Eliane S.; Sepúlveda, Nuno; Costa, Sheyla P. T.; Saboia, Tiago C.; Guerreiro, João F.; Póvoa, Marinete M.; Corran, Patrick H.; Riley, Eleanor; Drakeley, Chris J.

    2014-01-01

    Background Measurement of malaria endemicity is typically based on vector or parasite measures. A complementary approach is the detection of parasite specific IgG antibodies. We determined the antibody levels and seroconversion rates to both P. vivax and P. falciparum merozoite antigens in individuals living in areas of varying P. vivax endemicity in Pará state, Brazilian Amazon region. Methodology/Principal Findings The prevalence of antibodies to recombinant antigens from P. vivax and P. falciparum was determined in 1,330 individuals. Cross sectional surveys were conducted in the north of Brazil in Anajás, Belém, Goianésia do Pará, Jacareacanga, Itaituba, Trairão, all in the Pará state, and Sucuriju, a free-malaria site in the neighboring state Amapá. Seroprevalence to any P. vivax antigens (MSP1 or AMA-1) was 52.5%, whereas 24.7% of the individuals were seropositive to any P. falciparum antigens (MSP1 or AMA-1). For P. vivax antigens, the seroconversion rates (SCR) ranged from 0.005 (Sucuriju) to 0.201 (Goianésia do Pará), and are strongly correlated to the corresponding Annual Parasite Index (API). We detected two sites with distinct characteristics: Goianésia do Pará where seroprevalence curve does not change with age, and Sucuriju where seroprevalence curve is better described by a model with two SCRs compatible with a decrease in force of infection occurred 14 years ago (from 0.069 to 0.005). For P. falciparum antigens, current SCR estimates varied from 0.002 (Belém) to 0.018 (Goianésia do Pará). We also detected a putative decrease in disease transmission occurred ∼29 years ago in Anajás, Goianésia do Pará, Itaituba, Jacareacanga, and Trairão. Conclusions We observed heterogeneity of serological indices across study sites with different endemicity levels and temporal changes in the force of infection in some of the sites. Our study provides further evidence that serology can be used to measure and monitor transmission of both major

  3. Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex.

    PubMed

    Roll, Patrice; Vernes, Sonja C; Bruneau, Nadine; Cillario, Jennifer; Ponsole-Lenfant, Magali; Massacrier, Annick; Rudolf, Gabrielle; Khalife, Manal; Hirsch, Edouard; Fisher, Simon E; Szepetowski, Pierre

    2010-12-15

    It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), whereas mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2-binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded a marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired the FOXP2 regulation of SRPX2 promoter activity, whereas that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNAP2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.

  4. Protease activated receptor-2 (PAR2): possible target of phytochemicals.

    PubMed

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2015-09-01

    The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.

  5. Traumatisme de la main par injection a haute pression

    PubMed Central

    Mabchoure, K.; Diouri, M.; Bahechar, N.; Chlihi, A.

    2016-01-01

    Summary Les traumatismes de la main par injection à haute pression sont des accidents relativement rares et souvent mal connus par le praticien. Les lésions qui dépendent du produit injecté et du site d’injection sont pourvoyeuses de séquelles esthétiques et fonctionnelles lourdes. Le traitement repose sur la chirurgie, l’antibiothérapie et la rééducation précoce et spécifique. Nous rapportons notre expérience ainsi qu’une revue de la littérature. PMID:27857654

  6. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    PubMed

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  7. Allergic sensitization enhances anion current responsiveness of murine trachea to PAR-2 activation.

    PubMed

    Rievaj, Juraj; Davidson, Courtney; Nadeem, Ahmed; Hollenberg, Morley; Duszyk, Marek; Vliagoftis, Harissios

    2012-03-01

    Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor possibly involved in the pathogenesis of asthma. PAR-2 also modulates ion transport in cultured epithelial cells, but these effects in native airways are controversial. The influence of allergic inflammation on PAR-2-induced changes in ion transport has received little attention. Here, we studied immediate changes in transepithelial short circuit current (I (sc)) induced by PAR-2 activation in the tracheas of naive and allergic mice. Activation of PAR-2 with an apically added activation peptide (AP) induced a small increase in I (sc), while a much larger increase was observed following basolateral AP addition. In ovalbumin-sensitized and -challenged animals used as a model of allergic airway inflammation, the effect of basolateral AP addition was enhanced. Responses to basolateral AP in both naive and allergic mice were not decreased by blocking sodium absorption with amiloride or CFTR function with CFTR(inh)172 but were reduced by the cyclooxygenase inhibitor indomethacin and largely blocked (>80%) by niflumic acid, a calcium-activated chloride channels' (CaCC) blocker. Allergic mice also showed an enhanced response to ATP and thapsigargin. There was no change in mRNA expression of Par-2 or of the chloride channels Ano1 (Tmem16a) and Bestrophin 2 in tracheas from allergic mice, while mRNA levels of Bestrophin 1 were increased. In conclusion, basolateral PAR-2 activation in the mouse airways led to increased anion secretion through apical CaCC, which was more pronounced in allergic animals. This could be a protective mechanism aimed at clearing allergens and defending against mucus plugging.

  8. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data.

    PubMed

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S; Windus, Theresa L; Dick-Perez, Marilu

    2017-03-27

    A newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides, important for metal extraction chemistry, are parametrized using ParFit. ParFit is in an open source program available for free on GitHub ( https://github.com/fzahari/ParFit ).

  9. Pars plana Ahmed valve and vitrectomy in patients with glaucoma associated with posterior segment disease.

    PubMed

    Wallsh, Josh O; Gallemore, Ron P; Taban, Mehran; Hu, Charles; Sharareh, Behnam

    2013-01-01

    To assess the safety and efficacy of a modified technique for pars plana placement of the Ahmed valve in combination with pars plana vitrectomy in the treatment of glaucoma associated with posterior segment disease. Thirty-nine eyes with glaucoma associated with posterior segment disease underwent pars plana vitrectomy combined with Ahmed valve placement. All valves were placed in the pars plana using a modified technique, without the pars plana clip, and using a scleral patch graft. The 24 eyes diagnosed with neovascular glaucoma had an improvement in intraocular pressure from 37.6 mmHg to 13.8 mmHg and best-corrected visual acuity from 2.13 logarithm of minimum angle of resolution to 1.40 logarithm of minimum angle of resolution. Fifteen eyes diagnosed with steroid-induced glaucoma had an improvement in intraocular pressure from 27.9 mmHg to 14.1 mmHg and best-corrected visual acuity from 1.38 logarithm of minimum angle of resolution to 1.13 logarithm of minimum angle of resolution. Complications included four cases of cystic bleb formation and one case of choroidal detachment and explantation for hypotony. Ahmed valve placement through the pars plana during vitrectomy is an effective option for managing complex cases of glaucoma without the use of the pars plana clip.

  10. A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins

    PubMed Central

    Ringgaard, Simon; Schirner, Kathrin; Davis, Brigid M.; Waldor, Matthew K.

    2011-01-01

    Stochastic processes are thought to mediate localization of membrane-associated chemotaxis signaling clusters in peritrichous bacteria. Here, we identified a new family of ParA-like ATPases (designated ParC [for partitioning chemotaxis]) encoded within chemotaxis operons of many polar-flagellated γ-proteobacteria that actively promote polar localization of chemotaxis proteins. In Vibrio cholerae, a single ParC focus is found at the flagellated old pole in newborn cells, and later bipolar ParC foci develop as the cell matures. The cell cycle-dependent redistribution of ParC occurs by its release from the old pole and subsequent relocalization at the new pole, consistent with a “diffusion and capture” model for ParC dynamics. Chemotaxis proteins encoded in the same cluster as ParC have a similar unipolar-to-bipolar transition; however, they reach the new pole after the arrival of ParC. Cells lacking ParC exhibit aberrantly localized foci of chemotaxis proteins, reduced chemotaxis, and altered motility, which likely accounts for their enhanced colonization of the proximal small intestine in an animal model of cholera. Collectively, our findings indicate that ParC promotes the efficiency of chemotactic signaling processes. In particular, ParC-facilitated development of a functional chemotaxis apparatus at the new pole readies this site for its development into a functional old pole after cell division. PMID:21764856

  11. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation

    PubMed Central

    2012-01-01

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors. PMID:22731117

  12. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation.

    PubMed

    Chen, Chen-Wen; Chen, Qian-Bo; Ouyang, Qing; Sun, Ji-Hu; Liu, Fang-Ting; Song, Dian-Wen; Yuan, Hong-Bin

    2012-06-25

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1 β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors.

  13. Influence of naturally occurring dissolved organic matter, colloids, and cations on nanofiltration of pharmaceutically active and endocrine disrupting compounds.

    PubMed

    Sadmani, A H M Anwar; Andrews, Robert C; Bagley, David M

    2014-12-01

    This study examined the rejection of selected pharmaceutically active (PhAC) and endocrine disrupting compounds (EDCs) when using nanofiltration as a function of naturally occurring dissolved organic matter (DOM), colloidal particles, cations and their interactions. Lake Ontario water served as a source of natural DOM and colloidal particles. PhAC/EDC rejection experiments were conducted using raw Lake Ontario water and Lake Ontario water that was pre-treated with either ultrafiltration to remove colloidal particles, or fluidized ion exchange resins to remove DOM. Additionally, the concentration of cations (Ca(2+), Mg(2+), and Na(+)) in the raw and pre-treated water matrices was varied. While ionic PhACs and EDCs exhibited high rejections from all the water matrices examined, neutral compounds were most effectively rejected in water containing DOM and no colloids, and least effectively rejected from colloid-containing water with increased cations but no DOM. The presence of DOM significantly improved compound rejection and the increase in cation concentration significantly decreased rejection. The presence of colloids had comparatively little effect except to mitigate the impact of increased cation concentration, apparently providing some cation-buffering capacity. The sequence in which constituents are removed from waters during treatment may significantly impact PhAC and EDC removal, especially of neutral compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance

    PubMed Central

    Winter, Joerg; Bérubé, Pierre

    2017-01-01

    Nanofiltration (NF) and tight ultrafiltration (tight UF) membranes are a viable treatment option for high quality drinking water production from sources with high concentrations of contaminants. To date, there is limited knowledge regarding the contribution of concentration polarization (CP) and fouling to the increase in resistance during filtration of natural organic matter (NOM) with NF and tight UF. Filtration tests were conducted with NF and tight UF membranes with molecular weight cut offs (MWCOs) of 300, 2000 and 8000 Da, and model raw waters containing different constituents of NOM. When filtering model raw waters containing high concentrations of polysaccharides (i.e., higher molecular weight NOM), the increase in resistance was dominated by fouling. When filtering model raw waters containing humic substances (i.e., lower molecular weight NOM), the increase in filtration resistance was dominated by CP. The results indicate that low MWCO membranes are better suited for NOM removal, because most of the NOM in surface waters consist mainly of humic substances, which were only effectively rejected by the lower MWCO membranes. However, when humic substances are effectively rejected, CP can become extensive, leading to a significant increase in filtration resistance by the formation of a cake/gel layer at the membrane surface. For this reason, cross-flow operation, which reduces CP, is recommended. PMID:28671604

  15. Brulures par Diluant

    PubMed Central

    Benbrahim, A.; Jerrah, H.; Diouri, M.; Bahechar, N.; Boukind, E.H.

    2009-01-01

    Summary La flamme de diluant est une cause non rare de brûlure dans le contexte marocain. Nous avons jugé intéressant de faire une étude épidémiologique sur la brûlure par flamme de diluant (BFD) au centre national des brûlés (CNB) du CHU Ibn-Rochd de Casablanca. Ce travail a été réalisé sur une période de 10 mois (septembre 2007/juin 2008). Le but du travail est de montrer les caractéristiques de ce type de brûlures pour les prévenir et ce par l'information sur le diluant, produit causant ces brûlures, et ses différents dangers, la brûlure notamment. Durant cette période, nous avons colligé 17 cas de BFD sur un total de 356 patients admis au CNB pour brûlures aiguës toute étiologie confondue. La moyenne d'age des patients concernés est de 32 ans. Ils sont presque tous de sexe masculin (16 hommes/1 femme) et ont des antécédents de toxicomanie et/ou de délinquance. Tous nos patients sont de bas niveau socio-économique et habitent dans des bidonvilles pour la plupart. La brûlure est souvent secondaire à une agression dans la rue (92% des cas). Concernant les caractéristiques de la brûlure, la surface cutanée brûlée moyenne est de 23%; elle est souvent profonde et siège surtout au niveau des membres supérieurs et du tronc. PMID:21991179

  16. L'analyse par activation de neutrons de réacteur

    NASA Astrophysics Data System (ADS)

    Meyer, G.

    2003-02-01

    Quand les neutrons traversent la matière, certains sont transmis sans interaction, les autres interagissent avec le milieu traversé par diffusion et par absorption. Ce phénomène d'absorption est utilisé pour se protéger des neutrons, mais aussi pour les détecter; il peut également être utilisé pour identifier les noyaux “absorbants" et ainsi analyser le milieu traversé. En effet par différentes réactions nucléaires (n,γ), (n,p), (n,α), (n,fission), on obtient des noyaux résiduels qui sont souvent radioactifs; on dit que l'échantillon est “activé". Si l'on connaît le rendement d'activation et donc le pourcentage de noyaux ainsi “transmutés", les mesures de radioactivité induite vont permettre de déterminer la composition de l'échantillon irradié. Cette méthode dite d'analyse par activation neutronique est pratiquée depuis la découverte du neutron. Elle a permis grâce à sa sélectivité et à sa sensibilité d'avoir accès au domaine des traces et des ultra-traces dans des champs d'application très divers comme la métallurgie, l'archéologie, la biologie, la géochimie etc...

  17. Bacterial actin homolog ParM: arguments for an apolar, antiparallel double helix.

    PubMed

    Erickson, Harold P

    2012-09-28

    The bacterial actin homolog ParM has always been modeled as a polar filament, comprising two parallel helical strands, like actin itself. I present arguments here that ParM may be an apolar filament, in which the two helical strands are antiparallel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts.

    PubMed

    Amiable, Nathalie; Tat, Steeve Kwan; Lajeunesse, Daniel; Duval, Nicolas; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Boileau, Christelle

    2009-06-01

    In osteoarthritis (OA), the subchondral bone undergoes a remodelling process involving several factors synthesized by osteoblasts. In this study, we investigated the expression, production, modulation, and role of PAR-2 in human OA subchondral bone osteoblasts. PAR-2 expression and production were determined by real-time PCR and flow cytometry, respectively. PAR-2 modulation was investigated in OA subchondral bone osteoblasts treated with IL-1 beta (100 pg/ml), TNF-alpha (5 ng/ml), TGF-beta1 (10 ng/ml), PGE(2) (500 nM), IL-6 (10 ng/ml) and IL-17 (10 ng/ml). Membranous RANKL protein was assessed by flow cytometry, and OPG, MMP-1, MMP-9, MMP-13, IL-6 and intracellular signalling pathways by specific ELISAs. Bone resorptive activity was measured by using a co-culture model of human PBMC and OA subchondral bone osteoblasts. PAR-2 expression and production (p<0.05) were markedly increased when human OA subchondral bone osteoblasts were compared to normal. On OA osteoblasts, PAR-2 production was significantly increased by IL-1 beta, TNF-alpha and PGE(2). Activation of PAR-2 with a specific agonist, SLIGKV-NH(2), induced a significant up-regulation of MMP-1, MMP-9, IL-6, and membranous RANKL, but had no effect on MMP-13 or OPG production. Interestingly, bone resorptive activity was also significantly enhanced following PAR-2 activation. The PAR-2 effect was mediated by activation of the MAP kinases Erk1/2 and JNK. This study is the first to demonstrate that PAR-2 activation plays a role in OA subchondral bone resorption via an up-regulation of major bone remodelling factors. These results shed new light on the potential of PAR-2 as a therapeutic target in OA.

  19. Towards an improved LAI collection protocol via simulated field-based PAR sensing

    DOE PAGES

    Yao, Wei; Van Leeuwen, Martin; Romanczyk, Paul; ...

    2016-07-14

    In support of NASA’s next-generation spectrometer—the Hyperspectral Infrared Imager (HyspIRI)—we are working towards assessing sub-pixel vegetation structure from imaging spectroscopy data. Of particular interest is Leaf Area Index (LAI), which is an informative, yet notoriously challenging parameter to efficiently measure in situ. While photosynthetically-active radiation (PAR) sensors have been validated for measuring crop LAI, there is limited literature on the efficacy of PAR-based LAI measurement in the forest environment. This study (i) validates PAR-based LAI measurement in forest environments, and (ii) proposes a suitable collection protocol, which balances efficiency with measurement variation, e.g., due to sun flecks and various-sized canopymore » gaps. A synthetic PAR sensor model was developed in the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model and used to validate LAI measurement based on first-principles and explicitly-known leaf geometry. Simulated collection parameters were adjusted to empirically identify optimal collection protocols. Furthermore, these collection protocols were then validated in the field by correlating PAR-based LAI measurement to the normalized difference vegetation index (NDVI) extracted from the “classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) data (R 2 was 0.61). The results indicate that our proposed collecting protocol is suitable for measuring the LAI of sparse forest (LAI < 3–5 ( m 2/m 2)).« less

  20. Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration

    PubMed Central

    Wang, Shujie; Watanabe, Takashi; Matsuzawa, Kenji; Katsumi, Akira; Kakeno, Mai; Matsui, Toshinori; Ye, Feng; Sato, Kazuhide; Murase, Kiyoko; Sugiyama, Ikuko; Kimura, Kazushi; Mizoguchi, Akira; Ginsberg, Mark H.; Collard, John G.

    2012-01-01

    Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration. PMID:23071154

  1. Characterization of a point mutation in the parC gene of Mycoplasma bovirhinis associated with fluoroquinolone resistance.

    PubMed

    Hirose, K; Kawasaki, Y; Kotani, K; Abiko, K; Sato, H

    2004-05-01

    Quinolone-resistant (QR) mutants of Mycoplasma bovirhinis strain PG43 (type strain) were generated by stepwise selection in increasing concentrations of enrofloxacin (ENR). An alteration was found in the quinolone resistance-determining region (QRDR) of the parC gene coding for the ParC subunit of topoisomerase IV from these mutants, but not in the gyrA, gyrB, and parE gene coding for the GyrA and GyrB subunits of DNA gyrase and the ParE subunit of topoisomerase IV. Similarly, such an alteration in QRDR of parC was found in the field isolates of M. bovirhinis, which possessed various levels of QR. The substitution of leucine (Leu) by serine (Ser) at position 80 of QRDR of ParC was observed in both QR-mutants and QR-isolates. This is the first report of QR based on a point mutation of the parC gene in M. bovirhinis.

  2. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    USGS Publications Warehouse

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  3. Historic macrophyte development in Par Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grace, J.B.

    1985-08-01

    Aerial photographs from 1975, 1980, and 1983 were examined to evaluate the changes that have occurred in the wetland vegetation of Par Pond, a reactor-cooling reservoir. Evaluation of the aerial photographs was based on comparisons with ground-level vegetation maps made during July 1984. Comparisons of photographs from August and December of 1983 revealed the main seasonal change in the aerial coverage of wetland vegetation to be the wintertime loss of non-persistent emergent species such as Nelumbo lutea and Nymphaea odorata. Comparisons between September 1980 and August 1983 revealed that the lakeward extent of non-persistent macrophytes has increased by an averagemore » of 8.2 m, though not all sites have changed equally. For persistent macrophytes (principally Typha), the average increase in lakeward extent between December 1975 and August 1983 was 3.48 m. The extensive development of wetland vegetation in Par Pond as well as the substantial spread of vegetation over only a few years time indicates the high suitability of this habitat for the growth of wetland plants.« less

  4. A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization.

    PubMed

    Dickinson, Daniel J; Schwager, Francoise; Pintard, Lionel; Gotta, Monica; Goldstein, Bob

    2017-08-21

    Regulated protein-protein interactions are critical for cell signaling, differentiation, and development. For the study of dynamic regulation of protein interactions in vivo, there is a need for techniques that can yield time-resolved information and probe multiple protein binding partners simultaneously, using small amounts of starting material. Here we describe a single-cell protein interaction assay. Single-cell lysates are generated at defined time points and analyzed using single-molecule pull-down, yielding information about dynamic protein complex regulation in vivo. We established the utility of this approach by studying PAR polarity proteins, which mediate polarization of many animal cell types. We uncovered striking regulation of PAR complex composition and stoichiometry during Caenorhabditis elegans zygote polarization, which takes place in less than 20 min. PAR complex dynamics are linked to the cell cycle by Polo-like kinase 1 and govern the movement of PAR proteins to establish polarity. Our results demonstrate an approach to study dynamic biochemical events in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The DNA binding parvulin Par17 is targeted to the mitochondrial matrix by a recently evolved prepeptide uniquely present in Hominidae

    PubMed Central

    Kessler, Daniel; Papatheodorou, Panagiotis; Stratmann, Tina; Dian, Elke Andrea; Hartmann-Fatu, Cristina; Rassow, Joachim; Bayer, Peter; Mueller, Jonathan Wolf

    2007-01-01

    Background The parvulin-type peptidyl prolyl cis/trans isomerase Par14 is highly conserved in all metazoans. The recently identified parvulin Par17 contains an additional N-terminal domain whose occurrence and function was the focus of the present study. Results Based on the observation that the human genome encodes Par17, but bovine and rodent genomes do not, Par17 exon sequences from 10 different primate species were cloned and sequenced. Par17 is encoded in the genomes of Hominidae species including humans, but is absent from other mammalian species. In contrast to Par14, endogenous Par17 was found in mitochondrial and membrane fractions of human cell lysates. Fluorescence of EGFP fusions of Par17, but not Par14, co-localized with mitochondrial staining. Par14 and Par17 associated with isolated human, rat and yeast mitochondria at low salt concentrations, but only the Par17 mitochondrial association was resistant to higher salt concentrations. Par17 was imported into mitochondria in a time and membrane potential-dependent manner, where it reached the mitochondrial matrix. Moreover, Par17 was shown to bind to double-stranded DNA under physiological salt conditions. Conclusion Taken together, the DNA binding parvulin Par17 is targeted to the mitochondrial matrix by the most recently evolved mitochondrial prepeptide known to date, thus adding a novel protein constituent to the mitochondrial proteome of Hominidae. PMID:17875217

  6. Vps26B-retromer negatively regulates plasma membrane resensitization of PAR-2.

    PubMed

    Bugarcic, Andrea; Vetter, Irina; Chalmers, Silke; Kinna, Genevieve; Collins, Brett M; Teasdale, Rohan D

    2015-11-01

    Retromer is a trimeric complex composed of Vps26, Vps29, and Vps35 and has been shown to be involved in trafficking and sorting of transmembrane proteins within the endosome. The Vps26 paralog, Vps26B, defines a distinct retromer complex (Vps26B-retromer) in vivo and in vitro. Although endosomally associated, Vps26B-retromer does not bind the established retromer transmembrane cargo protein, cation-independent mannose 6-phosphate receptor (CI-M6PR), indicating it has a distinct role to retromer containing the Vps26A paralog. In the present study we use the previously established Vps26B-expressing HEK293 cell model to address the role of Vps26B-retromer in trafficking of the protease activated G-protein coupled receptor PAR-2 to the plasma membrane. In these cells there is no apparent defect in the initial activation of the receptor, as evidenced by release of intracellular calcium, ERK1/2 signaling and endocytosis of activated receptor PAR-2 into degradative organelles. However, we observe a significant delay in plasma membrane repopulation of the protease activated G protein-coupled receptor PAR-2 following stimulation, resulting in a defect in PAR-2 activation after resensitization. Here we propose that PAR-2 plasma membrane repopulation is regulated by Vps26B-retromer, describing a potential novel role for this complex. © 2015 International Federation for Cell Biology.

  7. Localization of amylin-like immunoreactivity in melanocyte-stimulating hormone-containing cells of the pars intermedia but not those of the pars distalis in the axolotl (Ambystoma mexicanum) pituitary.

    PubMed

    Suzuki, Hirohumi; Yamamoto, Toshiharu

    2016-04-01

    Immunohistochemical techniques were employed to investigate the distribution of amylin-like immunoreactivity in the axolotl (Ambystoma mexicanum) pituitary. Amylin-immunoreactive cells were observed in the pars intermedia, and these cells were found to be immunoreactive for α-melanocyte-stimulating hormone (αMSH) as well. In contrast, αMSH-immunoreactive cells in the pars distalis were immuno-negaitive for amylin. These light microscopic findings were confirmed by immunoelectron microscopy. Amylin-immunoreactive signals were located on the haloes of presumable secretory granules in association with αMSH-immunoreactive signals in the amylin-positive cells. However, in the pars distalis, the αMSH-positive cells did not contain amylin-immunoreactive secretory granules. Western blot analysis of axolotl pituitary extracts revealed the labeling of a protein band at approximately 10.5-kDa by the anti-rat amylin serum, which was not labeled by the anti-αMSH antibody. These findings indicate that amylin secreted from MSH-producing cells in the pars intermedia may modulate MSH secretion in an autocrine fashion and may participate in MSH functions such as fatty homeostasis together with MSH. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. In Vitro Activity of Five Quinolones and Analysis of the Quinolone Resistance-Determining Regions of gyrA, gyrB, parC, and parE in Ureaplasma parvum and Ureaplasma urealyticum Clinical Isolates from Perinatal Patients in Japan

    PubMed Central

    Kawai, Yasuhiro; Nakura, Yukiko; Wakimoto, Tetsu; Nomiyama, Makoto; Tokuda, Tsugumichi; Takayanagi, Toshimitsu; Shiraishi, Jun; Wasada, Kenshi; Kitajima, Hiroyuki; Fujita, Tomio; Nakayama, Masahiro; Mitsuda, Nobuaki; Nakanishi, Isao; Takeuchi, Makoto

    2015-01-01

    Ureaplasma spp. cause several disorders, such as nongonococcal urethritis, miscarriage, and preterm delivery with lung infections in neonates, characterized by pathological chorioamnionitis in the placenta. Although reports on antibiotic resistance in Ureaplasma are on the rise, reports on quinolone-resistant Ureaplasma infections in Japan are limited. The purpose of this study was to determine susceptibilities to five quinolones of Ureaplasma urealyticum and Ureaplasma parvum isolated from perinatal samples in Japan and to characterize the quinolone resistance-determining regions in the gyrA, gyrB, parC, and parE genes. Out of 28 clinical Ureaplasma strains, we isolated 9 with high MICs of quinolones and found a single parC gene mutation, resulting in the change S83L. Among 158 samples, the ParC S83L mutation was found in 37 samples (23.4%), including 1 sample harboring a ParC S83L–GyrB P462S double mutant. Novel mutations of ureaplasmal ParC (S83W and S84P) were independently found in one of the samples. Homology modeling of the ParC S83W mutant suggested steric hindrance of the quinolone-binding pocket (QBP), and de novo prediction of peptide structures revealed that the ParC S84P may break/kink the formation of the α4 helix in the QBP. Further investigations are required to unravel the extent and mechanism of antibiotic resistance of Ureaplasma spp. in Japan. PMID:25645833

  9. Par-4, a Gene Required for Cytoplasmic Localization and Determination of Specific Cell Types in Caenorhabditis Elegans Embryogenesis

    PubMed Central

    Morton, D. G.; Roos, J. M.; Kemphues, K. J.

    1992-01-01

    Specification of some cell fates in the early Caenorhabditis elegans embryo is mediated by cytoplasmic localization under control of the maternal genome. Using nine newly isolated mutations, and two existing mutations, we have analyzed the role of the maternally expressed gene par-4 in cytoplasmic localization. We recovered seven new par-4 alleles in screens for maternal effect lethal mutations that result in failure to differentiate intestinal cells. Two additional par-4 mutations were identified in noncomplementation screens using strains with a high frequency of transposon mobility. All 11 mutations cause defects early in development of embryos produced by homozygous mutant mothers. Analysis with a deficiency in the region indicates that it33 is a strong loss-of-function mutation. par-4(it33) terminal stage embryos contain many cells, but show no morphogenesis, and are lacking intestinal cells. Temperature shifts with the it57ts allele suggest that the critical period for both intestinal differentiation and embryo viability begins during oogenesis, about 1.5 hr before fertilization, and ends before the four-cell stage. We propose that the primary function of the par-4 gene is to act as part of a maternally encoded system for cytoplasmic localization in the first cell cycle, with par-4 playing a particularly important role in the determination of intestine. Analysis of a par-4;par-2 double mutant suggests that par-4 and par-2 gene products interact in this system. PMID:1582558

  10. u-PAR expression in cancer associated fibroblast: new acquisitions in multiple myeloma progression.

    PubMed

    Ciavarella, S; Laurenzana, A; De Summa, S; Pilato, B; Chillà, A; Lacalamita, R; Minoia, C; Margheri, F; Iacobazzi, A; Rana, A; Merchionne, F; Fibbi, G; Del Rosso, M; Guarini, A; Tommasi, S; Serratì, S

    2017-03-24

    Multiple Myeloma (MM) is a B-cell malignancy in which clonal plasma cells progressively expand within the bone marrow (BM) as effect of complex interactions with extracellular matrix and a number of microenvironmental cells. Among these, cancer-associated fibroblasts (CAF) mediate crucial reciprocal signals with MM cells and are associated to aggressive disease and poor prognosis. A large body of evidence emphasizes the role of the urokinase plasminogen activator (u-PA) and its receptor u-PAR in potentiating the invasion capacity of tumor plasma cells, but little is known about their role in the biology of MM CAF. In this study, we investigated the u-PA/u-PAR axis in MM-associated fibroblasts and explore additional mechanisms of tumor/stroma interplay in MM progression. CAF were purified from total BM stromal fraction of 64 patients including monoclonal gammopathy of undetermined significance, asymptomatic and symptomatic MM, as well as MM in post-treatment remission. Flow cytometry, Real Time PCR and immunofluorescence were performed to investigate the u-PA/u-PAR system in relation to the level of activation of CAF at different stages of the disease. Moreover, proliferation and invasion assays coupled with silencing experiments were used to prove, at functional level, the function of u-PAR in CAF. We found higher activation level, along with increased expression of pro-invasive molecules, including u-PA, u-PAR and metalloproteinases, in CAF from patients with symptomatic MM compared to the others stages of the disease. Consistently, CAF from active MM as well as U266 cell line under the influence of medium conditioned by active MM CAF, display higher proliferative rate and invasion potential, which were significantly restrained by u-PAR gene expression inhibition. Our data suggest that the stimulation of u-PA/u-PAR system contributes to the activated phenotype and function of CAF during MM progression, providing a biological rationale for future targeted therapies

  11. Proteinase-activated receptor 2 (PAR(2)) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level.

    PubMed

    Kaufmann, Roland; Hascher, Alexander; Mussbach, Franziska; Henklein, Petra; Katenkamp, Kathrin; Westermann, Martin; Settmacher, Utz

    2012-12-01

    In this study, we demonstrate functional expression of the proteinase-activated receptor 2 (PAR(2)), a member of a G-protein receptor subfamily in primary cholangiocarcinoma (PCCA) cell cultures. Treatment of PCCA cells with the serine proteinase trypsin and the PAR(2)-selective activating peptide, furoyl-LIGRLO-NH(2), increased migration across a collagen membrane barrier. This effect was inhibited by a PAR(2)-selective pepducin antagonist peptide (P2pal-18S) and it was also blocked with the Met receptor tyrosine kinase (Met) inhibitors SU 11274 and PHA 665752, the MAPKinase inhibitors PD 98059 and SL 327, and the Stat3 inhibitor Stattic. The involvement of Met, p42/p44 MAPKinases and Stat3 in PAR(2)-mediated PCCA cell signaling was further supported by the findings that trypsin and the PAR(2)-selective agonist peptide, 2-furoyl-LIGRLO-NH(2), stimulated activating phosphorylation of these signaling molecules in cholangiocarcinoma cells. With our results, we provide a novel signal transduction module in cholangiocarcinoma cell migration involving PAR(2)-driven activation of Met, p42/p44 MAPKinases and Stat3.

