Sample records for nanoformulated drug development

  1. Nano-formulations of drugs: Recent developments, impact and challenges.

    PubMed

    Jeevanandam, Jaison; Chan, Yen San; Danquah, Michael K

    2016-01-01

    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Methods Development for Blood Borne Macrophage Carriage of Nanoformulated Antiretroviral Drugs

    PubMed Central

    Roy, Upal; Martinez-Skinner, Andrea; McMillan, JoEllyn; Gendelman, Howard E.

    2010-01-01

    Nanoformulated drugs can improve pharmacodynamics and bioavailability while serving also to reduce drug toxicities for antiretroviral (ART) medicines. To this end, our laboratory has applied the principles of nanomedicine to simplify ART regimens and as such reduce toxicities while improving compliance and drug pharmacokinetics. Simple and reliable methods for manufacturing nanoformulated ART (nanoART) are shown. Particles of pure drug are encapsulated by a thin layer of surfactant lipid coating and produced by fractionating larger drug crystals into smaller ones by either wet milling or high-pressure homogenization. In an alternative method free drug is suspended in a droplet of a polymer. Herein, drug is dissolved within a polymer then agitated by ultrasonication until individual nanosized droplets are formed. Dynamic light scattering and microscopic examination characterize the physical properties of the particles (particle size, charge and shape). Their biologic properties (cell uptake and retention, cytotoxicity and antiretroviral efficacy) are determined with human monocyte-derived macrophages (MDM). MDM are derived from human peripheral blood monocytes isolated from leukopacks using centrifugal elutriation for purification. Such blood-borne macrophages may be used as cellular transporters for nanoART distribution to human immunodeficiency virus (HIV) infected organs. We posit that the repackaging of clinically available antiretroviral medications into nanoparticles for HIV-1 treatments may improve compliance and positively affect disease outcomes. PMID:21178968

  3. Development and characterization of a long-acting nanoformulated abacavir prodrug.

    PubMed

    Singh, Dhirender; McMillan, JoEllyn; Hilaire, James; Gautam, Nagsen; Palandri, Diana; Alnouti, Yazen; Gendelman, Howard E; Edagwa, Benson

    2016-08-01

    A myristoylated abacavir (ABC) prodrug was synthesized to extend drug half-life and bioavailability. Myristoylated ABC (MABC) was made by esterifying myristic acid to the drug's 5-hydroxy-cyclopentene group. Chemical composition, antiretroviral activity, cell uptake and retention and cellular trafficking of free MABC and poloxamer nanoformulations of MABC were assessed by proton nuclear magnetic resonance and tested in human monocyte-derived macrophages. Pharmacokinetics of ABC and nanoformulated MABC were evaluated after intramuscular injection into mice. MABC antiretroviral activity in monocyte-derived macrophages was comparable to native drug. Encasement of MABC into poloxamer nanoparticles extended drug bioavailability for 2 weeks. MABC synthesis and encasement in polymeric nanoformulations improved intracellular drug accumulation and demonstrate translational potential as part of a long-acting antiretroviral regimen.

  4. Development and characterization of a long-acting nanoformulated abacavir prodrug

    PubMed Central

    Singh, Dhirender; McMillan, JoEllyn; Hilaire, James; Gautam, Nagsen; Palandri, Diana; Alnouti, Yazen; Gendelman, Howard E; Edagwa, Benson

    2016-01-01

    Aim: A myristoylated abacavir (ABC) prodrug was synthesized to extend drug half-life and bioavailability. Methods: Myristoylated ABC (MABC) was made by esterifying myristic acid to the drug's 5-hydroxy-cyclopentene group. Chemical composition, antiretroviral activity, cell uptake and retention and cellular trafficking of free MABC and poloxamer nanoformulations of MABC were assessed by proton nuclear magnetic resonance and tested in human monocyte-derived macrophages. Pharmacokinetics of ABC and nanoformulated MABC were evaluated after intramuscular injection into mice. Results: MABC antiretroviral activity in monocyte-derived macrophages was comparable to native drug. Encasement of MABC into poloxamer nanoparticles extended drug bioavailability for 2 weeks. Conclusion: MABC synthesis and encasement in polymeric nanoformulations improved intracellular drug accumulation and demonstrate translational potential as part of a long-acting antiretroviral regimen. PMID:27456759

  5. A green approach to dual-drug nanoformulations with targeting and synergistic effects for cancer therapy.

    PubMed

    Wu, Shichao; Yang, Xiangrui; Lu, Yue; Fan, Zhongxiong; Li, Yang; Jiang, Yuan; Hou, Zhenqing

    2017-11-01

    Exploration of efficient dual-drug nanohybrids, particularly those with high drug loading, specific targeting property, and long-termed stability, is of highly importance in cancer therapy. A pH-driven coprecipitation was performed in the aqueous phase to obtain a dual-drug nanoformulation, composed of 10-hydroxycamptothecine (HCPT) nanoneedles integrated with an exterior thin layer of the methotrexate (MTX)-chitosan conjugate. The high stability of nanohybrids in water and the targeting property provided by the MTX ingredient function synergistically to the prolonged and sustained drug release property in tumor tissues and the increased cellular uptake. The cytotoxicity test illustrates that dual-drug nanoneedles possess the remarkable killing ability to HeLa cells with the combination index at 0.33 ± 0.07. After cellular internalization, the release of both drug ingredients results in an excellent anticancer activity in vivo with the minimized adverse side effects. Design of a green approach to the carrier-free, dual-drug nanoformulations enables to develop emerging drug delivery systems for cancer diagnosis and treatment.

  6. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction.

    PubMed

    Rao, Pss; Yallapu, Murali M; Sari, Youssef; Fisher, Paul B; Kumar, Santosh

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.

  7. Bio-Inspired Protein-Based Nanoformulations for Cancer Theranostics

    PubMed Central

    Gou, Yi; Miao, Dandan; Zhou, Min; Wang, Lijuan; Zhou, Hongyu; Su, Gaoxing

    2018-01-01

    Over the past decade, more interests have been aroused in engineering protein-based nanoformulations for cancer treatment. This excitement originates from the success of FDA approved Abraxane (Albumin-based paclitaxel nanoparticles) in 2005. The new generation of biocompatible endogenous protein-based nanoformulations is currently constructed through delivering cancer therapeutic and diagnostic agents simultaneously, as named potential theranostics. Protein nanoformulations are commonly incorporated with dyes, contrast agents, drug payloads or inorganic nanoclusters, serving as imaging-guided combinatorial cancer therapeutics. Employing the nature identity of proteins, the theranostics, escape the clearance by reticuloendothelial cells and have a long blood circulation time. The nanoscale sizet allows them to be penetrated deeply into tumor tissues. In addition, stimuli release and targeted molecules are incorporated to improve the delivery efficiency. The ongoing advancement of protein-based nanoformulations for cancer theranostics in recent 5 years is reviewed in this paper. Fine-designed nanoformulations based on albumin, ferritin, gelatin, and transferrin are highlighted from the literature. Finally, the current challenges are identified in translating protein-based nanoformulations from laboratory to clinical trials. PMID:29755355

  8. Nanoformulations of doxorubicin: how far have we come and where do we go from here?

    PubMed

    Borišev, Ivana; Mrđanovic, Jasminka; Petrovic, Danijela; Seke, Mariana; Jović, Danica; Srđenović, Branislava; Latinovic, Natasa; Djordjevic, Aleksandar

    2018-08-17

    Nanotechnology, focused on discovery and development of new pharmaceutical products is known as nanopharmacology, and one research area this branch is engaged in are nanopharmaceuticals. The importance of being nano has been particularly emphasized in scientific areas dealing with nanomedicine and nanopharmaceuticals. Nanopharmaceuticals, their routes of administration, obstacles and solutions concerning their improved application and enhanced efficacy have been briefly yet comprehensively described. Cancer is one of the leading causes of death worldwide and evergrowing number of scientific research on the topic only confirms that the needs have not been completed yet and that there is a wide platform for improvement. This is undoubtedly true for nanoformulations of an anticancer drug doxorubicin, where various nanocarrriers were given an important role to reduce the drug toxicity, while the efficacy of the drug was supposed to be retained or preferably enhanced. Therefore, we present an interdisciplinary comprehensive overview of interdisciplinary nature on nanopharmaceuticals based on doxorubicin and its nanoformulations with valuable information concerning trends, obstacles and prospective of nanopharmaceuticals development, mode of activity of sole drug doxorubicin and its nanoformulations based on different nanocarriers, their brief descriptions of biological activity through assessing in vitro and in vivo behavior.

  9. Nanoformulated water-soluble paclitaxel to enhance drug efficacy and reduce hemolysis side effect.

    PubMed

    Gu, Weiting; Chen, Jie; Patra, Prabir; Yang, Xiaoyan; Gu, Quanrong; Wei, Lingxuan; Acker, Jason P; Kong, Beihua

    2017-07-01

    Surgery, chemotherapy, and radiotherapy are the three top cancer treatment modalities. Paclitaxel (PTX) is one of the most widely used chemotherapy drugs. However, its clinical applications have been significantly limited due to: (i) serious hemolysis effect of currently available commercial paclitaxel formulations and (ii) its water insolubility. An easy way to deliver paclitaxel by a new nanocarrier system using pluronic copolymers of P123/F68 and Sorbitan monopalmitate (Span 40) was reported in our previous research article. The characterization of the formulation and analysis of drug release and cellular uptake were also presented. In this article, we reported discoveries of our follow-up in vivo antitumor and in vitro hemolytic study discoveries. The experimental results showed that the nanoformulated PTX achieved much better tumor suppression performance while reducing hemolysis side effects. This newly formulated drug can significantly improve patient outcomes in cancer chemotherapy.

  10. Improving on Nature: The Role of Nanomedicine in the Development of Clinical Natural Drugs.

    PubMed

    Bilia, Anna Rita; Piazzini, Vieri; Guccione, Clizia; Risaliti, Laura; Asprea, Martina; Capecchi, Giada; Bergonzi, Maria Camilla

    2017-03-01

    Natural products have been used as a major source of drugs for millennia, and about half of the pharmaceuticals in use today are derived from natural products. However, their efficacy can be limited because of their low hydrophilicity and intrinsic dissolution rate(s), or physical/chemical instability. In addition, they can present scarce absorption, poor pharmacokinetics and bioavailability, scarce biodistribution, first-pass metabolism, trivial penetration and accumulation in the organs of the body, or low targeting efficacy. Novel nanoformulations based on drug delivery systems, namely nanoparticles, micelles, and vesicles, offer significant promise in overcoming these limitations. Nowadays, nanomedicine is crucial in developing appropriate therapeutic treatments of essential drugs, specifically antitumor and antiparasistic agents (i.e., Taxol, vincristine, camptothecin, doxorubicin, artemisinin) and other emerging molecules with pleiotropic functions (i.e., resveratrol, curcumin, salvianolic acid B, honokiol). Additionally, the number of nanoformulations developed with flavonoids, in particular rutin, quercetin, silymarin, and green tea catechins, is constantly increasing, and a significant number of publications have appeared in the last decade pertaining to nanoformulations based on extracts and essential oils. Most of these studies report very promising nanoformulations with sustained release and improved bioavailability at much lower doses than conventional preparations, and in many cases, also a better safety profile. Georg Thieme Verlag KG Stuttgart · New York.

  11. Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution

    PubMed Central

    Kevadiya, Bhavesh D.; Woldstad, Christopher; Ottemann, Brendan M.; Dash, Prasanta; Sajja, Balasrinivasa R.; Lamberty, Benjamin; Morsey, Brenda; Kocher, Ted; Dutta, Rinku; Bade, Aditya N.; Liu, Yutong; Callen, Shannon E.; Fox, Howard S.; Byrareddy, Siddappa N.; McMillan, JoEllyn M.; Bronich, Tatiana K.; Edagwa, Benson J.; Boska, Michael D.; Gendelman, Howard E.

    2018-01-01

    RATIONALE: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, “multimodal imaging theranostic nanoprobes” were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS: Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS: Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION: We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy. PMID:29290806

  12. Hierarchical mesosilicalite nanoformulation integrated with cisplatin exhibits target-specific efficient anticancer activity

    NASA Astrophysics Data System (ADS)

    Jermy, B. Rabindran; Acharya, Sadananda; Ravinayagam, Vijaya; Alghamdi, Hajer Saleh; Akhtar, Sultan; Basuwaidan, Rehab S.

    2018-04-01

    Hierarchically structured zeolitic ZSM-5 and meso MCM-41 interlinked domain had an impeccable use as catalysis in many applications. The aim of the study was to develop a new drug delivery nanoformulation, specifically, cisplatin/mesosilicalite using top-down approach for cancer therapy. Hierarchical mesosilicalite with variable porosity was synthesized using alkaline molar solution (0.2 and 0.7 M NaOH) and was loaded with cisplatin through equilibrium adsorption technique. Physico-chemical properties of the nanoformulation (IAUM-56—Imam Abdulrahman Bin Faisal University Mesosilicalite-56) were characterized using X-ray diffraction, surface area analysis (BET), Fourier transformed infrared spectroscopy (FT-IR), diffuse reflectance UV-Vis spectroscopy, and transmission electron microscopy. Drug release study and anticancer activity were assayed on HeLa and MCF7 cancer cells using MTT assay. X-ray diffraction pattern showed interrelated meso- and microphases, while BET analysis revealed considerable mesoporosity formation with a remodulation of isotherm hysteresis indicating the presence of hierarchical pores. FT-IR showed the presence of nanozeolitic subunits into mesostructure with a band at about 550 cm-1. IAUM-56 demonstrated high cytotoxic activity against HeLa cancer cells with an LC50 of 0.02 mg/ml, MCF7 cancer cells with an LC50 of 0.05 mg/ml, and less toxic to normal fibroblast cells with an LC50 of approximately ten times higher at 0.5 mg/ml. Overall, IAUM-56 showed a high rate of sustained release of cisplatin imparting target specific cytotoxic effect against tumor cells with at least tenfold lower toxicity on normal fibroblast cells. Our nanoformulation has the potential use in cancer therapy as a targeted drug delivery system.

  13. Tackling breast cancer chemoresistance with nano-formulated siRNA

    PubMed Central

    Jones, SK; Merkel, OM

    2017-01-01

    Breast cancer is the leading cancer diagnosed in women and the second leading cause of cancer-related deaths in women. Current limitations to standard chemotherapy in the clinic are extensively researched, including problems arising from repeated treatments with the same drugs. The phenomenon that cancer cells become resistant toward certain chemo drugs is called chemotherapy resistance. In this review, we are focusing on nanoformulation of siRNA for the fight against breast cancer chemoresistance. PMID:27648580

  14. Biocompatible Polymer Nanoformulation To Improve the Release and Safety of a Drug Mimic Molecule Detectable via ICP-MS.

    PubMed

    Ferrari, Raffaele; Talamini, Laura; Violatto, Martina Bruna; Giangregorio, Paola; Sponchioni, Mattia; Morbidelli, Massimo; Salmona, Mario; Bigini, Paolo; Moscatelli, Davide

    2017-01-03

    Fluorescent poly(ε-caprolactone)-based nanoparticles (NPs) have been synthesized and successfully loaded with a titanium organometallic compound as a mimic of a water-insoluble drug. The nature of this nanovector enabled us to combine the quantification of the metal in tissues after systemic administration in healthy immunocompetent mice by inductively coupled plasma mass spectroscopy (ICP-MS) followed by the visualization of NPs in organ sections by confocal microscopy. This innovative method of nanodrug screening has enabled us to elucidate the crucial parameters of their kinetics. The organometallic compound is a good mimic of most anticancer drugs, and this approach is an interesting starting point to design the relevance of a broad range of nanoformulations in terms of safety and targeted delivery of the cargoes.

  15. Praziquantel in a Clay Nanoformulation Shows More Bioavailability and Higher Efficacy against Murine Schistosoma mansoni Infection

    PubMed Central

    Mohamed, Wael S.; Nasr, Hanaa E.; El-Lakkany, Naglaa M.; Seif el-Din, Sayed H.; Botros, Sanaa S.

    2015-01-01

    Consideration of existing compounds always simplifies and shortens the long and difficult process of discovering new drugs specifically for diseases of developing countries, an approach that may add to the significant potential cost savings. This study focused on improving the biological characteristics of the already-existing antischistosomal praziquantel (PZQ) by incorporating it into montmorillonite (MMT) clay as a delivery carrier to overcome its known bioavailability drawbacks. The oral bioavailability of a PZQ-MMT clay nanoformulation and its in vivo efficacy against Schistosoma mansoni were investigated. The PZQ-MMT clay nanoformulation provided a preparation with a controlled release rate, a decrease in crystallinity, and an appreciable reduction in particle size. Uninfected and infected mice treated with PZQ-MMT clay showed 3.61- and 1.96-fold and 2.16- and 1.94-fold increases, respectively, in area under the concentration-time curve from 0 to 8 h (AUC0–8) and maximum concentration of drug in serum (Cmax), with a decrease in elimination rate constant (kel) by 2.84- and 1.35-fold and increases in the absorption rate constant (ka) and half-life (t1/2e) by 2.11- and 1.51-fold and 2.86- and 1.34-fold, respectively, versus the corresponding conventional PZQ-treated groups. This improved bioavailability has been expressed in higher efficacy of the drug, where the dose necessary to kill 50% of the worms was reduced by >3-fold (PZQ 50% effective dose [ED50] was 20.25 mg/kg of body weight for PZQ-MMT clay compared to 74.07 mg/kg for conventional PZQ), with significant reduction in total tissue egg load and increase in total immature, mature, and dead eggs in most of the drug-treated groups. This formulation showed better bioavailability, enhanced antischistosomal efficacy, and a safer profile despite the longer period of residence in the systemic circulation. Although the conventional drug's toxicity was not examined, animal mortality rates were not different

  16. Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens.

    PubMed

    Qian, Yiguang; Yao, Jun; Russel, Mohammad; Chen, Ke; Wang, Xiaoyu

    2015-03-01

    The application of nanotechnology in medicine has recently been a breakthrough in therapeutic drugs formulation. This paper presents the structural and optical characterization of a new green nano-formulation (ZnO-Aloe vera) with considerable antibacterial activity against pathogenic bacteria. Its particle structure, size and morphology were characterized by XRD, TEM and SEM. And optical absorption spectra and photoluminescence were measured synchronously. Their antibacterial activity against Escherichia coli and Staphylococcus aureus was also investigated using thermokinetic profiling and agar well diffusion method. The nano-formulation is spherical shape and hexagonal with a particle size ranging from 25 to 65 nm as well as an increased crystallite size of 49 nm. For antibacterial activity, the maximum inhibition zones of ZnO and ZnO+A. vera are 18.33 and 26.45 mm for E. coli, 22.11 and 28.12 mm for S. aureus (p<0.05). Considering Pmax, Qt and k, ZnO+A. vera nano-formulation has a significant (p < 0.05) antibacterial effect against S. aureus almost at all concentration and against E. coli at 15 and 25mg/L. ZnO+A. vera nano-formulation is much more toxic against S. aureus than E. coli, with an IC50 of 13.12 mg/L and 21.31 mg/L, respectively. The overall results reveal that the ZnO-A. vera nano-formulation has good surface energy, crystallinity, transmission, and enriched antibacterial activities. Their antibacterial properties are possibly relevant to particle size, microstructural ionization, the crystal formation and the Gram property of pathogens. This ZnO-A. vera nano-formulation could be utilized effectively as a spectral and significant antibacterial agent for pathogens in future medical and environmental concerns. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Nanodrug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS

    PubMed Central

    Shao, Jingwei; Kraft, John C; Li, Bowen; Yu, Jesse; Freeling, Jennifer; Koehn, Josefin; Ho, Rodney JY

    2016-01-01

    Although oral combination antiretroviral therapy effectively clears plasma HIV, patients on oral drugs exhibit much lower drug concentrations in lymph nodes than blood. This drug insufficiency is linked to residual HIV in cells of lymph nodes. While nanoformulations improve drug solubility, safety and delivery, most HIV nanoformulations are intended to extend plasma levels. A stable nanodrug combination that transports, delivers and accumulates in lymph nodes is needed to clear HIV in lymphoid tissues. This review discusses limitations of current oral combination antiretroviral therapy and advances in anti-HIV nanoformulations. A ‘systems approach’ has been proposed to overcome these limitations. This concept has been used to develop nanoformulations for overcoming drug insufficiency, extending cell and tissue exposure and clearing virus for treating HIV/AIDS. PMID:26892323

  18. Evaluation of nanoformulated therapeutics in an ex-vivo bovine corneal irritation model.

    PubMed

    Bhasker, Sriramoju; Kislay, Roy; Rupinder, Kanwar K; Jagat, Kanwar R

    2015-08-01

    To determine the internalization and protective effects of potential ophthalmic formulations and nanoformulated natural proteins in ex-vivo bovine corneal alkali burn model. The bovine cornea obtained were subjected to the 0.5N NaOH insult that induced alkali burn and inflammation as observed in the in vivo situation. The toxic effects of the nanoformulation were evaluated in the normal and insult induced cornea using histological analysis. Internalization studies were carried out using in vivo imaging and analysis (IVIS, PerkinElmer, USA). The nanoformulations employed in this study showed no obvious changes in the integrity of the cornea. Further, improvements in the light transmittance and reduced inflammation were observed. The IVIS showed a dose dependant increase in the uptake of the nanoformulations with time. The nanoformulated bovine lactoferrin and SurR9-C84A (SR9) proteins evaluated in the ex vivo bovine corneal irritation model is the first of its kind, and we report here the non-toxic and therapeutic potential of these formulations for topical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes.

    PubMed

    El-Far, Yousra M; Zakaria, Mahmoud M; Gabr, Mahmoud M; El Gayar, Amal M; El-Sherbiny, Ibrahim M; Eissa, Laila A

    2016-10-01

    This study aimed to develop a new stable nanoformulation of silymarin (SM) with optimum enhanced oral bioavailability and to evaluate its effect as well as mechanism of action as a superior antidiabetic agent over native SM using streptozotocin-induced diabetic rats. SM-loaded pluronic nanomicelles (SMnp) were prepared and fully characterized. Biochemical parameters were performed as well as histological, confocal and reverse-transcription polymerase chain reaction studies on pancreatic target tissues. SMnp were found to improve significantly the antihyperglycemic, antioxidant and antihyperlipidemic properties as compared with native SM. In addition, SMnp was found to be a more efficient agent over SM in the management of diabetes and its associated complications due to its superior bioavailability in vivo, and the controlled release profile of SM. [Formula: see text].

  20. Nano-sized crystalline drug production by milling technology.

    PubMed

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  1. When Is It Important to Measure Unbound Drug in Evaluating Nanomedicine Pharmacokinetics?

    PubMed Central

    Stern, Stephan T.; Stevens, David M.

    2016-01-01

    Nanoformulations have become important tools for modifying drug disposition, be it from the perspective of enabling prolonged drug release, protecting the drug molecule from metabolism, or achieving targeted delivery. When examining the in vivo pharmacokinetic properties of these formulations, most investigations either focus on systemic concentrations of total (encapsulated plus unencapsulated) drug, or concentrations of encapsulated and unencapsulated drug. However, it is rare to find studies that differentiate between protein-bound and unbound (free) forms of the unencapsulated drug. In light of the unique attributes of these formulations, we cannot simply assume it appropriate to rely upon the protein-binding properties of the traditionally formulated or legacy drug when trying to define the pharmacokinetic or pharmacokinetic/pharmacodynamic characteristics of these nanoformulations. Therefore, this commentary explores reasons why it is important to consider not only unencapsulated drug, but also the portion of unencapsulated drug that is not bound to plasma proteins. Specifically, we highlight those situations when it may be necessary to include measurement of unencapsulated, unbound drug concentrations as part of the nanoformulation pharmacokinetic evaluation. PMID:27670412

  2. Ocular drug delivery systems: An overview

    PubMed Central

    Patel, Ashaben; Cholkar, Kishore; Agrahari, Vibhuti; Mitra, Ashim K

    2014-01-01

    The major challenge faced by today’s pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments

  3. Ocular drug delivery systems: An overview.

    PubMed

    Patel, Ashaben; Cholkar, Kishore; Agrahari, Vibhuti; Mitra, Ashim K

    The major challenge faced by today's pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments

  4. Fracture resistant, antibiofilm adherent, self-assembled PMMA/ZnO nanoformulations for biomedical applications: physico-chemical and biological perspectives of nano reinforcement

    NASA Astrophysics Data System (ADS)

    Raj, Indu; Mozetic, Miran; Jayachandran, V. P.; Jose, Jiya; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-07-01

    Antimicrobial, antibiofilm adherent, fracture resistant nano zinc oxide (ZnO NP) formulations based on poly methyl methacrylate (PMMA) matrix were developed using a facile ex situ compression moulding technique. These formulations demonstrated potent, long-term biofilm-resisting effects against Candida albicans (9000 CFU to 1000 CFU) and Streptococcus mutans. Proposed mechanism of biofilm resistance was the release of metallic ions/metal oxide by ‘particle-corrosion’. MTT and cellular proliferation assays confirmed both qualitatively and quantitatively equal human skin fibroblast cell line proliferations (approximately 75%) on both PMMA/ZnO formulation and neat PMMA. Mechanical performance was evaluated over a range of filler loading, and theoretical models derived from Einstein, Guth, Thomas and Quemade were chosen to predict the modulus of the nanoformulations. All the models gave better fitting at lower filler content, which could be due to restricted mobility of the polymer chains by the constrained zone/interfacial rigid amorphous zone and also due to stress absorption by the highly energized NPs. Fracture mechanics were clearly described based on substantial experimental evidence surrounding crack prevention in the initial zones of fracture. Filler‑polymer interactions at the morphological and structural levels were elucidated through FTIR, XRD, SEM, TEM and AFM analyses. Major clinical challenges in cancer patient rehabilitation and routine denture therapy are frequent breakage of the prostheses and microbial colonization on the prostheses/tissues. In the present study, we succeeded in developing an antimicrobial, mechanically improved fracture resistant, biocompatible nanoformulation in a facile manner without the bio-toxic effects of surface modifiers/functionalization. This PMMA/ZnO nanoformulation could serve as a cost effective breakthrough biomaterial in the field of prosthetic rehabilitation and local drug delivery scaffolds for abused tissues.

  5. Fracture resistant, antibiofilm adherent, self-assembled PMMA/ZnO nanoformulations for biomedical applications: physico-chemical and biological perspectives of nano reinforcement.

    PubMed

    Raj, Indu; Mozetic, Miran; Jayachandran, V P; Jose, Jiya; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-07-27

    Antimicrobial, antibiofilm adherent, fracture resistant nano zinc oxide (ZnO NP) formulations based on poly methyl methacrylate (PMMA) matrix were developed using a facile ex situ compression moulding technique. These formulations demonstrated potent, long-term biofilm-resisting effects against Candida albicans (9000 CFU to 1000 CFU) and Streptococcus mutans. Proposed mechanism of biofilm resistance was the release of metallic ions/metal oxide by 'particle-corrosion'. MTT and cellular proliferation assays confirmed both qualitatively and quantitatively equal human skin fibroblast cell line proliferations (approximately 75%) on both PMMA/ZnO formulation and neat PMMA. Mechanical performance was evaluated over a range of filler loading, and theoretical models derived from Einstein, Guth, Thomas and Quemade were chosen to predict the modulus of the nanoformulations. All the models gave better fitting at lower filler content, which could be due to restricted mobility of the polymer chains by the constrained zone/interfacial rigid amorphous zone and also due to stress absorption by the highly energized NPs. Fracture mechanics were clearly described based on substantial experimental evidence surrounding crack prevention in the initial zones of fracture. Filler-polymer interactions at the morphological and structural levels were elucidated through FTIR, XRD, SEM, TEM and AFM analyses. Major clinical challenges in cancer patient rehabilitation and routine denture therapy are frequent breakage of the prostheses and microbial colonization on the prostheses/tissues. In the present study, we succeeded in developing an antimicrobial, mechanically improved fracture resistant, biocompatible nanoformulation in a facile manner without the bio-toxic effects of surface modifiers/functionalization. This PMMA/ZnO nanoformulation could serve as a cost effective breakthrough biomaterial in the field of prosthetic rehabilitation and local drug delivery scaffolds for abused tissues.

  6. Identification of multi-targeted anti-migraine potential of nystatin and development of its brain targeted chitosan nanoformulation.

    PubMed

    Girotra, Priti; Thakur, Aman; Kumar, Ajay; Singh, Shailendra Kumar

    2017-03-01

    The complex pathophysiology involved in migraine necessitates the drug treatment to act on several receptors simultaneously. The present investigation was an attempt to discover the unidentified anti-migraine activity of the already marketed drugs. Shared featured pharmacophore modeling was employed for this purpose on six target receptors (β 2 adrenoceptor, Dopamine D 3 , 5HT 1B , TRPV1, iGluR5 kainate and CGRP), resulting in the generation of five shared featured pharmacophores, which were further subjected to virtual screening of the ligands obtained from Drugbank database. Molecular docking, performed on the obtained hit compounds from virtual screening, indicated nystatin to be the only active lead against the receptors iGluR5 kainate receptor (1VSO), CGRP (3N7R), β 2 adrenoceptor (3NYA) and Dopamine D 3 (3PBL) with a high binding energy of -11.1, -10.9, -10.2 and -12kcal/mole respectively. The anti-migraine activity of nystatin was then adjudged by fabricating its brain targeted chitosan nanoparticles. Its brain targeting efficacy, analyzed qualitatively by confocal laser scanning microscopy, demonstrated a significant amount of drug reaching the brain. The pharmacodynamic models on Swiss male albino mice revealed significant anti-migraine activity of the nanoformulation. The present study reports for the first time the therapeutic potential of nystatin in migraine management, hence opening avenues for its future exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Creation of a Long-Acting Nanoformulated 2′,3′-Dideoxy-3′-Thiacytidine

    PubMed Central

    Guo, Dongwei; Zhou, Tian; Araínga, Mariluz; Palandri, Diana; Gautam, Nagsen; Bronich, Tatiana; Alnouti, Yazen; McMillan, JoEllyn; Edagwa, Benson

    2017-01-01

    Background: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2′,3′-dideoxy-3′-thiacytidine, 3TC). Methods: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. Results: A stable drug formulation was produced by poloxamer encasement that improved monocyte–macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. Conclusions: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release. PMID:27559685

  8. Artemisinin nanoformulation suitable for intravenous injection: Preparation, characterization and antimalarial activities.

    PubMed

    Ibrahim, Nehal; Ibrahim, Hany; Sabater, Alicia Moreno; Mazier, Dominique; Valentin, Alexis; Nepveu, Françoise

    2015-11-30

    More than 40 years after its discovery, artemisinin has become the most promising antimalarial agent. However, no intravenous formulation is available due to its poor aqueous solubility. Here, we report the preparation, characterization, and in vitro and in vivo biological evaluation of biodegradable albumin-bound artemisinin nanoparticles. The nanoparticles were prepared by a combination of a bottom-up and a top-down processes and characterized by different spectroscopic techniques. The preparation process was optimized to develop a nanoformulation with the smallest possible diameter and good homogeneity suitable for intravenous injection enabling direct contact of artemisinin with infected erythrocytes. Chemically and physically stable artemisinin nanoparticles were obtained with excellent entrapment efficiency. In in vitro experiments, the artemisinin nanoformulation was interestingly more effective than non-formulated artemisinin. In Plasmodiumm falciparum-infected 'humanized' mice, the nanoparticles proved to be highly effective with 96% parasitemia inhibition at 10mg/kg/day, prolonging mean survival time without recrudescence. This nanoparticulate albumin-bound system allows the intravenous administration of artemisinin for the first time without harsh organic solvents or cosolvents with 100% bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions.

    PubMed

    Narvekar, Mayuri; Xue, Hui Yi; Eoh, June Young; Wong, Ho Lun

    2014-08-01

    Many existing chemotherapeutic drugs, repurposed drugs and newly developed small-molecule anticancer compounds have high lipophilicity and low water-solubility. Currently, these poorly water-soluble anticancer drugs (PWSAD) are generally solubilized using high concentrations of surfactants and co-solvents, which frequently lead to adverse side effects. In recent years, researchers have been actively exploring the use of nanotechnology as an alternative to the solvent-based drug solubilization approach. Several classes of nanocarrier systems (lipid-based, polymer-based and albumin-based) are widely studied for encapsulation and delivery of the existing and new PWSAD. These nanocarriers were also shown to offer several additional advantages such as enhanced tumour accumulation, reduced systemic toxicity and improved therapeutic effectiveness. In this article, the recent nanotechnological advances in PWSAD delivery will be reviewed. The barriers commonly encountered in the development of PWSAD nanoformulations (e.g. formulation issues and nanotoxicity issues) and the strategies to overcome these barriers will also be discussed. It is our goal to provide the pharmaceutical scientists and clinicians with more in-depth information about the nanodelivery approach, thus, more efficacious and safe PWSAD nanoformulations can be developed with improved translational success.

  10. Fluorine-labeled Dasatinib Nanoformulations as Targeted Molecular Imaging Probes in a PDGFB-driven Murine Glioblastoma Model12

    PubMed Central

    Benezra, Miriam; Hambardzumyan, Dolores; Penate-Medina, Oula; Veach, Darren R; Pillarsetty, Nagavarakishore; Smith-Jones, Peter; Phillips, Evan; Ozawa, Tatsuya; Zanzonico, Pat B; Longo, Valerie; Holland, Eric C; Larson, Steven M; Bradbury, Michelle S

    2012-01-01

    Dasatinib, a new-generation Src and platelet-derived growth factor receptor (PDGFR) inhibitor, is currently under evaluation in high-grade glioma clinical trials. To achieve optimum physicochemical and/or biologic properties, alternative drug delivery vehicles may be needed. We used a novel fluorinated dasatinib derivative (F-SKI249380), in combination with nanocarrier vehicles and metabolic imaging tools (microPET) to evaluate drug delivery and uptake in a platelet-derived growth factor B (PDGFB)-driven genetically engineered mouse model (GEMM) of high-grade glioma. We assessed dasatinib survival benefit on the basis of measured tumor volumes. Using brain tumor cells derived from PDGFB-driven gliomas, dose-dependent uptake and time-dependent inhibitory effects of F-SKI249380 on biologic activity were investigated and compared with the parent drug. PDGFR receptor status and tumor-specific targeting were non-invasively evaluated in vivo using 18F-SKI249380 and 18F-SKI249380-containing micellar and liposomal nanoformulations. A statistically significant survival benefit was found using dasatinib (95 mg/kg) versus saline vehicle (P < .001) in tumor volume-matched GEMM pairs. Competitive binding and treatment assays revealed comparable biologic properties for F-SKI249380 and the parent drug. In vivo, Significantly higher tumor uptake was observed for 18F-SKI249380-containing micelle formulations [4.9 percentage of the injected dose per gram tissue (%ID/g); P = .002] compared to control values (1.6%ID/g). Saturation studies using excess cold dasatinib showed marked reduction of tumor uptake values to levels in normal brain (1.5%ID/g), consistent with in vivo binding specificity. Using 18F-SKI249380-containing micelles as radiotracers to estimate therapeutic dosing requirements, we calculated intratumoral drug concentrations (24–60 nM) that were comparable to in vitro 50% inhibitory concentration values. 18F-SKI249380 is a PDGFR-selective tracer, which demonstrates

  11. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    NASA Astrophysics Data System (ADS)

    Parekh, Gaurav

    layers of the LbL shell are assembled at acidic pH 3, and the final layers (2-3) are assembled at a slightly basic pH of 7.4. These LbL-encapsulated nanocores are not stable and immediately aggregate in water or the serum. A final layer of 5 kDa PEG was assembled to improve circulation time. It showed higher colloidal stability in PBS, high drug loading concentration of 0.5 mg/mL, and an improved drug chemical stability in Fetal Bovine Serum with high lactone fraction of 99%. It also showed 3 times improved cytotoxicity against glioblastoma cancer cells. For the first time we applied a new method of the LbL capsule assembly at different pH values, the first 4 bilayers at pH 3, and the following 3 bilayers at pH 7.4. In the second study (CHAPTER 5), the developed LbL assembly for low solubility drug encapsulation was extended for the delivery of PTX loaded in nanomicelle cores. PTX, as a nanomicelle core, is encapsulated with fewer layers of LbL assembly, followed by an extra layer of PEG (PEGylation). A significant improvement was seen in reducing the process steps through reduction in the number of LbL layers, while smaller nano-colloids, ~100 nm, were produced with improved drug loading capacity, higher cytotoxicity, and high mice survival rate. In the third study (CHAPTER 6), we have applied the concepts learned and the techniques developed from the previous two studies to modify the surface of the nanostructured solid lipid carriers (NLC) with LbL architecture, plus extra PEGylation. The NLC are co-loaded with DOX and docosahexaenoic acid (DHA). This study is an attempt to further increase drug circulation time in the blood. We improved the colloidal stability with a narrow distribution size, 128 nm, polydispersity of 0.098, a higher longevity in the blood, a 1.5 times lower accumulation in the liver, a 2.25 times higher accumulation in tumors, and a significant ~3.5 times greater tumor growth inhibition in 4T1 murine tumor model in mice. In conclusion, we developed

  12. Design and development of aqueous nanoformulations for mosquito control.

    PubMed

    Montefuscoli, Antonela Rita; Werdin González, Jorge Omar; Palma, Santiago Daniel; Ferrero, Adriana Alicia; Fernández Band, Beatriz

    2014-02-01

    Microemulsions (ME) are thermodynamically stable isotropic mixtures of oil, water, and surfactant; they would also be attractive as potential insecticidal products due to the high bioviability of the active ingredient, attributable to the small sizes of the oil drops. A laboratory study was conducted in order to compare the biological effect of oil in water (o/w) geranium essential oil (EO) and geraniol MEs and emulsions, against Culex pipiens pipiens mosquito larvae. The systems were based on three nonionic surfactants (Cremophor EL, Brij 35, Tween 80). The MEs showed dispersed phase diameters in the range of 8 to 14 nm and had low PDI values (<0.2). The MEs were analyzed by TEM, indicating that they had nearly spherical morphology. The microemulsified systems based on geranium EO and those of geraniol produced a notable increase of the larvicidal activity when compared with the respectably emulsions, concluding that the biological effect is related with the diameter of the dispersed phase. The smallest drops achieved the highest larvicidal activity, being the aqueous nanoformulations based on geraniol most effective than those of geranium EO. However, geranium microemulsions are preferred due to their residual toxicological profiles. The results indicate that these novel systems could be used in integrated pest management program for the C. pipiens pipiens.

  13. Nanoformulations of curcumin: an emerging paradigm for improved remedial application

    PubMed Central

    Gera, Meeta; Sharma, Neelesh; Ghosh, Mrinmoy; Huynh, Do Luong; Lee, Sung Jin; Min, Taesun; Kwon, Taeho; Jeong, Dong Kee

    2017-01-01

    Curcumin is a natural polyphenol and essential curcuminoid derived from the rhizome of the medicinal plant Curcuma longa (L.) is universally acknowledged as “Wonder drug of life”. It is a vital consumable and restorative herb, commonly keened for several ailments such as cancer, arthritis, pain, bruises, gastrointestinal quandaries, swelling and much more. Despite its enormous curative potential, the poor aqueous solubility and consequently, minimal systemic bioavailability with rapid degradation are some of the major factors which restrict the utilization of curcumin at medical perspective. However, to improve its clinically relevant parameters, nanoformulation of curcumin is emerging as a novel substitute for their superior therapeutic modality. It enhances its aqueous solubility and targeted delivery to the tissue of interest that prompts to enhance the bioavailability, better drug conveyance, and more expeditious treatment. Subsequent investigations are endeavored to enhance the bio-distribution of native curcumin by modifying with felicitous nano-carriers for encapsulation. In this review, we specifically focus on the recent nanotechnology based implementations applied for overcoming the innate constraints of native curcumin and additionally the associated challenges which restrict its potential therapeutic applications both in vivo and in-vitro studies, as well as their detailed mechanism of action, have additionally been discussed. PMID:29029547

  14. Nanoformulations of curcumin: an emerging paradigm for improved remedial application.

    PubMed

    Gera, Meeta; Sharma, Neelesh; Ghosh, Mrinmoy; Huynh, Do Luong; Lee, Sung Jin; Min, Taesun; Kwon, Taeho; Jeong, Dong Kee

    2017-09-12

    Curcumin is a natural polyphenol and essential curcuminoid derived from the rhizome of the medicinal plant Curcuma longa ( L .) is universally acknowledged as " Wonder drug of life ". It is a vital consumable and restorative herb, commonly keened for several ailments such as cancer, arthritis, pain, bruises, gastrointestinal quandaries, swelling and much more. Despite its enormous curative potential, the poor aqueous solubility and consequently, minimal systemic bioavailability with rapid degradation are some of the major factors which restrict the utilization of curcumin at medical perspective. However, to improve its clinically relevant parameters, nanoformulation of curcumin is emerging as a novel substitute for their superior therapeutic modality. It enhances its aqueous solubility and targeted delivery to the tissue of interest that prompts to enhance the bioavailability, better drug conveyance, and more expeditious treatment. Subsequent investigations are endeavored to enhance the bio-distribution of native curcumin by modifying with felicitous nano-carriers for encapsulation. In this review, we specifically focus on the recent nanotechnology based implementations applied for overcoming the innate constraints of native curcumin and additionally the associated challenges which restrict its potential therapeutic applications both in vivo and in-vitro studies, as well as their detailed mechanism of action, have additionally been discussed.

  15. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators.

    PubMed

    Papanikolaou, Nikos E; Kalaitzaki, Argyro; Karamaouna, Filitsa; Michaelakis, Antonios; Papadimitriou, Vassiliki; Dourtoglou, Vassilis; Papachristos, Dimitrios P

    2018-04-01

    The insecticidal activity of a new nano-formulated natural pyrethrin was examined on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and the predators Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae), in respect with the nano-scale potential to create more effective and environmentally responsible pesticides. Pyrethrin was nano-formulated in two water-in-oil micro-emulsions based on safe biocompatible materials, i.e., lemon oil terpenes as dispersant, polysorbates as stabilizers, and mixtures of water with glycerol as the dispersed aqueous phase. Laboratory bioassays showed a superior insecticidal effect of the pyrethrin micro-emulsions compared to two commercial suspension concentrates of natural pyrethrins against the aphid. The nano-formulated pyrethrins were harmless, in terms of caused mortality and survival time, to L3 larvae and four-instar nymphs of the predators C. septempunctata and M. pygmaeus, respectively. We expect that these results can contribute to the application of nano-technology in optimization of pesticide formulation, with further opportunities in the development of effective plant protection products compatible with integrated pest management practices.

  16. Curcumin and 5-Fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia

    PubMed Central

    Balasubramanian, Sivakumar; Girija, Aswathy Ravindran; Nagaoka, Yutaka; Iwai, Seiki; Suzuki, Masashi; Kizhikkilot, Venugopal; Yoshida, Yasuhiko; Maekawa, Toru; Nair, Sakthikumar Dasappan

    2014-01-01

    The efficient targeting and therapeutic efficacy of a combination of drugs (curcumin and 5-Fluorouracil [5FU]) and magnetic nanoparticles encapsulated poly(D,L-lactic-co-glycolic acid) nanoparticles, functionalized with two cancer-specific ligands are discussed in our work. This multifunctional, highly specific nanoconjugate resulted in the superior uptake of nanoparticles by cancer cells. Upon magnetic hyperthermia, we could harness the advantages of incorporating magnetic nanoparticles that synergistically acted with the drugs to destroy cancer cells within a very short period of time. The remarkable multimodal efficacy attained by this therapeutic nanoformulation offers the potential for targeting, imaging, and treatment of cancer within a short period of time (120 minutes) by initiating early and late apoptosis. PMID:24531392

  17. Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia.

    PubMed

    Balasubramanian, Sivakumar; Girija, Aswathy Ravindran; Nagaoka, Yutaka; Iwai, Seiki; Suzuki, Masashi; Kizhikkilot, Venugopal; Yoshida, Yasuhiko; Maekawa, Toru; Nair, Sakthikumar Dasappan

    2014-01-01

    The efficient targeting and therapeutic efficacy of a combination of drugs (curcumin and 5-Fluorouracil [5FU]) and magnetic nanoparticles encapsulated poly(D,L-lactic-co-glycolic acid) nanoparticles, functionalized with two cancer-specific ligands are discussed in our work. This multifunctional, highly specific nanoconjugate resulted in the superior uptake of nanoparticles by cancer cells. Upon magnetic hyperthermia, we could harness the advantages of incorporating magnetic nanoparticles that synergistically acted with the drugs to destroy cancer cells within a very short period of time. The remarkable multimodal efficacy attained by this therapeutic nanoformulation offers the potential for targeting, imaging, and treatment of cancer within a short period of time (120 minutes) by initiating early and late apoptosis.

  18. Enhancing the Delivery of Anti Retroviral Drug “Saquinavir” Across the Blood Brain Barrier Using Nanoparticles

    PubMed Central

    Mahajan, Supriya D.; Roy, Indrajit; Xu, GaiXia; Yong, Ken-Tye; Ding, Hong; Aalinkeel, Ravikumar; Reynolds, Jessica L.; Sykes, Donald E.; Nair, Bindukumar B.; Lin, Elaine Y.; Prasad, Paras N.; Schwartz, Stanley A.