  12. Shape-persistent nanosize organometallic complexes: synthesis and application in a nanofiltration membrane reactor.

    PubMed

    Dijkstra, Harm P; Kruithof, Cornelis A; Ronde, Niek; Van De Coevering, Rob; Ramón, Diego J; Vogt, Dieter; Van Klink, Gerard P M; Van Koten, Gerard

    2003-02-07

    Shape-persistent multi(NCN-palladium and/or -platinum) complexes having one- (5 and 6), two- (1 and 2), and three-dimensional (3 and 4) geometries were prepared in moderate to good yields. Two different approaches were used to construct the multimetallic materials: (i) the construction of the multisite ligands followed by the permetalation step and (ii) selective and mild one-pot coupling of monometallic buiding blocks to a multifunctional shape-persistent organic core molecule. The first approach was used to prepare the palladated and/or platinated tris- (2) and bis(NCN-pincer) (5) complexes, while the second approach afforded the palladated and platinated octakis- (3) and dodecakis(NCN-pincer) (4) complexes. Complexes 1-6 were subjected to nanofiltration (NF) experiments in order to investigate the influence of rigidity and geometry on the retention of these molecules by NF membranes. For this purpose, the corresponding (NCN-Pt-X)(n)() complexes (1c-4c, 5, and 6) were used since exposing these complexes to sulfur dioxide in solution resulted in the formation of bright orange complexes, allowing the use of UV/vis spectroscopy to accurately determine the concentrations of 1-6 in both retentate and permeate. Using the MPF-60 (MWCO = 400) NF-membrane, retention rates of 82.4 (6), 93.9 (1c), 98.7 (2c), 99.5 (3c), 99.6 (5), and >99.9% (4c) were found, while 2c and 4c in combination with the MPF-50 (MWCO = 700) NF-membrane were retained in 97.6 and 99.9%, respectively. A clear relationship is observed between the dimensions calculated by molecular modeling and the retention rates of 1-6. The one-dimensional bis(pincer-platinum) complex 5, however, shows an unexpectedly high retention rate (99.6%) that can be due to precipitation of the complex in the membrane (clogging of the membrane) and/or to the formation of larger aggregates near the membrane. In addition, comparison of 2 and 4 with flexible nickelated G0- and G1-dendrimers with similar dimensions proved that a

  13. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  14. Paraplégie compliquant une plaie abdominale antérieure par arme blanche

    PubMed Central

    Elahmadi, Brahim; Awab, Almahdi; El Moussaoui, Rachid; El Hijri, Ahmed; Azzouzi, Abderrahim; Alilou, Mustapha

    2015-01-01

    Les traumatismes médullaires sont des complications rares des plaies abdominales antérieures par arme blanche. Son diagnostic est difficile parfois retardé. L'imagerie par résonance magnétique reste l'examen de choix. Le traitement dépend du tableau clinique et de la gravité de la souffrance médullaire. Le pronostic est corrélé à l’étendue et à la nature de la lésion médullaire. Nous rapportons un cas exceptionnel d'un traumatisme médullaire chez une patiente victime d'une plaie abdominale antérieure par arme blanche. PMID:25995808

  15. In vitro activity of five quinolones and analysis of the quinolone resistance-determining regions of gyrA, gyrB, parC, and parE in Ureaplasma parvum and Ureaplasma urealyticum clinical isolates from perinatal patients in Japan.

    PubMed

    Kawai, Yasuhiro; Nakura, Yukiko; Wakimoto, Tetsu; Nomiyama, Makoto; Tokuda, Tsugumichi; Takayanagi, Toshimitsu; Shiraishi, Jun; Wasada, Kenshi; Kitajima, Hiroyuki; Fujita, Tomio; Nakayama, Masahiro; Mitsuda, Nobuaki; Nakanishi, Isao; Takeuchi, Makoto; Yanagihara, Itaru

    2015-04-01

    Ureaplasma spp. cause several disorders, such as nongonococcal urethritis, miscarriage, and preterm delivery with lung infections in neonates, characterized by pathological chorioamnionitis in the placenta. Although reports on antibiotic resistance in Ureaplasma are on the rise, reports on quinolone-resistant Ureaplasma infections in Japan are limited. The purpose of this study was to determine susceptibilities to five quinolones of Ureaplasma urealyticum and Ureaplasma parvum isolated from perinatal samples in Japan and to characterize the quinolone resistance-determining regions in the gyrA, gyrB, parC, and parE genes. Out of 28 clinical Ureaplasma strains, we isolated 9 with high MICs of quinolones and found a single parC gene mutation, resulting in the change S83L. Among 158 samples, the ParC S83L mutation was found in 37 samples (23.4%), including 1 sample harboring a ParC S83L-GyrB P462S double mutant. Novel mutations of ureaplasmal ParC (S83W and S84P) were independently found in one of the samples. Homology modeling of the ParC S83W mutant suggested steric hindrance of the quinolone-binding pocket (QBP), and de novo prediction of peptide structures revealed that the ParC S84P may break/kink the formation of the α4 helix in the QBP. Further investigations are required to unravel the extent and mechanism of antibiotic resistance of Ureaplasma spp. in Japan. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies

    PubMed Central

    Caiolfa, Valeria R.; Zamai, Moreno; Malengo, Gabriele; Andolfo, Annapaola; Madsen, Chris D.; Sutin, Jason; Digman, Michelle A.; Gratton, Enrico; Blasi, Francesco; Sidenius, Nicolai

    2007-01-01

    To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents. PMID:18056417

  17. Optical heterogeneous bioassay for the detection of the inflammatory biomarker suPAR

    NASA Astrophysics Data System (ADS)

    Tombelli, S.; Trono, C.; Adinolfi, B.; Chiavaioli, F.; Giannetti, A.; Eugen-Olsen, J.; Bernini, R.; Grimaldi, I. A.; Persichetti, G.; Testa, G.; Baldini, F.

    2015-03-01

    Soluble urokinase plasminogen activator receptor (suPAR) is an inflammatory protein present in blood and a marker of disease presence, severity and prognosis. A heterogeneous sandwich assay is proposed for quantifying suPAR by employing a capture antibody from rat and a biotinylated detection antibody from mouse. Optical detection was achieved by a successive exposure of the biotinylated sandwich to streptavidin labelled with ATTO647N. The heterogeneous assay was implemented on a multichannel polymethylmetacrylate (PMMA) optical biochip, potentially capable of the simultaneous detection of more than one analyte. Capture antibody was immobilized on the PMMA surface of the microfluidic channel and the assay was performed with the following protocol: i) surface blocking with BSA, ii) incubation with suPAR or PBS, iii) incubation with biotinylated suPAR detection Ab and iv) incubation with streptavidin-ATTO647N. Promising preliminary results were obtained with this protocol. Moreover, an improved optical setup is proposed which avoids the mechanical scanning of the chip and consequently the in-series fluorescence excitation and read out, allowing the simultaneous measurement of the fluorescence on all the channels of the microfluidic chip.

  18. Effect of Par Frying on Composition and Texture of Breaded and Battered Catfish

    USDA-ARS?s Scientific Manuscript database

    Catfish is often consumed as a breaded and battered fried product; however, baking is considered a healthier alternative to frying. One method of improving the texture properties of baked products is to par fried prior to baking. The objective of this study was to examine the effect of par frying ...

  19. Lambeaux autofermants pour le traitement des brulures electriques du scalp par haut voltage

    PubMed Central

    Hafidi, J.; El Mazouz, S.; El Mejatti, H.; Fejjal, N.; Gharib, N.E.; Abbassi, A.; Belmahi, A.M.

    2011-01-01

    Summary Les brûlures électriques par haut voltage sont responsables de gros dégâts tissulaires en immédiat et dans les jours suivant l’accident du fait de la chaleur importante dégagée par effet joule et de la thrombose microvasculaire évolutive. Les pertes de substances du scalp secondaires à ces brûlures nécessitent une couverture par lambeaux vu la destruction du périoste et du calvarium en regard. De juin 1997 à juin 2008, 15 patients ont été traités pour des pertes de substance du scalp secondaires à des brûlures électriques par haut voltage de diamètre allant de 8 à 11 cm et siégeant dans la région tonsurale. Ces patients ont été opérés dans la première semaine suivant l’accident. Les pertes de substance du scalp de taille moyenne secondaires à ces brûlures peuvent être couvertes per primam de façon fiable par des lambeaux locaux axialisés et multiples. Nous relatons l’expérience du Service de Chirurgie Plastique du Centre Hospitalier Universitaire Ibn-Sina, Rabat, Maroc, dans la gestion et la prise en charge de ces brûlures. PMID:22262963

  20. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    PubMed

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. On Operating a Nanofiltration Membrane for Olive Mill Wastewater Purification at Sub- and Super-Boundary Conditions.

    PubMed

    Stoller, Marco; Ochando-Pulido, Javier Miguel; Field, Robert

    2017-07-14

    In the last decades, membrane processes have gained a significant share of the market for wastewater purification. Although the product (i.e., purified water) is not of high added value, these processes are feasible both technically and from an economic point of view, provided the flux is relatively high and that membrane fouling is strongly inhibited. By controlling membrane fouling, the membrane may work for years without service, thus dramatically reducing operating costs and the need for membrane substitution. There is tension between operating at high permeate fluxes, which enhances fouling but reduces capital costs, and operating at lower fluxes which increases capital costs. Operating batch membrane processes leads to increased difficulties, since the feed fed to the membrane changes as a function of the recovery value. This paper is concerned with the operation of such a process. Membrane process designers should therefore avoid membrane fouling by operating membranes away from the permeate flux point where severe fouling is triggered. The design and operation of membrane purification plants is a difficult task, and the precision to properly describe the evolution of the fouling phenomenon as a function of the operating conditions is a key to success. Many reported works have reported on the control of fouling by operating below the boundary flux. On the other hand, only a few works have successfully sought to exploit super-boundary operating conditions; most super-boundary operations are reported to have led to process failures. In this work, both sub- and super-boundary operating conditions for a batch nanofiltration membrane process used for olive mill wastewater treatment were investigated. A model to identify a priori the point of transition from a sub-boundary to a super-boundary operation during a batch operation was developed, and this will provide membrane designers with a helpful tool to carefully avoid process failures.

  2. In vitro and in vivo inhibition of proangiogenic retinal phenotype by an antisense oligonucleotide downregulating uPAR expression.

    PubMed

    Lulli, Matteo; Cammalleri, Maurizio; Granucci, Irene; Witort, Ewa; Bono, Silvia; Di Gesualdo, Federico; Lupia, Antonella; Loffredo, Rosa; Casini, Giovanni; Dal Monte, Massimo; Capaccioli, Sergio

    2017-08-26

    Neoangiogenesis is the main pathogenic event involved in a variety of retinal diseases. It has been recently demonstrated that inhibiting the urokinase-type plasminogen activator receptor (uPAR) results in reduced angiogenesis in a mouse model of oxygen-induced retinopathy (OIR), establishing uPAR as a therapeutic target in proliferative retinopathies. Here, we evaluated in cultured human retinal endothelial cells (HRECs) and in OIR mice the potential of a specific antisense oligodeoxyribonucleotide (ASO) in blocking the synthesis of uPAR and in providing antiangiogenic effects. uPAR expression in HRECs was inhibited by lipofection with the phosphorotioated 5'-CGGCGGGTGACCCATGTG-3' ASO-uPAR, complementary to the initial translation site of uPAR mRNA. Inhibition of uPAR expression via ASO-uPAR was evaluated in HRECs by analyzing VEGF-induced tube formation and migration. In addition, the well-established and reproducible murine OIR model was used to induce retinal neovascularization in vivo. OIR mice were injected intraperitoneally with ASO-uPAR and retinopathy was evaluated considering the extent of the avascular area in the central retina and neovascular tuft formation. The ASO-uPAR specifically decreased uPAR mRNA and protein levels in HRECs and mitigated VEGF-induced tube formation and cell migration. Noteworthy, in OIR mice ASO-uPAR administration reduced both the avascular area and the formation of neovascular tufts. In conclusion, although the extrapolation of these experimental findings to the clinic is not straightforward, ASO-uPAR may be considered a potential therapeutic tool for treatment of proliferative retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction.

    PubMed

    Wang, Yi-Ning; Tang, Chuyang Y

    2011-08-01

    Protein fouling of nanofiltration (NF), reverse osmosis (RO), and ultrafiltration (UF) membranes by bovine serum albumin (BSA), lysozyme (LYS), and their mixture was investigated under cross-flow conditions. The effect of solution chemistry, membrane properties, and permeate flux level was systematically studied. When the solution pH was within the isoelectric points (IEPs) of the two proteins (i.e., pH 4.7-10.4), the mixed protein system experienced more severe flux decline compared to the respective single protein systems, which may be attributed to the electrostatic attraction between the negatively charged BSA and positively charged LYS molecules. Unlike a typical single protein system, membrane fouling by BSA-LYS mixture was only weakly dependent on solution pH within this pH range, and increased ionic strength was found to enhance the membrane flux as a result of the suppressed BSA-LYS electrostatic attraction. Membrane fouling was likely controlled by foulant-fouled-membrane interaction under severe fouling conditions (elevated flux level and unfavorable solution chemistry that promotes fouling), whereas it was likely dominated by foulant-clean-membrane interaction under mild fouling conditions. Compared to nonporous NF and RO membranes, the porous UF membrane was more susceptible to dramatic flux decline due to the increased risk of membrane pore plugging. This study reveals that membrane fouling by mixed macromolecules may behave very differently from that by typical single foulant system, especially when the inter-foulant-species interaction dominates over the intra-species interaction in the mixed foulant system.

  4. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data

    DOE PAGES

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S.; ...

    2017-02-23

    Here, a newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides,more » important for metal extraction chemistry, are parametrized using ParFit.« less

  5. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S.

    Here, a newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides,more » important for metal extraction chemistry, are parametrized using ParFit.« less

  6. Décontamination nucléaire par laser UV

    NASA Astrophysics Data System (ADS)

    Delaporte, Ph.; Gastaud, M.; Marine, W.; Sentis, M.; Uteza, O.; Thouvenot, P.; Alcaraz, J. L.; Le Samedy, J. M.; Blin, D.

    2003-06-01

    Le développement et l'utilisation de procédés propres pour le nettoyage ou la préparation de surfaces est l'une des priorités du milieu industriel. Cet intérêt est d'autant plus grand dans le domaine du nucléaire pour lequel la réduction des déchets est un axe de recherche important. Un dispositif de décontamination nucléaire par laser UV impulsionnel a été développé et testé. Il est composé. d'un laser à excimères de 1kW, d'un faisceau de fibres optiques et d'un dispositif de récupération des particules. Les essais réalisés en milieu actif ont démontré sa capacité à nettoyer des surfaces métalliques polluées par différents radioéléments avec des facteurs de décontamination généralement supérieurs à 10. Ce dispositif permet de décontaminer de grandes surfaces de géométrie simple en réduisant fortement la génération de déchets secondaires. Il est, à ce jour et dans ces conditions d'utilisations, le procédé de décontamination par voie sèche le plus efficace.

  7. Organic compounds removal and toxicity reduction of landfill leachate by commercial bakers' yeast and conventional bacteria based membrane bioreactor integrated with nanofiltration.

    PubMed

    Reis, Beatriz Gasparini; Silveira, Amanda Lemes; Tostes Teixeira, Luiza Procópio; Okuma, Adriana Akemi; Lange, Liséte Celina; Amaral, Miriam Cristina Santos

    2017-12-01

    This study aimed to compare the performance of a commercial bakers' yeast (MBRy) and conventional bacteria (MBRb) based membrane bioreactor integrated with nanofiltration (NF) in the removal of landfill leachate toxicity. Performances were evaluated using physicochemical analyses, toxicity tests and identification of organic compounds. The MBR b and MBR y were operated with a hydraulic retention time (HRT) of 48h and solids retention time (SRT) of 60 d. The MBR y demonstrated better removal efficiencies for COD (69±7%), color (54±11%) and ammoniacal nitrogen (34±7%) compared to MBR b , which showed removal efficiencies of 27±5%, 33±4% and 27±7%, for COD, color and ammoniacal nitrogen. Although the MBR y seems to be the configuration that presented the highest efficiency; it generated toxic permeate whose toxicity cannot be explained by physicochemical results. The identification of compounds shows that there is a wide range of compounds in the landfill leachate in addition to others that are produced in the biological treatment steps. The NF plays a crucial role in the polishing of the final effluents by the either complete or partial retention of compounds, that attribute toxicity to the leachate, and inorganic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Identification of exosite residues of factor Xa involved in recognition of PAR-2 on endothelial cells.

    PubMed

    Manithody, Chandrashekhara; Yang, Likui; Rezaie, Alireza R

    2012-03-27

    Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.

  9. Enhanced proliferation of human hepatoma cells by PAR-2 agonists via the ERK/AP-1 pathway.

    PubMed

    Xie, Liqun; Zheng, Yanmin; Li, Xuan; Zhao, Junyan; Chen, Xiaoyi; Chen, Li; Zhou, Jing; Hai, Ou; Li, Fei

    2012-11-01

    To investigate the expression and role of PAR-2 in the proliferation of the human hepatoma cell line HepG2, PAR-2 protein and mRNA expression were evaluated by immuno-histochemistry, immunofluorescence and RT-PCR analysis. The signaling pathways downstream of PAR-2 activation that lead to hepatoma cell proliferation were analyzed. The results showed that PAR-2 is expressed in human hepatoma cells and PAR-2 mRNA expression was found to be upregulated in cells treated with trypsin or SLIGKV-NH2 (P<0.001). The proliferation rate of HepG2 cells treated with trypsin or SLIGKV-NH2 was significantly increased (P<0.001). The percentage of S phase, G2/M phase and the proliferation index (PI) of HepG2 cells treated with trypsin or SLIGKV-NH2 were significantly elevated (P<0.001). The proliferative responses of HepG2 to trypsin and SLIGKV-NH2 were associated with the upregulation of c-fos and PCNA, which were significantly blocked by PD98059 pretreatment. In conclusion, our results indicate that PAR-2 enhances proliferation of human hepatoma cells possibly via the ERK/AP-1 pathway.

  10. Questioning Our Questions: Assessing Question Asking Practices to Evaluate a yPAR Program

    ERIC Educational Resources Information Center

    Grace, Sarah; Langhout, Regina Day

    2014-01-01

    The purpose of this research was to examine question asking practices in a youth participatory action research (yPAR) after school program housed at an elementary school. The research question was: In which ways did the adult question asking practices in a yPAR setting challenge and/or reproduce conventional models of power in educational…

  11. [Effect of ERK/AP-1 signaling pathway on proliferation of hepatoma cells induced by PAR-2 agonists].

    PubMed

    Zheng, Yan-min; Xie, Li-qun; Li, Xuan; Zhao, Jun-yan; Chen, Xiao-yi; Chen, Li; Zhou, Jing; Li, Fei

    2009-12-01

    To investigate the expression of protease activated receptor-2 (PAR-2) in human HepG2 hepatoma cells and elucidate the effects of trypsin and PAR-2 agonist peptide SLIGKV-NH(2) upon the proliferation of hepatoma cells and its intracellular signaling mechanism. PAR-2 protein and mRNA expression were detected by immunofluorescence and RT-PCR. The cells were treated with SLIGKV-NH(2), trypsin, reverse PAR-2 agonist peptide VKGILS-NH(2) or PD98059. The changes of cell cycle distribution were evaluated by flow cytometry. The proliferative potential of HepG2 cells was estimated by MTT. The changes of PAR-2, c-fos and PCNA mRNA expression were detected by RT-PCR. The changes of c-fos and PCNA protein expression were detected by Western blotting. PAR-2 protein and mRNA were expressed in HepG2 cells. PAR-2 mRNA expression (PAR-2/beta-actin) were 0.70 +/- 0.04 and 0.99 +/- 0.05 respectively in cells treated with trypsin and SLIGKV-NH(2). They were both significantly higher than that in the control group (0.35 +/- 0.05, F = 135.534, P < 0.01). Percent G(0)/G(1) phase of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly lower than those in the control group [(56.11 +/- 0.85)%, (57.85 +/- 0.46)% vs (79.12 +/- 0.67)%, both P < 0.01] Percent S phase, G(2)/M phase and proliferation index (PI) of HepG2 cells treated with trypsin or SLIGKV-NH(2) were significantly elevated (P < 0.01). The proliferation-enhancing effects and the up-regulation of mRNA and protein of c-fos and PCNA induced by trypsin or SLIGKV-NH(2) were significantly blocked by pretreatment with PD98059 (P < 0.01). There was no statistical significance in proliferation of HepG2 cells between the reverse PAR-2 agonist peptide VKGILS-NH(2) and control group (P > 0.05). PAR-2 is expressed in HepG2 hepatoma cells. PAR-2 activation induced by trypsin or SLIGKV-NH(2) promotes the proliferation of HepG2 cells partially via the ERK/AP-1 pathway.

  12. Combination with CK19 Might Increase the Prognostic Power of Hep Par 1 in Hepatocellular Carcinoma after Curative Resection.

    PubMed

    Jin, Ye; Liang, Zhi-Yong; Zhou, Wei-Xun; Zhou, Li

    2017-07-31

    Hepatocyte Paraffin 1 (Hep Par 1) and cytokeratin 19 (CK19) were shown to be associated with post-surgical prognosis of hepatocellular carcinoma (HCC). However, further validation might be needed. Besides, their combined evaluation has not been reported. The present study was designed to address the issues. Expressions of Hep Par 1 and CK19 were detected using tissue microarray-based immunohistochemical staining in 79 patients with HCC underwent curative hepatectomy. Their associations with cliniopathologic variables, overall and recurrence-free survival were analyzed. Hep Par 1 was highly expressed in 61 patients (77.2%), whereas CK19 was positive in 8 patients (10.1%). Moreover, expressions of these two proteins were all associated with tumor-node-metastasis (TNM) stage and vascular invasion. It was found that high Hep Par 1 expression was univariately associated with good overall and recurrence-free survival, while CK19 was marginally prognostic. Also in univariate analyses, combination of the two markers more effectively predicted for long-term prognosis in HCC than Hep Par 1 did. However, neither Hep Par 1 nor Hep Par 1/CK19 was multivariately significant. Finally, Hep Par 1/CK19 combined with TNM stage might obtain more satisfactory outcome prediction, especially for overall survival. Combination of CK19 with Hep Par 1 might have higher prognostic power, which might be further improved by adding TNM stage, than Hep Par 1 alone, in resected HCC. Of course, subsequent confirmation is necessary.

  13. Fully human antibodies against the Protease-Activated Receptor-2 (PAR-2) with anti-inflammatory activity.

    PubMed

    Giblin, Patricia; Boxhammer, Rainer; Desai, Sudha; Kroe-Barrett, Rachel; Hansen, Gale; Ksiazek, John; Panzenbeck, Maret; Ralph, Kerry; Schwartz, Racheline; Zimmitti, Clare; Pracht, Catrin; Miller, Sandra; Magram, Jeanne; Litzenburger, Tobias

    2011-01-01

    PAR-2 belongs to a family of G-protein coupled Protease-Activated Receptors (PAR) which are activated by specific proteolytic cleavage in the extracellular N-terminal region. PAR-2 is activated by proteases such as trypsin, tryptase, proteinase 3, factor VIIa, factor Xa and is thought to be a mediator of inflammation and tissue injury, where elevated levels of proteases are found. Utilizing the HuCAL GOLD® phage display library we generated fully human antibodies specifically blocking the protease cleavage site in the N-terminal domain. In vitro affinity optimization resulted in antibodies with up to 1000-fold improved affinities relative to the original parental antibodies with dissociation constants as low as 100 pM. Corresponding increases in potency were observed in a mechanistic protease cleavage assay. The antibodies effectively inhibited PAR-2 mediated intracellular calcium release and cytokine secretion in various cell types stimulated with trypsin. In addition, the antibodies demonstrated potent inhibition of trypsin induced relaxation of isolated rat aortic rings ex vivo. In a short term mouse model of inflammation, the trans vivo DTH model, anti-PAR-2 antibodies showed inhibition of the inflammatory swelling response. In summary, potent inhibitors of PAR-2 were generated which allow further assessment of the role of this receptor in inflammation and evaluation of their potential as therapeutic agents.

  14. Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers

    PubMed Central

    Miotto, D; Hollenberg, M; Bunnett, N; Papi, A; Braccioni, F; Boschetto, P; Rea, F; Zuin, A; Geppetti, P; Saetta, M; Maestrelli, P; Fabbri, L; Mapp, C

    2002-01-01

    Background: Protease activated receptor-2 (PAR-2) is a transmembrane G protein coupled receptor preferentially activated by trypsin and tryptase. The protease activated receptors play an important role in most components of injury responses including cell proliferation, migration, matrix remodelling, and inflammation. Cigarette smoking causes an inflammatory process in the central airways, peripheral airways, lung parenchyma, and adventitia of pulmonary arteries. Methods: To quantify the expression of PAR-2 in the central airways of smokers and non-smokers, surgical specimens obtained from 30 subjects undergoing lung resection for localised pulmonary lesions (24 with a history of cigarette smoking and six non-smoking control subjects) were examined. Central airways were immunostained with an antiserum specific for PAR-2 and PAR-2 expression was quantified using light microscopy and image analysis. Results: PAR-2 expression was found in bronchial smooth muscle, epithelium, glands, and in the endothelium and smooth muscle of bronchial vessels. PAR-2 expression was similar in the central airways of smokers and non-smokers. When smokers were divided according to the presence of symptoms of chronic bronchitis and chronic airflow limitation, PAR-2 expression was increased in smooth muscle (median 3.8 (interquartile range 2.9–5.8) and 1.4 (1.07–3.4) respectively); glands (33.3 (18.2–43.8) and 16.2 (11.5–22.2), respectively); and bronchial vessels (54.2 (48.7–56.8) and 40.0 (36–40.4), respectively) of smokers with symptoms of chronic bronchitis with normal lung function compared with smokers with chronic airflow limitation (COPD), but the increase was statistically significant (p<0.005) only for bronchial vessels. Conclusions: PAR-2 is present in bronchial smooth muscle, glands, and bronchial vessels of both smokers and non-smokers. An increased expression of PAR-2 was found in bronchial vessels of patients with bronchitis compared with those with COPD. PMID

  15. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing.

    PubMed

    Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun

    2015-01-01

    In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process.

  16. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing

    PubMed Central

    Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun

    2015-01-01

    In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process. PMID:26461260

  17. Diffraction de rayons X sur les plaquettes de fer durcies par cyanuration

    NASA Astrophysics Data System (ADS)

    Popescu, M.; Hoyer, W.; Stegarescu, M.; Cornet, A.; Broll, N.

    2004-11-01

    Une méthode de cyanuration a été developpée pour les surfaces des plaquettes de fer, basée sur une réaction thermochimique qui conduit à la formation des couches dures sur le métal. Les échantillons ont été analysés, pour de temps différents de traitement, par diffraction de rayons X et par mesures de dureté.

  18. PAR1 participates in the ability of multidrug resistance and tumorigenesis by controlling Hippo-YAP pathway.

    PubMed

    Fujimoto, Daisuke; Ueda, Yuki; Hirono, Yasuo; Goi, Takanori; Yamaguchi, Akio

    2015-10-27

    The Hippo pathway significantly correlates with organ size control and tumorigenesis. The activity of YAP/TAZ, a transducer of the Hippo pathway, is required to sustain self-renewal and tumor-initiation capacities in cancer stem cells (CSCs). But, upstream signals that control the mammalian Hippo pathway have not been well understood. Here, we reveal a connection between the Protease-activated receptor 1 (PAR1) signaling pathway and the Hippo-YAP pathway in gastric cancer stem-like cells. The selective PAR1 agonist TFLLR-NH2 induces an increase in the fraction of side population cells which is enriched in CSCs, and promotes tumorigenesis, multi cancer drug resistance, cell morphological change, and cell invasion which are characteristics of CSCs. In addition, PAR1 activation inhibits the Hippo-YAP pathway kinase Lats via Rho GTPase. Lats kinase inhibition in turn results in increased nuclear localization of dephosphorylated YAP. Furthermore, PAR1 activation confers CSCs related traits via the Hippo-YAP pathway, and the Hippo-YAP pathway correlates with epithelial mesenchymal transition which is induced by PAR1 activation. Our research suggests that the PAR1 signaling deeply participates in the ability of multi drug resistance and tumorigenesis through interactions with the Hippo-YAP pathway signaling in gastric cancer stem-like cells. We presume that inhibited YAP is a new therapeutic target in the treatment human gastric cancer invasion and metastasis by dysregulated PAR1 or its agonists.

  19. Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis.

    PubMed

    Lennerz, Jochen K; Hurov, Jonathan B; White, Lynn S; Lewandowski, Katherine T; Prior, Julie L; Planer, G James; Gereau, Robert W; Piwnica-Worms, David; Schmidt, Robert E; Piwnica-Worms, Helen

    2010-11-01

    Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.

  20. Nd:YAG vitreolysis and pars plana vitrectomy: surgical treatment for vitreous floaters.

    PubMed

    Delaney, Y M; Oyinloye, A; Benjamin, L

    2002-01-01

    To determine the efficacy of Nd:YAG vitreolysis and pars plana vitrectomy in the treatment of vitreous floaters. This is a single centre retrospective study of 31 patients (42 eyes) who underwent 54 procedures, Nd:YAG vitreolysis or pars plana vitrectomy, for the treatment of vitreous floaters between January 1992 and December 2000. Main outcome measures were percentage symptomatic improvement following treatment and incidence of post-operative complications. Statistical analysis was performed using the Fisher exact test. Posterior vitreous detachment was the primary cause of floaters in all 42 eyes with co-existing vitreous veils in three eyes and asteroid hyalosis in two eyes. Thirty-nine of 42 eyes received Nd:YAG vitreolysis. Thirty-eight percent found Nd:YAG vitreolysis moderately improved their symptoms while 61.5% found no improvement. After an average of 14.7 months follow-up no post-operative complications were recorded. Fifteen eyes underwent a pars plana vitrectomy, one with combined phacoemulsification and posterior chamber implantation and 11 following unsuccessful laser vitreolysis. Pars plana vitrectomy resulted in full resolution of symptoms in 93.3% of eyes. One patient developed a post-operative retinal detachment which was successfully treated leaving the patient with 6/5 VA. Patients' symptoms from vitreous floaters are often underestimated resulting in no intervention. This paper shows Nd:YAG vitreolysis to be a safe but only moderately effective primary treatment conferring clinical benefit in one third of patients. Pars plana vitrectomy, while offering superior results, should be reserved for patients who remain markedly symptomatic following vitreolysis, until future studies further clarify its role in the treatment of patients with floaters and posterior vitreous detachment.

  1. [Tryptase inhibits cell apoptosis through upregulating PAR-2 and Rho kinase in rheumatoid arthritis synovial fibroblasts].

    PubMed

    Zheng, Qianqian; Li, Shigang; Jia, Yunli; Liu, Wei; Yu, Lingling; Chen, Xianyong; Wang, Jinling

    2016-12-01

    Objective To investigate the regulatory effects of tryptase on protease-activated receptors 2 (PAR-2), Rho signal pathway and apoptosis of MH7A rheumatoid arthritis synovial fibroblasts. Methods In MH7A cells, the expression of PAR-2 was measured by flow cytometry; cell apoptosis was examined by annexin V- FITC/PI staining combined with flow cytometry; the expression of Rho kinase was detected by Pull-down assay and Western botting. Results Tryptase upregulated the expression of PAR-2 in MH7A cells, and suppressed Fas-mediated apoptosis of MH7A cells in a dose-dependent manner. Meanwhile, PAR-2 inhibitor, FSLLRY-NH2 significantly reduced anti-apoptotic effects of tryptase in MH7A cells, which was related with the increase of activated Rho kinase expression. Conclusion Tryptase plays a role in resistance to the apoptosis of MH7A cells through raising PAR-2 and activating Rho kinase.

  2. TGF-beta inhibits IL-1beta-activated PAR-2 expression through multiple pathways in human primary synovial cells.

    PubMed

    Tsai, Shin-Han; Sheu, Ming-Thau; Liang, Yu-Chih; Cheng, Hsiu-Tan; Fang, Sheng-Shiung; Chen, Chien-Ho

    2009-10-23

    To investigate the mechanism how Transforming growth factor-beta(TGF-beta) represses Interleukin-1beta (IL-1beta)-induced Proteinase-Activated Receptor-2 (PAR-2) expression in human primary synovial cells (hPSCs). Human chondrocytes and hPSCs isolated from cartilages and synovium of Osteoarthritis (OA) patients were cultured with 10% fetal bovine serum media or serum free media before treatment with IL-1beta, TGF-beta1, or Connective tissue growth factor (CTGF). The expression of PAR-2 was detected using reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting. Collagen zymography was performed to assess the activity of Matrix metalloproteinases-13 (MMP-13). It was demonstrated that IL-1beta induces PAR-2 expression via p38 pathway in hPSCs. This induction can be repressed by TGF-beta and was observed to persist for at least 48 hrs, suggesting that TGF-beta inhibits PAR-2 expression through multiple pathways. First of all, TGF-beta was able to inhibit PAR-2 activity by inhibiting IL-1beta-induced p38 signal transduction and secondly the inhibition was also indirectly due to MMP-13 inactivation. Finally, TGF-beta was able to induce CTGF, and in turn CTGF represses PAR-2 expression by inhibiting IL-1beta-induced phospho-p38 level. TGF-beta could prevent OA from progression with the anabolic ability to induce CTGF production to maintain extracellular matrix (ECM) integrity and to down regulate PAR-2 expression, and the anti-catabolic ability to induce Tissue inhibitors of metalloproteinase-3 (TIMP-3) production to inhibit MMPs leading to avoid PAR-2 over-expression. Because IL-1beta-induced PAR-2 expressed in hPSCs might play a significantly important role in early phase of OA, PAR-2 repression by exogenous TGF-beta or other agents might be an ideal therapeutic target to prevent OA from progression.