    2010-01-01

    Antiretroviral drugs are ineffective at treating viral infection in the brain because they cannot freely diffuse across the blood-brain barrier (BBB). Therefore, HIV-1 viral replication persists in the central nervous system (CNS) and continues to augment the neuropathogenesis process. Nanotechnology can play a pivotal role in HIV-1 therapeutics as it can increase drug solubility, enhance systemic bioavailability, and at the same time offer multifunctionality. Moreover, following conjugation with transferrin (Tf), these drug-loaded nanoformulations can permeate across biological barriers such as the blood brain barrier (BBB) via a receptor mediated transport mechanism. In the current study, we have stably incorporated the antiviral drug, Saquinavir, within Tf-conjugated quantum rods (QRs), which are novel nanoparticles with unique optical properties. We have evaluated the transversing ability of the QR-Tf-Saquinavir nanoformulation across an in vitro model of BBB. In addition, we have analyzed the subsequent antiviral efficacy of this targeted nanoformulation in HIV-1 infected peripheral blood mononuclear cells (PBMCs), which are cultured on the basolateral end of the in vitro BBB model. Our results show a significant uptake of QR-Tf-Saquinavir by brain microvascular endothelial cells (BMVECs), which constitute the BBB. In addition, we observed a significant enhancement in the transversing capability of QR-Tf-Saquinavir across the BBB, along with a marked decrease in HIV-1 viral replication in the PBMCs. These observations indicate that drug-loaded nanoparticles can deliver therapeutics across the BBB. These results highlight the potential of this nanoformulation in the treatment of Neuro-AIDS and other neurological disorders. PMID:20426757

  19. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications.

    PubMed

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M; Paik, Pradip

    2016-03-29

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (∼279 and ∼480 ng μg(-1), respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ∼96.6%). Our nanoformulation arrests the cell divisions due to 'cellular scenescence' and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.

  20. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M.; Paik, Pradip

    2016-03-01

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (˜279 and ˜480 ng μg-1, respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ˜96.6%). Our nanoformulation arrests the cell divisions due to ‘cellular scenescence’ and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.

  1. Physiologically-Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long Acting Nanoformulations for HIV

    PubMed Central

    Rajoli, Rajith KR; Back, David J; Rannard, Steve; Meyers, Caren Freel; Flexner, Charles; Owen, Andrew; Siccardi, Marco

    2014-01-01

    Background and Objectives Antiretrovirals (ARVs) are currently used for the treatment and prevention of HIV infection. Poor adherence and low tolerability of some existing oral formulations can hinder their efficacy. Long-acting (LA) injectable nanoformulations could help address these complications by simplifying ARV administration. The aim of this study is to inform the optimisation of intramuscular LA formulations for eight ARVs through physiologically-based pharmacokinetic (PBPK) modelling. Methods A whole-body PBPK model was constructed using mathematical descriptions of molecular, physiological and anatomical processes defining pharmacokinetics. These models were validated against available clinical data and subsequently used to predict the pharmacokinetics of injectable LA formulations Results The predictions suggest that monthly intramuscular injections are possible for dolutegravir, efavirenz, emtricitabine, raltegravir, rilpivirine and tenofovir provided that technological challenges to control release rate can be addressed. Conclusions These data may help inform the target product profiles for LA ARV reformulation strategies. PMID:25523214

  2. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy.

    PubMed

    Ohulchanskyy, Tymish Y; Kopwitthaya, Atcha; Jeon, Mansik; Guo, Moran; Law, Wing-Cheung; Furlani, Edward P; Kim, Chulhong; Prasad, Paras N

    2013-11-01

    We present a magnetoplasmonic nanoplatform combining gold nanorods (GNR) and iron-oxide nanoparticles within phospholipid-based polymeric nanomicelles (PGRFe). The gold nanorods exhibit plasmon resonance absorbance at near infrared wavelengths to enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the nanoformulation. The fabricated nanoformulation can be directed and concentrated by an external magnetic field, which provides enhancement of a photoacoustic signal. Application of an external field also leads to enhanced uptake of the magnetoplasmonic formulation by cancer cells in vitro. Under laser irradiation at the wavelength of the GNR absorption peak, the PGRFe formulation efficiently generates plasmonic nanobubbles within cancer cells, as visualized by confocal microscopy, causing cell destruction. The combined magnetic and plasmonic functionalities of the nanoplatform enable magnetic field-directed, imaging-guided, enhanced photo-induced cancer therapy. In this study, a nano-formulation of gold nanorods and iron oxide nanoparticles is presented using a phospholipid micelle-based delivery system for magnetic field-directed and imaging-guided photo-induced cancer therapy. The gold nanorods enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the formulation. This and similar systems could enable more precise and efficient cancer therapy, hopefully in the near future, after additional testing. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Nanoformulations of Rilpivirine for Topical Pericoital and Systemic Coitus-Independent Administration Efficiently Prevent HIV Transmission

    PubMed Central

    Date, Abhijit A.; Long, Julie M.; Nochii, Tomonori; Belshan, Michael; Shibata, Annemarie; Vincent, Heather; Baker, Caroline E.; Thayer, William O.; Kraus, Guenter; Lachaud-Durand, Sophie; Williams, Peter; Destache, Christopher J.; Garcia, J. Victor

    2015-01-01

    Vaginal HIV transmission accounts for the majority of new infections worldwide. Currently, multiple efforts to prevent HIV transmission are based on pre-exposure prophylaxis with various antiretroviral drugs. Here, we describe two novel nanoformulations of the reverse transcriptase inhibitor rilpivirine for pericoital and coitus-independent HIV prevention. Topically applied rilpivirine, encapsulated in PLGA nanoparticles, was delivered in a thermosensitive gel, which becomes solid at body temperature. PLGA nanoparticles with encapsulated rilpivirine coated the reproductive tract and offered significant protection to BLT humanized mice from a vaginal high-dose HIV-1 challenge. A different nanosuspension of crystalline rilpivirine (RPV LA), administered intramuscularly, protected BLT mice from a single vaginal high-dose HIV-1 challenge one week after drug administration. Using transmitted/founder viruses, which were previously shown to establish de novo infection in humans, we demonstrated that RPV LA offers significant protection from two consecutive high-dose HIV-1 challenges one and four weeks after drug administration. In this experiment, we also showed that, in certain cases, even in the presence of drug, HIV infection could occur without overt or detectable systemic replication until levels of drug were reduced. We also showed that infection in the presence of drug can result in acquisition of multiple viruses after subsequent exposures. These observations have important implications for the implementation of long-acting antiretroviral formulations for HIV prevention. They provide first evidence that occult infections can occur, despite the presence of sustained levels of antiretroviral drugs. Together, our results demonstrate that topically- or systemically administered rilpivirine offers significant coitus-dependent or coitus-independent protection from HIV infection. PMID:26271040

  4. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release

    NASA Astrophysics Data System (ADS)

    Banerjee, Shashwat S.; Chen, Dong-Hwang

    2009-05-01

    We report a novel nanoformulation for targeted drug delivery which utilizes nanophotonics through the fusion of nanotechnology with biomedical application. The approach involves an energy-transferring magnetic nanoscopic co-assembly fabricated of rhodamine B (RDB) fluorescent dye grafted gum arabic modified Fe3O4 magnetic nanoparticle and photosensitive linker by which dexamethasone drug is conjugated to the magnetic nano-assembly. The advantage offered by this nanoformulation is the indirect photo-triggered-on-demand drug release by efficient up-converting energy of the near-IR (NIR) light to higher energy and intraparticle energy transfer from the dye grafted magnetic nanoparticle to the linker for drug release by cleavage. The synthesized nanoparticles were found to be of ultra-small size (13.33 nm) and are monodispersed in an aqueous suspension. Dexamethasone (Dexa) drug conjugated to RDB-GAMNP by photosensitive linker showed appreciable release of Dexa by photo-triggered response on exposure to radiation having a wavelength in the NIR region whereas no detectable release was observed in the dark. Photo-triggered response for the nanoformulation not bearing the rhodamine B dye was drastically less as less Dexa was released on exposure to NIR radiation which suggest that the photo-cleavage of linker and release of Dexa mainly originated from the indirect excitation through the uphill energy conversions based on donor-acceptor model FRET. The promising pathway of nanophotonics for the on-demand release of the drug makes this nanocarrier very promising for applications in nanomedicine.

  5. Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System

    PubMed Central

    Ucisik, Mehmet H.; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action. PMID:25697368

  6. A High Capacity Polymeric Micelle of Paclitaxel: Implication of High Dose Drug Therapy to Safety and In Vivo Anti-Cancer Activity

    PubMed Central

    He, Zhijian; Wan, Xiaomeng; Schulz, Anita; Bludau, Herdis; Dobrovolskaia, Marina A.; Stern, Stephan T.; Montgomery, Stephanie A.; Yuan, Hong; Li, Zibo; Alakhova, Daria; Sokolsky, Marina; Darr, David B.; Perou, Charles M.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.

    2016-01-01

    The poor solubility of paclitaxel (PTX), the commercially most successful anticancer drug, has long been hampering the development of suitable formulations. Here, we present translational evaluation of a nanoformulation of PTX, which is characterized by a facile preparation, extraordinary high drug loading of 50 % wt. and PTX solubility of up to 45 g/L, excellent shelf stability and controllable, sub-100 nm size. We observe favorable in vitro and in vivo safety profiles and a higher maximum tolerated dose compared to clinically approved formulations. Pharmacokinetic analysis reveals that the higher dose administered leads to a higher exposure of the tumor to PTX. As a result, we observed improved therapeutic outcome in orthotopic tumor models including particularly faithful and aggressive “T11” mouse claudin-low breast cancer orthotopic, syngeneic transplants. The promising preclinical data on the presented PTX nanoformulation showcase the need to investigate new excipients and is a robust basis to translate into clinical trials. PMID:27315213

  7. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  8. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    DOE PAGES

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; ...

    2015-05-15

    Fabrication of stimuli-triggered drug delivery vehicle is is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). In conclusion, the enzyme-activated intracellular deliverymore » of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.« less

  9. A cross-sectional study of the availability and pharmacist's knowledge of nano-pharmaceutical drugs in Palestinian hospitals.

    PubMed

    Assali, Mohyeddin; Shakaa, Ali; Abu-Hejleh, Sabaa; Abu-Omar, Reham; Karajeh, Nareman; Ajory, Nawal; Zyoud, Saed; Sweileh, Waleed

    2018-04-05

    Nanomedicine is the medical application of nanomaterials that may have an infinite size with the range less than 100 nm. This science has provided solutions to many of the current limitations in the diagnosis and treatment of diseases. Therefore, the pharmacist's knowledge and awareness of nano-pharmaceutical drugs will increase their availability in the market, and will improve the patient's compliance to their drug therapy. This study aimed to determine the availability of nano-pharmaceutical drugs in Palestinian hospitals and evaluate the extent of pharmacist's knowledge about them. A cross-sectional study design questionnaire was used to determine the availability of nano-pharmaceutical drugs based on the database of the ministry of health in the Palestinian hospitals (governmental, private and non- governmental organizations). Moreover, the knowledge of these nano-pharmaceutical drugs among pharmacists working in Palestinian hospitals was assessed based on developed questionnaire from the literature of the pharmaceutical formulations and nano-formulations. The variables were analyzed using Statistical Package for Social Sciences (SPSS 22). Fifty six pharmacists from 27 hospitals in the West bank completed the survey. The results regarding the availability of nano-pharmaceutical drugs indicated only eight available in hospitals with a frequency range 0-39.3%. Moreover, pharmacist's knowledge in the pharmaceutical formulations was better than that in nano-formulations. The availability of nano-pharmaceutical drugs in Palestinian hospitals was not adequate due to the lack of various nano-pharmaceutical drugs. The knowledge among pharmacists regarding nano-pharmaceutical drugs should be improved by providing courses in nanomedicine during the undergraduate pharmacy programs.

  10. Pharmacoinformatic approaches to understand complexation of dendrimeric nanoparticles with drugs

    NASA Astrophysics Data System (ADS)

    Jain, Vaibhav; Bharatam, Prasad V.

    2014-02-01

    Nanoparticle based drug delivery systems are gaining popularity due to their wide spectrum advantages over traditional drug delivery systems; among them, dendrimeric nano-vectors are the most widely explored carriers for pharmaceutical and biomedical applications. The precise mechanism of encapsulation of drug molecules inside the dendritic matrix, delivery of drugs into specific cells, interactions of nano-formulation with biological targets and proteins, etc. present a substantial challenge to the scientific understanding of the subject. Computational methods complement experimental techniques in the design and optimization of drug delivery systems, thus minimizing the investment in drug design and development. Significant progress in computer simulations could facilitate an understanding of the precise mechanism of encapsulation of bioactive molecules and their delivery. This review summarizes the pharmacoinformatic studies spanning from quantum chemical calculations to coarse-grained simulations, aimed at providing better insight into dendrimer-drug interactions and the physicochemical parameters influencing the binding and release mechanism of drugs.

  11. Drug Delivery and Nanoformulations for the Cardiovascular System.

    PubMed

    Geldenhuys, W J; Khayat, M T; Yun, J; Nayeem, M A

    2017-02-01

    Therapeutic delivery to the cardiovascular system may play an important role in the successful treatment of a variety of disease state, including atherosclerosis, ischemic-reperfusion injury and other types of microvascular diseases including hypertension. In this review we evaluate the different options available for the development of suitable delivery systems that include the delivery of small organic compounds [adenosin A 2A receptor agonist (CGS 21680), CYP-epoxygenases inhibitor (N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy] benzoic acid), soluble epoxide hydrolase inhibitor (N-methylsulfonyl-12,12-dibromododec-11-enamide), PPARγ agonist (rosiglitazone) and PPARγ antagonist (T0070907)], nanoparticles, peptides, and siRNA to the cardiovascular system. Effective formulations of nanoproducts have significant potential to overcome physiological barriers and improve therapeutic outcomes in patients. As per the literature covering targeted delivery to the cardiovascular system, we found that this area is still at infancy stage, as compare to the more mature fields of tumor cancer or brain delivery (e.g. blood-brain barrier permeability) with fewer publications focused on the targeted drug delivery technologies. Additionally, we show how pharmacology needs to be well understood when considering the cardiovascular system. Therefore, we discussed in this review various receptors agonists, antagonists, activators and inhibitors which will have effects on cardiovascular system.

  12. Solid lipid nanoparticles delivering anti-inflammatory drugs to treat inflammatory bowel disease: Effects in an in vivo model

    PubMed Central

    Dianzani, Chiara; Foglietta, Federica; Ferrara, Benedetta; Rosa, Arianna Carolina; Muntoni, Elisabetta; Gasco, Paolo; Della Pepa, Carlo; Canaparo, Roberto; Serpe, Loredana

    2017-01-01

    AIM To improve anti-inflammatory activity while reducing drug doses, we developed a nanoformulation carrying dexamethasone and butyrate. METHODS Dexamethasone cholesteryl butyrate-solid lipid nanoparticles (DxCb-SLN) were obtained with the warm microemulsion method. The anti-inflammatory activity of this novel nanoformulation has been investigated in vitro (cell adhesion to human vascular endothelial cells and pro-inflammatory cytokine release by lipopolysaccharide-induced polymorphonuclear cells) and in vivo (disease activity index and cytokine plasma concentrations in a dextran sulfate sodium-induced mouse colitis) models. Each drug was also administered separately to compare its effects with those induced by their co-administration in SLN at the same concentrations. RESULTS DxCb-SLN at the lowest concentration tested (Dx 2.5 nmol/L and Cb 0.1 μmol/L) were able to exert a more than additive effect compared to the sum of the individual effects of each drug, inducing a significant in vitro inhibition of cell adhesion and a significant decrease of pro-inflammatory cytokine (IL-1β and TNF-α) in both in vitro and in vivo models. Notably, only the DxCb nanoformulation administration was able to achieve a significant cytokine decrease compared to the cytokine plasma concentration of the untreated mice with dextran sulfate sodium-induced colitis. Specifically, DxCb-SLN induced a IL-1β plasma concentration of 61.77% ± 3.19%, whereas Dx or Cb used separately induced a concentration of 90.0% ± 2.8% and 91.40% ± 7.5%, respectively; DxCb-SLN induced a TNF-α plasma concentration of 30.8% ± 8.9%, whereas Dx or Cb used separately induced ones of 99.5% ± 4.9% and 71.1% ± 10.9%, respectively. CONCLUSION Our results indicate that the co-administration of dexamethasone and butyrate by nanoparticles may be beneficial for inflammatory bowel disease treatment. PMID:28694660

  13. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation.

    PubMed

    Kubota, Kohei; Onishi, Kohei; Sawaki, Kazuaki; Li, Tianshu; Mitsuoka, Kaoru; Sato, Takaaki; Takeoka, Shinji

    2017-01-01

    Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs). In this study, we prepared small interfering RNA (siRNA)-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in lipoplexes were thought to be more likely to localize on the particle surface and thereby undergo dissociation into the medium. Inflammatory cytokine responses also appeared to differ between lipoplexes and LNPs. For tumor necrosis factor-α, release was mainly caused by siRNA. On the other hand, the release of interleukin-1β was mainly due to the cationic nature of particles. LNPs released lower amounts of tumor necrosis factor-α and interleukin-1β than lipoplexes and were thus considered to be better tolerated with respect to cytokine release. In conclusion, siRNA-loaded nanoformulations effect their cellular uptake and immune stimulation in a manner that depends on the structure of the molecular assembly; therefore, nanoformulations should be optimized before extending studies into the in vivo environment.

  14. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation

    PubMed Central

    Kubota, Kohei; Onishi, Kohei; Sawaki, Kazuaki; Li, Tianshu; Mitsuoka, Kaoru; Sato, Takaaki; Takeoka, Shinji

    2017-01-01

    Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs). In this study, we prepared small interfering RNA (siRNA)-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in lipoplexes were thought to be more likely to localize on the particle surface and thereby undergo dissociation into the medium. Inflammatory cytokine responses also appeared to differ between lipoplexes and LNPs. For tumor necrosis factor-α, release was mainly caused by siRNA. On the other hand, the release of interleukin-1β was mainly due to the cationic nature of particles. LNPs released lower amounts of tumor necrosis factor-α and interleukin-1β than lipoplexes and were thus considered to be better tolerated with respect to cytokine release. In conclusion, siRNA-loaded nanoformulations effect their cellular uptake and immune stimulation in a manner that depends on the structure of the molecular assembly; therefore, nanoformulations should be optimized before extending studies into the in vivo environment. PMID:28790820

  15. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin.

    PubMed

    Ucisik, Mehmet H; Küpcü, Seta; Schuster, Bernhard; Sleytr, Uwe B

    2013-12-06

    Curcumin is a polyphenolic compound isolated from the rhizomes of the plant Curcuma longa and shows intrinsic anti-cancer properties. Its medical use remains limited due to its extremely low water solubility and bioavailability. Addressing this problem, drug delivery systems accompanied by nanoparticle technology have emerged. The present study introduces a novel nanocarrier system, so-called CurcuEmulsomes, where curcumin is encapsulated inside the solid core of emulsomes. CurcuEmulsomes are spherical solid nanoparticles with an average size of 286 nm and a zeta potential of 37 mV. Encapsulation increases the bioavailability of curcumin by up to 10,000 fold corresponding to a concentration of 0.11 mg/mL. Uptaken by HepG2 human liver carcinoma cell line, CurcuEmulsomes show a significantly prolonged biological activity and demonstrated therapeutic efficacy comparable to free curcumin against HepG2 in vitro - with a delay in response, as assessed by cell viability, apoptosis and cell cycle studies. The delay is attributed to the solid character of the nanocarrier prolonging the release of curcumin inside the HepG2 cells. Incorporation of curcumin into emulsomes results in water-soluble and stable CurcuEmulsome nanoformulations. CurcuEmulsomes do not only successfully facilitate the delivery of curcumin into the cell in vitro, but also enable curcumin to reach its effective concentrations inside the cell. The enhanced solubility of curcumin and the promising in vitro efficacy of CurcuEmulsomes highlight the potential of the system for the delivery of lipophilic drugs. Moreover, high degree of compatibility, prolonged release profile and tailoring properties feature CurcuEmulsomes for further therapeutic applications in vivo.

  16. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin

    PubMed Central

    2013-01-01

    Background Curcumin is a polyphenolic compound isolated from the rhizomes of the plant Curcuma longa and shows intrinsic anti-cancer properties. Its medical use remains limited due to its extremely low water solubility and bioavailability. Addressing this problem, drug delivery systems accompanied by nanoparticle technology have emerged. The present study introduces a novel nanocarrier system, so-called CurcuEmulsomes, where curcumin is encapsulated inside the solid core of emulsomes. Results CurcuEmulsomes are spherical solid nanoparticles with an average size of 286 nm and a zeta potential of 37 mV. Encapsulation increases the bioavailability of curcumin by up to 10,000 fold corresponding to a concentration of 0.11 mg/mL. Uptaken by HepG2 human liver carcinoma cell line, CurcuEmulsomes show a significantly prolonged biological activity and demonstrated therapeutic efficacy comparable to free curcumin against HepG2 in vitro - with a delay in response, as assessed by cell viability, apoptosis and cell cycle studies. The delay is attributed to the solid character of the nanocarrier prolonging the release of curcumin inside the HepG2 cells. Conclusions Incorporation of curcumin into emulsomes results in water-soluble and stable CurcuEmulsome nanoformulations. CurcuEmulsomes do not only successfully facilitate the delivery of curcumin into the cell in vitro, but also enable curcumin to reach its effective concentrations inside the cell. The enhanced solubility of curcumin and the promising in vitro efficacy of CurcuEmulsomes highlight the potential of the system for the delivery of lipophilic drugs. Moreover, high degree of compatibility, prolonged release profile and tailoring properties feature CurcuEmulsomes for further therapeutic applications in vivo. PMID:24314310

  17. Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells.

    PubMed

    Dash, Tapan K; Konkimalla, V Badireenath

    2017-02-01

    Curcumin is very well established as a chemo-therapeutic, chemo-preventive and chemo-sensitizing agent in diverse disease conditions. As the isolated pure form has poor solubility and pharmacokinetic problems, therefore it is encapsulated in to several nano-formulations to improve its bioavailability. Here in the current study, we aim to compare different nano-formulations of curcumin for their chemo-sensitizing activity in doxorubicin (DOX) resistant K562 cells. Four different curcumin formulations were prepared namely DMSO assisted curcumin nano-dispersion (CurD, 260 nm), liposomal curcumin (CurL, 165 nm), MPEG-PCL micellar curcumin (CurM, 18 nm) and cyclodextrin encapsulated curcumin (CurN, 37 nm). The formulations were subjected to particle characterizations (size, zeta potential, release studies), followed by biological assays such as cellular uptake, P-gp inhibitory activity and reversal of DOX resistance by co-treatment with DOX. Curcumin uptake in K562N and K562R cells was mildly reduced when treated with CurL and CurM, while for CurD and CurN the uptake remained equivalent. However, CurL retained P-gp inhibitory activity of curcumin and with a considerable chemo-sensitizing effect but CurM showed no P-gp inhibitory activity. CurN retained above biological activities, but requires a secondary carrier under in vivo conditions. From the results, CurM was found to be most suitable for solubilization of curcumin where as CurL can be considered as most suitable nano-formulation for reversal of DOX resistance.

  18. Targeting of EGFR, VEGFR2, and Akt by Engineered Dual Drug Encapsulated Mesoporous Silica-Gold Nanoclusters Sensitizes Tamoxifen-Resistant Breast Cancer.

    PubMed

    Kumar, B N Prashanth; Puvvada, Nagaprasad; Rajput, Shashi; Sarkar, Siddik; Mahto, Madhusudan Kr; Yallapu, Murali M; Pathak, Amita; Emdad, Luni; Das, Swadesh K; Reis, Rui L; Kundu, S C; Fisher, Paul B; Mandal, Mahitosh

    2018-05-30

    Tamoxifen administration enhanced overall disease-free survival and diminished mortality rates in cancer patients. However, patients with breast cancer often fail to respond for tamoxifen therapy due to the development of a drug-resistant phenotype. Functional analysis and molecular studies suggest that protein mutation and dysregulation of survival signaling molecules such as epidermal growth factor receptor, vascular endothelial growth factor receptor 2, and Akt contribute to tamoxifen resistance. Various strategies, including combinatorial therapies, show chemosensitize tamoxifen-resistant cancers. Based on chemotoxicity issues, researchers are actively investigating alternative therapeutic strategies. In the current study, we fabricate a mesoporous silica gold cluster nanodrug delivery system that displays exceptional tumor-targeting capability, thus promoting accretion of drug indices at the tumor site. We employ dual drugs, ZD6474, and epigallocatechin gallate (EGCG) that inhibit EGFR2, VEGFR2, and Akt signaling pathways since changes in these signaling pathways confer tamoxifen resistance in MCF 7 and T-47D cells. Mesoporous silica gold cluster nanodrug delivery of ZD6474 and EGCG sensitize tamoxifen-resistant cells to apoptosis. Western and immune-histochemical analyses confirmed the apoptotic inducing properties of the nanoformulation. Overall, results with these silica gold nanoclusters suggest that they may be a potent nanoformulation against chemoresistant cancers.

  19. Nanoformulation of Brain-Derived Neurotrophic Factor with Target Receptor-Triggered-Release in the Central Nervous System.

    PubMed

    Jiang, Yuhang; Fay, James M; Poon, Chi-Duen; Vinod, Natasha; Zhao, Yuling; Bullock, Kristin; Qin, Si; Manickam, Devika S; Yi, Xiang; Banks, William A; Kabanov, Alexander V

    2018-02-07

    Brain-derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a bio-compatible polymer, poly(ethylene glycol)- b -poly(L-glutamic acid) (PEG-PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano-BDNF. Upon simple mixture, Nano-BDNF spontaneously forms uniform spherical particles with a core-shell structure. Molecular dynamics simulations suggest that binding between BDNF and PEG-PLE is mediated through electrostatic coupling as well as transient hydrogen bonding. The formation of Nano-BDNF complex stabilizes BDNF and protects it from nonspecific binding with common proteins in the body fluid, while allowing it to associate with its receptors. Following intranasal administration, the nanoformulation improves BDNF delivery throughout the brain and displays a more preferable regional distribution pattern than the native protein. Furthermore, intranasally delivered Nano-BDNF results in superior neuroprotective effects in the mouse brain with lipopolysaccharides-induced inflammation, indicating promise for further evaluation of this agent for the therapy of neurologic diseases.

  20. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.

    PubMed

    Sjögren, Erik; Westergren, Jan; Grant, Iain; Hanisch, Gunilla; Lindfors, Lennart; Lennernäs, Hans; Abrahamsson, Bertil; Tannergren, Christer

    2013-07-16

    was within one standard deviation of the observed mean plasma AUC in 74% of the simulations. GI-Sim was also able to correctly capture the trends in dose- and particle size dependent absorption for the study drugs with solubility and dissolution limited absorption, respectively. In addition, GI-Sim was also shown to be able to predict the increase in absorption and plasma exposure achieved with nanoformulations. Based on the results, the performance of GI-Sim was shown to be suitable for early risk assessment as well as to guide decision making in pharmaceutical formulation development. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. DEAE-Dextran coated paclitaxel nanoparticles act as multifunctional nano system for intranuclear delivery to triple negative breast cancer through VEGF and NOTCH1 inhibition.

    PubMed

    Bakrania, Anita K; Variya, Bhavesh C; Rathod, Lalaji V; Patel, Snehal S

    2018-01-01

    Triple negative breast cancer revolution has identified a plethora of therapeutic targets making it apparent that a single target for its treatment could be rare hence creating an urge to develop robust technologies for combination drug therapy. Paclitaxel, hailed as the most significant advancement in chemotherapy faces several underpinnings due to its low solubility and permeability. Advancing research has demonstrated the role of interferons in cancer. DEAE-Dextran, an emerging molecule with evidence of interferon induction was utilized in the present study to develop a nanoformulation in conjugation with paclitaxel to target multiple therapeutic pathways, with diminution of paclitaxel adverse effects and develop a specific targeted nano system. Evidently, it was demonstrated that DEAE-Dextran coated nanoformulation portrays significant synergistic cytotoxicity in the various cell lines. Moreover, overcoming the activation of ROS by paclitaxel, the combination drug therapy more effectively inhibited ROS through β-interferon induction. The nanoformulation was further conjugated to FITC for internalization studies which subsequently indicated maximum cellular uptake at 60min post treatment demonstrated by green fluorescence from FITC lighting up the nuclear membrane. Precisely, the mechanistic approach of nuclear-targeted nanoformulation was evaluated by in vivo xenograft studies which showed a synergistic release of β-interferon at the target organ. Moreover, the combination nanoformulation inculcated multiple mechanistic approaches through VEGF and NOTCH1 inhibition along with dual β and γ-interferon overexpression. Overall, the combination therapy may be a promising multifunctional nanomaterial for intranuclear drug delivery in TNBC. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Innovative Treatments for Cancer:. The Impact of Delivering siRNAs, Chemotherapies, and Preventative Agents Using Nanoformulations

    NASA Astrophysics Data System (ADS)

    Hook, Sara S.; Farrell, Dorothy; Hinkal, George W.; Ptak, Krzystzof; Grodzinski, Piotr; Panaro, Nicholas J.

    2013-09-01

    A multi-disciplinary approach to research epitomized by the emerging field of cancer nanotechnology can catalyze scientific developments and enable clinical translation beyond what we currently utilize. Engineers, chemists, and physical scientists are teaming up with cancer biologists and clinical oncologists to attack the vast array of cancer malignancies using materials at the nanoscale. We discuss how nanoformulations are enabling the targeted, efficient, delivery of not only genetic therapies such silencing RNAs, but also conventional cytotoxic agents and small molecules which results in decreased systemic toxicity and improved therapeutic index. As preventative approaches, there are various imaging agents and devices are being developed for screening purposes as well as new formulations of sunscreens, neutraceuticals, and cancer vaccines. The goal then of incorporating nanotechnology into clinical applications is to achieve new and more effective ways of diagnosing, treating, and preventing cancer to ultimately change the lives of patients worldwide.

  3. Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7).

    PubMed

    de Oliveira, Catiúscia P; Büttenbender, Sabrina L; Prado, Willian A; Beckenkamp, Aline; Asbahr, Ana C; Buffon, Andréia; Guterres, Silvia S; Pohlmann, Adriana R

    2018-01-04

    Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization) in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT) and in human breast carcinoma cells (MCF-7). Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors), while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7) being promising products for further in vivo pre-clinical evaluations.

  4. Intracellular drug release from curcumin-loaded PLGA nanoparticles induces G2/M block in breast cancer cells.

    PubMed

    Verderio, Paolo; Bonetti, Paolo; Colombo, Miriam; Pandolfi, Laura; Prosperi, Davide

    2013-03-11

    PLGA nanoparticles are among the most studied polymer nanoformulations for several drugs against different kinds of malignant diseases, thanks to their in vivo stability and tumor localization exploiting the well-documented "enhanced permeation and retention" (EPR) effect. In this paper, we have developed uniform curcumin-bearing PLGA nanoparticles by a single-emulsion process, which exhibited a curcumin release following a Fickian-law diffusion over 10 days in vitro. PLGA nanoparticles were about 120 nm in size, as determined by dynamic light scattering, with a surface negative charge of -30 mV. The loading ratio of encapsulated drug in our PLGA nanoformulation was 8 wt%. PLGA encapsulation provided efficient protection of curcumin from environment, as determined by fluorescence emission experiments. Next, we have investigated the possibility to study the intracellular degradation of nanoparticles associated with a specific G2/M blocking effect on MCF7 breast cancer cells caused by curcumin release in the cytoplasm, which provided direct evidence on the mechanism of action of our nanocomplex. This study was carried out using Annexin V-based cell death analysis, MTT assessment of proliferation, flow cytometry, and confocal laser scanning microscopy. PLGA nanoparticles proved to be completely safe, suggesting a potential utilization of this nanocomplex to improve the intrinsically poor bioavailability of curcumin for the treatment of severe malignant breast cancer.

  5. A versatile nanoplatform for synergistic combination therapy to treat human esophageal cancer.

    PubMed

    Wang, Xin-Shuai; Kong, De-Jiu; Lin, Tzu-Yin; Li, Xiao-Cen; Izumiya, Yoshihiro; Ding, Xue-Zhen; Zhang, Li; Hu, Xiao-Chen; Yang, Jun-Qiang; Gao, She-Gan; Lam, Kit S; Li, Yuan-Pei

    2017-06-01

    One of the major goals of precision oncology is to promote combination therapy to improve efficacy and reduce side effects of anti-cancer drugs based on their molecular mechanisms. In this study, we aimed to develop and validate new nanoformulations of docetaxel (DTX) and bortezomib (BTZ) for targeted combination therapy to treat human esophageal cancer. By leveraging our versatile disulfide cross-linked micelles (DCMs) platform, we developed nanoformulations of DTX and BTZ (named DTX-DCMs and BTZ-DCMs). Their physical properties were characterized; their anti-cancer efficacies and mechanisms of action were investigated in a human esophageal cancer cell line in vitro. Furthermore, the in vitro anti-tumor activities of combination therapies (concurrent drug treatment, sequential drug treatment, and treatment using different ratios of the drugs) were examined in comparison with the single drug treatment and free drug strategies. These drug-loaded nanoparticles were spherical in shape and relatively small in size of approximately 20-22 nm. The entrapment efficiencies of DTX and BTZ into nanoparticles were 82.4% and 84.1%, respectively. The drug release rates of DTX-DCMs and BTZ-DCMs were sustained, and greatly increased in the presence of GSH. These nanodrugs were effectively internalized by KYSE30 esophageal cancer cells, and dose-dependently induced cell apoptosis. We further revealed a strong synergistic effect between DTX-DCMs and BTZ-DCMs against KYSE30 esophageal cancer cells. Sequential combination therapy with DTX-DCMs followed by BTZ-DCMs exhibited the best anti-tumor efficacy in vitro. This study demonstrates that DTX and BTZ could be successfully nanoformulated into disulfide cross-linked micelles. The nanoformulations of DTX and BTZ demonstrate an immense potential for synergistic combination therapy to treat human esophageal cancer.

  6. The application of halloysite tubule nanoclay in drug delivery.

    PubMed

    Lvov, Yuri M; DeVilliers, Melgardt M; Fakhrullin, Rawil F

    2016-07-01

    Natural and biocompatible clay nanotubes are among the best inorganic materials for drug nanoformulations. These halloysite tubes with SiO2 on the outermost surface have diameter of ca. 50 nm, length around 1 micrometer and may be loaded with drugs at 10-30 wt. %. Narrow tube openings allow for controllable sustained drug release for hours, days or even weeks. Physical-chemical properties of these nanotubes are described followed by examples of drug-loading capabilities, release characteristics, and control of duration of release through the end tube capping with polymers. Development of halloysite-polymer composites such as tissue scaffolds and bone cement/dentist resin formulations with enhanced mechanical properties and extension of the drug release to 2-3 weeks are described. Examples of the compression properties of halloysite in tablets and capsules are also shown. We expect that clay nanotubes will be used primarily for non-injectable drug formulations, such as topical and oral dosage forms, cosmetics, as well as for composite materials with enhanced therapeutic effects. These include tissue scaffolds, bone cement and dentist resins with sustained release of antimicrobial and cell growth-promoting medicines (including proteins and DNA) as well as other formulations such as compounds for antiseptic treatment of hospitals.

  7. Nano-formulation for topical treatment of precancerous lesions: skin penetration, in vitro, and in vivo toxicological evaluation.

    PubMed

    Calienni, Maria Natalia; Temprana, Carlos Facundo; Prieto, Maria Jimena; Paolino, Donatella; Fresta, Massimo; Tekinay, Ayse Begum; Alonso, Silvia Del Valle; Montanari, Jorge

    2018-06-01

    With the aim of improving the topical delivery of the antineoplastic drug 5-fluorouracil (5FU), it was loaded into ultradeformable liposomes composed of soy phosphatidylcholine and sodium cholate (UDL-5FU). The liposome populations had a mean size of 70 nm without significant changes in 56 days, and the ultradeformable formulations were up to 324-fold more elastic than conventional liposomes. The interaction between 5FU and the liposomal membrane was studied by three methods, and also release profile was obtained. UDL-5FU did penetrate the stratum corneum of human skin. At in vitro experiments, the formulation was more toxic on a human melanoma-derived than on a human keratinocyte-derived cell line. Cells captured liposomes by metabolically active processes. In vivo toxicity experiments were carried out in zebrafish (Danio rerio) larvae by studying the swimming activity, morphological changes, and alterations in the heart rate after incubation. UDL-5FU was more toxic than free 5FU. Therefore, this nano-formulation could be useful for topical application in deep skin precancerous lesions with advantages over current treatments. This is the first work that assessed the induction of apoptosis, skin penetration in a Saarbrücken penetration model, and the toxicological effects in vivo of an ultradeformable 5FU-loaded formulation.

  8. The dispersion releaser technology is an effective method for testing drug release from nanosized drug carriers.

    PubMed

    Janas, Christine; Mast, Marc-Phillip; Kirsamer, Li; Angioni, Carlo; Gao, Fiona; Mäntele, Werner; Dressman, Jennifer; Wacker, Matthias G

    2017-06-01

    The dispersion releaser (DR) is a dialysis-based setup for the analysis of the drug release from nanosized drug carriers. It is mounted into dissolution apparatus2 of the United States Pharmacopoeia. The present study evaluated the DR technique investigating the drug release of the model compound flurbiprofen from drug solution and from nanoformulations composed of the drug and the polymer materials poly (lactic acid), poly (lactic-co-glycolic acid) or Eudragit®RSPO. The drug loaded nanocarriers ranged in size between 185.9 and 273.6nm and were characterized by a monomodal size distribution (PDI<0.1). The membrane permeability constants of flurbiprofen were calculated and mathematical modeling was applied to obtain the normalized drug release profiles. For comparing the sensitivities of the DR and the dialysis bag technique, the differences in the membrane permeation rates were calculated. Finally, different formulation designs of flurbiprofen were sensitively discriminated using the DR technology. The mechanism of drug release from the nanosized carriers was analyzed by applying two mathematical models described previously, the reciprocal powered time model and the three parameter model. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.

    PubMed

    Tahir, Nayab; Madni, Asadullah; Balasubramanian, Vimalkumar; Rehman, Mubashar; Correia, Alexandra; Kashif, Prince Muhammad; Mäkilä, Ermei; Salonen, Jarno; Santos, Hélder A

    2017-11-25

    Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert ® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R 2 =0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhang, Zhongwei; Mason, Ralph P.; Sarkaria, Jann N.; Zhao, Dawen

    2015-05-01

    There is considerable interest in developing nanohybrids of imaging contrast agents and drugs for image-guided drug delivery. We have developed a strategy of utilizing manganese (Mn) to enhance the nano-encapsulation of arsenic trioxide (ATO). Formation of arsenite (As3+)-Mn precipitates in liposomes generates magnetic susceptibility effects, reflected as dark contrast on T2-weighted MRI. Intriguingly, following cell uptake, the As-Mn complex decomposes in response to low pH in endosome-lysosome releasing ionic As3+, the active form of ATO, and Mn2+, the T1 contrast agent that gives a bright signal. Glioblastoma (GBM) is well known for its high resistance to chemotherapy, e.g., temozolomide (TMZ). Building upon the previously established phosphatidylserine (PS)-targeted nanoplatform that has excellent GBM-targeting specificity, we now demonstrate the effectiveness of the targeted nanoformulated ATO for treating TMZ-resistant GBM cells and the ability of the convertible Mn contrast as a surrogate revealing the delivery and release of ATO.

  11. A facile doxorubicin-dichloroacetate conjugate nanomedicine with high drug loading for safe drug delivery.

    PubMed

    Yang, Conglian; Wu, Tingting; Qin, Yuting; Qi, Yan; Sun, Yu; Kong, Miao; Jiang, Xue; Qin, Xianya; Shen, Yaqi; Zhang, Zhiping

    2018-01-01

    Doxorubicin (DOX) is an effective chemotherapeutic agent but severe side effects limit its clinical application. Nanoformulations can reduce the toxicity while still have various limitations, such as complexity, low drug loading capability and excipient related concerns. An amphiphilic conjugate, doxorubicin-dichloroacetate, was synthesized and the corresponding nanoparticles were prepared. The in vitro cytotoxicity and intracellular uptake, in vivo imaging, antitumor effects and systemic toxicities of nanoparticles were carried out to evaluate the therapeutic efficiency of tumor. Doxorubicin-dichloroacetate conjugate can self-assemble into nanoparticles with small amount of DSPE-PEG 2000 , leading to high drug loading (71.8%, w/w) and diminished excipient associated concerns. The nanoparticles exhibited invisible systemic toxicity and high maximum tolerated dose of 75 mg DOX equiv./kg, which was 15-fold higher than that of free DOX. It also showed good tumor targeting capability and enhanced antitumor efficacy in murine melanoma model. This work provides a promising strategy to simplify the drug preparation process, increase drug loading content, reduce systemic toxicity as well as enhance antitumor efficiency.

  12. Trimethyl Chitosan Improves Anti-HIV Effects of Atripla as a New Nanoformulated Drug.

    PubMed

    Shohani, Sepideh; Mondanizadeh, Mahdieh; Abdoli, Asghar; Khansarinejad, Behzad; Salimi-Asl, Mohammad; Ardestani, Mehdi Shafiee; Ghanbari, Maryam; Haj, Mehrdad Sadeghi; Zabihollahi, Rezvan

    2017-01-01

    Highly active antiretroviral therapy (HAART) has been commonly used for HIV treatment. Its main drawbacks like drug resistance and side effects raised researcher's interest to find new approaches for its treatment. Trimethyl chitosan is one of the drug carriers which has been introduced recently. the conjugated atripla-trimethyl chitosan was designed and characterized by zetasizer, AFM and FTIR techniques. The drug conjugation with trimethyl chitosan and cellular uptake of nano-conjugate were determined by spectrophotometry. XTT test was used to measure the cytotoxicity. Anti-retroviral efficiency was studied by ELISA test. Zetasizer Results proved that the average size of nano-conjugate particles agglomeration was 493.4±24.6 nm but the size of the majority of the particles was 177.2±7.8 nm with the intensity of 87.9%. AFM technique revealed that the sizes of nano-conjugate and trimethyl chitosan were 129 nm and 59.78 nm, respectively. Zeta potential was -1.35±0.04 mv for nano-conjugate and -7.69±0.3 mv for drug. Conjugation efficiency of atripla with trimethyl chitosan was 5.27%. Measured cellular uptake with spectrophotometry for nano-conjugate was about twice of the free drug in examined concentrations (P=0.007). Compared to atripla, the nano-conjugate showed a higher inhibitory effect on HIV replication (P=0.0001). The result showed that atripla-TMC conjugate does not have a significant cytotoxicity effect. Due to the higher inhibitory effect of nano-conjugate on viral replication, it can be used in lower concentration for antiviral treatment, which resulted in reduction of drug resistance and other side effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Essential oils nanoformulations for stored-product pest control - characterization and biological properties.

    PubMed

    Werdin González, Jorge Omar; Gutiérrez, María Mercedes; Ferrero, Adriana Alicia; Fernández Band, Beatriz

    2014-04-01

    The lethal and sublethal activity of poly(ethylene glycol) (PEG) nanoparticles containing essential oils (EO), also the physicochemical characterization, were determined against Tribolium castaneum and Rhizopertha dominica. The 10% ratio EO-PEG nanoparticles showed an average diameter<235 nm (PDI<0.280) and a loading efficacy>75%; after 6 month of storage their size did not change significantly and the amount of the EOs decreased 25%, approximately. Furthermore, during this period, no chemical derivates were observed. The EOs nanoparticles produced a notable increase of the residual contact toxicity apparently due to the slow and persistent release of the active terpenes. In addition, the nanoformulation enhanced the EO contact toxicity and altered the nutritional physiology of both stored product pest. The results indicated that these novel systems could be used in integrated pest management program for T. castaneum and R. dominica control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bioefficacy evaluation and dissipation pattern of nanoformulation versus commercial formulation of pyridalyl in tomato (Solanum lycopersicum).

    PubMed

    Saini, Priya; Gopal, Madhuban; Kumar, Rajesh; Gogoi, Robin; Srivastava, Chitra

    2015-08-01

    A study was undertaken to evaluate the decline of the residues of pyridalyl in tomatoes grown in two different cultivation systems: open field (conventional cultivation) and net house (pot experiment). Field experiment was conducted with commercial (10 EC) and nanoformulation of pyridalyl on tomato crop. Tomato plants were subjected to pesticide spray, when fruits were close to ripeness. Fruit samples were taken periodically and cleaned up using QuEChERS methodology, and the residue of pyridalyl was analyzed by ultrahigh-performance liquid chromatography (UHPLC). It dissipated in tomato fruit following the first-order kinetics. In field, average initial deposit of pyridalyl in tomato was observed to be 0.222 and 0.371 μg g(-1) at recommended and double the recommended application rate, respectively, using nanoformulation while it was 0.223 and 0.393 μg g(-1) on using commercial formulation, respectively. The half-life (t1/2) value of nanopyridalyl in tomato fruit was 2.8 and 3.2 days while for commercial formulation, it was 2.5 and 2.6 days for recommended and double the recommended dose, respectively. In India, maximum residue limit (MRL) on tomato has not been fixed for pyridalyl but its residues were always below European MRLs (5 μg g(-1)) on tomato at both application rates. The results of terminal residue showed that pyridalyl residues were below the available MRL. Low residues in tomatoes suggested that this pesticide is safe to use under the recommended dosage. No statistical differences were observed between the cultivation systems in relation to the residue levels of pyridalyl.