  3. Modelisation par elements finis du muscle strie

    NASA Astrophysics Data System (ADS)

    Leonard, Mathieu

    Ce present projet de recherche a permis. de creer un modele par elements finis du muscle strie humain dans le but d'etudier les mecanismes engendrant les lesions musculaires traumatiques. Ce modele constitue une plate-forme numerique capable de discerner l'influence des proprietes mecaniques des fascias et de la cellule musculaire sur le comportement dynamique du muscle lors d'une contraction excentrique, notamment le module de Young et le module de cisaillement de la couche de tissu conjonctif, l'orientation des fibres de collagene de cette membrane et le coefficient de poisson du muscle. La caracterisation experimentale in vitro de ces parametres pour des vitesses de deformation elevees a partir de muscles stries humains actifs est essentielle pour l'etude de lesions musculaires traumatiques. Le modele numerique developpe est capable de modeliser la contraction musculaire comme une transition de phase de la cellule musculaire par un changement de raideur et de volume a l'aide des lois de comportement de materiau predefinies dans le logiciel LS-DYNA (v971, Livermore Software Technology Corporation, Livermore, CA, USA). Le present projet de recherche introduit donc un phenomene physiologique qui pourrait expliquer des blessures musculaires courantes (crampes, courbatures, claquages, etc.), mais aussi des maladies ou desordres touchant le tissu conjonctif comme les collagenoses et la dystrophie musculaire. La predominance de blessures musculaires lors de contractions excentriques est egalement exposee. Le modele developpe dans ce projet de recherche met ainsi a l'avant-scene le concept de transition de phase ouvrant la porte au developpement de nouvelles technologies pour l'activation musculaire chez les personnes atteintes de paraplegie ou de muscles artificiels compacts pour l'elaboration de protheses ou d'exosquelettes. Mots-cles Muscle strie, lesion musculaire, fascia, contraction excentrique, modele par elements finis, transition de phase

  4. Effects of tissue factor, PAR-2 and MMP-9 expression on human breast cancer cell line MCF-7 invasion.

    PubMed

    Lin, Zeng-Mao; Zhao, Jian-Xin; Duan, Xue-Ning; Zhang, Lan-Bo; Ye, Jing-Ming; Xu, Ling; Liu, Yin-Hua

    2014-01-01

    This study aimed to explore the expression of tissue factor (TF), protease activated receptor-2 (PAR-2), and matrix metalloproteinase-9 (MMP-9) in the MCF-7 breast cancer cell line and influence on invasiveness. Stable MCF-7 cells transfected with TF cDNA and with TF ShRNA were established. TF, PAR-2, and MMP-9 protein expression was analyzed using indirect immunofluorescence and invasiveness was evaluated using a cell invasion test. Effects of an exogenous PAR-2 agonist were also examined. TF protein expression significantly differed between the TF cDNA and TF ShRNA groups. MMP-9 protein expression was significantly correlated with TF protein expression, but PAR-2 protein expression was unaffected. The PAR- 2 agonist significantly enhanced MMP-9 expression and slightly increased TF and PAR-2 expression in the TF ShRNA group, but did not significantly affect protein expression in MCF-7 cells transfected with TF cDNA. TF and MMP-9 expression was positively correlated with the invasiveness of tumor cells. TF, PAR-2, and MMP-9 affect invasiveness of MCF-7 cells. TF may increase MMP-9 expression by activating PAR-2.

  5. Diabetes-Induced Superoxide Anion and Breakdown of the Blood-Retinal Barrier: Role of the VEGF/uPAR Pathway

    PubMed Central

    El-Remessy, Azza B.; Franklin, Telina; Ghaley, Nagla; Yang, Jinling; Brands, Michael W.; Caldwell, Ruth B.; Behzadian, Mohamed Ali

    2013-01-01

    Diabetes-induced breakdown of the blood-retinal barrier (BRB) has been linked to hyperglycemia-induced expression of vascular endothelial growth factor (VEGF) and is likely mediated by an increase in oxidative stress. We have shown that VEGF increases permeability of retinal endothelial cells (REC) by inducing expression of urokinase plasminogen activator receptor (uPAR). The purpose of this study was to define the role of superoxide anion in VEGF/uPAR expression and BRB breakdown in diabetes. Studies were performed in streptozotocin diabetic rats and mice and high glucose (HG) treated REC. The superoxide dismutase (SOD) mimetic tempol blocked diabetes-induced permeability and uPAR expression in rats and the cell permeable SOD inhibited HG-induced expression of uPAR and VEGF in REC. Inhibiting VEGFR blocked HG-induced expression of VEGF and uPAR and GSK-3β phosphorylation in REC. HG caused β-catenin translocation from the plasma membrane into the cytosol and nucleus. Treatment with HG-conditioned media increased REC paracellular permeability that was blocked by anti-uPA or anti-uPAR antibodies. Moreover, deletion of uPAR blocked diabetes-induced BRB breakdown and activation of MMP-9 in mice. Together, these data indicate that diabetes-induced oxidative stress triggers BRB breakdown by a mechanism involving uPAR expression through VEGF-induced activation of the GSK3β/β-catenin signaling pathway. PMID:23951261

  6. PAR-2, IL-4R, TGF-β and TNF-α in bronchoalveolar lavage distinguishes extrinsic allergic alveolitis from sarcoidosis.

    PubMed

    Matěj, Radoslav; Smětáková, Magdalena; Vašáková, Martina; Nováková, Jana; Sterclová, Martina; Kukal, Jaromír; Olejár, Tomáš

    2014-08-01

    Sarcoidosis (SARC) and extrinsic allergic alveolitis (EAA) share certain markers, making a differential diagnosis difficult even with histopathological investigation. In lung tissue, proteinase-activated receptor-2 (PAR-2) is primarily investigated with regard to epithelial and inflammatory perspectives. Varying levels of certain chemokines can be a useful tool for distinguishing EAA and SARC. Thus, in the present study, differences in the levels of transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α, interleukin-4 receptor (IL-4R) and PAR-2 in bronchoalveolar lavage fluid (BALF) were compared, using an ELISA method, between 14 patients with EAA and six patients with SARC. Statistically significant higher levels of IL-4R, PAR-2 and the PAR-2/TGF-β1 and PAR-2/TNF-α ratios were observed in EAA patients as compared with SARC patients. Furthermore, the ratios of TNF-α/total protein, TGF-β1/PAR-2 and TNF-α/PAR-2 were significantly lower in EAA patients than in SARC patients. The results indicated a higher detection of PAR-2 in EAA samples in association with TNF-α and TGF-β levels. As EAA and PAR-2 in parallel belong to the Th2-mediated pathway, the results significantly indicated an association between this receptor and etiology. In addition, the results indicated that SARC is predominantly a granulomatous inflammatory disease, thus, higher levels of TNF-α are observed. Therefore, the detection of PAR-2 and investigated chemokines in BALF may serve as a useful tool in the differential diagnosis between EAA and SARC.

  7. Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR(2) ) is involved in vascular function.

    PubMed

    Bucci, M; Vellecco, V; Harrington, L; Brancaleone, V; Roviezzo, F; Mattace Raso, G; Ianaro, A; Lungarella, G; De Palma, R; Meli, R; Cirino, G

    2013-01-01

    Proteinase-activated receptors (PARs) and toll-like receptors (TLRs) are involved in innate immune responses. The aim of this study was to evaluate the possible cross-talk between PAR(2) and TLR4 in vessels in physiological condition and how it varies following stimulation of TLR4 by using in vivo and ex vivo models. Thoracic aortas were harvested from both naïve and endotoxaemic rats for in vitro studies. Arterial blood pressure was monitored in anaesthetized rats in vivo. LPS was used as a TLR4 agonist while PAR(2) activating peptide (AP) was used as a PAR(2) agonist. Aortas harvested from TLR4(-/-) mice were also used to characterize the PAR(2) response. PAR(2) , but not TLR4, expression was enhanced in aortas of endotoxaemic rats. PAR(2) AP-induced vasorelaxation was increased in aortic rings of LPS-treated rats. TLR4 inhibitors, curcumine and resveratrol, reduced PAR(2) AP-induced vasorelaxation and PAR(2) AP-induced hypotension in both naïve and endotoxaemic rats. Finally, in aortic rings from TLR4(-/-) mice, the expression of PAR(2) was reduced and the PAR(2) AP-induced vasodilatation impaired compared with those from wild-type mice and both resveratrol and curcumine were ineffective. Cross-talk between PAR(2) and TLR4 contributes to vascular homeostasis. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  8. Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR2) is involved in vascular function

    PubMed Central

    Bucci, M; Vellecco, V; Harrington, L; Brancaleone, V; Roviezzo, F; Mattace Raso, G; Ianaro, A; Lungarella, G; De Palma, R; Meli, R; Cirino, G

    2013-01-01

    Background and Purpose Proteinase-activated receptors (PARs) and toll-like receptors (TLRs) are involved in innate immune responses. The aim of this study was to evaluate the possible cross-talk between PAR2 and TLR4 in vessels in physiological condition and how it varies following stimulation of TLR4 by using in vivo and ex vivo models. Experimental Approach Thoracic aortas were harvested from both naïve and endotoxaemic rats for in vitro studies. Arterial blood pressure was monitored in anaesthetized rats in vivo. LPS was used as a TLR4 agonist while PAR2 activating peptide (AP) was used as a PAR2 agonist. Aortas harvested from TLR4–/– mice were also used to characterize the PAR2 response. Key Results PAR2, but not TLR4, expression was enhanced in aortas of endotoxaemic rats. PAR2AP-induced vasorelaxation was increased in aortic rings of LPS-treated rats. TLR4 inhibitors, curcumine and resveratrol, reduced PAR2AP-induced vasorelaxation and PAR2AP-induced hypotension in both naïve and endotoxaemic rats. Finally, in aortic rings from TLR4–/– mice, the expression of PAR2 was reduced and the PAR2AP-induced vasodilatation impaired compared with those from wild-type mice and both resveratrol and curcumine were ineffective. Conclusions and Implications Cross-talk between PAR2 and TLR4 contributes to vascular homeostasis. PMID:22957757

  9. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells.

    PubMed

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-05-29

    Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P < 0.05). Protease-activated receptor 2 antagonist significantly inhibited aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P < 0.05). Protease-activated receptor 1 agonists, but not aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen

  10. Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties.

    PubMed

    Picot, Laurent; Ravallec, Rozenn; Fouchereau-Péron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-Derouiniot, Maryse; Guérard, Fabienne; Chabeaud, Aurélie; Legal, Yves; Alvarez, Oscar Martinez; Bergé, Jean-Pascal; Piot, Jean-Marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inez; Bourseau, Patrick

    2010-08-30

    Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation

  11. Electrocoagulation and nanofiltration integrated process application in purification of bilge water using response surface methodology.

    PubMed

    Akarsu, Ceyhun; Ozay, Yasin; Dizge, Nadir; Elif Gulsen, H; Ates, Hasan; Gozmen, Belgin; Turabik, Meral

    Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box-Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5-15 V), initial pH (4.5-8.0) and time (30-90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P > 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R(2) and Radj(2) values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R(2) values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage-time and pH-time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic

  12. Treatment of endophthalmitis by pars plana vitrectomy.

    PubMed

    Verbraeken, H; Geeroms, B; Karemera, A

    1988-01-01

    Between 1976 and 1985 81 cases of endophthalmitis have been treated by pars plana vitrectomy and intravitreous injection of antibiotics or antimycotics. The functional results and the etiology of the endophthalmitis are discussed, as well as the reasons to perform a vitrectomy in endophthalmitis, and a possible explanation for the relatively high incidence of pseudophakic endophthalmitis is given.

  13. [Pars plana vitrectomy with the vitreous stripper].

    PubMed

    Klöti, R

    1975-01-01

    We report on the construction and the function of a new microsurgical instrument for vitrectomy. The instrument is introduced into the vitreous cavity through a small scleral incision in the pars plana area. Microscope observation with slit-lamp illumination and a specially designed contact lens are used for this surgical procedure. Our clinical experiences and the indications are discussed.

  14. Monoradiculopathy and secondary segmental instability caused by postoperative pars interarticularis fracture: a case report.

    PubMed

    Kaner, Tuncay; Tutkan, Ibrahim

    2009-04-01

    Instability can develop after lumbar spinal surgery. What is also known as secondary segmental instability is one of the important causes of failed back syndrome. In this paper, we described a 45-year-old female patient who was diagnosed with secondary segmental instability caused by left L3 pars interarticularis fracture after a high lumbar disc surgery and was subsequently treated with re-operation. We evaluated the clinical course, diagnosis, and treatment methods for secondary segmental instability caused by postoperative pars interarticularis fracture. Furthermore, we emphasized the importance of preserving the pars interarticularis during upper lumbar disc surgeries in order to avoid a potential stress fracture.

  15. Small molecule antagonists of the urokinase (uPA): urokinase receptor (uPAR) interaction with high reported potencies show only weak effects in cell-based competition assays employing the native uPAR ligand.

    PubMed

    De Souza, Melissa; Matthews, Hayden; Lee, Jodi A; Ranson, Marie; Kelso, Michael J

    2011-04-15

    Binding of the urokinase-type plasminogen activator (uPA) to its cell-surface-bound receptor uPAR and upregulation of the plasminogen activation system (PAS) correlates with increased metastasis and poor prognosis in several tumour types. Disruptors of the uPA:uPAR interaction represent promising anti-tumour/metastasis agents and several approaches have been explored for this purpose, including the use of small molecule antagonists. Two highly potent non-peptidic antagonists 1 and 2 (IC(50)1=0.8 nM, IC(50)2=33 nM) from the patent literature were reportedly identified using competition assays employing radiolabelled uPAR-binding uPA fragments and appeared as useful pharmacological tools for studying the PAS. Before proceeding to such studies, confirmation was sought that 1 and 2 retained their potencies in physiologically relevant cell-based competition assays employing uPAR's native binding partner high molecular weight uPA (HMW-uPA). This study describes a new solution phase synthesis of 1, a mixed solid/solution phase synthesis of 2 and reports the activities of 1 and 2 in semi-quantitative competition flow cytometry assays and quantitative cell-based uPA activity assays that employed HMW-uPA as the competing ligand. The flow cytometry experiments revealed that high concentrations of 2 (10-100 μM) are required to compete with HMW-uPA for uPAR binding and that 1 shows no antagonist effects at 100 μM. The cell-based enzyme activity assays similarly revealed that 1 and 2 are poor inhibitors of cell surface-bound HMW-uPA activity (IC(50) >100 μM for 1 and 2). The report highlights the dangers of identifying false-positive lead uPAR antagonists from competition assays employing labelled competing ligands other than the native HMW-uPA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. PAR and UV effects on vertical migration and photosynthesis in Euglena gracilis.

    PubMed

    Richter, Peter; Helbling, Walter; Streb, Christine; Häder, Donat-P

    2007-01-01

    Recently it was shown that the unicellular flagellate Euglena gracilis changes the sign of gravitaxis from negative to positive upon excessive radiation. This sign change persists in a cell culture for hours even if subsequently transferred to dim light. To test the ecological relevance of this behavior, a vertical column experiment was performed (max. depth 65 cm) to test distribution, photosynthetic efficiency and motility in different horizons of the column (surface, 20, 40 and 65 cm). One column was covered with a UV cut-off filter, which transmits photosynthetically active radiation (PAR) only, the other with a filter which transmits PAR and UV. The columns were irradiated with a solar simulator (PAR 162 W m(-2), UV-A 32.6 W m(-2), UV-B 1.9 W m(-2)). The experiment was conducted for 10 days, normally with a light/dim light cycle of 12 h:12 h, but in some cases the light regime was changed (dim light instead of full radiation). Under irradiation the largest fraction of cells was found at the bottom of the column. The cell density decreased toward the surface. Photosynthetic efficiency, determined with a pulse amplitude modulated fluorometer, was negligible at the surface and increased toward the bottom. While the cell suspension showed a positive gravitaxis at the bottom, the cells in the 40 cm horizon were bimodally oriented (about the same percentage of cells swimming upward and downward, respectively). At 20 cm and at the surface the cells showed negative gravitaxis. Positive gravitaxis was more pronounced in the UV + PAR samples. At the surface and in the 20 and 40 cm horizons photosynthetic efficiency was better in the PAR-only samples than in the PAR + UV samples. At the bottom photosynthetic efficiency was similar in both light treatments. The data suggest that high light reverses gravitaxis of the cells, so that they move downward in the water column. At the bottom the light intensity is lower (attenuation of the water column and self shading of the

  17. PET imaging of urokinase-type plasminogen activator receptor (uPAR) in prostate cancer: current status and future perspectives.

    PubMed

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2016-01-01

    Overexpression of urokinase-type plasminogen activator receptors (uPAR) represents an important biomarker for aggressiveness in most common malignant diseases, including prostate cancer (PC). Accordingly, uPAR expression either assessed directly in malignant PC tissue or assessed directly in plasma (intact/cleaved forms)-provides independent additional clinical information to that contributed by PSA, Gleason score, and other relevant pathological and clinical parameters. In this respect, non-invasive molecular imaging by positron emission tomography (PET) offers a very attractive technology platform, which can provide the required quantitative information on the uPAR expression profile, without the need for invasive procedures and the risk of missing the target due to tumor heterogeneity. These observations support non-invasive PET imaging of uPAR in PC as a clinically relevant diagnostic and prognostic imaging method. In this review, we will focus on the recent development of uPAR PET and the relevance within prostate cancer imaging. Novel antibody and small-molecule radiotracers-targeting uPAR, including a series of uPAR-targeting PET ligands, based on the high affinity peptide ligand AE105, have been synthesized and tested in vitro and in vivo in preclinical murine xenograft models and, recently, in a first-ever clinical uPAR PET study in cancer patients, including patients with PC. In this phase I study, a high and specific uptake of the tracer 64 Cu-DOTA-AE105 was found in both primary tumors and lymph node metastases. The results are encouraging and support large-scale clinical trials to determine the utility of uPAR PET in the management of patients with PC with the goal of improving outcome.

  18. Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities

    NASA Astrophysics Data System (ADS)

    Li, Xipeng; Zhao, Changwei; Yang, Mei; Yang, Bin; Hou, Deyin; Wang, Tao

    2017-10-01

    Reduced graphene oxide-NH2 (R-GO-NH2), a kind of amino graphene oxide, was embedded into the polyamide (PA) layer of nanofiltration (NF) composite hollow fiber membranes via interfacial polymerization to enhance the permeate flux and antifouling properties of NF membranes under low pressure conditions. In addition, it could mitigate the poor compatibility issue between graphene oxide materials and PA layer. To evaluate the influence of R-GO-NH2 on the performance of the NF composite hollow fiber membrane, SEM, AFM, FTIR, XPS and Zeta potentials were used to characterize the membranes. The results indicated that the compatibility and interactions between R-GO-NH2 and PA layer were enhanced, which was mainly due to the polymerization reaction between amino groups of R-GO-NH2 and acyl chloride groups of TMC. Therefore, salts rejection of the current membranes was improved significantly, and the modified membranes with 50 mg/L R-GO-NH2 demonstrated highest performance in terms of the rejections, which were 26.9%, 98.5%, 98.1%, and 96.1%, for NaCl, Na2SO4, MgSO4, and CaCl2 respectively. It was found that with the R-GO-NH2 contents rasing from 0 to 50 mg/L, pure water flux increased from 30.44 ± 1.71 to 38.57 ± 2.01 L/(m2.h) at 2 bar. What's more, the membrane demonstrated improved antifouling properties.

  19. Crystal Structure of Thrombin Bound to the Uncleaved Extracellular Fragment of PAR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, Prafull S.; Chen, Zhiwei; Di Cera, Enrico

    2010-05-11

    Abundant structural information exists on how thrombin recognizes ligands at the active site or at exosites separate from the active site region, but remarkably little is known about how thrombin recognizes substrates that bridge both the active site and exosite I. The case of the protease-activated receptor PAR1 is particularly relevant in view of the plethora of biological effects associated with its activation by thrombin. Here, we present the 1.8 {angstrom} resolution structure of thrombin S195A in complex with a 30-residue long uncleaved extracellular fragment of PAR1 that documents for the first time a productive binding mode bridging the activemore » site and exosite I. The structure reveals two unexpected features of the thrombin-PAR1 interaction. The acidic P3 residue of PAR1, Asp{sup 39}, does not hinder binding to the active site and actually makes favorable interactions with Gly{sup 219} of thrombin. The tethered ligand domain shows a considerable degree of disorder even when bound to thrombin. The results fill a significant gap in our understanding of the molecular mechanisms of recognition by thrombin in ways that are relevant to other physiological substrates.« less

  20. Drinking water obtaining by nanofiltration from waters contaminated with glyphosate formulations: process evaluation by means of toxicity tests and studies on operating parameters.

    PubMed

    Saitúa, Hugo; Giannini, Fernando; Padilla, Antonio Perez

    2012-08-15

    Glyphosate formulations toxicity depends on all its components but commercial products only specify the active principle in their label. To treat contaminated waters and to verify if the unknown components which add toxicity have been removed represent a challenge. Nanofiltration and permeate analysis by toxicity tests with fish are an interesting alternative to evaluate the process. Permeates of solutions with concentrations five times above the lethal doses (48 mg/l) did not present toxicity, pointing that all toxic compounds were removed at the same time. Glyphosate rejection over an 80% despite its molecular weight is lower than membrane MWCO, this could be associated to a predominant Donnan exclusion mechanism, combined with dielectric exclusion due to the solute high charge density. Glyphosate concentration did not show any effect over rejection. It increased when pressure was incremented from 2.5 to 4 bar and then remained constant in a 4-10 bar range. Because of dissociation of the glyphosate and the surface charged of the membrane depend on pH value, the rejection increase from 72.5 to 92.5% when pH increase from 4 to 8.5. Studies with river water showed the same behavior with a slight decrease in rejection. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Impacts of Light Use Efficiency and fPAR Parameterization on Gross Primary Production Modeling

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Zhang, Qingyuan; Lyapustin, Alexei I.; Wang, Yujie; Middleton, Elizabeth M.

    2014-01-01

    This study examines the impact of parameterization of two variables, light use efficiency (LUE) and the fraction of absorbed photosynthetically active radiation (fPAR or fAPAR), on gross primary production(GPP) modeling. Carbon sequestration by terrestrial plants is a key factor to a comprehensive under-standing of the carbon budget at global scale. In this context, accurate measurements and estimates of GPP will allow us to achieve improved carbon monitoring and to quantitatively assess impacts from cli-mate changes and human activities. Spaceborne remote sensing observations can provide a variety of land surface parameterizations for modeling photosynthetic activities at various spatial and temporal scales. This study utilizes a simple GPP model based on LUE concept and different land surface parameterizations to evaluate the model and monitor GPP. Two maize-soybean rotation fields in Nebraska, USA and the Bartlett Experimental Forest in New Hampshire, USA were selected for study. Tower-based eddy-covariance carbon exchange and PAR measurements were collected from the FLUXNET Synthesis Dataset. For the model parameterization, we utilized different values of LUE and the fPAR derived from various algorithms. We adapted the approach and parameters from the MODIS MOD17 Biome Properties Look-Up Table (BPLUT) to derive LUE. We also used a site-specific analytic approach with tower-based Net Ecosystem Exchange (NEE) and PAR to estimate maximum potential LUE (LUEmax) to derive LUE. For the fPAR parameter, the MODIS MOD15A2 fPAR product was used. We also utilized fAPAR chl, a parameter accounting for the fAPAR linked to the chlorophyll-containing canopy fraction. fAPAR chl was obtained by inversion of a radiative transfer model, which used the MODIS-based reflectances in bands 1-7 produced by Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. fAPAR chl exhibited seasonal dynamics more similar with the flux tower based GPP than MOD15A2 fPAR, especially

  2. Partitioning-defective Protein 6 (Par-6) Activates Atypical Protein Kinase C (aPKC) by Pseudosubstrate Displacement*

    PubMed Central

    Graybill, Chiharu; Wee, Brett; Atwood, Scott X.; Prehoda, Kenneth E.

    2012-01-01

    Atypical protein kinase C (aPKC) controls cell polarity by modulating substrate cortical localization. Aberrant aPKC activity disrupts polarity, yet the mechanisms that control aPKC remain poorly understood. We used a reconstituted system with purified components and a cultured cell cortical displacement assay to investigate aPKC regulation. We find that aPKC is autoinhibited by two domains within its NH2-terminal regulatory half, a pseudosubstrate motif that occupies the kinase active site, and a C1 domain that assists in this process. The Par complex member Par-6, previously thought to inhibit aPKC, is a potent activator of aPKC in our assays. Par-6 and aPKC interact via PB1 domain heterodimerization, and this interaction activates aPKC by displacing the pseudosubstrate, although full activity requires the Par-6 CRIB-PDZ domains. We propose that, along with its previously described roles in controlling aPKC localization, Par-6 allosterically activates aPKC to allow for high spatial and temporal control of substrate phosphorylation and polarization. PMID:22544755

  3. 1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria

    PubMed Central

    Liu, Shuangxin; Xie, Shaoting; Yang, Yun; Ma, Juan; Deng, Yujun; Wang, Wenjian; Xu, Lixia; Li, Ruizhao; Zhang, Li; Yu, Chunping; Shi, Wei

    2013-01-01

    Background Accumulating studies have demonstrated that 1,25-Dihydroxyvitamin D(3) (1,25(OH)2D3) reduces proteinuria and protects podocytes from injury. Recently, urokinase receptor (uPAR) and its soluble form have been shown to cause podocyte injury and focal segmental glomerulosclerosis (FSGS). Here, our findings showed that 1,25(OH)2D3 did inhibit podocyte uPAR expression and attenuate proteinuria and podocyte injury. Methodology/Principal Findings In this study, the antiproteinuric effect of 1,25(OH)2D3 was examined in the lipopolysaccharide mice model of transient proteinuria (LPS mice) and in the 5/6 nephrectomy rat FSGS model(NTX rats). uPAR protein expression were tested by flow cytometry, immune cytochemistry and western blot analysis, and uPAR mRNA expression by real-time quantitative PCR in cultured podocytes and kidney glomeruli isolated from mice and rats. Podocyte motility was observed by transwell migration assay and wound healing assay. Podocyte foot processes effacement was identified by transmission electron microscopy. We found that 1,25(OH)2D3 inhibited podocyte uPAR mRNA and protein synthesis in LPS-treated podocytes, LPS mice and NTX rats, along with 1,25(OH)2D3 reducing proteinuria in NTX rats and LPS mice.1,25(OH)2D3 reduced glomerulosclerosis in NTX rats and alleviated podocyte foot processes effacement in LPS mice. Transwell migration assay and wound healing assay showed that LPS-induced podocyte motility, irrespective of random or directed motility, were substantially reduced by 1,25(OH)2D3. Conclusions/Significance Our results demonstrated that 1,25(OH)2D3 inhibited podocyte uPAR expression in vitro and in vivo, which may be an unanticipated off target effect of 1,25(OH)2D3 and explain its antiproteinuric effect in the 5/6 nephrectomy rat FSGS model and the LPS mouse model of transient proteinuria. PMID:23741418

  4. Analysis of clinical features and visual outcomes of pars planitis.

    PubMed

    Berker, Nilufer; Sen, Emine; Elgin, Ufuk; Atilgan, Cemile Ucgul; Dursun, Erdem; Yilmazbas, Pelin

    2018-04-01

    To evaluate the demographic characteristics, clinical features, treatment and outcomes of patients with pars planitis in a tertiary referral center in Turkey. Medical records of patients with pars planitis were retrospectively reviewed. The data including demographic and ocular features and treatment outcomes were recorded. The distribution of clinical findings and complications were evaluated according to age and gender groups. The changes in final BCVA compared to the initial BCVA were noted. Statistical analysis was performed using SPSS software (Version 18.0, SPSS Inc., Chicago, USA). Twenty-seven patients (54 eyes) were included in this study. 16 patients were male (59.3%), and 11 were female (40.7%). Mean age at diagnosis was 12.84 ± 8.26 (range 4-36) years. Mean follow-up period was 61.3 ± 52.15 (range 9-172) months. Mean BCVA was 0.58 ± 0.36 (range 0.03-1.00) (0.40 ± 0.45 logMAR) at presentation, and 0.81 ± 0.28 (range 0.10-1.00) (0.14 ± 0.27 logMAR) at final visit (P = 0.001). Vitreous inflammation (100%), vitreous haze (92.6%), snowballs (74.1%), snowbanks (66.7%), anterior chamber cells (66.7%) and peripheral retinal vascular sheathing (48.1%) were the most common presentations. Ocular complications included vitreous condensation (51.9%), cystoid macular edema (22.2%), cataract (18.5%), inferior peripheral retinal detachment (11.1%), glaucoma (5.6%) and vitreous hemorrhage (3.7%). Treatments included topical, periocular, intravitreal and systemic corticosteroids, immunosuppressives, peripheral laser photocoagulation and pars plana vitrectomy when needed. Pars planitis is an idiopathic chronic intermediate uveitis mostly affecting children and adolescents. In spite of its chronic nature with high potential of causing ocular complications, adequate treatment and close follow-up lead to favorable visual outcomes.

  5. Separating xylose from glucose using spiral wound nanofiltration membrane: Effect of cross-flow parameters on sugar rejection

    NASA Astrophysics Data System (ADS)

    Roli, N. F. M.; Yussof, H. W.; Seman, M. N. A.; Saufi, S. M.; Mohammad, A. W.

    2016-11-01

    A solution model consisted of two different monosaccharides namely xylose and glucose were separated using a pilot scale spiral wound cross-flow system. This system was equipped by a commercial spiral wound nanofiltration (NF) membrane, Desal-5 DK, having a molecular weight cut off (MWCO) of 150-300 g mol-1. The aim of this present work is to investigate the effect of the cross-flow parameters: the trans-membrane pressure (TMP) and the feed concentration (C0) on the xylose separation from glucose. The filtration experiments were carried out in total reflux mode with different feed concentration of 2, 5, and 10 g/L at different TMP of 5,8 and 10 bar. The performances of the NF membrane were evaluated by measuring the permeate flux and sugar rejection for each experiment. All the samples were quantified using a high performance liquid chromatography equipped by a fractive index detector. The experimental results indicated an increase in pressure from 5 to 10 bar which was a notable increase to the permeate fluxes from 2.66 × 10-3 to 4.14 × 10-3L m-2s-1. Meanwhile, an increase in the C0 increases the xylose rejection. At TMP of 10 bar and C0 of 5 g/L, the observed xylose rejection and glucose rejection were measured at 67.19% and 91.82%, respectively. The lower rejection in xylose than glucose suggested that larger glucose molecule were not able to easily pass through the membrane compared to the smaller xylose molecule. The results of this phenomena proved that NF with spiral wound configuration has the potential to separate xylose from glucose, which is valuable to the purification of xylose in xylose production as an alternative to chromatographic processes.

  6. Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment.

    PubMed

    Miralles-Cuevas, S; Oller, I; Agüera, A; Llorca, M; Sánchez Pérez, J A; Malato, S

    2017-02-05

    The purpose of this work was to study the ozonation of nanofiltration (NF) retentates of real municipal wastewater treatment plant (MWTP) effluents for removal of microcontaminants (MCs) and toxicity. MCs present in these effluents were monitored using LC-MS/MS. Acute and chronic toxicity was addressed with Daphnia magna, Vibrio fischeri and Selenastrum capricornutum. Up to 40 MCs were found, most of them in concentrations over 100ng/L. 90% degradation of the sum of MCs was the critical point of comparison. When the NF membrane system was applied to MWTP effluents, treatment of NF rejection needed 2.75-4.5g O 3 /m 3 ,4.5g O 3 /m 3 , which is less than 50% of the ozone needed for direct treatment of MWTP effluent. Treatment time (lower than 11min) was not influenced by MCs concentration, at least in the range tested (25-190μg/L). It has been demonstrated that consumption of ozone increased with organic load and inorganic content of different real effluents. MCs were eliminated by ozonation but acute toxicity (against V. fischeri and D. magna) increased. Chronic toxicity results were different and contrary in D. magna and S. capricornutum, due to the generation of new transformation products more toxic to D. magna than the parent contaminants. S. capricornutum inhibition percentage decreased in all cases after ozonation treatment. According to these results, before ozonation is implemented in MWTPs for the removal of MCs, the transformation products must first be examined and the treatment time or ozone doses should be extended to complete degradation if necessary. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

    PubMed

    Shen, Junjie; Schäfer, Andrea I

    2015-09-15

    This study examined the feasibility of nanofiltration (NF) and reverse osmosis (RO) in treating challenging natural tropical waters containing high fluoride and natural organic matter (NOM). A total of 166 water samples were collected from 120 sources within northern Tanzania over a period of 16 months. Chemical analysis showed that 81% of the samples have fluoride levels exceeding the WHO drinking guideline of 1.5mg/L. The highest fluoride levels were detected in waters characterized by high ionic strength, high inorganic carbon and on some occasions high total organic carbon (TOC) concentrations. Bench-scale experiments with 22 representative waters (selected based on fluoride concentration, salinity, origin and in some instances organic matter) and 6 NF/RO membranes revealed that ionic strength and recovery affected fluoride retention and permeate flux. This is predominantly due to osmotic pressure and hence the variation of diffusion/convection contributes to fluoride transport. Different membranes had distinct fluoride removal capacities, showing different raw water concentration treatability limits regarding the WHO guideline compliance. BW30, BW30-LE and NF90 membranes had a feed concentration limit of 30-40 mg/L at 50% recovery. NOM retention was independent of water matrices but is governed predominantly by size exclusion. NOM was observed to have a positive impact on fluoride removal. Several mechanisms could contribute but further studies are required before a conclusion could be drawn. In summary, NF/RO membranes were proved to remove both fluoride and NOM reliably even from the most challenging Tanzanian waters, increasing the available drinking water sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Could soluble urokinase plasminogen receptor (suPAR) be used as a diagnostic biomarker for ventilator-associated pneumonia?

    PubMed

    Sunnetcioglu, Aysel; Sunnetcioglu, Mahmut; Adıyaman, Fırat; Binici, Irfan; Soyoral, Lokman

    2017-11-01

    Soluble urokinase plasminogen activator receptor (suPAR) is a biomarker that is increasingly used for evaluation of systemic inflammation. This study was performed to investigate whether suPAR may possess a diagnostic value in patients with ventilator-associated pneumonia (VAP). This clinical study was performed in the anesthesia intensive care units (ICUs) of our university. In addition to descriptive data, WBC, serum levels of C-reactive protein (CRP) and suPAR prior to and after development of VAP were noted and compared in 31 patients (22 men, 9 women) diagnosed with VAP (Study Group) and 19 patients without VAP (Control Group) in ICU (14 men, 5 women). The suPAR (P = 0.023), CRP (P = 0.037), WBCs (P = 0.024) in patients with VAP were significantly higher than patients without VAP. There was no remarkable difference in terms of WBCs (P = 0.052) and suPAR levels (P = 0.616) between groups on the first day of connection to mechanical ventilator. The suPAR and CRP levels in patients with VAP were significantly higher than prior to development of VAP (P = 0.001 for both). Area under curve value after diagnosis of pneumonia was found 0.248 (P = 0.002). To conclude, our results suggest that suPAR can be a useful diagnostic biomarker in patients with VAP. However, clinical trials on larger series are warranted to explore the clinical significance more accurately. © 2016 John Wiley & Sons Ltd.

  9. Endophthalmitis following 27-Gauge Pars Plana Vitrectomy for Vitreous Floaters

    PubMed Central

    Lin, Zhong; Wu, Rong Han; Moonasar, Nived

    2016-01-01

    Purpose To report a case of Staphylococcus epidermidis endophthalmitis following 27-gauge pars plana vitrectomy for symptomatic vitreous floaters. Methods The clinical course and imaging findings, including fundus optomap, and spectral domain optical coherence tomography of a 24-year-old male patient were documented. Results The patient, with a preoperative best-corrected visual acuity (BCVA) of 1.0, developed endophthalmitis following 27-gauge pars plana vitrectomy for symptomatic vitreous floaters. After a series of treatments, including emergent vitreous tap and silicone oil injection, antibiotic treatment, and silicone oil removal, the patient regained a BCVA of 0.6. Conclusion Although rare, the potential risk of endophthalmitis should be explicitly discussed with patients considering surgical intervention for vitreous floaters. PMID:28101041

  10. Endophthalmitis following 27-Gauge Pars Plana Vitrectomy for Vitreous Floaters.

    PubMed

    Lin, Zhong; Wu, Rong Han; Moonasar, Nived

    2016-01-01

    To report a case of Staphylococcus epidermidis endophthalmitis following 27-gauge pars plana vitrectomy for symptomatic vitreous floaters. The clinical course and imaging findings, including fundus optomap, and spectral domain optical coherence tomography of a 24-year-old male patient were documented. The patient, with a preoperative best-corrected visual acuity (BCVA) of 1.0, developed endophthalmitis following 27-gauge pars plana vitrectomy for symptomatic vitreous floaters. After a series of treatments, including emergent vitreous tap and silicone oil injection, antibiotic treatment, and silicone oil removal, the patient regained a BCVA of 0.6. Although rare, the potential risk of endophthalmitis should be explicitly discussed with patients considering surgical intervention for vitreous floaters.

  11. Cortical Polarity of the RING Protein PAR-2 Is Maintained by Exchange Rate Kinetics at the Cortical-Cytoplasmic Boundary.

    PubMed

    Arata, Yukinobu; Hiroshima, Michio; Pack, Chan-Gi; Ramanujam, Ravikrishna; Motegi, Fumio; Nakazato, Kenichi; Shindo, Yuki; Wiseman, Paul W; Sawa, Hitoshi; Kobayashi, Tetsuya J; Brandão, Hugo B; Shibata, Tatsuo; Sako, Yasushi

    2016-08-23

    Cell polarity arises through the spatial segregation of polarity regulators. PAR proteins are polarity regulators that localize asymmetrically to two opposing cortical domains. However, it is unclear how the spatially segregated PAR proteins interact to maintain their mutually exclusive partitioning. Here, single-molecule detection analysis in Caenorhabditis elegans embryos reveals that cortical PAR-2 diffuses only short distances, and, as a result, most PAR-2 molecules associate and dissociate from the cortex without crossing into the opposing domain. Our results show that cortical PAR-2 asymmetry is maintained by the local exchange reactions that occur at the cortical-cytoplasmic boundary. Additionally, we demonstrate that local exchange reactions are sufficient to maintain cortical asymmetry in a parameter-free mathematical model. These findings suggest that anterior and posterior PAR proteins primarily interact through the cytoplasmic pool and not via cortical diffusion. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Par-4 dependent modulation of cellular β-catenin by medicinal plant natural product derivative 3-azido Withaferin A.

    PubMed

    Amin, Hina; Nayak, Debasis; Ur Rasool, Reyaz; Chakraborty, Souneek; Kumar, Anmol; Yousuf, Khalid; Sharma, Parduman Raj; Ahmed, Zabeer; Sharma, Neelam; Magotra, Asmita; Mukherjee, Debaraj; Kumar, Lekha Dinesh; Goswami, Anindya

    2016-05-01

    Here, we provide evidences that natural product derivative 3-azido Withaferin A (3-AWA) abrogated EMT and invasion by modulating β-catenin localization and its transcriptional activity in the prostate as well as in breast cancer cells. This study, for the first time, reveals 3-AWA treatment consistently sequestered nuclear β-catenin and augmented its cytoplasmic pool as evidenced by reducing β-catenin transcriptional activity in these cells. Moreover, 3-AWA treatment triggered robust induction of pro-apoptotic intracellular Par-4, attenuated Akt activity and rescued Phospho-GSK3β (by Akt) to promote β-catenin destabilization. Further, our in vitro studies demonstrate that 3-AWA treatment amplified E-cadherin expression along with sharp downregulation of c-Myc and cyclin D1 proteins. Strikingly, endogenous Par-4 knock down by siRNA underscored 3-AWA mediated inhibition of nuclear β-catenin was Par-4 dependent and suppression of Par-4 activity, either by Bcl-2 or by Ras transfection, restored the nuclear β-catenin level suggesting Par-4 mediated β-catenin regulation was not promiscuous. In vivo results further demonstrated that 3-AWA was effective inhibitor of tumor growth and immunohistochemical studies indicated that increased expression of total β-catenin and decreased expression of phospho-β-catenin and Par-4 in breast cancer tissues as compared to normal breast tissue suggesting Par-4 and β-catenin proteins are mutually regulated and inversely co-related in normal as well as cancer condition. Thus, strategic regulation of intracellular Par-4 by 3-AWA in diverse cancers could be an effective tool to control cancer cell metastasis. Conclusively, this report puts forward a novel approach of controlling deregulated β-catenin signaling by 3-AWA induced Par-4 protein. © 2015 Wiley Periodicals, Inc.

  13. Activation of PAR(2) receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint.

    PubMed

    Russell, F A; Schuelert, N; Veldhoen, V E; Hollenberg, M D; McDougall, J J

    2012-12-01

    The PAR(2) receptors are involved in chronic arthritis by mechanisms that are as yet unclear. Here, we examined PAR(2) activation in the rat knee joint. PAR(2) in rat knee joint dorsal root ganglia (DRG) cells at L3-L5, retrogradely labelled with Fluoro-gold (FG) were demonstrated immunohistochemically. Electrophysiological recordings from knee joint nerve fibres in urethane anaesthetized Wistar rats assessed the effects of stimulating joint PAR(2) with its activating peptide, 2-furoyl-LIGRLO-NH(2) (1-100 nmol·100 μL(-1) , via close intra-arterial injection). Fibre firing rate was recorded during joint rotations before and 15 min after administration of PAR(2) activating peptide or control peptide. Leukocyte kinetics in the synovial vasculature upon PAR(2) activation were followed by intravital microscopy for 60 min after perfusion of 2-furoyl-LIGRLO-NH(2) or control peptide. Roles for transient receptor potential vanilloid-1 (TRPV1) or neurokinin-1 (NK(1) ) receptors in the PAR(2) responses were assessed using the selective antagonists, SB366791 and RP67580 respectively. PAR(2) were expressed in 59 ± 5% of FG-positive DRG cells; 100 nmol 2-furoyl-LIGRLO-NH(2) increased joint fibre firing rate during normal and noxious rotation, maximal at 3 min (normal; 110 ± 43%, noxious; 90 ± 31%). 2-Furoyl-LIGRLO-NH(2) also significantly increased leukocyte rolling and adhesion over 60 min. All these effects were blocked by pre-treatment with SB366791 and RP67580 (P < 0.05 compared with 2-furoyl-LIGRLO-NH(2) alone). PAR(2) receptors play an acute inflammatory role in the knee joint via TRPV1- and NK(1) -dependent mechanisms involving both PAR(2) -mediated neuronal sensitization and leukocyte trafficking. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  14. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is <2. However, water-splitting at strongly overlimiting current densities may lead to a local pH increase close to the membrane surface and alter film permeability or allow passage of Mg(OH)x species to decrease selectivity. When the source phase contains high salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000

  15. Par Pond vegetation status summer 1995 - July survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-07-01

    A survey of the emergent shoreline aquatic plant, communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet (61 meters) above mean sea level, and continued with this July survey. Aquatic plant communities, similar to the pre-drawdown Par Pond communities, are becoming reestablished. Beds of maidencane (Panicum hemitomon), lotus (Nelumbo lutea), water lily (Nymphaea odorata), and watershield (Brasenia schreberi) are now extensive and well established. In addition, within isolated coves, extensive beds of water lilies and spike-rush (Eleocharis sp.) are common. Cattail occurrence has increased since refill, but large beds common to Parmore » Pond prior to the drawdown have not formed. Invasion of willow (Salix sp.) and red maple (Acer rubrum) occurred along the lake shoreline during drawdown. The red maples along the present shoreline are beginning to show evidence of stress and mortality from flooding over the past four months. Some of the willows appear to be stressed as well. The loblolly pines (Pinus taeda), which were flooded in all but the shallow shoreline areas, are now dead. Future surveys are planned for the growing seasons of 1995, 1996, and 1997, along with the evaluation of satellite data for mapping the areal extent of the macrophyte beds of Par Pond.« less

  16. Loss of Par-1a/MARK3/C-TAK1 Kinase Leads to Reduced Adiposity, Resistance to Hepatic Steatosis, and Defective Gluconeogenesis ▿

    PubMed Central

    Lennerz, Jochen K.; Hurov, Jonathan B.; White, Lynn S.; Lewandowski, Katherine T.; Prior, Julie L.; Planer, G. James; Gereau, Robert W.; Piwnica-Worms, David; Schmidt, Robert E.; Piwnica-Worms, Helen

    2010-01-01

    Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a−/− but not in control or Par-1b−/− mice. The intercrossing of Par-1a−/− with Par-1b−/− mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a−/− mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b−/− mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice. PMID:20733003

  17. 2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) BARRACKS WITH RADAR ATTACHED. - Nike Hercules Missile Battery Summit Site, Battery Control Administration & Barracks Building, Anchorage, Anchorage, AK

  18. Proteinase-activated receptor 2 (PAR-2) in gastrointestinal and pancreatic pathophysiology, inflammation and neoplasia.

    PubMed

    Søreide, Kjetil

    2008-08-01

    Of all the body systems, the gastrointestinal (GI) tract is the most exposed to proteinases. Proteolytic activity must thus be tightly regulated in the face of diverse environmental challenges, because unrestrained or excessive proteolysis leads to pathological GI conditions. The protease-activated receptor-2 (PAR-2) is expressed in numerous cell types within the GI tract, suggesting both multiple functions and numerous modes of receptor activation. Although best known as a pancreatic digestive enzyme, trypsin has also been found in other tissues and various cancers. Of interest, trypsin and PAR-2 act together in an autocrine loop that promotes proliferation, invasion and metastasis in neoplasia through various mechanisms. Trypsin and PAR-2 seem to act both directly and indirectly through activation of other proteinase cascades, including metalloproteinases. PAR-2 activation can participate in inflammatory reactions, be protective to mucosal surfaces, send or inhibit nociceptive messages, modify gut motility or secretory functions, and stimulate cell proliferation and motility. Several studies point to a role for the PARs in disease processes of the GI tract and pancreas ranging from inflammatory bowel disease, symptoms associated with irritable bowel syndrome, pain in pancreatitis, development of colon and other GI cancers, and even infectious colitis. Proteinases should not only be considered from the traditional view as digestive or degradative enzymes in the gut, but additionally as signalling molecules that actively participate in the spectrum of physiology and diseased states of the GI tract.

  19. PAR-2, LGL-1 and the CDC-42 GAP CHIN-1 act in distinct pathways to maintain polarity in the C. elegans embryo

    PubMed Central

    Beatty, Alexander; Morton, Diane G.; Kemphues, Kenneth

    2013-01-01

    In the one-cell C. elegans embryo, polarity is maintained by mutual antagonism between the anterior cortical proteins PAR-3, PKC-3, PAR-6 and CDC-42, and the posterior cortical proteins PAR-2 and LGL-1 on the posterior cortex. The mechanisms by which these proteins interact to maintain polarity are incompletely understood. In this study, we investigate the interplay among PAR-2, LGL-1, myosin, the anterior PAR proteins and CDC-42. We find that PAR-2 and LGL-1 affect cortical myosin accumulation by different mechanisms. LGL-1 does not directly antagonize the accumulation of cortical myosin and instead plays a role in regulating PAR-6 levels. By contrast, PAR-2 likely has separate roles in regulating cortical myosin accumulation and preventing the expansion of the anterior cortical domain. We also provide evidence that asymmetry of active CDC-42 can be maintained independently of LGL-1 and PAR-2 by a redundant pathway that includes the CDC-42 GAP CHIN-1. Finally, we show that, in addition to its primary role in regulating the size of the anterior cortical domain via its binding to PAR-6, CDC-42 has a secondary role in regulating cortical myosin that is not dependent on PAR-6. PMID:23536568

  20. PAR-2, LGL-1 and the CDC-42 GAP CHIN-1 act in distinct pathways to maintain polarity in the C. elegans embryo.

    PubMed

    Beatty, Alexander; Morton, Diane G; Kemphues, Kenneth

    2013-05-01

    In the one-cell C. elegans embryo, polarity is maintained by mutual antagonism between the anterior cortical proteins PAR-3, PKC-3, PAR-6 and CDC-42, and the posterior cortical proteins PAR-2 and LGL-1 on the posterior cortex. The mechanisms by which these proteins interact to maintain polarity are incompletely understood. In this study, we investigate the interplay among PAR-2, LGL-1, myosin, the anterior PAR proteins and CDC-42. We find that PAR-2 and LGL-1 affect cortical myosin accumulation by different mechanisms. LGL-1 does not directly antagonize the accumulation of cortical myosin and instead plays a role in regulating PAR-6 levels. By contrast, PAR-2 likely has separate roles in regulating cortical myosin accumulation and preventing the expansion of the anterior cortical domain. We also provide evidence that asymmetry of active CDC-42 can be maintained independently of LGL-1 and PAR-2 by a redundant pathway that includes the CDC-42 GAP CHIN-1. Finally, we show that, in addition to its primary role in regulating the size of the anterior cortical domain via its binding to PAR-6, CDC-42 has a secondary role in regulating cortical myosin that is not dependent on PAR-6.

  1. The rate of endophthalmitis after pars plana vitrectomy and its risk factors.

    PubMed

    Tabatabaei, Seyed Ali; Soleimani, Mohammad; Vakili, Hadi; Naderan, Morteza; Lashay, Alireza; Faghihi, Houshang; Yaseri, Mehdi

    2018-05-11

    To study the incidence of endophthalmitis after pars plana vitrectomy, its causative organisms, and visual acuity outcomes. In this retrospective, comparative study, the medical records of patients with acute-onset postoperative endophthalmitis after pars plana vitrectomy at Farabi Eye Hospital, Tehran, Iran, during a 12-year period between January 2004 and November 2015 were reviewed. To compare the endophthalmitis patients with other cases who underwent pars plana vitrectomy at the same day and also the same operating room, a control group was developed by gathering the data from surgical records. In the present study, the incidence rate of pos- vitrectomy endophthalmitis was 0.04% (16/39783). The organisms identified in aqueous or vitreous cultures (culture positive 44%) included Streptococcus pneumoniae (two patients, 12.5%), Pseudomonas aeruginosa (two patients, 12.5%), fungi (two patients, 12.5%), and Streptococcus viridans (one patient, 6.25%). Visual acuity after treatment for endophthalmitis ranged from light perception (7 eyes) to hand motion (1 eye), and evisceration was performed in 8 eyes (50%). When comparing the cases (patients developing endophthalmitis) and controls (patients with no complications operated in the same day and place of operation with the case group), only not using tamponade showed a statistically significant relation with the occurrence of endophthalmitis (p = 0.034). Our results indicated low incidence of endophthalmitis after pars plana vitrectomy comparable to previous studies which resulted in poor visual acuity. It seems that not using tamponade might increase the risk of endophthalmitis among these patients.

  2. [Slaves in purgatory: the Tucunduba Leprosarium (Pará, nineteenth century)].

    PubMed

    Henrique, Márcio Couto

    2012-12-01

    The article analyzes the experience of the slaves interned at the Tucunduba Leprosarium in Belém, state of Pará during the nineteenth century. The slaves were freed once they showed the marks of their leprosy, and expectations were that they would submit to the segregation policy meant to keep them from contact with the rest of the population. The documentation produced by Santa Casa de Misericórdia hospital in Pará and by the province's political authorities reveals the strategies the slaves devised in response to this policy; they used their numerical predominance at the leprosarium to create a network of solidarity that allowed them to recreate their lives and stand in opposition to the type of nation that the era's hygienist theories envisioned.

  3. Participatory Action Research (PAR) cum Action Research (AR) in Teacher Professional Development: A Literature Review

    ERIC Educational Resources Information Center

    Morales, Marie Paz E.

    2016-01-01

    This paper reviews Participatory Action Research as an approach to teacher professional development. It maps the origins of Participatory Action Research (PAR) and discusses the benefits and challenges that have been identified by other researchers in utilizing PAR approaches in conducting research. It draws ideas of combining the features of…

  4. PAR-2-mediated control of barrier function and motility differs between early and late phases of postinfectious gut dysfunction in the rat.

    PubMed

    Fernández-Blanco, Joan Antoni; Fernández-Blanco, Juan A; Hollenberg, Morley D; Martínez, Vicente; Vergara, Patri

    2013-02-15

    Proteinase-activated receptor-2 (PAR-2) and mast cell (MC) mediators contribute to inflammatory and functional gastrointestinal disorders. We aimed to characterize jejunal PAR-2-mediated responses and the potential MC involvement in the early and late phases of a rat model of postinfectious gut dysfunction. Jejunal tissues of control and Trichinella spiralis-infected (14 and 30 days postinfection) rats, treated or not with the MC stabilizer, ketotifen, were used. Histopathology and immunostaining were used to characterize inflammation, PAR-2 expression, and mucosal and connective tissue MCs. Epithelial barrier function (hydroelectrolytic transport and permeability) and motility were assessed in vitro in basal conditions and after PAR-2 activation. Intestinal inflammation on day 14 postinfection (early phase) was significantly resolved by day 30 (late phase) although MC counts and epithelial permeability remained increased. PAR-2-mediated ion transport (Ussing chambers, in vitro) and epithelial surface PAR-2 expression were reduced in the early phase, with a trend toward normalization during the late phase. In control conditions, PAR-2 activation (organ bath) induced biphasic motor responses (relaxation followed by excitation). At 14 days postinfection, spontaneous contractility and PAR-2-mediated relaxations were enhanced; motor responses were normalized on day 30. Postinfectious changes in PAR-2 functions were not affected by ketotifen treatment. We concluded that, in the rat model of Trichinella spiralis infection, alterations of intestinal PAR-2 function and expression depend on the inflammatory phase considered. A lack of a ketotifen effect suggests no interplay between MCs and PAR-2-mediated motility and ion transport alterations. These observations question the role of MC mediators in PAR-2-modulating postinfectious gut dysfunction.

  5. "It was like reading a detective novel": Using PAR to work together for culture change.

    PubMed

    Fortune, Darla; McKeown, Janet; Dupuis, Sherry; de Witt, Lorna

    2015-08-01

    Participatory action research (PAR), with its focus on engagement and collaboration, is uniquely suited to enhancing culture change initiatives in dementia care. Yet, there is limited literature of its application to culture change approaches in care settings, and even less in dementia specific care contexts. To address these gaps in the literature, the purpose of this paper is to examine the complexities of a PAR project aimed at changing the culture of dementia care in two diverse dementia care settings, including a long term care (LTC) and community care setting. Drawing from data gathered throughout the PAR process, we unpack the challenges experienced by participants working together to guide culture change within their respective care settings. These challenges include: overextending selves through culture change participation; fluctuating group membership; feeling uncertainty, confusion and apprehension about the process; frustratingly slow process; and seeking diverse group representation in decision making. We also highlight the potential for appreciative inquiry (AI) to be integrated with PAR to guide a process whereby participants involved in culture change initiatives can develop strategies to mitigate challenges they experience. We view the challenges and strategies shared here as being constructive to would-be culture change agents and hope this paper will move others to consider the use of PAR when engaging in culture change initiatives. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Evidence that compatibility of closely related replicons in Clostridium perfringens depends on linkage to parMRC-like partitioning systems of different subfamilies.

    PubMed

    Watts, Thomas D; Johanesen, Priscilla A; Lyras, Dena; Rood, Julian I; Adams, Vicki

    2017-05-01

    Clostridium perfringens produces an extensive repertoire of toxins and extracellular enzymes, many of which are intimately involved in the progression of disease and are encoded by genes on conjugative plasmids. In addition, many C. perfringens strains can carry up to five of these conjugative toxin or antimicrobial resistance plasmids, each of which has a similar 35kb backbone. This conserved backbone includes the tcp conjugation locus and the central control region (CCR), which encodes genes involved in plasmid regulation, replication and partitioning, including a parMRC partitioning locus. Most conjugative plasmids in C. perfringens have a conserved replication protein, raising questions as to how multiple, closely related plasmids are maintained within a single strain. Bioinformatics analysis has highlighted the presence of at least 10 different parMRC partitioning system families (parMRC A-J ) in these plasmids, with differences in amino acid sequence identity between each ParM family ranging from 15% to 54%. No two plasmids that encode genes belonging to the same partitioning family have been observed in a single strain, suggesting that these families represent the basis for plasmid incompatibility. In an attempt to validate the proposed parMRC incompatibility groups, genetically marked C. perfringens plasmids encoding identical parMRC C or parMRC D homologues or different combinations of parMRC A , parMRC C and parMRC D family homologues were introduced into a single strain via conjugation. The stability of each plasmid was determined using an incompatibility assay in which the plasmid profile of each strain was monitored over the course of two days in the absence of direct selection. The results showed that plasmids with identical parMRC C or parMRC D homologues were incompatible and could not coexist in the absence of external selection. By contrast, plasmids that encoded different parMRC homologues were compatible and could coexist in the same cell in the

  7. Kis antitoxin couples plasmid R1 replication and parD (kis,kid) maintenance modules.

    PubMed

    López-Villarejo, Juan; Diago-Navarro, Elizabeth; Hernández-Arriaga, Ana María; Díaz-Orejas, Ramón

    2012-03-01

    The coupling between the replication and parD (kis, kid) maintenance modules of R1 has been revisited here by the isolation of a significant collection of conditional replication mutants in the pKN1562 mini-R1 plasmid, and in its derivative, pJLV01, specifically affected in the RNase activity of the Kid toxin. This new analysis aims to identify key factors in this coupling. For this purpose we have quantified and characterized the restriction introduced by parD to isolate conditional replication mutants of this plasmid, a signature of the modular coupling. This restriction depends on the RNase activity of the Kid toxin and it is relieved by either over-expression of the Kis antitoxin or by preventing its degradation by Lon and ClpAP proteases. Based on these data and on the correlation between copy numbers and parD transcriptional levels obtained in the different mutants, it is proposed that a reduction of Kis antitoxin levels in response to inefficient plasmid replication is the key factor for coupling plasmid replication and parD modules. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity

    PubMed Central

    Fang, Yuming; Duranceau, Steven J.

    2013-01-01

    To evaluate the significance of reverse osmosis (RO) and nanofiltration (NF) surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM) analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1) and particle back diffusion term (k2) was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion. PMID:24956946

  9. The Polarity Protein Partitioning-defective 1 (PAR-1) Regulates Dendritic Spine Morphogenesis through Phosphorylating Postsynaptic Density Protein 95 (PSD-95)*

    PubMed Central

    Wu, Qian; DiBona, Victoria L.; Bernard, Laura P.; Zhang, Huaye

    2012-01-01

    The polarity protein PAR-1 plays an essential role in many cellular contexts, including embryogenesis, asymmetric cell division, directional migration, and epithelial morphogenesis. Despite its known importance in different cellular processes, the role of PAR-1 in neuronal morphogenesis is less well understood. In particular, its role in the morphogenesis of dendritic spines, which are sites of excitatory synaptic inputs, has been unclear. Here, we show that PAR-1 is required for normal spine morphogenesis in hippocampal neurons. We further show that PAR-1 functions through phosphorylating the synaptic scaffolding protein PSD-95 in this process. Phosphorylation at a conserved serine residue in the KXGS motif in PSD-95 regulates spine morphogenesis, and a phosphomimetic mutant of this site can rescue the defects of kinase-dead PAR-1. Together, our findings uncover a role of PAR-1 in spine morphogenesis in hippocampal neurons through phosphorylating PSD-95. PMID:22807451

  10. The polarity protein partitioning-defective 1 (PAR-1) regulates dendritic spine morphogenesis through phosphorylating postsynaptic density protein 95 (PSD-95).

    PubMed

    Wu, Qian; DiBona, Victoria L; Bernard, Laura P; Zhang, Huaye

    2012-08-31

    The polarity protein PAR-1 plays an essential role in many cellular contexts, including embryogenesis, asymmetric cell division, directional migration, and epithelial morphogenesis. Despite its known importance in different cellular processes, the role of PAR-1 in neuronal morphogenesis is less well understood. In particular, its role in the morphogenesis of dendritic spines, which are sites of excitatory synaptic inputs, has been unclear. Here, we show that PAR-1 is required for normal spine morphogenesis in hippocampal neurons. We further show that PAR-1 functions through phosphorylating the synaptic scaffolding protein PSD-95 in this process. Phosphorylation at a conserved serine residue in the KXGS motif in PSD-95 regulates spine morphogenesis, and a phosphomimetic mutant of this site can rescue the defects of kinase-dead PAR-1. Together, our findings uncover a role of PAR-1 in spine morphogenesis in hippocampal neurons through phosphorylating PSD-95.

  11. Foxo-dependent Par-4 Upregulation Prevents Long-term Survival of Residual Cells Following PI3K-Akt Inhibition.

    PubMed

    Damrauer, Jeffrey S; Phelps, Stephanie N; Amuchastegui, Katie; Lupo, Ryan; Mabe, Nathaniel W; Walens, Andrea; Kroger, Benjamin R; Alvarez, James V

    2018-04-01

    Tumor recurrence is a leading cause of death and is thought to arise from a population of residual cells that survive treatment. These residual cancer cells can persist, locally or at distant sites, for years or decades. Therefore, understanding the pathways that regulate residual cancer cell survival may suggest opportunities for targeting these cells to prevent recurrence. Previously, it was observed that the proapoptotic protein (PAWR/Par-4) negatively regulates residual cell survival and recurrence in mice and humans. However, the mechanistic underpinnings on how Par-4 expression is regulated are unclear. Here, it is demonstrated that Par-4 is transcriptionally upregulated following treatment with multiple drugs targeting the PI3K-Akt-mTOR signaling pathway, and identify the Forkhead family of transcription factors as mediators of this upregulation. Mechanistically, Foxo3a directly binds to the Par-4 promoter and activates its transcription following inhibition of the PI3K-Akt pathway. This Foxo-dependent Par-4 upregulation limits the long-term survival of residual cells following treatment with therapeutics that target the PI3K-Akt pathway. Taken together, these results indicate that residual breast cancer tumor cell survival and recurrence requires circumventing Foxo-driven Par-4 upregulation and suggest that approaches to enforce Par-4 expression may prevent residual cell survival and recurrence. Mol Cancer Res; 16(4); 599-609. ©2018 AACR . ©2018 American Association for Cancer Research.

  12. Increased Protease-Activated Receptor-2 (PAR-2) Expression on CD14++CD16+ Peripheral Blood Monocytes of Patients with Severe Asthma

    PubMed Central

    Shrestha Palikhe, Nami; Nahirney, Drew; Laratta, Cheryl; Gandhi, Vivek Dipak; Vethanayagam, Dilini; Bhutani, Mohit; Mayers, Irvin

    2015-01-01

    Background Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. Methods We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. Results Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. Conclusions PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma. PMID:26658828

  13. Increased Protease-Activated Receptor-2 (PAR-2) Expression on CD14++CD16+ Peripheral Blood Monocytes of Patients with Severe Asthma.

    PubMed

    Shrestha Palikhe, Nami; Nahirney, Drew; Laratta, Cheryl; Gandhi, Vivek Dipak; Vethanayagam, Dilini; Bhutani, Mohit; Mayers, Irvin; Cameron, Lisa; Vliagoftis, Harissios

    2015-01-01

    Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma.

  14. Astragaloside Alleviates Hepatic Fibrosis Function via PAR2 Signaling Pathway in Diabetic Rats.

    PubMed

    Wang, Zhenchang; Li, Quanqiang; Xiang, Mingpeng; Zhang, Fengying; Wei, Dongyu; Wen, Zhixi; Zhou, Ying

    2017-01-01

    Astragaloside (AGS) extracted from radix astragalin (Huangqi) has been considered to be beneficial to liver diseases. In this study, we examined the role played by AGS in alleviating hepatic fibrosis function via protease-activated receptor-2 (PAR2) mechanisms. We hypothesized that AGS affects PAR2 signaling pathway thereby improving hepatic function in rats with hepatic fibrosis induced by carbon tetrachloride (CCl4). We further hypothesized that AGS attenuates impaired hepatic function evoked by CCl4 to a greater degree in diabetic animals. ELISA and Western Blot analysis were used to examine PAR2 signaling pathway in diabetic CCl4-rats and non-diabetic CCl4-rats. AGS inhibited the protein expression of PAR2 and its downstream pathway PKA and PKCɛ in CCl4-rats. Notably, the effects of AGS were greater in CCl4-rats with diabetes. AGS also significantly attenuated the CCl4-induced upregulations of pro-inflammatory cytokines, namely interleukin-1β, interleukin-6 and tumor necrosis factor-α accompanied with decreases of collagenic parameters such as hexadecenoic acid, laminin and hydroxyproline. Additionally, AGS improved the CCl4-induced exaggerations of liver index and functions including alanine aminotransferase, aspartate aminotransferase. Moreover, TGF-β1, a marker of hepatic fibrosis, was increased in CCl4-rats and AGS inhibited increases in TGF-β1 induced by CCl4. AGS alleviates hepatic fibrosis by inhibiting PAR2 signaling expression and its effects are largely enhanced in diabetic animals. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of hepatic fibrosis; and results of our study are likely to shed light on strategies for application of AGS because it has potentially greater therapeutic effectiveness for hepatic fibrosis in diabetes. © 2017 The Author(s)Published by S. Karger AG, Basel.

  15. Ketorolac reduces spinal astrocytic activation and PAR1 expression associated with attenuation of pain after facet joint injury.

    PubMed

    Dong, Ling; Smith, Jenell R; Winkelstein, Beth A

    2013-05-15

    Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain.

  16. Ketorolac Reduces Spinal Astrocytic Activation and PAR1 Expression Associated with Attenuation of Pain after Facet Joint Injury

    PubMed Central

    Dong, Ling; Smith, Jenell R.

    2013-01-01

    Abstract Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain. PMID:23126437

  17. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.

    PubMed

    Yu, Wenzheng; Liu, Teng; Crawshaw, John; Liu, Ting; Graham, Nigel

    2018-08-01

    The fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size. For NF membranes the removal of smaller MW fractions (800 Da-10 kDa) was less than expected from their pore size; however, nearly all of the hydrophobic, humic-type substances could be removed by the hydrophilic NF membranes for all MW distributions (greater than 90%). The results indicated the importance of the charge and hydrophilic nature of the NOM. Thus, the hydrophilic NF membrane could remove the hydrophobic organic matter, but not the hydrophilic substances. Increasing charge effects (more negative zeta potentials) with increasing solution pH were found to enhance organics removal and reduce fouling (flux decline), most likely through greater membrane surface repulsion. Pre-ozonation of the surface water increased the hydrophilic fraction and anionic charge of NOM and altered their size distributions. This resulted in a decreased fouling (less flux decline) for the UF and smaller pore NF, but a slight increase in fouling for the larger pore NF. The differences in the NF behavior are believed to relate to the relative sizes of ozonated organic fractions and the NF pores; a similar size of ozonated organic fractions and the NF pores causes significant membrane fouling. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo--Fenton processes.

    PubMed

    Li, Jiuyi; Zhao, Lei; Qin, Lele; Tian, Xiujun; Wang, Aimin; Zhou, Yanmei; Meng, Liao; Chen, Yong

    2016-03-01

    Removal of the refractory organic matters in leachate brines generated from nanofiltration unit in two full-scale municipal solid waste landfill leachate treatment plants was investigated by Fenton oxidative-coagulation and ultraviolet photo - Fenton processes in this study. Fenton oxidative-coagulation was performed under the condition of an initial pH of 5.0 and low H2O2/Fe(2+) ratios. After precipitate separation, the remaining organic constituents were further oxidized by photo - Fenton process. For both leachate brines with varying pollution strength, more than 90% COD and TOC reductions were achieved at H2O2/Fe(2+) dosages of 35 mM/8 mM and 90 mM/10 mM, respectively. The effluent COD ranged 120-160 mg/L under the optimal operating conditions, and the biodegradability was increased significantly. Fenton oxidative-coagulation was demonstrated to contribute nearly 70% overall removal of organic matters. In the combined processes, the efficiency of hydrogen peroxide varied from 216 to 228%, which may significantly reduce the operating cost of conventional Fenton method. Six phthalic acid esters and thirteen polycyclic aromatic hydrocarbons were found in leachate brines, and, on the average, around 80% phthalic acid esters and 90% polycyclic aromatic hydrocarbons were removed by the combined treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. uPAR and Cathepsin B Downregulation Induces Apoptosis by Targeting Calcineurin A to BAD via Bcl-2 in Glioma

    PubMed Central

    Malla, Rama Rao; Gopinath, Sreelatha; Gondi, Christopher S.; Alapati, Kiranmai; Dinh, Dzung H.; Tsung, Andrew J.; Rao, Jasti S.