  15. Lipid Nanocarriers for Oral Delivery of Serenoa repens CO2 Extract: A Study of Microemulsion and Self-Microemulsifying Drug Delivery Systems.

    PubMed

    Guccione, Clizia; Bergonzi, Maria Camilla; Awada, Khaled M; Piazzini, Vieri; Bilia, Anna Rita

    2018-07-01

    The aim of this study was the development and characterization of lipid nanocarriers using food grade components for oral delivery of Serenoa repens CO 2 extract, namely microemulsions (MEs) and self-microemulsifying drug delivery systems (SMEDDSs) to improve the oral absorption. A commercial blend (CB) containing 320 of S. repens CO 2 extract plus the aqueous soluble extracts of nettle root and pineapple stem was formulated in two MEs and two SMEDDSs. The optimized ME loaded with the CB (CBM2) had a very low content of water (only 17.3%). The drug delivery systems were characterized by dynamic light scattering, transmission electron microscopy, and high-performance liquid chromatography (HPLC) with a diode-array detector analyses in order to evaluate the size, the homogeneity, the morphology, and the encapsulation efficiency. β -carotene was selected as marker for the quantitative HPLC analysis. Additionally, physical and chemical stabilities were acceptable during 3 wk at 4 °C. Stability of these nanocarriers in simulated stomach and intestinal conditions was proved. Finally, the improvement of oral absorption of S. repens was studied in vitro using parallel artificial membrane permeability assay. An enhancement of oral permeation was found in both CBM2 and CBS2 nanoformulations comparing with the CB and S. repens CO 2 extract. The best performance was obtained by the CBM2 nanoformulation (~ 17%) predicting a 30 - 70% passive oral human absorption in vivo . Georg Thieme Verlag KG Stuttgart · New York.

  16. Synthesis and surface functionalization of silica nanoparticles for nanomedicine

    PubMed Central

    Liberman, Alexander; Mendez, Natalie; Trogler, William C.; Kummel, Andrew C.

    2014-01-01

    There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications. PMID:25364083

  17. Drug Development Process

    MedlinePlus

    ... Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Patients Home For Patients Learn About Drug and Device Approvals The Drug Development Process The Drug Development Process Share Tweet Linkedin Pin ...

  18. Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation.

    PubMed

    Pulicharla, Rama; Marques, Caroline; Das, Ratul Kumar; Rouissi, Tarek; Brar, Satinder Kaur

    2016-07-01

    Polyphenols (negative groups) of strawberry extract interacts with positively protonated amino groups of chitosan which helps in maximum encapsulation. This approach can improve the bioavailability and sustained release of phytochemicals having lower bioavailability. The optimum mass ratio of chitosan-tripolyphosphate and polyphenols (PPs) loading was investigated to be 3:1 and 0.5mg/ml of strawberry extract, respectively. Prepared nanoformulation were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The formed particles size ranged between 300 and 600nm and polydispersity index (PDI) of≈0.5. The optimized formulation showed encapsulation efficiency of 58.09% at 36.47% of polyphenols loading. Initial burst and continuous release of PPs was observed at pH 7.4 of in vitro release studies. PPs release profile at this pH was found to be non-Fickian analomous diffusion and the release was followed first order kinetics. And at pH 1.4, diffusion-controlled Fickian release of PPs was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Efficacy, Safety and Anticancer Activity of Protein Nanoparticle-Based Delivery of Doxorubicin through Intravenous Administration in Rats

    PubMed Central

    Golla, Kishore; Cherukuvada, Bhaskar; Ahmed, Farhan; Kondapi, Anand K.

    2012-01-01

    Background and Aims Doxorubicin is a potent anticancer drug and a major limiting factor that hinders therapeutic use as its high levels of systemic circulation often associated with various off-target effects, particularly cardiotoxicity. The present study focuses on evaluation of the efficacy of doxorubicin when it is loaded into the protein nanoparticles and delivered intravenously in rats bearing Hepatocellular carcinoma (HCC). The proteins selected as carrier were Apotransferrin and Lactoferrin, since the receptors for these two proteins are known to be over expressed on cancer cells due to their iron transport capacity. Methods Doxorubicin loaded apotransferrin (Apodoxonano) and lactoferrin nanoparticles (Lactodoxonano) were prepared by sol-oil chemistry. HCC in the rats was induced by 100 mg/l of diethylnitrosamine (DENA) in drinking water for 8 weeks. Rats received 5 doses of 2 mg/kg drug equivalent nanoparticles through intravenous administration. Pharmacokinetics and toxicity of nanoformulations was evaluated in healthy rats and anticancer activity was studied in DENA treated rats. The anticancer activity was evaluated through counting of the liver nodules, H & E analysis and by estimating the expression levels of angiogenic and antitumor markers. Results In rats treated with nanoformulations, the numbers of liver nodules were found to be significantly reduced. They showed highest drug accumulation in liver (22.4 and 19.5 µg/g). Both nanoformulations showed higher localization compared to doxorubicin (Doxo) when delivered in the absence of a carrier. Higher amounts of Doxo (195 µg/g) were removed through kidney, while Apodoxonano and Lactodoxonano showed only a minimal amount of removal (<40 µg/g), suggesting the extended bioavailability of Doxo when delivered through nanoformulation. Safety analysis shows minimal cardiotoxicity due to lower drug accumulation in heart in the case of nanoformulation. Conclusion Drug delivery through nanoformulations not

  20. Therapeutical Neurotargeting via Magnetic Nanocarrier: Implications to Opiate-Induced Neuropathogenesis and NeuroAIDS.

    PubMed

    Sagar, Vidya; Pilakka-Kanthikeel, Sudheesh; Atluri, Venkata S R; Ding, Hong; Arias, Adriana Y; Jayant, Rahul D; Kaushik, Ajeet; Nair, Madhavan

    2015-10-01

    Magnetite (Fe3O4) is the most commonly and extensively explored magnetic nanoparticles (MNPs) for drug-targeting and imaging in the field of biomedicine. Nevertheless, its potential application as safe and effective drug-carrier for CNS (Central Nervous System) anomalies is very limited. Previous studies have shown an entangled epidemic of opioid use and HIV infection and increased neuropathogenesis. Opiate such as morphine, heroine, etc. are used frequently as recreational drugs. Existing treatments to alleviate the action of opioid are less effective at CNS level due to impermeability of therapeutic molecules across brain barriers. Thus, development of an advanced nanomedicine based approach may pave the way for better treatment strategies. We herein report magnetic nanoformulation of a highly selective and potent morphine antagonist, CTOP (D-Pen-Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-NH2), which is impenetrable to the brain. MNPs, synthesized in size range from 25 to 40 nm, were characterized by Transmission electron microscopy and assembly of MNPs-CTOP nanoformulations were confirmed by FTIR spectroscopy and fluorescent detection. Flow-cytometry analysis showed that biological efficacy of this nanoformulation in prevention of morphine induced apoptosis in peripheral blood mononuclear cells remains equivalent to that of free CTOP. Similarly, confocal microscopy reveals comparable efficacy of free and MNPs bound CTOP in protecting modulation of neuronal dendrite and spine morphology during morphine exposure and morphine-treated HIV infection. Further, typical transmigration assay showed increased translocation of MNPs across in vitro blood-brain barrier upon exposure of external magnetic force where barrier integrity remains unaltered. Thus, the developed nanoformulation could be effective in targeting brain by application of external magnetic force to treat morphine addiction in HIV patients.

  1. Methylprednisolone acetate-loaded hydroxyapatite nanoparticles as a potential drug delivery system for treatment of rheumatoid arthritis: In vitro and in vivo evaluations.

    PubMed

    Jafari, Samira; Maleki-Dizaji, Nasrin; Barar, Jaleh; Barzegar-Jalali, Mohammad; Rameshrad, Maryam; Adibkia, Khosro

    2016-08-25

    The objective of this study was to improve the therapeutic efficacy of methylprednisolone acetate (MPA) in the treatment of rheumatoid arthritis (RA) by incorporating the drug into the hydroxyapatite (HAp) nanoparticles. The nanoparticles were synthesized using a chemical precipitation technique and their size and morphology were evaluated by dynamic light scattering and scanning electron microscopy (SEM). The solid-state behavior of the nanoparticles was also characterized by operating X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The Brunauer-Emmett-Teller and Barrett-Joyner-Halenda N2 adsorption/desorption analyses were also performed to determine the surface area, Vm (the volume of the N2 adsorbed on the one gram of the HAp when the monolayer is complete) and the pore size of the samples. Furthermore, the therapeutic efficacy of the prepared nanoformulation on the adjuvant induced arthritic rats was assessed. HAp mesoporous nanoparticles with a particle size of 70.45nm, pore size of 2.71nm and drug loading of 44.53% were obtained. The specific surface area of HAp as well as the Vm values were decreased after the drug loading process. The nanoformulation revealed the slower drug release profile compared to the pure drug. The MTT assay indicated that the MPA-loaded nanoparticles had a lower cytotoxic effect on NIH-3T3 and CAOV-4 cell lines compared to the pure drug. Interestingly, the in vivo study confirmed that the drug-loaded nanoparticles could considerably decrease the paw volume and normalize the hematological abnormalities in the arthritic rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Self-assembled nanoformulation of methylprednisolone succinate with carboxylated block copolymer for local glucocorticoid therapy.

    PubMed

    Kamalov, Marat I; Đặng, Trinh; Petrova, Natalia V; Laikov, Alexander V; Luong, Duong; Akhmadishina, Rezeda A; Lukashkin, Andrei N; Abdullin, Timur I

    2018-04-01

    A new self-assembled formulation of methylprednisolone succinate (MPS) based on a carboxylated trifunctional block copolymer of ethylene oxide and propylene oxide (TBC-COOH) was developed. TBC-COOH and MPS associated spontaneously at increased concentrations in aqueous solutions to form almost monodisperse mixed micelles (TBC-COOH/MPS) with a hydrodynamic diameter of 19.6 nm, zeta potential of -27.8 mV and optimal weight ratio ∼1:6.3. Conditions for the effective formation of TBC-COOH/MPS were elucidated by comparing copolymers and glucocorticoids with different structure. The micellar structure of TBC-COOH/MPS persisted upon dilution, temperature fluctuations and interaction with blood serum components. TBC-COOH increased antiradical activity of MPS and promoted its intrinsic cytotoxicity in vitro attributed to enhanced cellular availability of the mixed micelles. Intracellular transportation and hydrolysis of MPS were analyzed using optimized liquid chromatography tandem mass spectrometry with multiple reaction monitoring which showed increased level of both MPS and methylprednisolone in neuronal cells treated with the formulated glucocorticoid. Our results identify TBC-COOH/MPS as an advanced in situ prepared nanoformulation and encourage its further investigation for a potential local glucocorticoid therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Synergistic Interplay of Medicinal Chemistry and Formulation Strategies in Nanotechnology - From Drug Discovery to Nanocarrier Design and Development.

    PubMed

    Sunoqrot, Suhair; Hamed, Rania; Abdel-Halim, Heba; Tarawneh, Ola

    2017-01-01

    Over the last few decades, nanotechnology has given rise to promising new therapies and diagnostic tools for a wide range of diseases, especially cancer. The unique properties of nanocarriers such as liposomes, polymeric nanoparticles, micelles, and bioconjugates have mainly been exploited to enhance drug solubility, dissolution, and bioavailability. The most important advantage offered by nanotechnology is the ability to specifically target organs, tissues, and individual cells, which ultimately reduces the systemic side effects and improves the therapeutic index of drug molecules. The contribution of medicinal chemistry to nanotechnology is evident in the abundance of new active molecules that are being discovered but are faced with tremendous delivery challenges by conventional formulation strategies. Additionally, medicinal chemistry plays a crucial role in all the steps involved in the preparation of nanocarriers, where structure-activity relationships of the drug molecule as well as the nanocarrier are harnessed to enhance the design, efficacy, and safety of nanoformulations. The aim of this review is to provide an overview of the contributions of medicinal chemistry to nanotechnology, from supplying drug candidates and inspiring high-throughput nanocarrier design strategies, to structure-activity relationship elucidation and construction of computational models for better understanding of nanocarrier physicochemical properties and biological behavior. These two fields are undoubtedly interconnected and we will continue to see the fruits of that communion for years to come. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Recent Advances in Delivery Systems and Therapeutics of Cinnarizine: A Poorly Water Soluble Drug with Absorption Window in Stomach

    PubMed Central

    Pathak, Kamla

    2014-01-01

    Low solubility causing low dissolution in gastrointestinal tract is the major problem for drugs meant for systemic action after oral administration, like cinnarizine. Pharmaceutical products of cinnarizine are commercialized globally as immediate release preparations presenting low absorption with low and erratic bioavailability. Approaches to enhance bioavailability are widely cited in the literature. An attempt has been made to review the bioavailability complications and clinical therapeutics of poorly water soluble drug: cinnarizine. The interest of writing this paper is to summarize the pharmacokinetic limitations of drug with special focus on strategies to improvise bioavailability along with effectiveness of novel dosage forms to circumvent the obstacle. The paper provides insight to the approaches to overcome low and erratic bioavailability of cinnarizine by cyclodextrin complexes and novel dosage forms: self-nanoemulsifying systems and buoyant microparticulates. Nanoformulations need to systematically explored in future, for their new clinical role in prophylaxis of migraine attacks in children. Clinical reports have affirmed the role of cinnarizine in migraine prophylaxis. Research needs to be dedicated to develop dosage forms for efficacious bioavailability and drug directly to brain. PMID:25478230

  5. Therapeutical Neurotargeting via Magnetic Nanocarrier: Implications to Opiate-Induced Neuropathogenesis and NeuroAIDS

    PubMed Central

    Sagar, Vidya; Pilakka-Kanthikeel, Sudheesh; Atluri, Venkata S. R.; Ding, Hong; Arias, Adriana Y.; Jayant, Rahul D.; Kaushik, Ajeet; Nair, Madhavan

    2015-01-01

    Magnetite (Fe3O4) is the most commonly and extensively explored magnetic nanoparticles (MNPs) for drug-targeting and imaging in the field of biomedicine. Nevertheless, its potential application as safe and effective drug-carrier for CNS (Central Nervous System) anomalies is very limited. Previous studies have shown an entangled epidemic of opioid use and HIV infection and increased neuropathogenesis. Opiate such as morphine, heroine, etc. are used frequently as recreational drugs. Existing treatments to alleviate the action of opioid are less effective at CNS level due to impermeability of therapeutic molecules across brain barriers. Thus, development of an advanced nanomedicine based approach may pave the way for better treatment strategies. We herein report magnetic nanoformulation of a highly selective and potent morphine antagonist, CTOP (D-Pen-Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-NH2), which is impenetrable to the brain. MNPs, synthesized in size range from 25 to 40 nm, were characterized by Transmission electron microscopy and assembly of MNPs-CTOP nanoformulations were confirmed by FTIR spectroscopy and fluorescent detection. Flow-cytometry analysis showed that biological efficacy of this nanoformulation in prevention of morphine induced apoptosis in peripheral blood mononuclear cells remains equivalent to that of free CTOP. Similarly, confocal microscopy reveals comparable efficacy of free and MNPs bound CTOP in protecting modulation of neuronal dendrite and spine morphology during morphine exposure and morphine-treated HIV infection. Further, typical transmigration assay showed increased translocation of MNPs across in vitro blood-brain barrier upon exposure of external magnetic force where barrier integrity remains unaltered. Thus, the developed nanoformulation could be effective in targeting brain by application of external magnetic force to treat morphine addiction in HIV patients. PMID:26502636

  6. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs.

    PubMed

    Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Servadio, Michela; Melancia, Francesca; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Cortesi, Rita; Nastruzzi, Claudio

    2017-09-01

    This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.

  7. Orphan drugs: trends and issues in drug development.

    PubMed

    Rana, Proteesh; Chawla, Shalini

    2018-04-12

    Research in rare diseases has contributed substantially toward the current understanding in the pathophysiology of the common diseases. However, medical needs of patients with rare diseases have always been neglected by the society and pharmaceutical industries based on their small numbers and unprofitability. The Orphan Drug Act (1983) was the first serious attempt to address the unmet medical needs for patients with rare diseases and to provide impetus for the pharmaceutical industry to promote orphan drug development. The process of drug development for rare diseases is no different from common diseases but involves significant cost and infrastructure. Further, certain aspect of drug research may not be feasible for the rare diseases. The drug-approving authority must exercise their scientific judgment and ensure due flexibility while evaluating data at various stages of orphan drug development. The emergence of patent cliff combined with the government incentives led the pharmaceutical industry to realize the good commercial prospects in developing an orphan drug despite the small market size. Indeed, many drugs that were given orphan designation ended up being blockbusters. The orphan drug market is projected to reach $178 billion by 2020, and the prospects of research and development in rare diseases appears to be quite promising and rewarding.

  8. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine.

    PubMed

    Khani, Samira; Keyhanfar, Fariborz; Amani, Amir

    2016-07-01

    A nanoemulsion drug delivery system was developed to increase the oral bioavailability of mebudipine as a calcium channel blocker with very low bioavailability profile. The impact of nano-formulation on the pharmacokinetic parameters of mebudipine in rats was investigated. Nanoemulsion formulations containing ethyl oleate, Tween 80, Span 80, polyethylene glycol 400, ethanol and deionized water were prepared using probe sonicator. The optimum formulation was evaluated for physicochemical properties, such as particle size, morphology and stability. The particle size of optimum formulation was 22.8 ± 4.0 nm. Based on the results of this study, the relative bioavailability of mebudipine nanoemulsion was enhanced by about 2.6-, 2.0- and 1.9-fold, respectively, compared with suspension, ethyl oleate solution and micellar solution. In conclusion, nanoemulsion is an interesting option for the delivery of poorly water soluble molecules, such as mebudipine.

  9. Bimetallic redox nanoprobe enhances the therapeutic efficacy of hyperthermia in drug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Sandeep Kumar; Lakkireddy, Chandrakala; Marjan, Tuba; Fatima, Anjum; Bardia, Avinash; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-05-01

    Cancer nanotheranostics has emerged as one of the most promising fields of medicine wherein nano-sized molecules/agents are used for combined diagnosis and treatment of cancer. Despite promises of novel cancer therapeutic approaches, several crucial challenges have remained to be overcome for successful clinical translation of such agents. Hence, the present study has been aimed to investigate the therapeutic efficacy of bimetallic gadolinium super-paramagnetic iron oxide nanoformulation of ascorbic acid in synergism with hyperthermia on ascorbic acid-resistant breast cancer cells. This particular strategy provides real-time MRI-based non-invasive imaging of drug loading in resistant cancer cells along with highly enhanced therapeutic efficacy. This unique redox nanoprobe is capable of reversing drug-resistance mechanism in cancer cells and offers better therapeutic possibilities in targeted and effective destruction of drug-resistant cancer cells.

  10. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application.

    PubMed

    Kalita, Himani; Prashanth Kumar, B N; Konar, Suraj; Tantubay, Sangeeta; Kr Mahto, Madhusudan; Mandal, Mahitosh; Pathak, Amita

    2016-03-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~48 nm and 206.51 m(2)/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nanoformulation of Geranylgeranyltransferase-I Inhibitors for Cancer Therapy: Liposomal Encapsulation and pH-Dependent Delivery to Cancer Cells

    PubMed Central

    Lu, Jie; Yoshimura, Kohei; Goto, Koichi; Lee, Craig; Hamura, Ken; Kwon, Ohyun; Tamanoi, Fuyuhiko

    2015-01-01

    Small molecule inhibitors against protein geranylgeranyltransferase-I such as P61A6 have been shown to inhibit proliferation of a variety of human cancer cells and exhibit antitumor activity in mouse models. Development of these inhibitors could be dramatically accelerated by conferring tumor targeting and controlled release capability. As a first step towards this goal, we have encapsulated P61A6 into a new type of liposomes that open and release cargos only under low pH condition. These low pH-release type liposomes were prepared by adjusting the ratio of two types of phospholipid derivatives. Loading of geranylgeranyltransferase-I inhibitor (GGTI) generated liposomes with average diameter of 50–100 nm. GGTI release in solution was sharply dependent on pH values, only showing release at pH lower than 6. Release of cargos in a pH-dependent manner inside the cell was demonstrated by the use of a proton pump inhibitor Bafilomycin A1 that Increased lysosomal pH and inhibited the release of a dye carried in the pH-liposome. Delivery of GGTI to human pancreatic cancer cells was demonstrated by the inhibition of protein geranylgeranylation inside the cell and this effect was blocked by Bafilomycin A1. In addition, GGTI delivered by pH-liposomes induced proliferation inhibition, G1 cell cycle arrest that is associated with the expression of cell cycle regulator p21CIP1/WAF1. Proliferation inhibition was also observed with various lung cancer cell lines. Availability of nanoformulated GGTI opens up the possibility to combine with other types of inhibitors. To demonstrate this point, we combined the liposomal-GGTI with farnesyltransferase inhibitor (FTI) to inhibit K-Ras signaling in pancreatic cancer cells. Our results show that the activated K-Ras signaling in these cells can be effectively inhibited and that synergistic effect of the two drugs is observed. Our results suggest a new direction in the use of GGTI for cancer therapy. PMID:26352258

  12. Preclinical drug development.

    PubMed

    Brodniewicz, Teresa; Grynkiewicz, Grzegorz

    2010-01-01

    Life sciences provide reasonably sound prognosis for a number and nature of therapeutic targets on which drug design could be based, and search for new chemical entities--future new drugs, is now more than ever based on scientific principles. Nevertheless, current very long and incredibly costly drug discovery and development process is very inefficient, with attrition rate spanning from many thousands of new chemical structures, through a handful of validated drug leads, to single successful new drug launches, achieved in average after 13 years, with compounded cost estimates from hundreds of thousands to over one billion US dollars. Since radical pharmaceutical innovation is critically needed, number of new research projects concerning this area is steeply rising outside of big pharma industry--both in academic environment and in small private companies. Their prospective success will critically depend on project management, which requires combined knowledge of scientific, technical and legal matters, comprising regulations concerning admission of new drug candidates to be subjects of clinical studies. This paper attempts to explain basic rules and requirements of drug development within preclinical study period, in case of new chemical entities of natural or synthetic origin, which belong to low molecular weight category.

  13. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    PubMed Central

    Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2014-01-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care. PMID:23860639

  14. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Chen, Fei; Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2013-08-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care.

  15. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer.

    PubMed

    Truffi, Marta; Fiandra, Luisa; Sorrentino, Luca; Monieri, Matteo; Corsi, Fabio; Mazzucchelli, Serena

    2016-05-01

    Nowadays cancer represents a prominent challenge in clinics. Main achievements in cancer management would be the development of highly accurate and specific diagnostic tools for early detection of cancer onset, and the generation of smart drug delivery systems for targeted chemotherapy release in cancer cells. In this context, protein-based nanocages hold a tremendous potential as devices for theranostics purposes. In particular, ferritin has emerged as an excellent and promising protein-based nanocage thanks to its unique architecture, surface properties and high biocompatibility. By exploiting natural recognition of the Transferrin Receptor 1, which is overexpressed on tumor cells, ferritin nanocages may ensure a proper drug delivery and release. Moreover, researchers have applied surface functionalities on ferritin cages for further providing active tumor targeting. Encapsulation strategies of non metal-containing drugs within ferritin cages have been explored and successfully performed with encouraging results. Various preclinical studies have demonstrated that nanoformulation within ferritin nanocages significantly improved targeted therapy and accurate imaging of cancer cells. Aims of this review are to describe structure and functions of ferritin nanocages, and to provide an overview about the nanotechnological approaches implemented for applying them to cancer diagnosis and treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Improving Platinum Efficiency:. Nanoformulations

    NASA Astrophysics Data System (ADS)

    Carmona, Rolando; Liang, Xing-Jie

    2013-09-01

    Platinum-based drugs continue being the support of therapy for many different kinds of cancer. Cancer patients often present irreversible resistance to platinum after repeated treatment in clinic. Despite of the great efforts, chemoresistance (intrinsic or acquired) already is a major limitation in the management of this disease. In this review, the last current research on cancer characteristic and cancer chemical resistance is summarized, the major and novel strategies to reverse resistance to platinum- based drugs are discussed and this article mainly emphasizes the contribution of nanotechnology and combination therapies to target sites and reduce the cancer chemoresistance.

  17. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

    PubMed Central

    Johnstone, Timothy C.; Suntharalingam, Kogularamanan; Lippard, Stephen J.

    2016-01-01

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer,, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing non-classical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore non-classical platinum(II) complexes with trans geometry and with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-treat agents, and photoactivatable platinum(IV) complexes. Nanodelivery particles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also reflect our optimism that the next generation of platinum cancer drugs is about to arrive. PMID:26865551

  18. Nanotechnology in bladder cancer: current state of development and clinical practice

    PubMed Central

    Tomlinson, Ben; Lin, Tzu-yin; Dall'Era, Marc; Pan, Chong-Xian

    2015-01-01

    Nanotechnology is being developed for the diagnosis and treatment of both nonmyoinvasive bladder cancer (NMIBC) and invasive bladder cancer. The diagnostic applications of nanotechnology in NMIBC mainly focus on tumor identification during endoscopy to increase complete resection of bladder cancer while nanotechnology to capture malignant cells or their components continues to be developed. The therapeutic applications of nanotechnology in NMIBC are to reformulate biological and cytotoxic agents for intravesical instillation, combine both diagnostic and therapeutic application in one nanoformulation. In invasive and advanced bladder cancer, magnetic resonance imaging with supraparamagnetic iron oxide nanoparticles can improve the sensitivity and specificity in detecting small metastasis to lymph nodes. Nanoformulation of cytotoxic agents can potentially decrease the toxicity while increasing efficacy. PMID:25929573

  19. Economics of new oncology drug development.

    PubMed

    DiMasi, Joseph A; Grabowski, Henry G

    2007-01-10

    Review existing studies and provide new results on the development, regulatory, and market aspects of new oncology drug development. We utilized data from the US Food and Drug Administration (FDA), company surveys, and publicly available commercial business intelligence databases on new oncology drugs approved in the United States and on investigational oncology drugs to estimate average development and regulatory approval times, clinical approval success rates, first-in-class status, and global market diffusion. We found that approved new oncology drugs to have a disproportionately high share of FDA priority review ratings, of orphan drug designations at approval, and of drugs that were granted inclusion in at least one of the FDA's expedited access programs. US regulatory approval times were shorter, on average, for oncology drugs (0.5 years), but US clinical development times were longer on average (1.5 years). Clinical approval success rates were similar for oncology and other drugs, but proportionately more of the oncology failures reached expensive late-stage clinical testing before being abandoned. In relation to other drugs, new oncology drug approvals were more often first-in-class and diffused more widely across important international markets. The market success of oncology drugs has induced a substantial amount of investment in oncology drug development in the last decade or so. However, given the great need for further progress, the extent to which efforts to develop new oncology drugs will grow depends on future public-sector investment in basic research, developments in translational medicine, and regulatory reforms that advance drug-development science.

  20. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages.

    PubMed

    Choi, Seoung-Ryoung; Britigan, Bradley E; Moran, David M; Narayanasamy, Prabagaran

    2017-01-01

    New treatments and novel drugs are required to counter the growing problem of drug-resistant strains of Mycobacterium tuberculosis (M.tb). Our approach against drug resistant M.tb, as well as other intracellular pathogens, is by targeted drug delivery using nanoformulations of drugs already in use, as well as drugs in development. Among the latter are gallium (III) (Ga)-based compounds. In the current work, six different types of Ga and rifampin nanoparticles were prepared in such a way as to enhance targeting of M.tb infected-macrophages. They were then tested for their ability to inhibit growth of a fully pathogenic strain (H37Rv) or a non-pathogenic strain (H37Ra) of M.tb. Encapsulating Ga in folate- or mannose-conjugated block copolymers provided sustained Ga release for 15 days and significantly inhibited M.tb growth in human monocyte-derived macrophages. Nanoformulations with dendrimers encapsulating Ga or rifampin also showed promising anti-tuberculous activity. The nanoparticles co-localized with M.tb containing phagosomes, as measured by detection of mature cathepsin D (34 kDa, lysosomal hydrogenase). They also promoted maturation of the phagosome, which would be expected to increase macrophage-mediated killing of the organism. Delivery of Ga or rifampin in the form of nanoparticles to macrophages offers a promising approach for the development of new therapeutic anti-tuberculous drugs.

  1. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages

    PubMed Central

    Choi, Seoung-ryoung; Britigan, Bradley E.; Moran, David M.

    2017-01-01

    New treatments and novel drugs are required to counter the growing problem of drug-resistant strains of Mycobacterium tuberculosis (M.tb). Our approach against drug resistant M.tb, as well as other intracellular pathogens, is by targeted drug delivery using nanoformulations of drugs already in use, as well as drugs in development. Among the latter are gallium (III) (Ga)-based compounds. In the current work, six different types of Ga and rifampin nanoparticles were prepared in such a way as to enhance targeting of M.tb infected-macrophages. They were then tested for their ability to inhibit growth of a fully pathogenic strain (H37Rv) or a non-pathogenic strain (H37Ra) of M.tb. Encapsulating Ga in folate- or mannose-conjugated block copolymers provided sustained Ga release for 15 days and significantly inhibited M.tb growth in human monocyte-derived macrophages. Nanoformulations with dendrimers encapsulating Ga or rifampin also showed promising anti-tuberculous activity. The nanoparticles co-localized with M.tb containing phagosomes, as measured by detection of mature cathepsin D (34 kDa, lysosomal hydrogenase). They also promoted maturation of the phagosome, which would be expected to increase macrophage-mediated killing of the organism. Delivery of Ga or rifampin in the form of nanoparticles to macrophages offers a promising approach for the development of new therapeutic anti-tuberculous drugs. PMID:28542623

  2. Multi-target drugs: the trend of drug research and development.

    PubMed

    Lu, Jin-Jian; Pan, Wei; Hu, Yuan-Jia; Wang, Yi-Tao

    2012-01-01

    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target-target and drug-drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational strategies for drug research and development in the future.

  3. Metabonomics and drug development.

    PubMed

    Ramana, Pranov; Adams, Erwin; Augustijns, Patrick; Van Schepdael, Ann

    2015-01-01

    Metabolites as an end product of metabolism possess a wealth of information about altered metabolic control and homeostasis that is dependent on numerous variables including age, sex, and environment. Studying significant changes in the metabolite patterns has been recognized as a tool to understand crucial aspects in drug development like drug efficacy and toxicity. The inclusion of metabonomics into the OMICS study platform brings us closer to define the phenotype and allows us to look at alternatives to improve the diagnosis of diseases. Advancements in the analytical strategies and statistical tools used to study metabonomics allow us to prevent drug failures at early stages of drug development and reduce financial losses during expensive phase II and III clinical trials. This chapter introduces metabonomics along with the instruments used in the study; in addition relevant examples of the usage of metabonomics in the drug development process are discussed along with an emphasis on future directions and the challenges it faces.

  4. The mixed lineage kinase-3 inhibitor URMC-099 improves therapeutic outcomes for long-acting antiretroviral therapy.

    PubMed

    Zhang, Gang; Guo, Dongwei; Dash, Prasanta K; Araínga, Mariluz; Wiederin, Jayme L; Haverland, Nicole A; Knibbe-Hollinger, Jaclyn; Martinez-Skinner, Andrea; Ciborowski, Pawel; Goodfellow, Val S; Wysocki, Tadeusz A; Wysocki, Beata J; Poluektova, Larisa Y; Liu, Xin-Ming; McMillan, JoEllyn M; Gorantla, Santhi; Gelbard, Harris A; Gendelman, Howard E

    2016-01-01

    During studies to extend the half-life of crystalline nanoformulated antiretroviral therapy (nanoART) the mixed lineage kinase-3 inhibitor URMC-099, developed as an adjunctive neuroprotective agent was shown to facilitate antiviral responses. Long-acting ritonavir-boosted atazanavir (nanoATV/r) nanoformulations co-administered with URMC-099 reduced viral load and the numbers of HIV-1 infected CD4+ T-cells in lymphoid tissues more than either drug alone in infected humanized NOD/SCID/IL2Rγc-/- mice. The drug effects were associated with sustained ART depots. Proteomics analyses demonstrated that the antiretroviral responses were linked to affected phagolysosomal storage pathways leading to sequestration of nanoATV/r in Rab-associated recycling and late endosomes; sites associated with viral maturation. URMC-099 administered with nanoATV induced a dose-dependent reduction in HIV-1p24 and reverse transcriptase activity. This drug combination offers a unique chemical marriage for cell-based viral clearance. From the Clinical Editor: Although successful in combating HIV-1 infection, the next improvement in antiretroviral therapy (nanoART) would be to devise long acting therapy, such as intra-cellular depots. In this report, the authors described the use of nanoformulated antiretroviral therapy given together with the mixed lineage kinase-3 inhibitor URMC-099, and showed that this combination not only prolonged drug half-life, but also had better efficacy. The findings are hoped to be translated into the clinical setting in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Drugs and development: the global impact of drug use and trafficking on social and economic development.

    PubMed

    Singer, Merrill

    2008-12-01

    Locating development efforts within the context of globalism and global drug capitalism, this article examines the significant health and social impact both legal and illegal drugs have on international development efforts. The paper takes on an issue that is generally overlooked in the development debate and is not much addressed in the current international development standard, the Millennium Development Goals, and yet is one that places serious constraints on the ability of underdeveloped nations to achieve improvement. The relationship between psychotropic or "mind/mood altering" drugs and sustainable development is rooted in the contribution that the legal and illegal drug trade makes to a set of barriers to development, including: (1) interpersonal crime and community violence; (2) the corruption of public servants and the disintegration of social institutions; (3) the emergence of new or enhanced health problems; (4) the lowering of worker productivity; (5) the ensnarement of youth in drug distribution and away from productive education or employment; (6) the skewing of economies to drug production and money laundering. The paper emphasizes the need for new approaches for diminishing the burden placed by drugs on development.

  6. The Tuberculosis Drug Discovery and Development Pipeline and Emerging Drug Targets

    PubMed Central

    Mdluli, Khisimuzi; Kaneko, Takushi; Upton, Anna

    2015-01-01

    The recent accelerated approval for use in extensively drug-resistant and multidrug-resistant-tuberculosis (MDR-TB) of two first-in-class TB drugs, bedaquiline and delamanid, has reinvigorated the TB drug discovery and development field. However, although several promising clinical development programs are ongoing to evaluate new TB drugs and regimens, the number of novel series represented is few. The global early-development pipeline is also woefully thin. To have a chance of achieving the goal of better, shorter, safer TB drug regimens with utility against drug-sensitive and drug-resistant disease, a robust and diverse global TB drug discovery pipeline is key, including innovative approaches that make use of recently acquired knowledge on the biology of TB. Fortunately, drug discovery for TB has resurged in recent years, generating compounds with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review summarizes the current TB drug development pipeline and proposes strategies for generating improved hits and leads in the discovery phase that could help achieve this goal. PMID:25635061

  7. Drug development in neuropsychopharmacology.

    PubMed

    Fritze, Jürgen

    2008-03-01

    Personalized medicine is still in its infancy concerning drug development in neuropsychopharmacology. Adequate biomarkers with clinical relevance to drug response and/or tolerability and safety largely remain to be identified. Possibly, this kind of personalized medicine will first gain clinical relevance in the dementias. The clinical relevance of the genotyping of drug-metabolizing enzymes as suggested by drug licensing authorities for the pharmacokinetic evaluation of medicinal products needs to be proven in sound clinical trials.

  8. Ex vivo permeation of tamoxifen and its 4-OH metabolite through rat intestine from lecithin/chitosan nanoparticles.

    PubMed

    Barbieri, S; Buttini, F; Rossi, A; Bettini, R; Colombo, P; Ponchel, G; Sonvico, F; Colombo, G

    2015-08-01

    Tamoxifen citrate is an anticancer drug slightly soluble in water. Administered orally, it shows great intra- and inter-patient variations in bioavailability. We developed a nanoformulation based on phospholipid and chitosan able to efficiently load tamoxifen and showing an enzyme triggered release. In this work the permeation of tamoxifen released from lecithin/chitosan nanoparticles across excised rat intestinal wall mounted in an Ussing chamber was investigated. Compared to tamoxifen citrate suspension, the amount of the drug permeated using the nanoformulation was increased from 1.5 to 90 times, in absence or in presence of pancreatin or lipase, respectively. It was also evidenced the formation of an active metabolite of tamoxifen, 4-hydroxy tamoxifen, however, the amount of metabolite permeated remained roughly constant in all experiments. The effect of enzymes on intestinal permeation of tamoxifen was shown only when tamoxifen-loaded nanoparticles were in intimate contact with the mucosal surface. The encapsulation of tamoxifen in lecithin/chitosan nanoparticles improved the non-metabolized drug passing through the rat intestinal tissue via paracellular transport. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Outcomes research and drug development.

    PubMed

    Duttagupta, Sandeep

    2010-07-01

    With increasing health care cost, focus needs to be given towards value-for-money, especially in the context of innovative drugs. A multi-disciplinary approach towards drug development is important in order to demonstrate the value of innovation to physicians and patients. Input into the drug development process at various stages of clinical trials must incorporate patient-focused endpoints and analyses. Demonstrating value of drugs will help ensure that innovative therapies should be seen as health care investment and not expense.

  10. New Zealand’s Drug Development Industry

    PubMed Central

    Lockhart, Michelle Marie; Babar, Zaheer-Ud-Din; Carswell, Christopher; Garg, Sanjay

    2013-01-01

    The pharmaceutical industry’s profitability depends on identifying and successfully developing new drug candidates while trying to contain the increasing costs of drug development. It is actively searching for new sources of innovative compounds and for mechanisms to reduce the enormous costs of developing new drug candidates. There is an opportunity for academia to further develop as a source of drug discovery. The rising levels of industry outsourcing also provide prospects for organisations that can reduce the costs of drug development. We explored the potential returns to New Zealand (NZ) from its drug discovery expertise by assuming a drug development candidate is out-licensed without clinical data and has anticipated peak global sales of $350 million. We also estimated the revenue from NZ’s clinical research industry based on a standard per participant payment to study sites and the number of industry-sponsored clinical trials approved each year. Our analyses found that NZ’s clinical research industry has generated increasing foreign revenue and appropriate policy support could ensure that this continues to grow. In addition the probability-based revenue from the out-licensing of a drug development candidate could be important for NZ if provided with appropriate policy and financial support. PMID:24065037

  11. Pharmacokinetic/Pharmacodynamic-Driven Drug Development

    PubMed Central

    Gallo, James M.

    2010-01-01

    The drug discovery and development enterprise, traditionally an industrial juggernaut, has spanned into the academic arena that is partially motivated by the National Institutes of Health Roadmap highlighting translational science and medicine. Since drug discovery and development represents a pipeline of basic to clinical investigations it meshes well with the prime “bench to the bedside” directive of translational medicine. The renewed interest in drug discovery and develpoment in academia provides an opportunity to rethink the hiearchary of studies with the hope to improve the staid approaches that have been critizied for lacking innovation. One area that has received limited attention concerns the use of pharmacokinetic [PK] and pharmacodynamic [PD] studies in the drug development process. Using anticancer drug development as a focus, this review will address past and current deficencies in how PK/PD studies are conducted and offer new strategies that might bridge the gap between preclinical and clinical trials. PMID:20687184

  12. Orphan drug: Development trends and strategies

    PubMed Central

    Sharma, Aarti; Jacob, Abraham; Tandon, Manas; Kumar, Dushyant

    2010-01-01

    The growth of pharma industries has slowed in recent years because of various reasons such as patent expiries, generic competition, drying pipelines, and increasingly stringent regulatory guidelines. Many blockbuster drugs will loose their exclusivity in next 5 years. Therefore, the current economic situation plus the huge generic competition shifted the focus of pharmaceutical companies from the essential medicines to the new business model — niche busters, also called orphan drugs. Orphan drugs may help pharma companies to reduce the impact of revenue loss caused by patent expiries of blockbuster drugs. The new business model of orphan drugs could offer an integrated healthcare solution that enables pharma companies to develop newer areas of therapeutics, diagnosis, treatment, monitoring, and patient support. Incentives for drug development provided by governments, as well as support from the FDA and EU Commission in special protocols, are a further boost for the companies developing orphan drugs. Although there may still be challenges ahead for the pharmaceutical industry, orphan drugs seem to offer the key to recovery and stability within the market. In our study, we have compared the policies and orphan drug incentives worldwide alongwith the challenges faced by the pharmaceutical companies. Recent developments are seen in orphan drug approval, the various drugs in orphan drug pipeline, and the future prospectives for orphan drugs and diseases. PMID:21180460

  13. Nutraceutical phycocyanin nanoformulation for efficient drug delivery of paclitaxel in human glioblastoma U87MG cell line

    NASA Astrophysics Data System (ADS)

    Agrawal, Madhunika; Yadav, Sanjeev Kumar; Agrawal, Satyam Kumar; Karmakar, Surajit

    2017-08-01

    To enhance the therapeutic efficacy of chemotherapy on glioblastoma U87MG cell line, paclitaxel-loaded phycocyanin nanoparticles (PTX-PcNPs) were prepared by modified desolvation process. PTX-PcNPs were characterised in terms of size, zeta potential, drug loading efficiency and drug release. Confocal laser scanning microscopy showed PTX-PcNPs could be internalised by U87MG cells. The anti-cancer activity was investigated in vitro by 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with and without photodynamic therapy. It was observed that formulation could significantly inhibit growth of U87MG cells as compared to PTX alone and also induced apoptosis, which was evidenced by presence of apoptotic bodies and nuclear fragmentation in treated cells. The present study suggests that PTX-PcNPs can act as a promising drug delivery system for cancer treatment. [Figure not available: see fulltext.

  14. Membrane transporters in drug development

    PubMed Central

    2011-01-01

    Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labeling. PMID:20190787

  15. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy.

    PubMed

    Nigam Joshi, Preeti; Agawane, Sachin; Athalye, Meghana C; Jadhav, Vrushali; Sarkar, Dhiman; Prakash, Rajiv

    2017-09-01

    Cancer nanotechnology is an emerging area of cancer diagnosis and therapy. Although considerable progress has been made for targeted drug delivery systems to deliver anticancer agents to particular site of interest, new nanomaterials are frequently being developed and explored for better drug delivery efficiency. In the present work, we have explored a novel nanoformulation based on silver-graphene quantum dots (Ag-GQDs) nanocomposite for its successful implementation for pancreatic cancer specific drug delivery in wistar rats. Carboxymethyl inulin (CMI); a modified variant of natural polysaccharide inulin is tethered with the nanocomposite via carbodiimide coupling to enhance the biocompatibility of nanoformulation. Experiments are performed to investigate the cytotoxicity reduction of silver nanoparticles after inulin tethering as well as anticancer efficacy of the system using 5-Fluorouracil (5-FU) as model drug. SEM, TEM, FT-IR, UV-vis, photoluminescence and anti proliferative assays (MTT) are performed for characterisation of the nanocomposite. Hyaluronic acid (HA) is conjugated as targeting moiety for CD-44 (cancer stem cell marker) to fabricate a complete targeted drug delivery vehicle specific for pancreatic cancer. In the present work two prime objectives were achieved; mitigation the toxicity of silver nanoparticles by inulin coating and it's in vivo application for pancreatic cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Success rates for product development strategies in new drug development.

    PubMed

    Dahlin, E; Nelson, G M; Haynes, M; Sargeant, F

    2016-04-01

    While research has examined the likelihood that drugs progress across phases of clinical trials, no research to date has examined the types of product development strategies that are the most likely to be successful in clinical trials. This research seeks to identify the strategies that are most likely to reach the market-those generated using a novel product development strategy or strategies that combine a company's expertise with both drugs and indications, which we call combined experience strategies. We evaluate the success of product development strategies in the drug development process for a sample of 2562 clinical trials completed by 406 US pharmaceutical companies. To identify product development strategies, we coded each clinical trial according to whether it consisted of an indication or a drug that was new to the firm. Accordingly, a clinical trial that consists of both an indication and a drug that were both new to the firm represents a novel product development strategy; indication experience is a product development strategy that consists of an indication that a firm had tested previously in a clinical trial, but with a drug that was new to the firm; drug experience is a product development strategy that consists of a drug that the firm had prior experience testing in clinical trials, but with an indication that was new to the firm; combined experience consists of both a drug and an indication that the firm had experience testing in clinical trials. Success rates for product development strategies across clinical phases were calculated for the clinical trials in our sample. Combined experience strategies had the highest success rate. More than three and a half percent (0·036) of the trials that combined experience with drugs and indications eventually reached the market. The next most successful strategy is drug experience (0·025) with novel strategies trailing closely (0·024). Indication experience strategies are the least successful (0·008

  17. CNS drug development: part III: future directions.

    PubMed

    Preskorn, Sheldon H

    2011-01-01

    This column, the third in a series on central nervous system (CNS) drug development, discusses advances during the first decade of the 21st century and directions the field may take in the next 10 years. By identifying many possible new drug targets, the human genome project has created the potential to develop novel central nervous system (CNS) drugs with new mechanisms of action. At the same time, this proliferation of possible new targets has complicated the drug development process, since research has not yet provided guidance as to which targets may be most fruitful. This and other factors (eg, increasing regulatory requirements) have increased the cost and complexity of the drug development process. In addition, as more is learned about the biology of psychiatric illnesses, syndromes may be subdivided into more specific entities that are better understood from a pathophysiological and pathoetiological perspective. This is likely to lead to development of more targeted treatments focused on underlying causes of illness as well as prevention. The development of drugs for Alzheimer's disease is discussed as a possible model for future CNS drug development. We are at the beginning of an era when it is likely that the way in which CNS drugs are developed will need to be rethought, which will call for flexibility and creativity on the part of both drug developers and clinical researchers.