    2011-01-01

    Cathepsin B and urokinase plasminogen activator receptor (uPAR) are postulated to play key roles in glioma invasion. Calcineurin is one of the key regulators of mitochondrial-dependent apoptosis, but its mechanism is poorly understood. Hence, we studied subcellular localization of calcineurin after transcriptional downregulation of uPAR and cathepsin B in glioma. In the present study, efficient downregulation of uPAR and cathepsin B increased the translocation of calcineurin A from the mitochondria to the cytosol, decreased pBAD (S136) expression and its interaction with 14-3-3ζ, and increased the interaction of BAD with Bcl-Xl. Co-depletion of uPAR and cathepsin B induced mitochondrial translocation of BAD and caspase 3 as well as PARP activation, cytochrome c and SMAC release. These effects were inhibited by FK506 (10 μM), a specific inhibitor of calcineurin. Calcineurin A was co-localized and also co-immunoprecipitated with Bcl-2. This interaction decreased with co-depletion of uPAR and cathepsin B and also with Bcl-2 inhibitor, HA 14-1 (20 μg/mL). Altered localization and interaction of calcineurin A with Bcl-2 was also observed in vivo when uPAR and cathepsin B were downregulated. In conclusion, downregulation of uPAR and cathepsin B induced apoptosis by targeting calcineurin A to BAD via Bcl-2 in glioma. PMID:21964739

  20. Soluble urokinase-type plasminogen activator receptor (suPAR) and interleukin-6 levels in hyperemesis gravidarum.

    PubMed

    Desdicioglu, Raziye; Yildirim, Melahat; Kocaoglu, Gulcan; Demir Cendek, Busra; Avcioglu, Gamze; Tas, Emre Erdem; Sengul, Ozlem; Erel, Ozcan; Yavuz, Ayse Filiz

    2017-10-09

    The aim was to compare serum soluble urokinase-type plasminogen activator receptor (suPAR) levels as well as interleukin-6 levels (IL-6) in pregnant women with hyperemesis gravidarum (HG) and asymptomatic pregnant women. Our study population consists of voluntary first trimester-pregnant women who applied to the outpatient clinic of the department of obstetrics and gynecology of Ankara Ataturk Training and Research Hospital. Between February and May 2016, 60 pregnant women were included in our prospective study. Serum suPAR and IL-6 levels were evaluated with the ELISA method. Twenty-nine pregnant women with HG and 31 asymptomatic pregnant women were included in the study. Serum suPAR level in the HG group was measured as 0.36 ± 0.56 ng/ml, whereas this level in the healthy pregnant control group was measured as 0.15 ± 0.15 ng/ml (p < 0.05). The interleukin-6 level in the HG group was 5.69 ± 2.16 pg/ml, whereas in the control group it was measured as 3.88 ± 0.28 pg/ml (p < 0.05). Serum suPAR and IL-6 levels proved to be high in the HG group. It is likely that suPAR could play a role in the etiopathogenesis of hyperemesis gravidarum. Copyright © 2017. Published by Elsevier Taiwan LLC.

  1. Per a 10 activates human derived epithelial cell line in a protease dependent manner via PAR-2.

    PubMed

    Kale, Sagar L; Arora, Naveen

    2015-04-01

    Protease activity of Per a 10 has been shown to modulate dendritic cells toward Th-2 polarization and to induce airway inflammation. To elucidate the role of serine protease activity of Per a 10 in inducing biochemical responses in epithelial cells. Per a 10 was inactivated by heat treatment (ΔPer a 10) or AEBSF (iPer a 10). A549 cells were exposed to either enzymatically active/inactive Per a 10. The supernatant was analyzed for the secretion of proinflammatory cytokines by ELISA. Ca(2+) mobilization was analyzed by flow cytometry. A PAR-2 derived synthetic peptide 28GTNRSSKGRSLIGKVDGTSHVTGKGVTC54 was incubated with Per a 10 and the resultant cleaved products were analyzed by LC-MS. PAR-2 activation was inhibited by PAR-2 cleavage inhibiting antibody. ΔPer a 10 was completely inactivated whereas iPer a 10 showed some residual activity. nPer a 10 having protease activity increased the secretion of IL-6, IL-8 and GMCSF from A549 in a dose and time dependent manner whereas iPer a 10 has reduced cytokine secretion. ΔPer a 10 and rPer a 10 were unable to activate the cells. nPer a 10 mobilized intracellular Ca(2+). nPer a 10 cleaved the PAR-2 derived peptide between arginine and serine residues (36R-S37) to expose PAR-2 ligand SLIGKV, as determined by LC-MS. Incubating with anti-PAR-2 cleavage antibody showed diminished cytokine secretion when treated with nPer a 10. Serine protease activity of Per a 10 activates A549 cells to secrete proinflammatory cytokines by PAR-2 activation and Ca(2+)mobilization and can be exploited therapeutically. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. The human airway trypsin-like protease modulates the urokinase receptor (uPAR, CD87) structure and functions.

    PubMed

    Beaufort, Nathalie; Leduc, Dominique; Eguchi, Hiroshi; Mengele, Karin; Hellmann, Daniela; Masegi, Tsukio; Kamimura, Takashi; Yasuoka, Susumu; Fend, Falko; Chignard, Michel; Pidard, Dominique

    2007-05-01

    The human airway trypsin-like protease (HAT) is a respiratory epithelium-associated, type II transmembrane serine protease, which is also detected as an extracellular enzyme in lung fluids during airway inflammatory disorders. We have evaluated its capacity to affect the urokinase-type plasminogen activator receptor (uPAR), a membrane glycolipid-anchored, three-domain (D1D2D3) glycoprotein that plays a crucial role in innate immunity and inflammation by supporting cell migration and matrix degradation, with structure and biological properties that can be regulated via limited endoproteolysis. With the use of immunoblotting, flow immunocytometry, and ELISA analyses applied to a recombinant uPAR protein and to uPAR-expressing monocytic and human bronchial epithelial cells, it was shown that exposure of uPAR to soluble HAT in the range of 10-500 nM resulted in the proteolytic processing of the full-length (D1D2D3) into the truncated (D2D3) species, with cleavage occurring in the D1 to D2 linker sequence after arginine residues at position 83 and 89. Using immunohistochemistry, we found that both HAT and uPAR were expressed in the human bronchial epithelium. Moreover, transient cotransfection in epithelial cells showed that membrane coexpression of the two partners produced a constitutive and extensive shedding of the D1 domain, occurring for membrane-associated HAT concentrations in the nanomolar range. Because the truncated receptor was found to be unable to bind two of the major uPAR ligands, the adhesive matrix protein vitronectin and the serine protease urokinase, it thus appears that proteolytic regulation of uPAR by HAT is likely to modulate cell adherence and motility, as well as tissue remodeling during the inflammatory response in the airways.

  3. Actinic cheilitis: epithelial expression of COX-2 and its association with mast cell tryptase and PAR-2.

    PubMed

    Rojas, I Gina; Martínez, Alejandra; Brethauer, Ursula; Grez, Patricia; Yefi, Roger; Luza, Sandra; Marchesani, Francisco J

    2009-03-01

    Cyclooxygenase-2 (COX-2) is overexpressed in various types of human malignancies, including oral cancers. Recent studies have shown that mast cell-derived protease tryptase can induce COX-2 expression by the cleavage of proteinase-activated receptor-2 (PAR-2). Actinic cheilitis (AC) is a premalignant form of lip cancer characterized by an increased density of tryptase-positive mast cells. To investigate the possible contribution of tryptase to COX-2 overexpression during early lip carcinogenesis, normal lip (n=24) and AC (n=45) biopsies were processed for COX-2, PAR-2 and tryptase detection, using RT-PCR and immunohistochemistry. Expression scores were obtained for each marker and tested for statistical significance using Mann-Whitney and Spearmann's correlation tests as well as multivariate logistic regression analysis. Increased epithelial co-expression of COX-2 and PAR-2, as well as, elevated subepithelial density of tryptase-positive mast cells were found in AC as compared to normal lip (P<0.001). COX-2 overexpression was found to be a significant predictor of AC (P<0.034, forward stepwise, Wald), and to be correlated with both tryptase-positive mast cells and PAR-2 expression (P<0.01). The results suggest that epithelial COX-2 overexpression is a key event in AC, which is associated with increased tryptase-positive mast cells and PAR-2. Therefore, tryptase may contribute to COX-2 up-regulation by epithelial PAR-2 activation during early lip carcinogenesis.

  4. Recuit thermique rapide de semi-conducteur par énergie micro-onde

    NASA Astrophysics Data System (ADS)

    Covas, M.; Gay, H. C.

    1993-05-01

    This paper proposes a new technique for rapid thermal annealing of semi-conductors. This technique is based on microwave energy, and offers the same advantages as the rapid thermal annealing by incoherent light, in terms of rapidity, and contamination. However, our technique reduces considerably the required energy for the annealing process. This technique has been compared to the rapid thermal by incoherent light: lab experiments, carried out on boron implanted silicon samples, showed that a power gain ratio of about 10 can be achieved. Nous proposons une méthode de recuit thermique rapide du silicium par énergie micro-onde. Cette technique offre les mêmes avantages que les traitements thermiques rapides par lumière incohérente, c'est-à-dire des durées de chauffage très brèves, limitant ainsi la diffusion des dopants, et un traitement plaquette par plaquette : les risques de contamination de tout un lot sont ainsi éliminés. De plus notre méthode requiert une faible énergie : pour parvenir à des recuits de qualité similaire à celle obtenue dans des fours de recuit rapide à lampes il faut un flux de puissance 10 fois plus faible.

  5. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis

    PubMed Central

    Sales, Katiuchia Uzzun; Friis, Stine; Konkel, Joanne E.; Godiksen, Sine; Hatakeyama, Marcia; Hansen, Karina K.; Rogatto, Silvia Regina; Szabo, Roman; Vogel, Lotte K.; Chen, Wanjun; Gutkind, J. Silvio; Bugge, Thomas H.

    2014-01-01

    The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease suffices to induce malignant transformation. Here, we use genetic epistasis analysis to identify proteinase-activated receptor (PAR)-2-dependent inflammatory signaling as an essential component of matriptase-mediated oncogenesis. In cell-based assays, matriptase was a potent activator of PAR-2, and PAR-2 activation by matriptase caused robust induction of NFκB through Gαi. Importantly, genetic elimination of PAR-2 from mice completely prevented matriptase-induced pre-malignant progression, including inflammatory cytokine production, inflammatory cell recruitment, epidermal hyperplasia, and dermal fibrosis. Selective ablation of PAR-2 from bone marrow-derived cells did not prevent matriptase-driven pre-malignant progression, indicating that matriptase activates keratinocyte stem cell PAR-2 to elicit its pro-inflammatory and pro-tumorigenic effects. When combined with previous studies, our data suggest that dual induction of PAR-2-NFκB inflammatory signaling and PI3K-Akt-mTor survival/proliferative signaling underlies the transforming potential of matriptase and may contribute to pro-tumorigenic signaling in human epithelial carcinogenesis. PMID:24469043

  6. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis.

    PubMed

    Sales, K U; Friis, S; Konkel, J E; Godiksen, S; Hatakeyama, M; Hansen, K K; Rogatto, S R; Szabo, R; Vogel, L K; Chen, W; Gutkind, J S; Bugge, T H

    2015-01-15

    The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease suffices to induce malignant transformation. Here, we use genetic epistasis analysis to identify proteinase-activated receptor (PAR)-2-dependent inflammatory signaling as an essential component of matriptase-mediated oncogenesis. In cell-based assays, matriptase was a potent activator of PAR-2, and PAR-2 activation by matriptase caused robust induction of nuclear factor (NF)κB through Gαi. Importantly, genetic elimination of PAR-2 from mice completely prevented matriptase-induced pre-malignant progression, including inflammatory cytokine production, inflammatory cell recruitment, epidermal hyperplasia and dermal fibrosis. Selective ablation of PAR-2 from bone marrow-derived cells did not prevent matriptase-driven pre-malignant progression, indicating that matriptase activates keratinocyte stem cell PAR-2 to elicit its pro-inflammatory and pro-tumorigenic effects. When combined with previous studies, our data suggest that dual induction of PAR-2-NFκB inflammatory signaling and PI3K-Akt-mTor survival/proliferative signaling underlies the transforming potential of matriptase and may contribute to pro-tumorigenic signaling in human epithelial carcinogenesis.

  7. Activated PAR-2 regulates pancreatic cancer progression through ILK/HIF-α-induced TGF-α expression and MEK/VEGF-A-mediated angiogenesis.

    PubMed

    Chang, Li-Hsun; Pan, Shiow-Lin; Lai, Chin-Yu; Tsai, An-Chi; Teng, Che-Ming

    2013-08-01

    Tissue factor initiates the process of thrombosis and activates cell signaling through protease-activated receptor-2 (PAR-2). The aim of this study was to investigate the pathological role of PAR-2 signaling in pancreatic cancer. We first demonstrated that activated PAR-2 up-regulated the protein expression of both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α, resulting in enhanced transcription of transforming growth factor-α (TGF-α). Down-regulation of HIFs-α by siRNA or YC-1, an HIF inhibitor, resulted in depleted levels of TGF-α protein. Furthermore, PAR-2, through integrin-linked kinase (ILK) signaling, including the p-AKT, promoted HIF protein expression. Diminishing ILK by siRNA decreased the levels of PAR-2-induced p-AKT, HIFs-α, and TGF-α; our results suggest that ILK is involved in the PAR-2-mediated TGF-α via an HIF-α-dependent pathway. Furthermore, the culture medium from PAR-2-treated pancreatic cancer cells enhanced human umbilical vein endothelial cell proliferation and tube formation, which was blocked by the MEK inhibitor, PD98059. We also found that activated PAR-2 enhanced tumor angiogenesis through the release of vascular endothelial growth factor-A (VEGF-A) from cancer cells, independent of the ILK/HIFs-α pathways. Consistent with microarray analysis, activated PAR-2 induced TGF-A and VEGF-A gene expression. In conclusion, the activation of PAR-2 signaling induced human pancreatic cancer progression through the induction of TGF-α expression by ILK/HIFs-α, as well as through MEK/VEGF-A-mediated angiogenesis, and it plays a role in the interaction between cancer progression and cancer-related thrombosis. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells.

    PubMed

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla; Hansson, Stefan; Casslén, Bertil

    2009-02-01

    Epidermal growth factor (EGF) stimulates proliferation and migration in ovarian cancer cells, and high tumor expression of the EGF system correlates with poor prognosis. Epidermal growth factor upregulates urokinase plasminogen activator receptor (uPAR) on the cell surface via 3 distinct mechanisms: rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression and cell migration in ovarian cancer cells and further to identify the ER involved.We used 7 ovarian cancer cell lines, cell migration assay, cellular binding of (125)I-uPA, cellular degradation of (125)I-uPA/PAI-1 complex, enzyme-linked immunosorbent assay for uPAR, solid-phase enzyme immunoassay for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents mobilization of uPAR from detergent-resistant domains such as lipid rafts. Estradiol influenced neither the amount of uPAR mRNA nor the rate of uPAR degradation or solubilization. The nuclear ER antagonists ICI 182780 and tamoxifen, which are GPR30 agonists, as well as the specifically constructed GPR30 agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates that this effect is mediated via the membrane ER GPR30.

  9. [Experimental study on repair of the defect of the pars interarticularis in rat with bone morphogenetic protein and fibrin glue].

    PubMed

    Nakamura, T

    1992-07-01

    The possibility of repairing the defect of the pars interarticularis (pars defect) with Bone Morphogenetic Protein (BMP) and fibrin glue was studied. The pars defect established in the 5th lumbar vertebra of Wistar rat was treated with surgical implantation of a composite consisting of BMP, fibrin glue and autologous cancellous bone. At 3, 6, 9 and 12 weeks after implantation, the osteoinductive activity in the pars defect was observed histologically and compared with that of other composite implants such as BMP with fibrin glue, autologous cancellous bone alone and autologous cancellous bone with fibrin glue. Although perfect bone fusion was not obtained with any of the composites employed, a significant increase in bone formation was seen in a composite of BMP, fibrin glue and autologous cancellous bone (p less than 0.01) as compared with that seen in the others. Consequently, implantation of BMP and fibrin glue combined with some biomaterials which support osteo-induction of BMP and stabilize the pars defect might be successfully applied to repair the pars defect.

  10. Expression of protease-activated receptor-2 (PAR-2) in patients with nasopharyngeal carcinoma: correlation with clinicopathological features and prognosis.

    PubMed

    Li, Zhi; Bian, Li-Juan; Li, Yang; Liang, Ying-Jie; Liang, Hui-Zhen

    2009-01-01

    We aimed at determining whether the expression of protease-activated receptor 2 (PAR-2) is involved in the progression of nasopharyngeal carcinoma (NPC) and correlated with latent membrane protein 1 (LMP-1), matrix metalloproteinases-9 (MMP9), and angiogenesis of tumor. PAR-2, LMP-1, and MMP9 expressions were detected in 57 biopsies of primary NPC by immunohistochemistry. The presence of Epstein-Barr virus (EBV) was determined using EBER in situ hybridization, and intratumoral microvessels were highlighted by staining endothelial cells for anti-CD34. The correlations with immunostainings and clinicopathological factors, as well as the follow-up data of patients, were analyzed statistically. Strong expression of PAR-2 in 61.4% (35/57) of the biopsies was correlated with extensive lymph node metastasis and advanced stage of NPC. The patients with PAR-2/LMP-1 or PAR-2/MMP9 dual high-expression tumors had a significant worse prognosis than those with single protein high expression and dual low or negative expression tumors (P=0.013 and 0.004, respectively). Angiogenesis in the tumor is related to overall survival of NPC patients (P=0.001), and exhibits strong PAR-2 expression or LMP-1 expression in tumors associated with increased intratumoral microvessel density (P=0.026 and 0.006, respectively). PAR-2 is a possible mediator cooperating with LMP-1 and MMP9 to influence the progression of NPC by inducing angiogenesis and promoting lymph node metastasis.

  11. Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme

    PubMed Central

    Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Rosso, Mario Del; Fibbi, Gabriella

    2014-01-01

    The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of “targeted therapies” as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a “personalized therapy”, without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis. PMID:25003596

  12. Enhancement of cutaneous wound healing by Dsg2 augmentation of uPAR secretion.

    PubMed

    Cooper, Felicia; Overmiller, Andrew M; Loder, Anthony; Brennan-Crispi, Donna M; McGuinn, Kathleen P; Marous, Molly R; Freeman, Theresa A; Riobo-Del Galdo, Natalia A; Siracusa, Linda D; Wahl, James K; Mahoney, Mỹ G

    2018-05-09

    In addition to playing a role in adhesion, desmoglein 2 (Dsg2) is an important regulator of growth and survival signaling pathways, cell proliferation, migration and invasion, and oncogenesis. While low-level Dsg2 expression is observed in basal keratinocytes and is downregulated in non-healing venous ulcers, overexpression has been observed in both melanomas and non-melanoma malignancies. Here, we show that transgenic mice overexpressing Dsg2 in basal keratinocytes primed the activation of mitogenic pathways, but did not induce dramatic epidermal changes or susceptibility to chemical-induced tumor development. Interestingly, acceleration of full-thickness wound closure and increased wound-adjacent keratinocyte proliferation was observed in these mice. As epidermal cytokines and their receptors play critical roles in wound healing, Dsg2-induced secretome alterations were assessed with an antibody profiler array and revealed increased release and proteolytic processing of the urokinase-type plasminogen activator receptor (uPAR). Dsg2 induced uPAR expression in the skin of transgenic compared to wild-type mice. Wound healing further enhanced uPAR in both epidermis and dermis with concomitant increase in the pro-healing laminin-332, a major component of the basement membrane zone, in transgenic mice. This study demonstrates that Dsg2 induces epidermal activation of various signaling cascades and accelerates cutaneous wound healing, in part, through uPAR-related signaling cascades. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: A review.

    PubMed

    Azam, Mohammed Afzal; Thathan, Janarthanan; Jubie, Selvaraj

    2015-10-01

    GyrB and ParE are type IIA topoisomerases and found in most bacteria. Its function is vital for DNA replication, repair and decatenation. The highly conserved ATP-binding subunits of DNA GyrB and ParE are structurally related and have been recognized as prime candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, no natural product or small molecule inhibitors targeting ATPase catalytic domain of both GyrB and ParE enzymes have succeeded in the clinic. Moreover, no inhibitors of these enzymes with broad-spectrum antibacterial activity against Gram-negative pathogens have been reported. Availability of high resolution crystal structures of GyrB and ParE made it possible for the design of many different classes of inhibitors with dual mechanism of action. Among them benzimidazoles, benzothiazoles, thiazolopyridines, imidiazopyridazoles, pyridines, indazoles, pyrazoles, imidazopyridines, triazolopyridines, pyrrolopyrimidines, pyrimidoindoles as well as related structures are disclosed in literatures. Unfortunately most of these inhibitors are found to be active against Gram-positive pathogens. In the present review we discuss about studies on novel dual targeting ATPase inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. View from northeast to southwest of PAR site sentry station; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from northeast to southwest of PAR site sentry station; formerly the bachelor's enlisted men's quarter (BEQ) - Stanley R. Mickelsen Safeguard Complex, Sentry Station, North of Second Avenue & West of Electrical Switch Station No. 2, Nekoma, Cavalier County, ND

  15. Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis.

    PubMed

    Tomaiuolo, F; MacDonald, J D; Caramanos, Z; Posner, G; Chiavaras, M; Evans, A C; Petrides, M

    1999-09-01

    The pars opercularis occupies the posterior part of the inferior frontal gyrus. Electrical stimulation or damage of this region interferes with language production. The present study investigated the morphology and morphometry of the pars opercularis in 108 normal adult human cerebral hemispheres by means of magnetic resonance imaging. The brain images were transformed into a standardized proportional steoreotaxic space (i.e. that of Talairach and Tournoux) in order to minimize interindividual brain size variability. There was considerable variability in the shape and location of the pars opercularis across brains and between cerebral hemispheres. There was no significant difference or correlation between left and right hemisphere grey matter volumes. There was also no significant difference between sex and side of asymmetry of the pars opercularis. A probability map of the pars opercularis was constructed by averaging its location and extent in each individual normalized brain into Talairach space to aid in localization of activity changes in functional neuroimaging studies.

  16. Incorporating GOES Satellite Photosynthetically Active Radiation (PAR) Retrievals to Improve Biogenic Emission Estimates in Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; White, Andrew T.; Pour Biazar, Arastoo; McNider, Richard T.; Cohan, Daniel S.

    2018-01-01

    This study examines the influence of insolation and cloud retrieval products from the Geostationary Operational Environmental Satellite (GOES) system on biogenic emission estimates and ozone simulations in Texas. Compared to surface pyranometer observations, satellite-retrieved insolation and photosynthetically active radiation (PAR) values tend to systematically correct the overestimation of downwelling shortwave radiation in the Weather Research and Forecasting (WRF) model. The correlation coefficient increases from 0.93 to 0.97, and the normalized mean error decreases from 36% to 21%. The isoprene and monoterpene emissions estimated by the Model of Emissions of Gases and Aerosols from Nature are on average 20% and 5% less, respectively, when PAR from the direct satellite retrieval is used rather than the control WRF run. The reduction in biogenic emission rates using satellite PAR reduced the predicted maximum daily 8 h ozone concentration by up to 5.3 ppbV over the Dallas-Fort Worth (DFW) region on some days. However, episode average ozone response is less sensitive, with a 0.6 ppbV decrease near DFW and 0.3 ppbV increase over East Texas. The systematic overestimation of isoprene concentrations in a WRF control case is partially corrected by using satellite PAR, which observes more clouds than are simulated by WRF. Further, assimilation of GOES-derived cloud fields in WRF improved CAMx model performance for ground-level ozone over Texas. Additionally, it was found that using satellite PAR improved the model's ability to replicate the spatial pattern of satellite-derived formaldehyde columns and aircraft-observed vertical profiles of isoprene.

  17. Trypsin impaired epithelial barrier function and induced IL-8 secretion through basolateral PAR-2: a lesson from a stratified squamous epithelial model.

    PubMed

    Shan, Jing; Oshima, Tadayuki; Chen, Xin; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2012-11-15

    Immune-mediated injury by the protease-activated receptor-2-interleukin-8 (PAR-2-IL8) pathway may underlie the development of gastroesophageal reflux disease (GERD). However, the localization of PAR-2 and the mechanism of PAR-2 activation remain unclear. This study aimed to address these questions on an esophageal stratified squamous epithelial model and in the human esophageal mucosa of GERD patients. Normal human esophageal epithelial cells were cultured with the air-liquid interface system to establish the model. SLIGKV-NH2 (PAR-2 synthetic agonist), trypsin (PAR-2 natural activator), and weak acid (pH 4, 5, and 6) were added to either the apical or basolateral compartment to evaluate their effects on transepithelial electrical resistance (TEER) and IL-8 production. PAR-2 localization was examined both in the cell model and biopsies from GERD patients by immunohistochemistry. Apical trypsin stimulation induced IL-8 accompanied by decreased TEER in vitro, whereas the effective concentration from the basolateral side was 10 times lower. SLIGKV-NH2 from basolateral but not apical stimulation induced IL-8 production. Apical weak acid stimulation did not influence TEER or IL-8 production. Immunohistochemistry showed intense reactivity of PAR-2 in the basal and suprabasal layers after stimulation with trypsin. A similar PAR-2 reactivity that was mainly located at the basal and suprabasal layers was detected in GERD patients. In conclusion, the activation of the PAR-2-IL-8 pathway probably occurred at the basal and suprabasal layers, while the esophageal epithelial barrier may influence the activation of PAR-2. Under proton pump inhibitor therapy, refluxed trypsin may remain active and be a potential agent in the pathogenesis of refractory GERD.

  18. Screening of phytochemicals against protease activated receptor 1 (PAR1), a promising target for cancer.

    PubMed

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2015-02-01

    Drug resistance and drug-associated toxicity are the primary causes for withdrawal of many drugs, although patient recovery is satisfactory in many instances. Interestingly, the use of phytochemicals in the treatment of cancer as an alternative to synthetic drugs comes with a host of advantages; minimum side effects, good human absorption and low toxicity to normal cells. Protease activated receptor 1 (PAR1) has been established as a promising target in many diseases including various cancers. Strong evidences suggest its role in metastasis also. There are no natural compounds known to inhibit its activity, so we aimed to identify phytochemicals with antagonist activity against PAR1. We screened phytochemicals from Naturally Occurring Plant-based Anticancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/ ) against PAR1 using virtual screening workflow of Schrödinger software. It analyzes pharmaceutically relevant properties using Qikprop and calculates binding energy using Glide at three accuracy levels (high-throughput virtual screening, standard precision and extra precision). Our study led to the identification of phytochemicals, which showed interaction with at least one experimentally determined active site residue of PAR1, showed no violations to Lipinski's rule of five along with predicted high human absorption. Furthermore, structural interaction fingerprint analysis indicated that the residues H255, D256, E260, S344, V257, L258, L262, Y337 and S344 may play an important role in the hydrogen bond interactions of the phytochemicals screened. Of these residues, H255 and L258 residues were experimentally proved to be important for antagonist binding. The residues Y183, L237, L258, L262, F271, L332, L333, Y337, L340, A349, Y350, A352, and Y353 showed maximum hydrophobic interactions with the phytochemicals screened. The results of this work suggest that phytochemicals Reissantins D, 24,25-dihydro-27-desoxywithaferin A, Isoguaiacin

  19. Regulation of feto-maternal barrier by matriptase- and PAR-2-mediated signaling is required for placental morphogenesis and mouse embryonic survival.

    PubMed

    Szabo, Roman; Peters, Diane E; Kosa, Peter; Camerer, Eric; Bugge, Thomas H

    2014-07-01

    The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functional feto-maternal barrier. Mice with a combined matriptase and PAR-2 deficiency do not survive to term and the survival of matriptase-deficient mice heterozygous for PAR-2 is severely diminished. Embryos with the combined loss of PAR-2 and matriptase or PAR-2 and the matriptase partner protease, prostasin, uniformly die on or before embryonic day 14.5. Despite the extensive co-localization of matriptase, prostasin, and PAR-2 in embryonic epithelia, the overall macroscopic and histological analysis of the double-deficient embryos did not reveal any obvious developmental abnormalities. In agreement with this, the conditional deletion of matriptase from the embryo proper did not affect the prenatal development or survival of PAR-2-deficient mice, indicating that the critical redundant functions of matriptase/prostasin and PAR-2 are limited to extraembryonic tissues. Indeed, placentas of the double-deficient animals showed decreased vascularization, and the ability of placental epithelium to establish a functional feto-maternal barrier was severely diminished. Interestingly, molecular analysis suggested that the barrier defect was associated with a selective deficiency in the expression of the tight junction protein, claudin-1. Our results reveal unexpected complementary roles of matriptase-prostasin- and PAR-2-dependent proteolytic signaling in the establishment of placental epithelial barrier function and overall embryonic survival.

  20. Lesioning of TRPV1 Expressing Primary Afferent Neurons Prevents PAR-2 Induced Motility, but Not Mechanical Hypersensitivity in the Rat Colon

    PubMed Central

    Suckow, Shelby K.; Anderson, Ethan M.; Caudle, Robert M.

    2011-01-01

    Background Proteinase activated receptor 2 (PAR-2) is expressed by many neurons in the colon, including primary afferent neurons that co-express transient receptor potential vanilloid 1 (TRPV1). Activation of PAR-2 receptors was previously found to enhance colonic motility, increase secretion and produce hypersensitivity to mechanical stimuli. This study examined the functional role of TRPV1/PAR-2 expressing neurons that innervate the colon by lesioning TRPV1 bearing neurons with the highly selective and potent TRPV1 agonist resiniferatoxin. Methods Colonic motility in response to PAR-2 activation was evaluated in vitro using isolated segments of descending colon and in vivo using manometry. Colonic mechanical nociceptive thresholds were measured using colorectal distension. TRPV1 expressing neurons were selectively lesioned with resiniferatoxin. Key Results In vitro the PAR-2 agonists trypsin and SLIGRL did not alter contractions of colon segments when applied alone, however, the agents enhanced acetylcholine stimulated contraction. In vivo, PAR-2 agonists administered intraluminally induced contractions of the colon and produced hypersensitivity to colorectal distention. The PAR-2 agonist enhancement of colonic contraction was eliminated when TRPV1 expressing neurons were lesioned with resiniferatoxin, but the PAR-2 agonist induced hypersensitivity remained in the lesioned animals. Conclusions and Inferences Our findings indicate that TRPV1/PAR-2 expressing primary afferent neurons mediate an extrinsic motor reflex pathway in the colon. These data, coupled with our previous studies, also indicate that the recently described colospinal afferent neurons are nociceptive, suggesting that these neurons may be useful targets for the pharmacological control of pain in diseases such as irritable bowel syndrome. PMID:22168801

  1. Lesioning of TRPV1 expressing primary afferent neurons prevents PAR-2 induced motility, but not mechanical hypersensitivity in the rat colon.

    PubMed

    Suckow, S K; Anderson, E M; Caudle, R M

    2012-03-01

    Proteinase activated receptor 2 (PAR-2) is expressed by many neurons in the colon, including primary afferent neurons that co-express transient receptor potential vanilloid 1 (TRPV1). Activation of PAR-2 receptors was previously found to enhance colonic motility, increase secretion and produce hypersensitivity to mechanical stimuli. This study examined the functional role of TRPV1/PAR-2 expressing neurons that innervate the colon by lesioning TRPV1 bearing neurons with the highly selective and potent TRPV1 agonist resiniferatoxin. Colonic motility in response to PAR-2 activation was evaluated in vitro using isolated segments of descending colon and in vivo using manometry. Colonic mechanical nociceptive thresholds were measured using colorectal distension. Transient receptor potential vanilloid 1 expressing neurons were selectively lesioned with resiniferatoxin. In vitro, the PAR-2 agonists, trypsin and SLIGRL did not alter contractions of colon segments when applied alone, however, the agents enhanced acetylcholine stimulated contraction. In vivo, PAR-2 agonists administered intraluminally induced contractions of the colon and produced hypersensitivity to colorectal distention. The PAR-2 agonist enhancement of colonic contraction was eliminated when TRPV1 expressing neurons were lesioned with resiniferatoxin, but the PAR-2 agonist induced hypersensitivity remained in the lesioned animals. Our findings indicate that TRPV1/PAR-2 expressing primary afferent neurons mediate an extrinsic motor reflex pathway in the colon. These data, coupled with our previous studies, also indicate that the recently described colospinal afferent neurons are nociceptive, suggesting that these neurons may be useful targets for the pharmacological control of pain in diseases such as irritable bowel syndrome. © 2011 Blackwell Publishing Ltd.

  2. Regulation of Feto-Maternal Barrier by Matriptase- and PAR-2-Mediated Signaling Is Required for Placental Morphogenesis and Mouse Embryonic Survival

    PubMed Central

    Szabo, Roman; Peters, Diane E.; Kosa, Peter; Camerer, Eric; Bugge, Thomas H.