  18. UPLC/QTOF/MS profiling of two Psidium species and the in-vivo hepatoprotective activity of their nano-formulated liposomes.

    PubMed

    Saber, Fatema R; Abdelbary, Ghada A; Salama, Maha M; Saleh, Dalia O; Fathy, Magda M; Soliman, Fathy M

    2018-03-01

    Liver diseases are major health problem in Egypt influencing lifestyle and economy. The demand for nutraceutical hepatoprotective agents is crucial to ameliorate the side effects of synthetic drugs. The present study aims to evaluate antioxidant and hepatoprotective activities of extracts of Psidium guajava L. and Psidium cattleianum Sabine leaves and their nano-formulated liposomes against paracetamol-induced liver damage in rats. Secondary metabolites profile of P. guajava and P. cattleianum leaves was investigated using UPLC-PDA-ESI-qTOF-MSn. The nano-liposomes containing Psidium extracts were prepared using thin film hydration method. Biochemical analysis was based on monitoring serum levels of AST, ALT, ALP and total bilirubin. The liver homogenate was used for determination of GSH and MDA. Histopathological alterations were also studied. Metabolic profiling revealed qualitative differences between the two investigated species providing a comprehensive map for the metabolites present in P. guajava and P. cattleianum leaves cultivated in Egypt. The identified metabolites belong to different phytochemical classes; polyphenolics, flavonoids, triterpenes and meroterpenoids. Significant hepatoprotective effects were observed as evident from the decreased levels of AST, ALT, ALP, MDA and total bilirubin as well as restoration of decreased GSH level in the two studied Psidium extracts (250, 500mg/kg b. wt) and their respective nano-liposomes (500mg/kg b. wt), when compared to the diseased group. Nano-liposomes of Psidium guajava leaves (500mg/kg b. wt) greatly restored the normal architecture of the liver in the histopathological study, as regards to standard silymarin. The present study verified the effectiveness of Psidium guajava and Psidium cattleianum leaves extracts and their nano-liposomes in ameliorating the paracetamol-induced hepatotoxicity in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Drug companies cut HIV drug prices in the developing world.

    PubMed

    Yamey, G

    2000-05-20

    The UN has reported that five multinational pharmaceutical companies would cut down HIV drug prices in the developing world. One of these drug companies is GlaxoWellcome, which has promised to reduce the price of zidovudine and lamivudine to US$2 in the poorest nations, a fifth of its price in the US. Although Peter Piot, director of the UN Program on HIV/AIDS, welcomed the companies' promises, he warned that price cuts alone will not curb the epidemic. He stated that this initiative is only one critical factor in what must become a much broader and more urgent effort to help people living with HIV/AIDS. Moreover, health and development agencies expressed concern that AIDS drugs will still be unaffordable for the vast majority of those in need in developing countries. In addition, poor countries lack the infrastructure to deliver these drugs safely and effectively. During the time of the UN announcement, US President Bill Clinton also signed an executive order allowing sub-Saharan Africa to adopt legal measures to obtain cheap HIV drugs. Meanwhile, South Africa's reaction to the offer to cut antiretroviral drug prices has been lukewarm.

  20. Regional intestinal drug permeation: biopharmaceutics and drug development.

    PubMed

    Lennernäs, Hans

    2014-06-16

    Over the last 25 years, profound changes have been seen in both the development and regulation of pharmaceutical dosage forms, due primarily to the extensive use of the biopharmaceutical classification system (BCS) in both academia and industry. The BCS and the FDA scale-up and post-approval change guidelines were both developed during the 1990s and both are currently widely used to claim biowaivers. The development of the BCS and its wide acceptance were important steps in pharmaceutical science that contributed to the more rational development of oral dosage forms. The effective permeation (Peff) of drugs through the intestine often depends on the combined outcomes of passive diffusion and multiple parallel transport processes. Site-specific jejunal Peff cannot reflect the permeability of the whole intestinal tract, since this varies along the length of the intestine, but is a useful approximation of the fraction of the oral dose that is absorbed. It appears that drugs with a jejunal Peff>1.5×10(-4)cm/s will be completely absorbed no matter which transport mechanisms are utilized. In this paper, historical clinical data originating from earlier open, single-pass perfusion studies have been used to calculate the Peff of different substances from sites in the jejunum and ileum. More exploratory in vivo studies are required in order to obtain reliable data on regional intestinal drug absorption. The development of experimental and theoretical methods of assessing drug absorption from both small intestine and various sites in the colon is encouraged. Some of the existing human in vivo data are discussed in relation to commonly used cell culture models. It is crucial to accurately determine the input parameters, such as the regional intestinal Peff, as these will form the basis for the expected increase in modeling and simulation of all the processes involved in GI drug absorption, thus facilitating successful pharmaceutical development in the future. It is suggested

  1. Pharmacogenomics to Revive Drug Development in Cardiovascular Disease.

    PubMed

    Dubé, Marie-Pierre; de Denus, Simon; Tardif, Jean-Claude

    2016-02-01

    Investment in cardiovascular drug development is on the decline as large cardiovascular outcomes trials require considerable investments in time, efforts and financial resources. Pharmacogenomics has the potential to help revive the cardiovascular drug development pipeline by providing new and better drug targets at an earlier stage and by enabling more efficient outcomes trials. This article will review some of the recent developments highlighting the value of pharmacogenomics for drug development. We discuss how genetic biomarkers can enable the conduct of more efficient clinical outcomes trials by enriching patient populations for good responders to the medication. In addition, we assess past drug development programs which support the added value of selecting drug targets that have established genetic evidence supporting the targeted mechanism of disease. Finally, we discuss how pharmacogenomics can provide valuable evidence linking a drug target to clinically relevant outcomes, enabling novel drug discovery and drug repositioning opportunities.

  2. Physicochemical characterization and in vivo evaluation of triamcinolone acetonide-loaded hydroxyapatite nanocomposites for treatment of rheumatoid arthritis.

    PubMed

    Jafari, Samira; Maleki-Dizaji, Nasrin; Barar, Jaleh; Barzegar-Jalali, Mohammad; Rameshrad, Maryam; Adibkia, Khosro

    2016-04-01

    The current study was aimed to investigate the anti-inflammatory effect of triamcinolone acetonide-loaded hydroxyapatite (TA-loaded HAp) nanocomposites in the arthritic rat model. The HAp nanocomposites were synthesized through a chemical precipitation method and the drug was subsequently incorporated into the nanocomposites using an impregnation method. The physicochemical properties as well as cytotoxicity of the prepared nanoformulation were examined as well. To evaluate the therapeutic efficacy of the prepared nanoformulation, the various parameters such as paw volume, haematological parameters and histological studies were assessed in the arthritic rats. The nanocomposites with the particle size of 70.45 nm, pore size of 2.71 nm and drug loading of 41.94% were obtained in this study. The specific surface area (aBET) as well as the volume of nitrogen adsorbed on one gram of HAp to complete the monolayer adsorption (Vm) were decreased after the drug loading process. The prepared nanoformulation revealed the slower drug release profile compared to the pure drug. Furthermore, the obtained data from MTT assay showed that the TA-loaded nanocomposites had a lower cytotoxic effect on NIH-3T3 and CAOV-4 cell lines as compared to the pure drug. Furthermore, TA-loaded HAp nanocomposites demonstrated favorable effects on the paw volume as well as the haematological and histopathological abnormalities in the adjuvant-induced arthritic rats. Therefore, TA-loaded HAp nanocomposites are potentially suggested for treatment of rheumatoid arthritis after further required evaluations. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Obesity and Pediatric Drug Development.

    PubMed

    Vaughns, Janelle D; Conklin, Laurie S; Long, Ying; Zheng, Panli; Faruque, Fahim; Green, Dionna J; van den Anker, John N; Burckart, Gilbert J

    2018-05-01

    There is a lack of dosing guidelines for use in obese children. Moreover, the impact of obesity on drug safety and clinical outcomes is poorly defined. The paucity of information needed for the safe and effective use of drugs in obese patients remains a problem, even after drug approval. To assess the current incorporation of obesity as a covariate in pediatric drug development, the pediatric medical and clinical pharmacology reviews under the Food and Drug Administration (FDA) Amendments Act of 2007 and the FDA Safety and Innovation Act (FDASIA) of 2012 were reviewed for obesity studies. FDA labels were also reviewed for statements addressing obesity in pediatric patients. Forty-five drugs studied in pediatric patients under the FDA Amendments Act were found to have statements and key words in the medical and clinical pharmacology reviews and labels related to obesity. Forty-four products were identified similarly with pediatric studies under FDASIA. Of the 89 product labels identified, none provided dosing information related to obesity. The effect of body mass index on drug pharmacokinetics was mentioned in only 4 labels. We conclude that there is little information presently available to provide guidance related to dosing in obese pediatric patients. Moving forward, regulators, clinicians, and the pharmaceutical industry should consider situations in drug development in which the inclusion of obese patients in pediatric trials is necessary to facilitate the safe and effective use of new drug products in the obese pediatric population. © 2018, The American College of Clinical Pharmacology.

  4. Do drug prices reflect development time and government investment?

    PubMed

    Keyhani, Salomeh; Diener-West, Marie; Powe, Neil

    2005-08-01

    Lengthy development times are cited by the pharmaceutical industry as one reason for high drug prices. We compared the prices of different groups of drugs after accounting for development time, government support, market size, and other drug characteristics. We conducted a retrospective study of 180 human therapeutic drugs categorized into 8 drug groups by assembling data on drug development times, government support, drug characteristics, and prices. First, we compared the development time and level of government support across the 8 drug groups. Second, we assessed the independent effect of drug group on median price per day in a multivariable analysis, controlling for development time and all other variables. Thirty percent of antiretroviral drugs had government patents compared with 16% of other infectious disease drugs, 6% of cancer drugs, and less than 6% of any other drug group (P < 0.002). Fifty percent of antiretrovirals had NIH trials listed in the new drug application for approval by the Food and Drug Administration compared with less than 6% of any other drug group (P < 0.001). More antiretroviral and cancer drugs received fast track status and accelerated review during regulatory review by the Food and Drug Administration (P < 0.001). The median price of antiretrovirals was 8 US dollars per day more, cancer drugs 11 US dollars per day more, than the reference group after adjustment for other variables (P < 0.001). Development time was not associated with drug price. Antiretroviral and cancer drugs, even after accounting for development time, are among the most highly priced medications. Notably, drugs with rapid development and more government support did not have lower drug prices.

  5. Nanoformulation of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for breast cancer therapy.

    PubMed

    Huang, Laiqiang; Chen, Hongbo; Zheng, Yi; Song, Xiaosong; Liu, Ranyi; Liu, Kexin; Zeng, Xiaowei; Mei, Lin

    2011-10-01

    The purpose of this research was to develop formulation of docetaxel-loaded biodegradable TPGS-b-(PCL-ran-PGA) nanoparticles for breast cancer chemotherapy. A novel diblock copolymer, d-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) [TPGS-b-(PCL-ran-PGA)], was synthesized from ε-caprolactone, glycolide and d-α-tocopheryl polyethylene glycol 1000 succinate by ring-opening polymerization using stannous octoate as catalyst. The obtained copolymers were characterized by (1)H NMR, GPC and TGA. The docetaxel-loaded TPGS-b-(PCL-ran-PGA) nanoparticles were prepared and characterized. The data showed that the fluorescence TPGS-b-(PCL-ran-PGA) nanoparticles could be internalized by MCF-7 cells. The TPGS-b-(PCL-ran-PGA) nanoparticles achieved significantly higher level of cytotoxicity than commercial Taxotere®. MCF-7 xenograft tumor model on SCID mice showed that docetaxel formulated in the TPGS-b-(PCL-ran-PGA) nanoparticles could effectively inhibit the growth of tumor over a longer period of time than Taxotere® at the same dose. In conclusion, the TPGS-b-(PCL-ran-PGA) copolymer could be acted as a novel and potential biologically active polymeric material for nanoformulation in breast cancer chemotherapy. This journal is © The Royal Society of Chemistry 2011

  6. Single-Cell Sequencing for Drug Discovery and Drug Development.

    PubMed

    Wu, Hongjin; Wang, Charles; Wu, Shixiu

    2017-01-01

    Next-generation sequencing (NGS), particularly single-cell sequencing, has revolutionized the scale and scope of genomic and biomedical research. Recent technological advances in NGS and singlecell studies have made the deep whole-genome (DNA-seq), whole epigenome and whole-transcriptome sequencing (RNA-seq) at single-cell level feasible. NGS at the single-cell level expands our view of genome, epigenome and transcriptome and allows the genome, epigenome and transcriptome of any organism to be explored without a priori assumptions and with unprecedented throughput. And it does so with single-nucleotide resolution. NGS is also a very powerful tool for drug discovery and drug development. In this review, we describe the current state of single-cell sequencing techniques, which can provide a new, more powerful and precise approach for analyzing effects of drugs on treated cells and tissues. Our review discusses single-cell whole genome/exome sequencing (scWGS/scWES), single-cell transcriptome sequencing (scRNA-seq), single-cell bisulfite sequencing (scBS), and multiple omics of single-cell sequencing. We also highlight the advantages and challenges of each of these approaches. Finally, we describe, elaborate and speculate the potential applications of single-cell sequencing for drug discovery and drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Nanotechnology for Treating Cancer: Pitfalls and Bridges on the Path to Nanomedicines

    Cancer.gov

    Despite their promise, only a few nano-formulated drugs are used in humans. The NCI Nanotechnology Characterization Lab helps companies and academic investigators maximize their chance of successful clinical use.

  8. Accelerating Precision Drug Development and Drug Repurposing by Leveraging Human Genetics

    PubMed Central

    Shirey-Rice, Jana K.; Lavieri, Robert R.; Jerome, Rebecca N.; Zaleski, Nicole M.; Aronoff, David M.; Bastarache, Lisa; Niu, Xinnan; Holroyd, Kenneth J.; Roden, Dan M.; Skaar, Eric P.; Niswender, Colleen M.; Marnett, Lawrence J.; Lindsley, Craig W.; Ekstrom, Leeland B.; Bentley, Alan R.; Bernard, Gordon R.; Hong, Charles C.; Denny, Joshua C.

    2017-01-01

    Abstract The potential impact of using human genetic data linked to longitudinal electronic medical records on drug development is extraordinary; however, the practical application of these data necessitates some organizational innovations. Vanderbilt has created resources such as an easily queried database of >2.6 million de-identified electronic health records linked to BioVU, which is a DNA biobank with more than 230,000 unique samples. To ensure these data are used to maximally benefit and accelerate both de novo drug discovery and drug repurposing efforts, we created the Accelerating Drug Development and Repurposing Incubator, a multidisciplinary think tank of experts in various therapeutic areas within both basic and clinical science as well as experts in legal, business, and other operational domains. The Incubator supports a diverse pipeline of drug indication finding projects, leveraging the natural experiment of human genetics. PMID:28379727

  9. The Development of a Korean Drug Dosing Database

    PubMed Central

    Kim, Sun Ah; Kim, Jung Hoon; Jang, Yoo Jin; Jeon, Man Ho; Hwang, Joong Un; Jeong, Young Mi; Choi, Kyung Suk; Lee, Iyn Hyang; Jeon, Jin Ok; Lee, Eun Sook; Lee, Eun Kyung; Kim, Hong Bin; Chin, Ho Jun; Ha, Ji Hye; Kim, Young Hoon

    2011-01-01

    Objectives This report describes the development process of a drug dosing database for ethical drugs approved by the Korea Food & Drug Administration (KFDA). The goal of this study was to develop a computerized system that supports physicians' prescribing decisions, particularly in regards to medication dosing. Methods The advisory committee, comprised of doctors, pharmacists, and nurses from the Seoul National University Bundang Hospital, pharmacists familiar with drug databases, KFDA officials, and software developers from the BIT Computer Co. Ltd. analyzed approved KFDA drug dosing information, defined the fields and properties of the information structure, and designed a management program used to enter dosing information. The management program was developed using a web based system that allows multiple researchers to input drug dosing information in an organized manner. The whole process was improved by adding additional input fields and eliminating the unnecessary existing fields used when the dosing information was entered, resulting in an improved field structure. Results A total of 16,994 drugs sold in the Korean market in July 2009, excluding the exclusion criteria (e.g., radioactivity drugs, X-ray contrast medium), usage and dosing information were made into a database. Conclusions The drug dosing database was successfully developed and the dosing information for new drugs can be continually maintained through the management mode. This database will be used to develop the drug utilization review standards and to provide appropriate dosing information. PMID:22259729

  10. Quantitative analysis to guide orphan drug development.

    PubMed

    Lesko, L J

    2012-08-01

    The development of orphan drugs for rare diseases has made impressive strides in the past 10 years. There has been a surge in orphan drug designations, but new drug approvals have not kept up. This article presents a three-pronged hierarchical strategy for quantitative analysis of data at the descriptive, mechanistic, and systems levels of the biological system that could represent a standardized and rational approach to orphan drug development. Examples are provided to illustrate the concept.

  11. [New drug development by innovative drug administration--"change" in pharmaceutical field].

    PubMed

    Nagai, T

    1997-11-01

    New drug development can be made by providing products of higher "selectivity for the drug" for medical treatment. There are two ways for the approach to get higher "selectivity of drug": 1) discovery of new compounds with high selectivity of drug; 2) innovation of new drug administration, that is new formulation and/or method with high selectivity of drug by integration and harmonization of various hard/soft technologies. An extensive increase of biological information and advancement of surrounding science and technology may modify the situation as the latter overcomes the former in the 21 century. As the science and technology in the 21 century is said to be formed on "3H", that is, 1. hybrid; 2. hi-quality; 3. husbandry, the new drug development by innovative drug administration is exactly based on the science and technology of 3H. Its characteristic points are interdisciplinary/interfusion, international, of philosophy/ethics, and systems of hard/hard/heart. From these points of view, not only the advance of unit technology but also a revolution in thinking way should be "must" subjects. To organize this type of research well, a total research activity such as ROR (research on research) might take an important and efficient role. Here the key words are the "Optimization technology" and "Change in Pharmaceutical Fields." As some examples of new drug innovation, our trials on several topical mucosal adhesive dosage forms and parenteral administration of peptide drugs such as insulin and erythropoietin will be described.

  12. Biomarkers for Cystic Fibrosis Drug Development

    PubMed Central

    Muhlebach, Marianne S.; Clancy, JP; Heltshe, Sonya L.; Ziady, Assem; Kelley, Tom; Accurso, Frank; Pilewski, Joseph; Mayer-Hamblett, Nicole; Joseloff, Elizabeth; Sagel, Scott D.

    2016-01-01

    Purpose To provide a review of the status of biomarkers in cystic fibrosis drug development, including regulatory definitions and considerations, a summary of biomarkers in current use with supportive data, current gaps, and future needs. Methods Biomarkers are considered across several areas of CF drug development, including cystic fibrosis transmembrane conductance regulator modulation, infection, and inflammation. Results Sweat chloride, nasal potential difference, and intestinal current measurements have been standardized and examined in the context of multicenter trials to quantify CFTR function. Detection and quantification of pathogenic bacteria in CF respiratory cultures (e.g.: Pseudomonas aeruginosa) is commonly used in early phase antimicrobial clinical trials, and to monitor safety of therapeutic interventions. Sputum (e.g.: neutrophil elastase, myeloperoxidase, calprotectin) and blood biomarkers (e.g.: C reactive protein, calprotectin, serum amyloid A) have had variable success in detecting response to inflammatory treatments. Conclusions Biomarkers are used throughout the drug development process in CF, and many have been used in early phase clinical trials to provide proof of concept, detect drug bioactivity, and inform dosing for later-phase studies. Advances in the precision of current biomarkers, and the identification of new biomarkers with ‘omics-based technologies, are needed to accelerate CF drug development. PMID:28215711

  13. Noninvasive Fluorescence Resonance Energy Transfer Imaging of in vivo Premature Drug Release from Polymeric Nanoparticles

    PubMed Central

    Zou, Peng; Chen, Hongwei; Paholak, Hayley J.; Sun, Duxin

    2013-01-01

    Understanding in vivo drug release kinetics is critical for the development of nanoparticle-based delivery systems. In this study, we developed a fluorescence resonance energy transfer (FRET) imaging approach to noninvasively monitor in vitro and in vivo cargo release from polymeric nanoparticles. The FRET donor dye (DiO or DiD) and acceptor dye (DiI or DiR) were individually encapsulated into poly(ethylene oxide)-b-polystyrene (PEO-PS) nanoparticles. When DiO (donor) nanoparticles and DiI (acceptor) nanoparticles were co-incubated with cancer cells for 2 h, increased FRET signals were observed from cell membranes, suggesting rapid release of DiO and DiI to cell membranes. Similarly, increased FRET ratios were detected in nude mice after intravenous co-administration of DiD (donor) nanoparticles and DiR (acceptor) nanoparticles. In contrast, another group of nude mice i.v. administrated with DiD/DiR co-loaded nanoparticles showed decreased FRET ratios. Based on the difference in FRET ratios between the two groups, in vivo DiD/DiR release half-life from PEO-PS nanoparticles was determined to be 9.2 min. In addition, it was observed that the presence of cell membranes facilitated burst release of lipophilic cargos while incorporation of oleic acid-coated iron oxide into PEO-PS nanoparticles slowed the release of DiD/DiR to cell membranes. The developed in vitro and in vivo FRET imaging techniques can be used to screening stable nano-formulations for lipophilic drug delivery. PMID:24033270

  14. Impediments to drug development.

    PubMed

    Robson, Martin C

    2003-01-01

    There is a continual need for new products for wound care, as well as a desire by scientists and clinicians to translate information into wound healing improvements for patients. Pharmaceutical and biotechnology companies devote immense resources to fulfilling these needs and desires. However, there are many impediments to drug development that are poorly understood by caregivers, patients, and the public at large. Among these impediments are the tremendous costs involved, the short patent protection time, and regulatory issues. In addition, there is a marked attrition of potential drugs as they progress through the various stages of development. When the costs, time, regulatory issues, and attrition impediments are overcome, the problems with reimbursement become an impediment. This is especially true in the elderly population in which most chronic wound healing problems occur. Finally, academic societies such as the Wound Healing Society and its members pose an impediment to drug development. There is a need to interact with various governmental agencies and industry to facilitate translating science to patient care. This has not been done with a strong, uniform voice. These are but a few of the impediments that prevent scientific advances from resulting in new products available at the bedside to improve the quality of life of our patients.

  15. [Chapter 2. Transitions in drug-discovery technology and drug-development in Japan (1980-2010)].

    PubMed

    Sakakibara, Noriko; Yoshioka, Ryuzo; Matsumoto, Kazuo

    2014-01-01

    In 1970s, the material patent system was introduced in Japan. Since then, many Japanese pharmaceutical companies have endeavored to create original in-house products. From 1980s, many of the innovative products were small molecular drugs and were developed using powerful medicinal-chemical technologies. Among them were antibiotics and effective remedies for the digestive organs and circulatory organs. During this period, Japanese companies were able to launch some blockbuster drugs. At the same time, the pharmaceutical market, which had grown rapidly for two decades, was beginning to level off. From the late 1990s, drug development was slowing down due to the lack of expertise in biotechnology such as genetic engineering. In response to the circumstances, the research and development on biotechnology-based drugs such as antibody drugs have become more dynamic and popular at companies than small molecule drugs. In this paper, the writers reviewed in detail the transitions in drug discovery and development between 1980 and 2010.

  16. CNS Anticancer Drug Discovery and Development Conference White Paper

    PubMed Central

    Levin, Victor A.; Tonge, Peter J.; Gallo, James M.; Birtwistle, Marc R.; Dar, Arvin C.; Iavarone, Antonio; Paddison, Patrick J.; Heffron, Timothy P.; Elmquist, William F.; Lachowicz, Jean E.; Johnson, Ted W.; White, Forest M.; Sul, Joohee; Smith, Quentin R.; Shen, Wang; Sarkaria, Jann N.; Samala, Ramakrishna; Wen, Patrick Y.; Berry, Donald A.; Petter, Russell C.

    2015-01-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric “Accelerating Drug Discovery and Development for Brain Tumors,” further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167

  17. Orphan drug development in the United States.

    PubMed

    Groft, S C

    1985-05-01

    Drug research and development in the U.S. tends to focus on drugs to treat common diseases because of the anticipated return on investment. To stimulate pharmaceutical manufacturers to pursue the development of drugs for rare conditions, the Orphan Drug Act was enacted by Congress on January 4, 1983. Under the provisions of this Act, the FDA can make recommendations on the investigations necessary for marketing approval; exclusive marketing privileges can be obtained; tax credits for expenses incurred are allowed; availability of orphan drugs on an investigational basis is encouraged; and the Orphan Product Board is established for the coordination of research efforts and their reimbursement. The effects of this legislation are evident in the continuing increase in orphan drug designations.

  18. Antimalarial Drug: From its Development to Deface.

    PubMed

    Barik, Tapan Kumar

    2015-01-01

    Wiping out malaria is now the global concern as about three billion people are at risk of malaria infection globally. Despite of extensive research in the field of vaccine development for malaria, till now, no effective vaccine is available for use and hence only antimalarial drugs remain our best hope for both treatment and prevention of malaria. However, emergence and spread of drug resistance has been a major obstacle for the success of malaria elimination globally. This review will summarize the information related to antimalarial drugs, drug development strategies, drug delivery through nanoparticles, few current issues like adverse side effects of most antimalarial drugs, non availability of drugs in the market and use of fake/poor quality drugs that are hurdles to malaria control. As we don't have any other option in the present scenario, we have to take care of the existing tools and make them available to almost all malaria affected area.

  19. Development of Bone Targeting Drugs.

    PubMed

    Stapleton, Molly; Sawamoto, Kazuki; Alméciga-Díaz, Carlos J; Mackenzie, William G; Mason, Robert W; Orii, Tadao; Tomatsu, Shunji

    2017-06-23

    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca 2+ . The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments.

  20. Development of Bone Targeting Drugs

    PubMed Central

    Stapleton, Molly; Sawamoto, Kazuki; Alméciga-Díaz, Carlos J.; Mackenzie, William G.; Mason, Robert W.; Orii, Tadao; Tomatsu, Shunji

    2017-01-01

    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca2+. The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments. PMID:28644392

  1. Molecular science for drug development and biomedicine.

    PubMed

    Zhong, Wei-Zhu; Zhou, Shu-Feng

    2014-11-04

    With the avalanche of biological sequences generated in the postgenomic age, molecular science is facing an unprecedented challenge, i.e., how to timely utilize the huge amount of data to benefit human beings. Stimulated by such a challenge, a rapid development has taken place in molecular science, particularly in the areas associated with drug development and biomedicine, both experimental and theoretical. The current thematic issue was launched with the focus on the topic of "Molecular Science for Drug Development and Biomedicine", in hopes to further stimulate more useful techniques and findings from various approaches of molecular science for drug development and biomedicine.[...].

  2. Anticancer drug development from traditional cytotoxic to targeted therapies: evidence of shorter drug research and development time, and shorter drug lag in Japan.

    PubMed

    Kawabata-Shoda, E; Masuda, S; Kimura, H

    2012-10-01

    Concern about the drug lag, the delay in marketing approval between one country and another, for anticancer drugs has increased in Japan. Although a number of studies have investigated the drug lag, none has investigated it in relation to the transition of anticancer therapy from traditional cytotoxic drugs to molecularly targeted agents. Our aim was to investigate current trend in oncology drug lag between the US and Japan and identify oncology drugs approved in only one of the two countries. Publicly and commercially available data sources were used to identify drugs approved in the US and Japan as of 31 December 2010 and the data used to calculate the drug lag for individual drugs. Fifty-one drugs were approved in both the US and Japan, whereas 34 and 19 drugs were approved only in the US or Japan, respectively. Of the 19 drugs approved only in Japan, 12 had not been subject to development for a cancer indication in the US, and all were approved before 1996 in Japan. Of the 34 drugs approved only in the US, 20 had not been subject to development in Japan, and none was in the top 25 by annual US anticancer drug-class sales. For drugs approved in both countries, the mean approval lag of the molecularly targeted drugs (MTDs) was significantly shorter than that of the non-molecularly targeted drugs (non-MTDs) (3·3 vs. 5·4 years). Further, mean R&D time of the MTDs was significantly shorter than that of non-MTDs (10·0 vs. 13·7 years). The price of MTDs had increased on average by 6·6% annually in the US, whereas it had decreased on average by 4·3% biyearly in Japan. The emergence of new molecularly targeted agents has contributed to reducing the approval lag, most likely due to improvements in R&D strategy. © 2012 Blackwell Publishing Ltd.

  3. Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast cancer cells.

    PubMed

    Verderio, Paolo; Pandolfi, Laura; Mazzucchelli, Serena; Marinozzi, Maria Rosaria; Vanna, Renzo; Gramatica, Furio; Corsi, Fabio; Colombo, Miriam; Morasso, Carlo; Prosperi, Davide

    2014-08-04

    Among polymeric nanoparticles designed for cancer therapy, PLGA nanoparticles have become one of the most popular polymeric devices for chemotherapeutic-based nanoformulations against several kinds of malignant diseases. Promising properties, including long-circulation time, enhanced tumor localization, interference with "multidrug" resistance effects, and environmental biodegradability, often result in an improvement of the drug bioavailability and effectiveness. In the present work, we have synthesized 1,7-bis(3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-trien-3-one (ASC-J9) and developed uniform ASC-J9-loaded PLGA nanoparticles of about 120 nm, which have been prepared by a single-emulsion process. Structural and morphological features of the nanoformulation were analyzed, followed by an accurate evaluation of the in vitro drug release kinetics, which exhibited Fickian law diffusion over 10 days. The intracellular degradation of ASC-J9-bearing nanoparticles within estrogen-dependent MCF-7 breast cancer cells was correlated to a time- and dose-dependent activity of the released drug. A cellular growth inhibition associated with a specific cell cycle G2/M blocking effect caused by ASC-J9 release inside the cytosol allowed us to put forward a hypothesis on the action mechanism of this nanosystem, which led to the final cell apoptosis. Our study was accomplished using Annexin V-based cell death analysis, MTT assessment of proliferation, radical scavenging activity, and intracellular ROS evaluation. Moreover, the intracellular localization of nanoformulated ASC-J9 was confirmed by a Raman optical imaging experiment designed ad hoc. PLGA nanoparticles and ASC-J9 proved also to be safe for a healthy embryo fibroblast cell line (3T3-L1), suggesting a possible clinical translation of this potential nanochemotherapeutic to expand the inherently poor bioavailability of hydrophobic ASC-J9 that could be proposed for the treatment of malignant breast cancer.

  4. Drug Development for Pediatric Populations: Regulatory Aspects

    PubMed Central

    Zisowsky, Jochen; Krause, Andreas; Dingemanse, Jasper

    2010-01-01

    Pediatric aspects are nowadays integrated early in the development process of a new drug. The stronger enforcement to obtain pediatric information by the regulatory agencies in recent years resulted in an increased number of trials in children. Specific guidelines and requirements from, in particular, the European Medicines Agency (EMA) and the Food and Drug Administration (FDA) form the regulatory framework. This review summarizes the regulatory requirements and strategies for pediatric drug development from an industry perspective. It covers pediatric study planning and conduct, considerations for first dose in children, appropriate sampling strategies, and different methods for data generation and analysis to generate knowledge about the pharmacokinetics (PK) and pharmacodynamics (PD) of a drug in children. The role of Modeling and Simulation (M&S) in pediatrics is highlighted—including the regulatory basis—and examples of the use of M&S are illustrated to support pediatric drug development. PMID:27721363

  5. Alizarin Complexone Functionalized Mesoporous Silica Nanoparticles: A Smart System Integrating Glucose-Responsive Double-Drugs Release and Real-Time Monitoring Capabilities.

    PubMed

    Zou, Zhen; He, Dinggeng; Cai, Linli; He, Xiaoxiao; Wang, Kemin; Yang, Xue; Li, Liling; Li, Siqi; Su, Xiaoya

    2016-04-06

    The outstanding progress of nanoparticles-based delivery systems capable of releasing hypoglycemic drugs in response to glucose has dramatically changed the outlook of diabetes management. However, the developed glucose-responsive systems have not offered real-time monitoring capabilities for accurate quantifying hypoglycemic drugs released. In this study, we present a multifunctional delivery system that integrates both delivery and monitoring issues using glucose-triggered competitive binding scheme on alizarin complexone (ALC) functionalized mesoporous silica nanoparticles (MSN). In this system, ALC is modified on the surface of MSN as the signal reporter. Gluconated insulin (G-Ins) is then introduced onto MSN-ALC via benzene-1,4-diboronic acid (BA) mediated esterification reaction, where G-Ins not only blocks drugs inside the mesopores but also works as a hypoglycemic drug. In the absence of glucose, the sandwich-type boronate ester structure formed by BA binding to the diols of ALC and G-Ins remains intact, resulting in an fluorescence emission peak at 570 nm and blockage of pores. Following a competitive binding, the presence of glucose cause the dissociation of boronate ester between ALC and BA, which lead to the pores opening and disappearance of fluorescence. As proof of concept, rosiglitazone maleate (RSM), an insulin-sensitizing agent, was doped into the MSN to form a multifunctional MSN (RSM@MSN-ALC-BA-Ins), integrating with double-drugs loading, glucose-responsive performance, and real-time monitoring capability. It has been demonstrated that the glucose-responsive release behaviors of insulin and RSM in buffer or in human serum can be quantified in real-time through evaluating the changes of fluorescence signal. We believe that this developed multifunctional system can shed light on the invention of a new generation of smart nanoformulations for optical diagnosis, individualized treatment, and noninvasive monitoring of diabetes management.

  6. The worldwide trend of using botanical drugs and strategies for developing global drugs.

    PubMed

    Ahn, Kyungseop

    2017-03-01

    Natural product drugs, or botanical drugs, are drugs composed of natural substances which have constituents with healthenhancing or medicinal activities. In Korea, government-led projects brought attention to botanical drugs invigorating domestic botanical drug industry. Foreign markets, as well, are growing bigger as the significance of botanical drugs stood out. To follow along with the tendency, Korea puts a lot of effort on developing botanical drugs suitable for global market. However, standards for approving drug sales vary by countries. And also, thorough standardization, certification, clinical studies and data of these will be required as well as data confirming safety and effectiveness. Meanwhile, as an international exchange in botanical drug market continues, the importance of plant resources was emphasized. Thus countries' ownership of domestic natural resources became vital. Not only establishing a systematic method to secure domestic plant resources, but also cooperation with other countries on sharing natural resources is essential to procure natural resources effectively. Korea started to show visible results with botanical drugs, and asthma/COPD treatment made out of speedwell is one example. Sufficient investment and government's active support for basic infrastructure for global botanical drugs will bring Korea to much higher level of botanical drug development. [BMB Reports 2017; 50(3): 111-116].

  7. Enzastaurin: A lesson in drug development.

    PubMed

    Bourhill, T; Narendran, A; Johnston, R N

    2017-04-01

    Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. It was initially developed as an isozyme specific inhibitor of protein kinase Cβ (PKCβ), which is involved in both the AKT and MAPK signalling pathways that are active in many cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. In this review, we will discuss the development of enzastaurin from drug design to clinical testing, exploring target identification, validation and preclinical assessment. Finally, we will consider the clinical evaluation of enzastaurin as an example of the challenges associated with drug development. In particular, we discuss the poor translation of drug efficacy from preclinical animal models, inappropriate end point analysis, limited standards in phase I clinical trials, insufficient use of biomarker analysis and also patient stratification, all of which contributed to the failure to achieve approval of enzastaurin as an anticancer therapeutic. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Practice of Regulatory Science (Drug Development).

    PubMed

    Kawanishi, Toru

    2017-01-01

    The practice of regulatory science (RS) for drug development is described. In the course material for education in pharmaceutical sciences drafted by the RS Division of the Pharmaceutical Society of Japan, RS for pharmaceuticals is defined as the science of predicting, assessing, and judging the quality, efficacy, and safety of pharmaceutical products throughout their lifespan. RS is also described as an integrated science based on basic and applied biomedical sciences, including analytical chemistry, biochemistry, pharmacology, toxicology, genetics, biostatistics, epidemiology, and clinical trial methodology, and social sciences such as decision science, risk assessment, and communication science. The involvement of RS in drug development generally starts after the optimization of lead compounds. RS plays important roles governing pharmaceuticals during their entire life cycle management phase as well as the drug development phase.

  9. New antituberculous drugs derived from natural products: current perspectives and issues in antituberculous drug development.

    PubMed

    Igarashi, Masayuki; Ishizaki, Yoshimasa; Takahashi, Yoshiaki

    2017-11-01

    Tuberculosis is one of the most common and challenging infectious diseases worldwide. Especially, the lack of effective chemotherapeutic drugs for tuberculosis/human immunodeficiency virus co-infection and prevalence of multidrug-resistant and extensively drug-resistant tuberculosis remain to be serious clinical problems. Development of new drugs is a potential solution to fight tuberculosis. In this decade, the development status of new antituberculous drugs has been greatly advanced by the leading role of international organizations such as the Global Alliance for Tuberculosis Drug Development, Stop Tuberculosis Partnership and Global Health Innovative Technology Fund. In this review, we introduce the development status of new drugs for tuberculosis, focusing on those derived from natural products.The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.126.

  10. Lost in translation: neuropsychiatric drug development.

    PubMed

    Becker, Robert E; Greig, Nigel H

    2010-12-08

    Recent studies have identified troubling method and practice lapses in neuropsychiatric drug developments. These problems have resulted in errors that are of sufficient magnitude to invalidate clinical trial data and interpretations. We identify two potential sources for these difficulties: investigators selectively choosing scientific practices for demonstrations of efficacy in human-testing phases of drug development and investigators failing to anticipate the needs of practitioners who must optimize treatment for the individual patient. When clinical investigators neglect to use clinical trials as opportunities to test hypotheses of disease mechanisms in humans, the neuropsychiatric knowledge base loses both credibility and scope. When clinical investigators do not anticipate the need to translate discoveries into applications, the practitioner cannot provide optimal care for the patient. We conclude from this evidence that clinical trials, and other aspects of neuropsychiatric drug development, must adopt more practices from basic science and show greater responsiveness to conditions of clinical practice. We feel that these changes are necessary to overcome current threats to the validity and utility of studies of neurological and psychiatric drugs.

  11. Emerging and recurrent issues in drug development.

    PubMed

    Anello, C

    This paper reviews several emerging and recurrent issues relating to the drug development process. These emerging issues include changes to the FDA regulatory environment, internationalization of drug development, advances in computer technology and visualization tools, and efforts to incorporate meta-analysis methodology. Recurrent issues include: renewed interest in statistical methods for handling subgroups in the design and analysis of clinical trials; renewed interest in alternatives to the 'intention-to-treat' analysis in the presence of non-compliance in randomized clinical trials; renewed interest in methodology to address the multiplicities resulting from a variety of sources inherent in the drug development process, and renewed interest in methods to assure data integrity. These emerging and recurrent issues provide a continuing challenge to the international community of statisticians involved in drug development. Moreover, the involvement of statisticians with different perspectives continues to enrich the field and contributes to improvement in the public health.

  12. Recent advances in (therapeutic protein) drug development

    PubMed Central

    Lagassé, H.A. Daniel; Alexaki, Aikaterini; Simhadri, Vijaya L.; Katagiri, Nobuko H.; Jankowski, Wojciech; Sauna, Zuben E.; Kimchi-Sarfaty, Chava

    2017-01-01

    Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing) product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016). PMID:28232867

  13. Surrogacy in antiviral drug development

    PubMed Central

    Shaunak, Sunil; Davies, Donald S

    2002-01-01

    The coming of age of molecular biology has resulted in an explosion in our understanding of the pathogenesis of virus related diseases. New pathogens have been identified and characterized as being responsible for old diseases. Empirical clinical evaluation of morbidity and mortality as outcome measures after a therapeutic intervention have started to give way to the use of an increasing number of surrogate markers. Using a combination of these markers, it is now possible to measure and monitor the pathogen as well as the host's response. Nowhere is this better exemplified in virology than in the field of AIDS. We have utilized the advances in pathogenesis and new antiretroviral drug development to: develop a new class of drugs which block the entry of HIV-1 into cells.develop a new approach for effectively delivering these drugs to those tissues in which most viral replication takes place. Over the last 10 years, our work has progressed from concept to clinical trial. Our laboratory based evaluation of the new molecules developed as well as our clinical evaluation of their safety and efficacy have had to respond and adapt to the rapid changes taking place in AIDS research. This paper discusses the problems encountered and the lessons learnt. PMID:12100230

  14. Accelerating drug development and approval.

    PubMed

    Cole, Patrick

    2010-01-01

    Regulatory agencies are the gateway between the pharma/biotech industry and patients and can serve as stimulators of new drug development. This article highlights several means of doing so implemented thus far, many with already impressive histories, such as orphan drug legislation, and others of a more experimental nature, such as the FDA's priority review voucher program. These initiatives represent different approaches to finding treatments for rare and widespread but neglected diseases, as well as speeding the development process for pharmaceutical and biological agents more generally. Commercial incentives, streamlined regulatory processing, exploratory trial designs, research assistance and cash infusions are all means of promoting drug development being explored in the United States, Europe and beyond. In some cases, such as fast track designation and priority review vouchers, regulatory agencies have turned their own processes into incentives, offering advantageous alternative routes to product approval, like a faster lane on the highway for vehicles carrying multiple passengers. In 2009, regulatory agencies and the governments they represent also had to confront two tremendous challenges: the global recession and the H1N1 influenza virus pandemic. These tests have been met with increased funding in the former case and coordinated efforts to develop, approve and stockpile H1N1 vaccines in the latter.

  15. Development and characterization of polymer-oil nanostructured carrier (PONC) for controlled delivery of all-trans retinoic acid (ATRA)

    NASA Astrophysics Data System (ADS)

    Narvekar, Mayuri M.

    The commonly used PLGA-based delivery systems are often limited by their inadequate drug loading and release properties. This study reports the integration of oil into PLGA to form the prototype of a hybrid drug carrier PONC. Our primary goal is to confer the key strength of lipid-based drug carriers, i.e. efficient encapsulation of lipophilic compounds, to a PLGA system without taking away its various useful qualities. The PONC were formulated by emulsification solvent evaporation technique, which were then characterized for particle size, encapsulation efficiency, drug release and anticancer efficacy. The ATRA loaded PONC showed excellent encapsulation efficiency and release kinetics. Even after surface functionalization with PEG , controlled drug release kinetics was maintained, with 88.5% of the encapsulated ATRA released from the PEG-PONC in a uniform manner over 120 hours. It also showed favorable physicochemical properties and serum stability. PEG-PONC has demonstrated substantially superior activity over the free ATRA in ovarian cancer cells that are non-responsive to the standard chemotherapy. The newly developed PEG-PONC significantly reduced the IC50 values (p<0.05) in the chemoresistant cells in both MTT and colony formation assays. Hence, this new ATRA-nanoformulation may offer promising means for the delivery of lipophilic compounds like all-trans retinoic acid to treat highly resistant ovarian cancer.

  16. Degradable ketal-based block copolymer nanoparticles for anticancer drug delivery: a systematic evaluation.

    PubMed

    Louage, Benoit; Zhang, Qilu; Vanparijs, Nane; Voorhaar, Lenny; Vande Casteele, Sofie; Shi, Yang; Hennink, Wim E; Van Bocxlaer, Jan; Hoogenboom, Richard; De Geest, Bruno G

    2015-01-12

    Low solubility of potent (anticancer) drugs is a major driving force for the development of noncytotoxic, stimuli-responsive nanocarriers, including systems based on amphiphilic block copolymers. In this regard, we investigated the potential of block copolymers based on 2-hydroxyethyl acrylate (HEA) and the acid-sensitive ketal-containing monomer (2,2-dimethyl-1,3-dioxolane-4-yl)methyl acrylate (DMDMA) to form responsive drug nanocarriers. Block copolymers were successfully synthesized by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization, in which we combined a hydrophilic poly(HEA)x block with a (responsive) hydrophobic poly(HEAm-co-DMDMAn)y copolymer block. The DMDMA content of the hydrophobic block was systematically varied to investigate the influence of polymer design on physicochemical properties and in vitro biological performance. We found that a DMDMA content higher than 11 mol % is required for self-assembly behavior in aqueous medium. All particles showed colloidal stability in PBS at 37 °C for at least 4 days, with sizes ranging from 23 to 338 nm, proportional to the block copolymer DMDMA content. Under acidic conditions, the nanoparticles decomposed into soluble unimers, of which the decomposition rate was inversely proportional to the block copolymer DMDMA content. Flow cytometry and confocal microscopy showed dose-dependent, active in vitro cellular uptake of the particles loaded with hydrophobic octadecyl rhodamine B chloride (R18). The block copolymers showed no intrinsic in vitro cytotoxicity, while loaded with paclitaxel (PTX), a significant decrease in cell viability was observed comparable or better than the two commercial PTX nanoformulations Abraxane and Genexol-PM at equal PTX dose. This systematic approach evaluated and showed the potential of these block copolymers as nanocarriers for hydrophobic drugs.

  17. Induction of oxidative stress by Taxol® vehicle Cremophor-EL triggers production of interleukin-8 by peripheral blood mononuclear cells through the mechanism not requiring de novo synthesis of mRNA.

    PubMed

    Ilinskaya, Anna N; Clogston, Jeffrey D; McNeil, Scott E; Dobrovolskaia, Marina A

    2015-11-01

    Understanding the ability of cytotoxic oncology drugs, and their carriers and formulation excipients, to induce pro-inflammatory responses is important for establishing safe and efficacious formulations. Literature data about cytokine response induction by the traditional formulation of paclitaxel, Taxol®, are controversial, and no data are available about the pro-inflammatory profile of the nano-albumin formulation of this drug, Abraxane®. Herein, we demonstrate and explain the difference in the cytokine induction profile between Taxol® and Abraxane®, and describe a novel mechanism of cytokine induction by a nanosized excipient, Cremophor EL, which is not unique to Taxol® and is commonly used in the pharmaceutical industry for delivery of a wide variety of small molecular drugs. Advances in nanotechnology have enabled the production of many nano-formulation drugs. The cellular response to drugs has been reported to be different between traditional and nano-formulations. In this article, the authors investigated and compared cytokine response induction profiles between Taxol® and Abraxane®. The findings here provided further understanding to create drugs with better safety profiles. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. DrugPath: a database for academic investigators to match oncology molecular targets with drugs in development.

    PubMed

    Shah, Eric D; Fisch, Brandon M A; Arceci, Robert J; Buckley, Jonathan D; Reaman, Gregory H; Sorensen, Poul H; Triche, Timothy J; Reynolds, C Patrick

    2014-05-01

    Academic laboratories are developing increasingly large amounts of data that describe the genomic landscape and gene expression patterns of various types of cancers. Such data can potentially identify novel oncology molecular targets in cancer types that may not be the primary focus of a drug sponsor's initial research for an investigational new drug. Obtaining preclinical data that point toward the potential for a given molecularly targeted agent, or a novel combination of agents requires knowledge of drugs currently in development in both the academic and commercial sectors. We have developed the DrugPath database ( http://www.drugpath.org ) as a comprehensive, free-of-charge resource for academic investigators to identify agents being developed in academics or industry that may act against molecular targets of interest. DrugPath data on molecular targets overlay the Michigan Molecular Interactions ( http://mimi.ncibi.org ) gene-gene interaction map to facilitate identification of related agents in the same pathway. The database catalogs 2,081 drug development programs representing 751 drug sponsors and 722 molecular and genetic targets. DrugPath should assist investigators in identifying and obtaining drugs acting on specific molecular targets for biological and preclinical therapeutic studies.

  19. [Development of antituberculous drugs: current status and future prospects].

    PubMed

    Tomioka, Haruaki; Namba, Kenji

    2006-12-01

    Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death. One-third of the world's population is infected with Mycobacterium tuberculosis (MTB), the etiologic agent of TB. The World Health Organization estimates that about eight to ten million new TB cases occur annually worldwide and the incidence of TB is currently increasing. In this context, TB is in the top three, with malaria and HIV being the leading causes of death from a single infectious agent, and approximately two million deaths are attributable to TB annually. In particular, pulmonary TB, the most common form of TB, is a highly contagious and life-threatening infection. Moreover, enhanced susceptibility to TB in HIV-infected populations is another serious health problem throughout the world. In addition, multidrug-resistant TB (MDR-TB) has been increasing in incidence in many areas, not only in developing countries but industrialized countries as well, during the past decade. These situations, particularly the global resurgence of TB and the rapid emergence of MDR-TB, underscore the importance of the development of new antituberculous drugs and new protocols for efficacious clinical control of TB patients using ordinary antimycobacterial drugs. Concerning the development of new antituberculous drugs, the following points are of particular importance. (1) Development of drugs which display lasting antimycobacterial activity in vivo is desirable, since they can be administered with long intervals and consequently facilitate directly observed therapy and enhance patient compliance. (2) Development of novel antituberculosis compounds to combat MDR-TB is urgently needed. (3) The eradication of slowly metabolizing and, if possible, dormant populations of MTB organisms that cause relapse, using new classes of anti-TB drugs is very promising for prevention of TB incidence, because it will markedly reduce the incidence of active TB from persons who are

  20. A Drug-Centric View of Drug Development: How Drugs Spread from Disease to Disease

    PubMed Central

    Rodriguez-Esteban, Raul

    2016-01-01

    Drugs are often seen as ancillary to the purpose of fighting diseases. Here an alternative view is proposed in which they occupy a spearheading role. In this view, drugs are technologies with an inherent therapeutic potential. Once created, they can spread from disease to disease independently of the drug creator’s original intentions. Through the analysis of extensive literature and clinical trial records, it can be observed that successful drugs follow a life cycle in which they are studied at an increasing rate, and for the treatment of an increasing number of diseases, leading to clinical advancement. Such initial growth, following a power law on average, has a degree of momentum, but eventually decelerates, leading to stagnation and decay. A network model can describe the propagation of drugs from disease to disease in which diseases communicate with each other by receiving and sending drugs. Within this model, some diseases appear more prone to influence other diseases than be influenced, and vice versa. Diseases can also be organized into a drug-centric disease taxonomy based on the drugs that each adopts. This taxonomy reflects not only biological similarities across diseases, but also the level of differentiation of existing therapies. In sum, this study shows that drugs can become contagious technologies playing a driving role in the fight against disease. By better understanding such dynamics, pharmaceutical developers may be able to manage drug projects more effectively. PMID:27124390

  1. A Drug-Centric View of Drug Development: How Drugs Spread from Disease to Disease.

    PubMed

    Rodriguez-Esteban, Raul

    2016-04-01

    Drugs are often seen as ancillary to the purpose of fighting diseases. Here an alternative view is proposed in which they occupy a spearheading role. In this view, drugs are technologies with an inherent therapeutic potential. Once created, they can spread from disease to disease independently of the drug creator's original intentions. Through the analysis of extensive literature and clinical trial records, it can be observed that successful drugs follow a life cycle in which they are studied at an increasing rate, and for the treatment of an increasing number of diseases, leading to clinical advancement. Such initial growth, following a power law on average, has a degree of momentum, but eventually decelerates, leading to stagnation and decay. A network model can describe the propagation of drugs from disease to disease in which diseases communicate with each other by receiving and sending drugs. Within this model, some diseases appear more prone to influence other diseases than be influenced, and vice versa. Diseases can also be organized into a drug-centric disease taxonomy based on the drugs that each adopts. This taxonomy reflects not only biological similarities across diseases, but also the level of differentiation of existing therapies. In sum, this study shows that drugs can become contagious technologies playing a driving role in the fight against disease. By better understanding such dynamics, pharmaceutical developers may be able to manage drug projects more effectively.

  2. Open source drug discovery--a new paradigm of collaborative research in tuberculosis drug development.

    PubMed

    Bhardwaj, Anshu; Scaria, Vinod; Raghava, Gajendra Pal Singh; Lynn, Andrew Michael; Chandra, Nagasuma; Banerjee, Sulagna; Raghunandanan, Muthukurussi V; Pandey, Vikas; Taneja, Bhupesh; Yadav, Jyoti; Dash, Debasis; Bhattacharya, Jaijit; Misra, Amit; Kumar, Anil; Ramachandran, Srinivasan; Thomas, Zakir; Brahmachari, Samir K

    2011-09-01

    It is being realized that the traditional closed-door and market driven approaches for drug discovery may not be the best suited model for the diseases of the developing world such as tuberculosis and malaria, because most patients suffering from these diseases have poor paying capacity. To ensure that new drugs are created for patients suffering from these diseases, it is necessary to formulate an alternate paradigm of drug discovery process. The current model constrained by limitations for collaboration and for sharing of resources with confidentiality hampers the opportunities for bringing expertise from diverse fields. These limitations hinder the possibilities of lowering the cost of drug discovery. The Open Source Drug Discovery project initiated by Council of Scientific and Industrial Research, India has adopted an open source model to power wide participation across geographical borders. Open Source Drug Discovery emphasizes integrative science through collaboration, open-sharing, taking up multi-faceted approaches and accruing benefits from advances on different fronts of new drug discovery. Because the open source model is based on community participation, it has the potential to self-sustain continuous development by generating a storehouse of alternatives towards continued pursuit for new drug discovery. Since the inventions are community generated, the new chemical entities developed by Open Source Drug Discovery will be taken up for clinical trial in a non-exclusive manner by participation of multiple companies with majority funding from Open Source Drug Discovery. This will ensure availability of drugs through a lower cost community driven drug discovery process for diseases afflicting people with poor paying capacity. Hopefully what LINUX the World Wide Web have done for the information technology, Open Source Drug Discovery will do for drug discovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The role of fMRI in drug development

    PubMed Central

    Carmichael, Owen; Schwarz, Adam J.; Chatham, Christopher H.; Scott, David; Turner, Jessica A.; Upadhyay, Jaymin; Coimbra, Alexandre; Goodman, James A.; Baumgartner, Richard; English, Brett A.; Apolzan, John W.; Shankapal, Preetham; Hawkins, Keely R.

    2017-01-01

    Functional magnetic resonance imaging (fMRI) has been known for over a decade to have the potential to greatly enhance the process of developing novel therapeutic drugs for prevalent health conditions. However, the use of fMRI in drug development continues to be relatively limited because of a variety of technical, biological, and strategic barriers that continue to limit progress. Here, we briefly review the roles that fMRI can have in the drug development process and the requirements it must meet to be useful in this setting. We then provide an update on our current understanding of the strengths and limitations of fMRI as a tool for drug developers and recommend activities to enhance its utility. PMID:29154758

  4. Assessment of celecoxib poly(lactic-co-glycolic) acid nanoformulation on drug pharmacodynamics and pharmacokinetics in rats.

    PubMed

    Harirforoosh, S; West, K O; Murrell, D E; Denham, J W; Panus, P C; Hanley, G A

    2016-11-01

    Celecoxib (CEL) is a nonsteroidal anti-inflammatory drug (NSAID) showing selective cycloxygenase-2 inhibition. While effective as a pain reducer, CEL exerts some negative influence on renal and gastrointestinal parameters. This study examined CEL pharmacodynamics and pharmacokinetics following drug reformulation as a poly(lactic-co-glycolic) acid nanoparticle (NP). Rats were administered either vehicle (VEH) (methylcellulose solution), blank NP, 40 mg/kg CEL in methylcellulose, or an equivalent NP dose (CEL-NP). Plasma and urine (over 12 hrs) samples were collected prior to and post-treatment. The mean percent change from baseline of urine flow rate along with electrolyte concentrations in plasma and urine were assessed based on 100 g body weight. Using tissues collected 24 hrs post-treatment, gastrointestinal inflammation was estimated through duodenal and gastric prostaglandin E2 (PGE2) and duodenal myeloperoxidase (MPO) levels; while kidney tissue was examined for dilatation and necrosis. CEL concentration was assayed in renal tissue and plasma utilizing high-performance liquid chromatography. Although there were significant changes when comparing CEL and CEL-NP to VEH in plasma sodium concentration and potassium excretion rate, there was no significant variation between CEL and CEL-NP. There was a significant reduction of protective duodenal PGE2 in CEL compared to VEH (p = 0.0088) and CEL-NP (p = 0.02). In the CEL-NP formulation, t1/2, Cmax, AUC0-∞, and Vd/F increased significantly when compared to CEL. At the observed dosage and duration, CEL-NP may not affect CEL-associated electrolyte parameters in either plasma or urine; however, it does provide increased systemic exposure while potentially alleviating some gastrointestinal outcomes related to inflammation.

  5. Drug development: from concept to marketing!

    PubMed

    Tamimi, Nihad A M; Ellis, Peter

    2009-01-01

    Drug development is an expensive, long and high-risk business taking 10-15 years and is associated with a high attrition rate. It is driven by medical need, disease prevalence and the likelihood of success. Drug candidate selection is an iterative process between chemistry and biology, refining the molecular properties until a compound suitable for advancing to man is found. Typically, about one in a thousand synthesised compounds is ever selected for progression to the clinic. Prior to administration to humans, the pharmacology and biochemistry of the drug is established using an extensive range of in vitro and in vivo test procedures. It is also a regulatory requirement that the drug is administered to animals to assess its safety. Later-stage animal testing is also required to assess carcinogenicity and effects on the reproductive system. Clinical phases of drug development include phase I in healthy volunteers to assess primarily pharmacokinetics, safety and toleration, phase II in a cohort of patients with the target disease to establish efficacy and dose-response relationship and large-scale phase III studies to confirm safety and efficacy. Experience tells us that approximately only 1 in 10 drugs that start the clinical phase will make it to the market. Each drug must demonstrate safety and efficacy in the intended patient population and its benefits must outweigh its risks before it will be approved by the regulatory agencies. Strict regulatory standards govern the conduct of pre-clinical and clinical trials as well as the manufacturing of pharmaceutical products. The assessment of the new medicinal product's safety continues beyond the initial drug approval through post-marketing monitoring of adverse events. Copyright 2009 S. Karger AG, Basel.

  6. Can Untargeted Metabolomics Be Utilized in Drug Discovery/Development?

    PubMed

    Caldwell, Gary W; Leo, Gregory C

    2017-01-01

    Untargeted metabolomics is a promising approach for reducing the significant attrition rate for discovering and developing drugs in the pharmaceutical industry. This review aims to highlight the practical decision-making value of untargeted metabolomics for the advancement of drug candidates in drug discovery/development including potentially identifying and validating novel therapeutic targets, creating alternative screening paradigms, facilitating the selection of specific and translational metabolite biomarkers, identifying metabolite signatures for the drug efficacy mechanism of action, and understanding potential drug-induced toxicity. The review provides an overview of the pharmaceutical process workflow to discover and develop new small molecule drugs followed by the metabolomics process workflow that is involved in conducting metabolomics studies. The pros and cons of the major components of the pharmaceutical and metabolomics workflows are reviewed and discussed. Finally, selected untargeted metabolomics literature examples, from primarily 2010 to 2016, are used to illustrate why, how, and where untargeted metabolomics can be integrated into the drug discovery/preclinical drug development process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Prolonged-acting, Multi-targeting Gallium Nanoparticles Potently Inhibit Growth of Both HIV and Mycobacteria in Co-Infected Human Macrophages

    PubMed Central

    Narayanasamy, Prabagaran; Switzer, Barbara L.; Britigan, Bradley E.

    2015-01-01

    Human immunodeficiency virus (HIV) infection and Mycobacterium tuberculosis (TB) are responsible for two of the major global human infectious diseases that result in significant morbidity, mortality and socioeconomic impact. Furthermore, severity and disease prevention of both infections is enhanced by co-infection. Parallel limitations also exist in access to effective drug therapy and the emergence of resistance. Furthermore, drug-drug interactions have proven problematic during treatment of co-incident HIV and TB infections. Thus, improvements in drug access and simplified treatment regimens are needed immediately. One of the key host cells infected by both HIV and TB is the mononuclear phagocyte (MP; monocyte, macrophage and dendritic cell). Therefore, we hypothesized that one way this can be achieved is through drug-targeting by a nanoformulated drug that ideally would be active against both HIV and TB. Accordingly, we validated macrophage targeted long acting (sustained drug release) gallium (Ga) nanoformulation against HIV-mycobacterium co-infection. The multi-targeted Ga nanoparticle agent inhibited growth of both HIV and TB in the macrophage. The Ga nanoparticles reduced the growth of mycobacterium and HIV for up to 15 days following single drug loading. These results provide a potential new approach to treat HIV-TB co-infection that could eventually lead to improved clinical outcomes. PMID:25744727

  8. Has molecular imaging delivered to drug development?

    NASA Astrophysics Data System (ADS)

    Murphy, Philip S.; Patel, Neel; McCarthy, Timothy J.

    2017-10-01

    Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  9. Multiscale Modeling in the Clinic: Drug Design and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, Colleen E.; An, Gary; Cannon, William R.

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions tomore » guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.« less

  10. CNS Anticancer Drug Discovery and Development: 2016 conference insights

    PubMed Central

    Levin, Victor A; Abrey, Lauren E; Heffron, Timothy P; Tonge, Peter J; Dar, Arvin C; Weiss, William A; Gallo, James M

    2017-01-01

    CNS Anticancer Drug Discovery and Development, 16-17 November 2016, Scottsdale, AZ, USA The 2016 second CNS Anticancer Drug Discovery and Development Conference addressed diverse viewpoints about why new drug discovery/development focused on CNS cancers has been sorely lacking. Despite more than 70,000 individuals in the USA being diagnosed with a primary brain malignancy and 151,669–286,486 suffering from metastatic CNS cancer, in 1999, temozolomide was the last drug approved by the US FDA as an anticancer agent for high-grade gliomas. Among the topics discussed were economic factors and pharmaceutical risk assessments, regulatory constraints and perceptions and the need for improved imaging surrogates of drug activity. Included were modeling tumor growth and drug effects in a medical environment in which direct tumor sampling for biological effects can be problematic, potential new drugs under investigation and targets for drug discovery and development. The long trajectory and diverse impediments to novel drug discovery, and expectation that more than one drug will be needed to adequately inhibit critical intracellular tumor pathways were viewed as major disincentives for most pharmaceutical/biotechnology companies. While there were a few unanimities, one consensus is the need for continued and focused discussion among academic and industry scientists and clinicians to address tumor targets, new drug chemistry, and more time- and cost-efficient clinical trials based on surrogate end points. PMID:28718326

  11. Nanomedicines for HIV therapy.

    PubMed

    Siccardi, Marco; Martin, Philip; McDonald, Tom O; Liptrott, Neill J; Giardiello, Marco; Rannard, Steve; Owen, Andrew

    2013-02-01

    Heterogeneity in response to HIV treatments has been attributed to several causes including variability in pharmacokinetic exposure. Nanomedicine applications have a variety of advantages compared with traditional formulations, such as the potential to increase bioavailability and specifically target the site of action. Our group is focusing on the development of nanoformulations using a closed-loop design process in which nanoparticle optimization (disposition, activity and safety) is a continuous process based on experimental pharmacological data from in vitro and in vivo models. Solid drug nanoparticles, polymer-based drug-delivery carriers as well as nanoemulsions are nanomedicine options with potential application to improve antiretroviral deployment.

  12. The Development of a Test to Assess Drug Using Behavior.

    ERIC Educational Resources Information Center

    Althoff, Michael E.

    The objective of the study was to develop a test which could measure both the qualitative and quantitative aspects of drug-using behavior, including such factors as attitudes toward drugs, experience with drugs, and knowledge about drugs. The Drug Use Scale was developed containing 134 items and dealing with five classes of drugs: marijuana,…

  13. Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development.

    PubMed

    Wickström, Henrika; Hilgert, Ellen; Nyman, Johan O; Desai, Diti; Şen Karaman, Didem; de Beer, Thomas; Sandler, Niklas; Rosenholm, Jessica M

    2017-11-21

    Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.

  14. Development Considerations for Nanocrystal Drug Products.

    PubMed

    Chen, Mei-Ling; John, Mathew; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.

  15. Development of anti-inflammatory drugs - the research and development process.

    PubMed

    Knowles, Richard Graham

    2014-01-01

    The research and development process for novel drugs to treat inflammatory diseases is described, and several current issues and debates relevant to this are raised: the decline in productivity, attrition, challenges and trends in developing anti-inflammatory drugs, the poor clinical predictivity of experimental models of inflammatory diseases, heterogeneity within inflammatory diseases, 'improving on the Beatles' in treating inflammation, and the relationships between big pharma and biotechs. The pharmaceutical research and development community is responding to these challenges in multiple ways which it is hoped will lead to the discovery and development of a new generation of anti-inflammatory medicines. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  16. Drugs in Development for Malaria.

    PubMed

    Ashley, Elizabeth A; Phyo, Aung Pyae

    2018-05-25

    The last two decades have seen a surge in antimalarial drug development with product development partnerships taking a leading role. Resistance of Plasmodium falciparum to the artemisinin derivatives, piperaquine and mefloquine in Southeast Asia means new antimalarials are needed with some urgency. There are at least 13 agents in clinical development. Most of these are blood schizonticides for the treatment of uncomplicated falciparum malaria, under evaluation either singly or as part of two-drug combinations. Leading candidates progressing through the pipeline are artefenomel-ferroquine and lumefantrine-KAF156, both in Phase 2b. Treatment of severe malaria continues to rely on two parenteral drugs with ancient forebears: artesunate and quinine, with sevuparin being evaluated as an adjuvant therapy. Tafenoquine is under review by stringent regulatory authorities for approval as a single-dose treatment for Plasmodium vivax relapse prevention. This represents an advance over standard 14-day primaquine regimens; however, the risk of acute haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase deficiency remains. For disease prevention, several of the newer agents show potential but are unlikely to be recommended for use in the main target groups of pregnant women and young children for some years. Latest predictions are that the malaria burden will continue to be high in the coming decades. This fact, coupled with the repeated loss of antimalarials to resistance, indicates that new antimalarials will be needed for years to come. Failure of the artemisinin-based combinations in Southeast Asia has stimulated a reappraisal of current approaches to combination therapy for malaria with incorporation of three or more drugs in a single treatment under consideration.

  17. Development and Characterization of Methylene Blue Oleate Salt-Loaded Polymeric Nanoparticles and their Potential Application as a Treatment for Glioblastoma

    PubMed Central

    Castañeda-Gill, JM; Ranjan, AP; Vishwanatha, JK

    2017-01-01

    Glioblastoma (GBM) is an aggressive, grade IV brain tumor that develops from astrocytes located within the cerebrum, resulting in poor prognosis and survival rates following an accepted treatment regimen of surgery, radiation, and temozolomide. Thus, development of new therapeutics is necessary. During the last two decades, methylene blue (MB) has received increased attention as a potential neurotherapeutic due to its duality in brain cancers and neurodegenerative diseases. While MB is capable of easily permeating the blood-brain barrier, its therapeutic concentrations in GBM are known to induce off-target cytotoxicity and thus, another mode of drug delivery must be considered. To this end, encapsulation of formerly unusable compounds into nanoparticles (NPs) made from the biodegradable/biocompatible, FDA approved co-polymer poly (lactide-co-glycolide) (PLGA) has been more commonplace when developing novel therapeutics. In this study, we formulated and characterized Pluronic F68-coated PLGA NPs containing a sodium oleate conjugate of MB (MBOS) via solvent displacement. Conjugation of sodium oleate to MB was shown to reduce its release from PLGA NPs compared to unmodified MB, leading to potential improvements in drug accumulation and therapeutic effectiveness. Our drug-loaded NP preparations, which were ~170 nm in size and had drug loading values of ~2%, were shown to reduce cell viability and cell compartment-specific, as well as overall cell, functions equivalenty, if not more so, when compared to free drug in two GBM cell lines. Following bio-distribution analysis of free MBOS compared to its nano-encapsulated counterpart, drug-loaded NPs were shown to more effectively permeate the BBB, which could lead to improvements in therapeutic effectiveness upon further examination in a tumor-bearing mouse model. Based on these results, we believe that the further development and eventual utilization of this nanoformulation could lead to an effective GBM therapy that could

  18. Low hanging fruit in infectious disease drug development.

    PubMed

    Kraus, Carl N

    2008-10-01

    Cost estimates for developing new molecular entities (NME) are reaching non-sustainable levels and coupled with increasing regulatory requirements and oversight have led many pharmaceutical sponsors to divest their anti-microbial development portfolios [Projan SJ: Why is big Pharma getting out of anti-bacterial drug discovery?Curr Opin Microbiol 2003, 6:427-430] [Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE, Jr: Trends in antimicrobial drug development: implications for the future.Clin Infect Dis 2004, 38:1279-1286]. Operational issues such as study planning and execution are significant contributors to the overall cost of drug development that can benefit from the leveraging of pre-randomization data in an evidence-based approach to protocol development, site selection and patient recruitment. For non-NME products there is even greater benefit from available data resources since these data may permit smaller and shorter study programs. There are now many available open source intelligence (OSINT) resources that are being integrated into drug development programs, permitting an evidence-based or 'operational epidemiology' approach to study planning and execution.

  19. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  20. Clinical trials in drug development: a minimalistic approach.

    PubMed

    Verweij, Jaap

    2012-05-01

    Drug development in oncology finds itself at the crossroad of unique opportunities and major challenges. The old paradigms should and can be replaced by a system that better matches the right patients to the right compounds and puts much more emphasis on the early stages of drug development. The clinical phases of drug development will no longer be split into phase I, II, and III studies, but rather into 'functional target pharmacology studies', followed by 'proof of concept studies'. The resulting development flow becomes Apollo-capsule shaped. Although randomized studies will still be needed for drugs using targets in the tumor environment, or for combinations of agents, drug registration might proceed without these if all of the following criteria are met in early development: availability of preclinical convincing evidence that the drug's target is the functional driver behind the disease phenotype, availability of a predictive biomarker that enables appropriate and actual patient selection in early pharmacology studies, a Response Evaluation Criteria In Solid Tumors (RECIST)-based single agent response rate of at least 50%, and/or a progression at first tumor assessment rate of 15% or less, a duration of absence of progression (stable disease) beyond doubt and considered clinically relevant, and no major safety concern. This set is not yet mature, but may be adapted over time. The concerns related to registering agents on the basis of small datasets can be adequately addressed by obligatory postmarketing hypothesis driven studies.

  1. The cost of drug development: a systematic review.

    PubMed

    Morgan, Steve; Grootendorst, Paul; Lexchin, Joel; Cunningham, Colleen; Greyson, Devon

    2011-04-01

    We aimed to systematically review and assess published estimates of the cost of developing new drugs. We sought English language research articles containing original estimates of the cost of drug development that were published from 1980 to 2009, inclusive. We searched seven databases and used citation tracing and expert referral to identify studies. We abstracted qualifying studies for information about methods, data sources, study samples, and key results. Thirteen articles were found to meet our inclusion criteria. Estimates of the cost of drug development ranged more than 9-fold, from USD$92 million cash (USD$161 million capitalized) to USD$883.6 million cash (USD$1.8 billion capitalized). Differences in methods, data sources, and time periods explain some of the variation in estimates. Lack of transparency limits many studies. Confidential information provided by unnamed companies about unspecified products forms all or part of the data underlying 10 of the 13 studies. Despite three decades of research in this area, no published estimate of the cost of developing a drug can be considered a gold standard. Studies on this topic should be subjected to reasonable audit and disclosure of - at the very least - the drugs which authors purport to provide development cost estimates for. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Delays in clinical development of neurological drugs in Japan.

    PubMed

    Ikeda, Masayuki

    2017-06-28

    The delays in the approval and development of neurological drugs between Japan and other countries have been a major issue for patients with neurological diseases. The objective of this study was to analyze factors contributing to the delay in the launching of neurological drugs in Japan. We analyzed data from Japan and the US for the approval of 42 neurological drugs, all of which were approved earlier in the US than in Japan, and examined the potential factors that may cause the delay of their launch. Introductions of the 42 drugs in Japan occurred at a median of 87 months after introductions in the US. The mean review time of new drug applications for the 20 drugs introduced in Japan in January 2011 or later (15 months) was significantly shorter than that for the other 22 drugs introduced in Japan in December 2010 or earlier (24 months). The lag in the Japan's review time behind the US could not explain the approval delays. In the 31 of the 42 drugs, the application data package included overseas data. The mean review time of these 31 drugs (17 months) was significantly shorter than that of the other 11 drugs without overseas data (26 months). The mean approval lag behind the US of the 31 drugs (78 months) was also significantly shorter than that of the other 11 drugs (134 months). These results show that several important reforms in the Japanese drug development and approval system (e.g., inclusion of global clinical trial data) have reduced the delays in the clinical development of neurological drugs.

  3. Early development of infants exposed to drugs prenatally.

    PubMed

    Eyler, F D; Behnke, M

    1999-03-01

    This article includes a summary and critique of methodological limitations of the peer-reviewed studies of developmental outcome during the first 2 years in children prenatally exposed to the most commonly used drugs of abuse: tobacco, alcohol, marijuana, heroin/methadone, and cocaine. Reported effects vary by specific drug or drug combinations and amount and timing of exposure; however, few thresholds have been established. Drug effects also appear to be exacerbated in children with multiple risks, including poverty, and nonoptimal caregiving environments. Although prenatal exposure to any one drug cannot reliably predict the outcome of an individual child, it may be a marker for an array of variables that can impact development. Appropriate intervention strategies require future research that determines which factors place exposed children at risk and which are protective for optimal development.

  4. Development of Nanoscale Approaches for Ovarian Cancer Therapeutics and Diagnostics

    PubMed Central

    Engelberth, Sarah A.; Hempel, Nadine; Bergkvist, Magnus

    2014-01-01

    Ovarian cancer is the deadliest of all gynecological cancers and the fifth leading cause of death due to cancer in women. This is largely due to late-stage diagnosis, poor prognosis related to advanced-stage disease, and the high recurrence rate associated with development of chemoresistance. Survival statistics have not improved significantly over the last three decades, highlighting the fact that improved therapeutic strategies and early detection require substantial improvements. Here, we review and highlight nanotechnology-based approaches that seek to address this need. The success of Doxil, a PEGylated liposomal nanoencapsulation of doxorubicin, which was approved by the FDA for use on recurrent ovarian cancer, has paved the way for the current wave of nanoparticle formulations in drug discovery and clinical trials. We discuss and summarize new nanoformulations that are currently moving into clinical trials and highlight novel nanotherapeutic strategies that have shown promising results in preclinical in vivo studies. Further, the potential for nanomaterials in diagnostic imaging techniques and the ability to leverage nanotechnology for early detection of ovarian cancer are also discussed. PMID:25271436

  5. Nanoscale Formulations and Diagnostics With Their Recent Trends: A Major Focus of Future Nanotechnology.

    PubMed

    Mukherjee, Biswajit; Dutta, Lopamudra; Mondal, Laboni; Dey, Niladri Shekhar; Chakraborty, Samrat; Maji, Ruma; Shaw, Tapan Kumar

    2015-01-01

    Nanomedicine is an emerging and rapidly growing field, possibly exploring for high expectation to healthcare. Nanoformulations have been designed to overcome challenges due to the development and fabrication of nanostructures. Unique size-dependent properties of nanoformulations make them superior and indispensable in many areas of human activity. Nano drug delivery systems are formulated and engineered to carry and deliver a number of substances in a targeted and controlled way. The vision of nanocarriers can be designed that will serve a dual purpose, allowing both treatment and diagnosis to be contained in an 'all-in-one' package. Nanoscale drugdelivery systems efficiently regulate the release, pharmacokinetics, pharmacodynamics, solubility, immunocompatibility, cellular uptake and biodistribution of chemical entities (drug). Their cellular uptake takes place by various mechanisms such as micropinocytosis, phagocytosis and receptor mediated endocytosis. These phenomena cause longer retention in blood circulation resulting in the release of the encapsulated materials in a sustained manner thus minimize the plasma fluctuations and toxic side effects. In this manner, the therapeutic index of conventional pharmaceuticals is efficiently increased. They can be used to deliver both micro and macro biomolecules such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. In this present review, several recent developing and modifying nano-products for the detection, analysis, and treatment of diseases with their US and world patents along with various diagnostic kits have been discussed.

  6. Recent trends for drug lag in clinical development of oncology drugs in Japan: does the oncology drug lag still exist in Japan?

    PubMed

    Maeda, Hideki; Kurokawa, Tatsuo

    2015-12-01

    This study exhaustively and historically investigated the status of drug lag for oncology drugs approved in Japan. We comprehensively investigated oncology drugs approved in Japan between April 2001 and July 2014, using publicly available information. We also examined changes in the status of drug lag between Japan and the United States, as well as factors influencing drug lag. This study included 120 applications for approval of oncology drugs in Japan. The median difference over a 13-year period in the approval date between the United States and Japan was 875 days (29.2 months). This figure peaked in 2002, and showed a tendency to decline gradually each year thereafter. In 2014, the median approval lag was 281 days (9.4 months). Multiple regression analysis identified the following potential factors that reduce drug lag: "Japan's participation in global clinical trials"; "bridging strategies"; "designation of priority review in Japan"; and "molecularly targeted drugs". From 2001 to 2014, molecularly targeted drugs emerged as the predominant oncology drug, and the method of development has changed from full development in Japan or bridging strategy to global simultaneous development by Japan's taking part in global clinical trials. In line with these changes, the drug lag between the United States and Japan has significantly reduced to less than 1 year.

  7. [Strategy for the development of dipeptide drugs].

    PubMed

    Gudasheva, T A

    2011-01-01

    The author describes an original approach to the development of dipeptide drugs based on the concept of the leading role of the beta-bend in the interaction of biologically active endogenous peptides with their receptors. The approach called "peptide-based drug design" includes both developments from the structure of a known psychotropic agent toward its topological peptide analog and developments from the active dipeptide site of a neuropeptide toward its mimetic. This strategy has been worked out at the V.V. Zakusov Research Institute of Pharmacology for 25 years. Results of investigations that discovered endogenous peptide prototypes of the known non-peptidic drugs (piracetam and sulpiride) are presented. They provided a basis for the creation of highly active non-toxic oral dipeptide preparations, such as nootrop Noopept, potential anti psychotic Dilept, and potential selective anxiolytic GB-115.

  8. Pharmacodynamics of folic acid receptor targeted antiretroviral nanotherapy in HIV-1-infected humanized mice.

    PubMed

    Puligujja, Pavan; Araínga, Mariluz; Dash, Prasanta; Palandri, Diana; Mosley, R Lee; Gorantla, Santhi; Poluektova, Larisa; McMillan, JoEllyn; Gendelman, Howard E

    2015-08-01

    Long-acting nanoformulated antiretroviral therapy (nanoART) can sustain plasma drug levels and improve its biodistribution. Cell targeted-nanoART can achieve this and bring drug efficiently to viral reservoirs. However, whether such improvements affect antiretroviral responses remains unknown. To these ends, we tested folic acid (FA)-linked poloxamer407-coated ritonavir-boosted atazanavir (FA-nanoATV/r) nanoparticles for their ability to affect chronic HIV-1 infection in humanized mice. Following three, 100mg/kg FA-nanoATV/r intramuscular injections administered every other week to infected animals, viral RNA was at or below the detection limit, cell-associated HIV-1p24 reduced and CD4+ T cell counts protected. The dosing regimen improved treatment outcomes more than two fold from untargeted nanoATV/r. We posit that these nanoformulations have potential for translation to human use. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Is Open Science the Future of Drug Development?

    PubMed

    Shaw, Daniel L

    2017-03-01

    Traditional drug development models are widely perceived as opaque and inefficient, with the cost of research and development continuing to rise even as production of new drugs stays constant. Searching for strategies to improve the drug discovery process, the biomedical research field has begun to embrace open strategies. The resulting changes are starting to reshape the industry. Open science-an umbrella term for diverse strategies that seek external input and public engagement-has become an essential tool with researchers, who are increasingly turning to collaboration, crowdsourcing, data sharing, and open sourcing to tackle some of the most pressing problems in medicine. Notable examples of such open drug development include initiatives formed around malaria and tropical disease. Open practices have found their way into the drug discovery process, from target identification and compound screening to clinical trials. This perspective argues that while open science poses some risks-which include the management of collaboration and the protection of proprietary data-these strategies are, in many cases, the more efficient and ethical way to conduct biomedical research.

  10. Is Open Science the Future of Drug Development?

    PubMed Central

    Shaw, Daniel L.

    2017-01-01

    Traditional drug development models are widely perceived as opaque and inefficient, with the cost of research and development continuing to rise even as production of new drugs stays constant. Searching for strategies to improve the drug discovery process, the biomedical research field has begun to embrace open strategies. The resulting changes are starting to reshape the industry. Open science—an umbrella term for diverse strategies that seek external input and public engagement—has become an essential tool with researchers, who are increasingly turning to collaboration, crowdsourcing, data sharing, and open sourcing to tackle some of the most pressing problems in medicine. Notable examples of such open drug development include initiatives formed around malaria and tropical disease. Open practices have found their way into the drug discovery process, from target identification and compound screening to clinical trials. This perspective argues that while open science poses some risks—which include the management of collaboration and the protection of proprietary data—these strategies are, in many cases, the more efficient and ethical way to conduct biomedical research. PMID:28356902

  11. Accessing external innovation in drug discovery and development.

    PubMed

    Tufféry, Pierre

    2015-06-01

    A decline in the productivity of the pharmaceutical industry research and development (R&D) pipeline has highlighted the need to reconsider the classical strategies of drug discovery and development, which are based on internal resources, and to identify new means to improve the drug discovery process. Accepting that the combination of internal and external ideas can improve innovation, ways to access external innovation, that is, opening projects to external contributions, have recently been sought. In this review, the authors look at a number of external innovation opportunities. These include increased interactions with academia via academic centers of excellence/innovation centers, better communication on projects using crowdsourcing or social media and new models centered on external providers such as built-to-buy startups or virtual pharmaceutical companies. The buzz for accessing external innovation relies on the pharmaceutical industry's major challenge to improve R&D productivity, a conjuncture favorable to increase interactions with academia and new business models supporting access to external innovation. So far, access to external innovation has mostly been considered during early stages of drug development, and there is room for enhancement. First outcomes suggest that external innovation should become part of drug development in the long term. However, the balance between internal and external developments in drug discovery can vary largely depending on the company strategies.

  12. Mechanisms of Drug Toxicity and Relevance to Pharmaceutical Development

    PubMed Central

    Guengerich, F. Peter

    2016-01-01

    Toxicity has been estimated to be responsible for the attrition of ~ 1/3 of drug candidates and is a major contributor to the high cost of drug development, particularly when not recognized until late in the clinical trials or post-marketing. The causes of drug toxicity can be organized in several ways and include mechanism-based (on-target) toxicity, immune hypersensitivity, off-target toxicity, and bioactivation/covalent modification. In addition, idiosyncratic responses are rare but one of the most problematic issues; several hypotheses for these have been advanced. Although covalent binding of drugs to proteins was described almost 40 years ago, the significance to toxicity has been difficult to establish; recent literature in this field is considered. The development of more useful biomarkers and short-term assays for rapid screening of drug toxicity early in the drug discovery/development process is a major goal, and some progress has been made using “omics” approaches. PMID:20978361

  13. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases.

    PubMed

    Mello, Juliana da Fonseca Rezende E; Gomes, Renan Augusto; Vital-Fujii, Drielli Gomes; Ferreira, Glaucio Monteiro; Trossini, Gustavo Henrique Goulart

    2017-12-01

    Neglected diseases (NDs) affect large populations and almost whole continents, representing 12% of the global health burden. In contrast, the treatment available today is limited and sometimes ineffective. Under this scenery, the Fragment-Based Drug Discovery emerged as one of the most promising alternatives to the traditional methods of drug development. This method allows achieving new lead compounds with smaller size of fragment libraries. Even with the wide Fragment-Based Drug Discovery success resulting in new effective therapeutic agents against different diseases, until this moment few studies have been applied this approach for NDs area. In this article, we discuss the basic Fragment-Based Drug Discovery process, brief successful ideas of general applications and show a landscape of its use in NDs, encouraging the implementation of this strategy as an interesting way to optimize the development of new drugs to NDs. © 2017 John Wiley & Sons A/S.

  14. Multi-stimuli responsive Cu2S nanocrystals as trimodal imaging and synergistic chemo-photothermal therapy agents

    NASA Astrophysics Data System (ADS)

    Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Nagaoka, Yutaka; Romero Aburto, Rebeca; Mitcham, Trevor; Ajayan, Pulickel M.; Bouchard, Richard R.; Sakamoto, Yasushi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2015-04-01

    A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies.A size and shape tuned, multifunctional metal chalcogenide, Cu2S-based nanotheranostic agent is developed for trimodal imaging and multimodal therapeutics against brain cancer cells. This theranostic agent was highly efficient in optical, photoacoustic and X-ray contrast imaging systems. The folate targeted NIR-responsive photothermal ablation in synergism with the chemotherapeutic action of doxorubicin proved to be a rapid precision guided cancer-killing module. The multi-stimuli, i.e., pH-, thermo- and photo-responsive drug release behavior of the nanoconjugates opens up a wider corridor for on-demand triggered drug administration. The simple synthesis protocol, combined with the multitudes of interesting features packed into a single nanoformulation, clearly demonstrates the competing role of this Cu2S nanosystem in future cancer treatment strategies. Electronic supplementary information (ESI) available: Methodology and additional experimental results. See DOI: 10.1039/c4nr07139e

  15. New antiepileptic drug development.

    PubMed

    Dreifuss, F E

    1994-01-01

    The development of new antiepileptic drugs is poised on the cusp between empiricism and the rational scientific development of medicaments designed to perform specific neurophysiologic functions in keeping with modern ideas of epilepsy generation and spread. It takes into account the difference between seizures and their underlying disorder known as epilepsies and the fact that, although seizures can be effectively treated with pharmacologic agents, the development of epilepsy requires both a predisposition (which may be innate or preventable) and precipitating factors that determine the timing of the individual seizures. The local membrane phenomena or cellular substrates of epilepsy can be described, as can the process of epileptogenesis. New antiepileptic development can be viewed in the light of these concepts.

  16. Antibody-drug conjugates for cancer therapy: The technological and regulatory challenges of developing drug-biologic hybrids.

    PubMed

    Hamilton, Gregory S

    2015-09-01

    Antibody-drug conjugates (ADCs) are a new class of therapeutic agents that combine the targeting ability of monoclonal antibodies (mAbs) with small molecule drugs. The combination of a mAb targeting a cancer-specific antigen with a cytotoxin has tremendous promise as a new type of targeted cancer therapy. Two ADCs have been approved and many more are in clinical development, suggesting that this new class of drugs is coming to the forefront. Because of their unique nature as biologic-small drug hybrids, ADCs are challenging to develop, from both the scientific and regulatory perspectives. This review discusses both these aspects in current practice, and surveys the current state of the art of ADC drug development. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  17. ADDME – Avoiding Drug Development Mistakes Early: central nervous system drug discovery perspective

    PubMed Central

    Tsaioun, Katya; Bottlaender, Michel; Mabondzo, Aloise

    2009-01-01

    The advent of early absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening has increased the attrition rate of weak drug candidates early in the drug-discovery process, and decreased the proportion of compounds failing in clinical trials for ADMET reasons. This paper reviews the history of ADMET screening and its place in pharmaceutical development, and central nervous system drug discovery in particular. Assays that have been developed in response to specific needs and improvements in technology that result in higher throughput and greater accuracy of prediction of human mechanisms of absorption and toxicity are discussed. The paper concludes with the authors' forecast of new models that will better predict human efficacy and toxicity. PMID:19534730

  18. Eco-friendly PEG-based controlled release nano-formulations of Mancozeb: Synthesis and bioefficacy evaluation against phytopathogenic fungi Alternaria solani and Sclerotium rolfsii.