    2014-01-01

    The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functional feto-maternal barrier. Mice with a combined matriptase and PAR-2 deficiency do not survive to term and the survival of matriptase-deficient mice heterozygous for PAR-2 is severely diminished. Embryos with the combined loss of PAR-2 and matriptase or PAR-2 and the matriptase partner protease, prostasin, uniformly die on or before embryonic day 14.5. Despite the extensive co-localization of matriptase, prostasin, and PAR-2 in embryonic epithelia, the overall macroscopic and histological analysis of the double-deficient embryos did not reveal any obvious developmental abnormalities. In agreement with this, the conditional deletion of matriptase from the embryo proper did not affect the prenatal development or survival of PAR-2-deficient mice, indicating that the critical redundant functions of matriptase/prostasin and PAR-2 are limited to extraembryonic tissues. Indeed, placentas of the double-deficient animals showed decreased vascularization, and the ability of placental epithelium to establish a functional feto-maternal barrier was severely diminished. Interestingly, molecular analysis suggested that the barrier defect was associated with a selective deficiency in the expression of the tight junction protein, claudin-1. Our results reveal unexpected complementary roles of matriptase-prostasin- and PAR-2-dependent proteolytic signaling in the establishment of placental epithelial barrier function and overall embryonic survival. PMID:25078604

  3. Les Brulures Electriques par Haut Voltage - A Propos de 10 Cas

    PubMed Central

    Belmir, R.; Fejjal, N.; El Omari, M.; El Mazouz, S.; Gharib, N.; Abassi, A.; Belmahi, A.

    2008-01-01

    Summary Les accidents électriques par haute tension (AEHT) provoquent des brûlures profondes par effet Joule le long des axes vasculo-nerveux entre les points d'entrée et de sortie, qui sont le siège de lésions délabrantes. Les Auteurs rapportent une série de dix cas d'AEHT admis au service de chirurgie réparatrice et de brûlés de l'Hôpital Ibn Sina de Rabat à travers laquelle ils étudient les caractéristiques épidémiologiques, cliniques et thérapeutiques. Tous les patients étaient des adultes de sexe masculin dont l'âge moyen était de 31 ans. Dans 70% des cas, ces brûlures étaient secondaires à un contact avec les distributeurs d'électricité avec une surface brûlée inférieure à 20%. Le traitement des lésions électrothermiques a nécessité des interventions itératives avec amputation des segments de membres nécrosés dans 70% des cas, dont les suites étaient marquées par des séquelles fonctionnelles invalidantes. La prévention des AEHT, en particulier pour les accidents du travail au sein des professions exposées, reste fondamentale. PMID:21991124

  4. Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells.

    PubMed

    Svensson, Katrin J; Kucharzewska, Paulina; Christianson, Helena C; Sköld, Stefan; Löfstedt, Tobias; Johansson, Maria C; Mörgelin, Matthias; Bengzon, Johan; Ruf, Wolfram; Belting, Mattias

    2011-08-09

    Highly malignant tumors, such as glioblastomas, are characterized by hypoxia, endothelial cell (EC) hyperplasia, and hypercoagulation. However, how these phenomena of the tumor microenvironment may be linked at the molecular level during tumor development remains ill-defined. Here, we provide evidence that hypoxia up-regulates protease-activated receptor 2 (PAR-2), i.e., a G-protein-coupled receptor of coagulation-dependent signaling, in ECs. Hypoxic induction of PAR-2 was found to elicit an angiogenic EC phenotype and to specifically up-regulate heparin-binding EGF-like growth factor (HB-EGF). Inhibition of HB-EGF by antibody neutralization or heparin treatment efficiently counteracted PAR-2-mediated activation of hypoxic ECs. We show that PAR-2-dependent HB-EGF induction was associated with increased phosphorylation of ERK1/2, and inhibition of ERK1/2 phosphorylation attenuated PAR-2-dependent HB-EGF induction as well as EC activation. Tissue factor (TF), i.e., the major initiator of coagulation-dependent PAR signaling, was substantially induced by hypoxia in several types of cancer cells, including glioblastoma; however, TF was undetectable in ECs even at prolonged hypoxia, which precludes cell-autonomous PAR-2 activation through TF. Interestingly, hypoxic cancer cells were shown to release substantial amounts of TF that was mainly associated with secreted microvesicles with exosome-like characteristics. Vesicles derived from glioblastoma cells were found to trigger TF/VIIa-dependent activation of hypoxic ECs in a paracrine manner. We provide evidence of a hypoxia-induced signaling axis that links coagulation activation in cancer cells to PAR-2-mediated activation of ECs. The identified pathway may constitute an interesting target for the development of additional strategies to treat aggressive brain tumors.

  5. The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions.

    PubMed

    Liu, Yan; Ji, Wei; Yin, You; Fan, Lan; Zhang, Jian; Yun, Huang; Wang, Nianci; Li, Qing; Wei, Zhang; Ouyang, Dongshen; Zhou, Hong-Hao

    2009-05-01

    PAR-2(SV1), a splicing variant of PXR, has similar activity as PXR wild type. Currently, a 6bp-deletion variant ((-133)GAGAAG(-128)) in promoter region of PAR-2(SV1) was reported, which could diminish the hPAR-2 promote activity in HepG2 cells. The distribution and functions of 6bp-deletion in Chinese were investigated. The PXR genotype was analyzed from 56 liver samples and 177 blood samples. Then the mRNA expression of PAR-2(SV1), total PXR, CYP3A4 and MDR1 were quantitatively analyzed by real-time PCR. The allelic frequencies of 6bp-deletion were 22.4%, 38.4% and 23.7%, in blood of Chinese healthy (n=177), hepatic carcinoma samples (n=33) and calculus of bile duct ones (n=23) respectively. PAR-2(SV1) transcript represented approximately 15.3% of the total PXR transcripts in all liver samples. The 6bp-deletion cut down PAR-2(SV1) mRNA and total PXR mRNA transcriptional expression, and then led to down regulations of MDR1 and CYP3A4. PAR-2(SV1) plays an important role in total PXR mRNA expression. The 6bp-deletion affects the PAR-2(SV1) expression greatly, and then contributes to the adjustment of expression and function of total PXR. Thus it leads to the changed target gene expressions, which may partly explain interindividual variations in CYP3A4 and MDR1. And these phenomena suggest that individuals with 6bp-deletion are prone to carcinoma when exposed to toxicity.

  6. Down-regulated PAR-2 is associated in part with interrupted melanosome transfer in pigmented basal cell epithelioma.

    PubMed

    Sakuraba, Kazuko; Hayashi, Nobukazu; Kawashima, Makoto; Imokawa, Genji

    2004-08-01

    In pigmented basal cell epithelioma (BCE), there seems to be an abnormal transfer of melanized melanosomes from proliferating melanocytes to basaloid tumor cells. In this study, the interruption of that melanosome transfer was studied with special respect to the altered function of a phagocytic receptor, protease-activated receptor (PAR)-2 in the basaloid tumor cells. We used electron microscopy to clarify the disrupted transfer at the ultrastructural level and then performed immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to examine the regulation of a phagocytic receptor, PAR-2, expressed on basaloid tumor cells. Electron microscopic analysis revealed that basaloid tumor cells of pigmented BCE have a significantly lower population of melanosomes ( approximately 16.4%) than do normal keratinocytes located in the perilesional normal epidermis ( approximately 91.0%). In contrast, in pigmented seborrheic keratosis (SK), a similarly pigmented epidermal tumor, the distribution of melanin granules does not differ between the lesional ( approximately 93.9%) and the perilesional normal epidermis ( approximately 92.2 %), indicating that interrupted melanosome transfer occurs in BCE but not in all pigmented epithelial tumors. RT-PCR analysis demonstrated that the expression of PAR-2 mRNA transcripts in basaloid cells is significantly decreased in pigmented BCE compared with the perilesional normal epidermis. In contrast, in pigmented SK, where melanosome transfer to basaloid tumor cells is not interrupted, the expression of PAR-2 mRNA transcripts is comparable between the basaloid tumor cells and the perilesional normal epidermis. Immunohistochemistry demonstrated that basaloid cells in pigmented BCE have less immunostaining for PAR-2 than do keratinocytes in the perilesional normal epidermis whereas in pigmented SK, there is no difference in immunostaining for PAR-2 between the basaloid tumor and the perilesional normal epidermis. These

  7. An interactive network of elastase, secretases, and PAR-2 protein regulates CXCR1 receptor surface expression on neutrophils.

    PubMed

    Bakele, Martina; Lotz-Havla, Amelie S; Jakowetz, Anja; Carevic, Melanie; Marcos, Veronica; Muntau, Ania C; Gersting, Soeren W; Hartl, Dominik

    2014-07-25

    CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis.

  8. An Interactive Network of Elastase, Secretases, and PAR-2 Protein Regulates CXCR1 Receptor Surface Expression on Neutrophils*

    PubMed Central

    Bakele, Martina; Lotz-Havla, Amelie S.; Jakowetz, Anja; Carevic, Melanie; Marcos, Veronica; Muntau, Ania C.; Gersting, Soeren W.; Hartl, Dominik

    2014-01-01

    CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis. PMID:24914212

  9. OVER-EXPRESSION OF THE THROMBIN RECEPTOR (PAR-1) IN THE PLACENTA IN PREECLAMPSIA: A MECHANISM FOR THE INTERSECTION OF COAGULATION AND INFLAMMATION

    PubMed Central

    EREZ, OFFER; ROMERO, ROBERTO; KIM, SUNG-SU; KIM, JUNG-SUN; KIM, YEON MEE; WILDMAN, DEREK E; THAN, NANDOR GABOR; MAZAKI-TOVI, SHALI; GOTSCH, FRANCESCA; PINELES, BETH; KUSANOVIC, JUAN PEDRO; ESPINOZA, JIMMY; MITTAL, POOJA; MAZOR, MOSHE; HASSAN, SONIA S.; KIM, CHONG JAI

    2008-01-01

    Objective Preeclampsia (PE) is characterized by excessive thrombin generation that has been implicated in the multiple organ damage associated with the disease. The biological effects of thrombin on coagulation and inflammation are mediated by protease activated receptor-1 (PAR-1), a G-protein coupled receptor. The aim of this study was to determine whether preterm preeclampsia (PE) is associated with changes in placental expression of PAR-1. Study design This cross-sectional study included two groups matched for gestational age at delivery: 1) patients with preterm PE (<37 weeks of gestation; n=26) and 2) a control group of patients with preterm labor without intraamniotic infection (n=26). Placental tissue microarrays were immunostained for PAR-1. Immunoreactivity of PAR-1 in the villous trophoblasts was graded as negative, weak-positive, or strong-positive. Results 1) The proportion of cases with strong PAR-1 immunoreactivity was significantly higher in placentas of patients with preeclampsia than in placentas from the control group [37.5% (9/24) vs. 8.7% (2/23); p=0.036, respectively]. 2) PAR-1 immunoreactivity was found in the cellular compartments of the placental villous tree, mainly in villous trophoblasts and stromal endothelial cells. 3) PAR-1 was detected in 92.3% (24/26) of the placentas of women with preeclampsia and in 88.5% (23/26) of the placentas from the control group (p=1). Conclusion Placentas from pregnancies complicated by preterm PE had a significantly higher frequency of strong PAR-1 expression than placentas from women with spontaneous PTL. This observation is consistent with a role for PAR-1 as a mediator of the effect of thrombin on coagulation and inflammation in preeclampsia. We propose that the effects of thrombin in PE are due to increased thrombin generation and higher expression of PAR-1, the major receptor for this enzyme. PMID:18570113

  10. [Effects of cromolyn sodium on intestinal ischemia-reperfusion injury by inhibiting PAR-2 expression in rats].

    PubMed

    Liu, De-zhao; Chen, Zhong-gang; Ge, Mian; Gan, Xiao-liang; Hei, Zi-qing

    2012-10-09

    To explore the effects of cromolyn sodium (CS) on intestinal ischemia-reperfusion (IIR) and its relationship with mast cell activation and protease-activated receptor 2 (PAR-2) expression. A total of 32 SD rats were randomly divided into 4 groups: sham-operated (S), intestinal ischemia reperfusion (IIR), CS (a mast cell stabilizer, CS, 25 mg/kg) and compound 48/80 (a mast cell degranulation, CP, 0.75 mg/kg) (n = 8 each). IIR was induced by clamping superior mesenteric artery for 75 min followed by reperfusion for 3 hours. The above agents were intravenously administrated at 5 min pre-reperfusion. Rats were then sacrificed and intestinal issues harvested for histological examinations. The tryptase expression and mast cell count were analyzed by immunohistochemistry. PAR-2 was analyzed by Western blot. The Chiu's score (0.75 ± 0.21), mast cell count (10 ± 3), tryptase expression (125 ± 15) and PAR-2 expression (109 ± 10) of group S were the least while those of group CP the most (all P < 0.05). The Chiu's score (2.14 ± 0.64), mast cell count (15 ± 4), tryptase expression (138 ± 17) and PAR-2 expression (124 ± 12) of group CS were less than those of groups IIR and CP (all P < 0.05). Cromolyn sodium may reduce IIR injury by stabilizing mast cell membrane and inhibiting the expressions of tryptase and PAR-2.

  11. The PAR index for evaluation of treatment outcomes in orthodontics: a clinical audit of 50 cases.

    PubMed

    Fadiga, Mohamed Siddick; Diouf, Joseph Samba; Diop Ba, Khady; Gueye, Idrissa; Ngom, Papa Ibrahima; Diagne, Falou

    2014-03-01

    In the context of this study, a clinical audit of cases treated by a single orthodontist was carried out to illustrate one practical application of the PAR index. Fifty pairs of dental casts taken from the patient group before and at the end of orthodontic treatment were evaluated by an orthodontist trained in the use of the PAR index. This evaluation shows that the average overall PAR score for the subjects included in the study fell from an initial value of 25.64 ± 11.73 points to 1.78 ± 2.79 points at the end of orthodontic treatment. The average reduction attributable to orthodontic treatment was 23.86 ± 0.95 points, for an average percentage reduction of 93.36 ± 9.02%. When cases were classified according to the degree of improvement suggested by the nomogram of the PAR index, 23 (46%) were in the "Improved" category after treatment, and 27 cases (54%) in the "Greatly improved" category. This adds up to a total of 100% in these two categories, with none in the "No better" or "Worse" categories. It should be recalled that a high standard of orthodontic treatment is considered to be reached when the average percentage reduction of the PAR score exceeds 70% and when the number of cases in the "Worse or no better" category is below 5%. Copyright © 2014. Published by Elsevier Masson SAS.

  12. Metastatic breast cancer to the liver with hepatoid features and Hep Par 1 antibody positive mimicking hepatocellular carcinoma.

    PubMed

    Affleck, Authur; Lyman, William B; Jacobs, W Carl; Livasy, Chad A; Martinie, John B; Iannitti, David A; Vrochides, Dionisios

    2018-05-09

    The hepatocyte paraffin 1 antibody (Hep Par 1) has a high positive predictive value for differentiating hepatocellular carcinoma from cholangiocarcinoma and metastatic carcinoma. 1 We report a case of metastatic breast cancer to the liver with hepatoid histology and strong positive staining for Hep Par 1 mimicking hepatocellular carcinoma. To our knowledge, primary breast carcinoma staining Hep Par 1 positive has not been reported in the setting of hepatic metastasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Stress reactions involving the pars interarticularis in young athletes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.W.; Wiltse, L.L.; Dingeman, R.D.

    A stress reaction involving the pars interarticularis of the lumbar spine was confirmed in seven young athletes with a positive technetium pyrophosphate bone scan. No pars defects were detectable on their lumbosacral roentgenograms, which included oblique views. The return to normal levels of radioactive uptake on repeat bone scans correlated closely with their clinical course. If the bony reaction is recognized early, it may heal at a subroentgenographic level and prevent the development of lumbar spondylolysis. These early lesions usually show unilateral increased uptake at one lumbar level on the bone scan and, initially, the athlete localizes the pain tomore » the corresponding unilateral lumbar paraspinous area. The ''one-legged hyperextension test'' is positive on the ipsilateral side and aggravates the pain. Treatment consists of avoiding the aggravating activities and resting. The average time for return to pain-free competition was 7.3 months. These developing defects may be the source of considerable prolonged disability in the young athlete, particularly if undiagnosed and untreated.« less

  14. Photoémission de Csl induite par une impulsion laser intense femtoseconde

    NASA Astrophysics Data System (ADS)

    Belsky, A.; Vasil'Ev, A.; Yatsenko, B.; Bachau, H.; Martin, P.; Geoffroy, G.; Guizard, S.

    2003-06-01

    Nous avons mesuré pour la première fois les spectres de photoélectrons émis par un cristal isolant à large bande interdite, Csl, avec une dynamique de 10^6 coups/s, excité par la source laser haute cadence du C.E.L.I.A (800 nm, 40 fs, 1 kHz, 1 TW). L'émission d'électrons jusqu'à des énergies de quelques dizaines d'électrons-volts a été observée pour des impulsions d'éclairement compris entre 0.5 et 3 TW/cm^2, relativement faible donc par comparaison aux éclairements utilisés pour accélérer les électrons d'un atome aux mêmes énergies. Ces spectres contiennent tous, en particulier, deux bandes dans le domaine des basses énergies d'électrons (<5 eV), également observées lors d'études précédentes. Les électrons les plus énergétiques forment un plateau intense légèrement structuré et limité par une coupure exponentielle. Pour des impulsions de 3 TW/cm^2 cette coupure est située à 27 eV. L'insuffisance du mécanisme électron-photon-phonon, considéré jusqu'à présent comme le principal processus d'échauffement des électrons dans les solides en interaction non destructrice avec un champ laser, nous a poussé à proposer un mécanisme alternatif. Ce modèle met en évidence les transitions directes multiphotoniques dans la bande de conduction du solide qui sont incontournables du fait de sa structure électronique multi-branches

  15. Youth empowerment in context: exploring tensions in school-based yPAR.

    PubMed

    Kohfeldt, Danielle; Chhun, Lina; Grace, Sarah; Langhout, Regina Day

    2011-03-01

    In much of the youth empowerment literature, researchers focus on the relationship between youth and adults involved in empowerment programs while neglecting the broader social framework in which these relationships and the program itself functions. Utilizing an ecological model, the current research examines the tensions that surfaced in attempts to create an empowering setting in an after-school PAR program with fifth-graders. Challenging assumptions about youth, structural challenges, and conflicting theories of change are highlighted. Results examine the role of sociocultural context as PAR researchers attempt to create a setting in which students gain skills to become change agents within their school. The study suggests that youth empowerment is a context dependent process that requires attention to a multiplicity of factors that influence possibilities for empowerment via second order change.

  16. Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion.

    PubMed

    Magnussen, Synnove Norvoll; Hadler-Olsen, Elin; Costea, Daniela Elena; Berg, Eli; Jacobsen, Cristiane Cavalcanti; Mortensen, Bente; Salo, Tuula; Martinez-Zubiaurre, Inigo; Winberg, Jan-Olof; Uhlin-Hansen, Lars; Svineng, Gunbjorg

    2017-05-19

    Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. These results show that soluble factors in

  17. Flow cytometry analysis reveals different activation profiles of thrombin- or TRAP-stimulated platelets in db/db mice. The regulatory role of PAR-3.

    PubMed

    Kassassir, Hassan; Siewiera, Karolina; Talar, Marcin; Przygodzki, Tomasz; Watala, Cezary

    2017-06-01

    Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Retention of pesticide Endosulfan by nanofiltration: influence of organic matter-pesticide complexation and solute-membrane interactions.

    PubMed

    De Munari, Annalisa; Semiao, Andrea Joana Correia; Antizar-Ladislao, Blanca

    2013-06-15

    Nanofiltration (NF) is a well-established process used in drinking water production to effectively remove Natural Organic Matter (NOM) and organic micropollutants. The presence of NOM has been shown to have contrasting results on micropollutant retention by NF membranes and removal mechanisms are to date poorly understood. The permeate water quality can therefore vary during operation and its decrease would be an undesired outcome for potable water treatment. It is hence important to establish the mechanisms involved in the removal of organic micropollutants by NF membranes in the presence of NOM. In this study, the retention mechanisms of pesticide Endosulfan (ES) in the presence of humic acids (HA) by two NF membranes, TFC-SR2 and TFC-SR3, a "loose" and a "tight" membrane, respectively, were elucidated. The results showed that two mechanisms were involved: (1) the formation of ES-HA complexes (solute-solute interactions), determined from solid-phase micro-extraction (SPME), increased ES retention, and (2) the interactions between HA and the membrane (solute-membrane interactions) increased membrane molecular weight cut-off (MWCO) and decreased ES retention. HA concentration, pH, and the ratio between micropollutant molecular weight (MW) and membrane MWCO were shown to influence ES retention mechanisms. In the absence of HA-membrane interactions at pH 4, an increase of HA concentration increased ES retention from 60% to 80% for the TFC-SR2 and from 80% to 95% for the TFC-SR3 due to ES-HA complex formation. At pH 8, interactions between HA and the loose TFC-SR2 increased the membrane MWCO from 460 to 496 g/mol and ES retention decreased from 55% to 30%, as HA-membrane interactions were the dominant mechanism for ES retention. In contrast, for the "tight" TFC-SR3 membrane the increase in the MWCO (from 165 to 179 g/mol), was not sufficient to decrease ES retention which was dominated by ES-HA interactions. Quantification of the contribution of both solute

  19. Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells

    PubMed Central

    2013-01-01

    Background Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137–195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-κB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored. Results In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4. Conclusion Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells. PMID:23442976

  20. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells

    PubMed Central

    Gur-Cohen, Shiri; Itkin, Tomer; Chakrabarty, Sagarika; Graf, Claudine; Kollet, Orit; Ludin, Aya; Golan, Karin; Kalinkovich, Alexander; Ledergor, Guy; Wong, Eitan; Niemeyer, Elisabeth; Porat, Ziv; Erez, Ayelet; Sagi, Irit; Esmon, Charles T; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation-related also control retention of EPCR+ LT-HSCs in the bone marrow and their recruitment to the blood via two different protease activated receptor 1 (PAR1)-mediated pathways. Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to TACE-mediated EPCR shedding, enhanced CXCL12-CXCR4-induced motility, and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with protein C that retain EPCR+ LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing VLA4 affinity and adhesion. Inhibition of NO production by activated protein C (aPC)-EPCR-PAR1 signaling reduces progenitor cell egress, increases NOlow bone marrow EPCR+ LT-HSCs retention and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR that control NO production to balance maintenance and recruitment of bone marrow EPCR+ LT-HSCs with clinical relevance. PMID:26457757

  1. A method for estimating the incident PAR on inclined surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoping; Gao, Wei; Gao, Zhiqiang

    2008-08-01

    A new simple model has been developed that incorporates Digital Elevation Model (DEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) products to produce incident photosynthetically active radiation (PAR) for tilted surface. The method is based on a simplification of the general radiative transfer equation, which considers five major processes of attenuation of solar radiation: 1) Rayleigh scattering, 2) absorption by ozone and water vapor, 3) aerosol scattering, 4) multiple reflectance between surface and atmosphere, and 5) three terrain factors: slope and aspect, isotropic sky view factor, and additional radiation by neighbor reflectance. A comparison of the model results with observational data from the Yucheng and Changbai Mountain sites of the Chinese Ecosystem Research Network (CERN) shows the correlation coefficient as 0.929 and 0.904, respectively. A comparison of the model results with the 2006 filed measured PAR in the Yucheng and Changbai sites shows the correlation coefficient as 0.929 and 0.904, respectively, and the average percent error as 10% and 15%, respectively.

  2. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge.

    PubMed

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2011-04-01

    In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O(3)/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5±1.1 to 0.7±0.3 mg L(-1) and from 267±24 to 52±6 μg L(-1), respectively. The very low DOC concentration of 0.6±0.2 mg L(-1) and THMFP of 44±4 μg L(-1) can be reached after the aquifer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Preliminary Results for the PAR-PRO: A Measure of Home and Community Participation

    PubMed Central

    Ostir, Glenn V.; Granger, Carl V.; Black, Terrie; Roberts, Pamela; Burgos, Laura; Martinkewiz, Paula; Ottenbacher, Kenneth J.

    2007-01-01

    Objective To develop a measure of home and community participation related to the World Health Organization’s International Classification of Functioning, Disability and Health. Design Cross-sectional analysis of survey data. Setting Nine medical inpatient rehabilitation facilities from 6 states. Participants A total of 594 patients of mixed impairment type admitted for inpatient rehabilitation in 2002. Mean age was 74.0 years and 61.4% were women. Interventions Not applicable. Main Outcome Measures Reliability and validity of the participation instrument. Results A 20-item instrument of home and community participation was developed (PAR-PRO). The instrument showed good internal consistency and good Rasch person and item fit statistics. Four subfactors were identified beyond the unidimensional construct of participation including domestic management, socialization, physical vigor, and generative activities. The PAR-PRO total participation score correlated inversely with age (r=−.31, P<.001) but did not differ by sex. Conclusions The 20-item PAR-PRO instrument of home and community participation displayed good psychometric characteristics. The instrument shows promise as a broad measure of home and community involvement for persons with disabilities. Further work is needed to support its application for people without disability. PMID:16876548

  4. BOREAS TE-9 PAR and Leaf Nitrogen Data for NSA Species

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the relationship between photosynthetically active radiation (PAR) levels and foliage nitrogen in samples from six sites in the BOREAS Northern Study Area (NSA) collected during the three 1994 intensive field campaigns (IFCs). This information is useful for modeling the vertical distribution of carbon fixation for these different forest types in the boreal forest. The data were collected to quantify the relationship between PAR and leaf nitrogen of black spruce, jack pine, and aspen. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. Douleurs induites par les soins: la réalité au Centre Hospitalier Universitaire de Befelatanana Antananarivo, Madagascar

    PubMed Central

    Mahavivola, Ernestho-Ghoud Indretsy; Olivah, Razanaparany Miarisoa Mireille; Mihary, Dodo; Hendriniaina, Rakotoharivelo; Lalao, Randriamboavonjy Rado; Henintsoa, Rakotonirainy Oliva; Fahafahantsoa, Rapelanoro Rabenja

    2014-01-01

    La douleur induite par les soins correspond à la douleur survenant lors des actes à visé diagnostique et/ou thérapeutique. A notre connaissance, nous n'avons pas encore des données disponibles pour les douleurs induites par les soins à l'Hôpital de Befelatanana. Nos objectifs étaient de décrire le profil épidémiologique de la douleur induite par les soins, d'identifier les principaux facteurs influençant sur l'intensité de la douleur et leurs retentissements chez les patients. Il s'agissait d'une étude rétrospective, transversale type un jour donné menée dans les douze services de Médecines au Centre Hospitalier Universitaire de Befelatanana en Novembre 2013. Cent deux patients ont été retenus dans l’étude et trois cent vingt trois actes douloureux étaient enregistrés. La fréquence de la douleur induite par les soins était de 69,86%. Le genre féminin prédominait dans 52% des cas (n = 53) avec un sex-ratio à 0,92. L’âge moyen était de 46 ans. Les ponctions vasculaires étaient l'acte prédominant dans 49,54% (n = 109) des cas. Les infirmiers réalisaient les soins dans 47,05% (n = 48) des cas. L'information verbale était la mesure préventive utilisée dans 57,84% des cas (n = 59). Le transport par marche à pied et au dos représentait 16,67% des cas (n = 17). Les patients naïfs des gestes étaient plus anxieux. Ces patients gardaient de mauvais souvenir dans 64,71% des cas (n = 66). La fréquence de douleur induite par les soins était trop élevée. Un effort important est nécessaire pour réduire la douleur induite par les soins PMID:25932071

  6. Inferring total canopy APAR from PAR bidirectional reflectances and vegetation indices in tallgrass prairie. [Absorbed Photosynthetically Active Radiation

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    The fraction of photosynthetically active radiation (PAR) absorbed by a vegetated canopy (APARc) or landscape (APARs) is a critical parameter in climate processes. A grassland study examined: 1) whether APARs can be estimated from PAR bidirectional exitance fractions; and 2) whether APARs is correlated with spectral vegetation indices (SVIs). Data were acquired with a high resolution continuous spectroradiometer at 4 sun angles on grassland sites. APARs was computed from the scattered surface PAR exitance fractions. The nadir APARs value was the most variable diurnally; it provided a good estimate of the average surface APARs at 95 percent. APARc was best represented by exitance factors between 30-60* forward.

  7. Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2–mediated heparin-binding EGF signaling in endothelial cells

    PubMed Central

    Svensson, Katrin J.; Kucharzewska, Paulina; Christianson, Helena C.; Sköld, Stefan; Löfstedt, Tobias; Johansson, Maria C.; Mörgelin, Matthias; Bengzon, Johan; Ruf, Wolfram; Belting, Mattias

    2011-01-01

    Highly malignant tumors, such as glioblastomas, are characterized by hypoxia, endothelial cell (EC) hyperplasia, and hypercoagulation. However, how these phenomena of the tumor microenvironment may be linked at the molecular level during tumor development remains ill-defined. Here, we provide evidence that hypoxia up-regulates protease-activated receptor 2 (PAR-2), i.e., a G-protein–coupled receptor of coagulation-dependent signaling, in ECs. Hypoxic induction of PAR-2 was found to elicit an angiogenic EC phenotype and to specifically up-regulate heparin-binding EGF-like growth factor (HB-EGF). Inhibition of HB-EGF by antibody neutralization or heparin treatment efficiently counteracted PAR-2–mediated activation of hypoxic ECs. We show that PAR-2–dependent HB-EGF induction was associated with increased phosphorylation of ERK1/2, and inhibition of ERK1/2 phosphorylation attenuated PAR-2–dependent HB-EGF induction as well as EC activation. Tissue factor (TF), i.e., the major initiator of coagulation-dependent PAR signaling, was substantially induced by hypoxia in several types of cancer cells, including glioblastoma; however, TF was undetectable in ECs even at prolonged hypoxia, which precludes cell-autonomous PAR-2 activation through TF. Interestingly, hypoxic cancer cells were shown to release substantial amounts of TF that was mainly associated with secreted microvesicles with exosome-like characteristics. Vesicles derived from glioblastoma cells were found to trigger TF/VIIa–dependent activation of hypoxic ECs in a paracrine manner. We provide evidence of a hypoxia-induced signaling axis that links coagulation activation in cancer cells to PAR-2–mediated activation of ECs. The identified pathway may constitute an interesting target for the development of additional strategies to treat aggressive brain tumors. PMID:21788507

  8. ParC subunit of DNA topoisomerase IV of Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates with DNA gyrase A subunit in forming resistance phenotype.

    PubMed Central

    Muñoz, R; De La Campa, A G

    1996-01-01

    The genes encoding the ParC and ParE subunits of topoisomerase IV of Streptococcus pneumoniae, together with the region encoding amino acids 46 to 172 (residue numbers are as in Escherichia coli) of the pneumococcal GyrA subunit, were partially characterized. The gyrA gene maps to a physical location distant from the gyrB and parC loci on the chromosome, whereas parC is closely linked to parE. Ciprofloxacin-resistant (Cpr) clinical isolates of S. pneumoniae had mutations affecting amino acid residues of the quinolone resistance-determining region of ParC (low-level Cpr) or in both quinolone resistance-determining regions of ParC and GyrA (high-level Cpr). Mutations were found in residue positions equivalent to the serine at position 83 and the aspartic acid at position 87 of the E. coli GyrA subunit. Transformation experiments suggest that ParC is the primary target of ciprofloxacin. Mutation in parC appears to be a prerequisite before mutations in gyrA can influence resistance levels. PMID:8891124

  9. Fabrication et caracterisation de nanocristaux de silicium localises, realises par gravure electrochimique pour des applications nanoelectroniques

    NASA Astrophysics Data System (ADS)

    Ayari-Kanoun, Asma

    Ce travail de these porte sur le developpement d'une nouvelle approche pour la localisation et l'organisation de nanocristaux de silicium realises par gravure electrochimique. Cette derniere represente une technique simple et peu couteuse par rapport aux autres techniques couramment utilisees pour la fabrication de nanocristaux de silicium. L'idee de ce travail a ete d'etudier la nanostructuration de minces couches de nitrure de silicium, d'environ 30 nm d'epaisseur pour permettre par la suite un arrangement periodique des nanocristaux de silicium. Cette pre-structuration est obtenue de facon artificielle en imposant un motif periodique via une technique de lithographie par faisceau d'electrons combinee avec une gravure plasma. Une optimisation des conditions de lithographie et de gravure plasma ont permis d'obtenir des reseaux de trous de 30 nm de diametre debouchant sur le silicium avec un bon controle de leur morphologie (taille, profondeur et forme). En ajustant les conditions de gravure electrochimique (concentration d'acide, temps de gravure et densite de courant), nous avons obtenu des reseaux -2D ordonnes de nanocristaux de silicium de 10 nm de diametre a travers ces masques de nanotrous avec le controle parfait de leur localisation, la distance entre les nanocristaux et leur orientation cristalline. Des etudes electriques preliminaires sur ces nanocristaux ont permis de mettre en evidence des effets de chargement. Ces resultats tres prometteurs confirment l'interet des nanocristaux de silicium realises par gravure electrochimique dans le futur pour la fabrication a grande echelle de dispositifs nanoelectroniques. Mots-cles : localisation, organisation, nanocristaux de silicium, gravure electrochimique, lithographie electronique, gravure plasma, nitrure de silicium.