    PubMed

    Majumder, Sujan; Shakil, Najam A; Kumar, Jitendra; Banerjee, Tirthankar; Sinha, Parimal; Singh, Braj B; Garg, Parul

    2016-12-01

    Controlled release (CR) nano-formulations of Mancozeb (manganese-zinc double salt of N,N-bisdithiocarbamic acid), a protective fungicide, have been prepared using laboratory-synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers without using any surfactants or external additives. The release kinetics of the developed Mancozeb CR formulations were studied and compared with that of commercially available 42% suspension concentrate and 75% wettable powder. Maximum amount of Mancozeb was released on 42nd day for PEG-600 and octyl chain, PEG-1000 and octyl chain, and PEG-600 and hexadecyl chain, on 35th day for PEG-1000 and hexadecyl chain, on 28th day for PEG-1500 and octyl chain, PEG-2000 and octyl chain, PEG-1500 and hexadecyl chain, and PEG-2000 and hexadecyl chain in comparison to both commercial formulations (15th day). The diffusion exponent (n value) of Mancozeb in water ranged from 0.42 to 0.62 in tested formulations. The half-release (t 1/2 ) values ranged from 17.35 to 35.14 days, and the period of optimum availability of Mancozeb ranged from 18.54 to 35.42 days. Further, the in vitro bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Alternaria solani and Sclerotium rolfsii by poison food technique. Effective dose for 50% inhibition in mgL -1 (ED 50 ) values of developed formulations varied from 1.31 to 2.79 mg L -1 for A. solani, and 1.60 to 3.14 mg L -1 for S. rolfsii. The present methodology is simple, economical, and eco-friendly for the development of environment-friendly CR formulations of Mancozeb. These formulations can be used to optimize the release of Mancozeb to achieve disease control for the desired period depending upon the matrix of the polymer used. Importantly, the maximum amount of active ingredient remains available for a reasonable period after application. In addition, the developed CR formulations were found to be suitable for fungicidal applications, allowing

  19. The intersection of stress, drug abuse and development.

    PubMed

    Thadani, Pushpa V

    2002-01-01

    Use or abuse of licit and illicit substances is often associated with environmental stress. Current clinical evidence clearly demonstrates neurobehavioral, somatic growth and developmental deficits in children born to drug-using mothers. However, the effects of environmental stress and its interaction with prenatal drug exposure on a child's development is unknown. Studies in pregnant animals under controlled conditions show drug-induced long-term alterations in brain structures and functions of the offspring. These cytoarchitecture alterations in the brain are often associated with perturbations in neurotransmitter systems that are intimately involved in the regulation of the stress responses. Similar abnormalities have been observed in the brains of animals exposed to other adverse exogenous (e.g., environmental stress) and/or endogenous (e.g., glucocorticoids) experiences during early life. The goal of this article is to: (1) provide evidence and a perspective that common neural systems are influenced during development both by perinatal drug exposure and early stress exposure; and (2) identify gaps and encourage new research examining the effects of early stress and perinatal drug exposure, in animal models, that would elucidate how stress- and drug-induced perturbations in neural systems influence later vulnerability to abused drugs in adult offspring.

  20. Ethnically diverse pluripotent stem cells for drug development.

    PubMed

    Fakunle, Eyitayo S; Loring, Jeanne F

    2012-12-01

    Genetic variation is an identified factor underlying drug efficacy and toxicity, and adverse drug reactions, such as liver toxicity, are the primary reasons for post-marketing drug failure. Genetic predisposition to toxicity might be detected early in the drug development pipeline by introducing cell-based assays that reflect the genetic and ethnic variation of the expected treatment population. One challenge for this approach is obtaining a collection of suitable cell lines derived from ethnically diverse populations. Induced pluripotent stem cells (iPSCs) seem ideal for this purpose. They can be obtained from any individual, can be differentiated into multiple relevant cell types, and their self-renewal capability makes it possible to generate large quantities of quality-controlled cell types. Here, we discuss the benefits and challenges of using iPSCs to introduce genetic diversity into the drug development process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Antiepileptic Drugs in Clinical Development: Differentiate or Die?

    PubMed

    Zaccara, Gaetano; Schmidt, D

    2017-01-01

    Animal models when carefully selected, designed and conducted, are important parts of any translational drug development strategy. However, research of new compounds for patients with drugresistant epilepsies is still based on animal experiments, mostly in rodents, which are far from being a model of chronic human epilepsy and have failed to differentiate the efficacy of new compounds versus standard drug treatment. The objective was identification and description of compounds in clinical development in 2016. Search was conducted from the website of the U.S. National Institutes of Health and from literature. Identified compounds have been divided in two groups: 1) compounds initially developed for the treatment of diseases other than epilepsy: biperiden, bumetanide, everolimus, fenfluramine, melatonin, minocycline, verapamil. 2) Compounds specifically developed for the treatment of epilepsy: allopregnanolone, cannabidiol, cannabidivarin, ganaxolone, nalutozan, PF-06372865, UCB0942, and cenobamate. Everolimus, and perhaps, fenfluramine are effective in specific epileptic diseases and may be considered as true disease modifying antiepileptic drugs. These are tuberous sclerosis complex for everolimus and Dravet syndrome for fenfluramine. With the exception of a few other compounds such as cannabinidiol, cannabidivarin and minocycline, the vast majority of other compounds had mechanisms of action which are similar to the mechanism of action of the anti-seizure drugs already in the market. Substantial improvements in the efficacy, specifically as pharmacological treatment of drug-resistant epilepsy is regarded, are not expected. New drugs should be developed to specifically target the biochemical alteration which characterizes the underlying disease and also include targets that contribute to epileptogenesis in relevant epilepsy models. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Impact of biomarker development on drug safety assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrer, Estelle, E-mail: estelle.marrer@novartis.co; Dieterle, Frank

    2010-03-01

    Drug safety has always been a key aspect of drug development. Recently, the Vioxx case and several cases of serious adverse events being linked to high-profile products have increased the importance of drug safety, especially in the eyes of drug development companies and global regulatory agencies. Safety biomarkers are increasingly being seen as helping to provide the clarity, predictability, and certainty needed to gain confidence in decision making: early-stage projects can be stopped quicker, late-stage projects become less risky. Public and private organizations are investing heavily in terms of time, money and manpower on safety biomarker development. An illustrative andmore » 'door opening' safety biomarker success story is the recent recognition of kidney safety biomarkers for pre-clinical and limited translational contexts by FDA and EMEA. This milestone achieved for kidney biomarkers and the 'know how' acquired is being transferred to other organ toxicities, namely liver, heart, vascular system. New technologies and molecular-based approaches, i.e., molecular pathology as a complement to the classical toolbox, allow promising discoveries in the safety biomarker field. This review will focus on the utility and use of safety biomarkers all along drug development, highlighting the present gaps and opportunities identified in organ toxicity monitoring. A last part will be dedicated to safety biomarker development in general, from identification to diagnostic tests, using the kidney safety biomarkers success as an illustrative example.« less

  3. Development of drug-loaded polymer microcapsules for treatment of epilepsy.

    PubMed

    Chen, Yu; Gu, Qi; Yue, Zhilian; Crook, Jeremy M; Moulton, Simon E; Cook, Mark J; Wallace, Gordon G

    2017-09-26

    Despite significant progress in developing new drugs for seizure control, epilepsy still affects 1% of the global population and is drug-resistant in more than 30% of cases. To improve the therapeutic efficacy of epilepsy medication, a promising approach is to deliver anti-epilepsy drugs directly to affected brain areas using local drug delivery systems. The drug delivery systems must meet a number of criteria, including high drug loading efficiency, biodegradability, neuro-cytocompatibility and predictable drug release profiles. Here we report the development of fibre- and sphere-based microcapsules that exhibit controllable uniform morphologies and drug release profiles as predicted by mathematical modelling. Importantly, both forms of fabricated microcapsules are compatible with human brain derived neural stem cells and differentiated neurons and neuroglia, indicating clinical compliance for neural implantation and therapeutic drug delivery.

  4. Liposomal Drug Product Development and Quality: Current US Experience and Perspective.

    PubMed

    Kapoor, Mamta; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Research in the area of liposomes has grown substantially in the past few decades. Liposomes are lipid bilayer structures that can incorporate drug substances to modify the drug's pharmacokinetic profile thereby improving drug delivery. The agency has received over 400 liposomal drug product submissions (excluding combination therapies), and there are currently eight approved liposomal drug products on the US market. In order to identify the pain points in development and manufacturing of liposomal drug products, a retrospective analysis was performed from a quality perspective on submissions for new and generic liposomal drug products. General analysis on liposomal drug product submissions was also performed. Results indicated that 96% of the submissions were Investigational New Drug (IND) applications, 3% were New Drug Applications (NDAs), and the remaining 1% was Abbreviated New Drug Applications (ANDAs). Doxorubicin hydrochloride was the most commonly used drug substance incorporated into the liposomes (31%). The majority of the liposomal products were administered via intravenous route (84%) with cancer (various types) being the most common indication (63%). From a quality perspective, major challenges during the development of liposomal drug products included identification and (appropriate) characterization of critical quality attributes of liposomal drug products and suitable control strategies during product development. By focusing on these areas, a faster and more efficient development of liposomal drug products may be achieved. Additionally, in this way, the drug review process for such products can be streamlined.

  5. Designing and developing suppository formulations for anti-HIV drug delivery.

    PubMed

    Ham, Anthony S; Buckheit, Robert W

    2017-08-01

    Despite a long history of use for rectal and vaginal drug delivery, the current worldwide market for suppositories is limited primarily due to a lack of user acceptability. Therefore, virtually no rational pharmaceutical development of antiviral suppositories has been performed. However, suppositories offer several advantages over other antiviral dosage forms. Current suppository designs have integrated active pharmaceutical ingredients into existing formulation designs without optimization. As such, emerging suppository development has been focused on improving upon the existing classical design to enhance drug delivery and is poised to open suppository drug delivery to a broader range of drugs, including antiretroviral products. Thus, with continuing research into rational suppository design and development, there is significant potential for antiretroviral suppository drug delivery.

  6. Drug development against tuberculosis: Impact of alkaloids.

    PubMed

    Mishra, Shardendu K; Tripathi, Garima; Kishore, Navneet; Singh, Rakesh K; Singh, Archana; Tiwari, Vinod K

    2017-09-08

    Despite of the advances made in the treatment and management, tuberculosis (TB) still remains one of main public health problem. The contrary effects of first and second-line anti-tuberculosis drugs have generated extended research interest in natural products in the hope of devising new antitubercular leads. Interestingly, plethoras of natural products have been discovered to exhibit activity towards various resistant strains of M. tuberculosis. Extensive applications of alkaloids in the field of therapeutics is well-established and nowday's researches being pursued to develop new potent drugs from natural sources for tuberculosis. Alkaloids are categorized in quite a few groups according to their structures and isolation from both terrestrial and marine sources. These new drugs might be a watershed in the battle against tuberculosis. This review summarizes alkaloids, which were found active against Mycobacteria since last ten years with special attention on the study of structure-activity relationship (SAR) and mode of action with their impact in drug discovery and development against tuberculosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Cost-effectiveness analysis of microdose clinical trials in drug development.

    PubMed

    Yamane, Naoe; Igarashi, Ataru; Kusama, Makiko; Maeda, Kazuya; Ikeda, Toshihiko; Sugiyama, Yuichi

    2013-01-01

    Microdose (MD) clinical trials have been introduced to obtain human pharmacokinetic data early in drug development. Here we assessed the cost-effectiveness of microdose integrated drug development in a hypothetical model, as there was no such quantitative research that weighed the additional effectiveness against the additional time and/or cost. First, we calculated the cost and effectiveness (i.e., success rate) of 3 types of MD integrated drug development strategies: liquid chromatography-tandem mass spectrometry, accelerator mass spectrometry, and positron emission tomography. Then, we analyzed the cost-effectiveness of 9 hypothetical scenarios where 100 drug candidates entering into a non-clinical toxicity study were selected by different methods as the conventional scenario without MD. In the base-case, where 70 drug candidates were selected without MD and 30 selected evenly by one of the three MD methods, incremental cost-effectiveness ratio per one additional drug approved was JPY 12.7 billion (US$ 0.159 billion), whereas the average cost-effectiveness ratio of the conventional strategy was JPY 24.4 billion, which we set as a threshold. Integrating MD in the conventional drug development was cost-effective in this model. This quantitative analytical model which allows various modifications according to each company's conditions, would be helpful for guiding decisions early in clinical development.

  8. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension.

    PubMed

    Lennernäs, Hans; Abrahamsson, Bertil

    2005-03-01

    Bioavailability (BA) and bioequivalence (BE) play a central role in pharmaceutical product development and BE studies are presently being conducted for New Drug Applications (NDAs) of new compounds, in supplementary NDAs for new medical indications and product line extensions, in Abbreviated New Drug Applications (ANDAs) of generic products and in applications for scale-up and post-approval changes. The Biopharmaceutics Classification System (BCS) has been developed to provide a scientific approach for classifying drug compounds based on solubility as related to dose and intestinal permeability in combination with the dissolution properties of the oral immediaterelease (IR) dosage form. The aim of the BCS is to provide a regulatory tool for replacing certain BE studies by accurate in-vitro dissolution tests. The aim of this review is to present the status of the BCS and discuss its future application in pharmaceutical product development. The future application of the BCS is most likely increasingly important when the present framework gains increased recognition, which will probably be the case if the BCS borders for certain class II and III drugs are extended. The future revision of the BCS guidelines by the regulatory agencies in communication with academic and industrial scientists is exciting and will hopefully result in an increased applicability in drug development. Finally, we emphasize the great use of the BCS as a simple tool in early drug development to determine the rate-limiting step in the oral absorption process, which has facilitated the information between different experts involved in the overall drug development process. This increased awareness of a proper biopharmaceutical characterization of new drugs may in the future result in drug molecules with a sufficiently high permeability, solubility and dissolution rate, and that will automatically increase the importance of the BCS as a regulatory tool over time.

  9. Direct-to-Consumer Genetic Testing and Orphan Drug Development.

    PubMed

    Mason, Matthew; Levenson, James; Quillin, John

    2017-08-01

    Since the introduction of the Orphan Drug Act (ODA) in 1983, orphan drug approvals in the United States have jumped from <100 per decade to over 200 per year. This growth is widely attributed to the financial incentives the ODA gives to companies that develop these medicines, and it is likely to continue for a unique reason: partnerships between pharmaceutical firms and direct-to-consumer (DTC) genetic testing companies. This emerging trend is the subject of this article, which begins by considering how rare-disease drugs are regulated and the rising interest in nonclinical genetic testing. It then outlines how DTC companies analyze DNA and how their techniques benefit researchers and drug developers. Then, after an overview of the current partnerships between DTCs and drug developers, it examines concerns about privacy and cost brought up by these partnerships. The article concludes by contrasting the enormous positive potential of DTC-pharma relationships and their concomitant dangers, especially to consumer privacy and cost to the healthcare system.

  10. Otic drug delivery systems: formulation principles and recent developments.

    PubMed

    Liu, Xu; Li, Mingshuang; Smyth, Hugh; Zhang, Feng

    2018-04-25

    Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.

  11. Challenges in orphan drug development and regulatory policy in China.

    PubMed

    Cheng, Alice; Xie, Zhi

    2017-01-18

    While regulatory policy is well defined for orphan drug development in the United States and Europe, rare disease policy in China is still evolving. Many Chinese patients currently pay out of pocket for international treatments that are not yet approved in China. The lack of a clear definition and therefore regulatory approval process for rare diseases has, until now, de-incentivized pharmaceutical companies to pursue rare disease drug development in China. In turn, many grassroots movements have begun to support rare disease patients and facilitate drug discovery through research. Recently, the Chinese FDA set new regulatory guidelines for drugs being developed in China, including an expedited review process for life-saving treatments. In this review, we discuss the effects of these new policy changes on and suggest potential solutions to innovate orphan drug development in China.

  12. Drug discovery and development for rare genetic disorders.

    PubMed

    Sun, Wei; Zheng, Wei; Simeonov, Anton

    2017-09-01

    Approximately 7,000 rare diseases affect millions of individuals in the United States. Although rare diseases taken together have an enormous impact, there is a significant gap between basic research and clinical interventions. Opportunities now exist to accelerate drug development for the treatment of rare diseases. Disease foundations and research centers worldwide focus on better understanding rare disorders. Here, the state-of-the-art drug discovery strategies for small molecules and biological approaches for orphan diseases are reviewed. Rare diseases are usually genetic diseases; hence, employing pharmacogenetics to develop treatments and using whole genome sequencing to identify the etiologies for such diseases are appropriate strategies to exploit. Beginning with high throughput screening of small molecules, the benefits and challenges of target-based and phenotypic screens are discussed. Explanations and examples of drug repurposing are given; drug repurposing as an approach to quickly move programs to clinical trials is evaluated. Consideration is given to the category of biologics which include gene therapy, recombinant proteins, and autologous transplants. Disease models, including animal models and induced pluripotent stem cells (iPSCs) derived from patients, are surveyed. Finally, the role of biomarkers in drug discovery and development, as well as clinical trials, is elucidated. © 2017 Wiley Periodicals, Inc.

  13. Pressure for drug development in lysosomal storage disorders - a quantitative analysis thirty years beyond the US orphan drug act.

    PubMed

    Mechler, Konstantin; Mountford, William K; Hoffmann, Georg F; Ries, Markus

    2015-04-18

    Lysosomal storage disorders are a heterogeneous group of approximately 50 monogenically inherited orphan conditions. A defect leads to the storage of complex molecules in the lysosome, and patients develop a complex multisystemic phenotype of high morbidity often associated with premature death. More than 30 years ago the Orphan Drug Act of 1983 passed the United States legislation intended to facilitate the development of drugs for rare disorders. We directed our efforts in assessing which lysosomal diseases had drug development pressure and what distinguished those with successful development and approvals from diseases not treated or without orphan drug designation. Analysis of the FDA database for orphan drug designations through descriptive and comparative statistics. Between 1983 and 2013, fourteen drugs for seven conditions received FDA approval. Overall, orphan drug status was designated 70 times for 20 conditions. Approved therapies were enzyme replacement therapies (N = 10), substrate reduction therapies (N = 1), small molecules facilitating lysosomal substrate transportation (N = 3). FDA approval was significantly associated with a disease prevalence higher than 0.5/100,000 (p = 0.00742) and clinical development programs that did not require a primary neurological endpoint (p = 0.00059). Orphan drug status was designated for enzymes, modified enzymes, fusion proteins, chemical chaperones, small molecules leading to substrate reduction, or facilitating subcellular substrate transport, stem cells as well as gene therapies. Drug development focused on more common diseases. Primarily neurological diseases were neglected. Small clinical trials with either somatic or biomarker endpoints were successful. Enzyme replacement therapy was the most successful technology. Four factors played a key role in successful orphan drug development or orphan drug designations: 1) prevalence of disease 2) endpoints 3) regulatory precedent, and 4) technology platform

  14. Challenges in the clinical development of new antiepileptic drugs.

    PubMed

    Franco, Valentina; French, Jacqueline A; Perucca, Emilio

    2016-01-01

    Despite the current availability in the market of over two dozen antiepileptic drugs (AEDs), about one third of people with epilepsy fail to achieve complete freedom from seizures with existing medications. Moreover, currently available AEDs have significant limitations in terms of safety, tolerability and propensity to cause or be a target for clinically important adverse drug interactions. A review of the evidence shows that there are many misperceptions about the viability of investing into new therapies for epilepsy. In fact, there are clear incentives to develop newer and more efficacious medications. Developing truly innovative drugs requires a shift in the paradigms for drug discovery, which is already taking place by building on greatly expanded knowledge about the mechanisms involved in epileptogenesis, seizure generation, seizure spread and development of co-morbidities. AED development can also benefit by a review of the methodology currently applied in clinical AED development, in order to address a number of ethical and scientific concerns. As discussed in this article, many processes of clinical drug development, from proof-of-concept-studies to ambitious programs aimed at demonstrating antiepileptogenesis and disease-modification, can be facilitated by a greater integration of preclinical and clinical science, and by application of knowledge acquired during decades of controlled epilepsy trials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evaluation of transporters in drug development: Current status and contemporary issues.

    PubMed

    Lee, Sue-Chih; Arya, Vikram; Yang, Xinning; Volpe, Donna A; Zhang, Lei

    2017-07-01

    Transporters govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant drug-drug interactions mediated by transporters are of increasing interest in drug development. Drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. The drug interaction guidance documents from regulatory agencies include various decision criteria that may be used to predict the need for in vivo assessment of transporter-mediated drug-drug interactions. Regulatory science research continues to assess the prediction performances of various criteria as well as to examine the strength and limitations of each prediction criterion to foster discussions related to harmonized decision criteria that may be used to facilitate global drug development. This review discusses the role of transporters in drug development with a focus on methodologies in assessing transporter-mediated drug-drug interactions, challenges in both in vitro and in vivo assessments of transporters, and emerging transporter research areas including biomarkers, assessment of tissue concentrations, and effect of diseases on transporters. Published by Elsevier B.V.

  16. CNS Drug Development: Lessons Learned Part 3: Psychiatric and Central Nervous System Drugs Developed Over the Last Decade-Implications for the Field.

    PubMed

    Preskorn, Sheldon H

    2017-09-01

    This column reviews the divergence between the approach to drug development in infectious disease, oncology, and immunology versus psychiatry. Between 2009 and 2016, 254 new drugs were approved. Of those, only 9 were for a psychiatric indication; another 5 were labeled to treat central nervous system disorders that are not considered psychiatric per se but are frequently found in individuals with psychiatric illnesses (eg, substantial weight gain). There were 2 additional new products for psychiatric indications that involved either a combination product (Contrave) or a prodrug for the production of aripiprazole (Aristada). The column discusses the reasons behind these different rates of development of psychiatric and/or central nervous system drugs compared with drugs in the areas of infectious disease, oncology, and immunology, and it predicts that this situation will change over the next century as we develop an improved understanding of the neurobiology underlying specific psychiatric illnesses.

  17. The evolving drug development landscape: from blockbusters to niche busters in the orphan drug space.

    PubMed

    Kumar Kakkar, Ashish; Dahiya, Neha

    2014-06-01

    Strategy, Management and Health Policy Large pharmaceutical companies have traditionally focused on the development of blockbuster drugs that target disease states with large patient populations. However, with large-scale patent expirations and competition from generics and biosimilars, anemic pipelines, escalating clinical trial costs, and global health-care reform, the blockbuster model has become less viable. Orphan drug initiatives and the incentives accompanied by these have fostered renewed research efforts in the area of rare diseases and have led to the approval of more than 400 orphan products. Despite targeting much smaller patient populations, the revenue-generating potential of orphan drugs has been shown to be huge, with a greater return on investment than non-orphan drugs. The success of these "niche buster" therapeutics has led to a renewed interest from "Big Pharma" in the rare disease landscape. This article reviews the key drivers for orphan drug research and development, their profitability, and issues surrounding the emergence of large pharmaceutical firms into the orphan drug space. © 2014 Wiley Periodicals, Inc.

  18. Impact of Drug Metabolism/Pharmacokinetics and Their Relevance upon Taxus-based Drug Development.

    PubMed

    Hao, Da-Cheng; Ge, Guang-Bo; Wang, Ping; Yang, Ling

    2018-05-22

    Drug metabolism and pharmacokinetic (DMPK) studies of Taxus natural products, their semi-synthetic derivatives and analogs are indispensable in the optimization of lead compounds and clinical therapy. These studies can lead to development of new drug entities with improved absorption, distribution, metabolism, excretion and toxicity (ADME/T) profiles. To date, there have been no comprehensive reviews of the DMPK features of Taxus derived medicinal compounds.Natural and semi-synthetic taxanes may cause and could be affected by drug-drug interaction (DDI). Hence ADME/T studies of various taxane-containing formulations are important; to date these studies indicate that the role of cytochrome p450s and drug transporters is more prominent than phase II drug metabolizing enzymes. Mechanisms of taxane DMPK mediated by nuclear receptors, microRNAs, and single nucleotide polymorphisms are being revealed. Herein we review the latest knowledge on these topics, as well as the gaps in knowledge of the DMPK issues of Taxus compounds. DDIs significantly impact the PK/pharmacodynamics performance of taxanes and co-administered chemicals, which may inspire researchers to develop novel formula. While the ADME/T profiles of some taxanes are well defined, DMPK studies should be extended to more Taxus compounds, species, and Taxus -involved formulations, which would be streamlined by versatile omics platforms and computational analyses. Further biopharmaceutical investigations will be beneficial tothe translation of bench findings to the clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. High-field MRS in clinical drug development.

    PubMed

    Ross, Brian D

    2013-07-01

    Magnetic resonance spectroscopy (MRS) will continue to play an ever increasing role in drug discovery because MRS does readily define biomarkers for several hundreds of clinically distinct diseases. Published evidence based medicine (EBM) surveys, which generally conclude the opposite, are seriously flawed and do a disservice to the field of drug discovery. This article presents MRS and how it has guided several hundreds of practical human 'drug discovery' endeavors since its development. Specifically, the author looks at the process of 'reverse-translation' and its influence in the expansion of the number of preclinical drug discoveries from in vivo MRS. The author also provides a structured approach of eight criteria, including EBM acceptance, which could potentially re-open the field of MRS for productive exploration of existing and repurposed drugs and cost-effective drug-discovery. MRS-guided drug discovery is poised for future expansion. The cost of clinical trials has escalated and the use of biomarkers has become increasingly useful in improving patient selection for drug trials. Clinical MRS has uncovered a treasure-trove of novel biomarkers and clinical MRS itself has become better standardized and more widely available on 'routine' clinical MRI scanners. When combined with available new MRI sequences, MRS can provide a 'one stop shop' with multiple potential outcome measures for the disease and the drug in question.

  20. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system

    PubMed Central

    Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto

    2018-01-01

    Background The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20–40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. Methods In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. Results The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100–200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. Conclusion The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems. PMID:29430179

  1. Perestroika in pharma: evolution or revolution in drug development?

    PubMed

    FitzGerald, Garret A

    2010-01-01

    New-drug approvals have remained roughly constant since 1950, while the cost of drug development has soared. It seems likely that a more modular approach to drug discovery and development will evolve, deriving some features from the not-for-profit sector. For this to occur, we must address the deficit in human capital with expertise in both translational medicine and therapeutics and also in regulatory science; utilize regulatory reform to incentivize innovation and the expansion of the precompetitive space; and develop an informatics infrastructure that permits the global, secure, and compliant sharing of heterogeneous data across academic and industry sectors. These developments, likely prompted by the perception of crisis rather than opportunity, will require linked initiatives among academia, the pharmaceutical industry, the US National Institutes of Health, and the US Food and Drug Administration, along with a more adventurous role for venture capital. A failure to respond threatens the United States' lead in biomedical science and in the development and regulation of novel therapeutics. 2010 Mount Sinai School of Medicine.

  2. Alginate Nanoparticles Containing Curcumin and Resveratrol: Preparation, Characterization, and In Vitro Evaluation Against DU145 Prostate Cancer Cell Line.

    PubMed

    Saralkar, Pushkar; Dash, Alekha K

    2017-10-01

    Curcumin and resveratrol are naturally occurring polyphenolic compounds having anti-cancer potential. However, their poor aqueous solubility and bioavailability limit their clinical use. Entrapment of hydrophobic drugs into hydrophilic nanoparticles such as calcium alginate presents a means to deliver these drugs to their target site. Curcumin and resveratrol-loaded calcium alginate nanoparticles were prepared by emulsification and cross-linking process. The nanoparticles were characterized for particle size, zeta potential, moisture content, physical state of the drugs, physical stability, and entrapment efficiency. An UPLC method was developed and validated for the simultaneous analysis of curcumin and resveratrol. Alginate nanoformulation was tested for in vitro efficacy on DU145 prostate cancer cells. The particle size of the nanosuspension and freeze-dried nanoparticles was found to be 12.53 ± 1.06 and 60.23 ± 15 nm, respectively. Both DSC and powder XRD studies indicated that curcumin as well as resveratrol were present in a non-crystalline state, in the nanoparticles. The entrapment efficiency for curcumin and resveratrol was found to be 49.3 ± 4.3 and 70.99 ± 6.1%, respectively. Resveratrol showed a higher percentage of release than curcumin (87.6 ± 7.9 versus 16.3 ± 3.1%) in 24 h. Curcumin was found to be taken up by the cells from solution as well as the nanoparticles. Resveratrol had a poor cellular uptake. The drug-loaded nanoparticles exhibit cytotoxic effects on DU145 cells. At high concentration, drug solution exhibited greater toxicity than nanoparticles. The alginate nanoformulation was found to be safe for intravenous administration.

  3. Functional Magnetic Resonance Imaging in Alzheimer' Disease Drug Development.

    PubMed

    Holiga, Stefan; Abdulkadir, Ahmed; Klöppel, Stefan; Dukart, Juergen

    2018-01-01

    While now commonly applied for studying human brain function the value of functional magnetic resonance imaging in drug development has only recently been recognized. Here we describe the different functional magnetic resonance imaging techniques applied in Alzheimer's disease drug development with their applications, implementation guidelines, and potential pitfalls.

  4. Mathematical modeling of efficacy and safety for anticancer drugs clinical development.

    PubMed

    Lavezzi, Silvia Maria; Borella, Elisa; Carrara, Letizia; De Nicolao, Giuseppe; Magni, Paolo; Poggesi, Italo

    2018-01-01

    Drug attrition in oncology clinical development is higher than in other therapeutic areas. In this context, pharmacometric modeling represents a useful tool to explore drug efficacy in earlier phases of clinical development, anticipating overall survival using quantitative model-based metrics. Furthermore, modeling approaches can be used to characterize earlier the safety and tolerability profile of drug candidates, and, thus, the risk-benefit ratio and the therapeutic index, supporting the design of optimal treatment regimens and accelerating the whole process of clinical drug development. Areas covered: Herein, the most relevant mathematical models used in clinical anticancer drug development during the last decade are described. Less recent models were considered in the review if they represent a standard for the analysis of certain types of efficacy or safety measures. Expert opinion: Several mathematical models have been proposed to predict overall survival from earlier endpoints and validate their surrogacy in demonstrating drug efficacy in place of overall survival. An increasing number of mathematical models have also been developed to describe the safety findings. Modeling has been extensively used in anticancer drug development to individualize dosing strategies based on patient characteristics, and design optimal dosing regimens balancing efficacy and safety.

  5. The basics of preclinical drug development for neurodegenerative disease indications.

    PubMed

    Steinmetz, Karen L; Spack, Edward G

    2009-06-12

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonization. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and

  6. The basics of preclinical drug development for neurodegenerative disease indications

    PubMed Central

    Steinmetz, Karen L; Spack, Edward G

    2009-01-01

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and

  7. Rethinking the Food and Drug Administration's 2013 guidance on developing drugs for early-stage Alzheimer's disease.

    PubMed

    Schneider, Lon S

    2014-03-01

    The February 2013 Food and Drug Administration (FDA) draft guidance for developing drugs for early-stage Alzheimer's disease (AD) creates certain challenges as they guide toward the use of one cognitive outcome to gain accelerated marketing approval for preclinical AD drugs, and a composite clinical scale - the Clinical Dementia Rating Scale in particular - for the primary outcome for prodromal AD clinical trials. In light of the developing knowledge regarding early stage diagnoses and clinical trials outcomes, we recommend that FDA describe its requirements for validating preclinical AD diagnoses for drug development purposes, maintain the principle for requiring coprimary outcomes, and encourage the advancement of outcomes for early stage AD trials. The principles for drug development for early stage AD should not differ from those for clinical AD, especially as the diagnoses of prodromal and early AD impinge on each other. The FDA should not recommend that a composite scale be used as a sole primary efficacy outcome to support a marketing claim unless it requires that the cognitive and functional components of such a scale are demonstrated to be individually meaningful. The current draft guidelines may inadvertently constrain efforts to better assess the clinical effects of new drugs and inhibit innovation in an area where evidence-based clinical research practices are still evolving. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  8. Drugs' development in acute heart failure: what went wrong?

    PubMed

    Teneggi, Vincenzo; Sivakumar, Nithy; Chen, Deborah; Matter, Alex

    2018-05-08

    Acute heart failure (AHF) is a major burden disease, with a complex physiopathology, unsatisfactory diagnosis, treatment and a very poor prognosis. In the last two decades, a number of drugs have progressed from preclinical to early and late clinical development, but only a few of them have been approved and added to a stagnant pharmacological armamentarium. We have reviewed the data published on drugs developed for AHF since early 2000s, trying to recognise factors that have worked for a successful approval or for the stoppage of the program, in an attempt to delineate future trajectories for AHF drug development. Our review has identified limitations at both preclinical and clinical levels. At the preclinical level, the major shortcoming is represented by animal models looking at short-term endpoints which do not recapitulate the complexity of the human disease. At the clinical level, the main weakness is given by the disconnect between short-term endpoints assessed in the early stage of drug development, and medium-long-term endpoints requested in Phase 3 for regulatory approval. This is further amplified by the lack of validation and standardisation of short- and long-term endpoints; absence of predictive biomarkers; conduct of studies on heterogeneous populations; and use of different eligibility criteria, time of assessments, drug schedules and background therapies. Key goals remain a better understanding of AHF and the construction of a successful drug development program. A reasonable way to move forward resides in a strong collaboration between main stakeholders of therapeutic innovation: scientific community, industry and regulatory agencies.

  9. An active role for machine learning in drug development

    PubMed Central

    Murphy, Robert F.

    2014-01-01

    Due to the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development. PMID:21587249

  10. Alzheimer’s Disease Drug Development in 2008 and Beyond: Problems and Opportunities

    PubMed Central

    Becker, Robert E.; Greig, Nigel H.

    2008-01-01

    Recently, a number of Alzheimer’s disease (AD) multi-center clinical trials (CT) have failed to provide statistically significant evidence of drug efficacy. To test for possible design or execution flaws we analyzed in detail CTs for two failed drugs that were strongly supported by preclinical evidence and by proven CT AD efficacy for other drugs in their class. Studies of the failed commercial trials suggest that methodological flaws may contribute to the failures and that these flaws lurk within current drug development practices ready to impact other AD drug development [1]. To identify and counter risks we considered the relevance to AD drug development of the following factors: (1) effective dosing of the drug product, (2) reliable evaluations of research subjects, (3) effective implementation of quality controls over data at research sites, (4) resources for practitioners to effectively use CT results in patient care, (5) effective disease modeling, (6) effective research designs. New drugs currently under development for AD address a variety of specific mechanistic targets. Mechanistic targets provide AD drug development opportunities to escape from many of the factors that currently undermine AD clinical pharmacology, especially the problems of inaccuracy and imprecision associated with using rated outcomes. In this paper we conclude that many of the current problems encountered in AD drug development can be avoided by changing practices. Current problems with human errors in clinical trials make it difficult to differentiate drugs that fail to evidence efficacy from apparent failures due to Type II errors. This uncertainty and the lack of publication of negative data impede researchers’ abilities to improve methodologies in clinical pharmacology and to develop a sound body of knowledge about drug actions. We consider the identification of molecular targets as offering further opportunities for overcoming current failures in drug development. PMID

  11. The Comparison of Biodistribution, Efficacy and Toxicity of Two PEGylated Liposomal Doxorubicin Formulations in Mice Bearing C-26 Colon Carcinoma: a Preclinical Study.

    PubMed

    Razavi-Azarkhiavi, K; Jafarian, A H; Abnous, K; Razavi, B M; Shirani, K; Zeinali, M; Jaafari, M R; Karimi, G

    2016-06-01

    Over the past several years, the considerable attention has been progressively given to liposomal formulations of anthracyclines. SinaDoxosome(®) (Exir Nano Sina Company, Iran) is a pegylated liposomal doxorubicin (DOX) which approved by Food and Drug Administration of IRAN for treatment of some types of cancer. The aim of this study was to compare the biodistribution, efficacy, cardiotoxicity and hepatotoxicity of SinaDoxosome(®) with Caelyx(®) in mice bearing C-26 colon carcinoma. Mice tumor size evaluation during the experimental period (28 days) showed comparable therapeutic efficacy of nano-formulations. The biodistribution studies showed no significant difference in DOX tissue concentration between Caelyx(®) and SinaDoxosome(®). DOX induced-ECG changes were not detected in nano-formulations. No significant alteration was found in biochemical indexes of myocardial injury in mice exposed to nano-formulations in comparison with control mice. The tissue oxidative parameters such as lipid peroxidation, glutathione, catalase and superoxide dismutase was significantly changed as the results of free DOX treatment. However, the oxidative status of Caelyx(®) and SinaDoxosome(®) treated animals did not showed any changes. The experiment also revealed that apoptotic pathway was not activated in the heart of mice exposed to nano-formulations. Although this investigation showed that Caelyx(®) and SinaDoxosome(®) are similar in terms of biodistribution, efficacy and toxicity, appropriate clinical evaluations in patients should be considered. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Lorcaserin: drug profile and illustrative model of the regulatory challenges of weight-loss drug development.

    PubMed

    Bays, Harold E

    2011-03-01

    Lorcaserin is a selective 5-hydroxytryptamine receptor 2c agonist developed as a weight-loss drug. Phase II and III clinical trials support lorcaserin as not only reducing adiposity (i.e., fat mass), but also as improving the metabolic diseases commonly associated with adiposopathy (i.e., fat dysfunction). At the time of this writing, regulatory processes continue towards evaluating lorcaserin as a potentially marketed weight-loss and weight-maintenance agent. Some of the challenges facing lorcaserin are similar to the difficulties encountered by all investigational weight-loss therapeutic agents, which include evolving paths towards approval. While important for clinicians to understand approval hurdles for all therapeutics, it is especially critical for researchers and developers to grasp the unique regulatory complexities of anti-obesity agents. This article profiles lorcaserin as an illustrative example of general drug development regulatory processes, and specifically details the unique challenge of weight-loss drug development.

  13. Promising Targets in Anti-cancer Drug Development: Recent Updates.

    PubMed

    Kumar, Bhupinder; Singh, Sandeep; Skvortsova, Ira; Kumar, Vinod

    2017-01-01

    Cancer is a multifactorial disease and its genesis and progression are extremely complex. The biggest problem in the anticancer drug development is acquiring of multidrug resistance and relapse. Classical chemotherapeutics directly target the DNA of the cell, while the contemporary anticancer drugs involve molecular-targeted therapy such as targeting the proteins possessing abnormal expression inside the cancer cells. Conventional strategies for the complete eradication of the cancer cells proved ineffective. Targeted chemotherapy was successful in certain malignancies however, the effectiveness has often been limited by drug resistance and side effects on normal tissues and cells. Since last few years, many promising drug targets have been identified for the effective treatment of cancer. The current review article describes some of these promising anticancer targets that include kinases, tubulin, cancer stem cells, monoclonal antibodies and vascular targeting agents. In addition, promising drug candidates under various phases of clinical trials are also described. Multi-acting drugs that simultaneously target different cancer cell signaling pathways may facilitate the process of effective anti-cancer drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. 78 FR 32669 - New Approaches to Antibacterial Drug Development; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...] New Approaches to Antibacterial Drug Development; Request for Comments AGENCY: Food and Drug... related to antibacterial drug development: Potential new study designs, proposed priorities for CDER guidances, and strategies intended to slow the rate of emerging resistance to antibacterial drugs. The...

  15. Targeting bacterial central metabolism for drug development.

    PubMed

    Murima, Paul; McKinney, John D; Pethe, Kevin

    2014-11-20

    Current antibiotics, derived mainly from natural sources, inhibit a narrow spectrum of cellular processes, namely DNA replication, protein synthesis, and cell wall biosynthesis. With the worldwide explosion of drug resistance, there is renewed interest in the investigation of alternate essential cellular processes, including bacterial central metabolic pathways, as a drug target space for the next generation of antibiotics. However, the validation of targets in central metabolism is more complex, as essentiality of such targets can be conditional and/or contextual. Bearing in mind our enhanced understanding of prokaryotic central metabolism, a key question arises: can central metabolism be bacteria's Achilles' heel and a therapeutic target for the development of new classes of antibiotics? In this review, we draw lessons from oncology and attempt to address some of the open questions related to feasibility of targeting bacterial central metabolism as a strategy for developing new antibacterial drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. An appraisal of drug development timelines in the Era of precision oncology

    PubMed Central

    Jardim, Denis Leonardo; Schwaederle, Maria; Hong, David S.; Kurzrock, Razelle

    2016-01-01

    The effects of incorporating a biomarker-based (personalized or precision) selection strategy on drug development timelines for new oncology drugs merit investigation. Here we accessed documents from the Food and Drug Administration (FDA) database for anticancer agents approved between 09/1998 and 07/2014 to compare drugs developed with and without a personalized strategy. Sixty-three drugs were included (28 [44%] personalized and 35 [56%] non-personalized). No differences in access to FDA-expedited programs were observed between personalized and non-personalized drugs. A personalized approach for drug development was associated with faster clinical development (Investigational New Drug [IND] to New Drug Application [NDA] submission; median = 58.8 months [95% CI 53.8–81.8] vs. 93.5 months [95% CI 73.9–112.9], P =.001), but a similar approval time (NDA submission to approval; median=6.0 months [95% CI 5.5–8.4] vs. 6.1 months [95% CI 5.9–8.3], P = .756) compared to a non-personalized strategy. In the multivariate model, class of drug stratified by personalized status (targeted personalized vs. targeted non-personalized vs. cytotoxic) was the only independent factor associated with faster total time of clinical drug development (clinical plus approval phase, median = 64.6 vs 87.1 vs. 112.7 months [cytotoxic], P = .038). Response rates (RR) in early trials were positively correlated with RR in registration trials (r = 0.63, P = <.001), and inversely associated with total time of drug development (r = −0.29, P = .049). In conclusion, targeted agents were developed faster than cytotoxic agents. Shorter times to approval were associated, in multivariate analysis, with a biomarker-based clinical development strategy. PMID:27419632

  17. Vegetable Oil-Loaded Nanocapsules: Innovative Alternative for Incorporating Drugs for Parenteral Administration.

    PubMed

    Venturinil, C G; Bruinsmann, A; Oliveira, C P; Contri, R V; Pohlmann, A R; Guterres, S S

    2016-02-01

    An innovative nanocapsule formulation for parenteral administration using selected vegetable oils (mango, jojoba, pequi, oat, annatto, calendula, and chamomile) was developed that has the potential to encapsulate various drugs. The vegetable oil-loaded nanocapsules were prepared by interfacial deposition and compared with capric/caprylic triglyceride-loaded lipid core nanocapsules. The major objective was to investigate the effect of vegetable oils on particle size distribution and physical stability and to determine the hemolytic potential of the nanocapsules, considering their applicability for intravenous administration. Taking into account the importance of accurately determining particle size for the selected route of administration, different size characterization techniques were employed, such as Laser Diffraction, Dynamic Light Scattering, Multiple Light Scattering, Nanoparticle Tracking Analysis, and Transmission Electronic Microscopy. Laser diffraction studies indicated that the mean particle size of all nanocapsules was below 300 nm. For smaller particles, the laser diffraction and multiple light scattering data were in agreement (D[3,2]-130 nm). Dynamic light scattering and nanoparticle tracking analysis, two powerful techniques that complement each other, exhibited size values between 180 and 259 nm for all nanoparticles. Stability studies demonstrated a tendency of particle creaming for jojoba-nanocapsules and sedimentation for the other nanoparticles; however, no size variation occurred over 30 days. The hemolysis test proved the hemocompatibility of all nanosystems, irrespective of the type of oil. Although all developed nanocapsules presented the potential for parenteral administration, jojoba oil-loaded nanocapsules were selected as the most promising nanoformulation due to their low average size and high particle size homogeneity.

  18. Adolescent Brain Development and Drugs

    ERIC Educational Resources Information Center

    Winters, Ken C.; Arria, Amelia

    2011-01-01

    Research now suggests that the human brain is still maturing during adolescence. The developing brain may help explain why adolescents sometimes make decisions that are risky and can lead to safety or health concerns, including unique vulnerabilities to drug abuse. This article explores how this new science may be put to use in our prevention and…

  19. Application of PBPK modelling in drug discovery and development at Pfizer.

    PubMed

    Jones, Hannah M; Dickins, Maurice; Youdim, Kuresh; Gosset, James R; Attkins, Neil J; Hay, Tanya L; Gurrell, Ian K; Logan, Y Raj; Bungay, Peter J; Jones, Barry C; Gardner, Iain B

    2012-01-01

    Early prediction of human pharmacokinetics (PK) and drug-drug interactions (DDI) in drug discovery and development allows for more informed decision making. Physiologically based pharmacokinetic (PBPK) modelling can be used to answer a number of questions throughout the process of drug discovery and development and is thus becoming a very popular tool. PBPK models provide the opportunity to integrate key input parameters from different sources to not only estimate PK parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. Using examples from the literature and our own company, we have shown how PBPK techniques can be utilized through the stages of drug discovery and development to increase efficiency, reduce the need for animal studies, replace clinical trials and to increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however, some limitations need to be addressed to realize its application and utility more broadly.

  20. Genomics, systems biology and drug development for infectious diseases.

    PubMed

    Sakata, Tomoyo; Winzeler, Elizabeth A

    2007-12-01

    Although a variety of drugs are available for many infectious diseases that predominantly affect the developing world reasons remain for continuing to search for new chemotherapeutics. First, the development of microbial resistance has made some of the most effective and inexpensive drug regimes unreliable and dangerous to use on severely ill patients. Second, many existing antimicrobial drugs show toxicity or are too expensive for countries where the per capita income is in the order of hundreds of dollars per year. In recognition of this, new publicly and privately financed drug discovery efforts have been established to identify and develop new therapies for diseases such as tuberculosis, malaria and AIDS. This in turn, has intensified the need for tools to facilitate drug identification for those microbes whose molecular biology is poorly understood, or which are difficult to grow in the laboratory. While much has been written about how functional genomics can be used to find novel protein targets for chemotherapeutics this review will concentrate on how genome-wide, systems biology approaches may be used following whole organism, cell-based screening to understand the mechanism of drug action or to identify biological targets of small molecules. Here we focus on protozoan parasites, however, many of the approaches can be applied to pathogenic bacteria or parasitic helminths, insects or disease-causing fungi.

  1. Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review).

    PubMed

    Vizirianakis, Ioannis S; Mystridis, George A; Avgoustakis, Konstantinos; Fatouros, Dimitrios G; Spanakis, Marios

    2016-04-01

    The existing tumor heterogeneity and the complexity of cancer cell biology critically demand powerful translational tools with which to support interdisciplinary efforts aiming to advance personalized cancer medicine decisions in drug development and clinical practice. The development of physiologically based pharmacokinetic (PBPK) models to predict the effects of drugs in the body facilitates the clinical translation of genomic knowledge and the implementation of in vivo pharmacology experience with pharmacogenomics. Such a direction unequivocally empowers our capacity to also make personalized drug dosage scheme decisions for drugs, including molecularly targeted agents and innovative nanoformulations, i.e. in establishing pharmacotyping in prescription. In this way, the applicability of PBPK models to guide individualized cancer therapeutic decisions of broad clinical utility in nanomedicine in real-time and in a cost-affordable manner will be discussed. The latter will be presented by emphasizing the need for combined efforts within the scientific borderlines of genomics with nanotechnology to ensure major benefits and productivity for nanomedicine and personalized medicine interventions.

  2. [Significance of re-evaluation and development of Chinese herbal drugs].

    PubMed

    Gao, Yue; Ma, Zengchun; Zhang, Boli

    2012-01-01

    The research of new herbal drugs involves in new herbal drugs development and renew the old drugs. It is necessary to research new herbal drugs based on the theory of traditional Chinese medicine (TCM). The current development of famous TCM focuses on the manufacture process, quality control standards, material basis and clinical research. But system management of security evaluation is deficient, the relevant system for the safety assessment TCM has not been established. The causes of security problems, security risks, target organ of toxicity, weak link of safety evaluation, and ideas of safety evaluation are discussed in this paper. The toxicology research of chinese herbal drugs is necessary based on standard of good laboratory practices (GLP), the characteristic of Chinese herbal drugs is necessary to be fully integrated into safety evaluation. The safety of new drug research is necessary to be integrated throughout the entire process. Famous Chinese medicine safety research must be paid more attention in the future.

  3. [Does the public sector have an independent research role in the development of drugs?].

    PubMed

    Poulsen, Henrik Enghusen; Grønlykke, Thor Buch

    2003-04-14

    Exclusively private companies do drug development. The State contributes with education of academics and basic research constituting the basis of half of the drugs developed by the private companies. The Danish private drug research amounts to six billion DKK per year, corresponding to the estimated price of the development of one new drug. The development shows a negative tendency. There are doubts about the scientific credibility, the number of new drugs is declining, drug development costs are rising, and the competitiveness in Europe is declining compared with the one of The United States. Continued improvement of Danish drug development can be achieved by stimulation of the public research related to drug development.

  4. Pharmacogenomics and its potential impact on drug and formulation development.

    PubMed

    Regnstrom, Karin; Burgess, Diane J

    2005-01-01

    Recent advances in genomic research have provided the basis for new insights into the importance of genetic and genomic markers during the different stages of drug development. A new field of research, pharmacogenomics, which studies the relationship between drug effects and the genome, has emerged. Structural pharmacogenomics maps the complete DNA sequences of whole genomes (genotypes) including individual variations, and functional pharmacogenomics assesses the expression levels of thousands of genes in one single experiment. Together, these two areas of pharmacogenomics have generated massive databases, which have become a challenge for the research field of informatics and have fostered a new branch of research, bioinformatics. If skillfully used, the databases generated by pharmacogenomics together with data mining on the Web promise to improve the drug development process in a variety of areas: identification of drug targets, evaluation of toxicity, classification of diseases, evaluation of formulations, assessment of drug response and treatment, post-marketing applications, and development of personalized medicines.

  5. Drug development against sleeping sickness: old wine in new bottles?

    PubMed

    Stein, J; Mogk, S; Mudogo, C N; Sommer, B P; Scholze, M; Meiwes, A; Huber, M; Gray, A; Duszenko, M

    2014-01-01

    Atoxyl, the first medicinal drug against human African trypanosomiasis (HAT), also known as sleeping sickness, was applied more than 100 years ago. Ever since, the search for more effective, more specific and less toxic drugs continued, leading to a set of compounds currently in use against this devastating disease. Unfortunately, none of these medicines fulfill modern pharmaceutical requirements and may be considered as therapeutic ultima ratio due to the many, often severe side effects. Starting with a historic overview on drug development against HAT, we present a selection of trypanosome specific pathways and enzymes considered as highly potent druggable targets. In addition, we describe cellular mechanisms the parasite uses for differentiation and cell density regulation and present our considerations how interference with these steps, elementary for life cycle progression and infection, may lead to new aspects of drug development. Finally we refer to our recent work about CNS infection that offers novel insights in how trypanosomes hide in an immune privileged area to establish a chronic state of the disease, thereby considering new ways for drug application. Depressingly, HAT specific drug development has failed over the last 30 years to produce better suited medicine. However, unraveling of parasite-specific pathways and cellular behavior together with the ability to produce high resolution structures of essential parasite proteins by X-ray crystallography, leads us to the optimistic view that development of an ultimate drug to eradicate sleeping sickness from the globe might just be around the corner.

  6. Reshaping drug development using 3D printing.

    PubMed

    Awad, Atheer; Trenfield, Sarah J; Goyanes, Alvaro; Gaisford, Simon; Basit, Abdul W

    2018-05-24

    The pharmaceutical industry stands on the brink of a revolution, calling for the recognition and embracement of novel techniques. 3D printing (3DP) is forecast to reshape the way in which drugs are designed, manufactured, and used. Although a clear trend towards personalised fabrication is perceived, here we accentuate the merits and shortcomings of each technology, providing insights into aspects such as the efficiency of production, global supply, and logistics. Contemporary opportunities for 3DP in drug discovery and pharmaceutical development and manufacturing are unveiled, offering a forward-looking view on its potential uses as a digitised tool for personalised dispensing of drugs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Renal Safety Pharmacology in Drug Discovery and Development.

    PubMed

    Benjamin, Amanda; Nogueira da Costa, Andre; Delaunois, Annie; Rosseels, Marie-Luce; Valentin, Jean-Pierre

    2015-01-01

    The kidney is a complex excretory organ playing a crucial role in various physiological processes such as fluid and electrolyte balance, control of blood pressure, removal of waste products, and drug disposition. Drug-induced kidney injury (DIKI) remains a significant cause of candidate drug attrition during drug development. However, the incidence of renal toxicities in preclinical studies is low, and the mechanisms by which drugs induce kidney injury are still poorly understood. Although some in vitro investigational tools have been developed, the in vivo assessment of renal function remains the most widely used methodology to identify DIKI. Stand-alone safety pharmacology studies usually include assessment of glomerular and hemodynamic function, coupled with urine and plasma analyses. However, as renal function is not part of the ICH S7A core battery, such studies are not routinely conducted by pharmaceutical companies. The most common approach consists in integrating renal/urinary measurements in repeat-dose toxicity studies. In addition to the standard analyses and histopathological examination of kidneys, novel promising urinary biomarkers have emerged over the last decade, offering greater sensitivity and specificity than traditional renal parameters. Seven of these biomarkers have been qualified by regulatory agencies for use in rat toxicity studies.

  8. Advancing cancer drug discovery towards more agile development of targeted combination therapies.

    PubMed

    Carragher, Neil O; Unciti-Broceta, Asier; Cameron, David A

    2012-01-01

    Current drug-discovery strategies are typically 'target-centric' and are based upon high-throughput screening of large chemical libraries against nominated targets and a selection of lead compounds with optimized 'on-target' potency and selectivity profiles. However, high attrition of targeted agents in clinical development suggest that combinations of targeted agents will be most effective in treating solid tumors if the biological networks that permit cancer cells to subvert monotherapies are identified and retargeted. Conventional drug-discovery and development strategies are suboptimal for the rational design and development of novel drug combinations. In this article, we highlight a series of emerging technologies supporting a less reductionist, more agile, drug-discovery and development approach for the rational design, validation, prioritization and clinical development of novel drug combinations.

  9. The paradigm shift to an "open" model in drug development.

    PubMed

    Au, Regina

    2014-12-01

    The rising cost of healthcare, the rising cost for drug development, the patent cliff for Big pharma, shorter patent protection, decrease reimbursement, and the recession have made it more difficult for the pharmaceutical and biotechnology industry to develop drugs. Due to the unsustainable amount of time and money in developing a drug that will have a significant return on investment (ROI) it has become hard to sustain a robust pipeline. The industry is transforming its business model to meet these challenges. In essence a paradigm shift is occurring; the old "closed" model is giving way to a new "open" business model.

  10. Drug-resistant Neisseria gonorrhoeae: latest developments.

    PubMed

    Suay-García, B; Pérez-Gracia, M T

    2017-07-01

    Gonorrhea is the second most frequently reported notifiable disease in the United States and is becoming increasingly common in Europe. The purpose of this review was to assess the current state of drug-resistant Neisseria gonorrhoeae in order to evaluate future prospects for its treatment. An exhaustive literature search was conducted to include the latest research regarding drug resistance and treatment guidelines for gonorrhea. Gonococci have acquired all known resistance mechanisms to all antimicrobials used for treatment. Currently, the European Union, the United States, and the United Kingdom have established surveillance programs to assess, on a yearly basis, the development of gonococcal resistance. Current treatment guidelines are being threatened by the increasing number of ceftriaxone-, cefixime-, and azithromycin-resistant N. gonorrhoeae strains being detected worldwide. This has led the scientific community to develop new treatment options with new molecules in order to persevere in the battle against this "superbug".

  11. Developing drug formularies for the "National Medical Holding" JSC.

    PubMed

    Akhmadyar, N S; Khairulin, B E; Amangeldy-Kyzy, S; Ospanov, M A

    2015-01-01

    One of the main problems of drug provision of multidisciplinary hospitals is the necessity to improve the efficiency of budget spending. Despite the efforts undertaken in Kazakhstan for improving the mechanism of drug distribution (creation of the Kazakhstan National Formulary, Unified National Health System, the handbook of medicines (drugs) costs in the electronic register of inpatients (ERI), having a single distributor), the number of unresolved issues still remain."National Medical Holding" JSC (NMH) was established in 2008 and unites 6 innovational healthcare facilities with up to 1431 beds (700 children and 731 adults), located in the medical cluster - which are "National Research Center for Maternal and Child Health" JSC (NRCMC), "Republic Children's Rehabilitation Center" JSC (RCRC), "Republican Diagnostic Center" JSC (RDC), "National Centre for Neurosurgery" JSC (NCN), "National Research Center for Oncology and Transplantation" JSC (NRCOT) and "National Research Cardiac Surgery Center" JSC (NRCSC). The main purpose of NMH is to create an internationally competitive "Hospital of the Future", which will provide the citizens of Kazakhstan and others with a wide range of medical services based on advanced medical technology, modern hospital management, international quality and safety standards. These services include emergency care, outpatient diagnostic services, obstetrics and gynecology, neonatal care, internal medicine, neurosurgery, cardiac surgery, transplantation, cancer care for children and adults, as well as rehabilitation treatment. To create a program of development of a drug formulary of NMH and its subsidiaries. In order to create drug formularies of NMH, analytical, software and statistical methods were used.AII subsidiary organizations of NMH (5 out of 6) except for the NRCOT have been accredited by Joint Commission International (JCI) standards, which ensure the safety of patients and clinical staff, by improving the technological

  12. Drug Development for Metastasis Prevention.

    PubMed

    Fontebasso, Yari; Dubinett, Steven M

    2015-01-01

    Metastatic disease is responsible for 90% of death from solid tumors. However, only a minority of metastasis-specific targets has been exploited therapeutically, and effective prevention and suppression of metastatic disease is still an elusive goal. In this review, we will first summarize the current state of knowledge about the molecular features of the disease, with particular focus on steps and targets potentially amenable to therapeutic intervention. We will then discuss the reasons underlying the paucity of metastatic drugs in the current oncological arsenal and potential ways to overcome this therapeutic gap. We reason that the discovery of novel promising targets, an increased understanding of the molecular features of the disease, the effect of disruptive technologies, and a shift in the current preclinical and clinical settings have the potential to create more successful drug development endeavors.

  13. Malaria drug resistance: new observations and developments

    PubMed Central

    Sá, Juliana M.; Chong, Jason L.; Wellems, Thomas E.

    2012-01-01

    Drug-resistant micro-organisms became widespread in the 20th Century, often with devastating consequences, in response to widespread use of natural and synthetic drugs against infectious diseases. Antimalarial resistance provides one of the earliest examples, following the introduction of new medicines that filled important needs for prophylaxis and treatment around the globe. In the present chapter, we offer a brief synopsis of major antimalarial developments from two natural remedies, the qinghaosu and cinchona bark infusions, and of synthetic drugs inspired by the active components of these remedies. We review some contributions that early efficacy studies of antimalarial treatment brought to clinical pharmacology, including convincing documentation of atebrine-resistant malaria in the 1940s, prior to the launching of what soon became first-choice antimalarials, chloroquine and amodiaquine. Finally, we discuss some new observations on the molecular genetics of drug resistance, including delayed parasite clearances that have been increasingly observed in response to artemisinin derivatives in regions of South-East Asia. PMID:22023447

  14. Impact of Availability of Companion Diagnostics on the Clinical Development of Anticancer Drugs.

    PubMed

    Tibau, Ariadna; Díez-González, Laura; Navarro, Beatriz; Galán-Moya, Eva M; Templeton, Arnoud J; Seruga, Bostjan; Pandiella, Atanasio; Amir, Eitan; Ocana, Alberto

    2017-06-01

    Companion diagnostics permit the selection of patients likely to respond to targeted anticancer drugs; however, it is unclear if the drug development process differs between drugs developed with or without companion diagnostics. Identification of differences in study design could help future clinical development. Anticancer drugs approved for use in solid tumors between 28 September 2000 and 4 January 2014 were identified using a search of the US FDA website. Phase III trials supporting registration were extracted from the drug label. Each published study was reviewed to obtain information about the phase I and II trials used for the development of the respective drug. We identified 35 drugs and 59 phase III randomized trials supporting regulatory approval. Fifty-three phase I trials and 47 phase II trials were cited in the studies and were used to support the design of these phase III trials. The approval of drugs using a companion diagnostic has increased over time (p for trend 0.01). Expansion cohorts were more frequently observed with drugs developed with a companion diagnostic (62 vs. 20%; p = 0.005). No differences between drugs developed with or without a companion diagnostic were observed for the design of phase I and II studies. The approval of drugs developed with a companion diagnostic has increased over time. The availability of a companion diagnostic was associated with more frequent use of phase I expansion cohorts comprising patients selected by the companion diagnostic.

  15. Anti-influenza drugs: the development of sialidase inhibitors.

    PubMed

    von Itzstein, Mark; Thomson, Robin

    2009-01-01

    Viruses, particularly those that are harmful to humans, are the 'silent terrorists' of the twenty-first century. Well over four million humans die per annum as a result of viral infections alone. The scourge of influenza virus has plagued mankind throughout the ages. The fact that new viral strains emerge on a regular basis, particularly out of Asia, establishes a continual socio-economic threat to mankind. The arrival of the highly pathogenic avian influenza H5N1 heightened the threat of a potential human pandemic to the point where many countries have put in place 'preparedness plans' to defend against such an outcome. The discovery of the first designer influenza virus sialidase inhibitor and anti-influenza drug Relenza, and subsequently Tamiflu, has now inspired a number of continuing efforts towards the discovery of next generation anti-influenza drugs. Such drugs may act as 'first-line-of-defence' against the spread of influenza infection and buy time for necessary vaccine development particularly in a human pandemic setting. Furthermore, the fact that influenza virus can develop resistance to therapeutics makes these continuing efforts extremely important. An overview of the role of the virus-associated glycoprotein sialidase (neuraminidase) and some of the most recent developments towards the discovery of anti-influenza drugs based on the inhibition of influenza virus sialidase is provided in this chapter.

  16. 78 FR 43209 - Narcolepsy Public Meeting on Patient-Focused Drug Development

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0815] Narcolepsy Public Meeting on Patient-Focused Drug Development AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public meeting; request for comments. SUMMARY: The Food and Drug Administration (FDA...

  17. 78 FR 58313 - Fibromyalgia Public Meeting on Patient-Focused Drug Development

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-1041] Fibromyalgia Public Meeting on Patient-Focused Drug Development AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public meeting; request for comments. SUMMARY: The Food and Drug Administration (FDA...

  18. Considerations and caveats in anti-virulence drug development

    PubMed Central

    Maura, Damien; Ballok, Alicia E.; Rahme, Laurence G.

    2016-01-01

    As antibiotic resistance remains a major public health threat, anti-virulence therapy research is gaining interest. Hundreds of potential anti-virulence compounds have been examined, but very few have made it to clinical trials and none have been approved. This review surveys the current anti-virulence research field with a focus on the highly resistant and deadly ESKAPE pathogens, especially Pseudomonas aeruginosa. We discuss timely considerations and caveats in anti-virulence drug development, including target identification, administration, preclinical development, and metrics for success in clinical trials. Development of a defined pipeline for anti-virulence agents, which differs in important ways from conventional antibiotics, is imperative for the future success of these critically needed drugs. PMID:27318551

  19. Concepts and challenges in quantitative pharmacology and model-based drug development.

    PubMed

    Zhang, Liping; Pfister, Marc; Meibohm, Bernd

    2008-12-01

    Model-based drug development (MBDD) has been recognized as a concept to improve the efficiency of drug development. The acceptance of MBDD from regulatory agencies, industry, and academia has been growing, yet today's drug development practice is still distinctly distant from MBDD. This manuscript is aimed at clarifying the concept of MBDD and proposing practical approaches for implementing MBDD in the pharmaceutical industry. The following concepts are defined and distinguished: PK-PD modeling, exposure-response modeling, pharmacometrics, quantitative pharmacology, and MBDD. MBDD is viewed as a paradigm and a mindset in which models constitute the instruments and aims of drug development efforts. MBDD covers the whole spectrum of the drug development process instead of being limited to a certain type of modeling technique or application area. The implementation of MBDD requires pharmaceutical companies to foster innovation and make changes at three levels: (1) to establish mindsets that are willing to get acquainted with MBDD, (2) to align processes that are adaptive to the requirements of MBDD, and (3) to create a closely collaborating organization in which all members play a role in MBDD. Pharmaceutical companies that are able to embrace the changes MBDD poses will likely be able to improve their success rate in drug development, and the beneficiaries will ultimately be the patients in need.

  20. Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies.

    PubMed

    Jang, Bora; Kwon, Hyokyoung; Katila, Pramila; Lee, Seung Jin; Lee, Hyukjin

    2016-03-01

    Cancer causes >8.2 million deaths annually worldwide; thus, various cancer treatments have been investigated over the past decades. Among them, combination drug therapy has become extremely popular, and treatment with more than one drug is often necessary to achieve appropriate anticancer efficacy. With the development of nanoformulations and nanoparticulate-based drug delivery, researchers have explored the feasibility of dual delivery of biological therapeutics to overcome the current drawbacks of cancer therapy. Compared with the conventional single drug therapy, dual delivery of therapeutics has provided various synergistic effects in addition to offering multimodality to cancer treatment. In this review, we highlight and summarize three aspects of dual-delivery systems for cancer therapy. These include (1) overcoming drug resistance by the dual delivery of chemical drugs with biological therapeutics for synergistic therapy, (2) targeted and controlled drug release by the dual delivery of drugs with stimuli-responsive nanomaterials, and (3) multimodal theranostics by the dual delivery of drugs and molecular imaging probes. Furthermore, recent developments, perspectives, and new challenges regarding dual-delivery systems for cancer therapy are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Development of a novel osmotically driven drug delivery system for weakly basic drugs.

    PubMed

    Guthmann, C; Lipp, R; Wagner, T; Kranz, H

    2008-06-01

    The drug substance SAG/ZK has a short biological half-life and because of its weakly basic nature a strong pH-dependent solubility was observed. The aim of this study was to develop a controlled release (cr) multiple unit pellet formulation for SAG/ZK with pH-independent drug release. Pellets with a drug load of 60% were prepared by extrusion/spheronization followed by cr-film coating with an extended release polyvinyl acetate/polyvinyl pyrrolidone dispersion (Kollidon SR 30 D). To overcome the problem of pH-dependent drug release the pellets were then coated with a second layer of an enteric methacrylic acid and ethyl acrylate copolymer (Kollicoat MAE 30 DP). To increase the drug release rates from the double layered cr-pellets different osmotically active ionic (sodium and potassium chloride) and nonionic (sucrose) additives were incorporated into the pellet core. Drug release studies were performed in media of different osmotic pressure to clarify the main release mechanism. Extended release coated pellets of SAG/ZK demonstrated pH-dependent drug release. Applying a second enteric coat on top of the extended release film coat failed in order to achieve pH-independent drug release. Already low enteric polymer levels on top of the extended release coated pellets decreased drug release rates at pH 1 drastically, thus resulting in a reversal of the pH-dependency (faster release at pH 6.8 than in 0.1N HCl). The addition of osmotically active ingredients (sodium and potassium chloride, and sucrose) increased the imbibing of aqueous fluids into the pellet cores thus providing a saturated drug solution inside the beads and increasing drug concentration gradients. In addition, for these pellets increased formation of pores and cracks in the polymer coating was observed. Hence drug release rates from double layered beads increased significantly. Therefore, pH-independent osmotically driven SAG/ZK release was achieved from pellets containing osmotically active ingredients

  2. [A 50-year history of new drugs in Japan-the development and trends of hemostatics and antithrombotic drugs].

    PubMed

    Ozawa, Hikaru; Abiko, Yasushi; Akimoto, Takeshi

    2003-01-01

    The developments and trends of hemostatic and antithrombotic drugs in Japan were investigated chronologically for the last 50 years after the 2nd World War. 1. Hemostatic drugs are classified into three groups ; capillary stabilizers, blood coagulants and antifibrinolytics. l) As to capillary stabilizers, flavonoid (rutin, 1949), adrenochrome derivative (carbazochrome, 1954) and conjugated estrogen (Premarin, 1964) were introduced therapeutically. Especially, the soluble types of adrenochrome compounds (Adona 1956, S-Adchnon, 1962) were devised and used widely in Japan. 2) Drugs concerning blood coagulation, thrombin, introduced in 1953, and hemocoagulase, a snake venom introduced in 1966, were used clinically. V.K. groups producing various coagulation factors were introduced as V.K1 (Phytonadione, 1962) and V.K2 (rnenatetrenone,1972), and they were admitted in "The Japanese Pharmacopoeia"editions 8 and 14, respectively). 3) Regarding antifibrinolytic drugs, Japanese researchers have made remarkable contributions. e-Aminocapronic acid (Ipsilon, 1962) and tranexamic acid (Transamin, 1965) were developed and used for various abnormal bleedings or hemorrhage associated with plasmin over-activation. tranexamic acid also proved to suppress inflammations of the throat such as tonsillitis, pharyngitis or laryngitis. 2. Antithrombotic drugs are also divided into three groups; anticoagulants, antiplatelet drugs and fibrinolytics.1) The anticoagulants used therapeutically by injection are heparins (Na-salt, 1951; Ca-salt, 1962) and low-molecular-weight heparins such as dalteparin (1992), parnaparin (1994) and reviparin (1999). The low molecule compounds are superior to the original heparins in reducing the risk of bleeding. As oral anticoagulants, coumarin derivatives, dicumarol (1950), ethylbiscoumacetate (1954), phenylindandione (1956) and warfarin (1962) are known. Warfarin potassium is the main drug for oral therapy of thromboembolism lately. Gabexate mesilate (1989) and

  3. Improvement of Pediatric Drug Development: Regulatory and Practical Frameworks.

    PubMed

    Tsukamoto, Katusra; Carroll, Kelly A; Onishi, Taku; Matsumaru, Naoki; Brasseur, Daniel; Nakamura, Hidefumi

    2016-03-01

    A dearth in pediatric drug development often leaves pediatricians with no alternative but to prescribe unlicensed or off-label drugs with a resultant increased risk of adverse events. We present the current status of pediatric drug development and, based on our data analysis, clarify the problems in this area. Further action is proposed to improve the drug development that has pediatric therapeutic orphan status. We analyzed all Phase II/III and Phase III trials in ClinicalTrials.gov that only included pediatric participants (<18 years old) between 2006 and 2014. Performance index, an indicator of pediatric drug development, was calculated by dividing the annual number of pediatric clinical trials by million pediatric populations acquired from Census.gov. Effects of the 2 Japanese premiums introduced in 2010, for the enhancement of pediatric drug development, were analyzed by comparing mean performance index prepremiums (2006-2009) and postpremiums (2010-2014) among Japan, the European Union, and the United States. The European Union Clinical Trials Register and published reports from the European Medicines Agency were also surveyed to investigate the Paediatric Committee effect on pediatric clinical trials in the European Union. Mean difference of the performance index in prepremiums and postpremiums between Japan and the European Union were 0.296 (P < 0.001) and 0.066 (P = 0.498), respectively. Those between Japan and the United States were 0.560 (P < 0.001) and 0.281 (P = 0.002), indicating that pediatric drug development in Japan was more active after the introduction of these premiums, even reaching the level of the European Union. The Pediatric Regulation and the Paediatric Committee promoted pediatric drug development in the European Union. The registered number of clinical trials that includes at least 1 participants <18 years old in the European Union Clinical Trials Register increased by 247 trials (from 672) in the 1000 days after regulation. The ratio

  4. Ethical challenges in developing drugs for psychiatric disorders.

    PubMed

    Carrier, Felix; Banayan, David; Boley, Randy; Karnik, Niranjan

    2017-05-01

    As the classification of mental disorders advances towards a disease model as promoted by the National Institute of Mental Health (NIMH) Research Domain Criteria (RDoC), there is hope that a more thorough neurobiological understanding of mental illness may allow clinicians and researchers to determine treatment efficacy with less diagnostic variability. This paradigm shift has presented a variety of ethical issues to be considered in the development of psychiatric drugs. These challenges are not limited to informed consent practices, industry funding, and placebo use. The consideration for alternative research models and quality of research design also present ethical challenges in the development of psychiatric drugs. The imperatives to create valid and sound research that justify the human time, cost, risk and use of limited resources must also be considered. Clinical innovation, and consideration for special populations are also important aspects to take into account. Based on the breadth of these ethical concerns, it is particularly important that scientific questions regarding the development of psychiatric drugs be answered collaboratively by a variety of stakeholders. As the field expands, new ethical considerations will be raised with increased focus on genetic markers, personalized medicine, patient-centered outcomes research, and tension over funding. We suggest that innovation in trial design is necessary to better reflect practices in clinical settings and that there must be an emphasized focus on expanding the transparency of consent processes, regard for suicidality, and care in working with special populations to support the goal of developing sound psychiatric drug therapies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Patient-Focused Drug Development: A New Direction for Collaboration.

    PubMed

    Perfetto, Eleanor M; Burke, Laurie; Oehrlein, Elisabeth M; Epstein, Robert S

    2015-01-01

    Patient-Focused Drug Development (PFDD) is a new initiative from the Food and Drug Administration (FDA) intended to bring patient perspectives into an earlier stage of product development. The goal is that patients will be able to provide context for benefit-risk assessments and input to review divisions, and also aid in the development of new assessment tools, study endpoints, and risk communications. This paper provides a summary on what is known to date about FDA's PFDD initiative and describes implications for patients, researchers, payers, and the biopharmaceutical industry. It also provides a roadmap for stakeholders to consider in defining their role in and in shaping PFDD's direction, and for expanding PFDD principles to conditions beyond the current 20 under FDA consideration. A search was conducted of the peer-reviewed and gray literature using PubMed and Google. This included laws, FDA guidance documents, the peer-reviewed literature, and FDA presentations for content relevant to the search term "patient-focused drug development." Currently, FDA activities within PFDD are limited to gaining patient insights through 20 disease-specific meetings. However, many stakeholders see the initiative much more generally as representing a broad shift toward patient centeredness in biopharmaceutical product development. Depending upon the trajectory taken and whether or not all PFDD aims are eventually addressed, the initiative has the potential to change product development in fundamental ways. Further research should explore how patient input on disease manifestation and treatment options is best ascertained from patients and documented before initiating and during drug development.

  6. A new roadmap for biopharmaceutical drug product development: Integrating development, validation, and quality by design.

    PubMed

    Martin-Moe, Sheryl; Lim, Fredric J; Wong, Rita L; Sreedhara, Alavattam; Sundaram, Jagannathan; Sane, Samir U

    2011-08-01

    Quality by design (QbD) is a science- and risk-based approach to drug product development. Although pharmaceutical companies have historically used many of the same principles during development, this knowledge was not always formally captured or proactively submitted to regulators. In recent years, the US Food and Drug Administration has also recognized the need for more controls in the drug manufacturing processes, especially for biological therapeutics, and it has recently launched an initiative for Pharmaceutical Quality for the 21st Century to modernize pharmaceutical manufacturing and improve product quality. In the biopharmaceutical world, the QbD efforts have been mainly focused on active pharmaceutical ingredient processes with little emphasis on drug product development. We present a systematic approach to biopharmaceutical drug product development using a monoclonal antibody as an example. The approach presented herein leverages scientific understanding of products and processes, risk assessments, and rational experimental design to deliver processes that are consistent with QbD philosophy without excessive incremental effort. Data generated using these approaches will not only strengthen data packages to support specifications and manufacturing ranges but hopefully simplify implementation of postapproval changes. We anticipate that this approach will positively impact cost for companies, regulatory agencies, and patients, alike. Copyright © 2011 Wiley-Liss, Inc.

  7. A physiome interoperability roadmap for personalized drug development

    PubMed Central

    2016-01-01

    The goal of developing therapies and dosage regimes for characterized subgroups of the general population can be facilitated by the use of simulation models able to incorporate information about inter-individual variability in drug disposition (pharmacokinetics), toxicity and response effect (pharmacodynamics). Such observed variability can have multiple causes at various scales, ranging from gross anatomical differences to differences in genome sequence. Relevant data for many of these aspects, particularly related to molecular assays (known as ‘-omics’), are available in online resources, but identification and assignment to appropriate model variables and parameters is a significant bottleneck in the model development process. Through its efforts to standardize annotation with consequent increase in data usability, the human physiome project has a vital role in improving productivity in model development and, thus, the development of personalized therapy regimes. Here, we review the current status of personalized medicine in clinical practice, outline some of the challenges that must be overcome in order to expand its applicability, and discuss the relevance of personalized medicine to the more widespread challenges being faced in drug discovery and development. We then review some of (i) the key data resources available for use in model development and (ii) the potential areas where advances made within the physiome modelling community could contribute to physiologically based pharmacokinetic and physiologically based pharmacokinetic/pharmacodynamic modelling in support of personalized drug development. We conclude by proposing a roadmap to further guide the physiome community in its on-going efforts to improve data usability, and integration with modelling efforts in the support of personalized medicine development. PMID:27051513

  8. Integration of Antibody Array Technology into Drug Discovery and Development.

    PubMed

    Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan

    Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.

  9. Modeling the development of drug addiction in male and female animals.

    PubMed

    Lynch, Wendy J

    2018-01-01

    An increasing emphasis has been placed on the development and use of animal models of addiction that capture defining features of human drug addiction, including escalation/binge drug use, enhanced motivation for the drug, preference for the drug over other reward options, use despite negative consequences, and enhanced drug-seeking/relapse vulnerability. The need to examine behavior in both males and females has also become apparent given evidence demonstrating that the addiction process occurs differently in males and females. This review discusses the procedures that are used to model features of addiction in animals, as well as factors that influence their development. Individual differences are also discussed, with a particular focus on sex differences. While no one procedure consistently produces all characteristics, different models have been developed to focus on certain characteristics. A history of escalating/binge patterns of use appears to be critical for producing other features characteristic of addiction, including an enhanced motivation for the drug, enhanced drug seeking, and use despite negative consequences. These characteristics tend to emerge over abstinence, and appear to increase rather than decrease in magnitude over time. In females, these characteristics develop sooner during abstinence and/or following less drug exposure as compared to males, and for psychostimulant addiction, may require estradiol. Although preference for the drug over other reward options has been demonstrated in non-human primates, it has been more difficult to establish in rats. Future research is needed to define the parameters that optimally induce each of these features of addiction in the majority of animals. Such models are essential for advancing our understanding of human drug addiction and its treatment in men and women. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins

    PubMed Central

    Klyachko, Natalia L; Haney, Matthew J; Zhao, Yuling; Manickam, Devika S; Mahajan, Vivek; Suresh, Poornima; Hingtgen, Shawn D; Mosley, R Lee; Gendelman, Howard E; Kabanov, Alexander V; Batrakova, Elena V

    2013-01-01

    Aims Active targeted transport of the nanoformulated redox enzyme, catalase, in macrophages attenuates oxidative stress and as such increases survival of dopaminergic neurons in animal models of Parkinson’s disease. Optimization of the drug formulation is crucial for the successful delivery in living cells. We demonstrated earlier that packaging of catalase into a polyion complex micelle (‘nanozyme’) with a synthetic polyelectrolyte block copolymer protected the enzyme against degradation in macrophages and improved therapeutic outcomes. We now report the manufacture of nanozymes with superior structure and therapeutic indices. Methods Synthesis, characterization and therapeutic efficacy of optimal cell-based nanoformulations are evaluated. Results A formulation design for drug carriers typically works to avoid entrapment in monocytes and macrophages focusing on small-sized nanoparticles with a polyethylene glycol corona (to provide a stealth effect). By contrast, the best nanozymes for delivery in macrophages reported in this study have a relatively large size (~200 nm), which resulted in improved loading capacity and release from macrophages. Furthermore, the cross-linking of nanozymes with the excess of a nonbiodegradable linker ensured their low cytotoxicity, and efficient catalase protection in cell carriers. Finally, the ‘alternatively activated’ macrophage phenotype (M2) utilized in these studies did not promote further inflammation in the brain, resulting in a subtle but statistically significant effect on neuronal regeneration and repair in vivo. Conclusion The optimized cross-linked nanozyme loaded into macrophages reduced neuroinflammatory responses and increased neuronal survival in mice. Importantly, the approach for nanoformulation design for cell-mediated delivery is different from the common requirements for injectable formulations. PMID:24237263

  11. Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins.

    PubMed

    Klyachko, Natalia L; Haney, Matthew J; Zhao, Yuling; Manickam, Devika S; Mahajan, Vivek; Suresh, Poornima; Hingtgen, Shawn D; Mosley, R Lee; Gendelman, Howard E; Kabanov, Alexander V; Batrakova, Elena V

    2014-07-01

    Active targeted transport of the nanoformulated redox enzyme, catalase, in macrophages attenuates oxidative stress and as such increases survival of dopaminergic neurons in animal models of Parkinson's disease. Optimization of the drug formulation is crucial for the successful delivery in living cells. We demonstrated earlier that packaging of catalase into a polyion complex micelle ('nanozyme') with a synthetic polyelectrolyte block copolymer protected the enzyme against degradation in macrophages and improved therapeutic outcomes. We now report the manufacture of nanozymes with superior structure and therapeutic indices. Synthesis, characterization and therapeutic efficacy of optimal cell-based nanoformulations are evaluated. A formulation design for drug carriers typically works to avoid entrapment in monocytes and macrophages focusing on small-sized nanoparticles with a polyethylene glycol corona (to provide a stealth effect). By contrast, the best nanozymes for delivery in macrophages reported in this study have a relatively large size (≈ 200 nm), which resulted in improved loading capacity and release from macrophages. Furthermore, the cross-linking of nanozymes with the excess of a nonbiodegradable linker ensured their low cytotoxicity, and efficient catalase protection in cell carriers. Finally, the 'alternatively activated' macrophage phenotype (M2) utilized in these studies did not promote further inflammation in the brain, resulting in a subtle but statistically significant effect on neuronal regeneration and repair in vivo. The optimized cross-linked nanozyme loaded into macrophages reduced neuroinflammatory responses and increased neuronal survival in mice. Importantly, the approach for nanoformulation design for cell-mediated delivery is different from the common requirements for injectable formulations.

  12. Genomics-Guided Precise Anti-Epileptic Drug Development.

    PubMed

    Delanty, Norman; Cavallleri, Gianpiero

    2017-07-01

    Traditional antiepileptic drug development approaches have yielded many important clinically valuable anti-epileptic drugs. However, the screening of promising compounds has been naturally agnostic to epilepsy etiology in individual human patients. Now, genomic medicine is changing the way we view human disease. International collaborations are unraveling the many molecular genetic causes of the epilepsies, including the early onset epileptic encephalopathies, and some of the familial focal epilepsies. Further advances in precision diagnostics will be facilitated by ongoing large collaborations and the wider availability of whole exome and whole genome sequencing in clinical practice. Securing a precise molecular diagnosis in some individual patients will pave the way for the advent of precision therapeutics of new and re-purposed compounds in the treatment of the epilepsies. This new approach is already beginning, e.g., with the use of everolimus in patients with tuberous sclerosis complex (and perhaps other mTORopathies), the use of quinidine in some children with KCNT1 mutations, and the use of the ketogenic diet in individuals with GLUT-1 deficiency. This article explores the promise of genomics guided drug development as an approach to complement the more traditional model.

  13. Development of a gastroretentive pulsatile drug delivery platform.

    PubMed

    Thitinan, Sumalee; McConville, Jason T

    2012-04-01

    To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  14. Network-Based Approaches in Drug Discovery and Early Development

    PubMed Central

    Harrold, JM; Ramanathan, M; Mager, DE

    2015-01-01

    Identification of novel targets is a critical first step in the drug discovery and development process. Most diseases such as cancer, metabolic disorders, and neurological disorders are complex, and their pathogenesis involves multiple genetic and environmental factors. Finding a viable drug target–drug combination with high potential for yielding clinical success within the efficacy–toxicity spectrum is extremely challenging. Many examples are now available in which network-based approaches show potential for the identification of novel targets and for the repositioning of established targets. The objective of this article is to highlight network approaches for identifying novel targets with greater chances of gaining approved drugs with maximal efficacy and minimal side effects. Further enhancement of these approaches may emerge from effectively integrating computational systems biology with pharmacodynamic systems analysis. Coupling genomics, proteomics, and metabolomics databases with systems pharmacology modeling may aid in the development of disease-specific networks that can be further used to build confidence in target identification. PMID:24025802

  15. Glucose-6-phosphate dehydrogenase deficiency and antimalarial drug development.

    PubMed

    Beutler, Ernest; Duparc, Stephan

    2007-10-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is relatively common in populations exposed to malaria. This deficiency appears to provide some protection from this infection, but it can also cause hemolysis after administration of some antimalarial drugs, especially primaquine. The risk of drug-induced G6PD deficiency-related hemolysis depends on a number of factors including the G6PD variant, the drug and drug dosage schedule, patient status, and disease factors. Although a great deal is known about the molecular biology of G6PD, determining the potential for drug-induced hemolysis in the clinical setting is still challenging. This report discusses the potential strategies for assessing drug-induced G6PD deficiency-related hemolytic risk preclinically and in early clinical trials. Additionally, the issues important for conducting larger clinical trials in populations in which G6PD deficiency is prevalent are examined, with a particular focus on antimalarial drug development.

  16. [International Partnership for Therapeutic Drug Development of NTDs by DNDi].

    PubMed

    Yamada, Haruki; Hirabayashi, Fumiko; Brünger, Chris

    2016-01-01

    The Drugs for Neglected Diseases initiative (DNDi), with headquarters in Geneva, is a non-profit drug research and development (R&D) organization and Product Development Partnership (PDP) which was established in 2003 by 7 founding organizations such as Médecins Sans Frontières (MSF), the Pasteur Institute, The Specific Programme for Research and Training in Tropical Diseases (WHO-TDR), etc. DNDi has worked mainly on the development of new treatments for neglected tropical diseases (NTDs), which is difficult to achieve under market economy conditions. DNDi has promoted overall drug discovery research including the screening of drug candidates, hit to lead, lead optimization, pre-clinical and clinical studies in the area of infectious diseases with a focus on malaria, sleeping sickness (human African trypanosomiasis; HAT), Chagas disease, leishmaniasis, filarial diseases and pediatric formulations for HIV treatment. DNDi's achievements include the development of novel therapies based on patient needs through innovative partnerships with over 130 organizations in industry, government, academia, and public institutions around the world. To date, DNDi has registered 6 novel treatments adapted to the needs of patients in poor countries, and has another 12 novel entities in development. DNDi Japan is a Japanese non-profit organization (NPO) based on the global principles of DNDi and, as the only PDP in Japan, is supporting NTD drug discovery projects in collaboration with Japanese pharmaceutical companies, academic institutions and government agencies by utilizing Japan's excellent R&D capabilities to develop new treatments for NTDs in order to contribute to global health.

  17. Investigational drugs in early development for treating dengue infection.

    PubMed

    Beesetti, Hemalatha; Khanna, Navin; Swaminathan, Sathyamangalam

    2016-09-01

    Dengue has emerged as the most significant arboviral disease of the current century. A drug for dengue is an urgent unmet need. As conventional drug discovery efforts have not produced any promising clinical candidates, there is a shift toward re-positioning pre-existing drugs for dengue to fast-track dengue drug development. This article provides an update on the current status of recently completed and ongoing dengue drug trials. All dengue drug trials described in this article were identified from a list of >230 trials that were returned upon searching the World Health Organization's International Clinical Trials Registry Platform web portal using the search term 'dengue' on December 31(st), 2015. None of the handful of drugs tested so far has yielded encouraging results. Early trial experience has served to emphasize the challenge of drug testing in the short therapeutic time window available, the need for tools to predict 'high-risk' patients early on and the limitations of the existing pre-clinical model systems. Significant investment of efforts and resources is a must before the availability of a safe, effective and inexpensive dengue drug becomes a reality. Currently, supportive fluid therapy remains the only option available for dengue treatment.

  18. Lipid Nanocarrier-Mediated Drug Delivery System to Enhance the Oral Bioavailability of Rifabutin.

    PubMed

    Nirbhavane, Pradip; Vemuri, Nalini; Kumar, Neeraj; Khuller, Gopal Krishan

    2017-04-01

    Rifabutin (RFB) is prescribed for the treatment of tuberculosis infections as well as Mycobacterium avium complex (MAC) infection in immunocompromised individuals and HIV patients. With a view to develop a sustained release oral solid lipid nanoformulation (SLN), RFB was encapsulated in glyceryl monostearate (GMS) nanoparticles. The rifabutin solid lipid nanoparticles (RFB-SLNs), prepared by the solvent diffusion evaporation method, had a size of 345 ± 17.96 nm and PDI of 0.321 ± 0.09. The stability of RFB-SLNs was investigated in simulated gastric fluid (SGF) pH 2.0, simulated intestinal fluid (SIF) pH 6.8 and physiological buffer (PBS) pH 7.4. The gastric medium did not affect the SLNs and were found to be stable, while a sustained release was observed in SIF up to 48 h and in PBS up to 7 days. The pharmacokinetic profile of a single oral administration of RFB-SLNs in mice showed maintenance of therapeutic drug concentrations in plasma for 4 days and in the tissues (lungs, liver and spleen) for 7 days. Oral administration of free RFB showed clearance from plasma within 24 h. The relative bioavailability of RFB from SLNs was five fold higher as compared to administration with free RFB. The intent of using lipid nanocarriers is primarily to enhance the oral bioavailability of rifabutin and eventually decrease the dose and dosing frequency for successful management of MAC infection.

  19. 78 FR 66747 - Sickle Cell Disease Public Meeting on Patient-Focused Drug Development

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ...] Sickle Cell Disease Public Meeting on Patient-Focused Drug Development AGENCY: Food and Drug... Development for sickle cell disease. Patient-Focused Drug Development is part of FDA's performance commitments... intended to allow FDA to obtain patients' perspectives on the impact of sickle cell disease on daily life...

  20. DeSigN: connecting gene expression with therapeutics for drug repurposing and development.

    PubMed

    Lee, Bernard Kok Bang; Tiong, Kai Hung; Chang, Jit Kang; Liew, Chee Sun; Abdul Rahman, Zainal Ariff; Tan, Aik Choon; Khang, Tsung Fei; Cheong, Sok Ching

    2017-01-25

    The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously. We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC 50 ) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC 50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control. DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.