  10. Polycystin-1 Binds Par3/aPKC and Controls Convergent Extension During Renal Tubular Morphogenesis

    PubMed Central

    Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra

    2013-01-01

    Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis. PMID:24153433

  11. Contact-free trans-pars-planar illumination enables snapshot fundus camera for nonmydriatic wide field photography.

    PubMed

    Wang, Benquan; Toslak, Devrim; Alam, Minhaj Nur; Chan, R V Paul; Yao, Xincheng

    2018-06-08

    In conventional fundus photography, trans-pupillary illumination delivers illuminating light to the interior of the eye through the peripheral area of the pupil, and only the central part of the pupil can be used for collecting imaging light. Therefore, the field of view of conventional fundus cameras is limited, and pupil dilation is required for evaluating the retinal periphery which is frequently affected by diabetic retinopathy (DR), retinopathy of prematurity (ROP), and other chorioretinal conditions. We report here a nonmydriatic wide field fundus camera employing trans-pars-planar illumination which delivers illuminating light through the pars plana, an area outside of the pupil. Trans-pars-planar illumination frees the entire pupil for imaging purpose only, and thus wide field fundus photography can be readily achieved with less pupil dilation. For proof-of-concept testing, using all off-the-shelf components a prototype instrument that can achieve 90° fundus view coverage in single-shot fundus images, without the need of pharmacologic pupil dilation was demonstrated.

  12. Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis

    NASA Astrophysics Data System (ADS)

    Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra

    2013-10-01

    Several organs, including the lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintenance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1, a large receptor of unknown function. Here we demonstrate that PC-1 has an essential role in the establishment of correct tubular diameter during nephron development. Polycystin-1 associates with Par3 favouring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a programme of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis, and in renal cyst formation. Our data define Polycystin-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.

  13. C7 pars fracture subadjacent to C7 pedicle screw instrumentation at the caudal end of a posterior cervical instrumentation construct.

    PubMed

    Halim, Andrea; Grauer, Jonathan

    2014-07-01

    We report a case of a C7 pars fracture subadjacent to C7 pedicle screw instrumentation at the caudal end of posterior cervical instrumentation construct. To date, posterior cervical instrumentation has been "off label"; however, the US Food and Drug Administration is considering approving label indication of such instrumentation for this common surgical practice. Complications related to the techniques are reported to be relatively low. We know of no previous reports of pars fractures occurring subadjacent to such instrumentation. A 43-year-old man underwent posterior C5-C7 instrumented fusion. Postoperatively, the patient experienced cervical spine injury after a mechanical fall down stairs. Work-up detected bilateral C7 pars fractures subadjacent to the posterior instrumentation construct. After we treated the pars fracture with distal extension of the posterior fusion to the level of T2, the patient progressed to union and marked improvement of initial clinical symptoms that was maintained 2.5 years after posterior instrumentation. To our knowledge, a C7 pars fracture subadjacent to posterior cervical instrumentation construct has not been reported. We hypothesize that the pars may have been vulnerable to fracture because of excessive bone resection during foraminotomy or decortication. This complication was successfully treated by extending the fusion caudally.

  14. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.

    PubMed

    Qin, Haiming; Wang, Cheng; Zhao, Kaiguang; Xi, Xiaohuan

    2018-01-01

    Accurate estimation of the fraction of absorbed photosynthetically active radiation (fPAR) for maize canopies are important for maize growth monitoring and yield estimation. The goal of this study is to explore the potential of using airborne LiDAR and hyperspectral data to better estimate maize fPAR. This study focuses on estimating maize fPAR from (1) height and coverage metrics derived from airborne LiDAR point cloud data; (2) vegetation indices derived from hyperspectral imagery; and (3) a combination of these metrics. Pearson correlation analyses were conducted to evaluate the relationships among LiDAR metrics, hyperspectral metrics, and field-measured fPAR values. Then, multiple linear regression (MLR) models were developed using these metrics. Results showed that (1) LiDAR height and coverage metrics provided good explanatory power (i.e., R2 = 0.81); (2) hyperspectral vegetation indices provided moderate interpretability (i.e., R2 = 0.50); and (3) the combination of LiDAR metrics and hyperspectral metrics improved the LiDAR model (i.e., R2 = 0.88). These results indicate that LiDAR model seems to offer a reliable method for estimating maize fPAR at a high spatial resolution and it can be used for farmland management. Combining LiDAR and hyperspectral metrics led to better performance of maize fPAR estimation than LiDAR or hyperspectral metrics alone, which means that maize fPAR retrieval can benefit from the complementary nature of LiDAR-detected canopy structure characteristics and hyperspectral-captured vegetation spectral information.

  15. Phenoseasonal variability of subcanopy PAR and the effects of photointensity and photoperiod on the physiological ecology of Lindera benzoin

    NASA Astrophysics Data System (ADS)

    Hudson, J. E.; Levia, D. F., Jr.; Hudson, S.; Bais, H.; Legates, D. R.

    2015-12-01

    This work represents a novel approach to measuring photosynthetic photon flux density (PPFD), and spatiotemporal light dynamics, by utilizing an instrument capable of providing a 15-second spatially-integrated one meter linear average of the PPFD, obtaining measurements at multiple locations and elevations in the subcanopy over a full year for all cloud conditions. Nearly 4,600 individual observations of photosynthetically active radiation (PAR, 400-700 nm) were made over the seven phenoseasons of a deciduous forest in the Piedmont Region, Maryland. Additionally, to quantify of the effect of various photointensities on the physiological ecology of Lindera benzoin L. Blume (northern spicebush) grown in the lab, health was determined by monitoring physical growth and biomass, and by UV-vis spectrophotometry analysis of leaf extract. Results show understory PAR is typically less than 40% of open PAR. Leafless subcanopy PAR values were almost 10 times higher than leafed season PAR, and sunflecks often three orders of magnitude higher than mean subcanopy PAR during the leafed season. Phenoseason is responsible for nearly three-quarters of the variation between plant canopy levels. Spicebush growth occurred at study locations receiving higher incidence of PAR (> 64th percentile). UV-vis spectrophotometry analysis showed significant differences in root to shoot ratios, biomass, initial stomatal conductance, chlorophyll a and b, and carotenoids. Spicebush under lab conditions significantly alter their biomass and individual pigments and pigment ratios in response to high intensity light conditions. Results suggest temporal light sequences in the field may be a very important factor in the functional ecology of northern spicebush.

  16. The Pars Triangularis in Dyslexia and ADHD: A Comprehensive Approach

    ERIC Educational Resources Information Center

    Kibby, Michelle Y.; Kroese, Judith M.; Krebbs, Hillery; Hill, Crystal E.; Hynd, George W.

    2009-01-01

    Limited research has been conducted on the structure of the pars triangularis (PT) in dyslexia despite functional neuroimaging research finding it may play a role in phonological processing. Furthermore, research to date has not examined PT size in ADHD even though the right inferior frontal region has been implicated in the disorder. Hence, one…

  17. Urokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts.

    PubMed

    Grove, Lisa M; Southern, Brian D; Jin, Tong H; White, Kimberly E; Paruchuri, Sailaja; Harel, Efrat; Wei, Ying; Rahaman, Shaik O; Gladson, Candece L; Ding, Qiang; Craik, Charles S; Chapman, Harold A; Olman, Mitchell A

    2014-05-02

    The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5β1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with β1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5β1 integrin and uPAR drive the translocation of α5β1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.

  18. A Neural Network Model for K(λ) Retrieval and Application to Global K par Monitoring

    PubMed Central

    Chen, Jun; Zhu, Yuanli; Wu, Yongsheng; Cui, Tingwei; Ishizaka, Joji; Ju, Yongtao

    2015-01-01

    Accurate estimation of diffuse attenuation coefficients in the visible wavelengths K d(λ) from remotely sensed data is particularly challenging in global oceanic and coastal waters. The objectives of the present study are to evaluate the applicability of a semi-analytical K d(λ) retrieval model (SAKM) and Jamet’s neural network model (JNNM), and then develop a new neural network K d(λ) retrieval model (NNKM). Based on the comparison of K d(λ) predicted by these models with in situ measurements taken from the global oceanic and coastal waters, all of the NNKM, SAKM, and JNNM models work well in K d(λ) retrievals, but the NNKM model works more stable and accurate than both SAKM and JNNM models. The near-infrared band-based and shortwave infrared band-based combined model is used to remove the atmospheric effects on MODIS data. The K d(λ) data was determined from the atmospheric corrected MODIS data using the NNKM, JNNM, and SAKM models. The results show that the NNKM model produces <30% uncertainty in deriving K d(λ) from global oceanic and coastal waters, which is 4.88-17.18% more accurate than SAKM and JNNM models. Furthermore, we employ an empirical approach to calculate K par from the NNKM model-derived diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results show that our model presents a satisfactory performance in deriving K par from the global oceanic and coastal waters with 20.2% uncertainty. The K par are quantified from MODIS data atmospheric correction using our model. Comparing with field measurements, our model produces ~31.0% uncertainty in deriving K par from Bohai Sea. Finally, the applicability of our model for general oceanographic studies is briefly illuminated by applying it to climatological monthly mean remote sensing reflectance for time ranging from July, 2002- July 2014 at the global scale. The results indicate that the high K d(λ) and K par values are usually found around the coastal zones in the

  19. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  20. The relationship between levels of plasma-soluble urokinase plasminogen activator receptor (suPAR) and presence of migraine attack and aura.

    PubMed

    Yılmaz, Nigar; Yılmaz, Mustafa; Sirin, Burcu; Yılmaztekin, Sureyya; Kutlu, Gülnihal

    2017-10-01

    Migraine is one of the most common types of pain associated with sterile inflammatory conditions. Soluble urokinase plasminogen activator receptor (suPAR) is a potential novel inflammatory marker. We aim to determine the association between serum values of suPAR, procalcitonin, fibrinogen, and high-sensitivity C-reactive protein (hs-CRP) and migraine disease characteristics. The study involved a total of 60 migraine patients (33 patients in the interictal period, 27 patients in the attack period) and 30 healthy individuals. The serum values of suPAR were found to be significantly higher in migraine patients in the attack period than in migraine patients in the interictal period, and in healthy individuals (p < .01 for both). In addition, levels of suPAR were determined to be higher in migraine with aura patients than in migraine without aura patients. When we subdivided migraine patients according to frequency of attack (attacks/month), significant differences were found between the suPAR and procalcitonin levels (measured during the attack period) of those in the frequent-attack group (4-5 or more) versus those in the less frequent attack group (less than 4). Serum levels of procalcitonin were shown to be significantly higher in migraine patients during the attack period compared with migraine patients in the interictal period and in control subjects (p = .001 for both). Significant differences were found between plasma levels of fibrinogen in migraine patients versus control subjects (p < .01). No statistically significant difference was found between levels of hs-CRP in migraine patients versus the control group. These findings may show that presenting a high level of suPAR in migraine patients with attack and aura results to predisposition to occurring on the symptoms and that high levels of suPAR, procalcitonin and fibrinogen in patients with migraine result in neurogenic inflammation during migraine headaches.

  1. An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents.

    PubMed

    Khansary, Milad Asgarpour; Mellat, Mostafa; Saadat, Seyed Hassan; Fasihi-Ramandi, Mahdi; Kamali, Mehdi; Taheri, Ramezan Ali

    2017-02-01

    To analyze polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, here an in-through investigation on the suitability and compatibility of various polymers has been carried out. For this work, estradiol, estrone, testosterone, progesterone, estriol, mestranol, and ethinylestradiol were considered. A total number of 452 polymers were analyzed and initially screened using Hansen solubility parameters. The identified good pairs of hormones and polymers then were examined to obtain the equilibrium capacity of hormones removal from water effluents using a modified Flory-Huggins model. A distribution coefficient was defined as the ratio of hormones in water effluent phase and polymer phase. For removal of mestranol, estradiol and ethinylestradiol, no compatible polymer was identified based on initial screening of collected database. Three compatible polymers were identified for estriol. For progesterone, a wide variety of polymers was identified as good matching of polar, dispersion and hydrogen forces contributions can be observed for these pairs. For estrone, only two polymers can be proposed due to the mismatch observed between polar, dispersion and hydrogen forces contributions of other polymers and this hormone. The phase calculations showed that not all the identified good pairs could be used for practical separation applications. The domain of applicability of each good pair was investigated and potential polymers for practical micropollutants removal together with their removal capacity were represented in terms of phase envelops. The theoretical approach follows fundamental chemical thermodynamic equations and then can be simply applied for any system of interest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Management of persistent hyperplastic primary vitreous by pars plana vitrectomy.

    PubMed

    Peyman, G A; Sanders, D R; Nagpal, K C

    1976-11-01

    Two children with persistent hyperplastic primary vitreous (PHPV) underwent vitrectomy and lensectomy via the pars plana to remove the fibrovascular stalk. Postoperatively the eyes were quiet, only a slight vitreous haze obscured the fundus view in the immediate postoperative period, and the stumps of the stalks retracted. Early surgical treatment of PHPV may prevent later serious complications.

  3. Topoisomerase I (TopA) Is Recruited to ParB Complexes and Is Required for Proper Chromosome Organization during Streptomyces coelicolor Sporulation

    PubMed Central

    Szafran, Marcin; Skut, Patrycja; Ditkowski, Bartosz; Ginda, Katarzyna; Chandra, Govind; Zakrzewska-Czerwińska, Jolanta

    2013-01-01

    Streptomyces species are bacteria that resemble filamentous fungi in their hyphal mode of growth and sporulation. In Streptomyces coelicolor, the conversion of multigenomic aerial hyphae into chains of unigenomic spores requires synchronized septation accompanied by segregation of tens of chromosomes into prespore compartments. The chromosome segregation is dependent on ParB protein, which assembles into an array of nucleoprotein complexes in the aerial hyphae. Here, we report that nucleoprotein ParB complexes are bound in vitro and in vivo by topoisomerase I, TopA, which is the only topoisomerase I homolog found in S. coelicolor. TopA cannot be eliminated, and its depletion inhibits growth and blocks sporulation. Surprisingly, sporulation in the TopA-depleted strain could be partially restored by deletion of parB. Furthermore, the formation of regularly spaced ParB complexes, which is a prerequisite for proper chromosome segregation and septation during the development of aerial hyphae, has been found to depend on TopA. We hypothesize that TopA is recruited to ParB complexes during sporulation, and its activity is required to resolve segregating chromosomes. PMID:23913317

  4. Persistent kallikrein 5 activation induces atopic dermatitis-like skin architecture independent of PAR2 activity.

    PubMed

    Zhu, Yanan; Underwood, Joanne; Macmillan, Derek; Shariff, Leila; O'Shaughnessy, Ryan; Harper, John I; Pickard, Chris; Friedmann, Peter S; Healy, Eugene; Di, Wei-Li

    2017-11-01

    Upregulation of kallikreins (KLKs) including KLK5 has been reported in atopic dermatitis (AD). KLK5 has biological functions that include degrading desmosomal proteins and inducing proinflammatory cytokine secretion through protease-activated receptor 2 (PAR2). However, due to the complex interactions between various cells in AD inflamed skin, it is difficult to dissect the precise and multiple roles of upregulated KLK5 in AD skin. We investigated the effect of upregulated KLK5 on the expression of epidermal-related proteins and cytokines in keratinocytes and on skin architecture. Lesional and nonlesional AD skin biopsies were collected for analysis of morphology and protein expression. The relationship between KLK5 and barrier-related molecules was investigated using an ex vivo dermatitis skin model with transient KLK5 expression and a cell model with persistent KLK5 expression. The influence of upregulated KLK5 on epidermal morphology was investigated using an in vivo skin graft model. Upregulation of KLK5 and abnormal expression of desmoglein 1 (DSG1) and filaggrin, but not PAR2 were identified in AD skin. PAR2 was increased in response to transient upregulation of KLK5, whereas persistently upregulated KLK5 did not show this effect. Persistently upregulated KLK5 degraded DSG1 and stimulated secretion of IL-8, IL-10, and thymic stromal lymphopoietin independent of PAR2 activity. With control of higher KLK5 activity by the inhibitor sunflower trypsin inhibitor G, restoration of DSG1 expression and a reduction in AD-related cytokine IL-8, thymic stromal lymphopoietin, and IL-10 secretion were observed. Furthermore, persistently elevated KLK5 could induce AD-like skin architecture in an in vivo skin graft model. Persistently upregulated KLK5 resulted in AD-like skin architecture and secretion of AD-related cytokines from keratinocytes in a PAR2 independent manner. Inhibition of KLK5-mediated effects may offer potential as a therapeutic approach in AD. Copyright

  5. The C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo.

    PubMed

    Beatty, Alexander; Morton, Diane; Kemphues, Kenneth

    2010-12-01

    Polarity is essential for generating cell diversity. The one-cell C. elegans embryo serves as a model for studying the establishment and maintenance of polarity. In the early embryo, a myosin II-dependent contraction of the cortical meshwork asymmetrically distributes the highly conserved PDZ proteins PAR-3 and PAR-6, as well as an atypical protein kinase C (PKC-3), to the anterior. The RING-finger protein PAR-2 becomes enriched on the posterior cortex and prevents these three proteins from returning to the posterior. In addition to the PAR proteins, other proteins are required for polarity in many metazoans. One example is the conserved Drosophila tumor-suppressor protein Lethal giant larvae (Lgl). In Drosophila and mammals, Lgl contributes to the maintenance of cell polarity and plays a role in asymmetric cell division. We have found that the C. elegans homolog of Lgl, LGL-1, has a role in polarity but is not essential. It localizes asymmetrically to the posterior of the early embryo in a PKC-3-dependent manner, and functions redundantly with PAR-2 to maintain polarity. Furthermore, overexpression of LGL-1 is sufficient to rescue loss of PAR-2 function. LGL-1 negatively regulates the accumulation of myosin (NMY-2) on the posterior cortex, representing a possible mechanism by which LGL-1 might contribute to polarity maintenance.

  6. Identification of the first PAR1 deletion encompassing upstream SHOX enhancers in a family with idiopathic short stature.

    PubMed

    Benito-Sanz, Sara; Aza-Carmona, Miriam; Rodríguez-Estevez, Amaya; Rica-Etxebarria, Ixaso; Gracia, Ricardo; Campos-Barros, Angel; Heath, Karen E

    2012-01-01

    Short stature homeobox-containing gene, MIM 312865 (SHOX) is located within the pseudoautosomal region 1 (PAR1) of the sex chromosomes. Mutations in SHOX or its downstream transcriptional regulatory elements represent the underlying molecular defect in ~60% of Léri-Weill dyschondrosteosis (LWD) and ~5-15% of idiopathic short stature (ISS) patients. Recently, three novel enhancer elements have been identified upstream of SHOX but to date, no PAR1 deletions upstream of SHOX have been observed that only encompass these enhancers in LWD or ISS patients. We set out to search for genetic alterations of the upstream SHOX regulatory elements in 63 LWD and 100 ISS patients with no known alteration in SHOX or the downstream enhancer regions using a specifically designed MLPA assay, which covers the PAR1 upstream of SHOX. An upstream SHOX deletion was identified in an ISS proband and her affected father. The deletion was confirmed and delimited by array-CGH, to extend ~286 kb. The deletion included two of the upstream SHOX enhancers without affecting SHOX. The 13.3-year-old proband had proportionate short stature with normal GH and IGF-I levels. In conclusion, we have identified the first PAR1 deletion encompassing only the upstream SHOX transcription regulatory elements in a family with ISS. The loss of these elements may result in SHOX haploinsufficiency because of decreased SHOX transcription. Therefore, this upstream region should be included in the routine analysis of PAR1 in patients with LWD, LMD and ISS.

  7. Inhibition of Protease-Activated Receptor (PAR1) Reduces Activation of the Endothelium, Coagulation, Fibrinolysis and Inflammation during Human Endotoxemia.

    PubMed

    Schoergenhofer, Christian; Schwameis, Michael; Gelbenegger, Georg; Buchtele, Nina; Thaler, Barbara; Mussbacher, Marion; Schabbauer, Gernot; Wojta, Johann; Jilma-Stohlawetz, Petra; Jilma, Bernd

    2018-06-04

    The protease-activated receptor-1 (PAR-1) is critically involved in the co-activation of coagulation and inflammatory responses. Vorapaxar is a reversible, orally active, low molecular weight, competitive antagonist of PAR-1.We investigated the effects of PAR-1 inhibition by vorapaxar on the inflammatory response, the activation of coagulation, fibrinolysis and endothelium during experimental endotoxemia. In this randomized, double blind, crossover trial, 16 healthy volunteers received a bolus infusion of 2 ng/kg lipopolysaccharide (LPS) ± placebo/vorapaxar with a washout period of 8 weeks. Vorapaxar dosing was guided by thrombin receptor-activating peptide-6-induced whole blood aggregometry. Participants received 10 mg vorapaxar or placebo as an initial dose and, depending on the aggregometry, potentially an additional 10 mg. Goal was > 80% inhibition of aggregation compared with baseline. Vorapaxar significantly reduced the LPS-induced increase in pro-thrombin fragments F1 + 2 by a median of 27% (quartiles: 11-49%), thrombin-anti-thrombin concentrations by 22% (-3 to 46%) and plasmin-anti-plasmin levels by 38% (23-53%). PAR-1 inhibition dampened peak concentrations of tumour necrosis factor -α, interleukin-6 and consequently C-reactive protein by 66% (-11-71%), 50% (15-79%) and 23% (16-38%), respectively. Vorapaxar decreased maximum von Willebrand factor levels by 29% (26-51%) and soluble E-selectin concentrations by 30% (25-38%) after LPS infusion. PAR-1 inhibition did not affect thrombomodulin, soluble P-selectin and platelet factor-4 concentrations.PAR-1 inhibition significantly reduced the activation of coagulation, fibrinolysis, the inflammatory response and endothelial activation during experimental human endotoxemia. Schattauer GmbH Stuttgart.

  8. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH.

    PubMed

    Miralles-Cuevas, S; Oller, I; Pérez, J A Sánchez; Malato, S

    2014-11-01

    In recent years, membrane technologies (nanofiltration (NF)/reverse osmosis (RO)) have received much attention for micropollutant separation from Municipal Wastewater Treatment Plant (MWTP) effluents. Practically all micropollutants are retained in the concentrate stream, which must be treated. Advanced Oxidation Processes (AOPs) have been demonstrated to be a good option for the removal of microcontaminants from water systems. However, these processes are expensive, and therefore, are usually combined with other techniques (such as membrane systems) in an attempt at cost reduction. One of the main costs in solar photo-Fenton comes from reagent consumption, mainly hydrogen peroxide and chemicals for pH adjustment. Thus, in this study, solar photo-Fenton was used to treat a real MWTP effluent with low initial iron (less than 0.2 mM) and hydrogen peroxide (less than 2 mM) concentrations. In order to work at neutral pH, iron complexing agents (EDDS and citrate) were used in the two cases studied: direct treatment of the MWTP effluent and treatment of the concentrate stream generated by NF. The degradation of five pharmaceuticals (carbamazepine, flumequine, ibuprofen, ofloxacin and sulfamethoxazole) spiked in the effluent at low initial concentrations (μg L(-1)) was monitored as the main variable in the pilot-plant-scale photo-Fenton experiments. In both effluents, pharmaceuticals were efficiently removed (>90%), requiring low accumulated solar energy (2 kJUV L(-1), key parameter in scaling up the CPC photoreactor) and low iron and hydrogen peroxide concentrations (reagent costs, 0.1 and 1.5 mM, respectively). NF provided a clean effluent, and the concentrate was positively treated by solar photo-Fenton with no significant differences between the direct MWTP effluent and NF concentrate treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Protease-activated Receptor-2 (PAR-2)-mediated Nf-κB Activation Suppresses Inflammation-associated Tumor Suppressor MicroRNAs in Oral Squamous Cell Carcinoma*

    PubMed Central

    Johnson, Jeff J.; Miller, Daniel L.; Jiang, Rong; Liu, Yueying; Shi, Zonggao; Tarwater, Laura; Williams, Russell; Balsara, Rashna; Sauter, Edward R.; Stack, M. Sharon

    2016-01-01

    Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors. PMID:26839311

  10. Protease-activated Receptor-2 (PAR-2)-mediated Nf-κB Activation Suppresses Inflammation-associated Tumor Suppressor MicroRNAs in Oral Squamous Cell Carcinoma.

    PubMed

    Johnson, Jeff J; Miller, Daniel L; Jiang, Rong; Liu, Yueying; Shi, Zonggao; Tarwater, Laura; Williams, Russell; Balsara, Rashna; Sauter, Edward R; Stack, M Sharon

    2016-03-25

    Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. [Effect of a proteinase-activated receptor-2 (PAR-2) agonist on tryptase release from human mast cells].

    PubMed

    He, Shao-Heng; Xie, Hua; He, Yong-Song

    2002-12-25

    Proteinase-activated receptor-2 (PAR-2) expression has been observed on numerous cell types. However, little is known about the functional expression of PAR-2 in human mast cells. In the current study, the actions of a PAR-2 agonist trans-cinnamoyl-Leu-Ile-Gly-Arg-Leu-Orn-amide (tc-LIGRLO) on tryptase release from dispersed human colonic mast cells were examined. The results showed that tc-LIGRLO was able to induce a fold increase in tryptase release over the basal level following a 15 min incubation of colonic mast cells, whereas tc-OLRGIL did not have any effect on tryptase release. The potency of tc-LIGRLO appeared greater than that of anti-IgE and calcium ionophore A23187 (CI) in induction of tryptase release. Extending the incubation time to 30 min had no significant effect on the actions of tc-LIGRLO or anti-IgE. In the time course study, it was observed that the tryptase release from mast cells induced by tc-LIGRLO started at 1 min and peaked at 3 min following incubation. The above-mentioned results indicate that tc-LIGRLO is a potent stimulus of tryptase release from human mast cells, which strongly suggests that PAR-2s are expressed in human mast cells.

  12. PAR1 deletions downstream of SHOX are the most frequent defect in a Spanish cohort of Léri-Weill dyschondrosteosis (LWD) probands.

    PubMed

    Benito-Sanz, Sara; del Blanco, Darya Gorbenko; Aza-Carmona, Miriam; Magano, Luis F; Lapunzina, Pablo; Argente, Jesús; Campos-Barros, Angel; Heath, Karen E

    2006-10-01

    Léri-Weill dyschondrosteosis (LWD) is a skeletal dysplasia characterized by disproportionate short stature and Madelung deformity. Mutations or deletions of the SHOX gene have been previously identified as the main cause of LWD. We recently identified the existence of a second class of pseudoautosomal region 1 (PAR1) deletions which do not include SHOX, implicated in the etiopathogenesis of LWD. The deletions map at least 30-250 kb downstream of SHOX, are variable in size and clearly cosegregate with the LWD phenotype. In order to determine the frequency of this new type of deletions in the Spanish population we analyzed the distribution of PAR1 defects, including the screening of SHOX deletions, mutations, and PAR1 deletions downstream of SHOX, in a total of 26 LWD probands by a combination of MLPA, microsatellite analysis, SNP genotyping, dHPLC, and DNA sequencing. A molecular defect was identified in 16/26 LWD patients (61.5%): 10 PAR1 deletions downstream of SHOX, four SHOX encompassing deletions, and two SHOX mutations. No apparent phenotypic differences were observed between patients with SHOX defects and those with PAR1 deletions downstream of SHOX. In the examined cohort of Spanish LWD probands, PAR1 deletions downstream of SHOX represent the highest proportion of identified mutations (38%) compared to SHOX deletions (15%) and mutations (8%). As a consequence of our findings, the screening of this region should be included in the routine genetic testing of LWD. Also, LWD patients who tested negative for SHOX defects should be re-evaluated for PAR1 deletions downstream of SHOX.

  13. Compound heterozygosity of SHOX-encompassing and downstream PAR1 deletions results in Langer mesomelic dysplasia (LMD).

    PubMed

    Campos-Barros, Angel; Benito-Sanz, Sara; Ross, Judith L; Zinn, Andrew R; Heath, Karen E

    2007-05-01

    We present the clinical and molecular characteristics of a multi-generation family in which the proband presented with clinical features of Langer mesomelic dysplasia (LMD) whilst different family members had a diagnosis of Léri-Weill dyschondrosteosis (LWD) and/or pseudoachondroplasia (PSACH). In the LMD proband two different deletions were identified in the pseudoautosomal 1 region (PAR1) of the X and Y chromosomes: a SHOX-encompassing deletion inherited from his father and a downstream PAR1 deletion, which did not include SHOX, inherited from his mother. The individuals with PSACH features presented the previously described G719D mutation in the C-terminal globular domain of the cartilage oligomeric matrix protein gene (COMP). The LMD proband described here represents the first LMD case due to compound heterozygosity for deletions of the two different PAR1 regions, SHOX-encompassing and downstream from SHOX, that have been shown to be implicated in the pathogenesis of LWD and LMD.

  14. Management of persistent hyperplastic primary vitreous by pars plana vitrectomy.

    PubMed Central

    Peyman, G A; Sanders, D R; Nagpal, K C

    1976-01-01

    Two children with persistent hyperplastic primary vitreous (PHPV) underwent vitrectomy and lensectomy via the pars plana to remove the fibrovascular stalk. Postoperatively the eyes were quiet, only a slight vitreous haze obscured the fundus view in the immediate postoperative period, and the stumps of the stalks retracted. Early surgical treatment of PHPV may prevent later serious complications. Images PMID:1009053

  15. Low-concentration hydrogen peroxide can upregulate keratinocyte intracellular calcium and PAR-2 expression in a human keratinocyte-melanocyte co-culture system.

    PubMed

    Li, Jian; Tang, Lu-Yan; Fu, Wen-Wen; Yuan, Jin; Sheng, You-Yu; Yang, Qin-Ping

    2016-12-01

    Hydrogen peroxide (H 2 O 2 ) may have a biphasic effect on melanin synthesis and melanosome transfer. High H 2 O 2 concentrations are involved in impaired melanosome transfer in vitiligo. However, low H 2 O 2 concentration promotes the beneficial proliferation and migration of melanocytes. The aim of this study was to explore low H 2 O 2 and its mechanism in melanosome transfer, protease-activated receptor-2 (PAR-2) expression and calcium balance. Melanosomes were fluorescein-labeled for clear visualization of their transfer. The expression of protease-activated receptor-2 (PAR-2) in keratinocytes was determined by western blot analysis. Flow cytometry was employed to evaluate the effects of H 2 O 2 on calcium levels in keratinocytes. Fluorescence microscopy showed the upregulation of melanosome transfer into keratinocytes following 0.3 mM H 2 O 2 treatment in the co-cultures rather than in the untreated control groups, which was associated with higher expression of PAR-2 protein and increased calcium concentration. The addition of a PAR-2 antagonist inhibited the positive activity of H 2 O 2 and calcium flow in keratinocytes. When calcium flow was blocked by a calcium chelator, the addition of H 2 O 2 did not increase the PAR-2 expression level in keratinocytes, therefore, inhibiting dendrite formation and melanosome transfer. Low H 2 O 2 concentration promotes melanosome transfer with increased PAR-2 expression level and calcium concentration in keratinocytes. In addition, the interaction between melanocytes and keratinocytes is more beneficial to enhance calcium levels in keratinocytes which mediate melanin transfer. Moreover, low H 2 O 2 concentration promotes dendrite formation, in which extracellular calcium and Par-2 were involved.

  16. Identification of a Novel Regulatory Mechanism of Nutrient Transport Controlled by TORC1-Npr1-Amu1/Par32

    PubMed Central

    Boeckstaens, Mélanie; Merhi, Ahmad; Llinares, Elisa; Van Vooren, Pascale; Springael, Jean-Yves; Wintjens, René; Marini, Anna Maria

    2015-01-01

    Fine-tuning the plasma-membrane permeability to essential nutrients is fundamental to cell growth optimization. Nutritional signals including nitrogen availability are integrated by the TORC1 complex which notably regulates arrestin-mediated endocytosis of amino-acid transporters. Ammonium is a ubiquitous compound playing key physiological roles in many, if not all, organisms. In yeast, it is a preferred nitrogen source transported by three Mep proteins which are orthologues of the mammalian Rhesus factors. By combining genetic, kinetic, biochemical and cell microscopy analyses, the current study reveals a novel mechanism enabling TORC1 to regulate the inherent activity of ammonium transport proteins, independently of arrestin-mediated endocytosis, identifying the still functional orphan Amu1/Par32 as a selective regulator intermediate. We show that, under poor nitrogen supply, the TORC1 effector kinase' Npr1' promotes phosphorylation of Amu1/Par32 which appears mainly cytosolic while ammonium transport proteins are active. Upon preferred nitrogen supplementation, like glutamine or ammonium addition, TORC1 upregulation enables Npr1 inhibition and Amu1/Par32 dephosphorylation. In these conditions, as in Npr1-lacking cells, hypophosphorylated Amu1/Par32 accumulates at the cell surface and mediates the inhibition of specific ammonium transport proteins. We show that the integrity of a conserved repeated motif of Amu1/Par32 is required for the interaction with these transport proteins. This study underscores the diversity of strategies enabling TORC1-Npr1 to selectively monitor cell permeability to nutrients by discriminating between transporters to be degraded or transiently inactivated and kept stable at the plasma membrane. This study further identifies the function of Amu1/Par32 in acute control of ammonium transport in response to variations in nitrogen availability. PMID:26172854

  17. Identification of the first PAR1 deletion encompassing upstream SHOX enhancers in a family with idiopathic short stature

    PubMed Central

    Benito-Sanz, Sara; Aza-Carmona, Miriam; Rodríguez-Estevez, Amaya; Rica-Etxebarria, Ixaso; Gracia, Ricardo; Campos-Barros, Ángel; Heath, Karen E

    2012-01-01

    Short stature homeobox-containing gene, MIM 312865 (SHOX) is located within the pseudoautosomal region 1 (PAR1) of the sex chromosomes. Mutations in SHOX or its downstream transcriptional regulatory elements represent the underlying molecular defect in ∼60% of Léri-Weill dyschondrosteosis (LWD) and ∼5–15% of idiopathic short stature (ISS) patients. Recently, three novel enhancer elements have been identified upstream of SHOX but to date, no PAR1 deletions upstream of SHOX have been observed that only encompass these enhancers in LWD or ISS patients. We set out to search for genetic alterations of the upstream SHOX regulatory elements in 63 LWD and 100 ISS patients with no known alteration in SHOX or the downstream enhancer regions using a specifically designed MLPA assay, which covers the PAR1 upstream of SHOX. An upstream SHOX deletion was identified in an ISS proband and her affected father. The deletion was confirmed and delimited by array-CGH, to extend ∼286 kb. The deletion included two of the upstream SHOX enhancers without affecting SHOX. The 13.3-year-old proband had proportionate short stature with normal GH and IGF-I levels. In conclusion, we have identified the first PAR1 deletion encompassing only the upstream SHOX transcription regulatory elements in a family with ISS. The loss of these elements may result in SHOX haploinsufficiency because of decreased SHOX transcription. Therefore, this upstream region should be included in the routine analysis of PAR1 in patients with LWD, LMD and ISS. PMID:22071895

  18. ViPAR: a software platform for the Virtual Pooling and Analysis of Research Data.

    PubMed

    Carter, Kim W; Francis, Richard W; Carter, K W; Francis, R W; Bresnahan, M; Gissler, M; Grønborg, T K; Gross, R; Gunnes, N; Hammond, G; Hornig, M; Hultman, C M; Huttunen, J; Langridge, A; Leonard, H; Newman, S; Parner, E T; Petersson, G; Reichenberg, A; Sandin, S; Schendel, D E; Schalkwyk, L; Sourander, A; Steadman, C; Stoltenberg, C; Suominen, A; Surén, P; Susser, E; Sylvester Vethanayagam, A; Yusof, Z

    2016-04-01

    Research studies exploring the determinants of disease require sufficient statistical power to detect meaningful effects. Sample size is often increased through centralized pooling of disparately located datasets, though ethical, privacy and data ownership issues can often hamper this process. Methods that facilitate the sharing of research data that are sympathetic with these issues and which allow flexible and detailed statistical analyses are therefore in critical need. We have created a software platform for the Virtual Pooling and Analysis of Research data (ViPAR), which employs free and open source methods to provide researchers with a web-based platform to analyse datasets housed in disparate locations. Database federation permits controlled access to remotely located datasets from a central location. The Secure Shell protocol allows data to be securely exchanged between devices over an insecure network. ViPAR combines these free technologies into a solution that facilitates 'virtual pooling' where data can be temporarily pooled into computer memory and made available for analysis without the need for permanent central storage. Within the ViPAR infrastructure, remote sites manage their own harmonized research dataset in a database hosted at their site, while a central server hosts the data federation component and a secure analysis portal. When an analysis is initiated, requested data are retrieved from each remote site and virtually pooled at the central site. The data are then analysed by statistical software and, on completion, results of the analysis are returned to the user and the virtually pooled data are removed from memory. ViPAR is a secure, flexible and powerful analysis platform built on open source technology that is currently in use by large international consortia, and is made publicly available at [http://bioinformatics.childhealthresearch.org.au/software/vipar/]. © The Author 2015. Published by Oxford University Press on behalf of the

  19. Adaptive remodeling at the pedicle due to pars fracture: a finite element analysis study.

    PubMed

    İnceoğlu, Serkan; Mageswaran, Prasath; Modic, Michael T; Benzel, Edward C

    2014-09-01

    Spondylolysis is a common condition among the general population and a major cause of back pain in young athletes. This condition can be difficult to detect with plain radiography and has been reported to lead to contralateral pars fracture or pedicle fracture in the terminal stages. Interestingly, some patients with late-stage spondylolysis are observed to have radiographic or CT evidence of a sclerotic pedicle on the side contralateral to the spondylolysis. Although computational studies have shown stress elevation in the contralateral pedicle after a pars fracture, it is not known if these changes would cause sclerotic changes in the contralateral pedicle. The objective of this study was to investigate the adaptive remodeling process at the pedicle due to a contralateral spondylolysis using finite element analysis. A multiscale finite element model of a vertebra was obtained by combining a continuum model of the posterior elements with a voxel-based pedicle section. Extension loading conditions were applied with or without a fracture at the contralateral pars to analyze the stresses in the contralateral pedicle. A remodeling algorithm was used to simulate and assess density changes in the contralateral pedicle. The remodeling algorithm demonstrated an increase in bone formation around the perimeter of the contralateral pedicle with some localized loss of mass in the region of cancellous bone. The authors' results indicated that a pars fracture results in sclerotic changes in the contralateral pedicle. Such a remodeling process could increase overall bone mass. However, focal bone loss in the region of the cancellous bone of the pedicle might predispose the pedicle to microfractures. This phenomenon explains, at least in part, the origin of pedicle stress fractures in the sclerotic contralateral pedicles of patients with unilateral spondylolysis.

  20. Etude de l'amelioration de la qualite des anodes par la modification des proprietes du brai

    NASA Astrophysics Data System (ADS)

    Bureau, Julie

    La qualite des anodes produites se doit d'etre bonne afin d'obtenir de l'aluminium primaire tout en reduisant le cout de production du metal, la consommation d'energie et les emissions environnementales. Or, l'obtention des proprietes finales de l'anode necessite une liaison satisfaisante entre le coke et le brai. Toutefois, la matiere premiere actuelle n'assure pas forcement la compatibilite entre le coke et le brai. Une des solutions les plus prometteuses, pour ameliorer la cohesion entre ces deux materiaux, est la modification des proprietes du brai. L'objectif de ce travail consiste a modifier les proprietes du brai par l'ajout d'additifs chimiques afin d'ameliorer la mouillabilite du coke par le brai modifie pour produire des anodes de meilleure qualite. La composition chimique du brai est modifiee en utilisant des tensioactifs ou agents de modification de surface choisis dans le but d'enrichir les groupements fonctionnels susceptibles d'ameliorer la mouillabilite. L'aspect economique, l'empreinte environnementale et l'impact sur la production sont consideres dans la selection des additifs chimiques. Afin de realiser ce travail, la methodologie consiste a d'abord caracteriser les brais non modifies, les additifs chimiques et les cokes par la spectroscopie infrarouge a transformee de Fourier (FTIR) afin d'identifier les groupements chimiques presents. Puis, les brais sont modifies en ajoutant un additif chimique afin de possiblement modifier ses proprietes. Differentes quantites d'additif sont ajoutees afin d'examiner l'effet de la variation de la concentration sur les proprietes du brai modifie. La methode FTIR permet d'evaluer la composition chimique des brais modifies afin de constater si l'augmentation de la concentration d'additif enrichit les groupements fonctionnels favorisant l'adhesion coke/brai. Ensuite, la mouillabilite du coke par le brai est observee par la methode goutte- sessile. Une amelioration de la mouillabilite par la modification a l'aide d

  1. Pars plana vitrectomy for disturbing primary vitreous floaters: clinical outcome and patient satisfaction.

    PubMed

    de Nie, Karlijn F; Crama, N; Tilanus, Maurits A D; Klevering, B Jeroen; Boon, Camiel J F

    2013-05-01

    Primary vitreous floaters can be highly bothersome in some patients. In the case of persistently bothersome floaters, pars plana vitrectomy may be the most effective treatment. The aim of this study is to evaluate the incidence of complications, and patient satisfaction, after pars plana vitrectomy for disabling primary vitreous opacities. We included a total of 110 eyes that underwent pars plana vitrectomy between February 1998 and August 2010. Fifty-seven eyes (51.8%) underwent 20-gauge vitrectomy, whereas 53 eyes (48.2%) underwent 23-gauge vitrectomy. In a retrospective manner, we assessed intraoperative and postoperative complications. There was a considerable range of time between surgery and questionnaire (range: 4-136 months). Patient satisfaction was assessed by a questionnaire based on a modified NEI VFQ-25 questionnaire. A retinal detachment occurred in 10.9% of cases, and the incidence did not differ significantly between the 20-gauge and 23-gauge vitrectomy groups. In 4.5% of the eyes, a retinal detachment developed within the first 3 months, and 6.4% occurred later in the postoperative period. Cystoid macular edema occurred in 5.5%, and an epiretinal membrane was seen postoperatively in 3.6% of cases. Development of glaucoma requiring glaucoma surgery, a macular hole, and postoperative scotoma, each occurred in 0.9% of cases. No cases of endophthalmitis occurred. Eighty-five percent of patients were satisfied or very satisfied with the results of the vitrectomy. Eighty-four percent of all patients were completely cured from their troublesome vitreous floaters, and an additional 9.3% of patients were less troubled by vitreous floaters. Ten patients (9.3%) were dissatisfied, and six of these patients (5.6%) had a serious complication that resulted in permanent visual loss. Pars plana vitrectomy is an effective approach to treat primary vitreous floaters, resulting in a high rate of patient satisfaction. Postoperative complications may be more frequent

  2. Participatory Action Research: Reflections on Critical Incidents in a PAR Project.

    ERIC Educational Resources Information Center

    Santelli, Betsy; Singer, George H. S.; DiVenere, Nancy; Ginsberg, Connie; Powers, Laurie E.

    1998-01-01

    This article describes a participatory action research (PAR) project designed to evaluate Parent to Parent programs in five states. The process of developing a shared understanding of the program and of the purpose for evaluating them, along with an on-going willingness of parents and researchers to compromise, led to creative solutions to…

  3. Expression of protease-activated receptor-2 (PAR-2) is related to advanced clinical stage and adverse prognosis in ovarian clear cell carcinoma.

    PubMed

    Aman, Murasaki; Ohishi, Yoshihiro; Imamura, Hiroko; Shinozaki, Tomoko; Yasutake, Nobuko; Kato, Kiyoko; Oda, Yoshinao

    2017-06-01

    Recent studies demonstrated that protease-activated receptor-2 (PAR-2) correlates with tumor progression in various tissues. On the other hand, oxidative stress arising from endometriosis has been considered a cause of carcinogenesis in ovarian clear cell carcinoma (OCCC). We previously demonstrated that oxidative stress up-regulates PAR-2 expression, and we conducted the present study to investigate the PAR-2 expression and its relation to clinicopathological factors and oxidative stress in OCCC. We performed an immunohistochemical evaluation in 95 cases of OCCC. For the evaluation of oxidative stress markers, 31 cases of ovarian endometrioid carcinoma (OEC) were also examined. No significant differences in the expression of cyclooxygenase-2 and inducible nitric oxide synthase were observed between OCCC and OEC. Sixty-two percent of the OCCC cases showed high 8-hydroxydeoxyguanosine expression, whereas all of the OEC cases showed almost negative immunoreactivities. The presence of endometriosis did not affect the expression of these oxidative stress markers or prognosis. High PAR-2 expression was observed in 20% (14/71) of the early International Federation of Gynecology and Obstetrics (FIGO) stage cases and 58% (14/24) of the advanced FIGO stage cases. High PAR-2 expression was significantly correlated with advanced FIGO stage and shorter overall survival. We found no correlations between PAR-2 expression and oxidative stress in OCCC. Our results suggest that PAR-2 plays an important role in the progression of OCCC. The expression of 8-hydroxydeoxyguanosine is a characteristic finding of OCCC, indicating that the injury of DNA by oxidative stress may be involved in the carcinogenesis of OCCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of protease activated receptor (PAR)2 blocking peptide on endothelin-1 levels in kidney tissues in endotoxemic rat mode.

    PubMed

    Jesmin, Subrina; Shimojo, Nobutake; Yamaguchi, Naoto; Mowa, Chishimba Nathan; Oki, Masami; Zaedi, Sohel; Sultana, Sayeeda Nusrat; Rahman, Arifur; Islam, Majedul; Sawamura, Atsushi; Gando, Satoshi; Kawano, Satoru; Miyauchi, Takashi; Mizutani, Taro

    2014-05-02

    Septic shock, the severe form of sepsis, is associated with development of progressive damage in multiple organs. Kidney can be injured and its functions altered by activation of coagulation, vasoactive-peptide and inflammatory processes in sepsis. Endothelin (ET)-1, a potent vasoconstrictor, is implicated in the pathogenesis of sepsis and its complications. Protease-activated receptors (PARs) are shown to play an important role in the interplay between inflammation and coagulation. We examined the time-dependent alterations of ET-1 and inflammatory cytokine, such as tumor necrosis factor (TNF)-α in kidney tissue in lipopolysaccharide (LPS)-induced septic rat model and the effects of PAR2 blocking peptide on the LPS-induced elevations of renal ET-1 and TNF-α levels. Male Wistar rats at 8 weeks of age were administered with either saline solution or LPS at different time points (1, 3, 6 and 10h). Additionally, we treated LPS-administered rats with PAR2 blocking peptide for 3h to assess whether blockade of PAR2 has a regulatory role on the ET-1 level in septic kidney. An increase in ET-1 peptide level was observed in kidney tissue after LPS administration time-dependently. Levels of renal TNF-α peaked (around 12-fold) at 1h of sepsis. Interestingly, PAR2 blocking peptide normalized the LPS-induced elevations of renal ET-1 and TNF-α levels. The present study reveals a distinct chronological expression of ET-1 and TNF-α in LPS-administered renal tissues and that blockade of PAR2 may play a crucial role in treating renal injury, via normalization of inflammation, coagulation and vaso-active peptide. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis.

    PubMed

    Michael, E S; Kuliopulos, A; Covic, L; Steer, M L; Perides, G

    2013-03-01

    Pancreatic acinar cells express proteinase-activated receptor-2 (PAR2) that is activated by trypsin-like serine proteases and has been shown to exert model-specific effects on the severity of experimental pancreatitis, i.e., PAR2(-/-) mice are protected from experimental acute biliary pancreatitis but develop more severe secretagogue-induced pancreatitis. P2pal-18S is a novel pepducin lipopeptide that targets and inhibits PAR2. In studies monitoring PAR2-stimulated intracellular Ca(2+) concentration changes, we show that P2pal-18S is a full PAR2 inhibitor in acinar cells. Our in vivo studies show that P2pal-18S significantly reduces the severity of experimental biliary pancreatitis induced by retrograde intraductal bile acid infusion, which mimics injury induced by endoscopic retrograde cholangiopancreatography (ERCP). This reduction in pancreatitis severity is observed when the pepducin is given before or 2 h after bile acid infusion but not when it is given 5 h after bile acid infusion. Conversely, P2pal-18S increases the severity of secretagogue-induced pancreatitis. In vitro studies indicate that P2pal-18S protects acinar cells against bile acid-induced injury/death, but it does not alter bile acid-induced intracellular zymogen activation. These studies are the first to report the effects of an effective PAR2 pharmacological inhibitor on pancreatic acinar cells and on the severity of experimental pancreatitis. They raise the possibility that a pepducin such as P2pal-18S might prove useful in the clinical management of patients at risk for developing severe biliary pancreatitis such as occurs following ERCP.

  6. Capteur de CO{2} à fibres optiques par absorption moléculaire à 4,3 μm

    NASA Astrophysics Data System (ADS)

    Bendamardji, S.; Alayli, Y.; Huard, S.

    1996-04-01

    This paper describes a remote optical fibre sensor for the carbon dioxide detection by molecular absorption in the near infrared (4.3 μm) corresponding to fundamental mode ν3. To overcome the problem of the strong attenuation signal of optical fibre in the near infrared, we have used the opto-suppling technique which changes the working wavelength from 4.3 μm to 860 nm and permits the use of standard optical fibre 50/125. The simulation of absorption has been obtained by original modelisation of the absorption spectrum and the establishment of the calibration curves takes to the sensor to detect a partial pressures greater than 100 μbar with a minimal error margin of 100 μbar, which is acceptable considering the future use of the device. The sensor has been designed to monitor the CO{2} rate in enriched greenhouses. Cet article décrit un capteur à fibres optiques de gaz carbonique par absorption moléculaire dans l'infrarouge moyen (4,3 μm) correspondant au mode fondamental ν3. La liaison entre le site de mesure et le site de contrôle est assurée par un fibre optique standard 50/125 après une transposition de longueur d'onde de 4,3 μm à 860 nm par opto-alimentation. La simulation de l'absorption a été obtenue par modélisation originale du spectre d'absorption et l'établissement des courbes d'étalonnage prévoit une marge d'erreur minimale de 100 μbar, ce qui est suffisant pour l'application du dispositif à la régulation de taux CO{2} dans les serres agricoles enrichies par de gaz.

  7. Loss of Axonal Mitochondria Promotes Tau-Mediated Neurodegeneration and Alzheimer's Disease–Related Tau Phosphorylation Via PAR-1

    PubMed Central

    Iijima-Ando, Kanae; Sekiya, Michiko; Suzuki, Emiko; Lu, Bingwei; Iijima, Koichi M.

    2012-01-01

    Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi–mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD–related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD. PMID:22952452

  8. Differences in PAR-2 activating potential by king crab (Paralithodes camtschaticus), salmon (Salmo salar), and bovine (Bos taurus) trypsin.

    PubMed

    Larsen, Anett K; Kristiansen, Kurt; Sylte, Ingebrigt; Seternes, Ole-Morten; Bang, Berit E

    2013-07-20

    Salmon trypsin is shown to increase secretion of the pro-inflammatory cytokine interleukin (IL)-8 from human airway epithelial cells through activation of PAR-2. Secretion of IL-8 induced by king crab trypsin is observed in a different concentration range compared to salmon trypsin, and seems to be only partially related to PAR-2 activation. This report aim to identify differences in the molecular structure of king crab trypsin (Paralithodes camtschaticus) compared to salmon (Salmo salar) and bovine trypsin (Bos taurus) that might influence the ability to activate protease-activated receptor-2 (PAR-2). During purification king crab trypsin displayed stronger binding capacity to the anionic column used in fast protein liquid chromatography compared to fish trypsins, and was identified as a slightly bigger molecule. Measurements of enzymatic activity yielded no obvious differences between the trypsins tested. Molecular modelling showed that king crab trypsin has a large area with strong negative electrostatic potential compared to the smaller negative areas in bovine and salmon trypsins. Bovine and salmon trypsins also displayed areas with strong positive electrostatic potential, a feature lacking in the king crab trypsin. Furthermore we have identified 3 divergent positions (Asp196, Arg244, and Tyr247) located near the substrate binding pocket of king crab trypsin that might affect the binding and cleavage of PAR-2. These preliminary results indicate that electrostatic interactions could be of importance in binding, cleavage and subsequent activation of PAR-2.

  9. [Mutations of gyrA gene and parC gene in fluoroquinolone-resistant Escherichia coli isolates from sporadic diarrheal cases].

    PubMed

    Ishiguro, Fubito; Toho, Miho; Yamazaki, Mitsugu; Matsuyuki, Seiko; Moriya, Kazuo; Tanaka, Daisuke; Isobe, Junko; Kyota, Yoshito; Muraoka, Michio

    2006-09-01

    We studied 107 isolates of Escherichia coli O153 from sporadic diarrhea cases in Fukui, Toyama, Aichi, and Saga prefectures from 1991 to 2005 for antimicrobial susceptibility and mechanisms of fluoroquinolone resistance, based on standard disk diffusion. Of 12 drugs tested, ampicillin displayed resistance to 72.9% of isolates, streptomycin to 48.6%, tetracycline to 46.7%, sulfisoxazole to 46.7%, trimethoprim/sulfamethoxazole to 29.9%, nalidixic acid (NA) to 29.9%, and ciprofloxacin (CPFX) to 24.3%. Ten of 32 isolates resistant to 3-6 drugs and 16 of 18 isolates resistant to 7-10 drugs were resistant both to NA and CPFX. Mutations of amino acid in quinolone resistance-determining regions of gyrA and parC genes were detected in 24 isolates resistant both to NA and CPFX, and in 1 isolate resistant to NA. The former possessed a combination of double substitution (S83L and D87L) in GyrA and a single substitution (S80I) in ParC. Some 12 of 24 isolates possessed another single substitution (E84V or E84G or A108T) in ParC. The 25 isolates were classified into 4 types as follows. 1 isolate as type 1: GyrA (S83L) and ParC (S80I); 12 isolates as type 2: GyrA (S83L and D87N) and ParC (S80I); 8 isolates as type 3: GyrA (S83L and D87N) and ParC (S80I and E84G/S80R and E84V); and 4 isolate as type 4: GyrA (S83L and D87N) and ParC (S80I and A108T). In the relationship between amino acid mutations and minimal inhibitory concentrations (MIC) of fluoroquinolone, MICs of CPFX, ofloxacin, and norfloxacin showed 1microg/mL, 2microg/mL and 8microg/mL in type 1; 8 approximately 32microg/mL, 8 approximately 32microg/mL and 16 approximately 256microg/mL in type 2; and 32 approximately 256microg/mL' 32 approximately 128microg/mL and 128-->512microg/ mL in types 3 and 4. These results suggest that most of multiple-antimicrobial-resitant E. coli O153 isolates from sporadic diarrhea cases were resistant to fluoroquinolones and possessed mutations at gyrA and parC genes associated with

  10. ParDRe: faster parallel duplicated reads removal tool for sequencing studies.

    PubMed

    González-Domínguez, Jorge; Schmidt, Bertil

    2016-05-15

    Current next generation sequencing technologies often generate duplicated or near-duplicated reads that (depending on the application scenario) do not provide any interesting biological information but can increase memory requirements and computational time of downstream analysis. In this work we present ParDRe, a de novo parallel tool to remove duplicated and near-duplicated reads through the clustering of Single-End or Paired-End sequences from fasta or fastq files. It uses a novel bitwise approach to compare the suffixes of DNA strings and employs hybrid MPI/multithreading to reduce runtime on multicore systems. We show that ParDRe is up to 27.29 times faster than Fulcrum (a representative state-of-the-art tool) on a platform with two 8-core Sandy-Bridge processors. Source code in C ++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/pardre/ jgonzalezd@udc.es. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. HepPar1-Positive Circulating Microparticles Are Increased in Subjects with Hepatocellular Carcinoma and Predict Early Recurrence after Liver Resection

    PubMed Central

    Abbate, Valeria; Marcantoni, Margherita; Giuliante, Felice; Vecchio, Fabio M.; Gatto, Ilaria; Mele, Caterina; Saviano, Antonio; Arciuolo, Damiano; Gaetani, Eleonora; Ferrari, Maria C.; Giarretta, Igor; Ardito, Francesco; Riccardi, Laura; Nicoletti, Alberto; Ponziani, Francesca R.; Gasbarrini, Antonio; Pompili, Maurizio; Pola, Roberto

    2017-01-01

    Circulating microparticles (MPs) are novel potential biomarkers in cancer patients. Their role in hepatocellular carcinoma (HCC) is under intensive investigation. In this study, we tested the hypothesis that MPs expressing the antigen HepPar1 are increased in the blood of subjects with HCC and may serve as markers of early recurrence after liver resection (LR). We studied 15 patients affected by HCC undergoing LR, and used flow cytometry to assess the number of circulating HepPar1+ MPs. Ten subjects without HCC (five with liver cirrhosis and five with healthy livers) were used as controls. After LR, HCC patients underwent a follow-up to check for early recurrence, which occurred in seven cases. The number of circulating HepPar1+ MPs was significantly higher in subjects affected by HCC, compared to individuals without cancer (p < 0.01). We also found that, among HCC patients, the number of circulating HepPar1+ MPs, measured before LR, was significantly higher in those who displayed early recurrence compared to those without recurrence (p = 0.02). Of note, other types of circulating MPs, such as those derived from endothelial cells (CD144+) or those produced by the activated endothelium (CD144+/CD62+), were not associated with HCC, nor could they predict HCC recurrence. HepPar1+ MPs deserve further investigation as novel biomarkers of disease and prognosis in HCC patients. PMID:28498353

  12. Highest integration in microelectronics: Development of digital ASICs for PARS3-LR

    NASA Astrophysics Data System (ADS)

    Scholler, Peter; Vonlutz, Rainer

    Essential electronic system components by PARS3-LR, show high requirements in calculation power, power consumption and reliability, by immediately increasing integration thicknesses. These problems are solved by using integrated circuits, developed by LSI LOGIC, that uses the technical and economic advantages of this leading edge technology.

  13. Infection par le VIH chez les patientes atteintes de cancer du sein en Guinée (Afrique de l'Ouest)

    PubMed Central

    Traore, Bangaly; Diane, Solomana; Sow, Mamadou Saliou; Keita, Mamady; Conde, Mamoudou; Traore, Fodé Amara; Kourouma, Tidiane

    2015-01-01

    L'objectif était de déterminer la prévalence de l'infection à VIH chez les patientes atteintes de cancer du sein et de comparer les caractéristiques anatomocliques et thérapeutiques de ces cancers du sein par rapports aux patientes non infectées par le VIH. Il s'agissait d'une étude rétrospective et analytique comparant les dossiers de patientes atteintes de cancers du sein histologiquement confirmés, infectées ou non par le VIH à l'unité de chirurgie oncologique de Donka, CHU de Conakry, de 2007 à 2012. Nous avons colligé 278 patientes présentant un cancer du sein dont 14 (5,0%) infectées par le VIH et 264 (95,0%) non infectées par le VIH. Les différences observées entre ces deux groupes de patientes étaient respectivement: âge médian (36,8 vs 49,0 ans), la ménopause (21,4% vs 53,4%), le nombre des patientes traitées (50,0% contre 77,1%) et la survenue de décès (78,6% vs 50,8%). Aucune différence n'a été notée dans la présentation clinique, histologique et le retard de consultation. Dans notre étude, la prévalence de l'infection à VIH chez les patients atteints de cancer du sein est élevée. L’âge jeune des patients, la faible accessibilité au traitement et la mortalité élevée doivent être confirmés par une étude sur un échantillon plus large. PMID:26523196

  14. Inflammation and Macular Oedema after Pars Plana Vitrectomy

    PubMed Central

    Romano, Vito; Angi, Martina; del Grosso, Renata; Romano, Davide; Vinciguerra, Paolo; Romano, Mario R.

    2013-01-01

    Cystoid macular oedema (CMO) is a major cause of reduced vision following intraocular surgery. Although the aetiology of CMO is not completely clarified, intraocular inflammation is known to play a major role in its development. The macula may develop cytotoxic oedema when the primary lesion and fluid accumulation occur in the parenchymatous cells (intracellular oedema) or vasogenic oedema when the primary defect occurs in the blood-retinal barrier and leads to extracellular fluid accumulation (extracellular oedema). We report on the mechanisms of CMO formation after pars plana vitrectomy and associated surgical procedures and discuss possible therapeutic approaches. PMID:24288446

  15. The role of proteinase 3 (PR3) and the protease-activated receptor-2 (PAR-2) pathway in dendritic cell (DC) maturation of human-DC-like monocytes and murine DC.

    PubMed

    Jiang, Bo; Grage-Griebenow, Evelin; Csernok, Elena; Butherus, Kristine; Ehlers, Stefan; Gross, Wolfgang L; Holle, Julia U

    2010-01-01

    The aim of the study was to assess PAR-2 expression on dendritic cell (DC) subsets and other immune cells of Wegener's granulomatosis (WG) patients and healthy controls (HC) and to investigate whether Proteinase 3 (PR3, a serine protease which can activate PAR2) induces maturation of human DC-like monocytes and murine Flt-3 ligand- and GM-CSF-generated DC. Human peripheral blood cells including DC subsets and Flt-3l- and GM-CSF-generated mouse DC were analysed for expression of PAR-2 and DC maturation markers by flow cytometry before and after stimulation with PR3, trypsin, PAR-2 agonist or LPS for 24 h. There was no difference of PAR-2 expression on PMNs, monocytes, lymphocytes and DC between all WG samples and HC. However, in inactive WG, expression of PAR-2 was downregulated on the cell surface of PMNs, monocytes, lymphocytes, and CD11c+DC compared to active WG and HC. PR3 and PAR2-agonists did not induce upregulation of PAR-2 or maturation markers of human DC-like monocytes in WG and HC. Likewise, murine PR3 did not induce upregulation of PAR-2 or maturation markers in murine DC. PAR-2 expression is downregulated on human peripheral blood cells including CD11c+ DC in inactive WG compared to active WG and HC, possibly reflecting a non-activated status of these cells in inactive disease. PR3 and PAR-2- agonists did not induce maturation of human ex vivo DC-like monocytes in WG and HC and of murine DC, suggesting this pathway is not singularly involved in the maturation of these cell subsets.

  16. Integrating Map Algebra and Statistical Modeling for Spatio- Temporal Analysis of Monthly Mean Daily Incident Photosynthetically Active Radiation (PAR) over a Complex Terrain.

    PubMed

    Evrendilek, Fatih

    2007-12-12

    This study aims at quantifying spatio-temporal dynamics of monthly mean dailyincident photosynthetically active radiation (PAR) over a vast and complex terrain such asTurkey. The spatial interpolation method of universal kriging, and the combination ofmultiple linear regression (MLR) models and map algebra techniques were implemented togenerate surface maps of PAR with a grid resolution of 500 x 500 m as a function of fivegeographical and 14 climatic variables. Performance of the geostatistical and MLR modelswas compared using mean prediction error (MPE), root-mean-square prediction error(RMSPE), average standard prediction error (ASE), mean standardized prediction error(MSPE), root-mean-square standardized prediction error (RMSSPE), and adjustedcoefficient of determination (R² adj. ). The best-fit MLR- and universal kriging-generatedmodels of monthly mean daily PAR were validated against an independent 37-year observeddataset of 35 climate stations derived from 160 stations across Turkey by the Jackknifingmethod. The spatial variability patterns of monthly mean daily incident PAR were moreaccurately reflected in the surface maps created by the MLR-based models than in thosecreated by the universal kriging method, in particular, for spring (May) and autumn(November). The MLR-based spatial interpolation algorithms of PAR described in thisstudy indicated the significance of the multifactor approach to understanding and mappingspatio-temporal dynamics of PAR for a complex terrain over meso-scales.

  17. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J.; Polenova, Tatyana

    2014-09-01

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.

  18. cAMP-secretion coupling is impaired in diabetic GK/Par rat β-cells: a defect counteracted by GLP-1.

    PubMed

    Dolz, Manuel; Movassat, Jamileh; Bailbé, Danielle; Le Stunff, Hervé; Giroix, Marie-Hélène; Fradet, Magali; Kergoat, Micheline; Portha, Bernard

    2011-11-01

    cAMP-raising agents with glucagon-like peptide-1 (GLP-1) as the first in class, exhibit multiple actions that are beneficial for the treatment of type 2 diabetic (T2D) patients, including improvement of glucose-induced insulin secretion (GIIS). To gain additional insight into the role of cAMP in the disturbed stimulus-secretion coupling within the diabetic β-cell, we examined more thoroughly the relationship between changes in islet cAMP concentration and insulin release in the GK/Par rat model of T2D. Basal cAMP content in GK/Par islets was significantly higher, whereas their basal insulin release was not significantly different from that of Wistar (W) islets. Even in the presence of IBMX or GLP-1, their insulin release did not significantly change despite further enhanced cAMP accumulation in both cases. The high basal cAMP level most likely reflects an increased cAMP generation in GK/Par compared with W islets since 1) forskolin dose-dependently induced an exaggerated cAMP accumulation; 2) adenylyl cyclase (AC)2, AC3, and G(s)α proteins were overexpressed; 3) IBMX-activated cAMP accumulation was less efficient and PDE-3B and PDE-1C mRNA were decreased. Moreover, the GK/Par insulin release apparatus appears less sensitive to cAMP, since GK/Par islets released less insulin at submaximal cAMP levels and required five times more cAMP to reach a maximal secretion rate no longer different from W. GLP-1 was able to reactivate GK/Par insulin secretion so that GIIS became indistinguishable from that of W. The exaggerated cAMP production is instrumental, since GLP-1-induced GIIS reactivation was lost in the presence the AC blocker 2',5'-dideoxyadenosine. This GLP-1 effect takes place in the absence of any improvement of the [Ca(2+)](i) response and correlates with activation of the cAMP-dependent PKA-dependent pathway.

  19. Inhibition of diacylglycerol lipase (DAGL) in the lateral hypothalamus of rats prevents the increase in REMS and food ingestion induced by PAR1 stimulation.

    PubMed

    Pérez-Morales, Marcel; López-Colomé, Ana María; Méndez-Díaz, Mónica; Ruiz-Contreras, Alejandra E; Prospéro-García, Oscar

    2014-08-22

    Stimulation of the protease-activated receptor 1 (PAR1) in vitro, was shown to induce synaptic retrograde signaling through the endocannabinoid 2-arachidonoylglycerol (2-AG) synthesis and activation of the cannabinoid receptor type 1 (CB1R). The activation of PAR1 by the agonist S1820 in the lateral hypothalamus (LH) increases rapid eye movement sleep (REMS) and food intake in rats, and both effects are prevented by the CB1R inverse agonist AM251. In the present study, we implanted rats with electrodes and with cannulae aimed bilaterally to the LH. We administered tetrahydrolipstatin (THL), an inhibitor of the diacylglycerol lipase (DAGL), the enzyme responsible for 2-AG synthesis, to evaluate the sleep-wake cycle and food ingestion. THL in the LH readily prevented the increase in REMS and food intake induced by PAR1 stimulation, further supporting 2-AG as an upstream activator of PAR1. Our results demonstrate that the effect of PAR1 on REMS and food intake is blocked by the inhibition of DAGL, further suggesting that PAR1 stimulation in the lateral hypothalamus of rats induces an increase in sleep and food intake through 2-AG. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane

    PubMed Central

    Hellriegel, Christian; Caiolfa, Valeria R.; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-01-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.—Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N., Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. PMID:21602447