  1. Development of Metronidazole-Loaded Colon-Targeted Microparticulate Drug Delivery System.

    PubMed

    Kumar, Manoj; Awasthi, Rajendra

    2015-01-01

    Crohn’s disease and ulcerative colitis are the main autoimmune inflammatory bowel diseases. Metronidazole is the most commonly used drug for the treatment of Crohn’s disease. However, the pharmacokinetic profile of this drug indicates that the largest amount of the drug is absorbed from the upper part of the intestines and very little concentration of the drugs reaches the colon.Objectives: The aim of this investigation was to formulate metronidazole loaded microspheres for the efficient therapy of inflammatory bowel diseases.Material and Methods: Microspheres were prepared using the emulsification-solvent evaporation method. The effect of Eudragit S100 concentration and the ratio of liquid paraffin (light: heavy) on percentage yield, particle size, morphology, drug encapsulation and in vitro drug release was examined. Drug-polymer interaction was investigated using Fourier Transformed Infrared Spectroscopy (FTIR). The results showed that the particle had good flow properties, encapsulation efficiency (56.11 ・} 1.51–81.02 ・} 2.14%)and cumulative drug release (64.14 ・} 0.83–79.69 ・} 2.45%) in a phosphate buffer (pH 6.8) after 10 h of the dissolution study.An increased particle size was observed with an increasing polymer concentration. It was observed that the Eudragit had a positive effect on the drug encapsulation and negative effect on drug release. Aggregation of drug-polymer droplets was observed at a lower level of magnesium stearate during microsphere preparation. The results of FTIR spectroscopy revealed the absence of any drug-polymer interactions. However, slight peak shifting and suppression in peak height was observed.This might be due to the minor ionic interactions. The microspheres were discrete, spherical and free-flowing. The spherical shape of the microspheres was confirmed from SEM photomicrographs. The developed microspheres showed a controlled drug release and were found to follow Higuchi’s model. The release mechanism of

  2. The story of artesunate–mefloquine (ASMQ), innovative partnerships in drug development: case study

    PubMed Central

    2013-01-01

    Background The Drugs for Neglected Diseases initiative (DNDi) is a not-for profit organization committed to providing affordable medicines and access to treatments in resource-poor settings. Traditionally drug development has happened “in house” within pharmaceutical companies, with research and development costs ultimately recuperated through drug sales. The development of drugs for the treatment of neglected tropical diseases requires a completely different model that goes beyond the scope of market-driven research and development. Artesunate and mefloquine are well-established drugs for the treatment of uncomplicated malaria, with a strong safety record based on many years of field-based studies and use. The administration of such artemisinin-based combination therapy in a fixed-dose combination is expected to improve patient compliance and to reduce the risk of emerging drug resistance. Case description DNDi developed an innovative approach to drug development, reliant on strong collaborations with a wide range of partners from the commercial world, academia, government institutions and NGOs, each of which had a specific role to play in the development of a fixed dose combination of artesunate and mefloquine. Discussion and evaluation DNDi undertook the development of a fixed-dose combination of artesunate with mefloquine. Partnerships were formed across five continents, addressing formulation, control and production through to clinical trials and product registration, resulting in a safe and efficacious fixed dose combination treatment which is now available to treat patients in resource-poor settings. The south-south technology transfer of production from Farmanguinhos/Fiocruz in Brazil to Cipla Ltd in India was the first of its kind. Of additional benefit was the increased capacity within the knowledge base and infrastructure in developing countries. Conclusions This collaborative approach to drug development involving international partnerships and

  3. Assessment of cognitive safety in clinical drug development

    PubMed Central

    Roiser, Jonathan P.; Nathan, Pradeep J.; Mander, Adrian P.; Adusei, Gabriel; Zavitz, Kenton H.; Blackwell, Andrew D.

    2016-01-01

    Cognitive impairment is increasingly recognised as an important potential adverse effect of medication. However, many drug development programmes do not incorporate sensitive cognitive measurements. Here, we review the rationale for cognitive safety assessment, and explain several basic methodological principles for measuring cognition during clinical drug development, including study design and statistical analysis, from Phase I through to postmarketing. The crucial issue of how cognition should be assessed is emphasized, especially the sensitivity of measurement. We also consider how best to interpret the magnitude of any identified effects, including comparison with benchmarks. We conclude by discussing strategies for the effective communication of cognitive risks. PMID:26610416

  4. Utilization of the Bridging Strategy for the Development of New Drugs in Oncology to Avoid Drug Lag.

    PubMed

    Kogure, Seiji; Koyama, Nobuyuki; Hidaka, Shinji

    2017-11-01

    Global trial (GT) strategy and bridging (BG) strategy are currently the main clinical development strategies of oncology drugs in Japan, but the relationship between development style and drug lag and how the bridging strategy has contributed to the solution of drug lag have not been clear. We investigated the potential factors that influenced submission lag (SL), and also compared the differences in SL among early-initiation BG strategy, late-initiation BG strategy, and GT strategy. A stepwise linear regression analysis identified the potential factors that shorten SL: development start lag and development style. Comparison of the differences in SL among the strategies also indicated that the SL in the GT strategy and that in the early-initiation BG strategy were significantly shorter than that in the late-initiation BG strategy. The findings in our study suggest that the late-initiation BG strategy may not contribute to shortening drug lag. Because the number of late-initiation BG studies has not decreased, we propose first that pharmaceutical companies should initiate clinical development as early as possible in Japan so that they can choose the GT strategy as a first option at the next step, and second when they cannot choose the GT strategy after investigating differences in exposure between Japanese and non-Japanese in a phase 1 study, they should select the early BG strategy to avoid future drug lag. It is also important for the regulatory authorities to provide reasonable guidance to have a positive impact on strategic decisions, even for foreign-capital companies. © 2017, The American College of Clinical Pharmacology.

  5. [Post-authorization research, registries, and drug development].

    PubMed

    Patarnello, Francesca; Recchia, Giuseppe

    2013-06-01

    In the last decade regulators, payers and health care providers tried to react to three major problems in drug development and drug use in clinical practice: the pharmaceutical R&D productivity crisis, the immaturity of benefit-risk profile for several newly approved drugs and the overall impact on economic sustainability of reimbursing new high cost drugs in their systems. The potentiality of create a continuum between the evidence requirements relevant for registration, for reimbursement and for post authorization research is clear. All different parties involved, like regulators, HTA agencies, scientific communities and manufacturers, are working to improve the knowledge profile of new drugs in order to anticipate the patient access to innovation, limiting or preventing the clinical and economical risks deriving from an incomplete safety and effectiveness profile. The Italian example of "New Drugs AIFA Registries", with or without the application of risk sharing schemes (cost sharing, pay for performance, etc.), introduced a new process and increased the sensitivity on this topic. However this might probably represents only a partial answer to the problem of how to set up the governance of coverage with evidence, drug utilization monitoring, comparative effectiveness research, outcome research programs and may be how to link them to access, pricing and reimbursement. The step change in post authorization research could be to "integrate" different sources and stakeholders in a wider and continuous approach, in a well designed and inclusive "second generation" HTA approach, where all resources (competencies, data, funding) will concur to increase the evidence profile and reduce the risks, and where any "evidence generation approach" is really compliant with the standard and rules of best research practices.

  6. Communicating to Influence Drug Development and Regulatory Decisions: A Tutorial

    PubMed Central

    Mehrotra, S

    2016-01-01

    Pharmacometricians require three skills to be influential: technical, business (e.g., drug development), and soft skills (e.g., communication). Effective communication is required to translate technical and often complicated quantitative findings to interdisciplinary team members in order to influence drug development or regulatory decisions. In this tutorial, we highlight important aspects related to communicating pharmacometric analysis to influence decisions. PMID:27299706

  7. Tissue chips - innovative tools for drug development and disease modeling.

    PubMed

    Low, L A; Tagle, D A

    2017-09-12

    The high rate of failure during drug development is well-known, however recent advances in tissue engineering and microfabrication have contributed to the development of microphysiological systems (MPS), or 'organs-on-chips' that recapitulate the function of human organs. These 'tissue chips' could be utilized for drug screening and safety testing to potentially transform the early stages of the drug development process. They can also be used to model disease states, providing new tools for the understanding of disease mechanisms and pathologies, and assessing effectiveness of new therapies. In the future, they could be used to test new treatments and therapeutics in populations - via clinical trials-on-chips - and individuals, paving the way for precision medicine. Here we will discuss the wide-ranging and promising future of tissue chips, as well as challenges facing their development.

  8. Diabetes mellitus: Exploring the challenges in the drug development process.

    PubMed

    Vaz, Julius A; Patnaik, Ashis

    2012-07-01

    Diabetes mellitus has reached epidemic proportions and continues to be a major burden on society globally. The International Diabetes Federation (IDF) estimated the global burden of diabetes to be 366 million in 2011 and predicted that by 2030 this will have risen to 552 million. In spite of newer and effective treatment options, newer delivery and diagnostic devices, stricter glycaemic targets, better treatment guidelines and increased awareness of the disease, baseline glycosylated hemoglobin remains relatively high in subjects diagnosed and treated with type 2 diabetes. The search continues for an ideal anti diabetic drug that will not only normalize blood glucose but also provide beta cell rest and possibly restoration of beta cell function. The development of anti diabetic drugs is riddled with fundamental challenges. The concept of beta cell rest and restoration is yet to be completely understood and proven on a long term. The ideal therapeutic approach to treating type 2 diabetes is not yet determined. Our understanding of drug safety in early clinical development is primarily limited to "Type A" reactions. Until marketing authorization most drugs are approved based on the principle of confirming non-inferiority with an existing gold standard or determining superiority to a placebo. The need to obtain robust pharmaco-economic data prior to marketing authorization in order to determine appropriate pricing of a new drug remains a major challenge. The present review outlines some of the challenges in drug development of anti-diabetic drugs citing examples of pulmonary insulin, insulin analogues, thiazolidinediones and the GLP1 analogues.

  9. Development of novel small molecules for imaging and drug release

    NASA Astrophysics Data System (ADS)

    Cao, Yanting

    Small organic molecules, including small molecule based fluorescent probes, small molecule based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play important roles in biological research, drug discovery, and clinical practices. Despite the significant progress made in these fields, the development of novel and diverse small molecules is needed to meet various demands for research and clinical applications. My Ph.D study focuses on the development of novel functional molecules for recognition, imaging and drug release. In the first part, a turn-on fluorescent probe is developed for the detection of intracellular adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the unique and complicated structure of ATP molecules, a fluorescent probe has been implemented with improved sensitivity and selectivity due to two synergistic binding recognitions by incorporating of 2, 2'-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept have been demonstrated using two control molecules. In the second part, a prodrug system is developed to deliver multiple drugs within one small molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. The multiple drug release system may hold a great potential for practical application. In the

  10. Developments in Diagnosis and Antileishmanial Drugs

    PubMed Central

    Bhargava, Prachi; Singh, Rajni

    2012-01-01

    Leishmaniasis ranks the third in disease burden in disability-adjusted life years caused by neglected tropical diseases and is the second cause of parasite-related deaths after malaria; but for a variety of reasons, it is not receiving the attention that would be justified seeing its importance. Leishmaniasis is a diverse group of clinical syndromes caused by protozoan parasites of the genus Leishmania. It is estimated that 350 million people are at risk in 88 countries, with a global incidence of 1–1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. Improvements in diagnostic methods for early case detection and latest combitorial chemotherapeutic methods have given a new hope for combating this deadly disease. The cell biology of Leishmania and mammalian cells differs considerably and this distinctness extends to the biochemical level. This provides the promise that many of the parasite's proteins should be sufficiently different from hosts and can be successfully exploited as drug targets. This paper gives a brief overview of recent developments in the diagnosis and approaches in antileishmanial drug discovery and development. PMID:23118748

  11. Controversies in Alzheimer's disease drug development.

    PubMed

    Cummings, Jeffrey L

    2008-08-01

    Understanding of the pathophysiological basis of Alzheimer's disease (AD) is increasing rapidly and a variety of potential treatment modalities have emerged based on these improved mechanistic insights. The optimal way of proceeding with disease-modifying drug development remains to be clarified and controversies have emerged regarding the definition of Alzheimer's disease, the participation of mild cognitive impairment patients in clinical trials, the definition of disease modification, the potential impediments to satisfaction from patients receiving disease-modifying therapy, the importance of add-on therapy with symptomatic agents, the optimal clinical trial design to demonstrate disease modification, the best means of minimizing time spent in Phase II of drug development, the potential role of adaptive designs in clinical trials, the use of enrichment designs in clinical trials, the role of biomarkers in clinical trials, the treatment of advanced patients with disease-modifying agents, and distinctions between disease modification and disease prevention. The questions surrounding these issues must be resolved as disease-modifying therapies for AD are advanced. These controversies are framed and potential directions towards resolution described.

  12. The Use of Social Media in Orphan Drug Development.

    PubMed

    Milne, Christopher-Paul; Ni, Wendi

    2017-11-01

    Social media has transformed how people interact with one another through the Internet, and it has the potential to do the same for orphan drug development. Currently, social media influences the orphan drug development process in the following three ways: assisting the study of orphan diseases, increasing the awareness of orphan disease, and playing a vital role in clinical trials. However, there are some caveats to the utilization of social media, such as the need to protect patient privacy by adequately de-identifying personal health information, assuring consistent quality and representativeness of the data, and preventing the unblinding of patient group assignments. Social media has both potential for improving orphan drug development and pitfalls, but with proper oversight on the part of companies, support and participation of patients and their advocacy groups, and timely guidance from regulatory authorities, the positives outweigh the negatives for this powerful and patient-centric tool. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  13. Enhancing the incorporation of the patient's voice in drug development and evaluation.

    PubMed

    Chalasani, Meghana; Vaidya, Pujita; Mullin, Theresa

    2018-01-01

    People living with a condition are uniquely positioned to inform the understanding of the therapeutic context for drug development and evaluation. In 2012, the U.S. Food and Drug Administration (FDA) established the Patient-Focused Drug Development (PFDD) initiative to more systematically obtain the patient perspective on specific diseases and their currently available treatments. PFDD meetings are unique among FDA public meetings, with a format designed to engage patients and elicit their perspectives on two topic areas: (1) the most significant symptoms of their condition and the impact of the condition on daily life; and, (2) their current approaches to treatment. FDA has conducted 24 disease-specific PFDD meetings to date. The lessons learned from PFDD meetings range from experiences common across rare diseases to more disease specific experiences that matter most to patients. FDA recognizes that FDA-led PFDD meetings alone cannot address the gaps in information on the patient perspective. Patient-focused drug development is an ongoing effort and FDA looks forward to the next steps in advancing the science and the utilization of patient input throughout drug development and evaluation. The U.S. Food and Drug Administration (FDA) has multiple mechanisms for its regulators and staff to interact with patients -- but none quite like its novel Patient-Focused Drug Development (PFDD) initiative. FDA established the PFDD initiative to more systematically obtain the patient perspective on specific diseases and their currently available treatments. Since the initiative's inception in 2012, FDA has held 24 PFDD meetings, covering a range of disease areas and hearing directly from thousands of patients and caregivers. FDA's PFDD meetings have also provided key stakeholders, including patient advocates, researchers, drug developers, healthcare providers, and other government officials, an opportunity to hear the patient's voice. The lessons learned include but are not

  14. COMPUTER-AIDED DRUG DISCOVERY AND DEVELOPMENT (CADDD): in silico-chemico-biological approach

    PubMed Central

    Kapetanovic, I.M.

    2008-01-01

    It is generally recognized that drug discovery and development are very time and resources consuming processes. There is an ever growing effort to apply computational power to the combined chemical and biological space in order to streamline drug discovery, design, development and optimization. In biomedical arena, computer-aided or in silico design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, optimize the absorption, distribution, metabolism, excretion and toxicity profile and avoid safety issues. Commonly used computational approaches include ligand-based drug design (pharmacophore, a 3-D spatial arrangement of chemical features essential for biological activity), structure-based drug design (drug-target docking), and quantitative structure-activity and quantitative structure-property relationships. Regulatory agencies as well as pharmaceutical industry are actively involved in development of computational tools that will improve effectiveness and efficiency of drug discovery and development process, decrease use of animals, and increase predictability. It is expected that the power of CADDD will grow as the technology continues to evolve. PMID:17229415

  15. Defining the value of a comparative approach to cancer drug development

    PubMed Central

    LeBlanc, AK; Mazcko, C; Khanna, C

    2016-01-01

    Comparative oncology as a tool in drug development requires a deeper examination of the value of the approach and examples of where this approach can satisfy unmet needs. This review seeks to demonstrate types of drug development questions that are best answered by the comparative oncology approach. We believe common perceived risks of the comparative approach relate to uncertainty of how regulatory bodies will prioritize or react to data generated from these unique studies conducted in diseased animals, and how these new data will affect ongoing human clinical trials. We contend that it is reasonable to consider these data as potentially informative and valuable to cancer drug development, but as supplementary to conventional preclinical studies and human clinical trials particularly as they relate to the identification of drug-associated adverse events. PMID:26712689

  16. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer

    NASA Astrophysics Data System (ADS)

    Hervault, Aziliz; Thanh, Nguyêl; N. Thé, Kim

    2014-09-01

    Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.

  17. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.

    PubMed

    Hervault, Aziliz; Thanh, Nguyen Th Kim

    2014-10-21

    Magnetic nanoparticles have been widely investigated for their great potential as mediators of heat for localised hyperthermia therapy. Nanocarriers have also attracted increasing attention due to the possibility of delivering drugs at specific locations, therefore limiting systematic effects. The enhancement of the anti-cancer effect of chemotherapy with application of concurrent hyperthermia was noticed more than thirty years ago. However, combining magnetic nanoparticles with molecules of drugs in the same nanoformulation has only recently emerged as a promising tool for the application of hyperthermia with combined chemotherapy in the treatment of cancer. The main feature of this review is to present the recent advances in the development of multifunctional therapeutic nanosystems incorporating both magnetic nanoparticles and drugs, and their superior efficacy in treating cancer compared to either hyperthermia or chemotherapy as standalone therapies. The principle of magnetic fluid hyperthermia is also presented.

  18. Pharmacogenetic aspects of drug-induced torsade de pointes: potential tool for improving clinical drug development and prescribing.

    PubMed

    Shah, Rashmi R

    2004-01-01

    Drug-induced torsade de pointes (TdP) has proved to be a significant iatro-genic cause of morbidity and mortality and a major reason for the withdrawal of a number of drugs from the market in recent times. Enzymes that metabolise many of these drugs and the potassium channels that are responsible for cardiac repolarisation display genetic polymorphisms. Anecdotal reports have suggested that in many cases of drug-induced TdP, there may be a concealed genetic defect of either these enzymes or the potassium channels, giving rise to either high plasma drug concentrations or diminished cardiac repolarisation reserve, respectively. The presence of either of these genetic defects may predispose a patient to TdP, a potentially fatal adverse reaction, even at therapeutic dosages of QT-prolonging drugs and in the absence of other risk factors. Advances in pharmacogenetics of drug metabolising enzymes and pharmacological targets, together with the prospects of rapid and inexpensive genotyping procedures, promise to individualise and improve the benefit/risk ratio of therapy with drugs that have the potential to cause TdP. The qualitative and the quantitative contributions of these genetic defects in clinical cases of TdP are unclear because not all of the patients with TdP are routinely genotyped and some relevant genetic mutations still remain to be discovered. There are regulatory guidelines that recommend strategies aimed at uncovering the risk of TdP associated with new chemical entities during their development. There are also a number of guidelines that recommend integrating pharmacogenetics in this process. This paper proposes a strategy for integrating pharmacogenetics into drug development programmes to optimise association studies correlating genetic traits and endpoints of clinical interest, namely failure of efficacy or development of repolarisation abnormalities. Until pharmacogenetics is carefully integrated into all phases of development of QT-prolonging drugs

  19. In vitro and in vivo anti-tumor efficacy of 10-hydroxycamptothecin polymorphic nanoparticle dispersions: shape- and polymorph-dependent cytotoxicity and delivery of 10-hydroxycamptothecin to cancer cells.

    PubMed

    Wang, Hongdi; Feng, Jialing; Liu, Guijin; Chen, Baoqiong; Jiang, Yanbin; Xie, Qiuling

    2016-05-01

    Nanotechnology associated with a crystal engineering approach was proposed for improving the solubility and efficacy of hydrophobic drugs in this study. 10-hydroxycamptothecin polymorphic nanoparticle dispersions (HCPT-PNDs) were prepared using the supercritical anti-solvent technique coupled with the high-pressure homogenization method. Shape- and polymorph-dependent tumor suppression was observed in both in vitro and in vivo models, where needle-shaped HCPT-PND exhibited dramatic improvement of antitumor efficacy. A benefit of controllable size and a large surface-to-volume ratio of needle-shaped nanoparticles is the improvement of dissolution properties, which facilitates enhancing pharmacokinetic and pharmaco-dynamic properties. The needle-shaped HCPT-PND, which with longer blood retention time and more effective cellular uptake, makes it possible to accumulate drug in tumor tissues and exhibit higher cytotoxicity. No severe systemic toxicity was observed due to sustained-dissolution and the low dose of drug in normal tissues. The results suggest that the needle-shaped HCPT-PND is an interesting nano-formulation of HCPT. Nanotechnology has enabled the production of novel therapeutics drugs against cancer. Here, the authors investigated the use of a crystal engineering approach for the modification of camptothecin in order to improve its water solubility. Physicochemical and biological properties were studied. The results would suggest the applicability of this approach for nano-formulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Application of liposomes in drug development — focus on gastroenterological targets

    PubMed Central

    Zhang, Jian-Xin; Wang, Kun; Mao, Zheng-Fa; Fan, Xin; Jiang, De-Li; Chen, Min; Cui, Lei; Sun, Kang; Dang, Sheng-Chun

    2013-01-01

    Over the past decade, liposomes became a focal point in developing drug delivery systems. New liposomes, with novel lipid molecules or conjugates, and new formulations opened possibilities for safely and efficiently treating many diseases including cancers. New types of liposomes can prolong circulation time or specifically deliver drugs to therapeutic targets. This article concentrates on current developments in liposome based drug delivery systems for treating diseases of the gastrointestinal tract. We will review different types and uses of liposomes in the development of therapeutics for gastrointestinal diseases including inflammatory bowel diseases and colorectal cancer. PMID:23630417

  1. Surface Functionalization of Polymeric Nanoparticles with Umbilical Cord-Derived Mesenchymal Stem Cell Membrane for Tumor-Targeted Therapy.

    PubMed

    Yang, Na; Ding, Yanping; Zhang, Yinlong; Wang, Bin; Zhao, Xiao; Cheng, Keman; Huang, Yixin; Taleb, Mohammad; Zhao, Jing; Dong, Wen-Fei; Zhang, Lirong; Nie, Guangjun

    2018-06-15

    Multiple cell plasma membranes have been utilized for surface functionalization of synthetic nanomaterials and construction of biomimetic drug delivery systems for cancer treatment. The natural characters and facile isolation of original cells facilitate the biomedical applications of plasma membranes in functionalizing nanocarriers. Human umbilical cord-derived mesenchymal stem cells (MSC) have been identified to show tropism towards malignant lesions and have great advantages in ease of acquisition, low immunogenicity, and high proliferative ability. Here we developed a poly(lactic-co-glycolic acid) (PLGA) nanoparticle with a layer of plasma membrane from umbilical cord MSC coating on the surface for tumor-targeted delivery of chemotherapy. Functionalization of MSC plasma membrane significantly enhanced the cellular uptake efficiency of PLGA nanoparticles, the tumor cell killing efficacy of PLGA-encapsulated doxorubicin, and most importantly the tumor-targeting and accumulation of the nanoparticles. As a result, this MSC-mimicking nanoformulation led to remarkable tumor growth inhibition and induced obvious apoptosis within tumor lesions. This study for the first time demonstrated the great potential of umbilical cord MSC plasma membranes in functionalizing nanocarriers with inherent tumor-homing features, and the high feasibility of such biomimetic nanoformulations in cancer therapy.

  2. Melatonergic drugs in development.

    PubMed

    Carocci, Alessia; Catalano, Alessia; Sinicropi, Maria Stefania

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is widely known as "the darkness hormone". It is a major chronobiological regulator involved in circadian phasing and sleep-wake cycle in humans. Numerous other functions, including cyto/neuroprotection, immune modulation, and energy metabolism have been ascribed to melatonin. A variety of studies have revealed a role for melatonin and its receptors in different pathophysiological conditions. However, the suitability of melatonin as a drug is limited because of its short half-life, poor oral bioavailability, and ubiquitous action. Due to the therapeutic potential of melatonin in a wide variety of clinical conditions, the development of new agents able to interact selectively with melatonin receptors has become an area of great interest during the last decade. Therefore, the field of melatonergic receptor agonists comprises a great number of structurally different chemical entities, which range from indolic to nonindolic compounds. Melatonergic agonists are suitable for sleep disturbances, neuropsychiatric disorders related to circadian dysphasing, and metabolic diseases associated with insulin resistance. The results of preclinical studies on animal models show that melatonin receptor agonists can be considered promising agents for the treatment of central nervous system-related pathologies. An overview of recent advances in the field of investigational melatonergic drugs will be presented in this review.

  3. How Multi-Organ Microdevices Can Help Foster Drug Development

    PubMed Central

    Esch, Mandy B.; Smith, Alec; Prot, Jean-Matthieu; Sancho, Carlotta Oleaga; Hickman, James; Shuler, Michael L.

    2014-01-01

    Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices presents an opportunity to improve the drug development process. The goals are to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices’ capabilities can present unique opportunities for the study of drug action. We also discuss the challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion. PMID:24412641

  4. Mathematical modeling for novel cancer drug discovery and development.

    PubMed

    Zhang, Ping; Brusic, Vladimir

    2014-10-01

    Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.

  5. Drug permeation and metabolism in Mycobacterium tuberculosis: Prioritising local exposure as essential criterion in new TB drug development.

    PubMed

    Tanner, Lloyd; Denti, Paolo; Wiesner, Lubbe; Warner, Digby F

    2018-06-22

    Anti-tuberculosis (TB) drugs possess diverse abilities to penetrate the different host tissues and cell types in which infecting Mycobacterium tuberculosis bacilli are located during active disease. This is important since there is increasing evidence that the respective "lesion-penetrating" properties of the front-line TB drugs appear to correlate well with their specific activity in standard combination therapy. In turn, these observations suggest that rational efforts to discover novel treatment-shortening drugs and drug combinations should incorporate knowledge about the comparative abilities of both existing and experimental anti-TB agents to access bacilli in defined physiological states at different sites of infection, as well as avoid elimination by efflux or inactivation by host or bacterial metabolism. However, while there is a fundamental requirement to understand the mode of action and pharmacological properties of any current or experimental anti-TB agent within the context of the obligate human host, this is complex and, until recently, has been severely limited by the available methodologies and models. Here, we discuss advances in analytical models and technologies which have enabled investigations of drug metabolism and pharmacokinetics (DMPK) for new TB drug development. In particular, we consider the potential to shift the focus of traditional pharmacokinetic-pharmacodynamic analyses away from plasma to a more specific "site of action" drug exposure as an essential criterion for drug development and the design of dosing strategies. Moreover, in summarising approaches to determine DMPK data for the "unit of infection" comprising host macrophage and intracellular bacillus, we evaluate the potential benefits of including these analyses at an early stage in the preclinical drug development algorithm. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  6. Developing a Drug Testing Policy at a Public University: Participant Perspectives.

    ERIC Educational Resources Information Center

    Griffin, Stephen O.; Keller, Adrienne; Cohn, Alan

    2001-01-01

    Although employee drug testing is widespread among private employers, the development of programs in the public sector has been slower due to constitutional law constraints. A qualitative approach presenting various participant perspectives may aid in developing an employee drug testing program. (Contains 41 references/notes.) (JOW)

  7. Big Data: transforming drug development and health policy decision making.

    PubMed

    Alemayehu, Demissie; Berger, Marc L

    The explosion of data sources, accompanied by the evolution of technology and analytical techniques, has created considerable challenges and opportunities for drug development and healthcare resource utilization. We present a systematic overview these phenomena, and suggest measures to be taken for effective integration of the new developments in the traditional medical research paradigm and health policy decision making. Special attention is paid to pertinent issues in emerging areas, including rare disease drug development, personalized medicine, Comparative Effectiveness Research, and privacy and confidentiality concerns.

  8. Accelerating drug development for neuroblastoma - New Drug Development Strategy: an Innovative Therapies for Children with Cancer, European Network for Cancer Research in Children and Adolescents and International Society of Paediatric Oncology Europe Neuroblastoma project.

    PubMed

    Moreno, Lucas; Caron, Hubert; Geoerger, Birgit; Eggert, Angelika; Schleiermacher, Gudrun; Brock, Penelope; Valteau-Couanet, Dominique; Chesler, Louis; Schulte, Johannes H; De Preter, Katleen; Molenaar, Jan; Schramm, Alexander; Eilers, Martin; Van Maerken, Tom; Johnsen, John Inge; Garrett, Michelle; George, Sally L; Tweddle, Deborah A; Kogner, Per; Berthold, Frank; Koster, Jan; Barone, Giuseppe; Tucker, Elizabeth R; Marshall, Lynley; Herold, Ralf; Sterba, Jaroslav; Norga, Koen; Vassal, Gilles; Pearson, Andrew Dj

    2017-08-01

    Neuroblastoma, the commonest paediatric extra-cranial tumour, remains a leading cause of death from cancer in children. There is an urgent need to develop new drugs to improve cure rates and reduce long-term toxicity and to incorporate molecularly targeted therapies into treatment. Many potential drugs are becoming available, but have to be prioritised for clinical trials due to the relatively small numbers of patients. Areas covered: The current drug development model has been slow, associated with significant attrition, and few new drugs have been developed for neuroblastoma. The Neuroblastoma New Drug Development Strategy (NDDS) has: 1) established a group with expertise in drug development; 2) prioritised targets and drugs according to tumour biology (target expression, dependency, pre-clinical data; potential combinations; biomarkers), identifying as priority targets ALK, MEK, CDK4/6, MDM2, MYCN (druggable by BET bromodomain, aurora kinase, mTORC1/2) BIRC5 and checkpoint kinase 1; 3) promoted clinical trials with target-prioritised drugs. Drugs showing activity can be rapidly transitioned via parallel randomised trials into front-line studies. Expert opinion: The Neuroblastoma NDDS is based on the premise that optimal drug development is reliant on knowledge of tumour biology and prioritisation. This approach will accelerate neuroblastoma drug development and other poor prognosis childhood malignancies.

  9. "Creating hope" and other incentives for drug development for children.

    PubMed

    Connor, Edward; Cure, Pablo

    2011-01-19

    Enhancing drug development for pediatric disease is a priority and a public responsibility. The Creating Hope Act of 2010 is important new proposed legislation that adds drugs and biologics for treating rare diseases in children to those for neglected tropical diseases as eligible for a priority review voucher from the U.S. Food and Drug Administration. The Act enhances existing incentive programs through specific financial benefits to companies who seek a pediatric indication for a new drug to treat an orphan disease that occurs specifically in children.

  10. Mechanistic systems modeling to guide drug discovery and development

    PubMed Central

    Schmidt, Brian J.; Papin, Jason A.; Musante, Cynthia J.

    2013-01-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. PMID:22999913

  11. Privileged Electrophile Sensors: A Resource for Covalent Drug Development.

    PubMed

    Long, Marcus John Curtis; Aye, Yimon

    2017-07-20

    This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing-which enables rapid reaction with an endogenous signaling electrophile-is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 75 FR 32482 - Investigational New Drug Applications; Co-development of Investigational Drugs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ...- infectives, seizure disorders, cardiovascular diseases, and any other therapeutic category in which such co..., cardiovascular diseases, and any other therapeutic category in which such co-development is likely to occur. III... distinct investigational drugs intended to be used in combination to treat a disease or condition. FDA is...

  13. Recent lab-on-chip developments for novel drug discovery.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Nakajima, Mitsutoshi

    2017-07-01

    Microelectromechanical systems (MEMS) and micro total analysis systems (μTAS) revolutionized the biochemical and electronic industries, and this miniaturization process became a key driver for many markets. Now, it is a driving force for innovations in life sciences, diagnostics, analytical sciences, and chemistry, which are called 'lab-on-a-chip, (LOC)' devices. The use of these devices allows the development of fast, portable, and easy-to-use systems with a high level of functional integration for applications such as point-of-care diagnostics, forensics, the analysis of biomolecules, environmental or food analysis, and drug development. In this review, we report on the latest developments in fabrication methods and production methodologies to tailor LOC devices. A brief overview of scale-up strategies is also presented together with their potential applications in drug delivery and discovery. The impact of LOC devices on drug development and discovery has been extensively reviewed in the past. The current research focuses on fast and accurate detection of genomics, cell mutations and analysis, drug delivery, and discovery. The current research also differentiates the LOC devices into new terminology of microengineering, like organ-on-a-chip, stem cells-on-a-chip, human-on-a-chip, and body-on-a-chip. Key challenges will be the transfer of fabricated LOC devices from lab-scale to industrial large-scale production. Moreover, extensive toxicological studies are needed to justify the use of microfabricated drug delivery vehicles in biological systems. It will also be challenging to transfer the in vitro findings to suitable and promising in vivo models. WIREs Syst Biol Med 2017, 9:e1381. doi: 10.1002/wsbm.1381 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  14. Use of big data in drug development for precision medicine

    PubMed Central

    Kim, Rosa S.; Goossens, Nicolas; Hoshida, Yujin

    2016-01-01

    Summary Drug development has been a costly and lengthy process with an extremely low success rate and lack of consideration of individual diversity in drug response and toxicity. Over the past decade, an alternative “big data” approach has been expanding at an unprecedented pace based on the development of electronic databases of chemical substances, disease gene/protein targets, functional readouts, and clinical information covering inter-individual genetic variations and toxicities. This paradigm shift has enabled systematic, high-throughput, and accelerated identification of novel drugs or repurposed indications of existing drugs for pathogenic molecular aberrations specifically present in each individual patient. The exploding interest from the information technology and direct-to-consumer genetic testing industries has been further facilitating the use of big data to achieve personalized Precision Medicine. Here we overview currently available resources and discuss future prospects. PMID:27430024

  15. Drugs, Biogenic Amine Targets and the Developing Brain

    PubMed Central

    Frederick, Aliya L.; Stanwood, Gregg D.

    2009-01-01

    Defects in the development of the brain have profound impacts on mature brain functions and underlie psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetycholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple, diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by a variety of illicit drugs of abuse, neurotherapeutics, and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life. PMID:19372683

  16. Recent developments with boron as a platform for novel drug design.

    PubMed

    Leśnikowski, Zbigniew J

    2016-06-01

    After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.

  17. Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases.

    PubMed

    Williams, Kevin; Bilsland, Elizabeth; Sparkes, Andrew; Aubrey, Wayne; Young, Michael; Soldatova, Larisa N; De Grave, Kurt; Ramon, Jan; de Clare, Michaela; Sirawaraporn, Worachart; Oliver, Stephen G; King, Ross D

    2015-03-06

    There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.

  18. Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases

    PubMed Central

    Williams, Kevin; Bilsland, Elizabeth; Sparkes, Andrew; Aubrey, Wayne; Young, Michael; Soldatova, Larisa N.; De Grave, Kurt; Ramon, Jan; de Clare, Michaela; Sirawaraporn, Worachart; Oliver, Stephen G.; King, Ross D.

    2015-01-01

    There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist ‘Eve’ designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax. PMID:25652463

  19. Liposomes and nanotechnology in drug development: focus on ocular targets

    PubMed Central

    Honda, Miki; Asai, Tomohiro; Oku, Naoto; Araki, Yoshihiko; Tanaka, Minoru; Ebihara, Nobuyuki

    2013-01-01

    Poor drug delivery to lesions in patients’ eyes is a major obstacle to the treatment of ocular diseases. The accessibility of these areas to drugs is highly restricted by the presence of barriers, including the corneal barrier, aqueous barrier, and the inner and outer blood–retinal barriers. In particular, the posterior segment is difficult to reach for drugs because of its structural peculiarities. This review discusses various barriers to drug delivery and provides comprehensive information for designing nanoparticle-mediated drug delivery systems for the treatment of ocular diseases. Nanoparticles can be designed to improve penetration, controlled release, and drug targeting. As highlighted in this review, the therapeutic efficacy of drugs in ocular diseases has been reported to be enhanced by the use of nanoparticles such as liposomes, micro/nanospheres, microemulsions, and dendrimers. Our recent data show that intravitreal injection of targeted liposomes encapsulating an angiogenesis inhibitor caused significantly greater suppression of choroidal neovascularization than did the injection of free drug. Recent progress in ocular drug delivery systems research has provided new insights into drug development, and the use of nanoparticles for drug delivery is thus a promising approach for advanced therapy of ocular diseases. PMID:23439842

  20. Group Work as Facilitation of Spiritual Development for Drug and Alcohol Abusers.

    ERIC Educational Resources Information Center

    Page, Richard C.; Berkow, Daniel N.

    1998-01-01

    Describes group work designed to promote spiritual development with drug and alcohol abusers. Provides a definition of spirituality. Discusses research that relates to the spiritual development of members of drug and alcohol groups. Compares the ways that group work and Alcoholics Anonymous promote spiritual development. (Author/MKA)

  1. Imaging mass spectrometry in drug development and toxicology.

    PubMed

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  2. Recent strategies for drug development in fibromyalgia syndrome.

    PubMed

    Blumenthal, David E; Malemud, Charles J

    2016-12-01

    The US Federal Drug Administration (FDA) approved 3 medications for treating fibromyalgia syndrome (FMS). There have been no additional FDA approvals since January 2009 and the efficacy of the FDA-approved medications for FMS has been questioned. Areas covered: The "search for studies" tool using clinicaltrials.gov and PubMed were employed. The term, "fibromyalgia" was used for clinicaltrials.gov. The terms employed for PubMed were "Name-of-Drug Fibromyalgia", "Fibromyalgia Treatment" or "Fibromyalgia Drug Treatment." Clinical trials were reviewed if they were prospective and blinded, and if they employed a comparator, either placebo or another pharmaceutical. Expert commentary: Progress toward standardizing the outcome measures for FMS clinical trials have been made but challenges remain. Several pharmaceutical candidates for FMS have been tested since 2009. The results of these studies with potential novel targets for drug development for FMS were reviewed including the results of trials with sodium oxybate, quetiapine, esreboxetine, nabilone, memantine, naltrexone, and melatonin.

  3. How drugs are developed and approved by the FDA: current process and future directions.

    PubMed

    Ciociola, Arthur A; Cohen, Lawrence B; Kulkarni, Prasad

    2014-05-01

    This article provides an overview of FDA's regulatory processes for drug development and approval, and the estimated costs associated with the development of a drug, and also examines the issues and challenges facing the FDA in the near future. A literature search was performed using MEDLINE to summarize the current FDA drug approval processes and future directions. MEDLINE was further utilized to search for all cost analysis studies performed to evaluate the pharmaceutical industry R&D productivity and drug development cost estimates. While the drug approval process remains at high risk and spans over multiple years, the FDA drug review and approval process has improved, with the median approval time for new molecular drugs been reduced from 19 months to 10 months. The overall cost to development of a drug remains quite high and has been estimated to range from $868M to $1,241M USD. Several new laws have been enacted, including the FDA Safety and Innovation Act (FDASIA) of 2013, which is designed to improve the drug approval process and enhance access to new medicines. The FDA's improved processes for drug approval and post-market surveillance have achieved the goal of providing patients with timely access to effective drugs while minimizing the risk of drug-related harm. The FDA drug approval process is not without controversy, as a number of well-known gastroenterology drugs have been withdrawn from the US market over the past few years. With the approval of the new FDASIA law, the FDA will continue to improve their processes and, working together with the ACG through the FDA-Related Matters Committee, continue to develop safe and effective drugs for our patients.

  4. Mechanistic systems modeling to guide drug discovery and development.

    PubMed

    Schmidt, Brian J; Papin, Jason A; Musante, Cynthia J

    2013-02-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Latest development on RNA-based drugs and vaccines.

    PubMed

    Lundstrom, Kenneth

    2018-06-01

    Drugs and vaccines based on mRNA and RNA viruses show great potential and direct translation in the cytoplasm eliminates chromosomal integration. Limitations are associated with delivery and stability issues related to RNA degradation. Clinical trials on RNA-based drugs have been conducted in various disease areas. Likewise, RNA-based vaccines for viral infections and various cancers have been subjected to preclinical and clinical studies. RNA delivery and stability improvements include RNA structure modifications, targeting dendritic cells and employing self-amplifying RNA. Single-stranded RNA viruses possess self-amplifying RNA, which can provide extreme RNA replication in the cytoplasm to support RNA-based drug and vaccine development. Although oligonucleotide-based approaches have demonstrated potential, the focus here is on mRNA- and RNA virus-based methods.

  6. Energetics of pathogenic bacteria and opportunities for drug development.

    PubMed

    Cook, Gregory M; Greening, Chris; Hards, Kiel; Berney, Michael

    2014-01-01

    The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes. © 2014 Elsevier Ltd All rights reserved.

  7. Nanomedicinal products: a survey on specific toxicity and side effects

    PubMed Central

    Giannakou, Christina; De Jong, Wim H; Kooi, Myrna W; Park, Margriet VDZ; Vandebriel, Rob J; Bosselaers, Irene EM; Scholl, Joep HG; Geertsma, Robert E

    2017-01-01

    Due to their specific properties and pharmacokinetics, nanomedicinal products (NMPs) may present different toxicity and side effects compared to non-nanoformulated, conventional medicines. To facilitate the safety assessment of NMPs, we aimed to gain insight into toxic effects specific for NMPs by systematically analyzing the available toxicity data on approved NMPs in the European Union. In addition, by comparing five sets of products with the same active pharmaceutical ingredient (API) in a conventional formulation versus a nanoformulation, we aimed to identify any side effects specific for the nano aspect of NMPs. The objective was to investigate whether specific toxicity could be related to certain structural types of NMPs and whether a nanoformulation of an API altered the nature of side effects of the product in humans compared to a conventional formulation. The survey of toxicity data did not reveal nanospecific toxicity that could be related to certain types of structures of NMPs, other than those reported previously in relation to accumulation of iron nanoparticles (NPs). However, given the limited data for some of the product groups or toxicological end points in the analysis, conclusions with regard to (a lack of) potential nanomedicine-specific effects need to be considered carefully. Results from the comparison of side effects of five sets of drugs (mainly liposomes and/or cytostatics) confirmed the induction of pseudo-allergic responses associated with specific NMPs in the literature, in addition to the side effects common to both nanoformulations and regular formulations, eg, with liposomal doxorubicin, and possibly liposomal daunorubicin. Based on the available data, immunotoxicological effects of certain NMPs cannot be excluded, and we conclude that this end point requires further attention. PMID:28883724

  8. Functionalized liposomes and phytosomes loading Annona muricata L. aqueous extract: Potential nanoshuttles for brain-delivery of phenolic compounds.

    PubMed

    Mancini, Simona; Nardo, Luca; Gregori, Maria; Ribeiro, Inês; Mantegazza, Francesco; Delerue-Matos, Cristina; Masserini, Massimo; Grosso, Clara

    2018-03-15

    Multi-target drugs have gained significant recognition for the treatment of multifactorial diseases such as depression. Under a screening study of multi-potent medicinal plants with claimed antidepressant-like activity, the phenolic-rich Annona muricata aqueous extract (AE) emerged as a moderate monoamine oxidase A (hMAO-A) inhibitor and a strong hydrogen peroxide (H 2 O 2 ) scavenger. In order to protect this extract from gastrointestinal biotransformation and to improve its permeability across the blood-brain barrier (BBB), four phospholipid nanoformulations of liposomes and phytosomes functionalized with a peptide ligand promoting BBB crossing were produced. AE and nanoformulations were characterized by HPLC-DAD-ESI-MS n , HPLC-DAD, spectrophotometric, fluorescence and dynamic light scattering methods. Cytotoxicity and permeability studies were carried out using an in vitro transwell model of the BBB, composed of immortalized human microvascular endothelial cells (hCMEC/D3), and in vitro hMAO-A inhibition and H 2 O 2 scavenging activities were performed with all samples. The encapsulation/binding of AE was more efficient with phytosomes, while liposomes were more stable, displaying a slower extract release over time. In general, phytosomes were less toxic than liposomes in hCMEC/D3 cells and, when present, cholesterol improved the permeability across the cell monolayer of all tested nanoformulations. All nanoformulations conserved the antioxidant potential of AE, while phosphatidylcholine interfered with MAO-A inhibition assay. Overall, phytosome formulations registered the best performance in terms of binding efficiency, enzyme inhibition and scavenging activity, thus representing a promising multipotent phenolic-rich nanoshuttle for future in vivo depression treatment. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Development, current applications and future roles of biorelevant two-stage in vitro testing in drug development.

    PubMed

    Fiolka, Tom; Dressman, Jennifer

    2018-03-01

    Various types of two stage in vitro testing have been used in a number of experimental settings. In addition to its application in quality control and for regulatory purposes, two-stage in vitro testing has also been shown to be a valuable technique to evaluate the supersaturation and precipitation behavior of poorly soluble drugs during drug development. The so-called 'transfer model', which is an example of two-stage testing, has provided valuable information about the in vivo performance of poorly soluble, weakly basic drugs by simulating the gastrointestinal drug transit from the stomach into the small intestine with a peristaltic pump. The evolution of the transfer model has resulted in various modifications of the experimental model set-up. Concomitantly, various research groups have developed simplified approaches to two-stage testing to investigate the supersaturation and precipitation behavior of weakly basic drugs without the necessity of using a transfer pump. Given the diversity among the various two-stage test methods available today, a more harmonized approach needs to be taken to optimize the use of two stage testing at different stages of drug development. © 2018 Royal Pharmaceutical Society.

  10. Older adults' drug benefit beliefs: construct definition and measure development.

    PubMed

    Cline, Richard R; Gupta, Kiran; Singh, Reshmi L

    2008-03-01

    The Medicare Prescription Drug, Improvement and Modernization Act of 2003 provides coverage of outpatient prescription drugs for Medicare beneficiaries. Although much has been learned since the program's implementation, a context within which this information can be understood is lacking. The purpose of this study was to develop a reliable and valid multi-item instrument measuring beliefs about Medicare prescription drug benefits. Survey items were generated using focus group transcripts, other surveys on the Medicare Part "D" program, and past studies of choice and satisfaction in drug insurance programs. Using data from the survey pilot test, item and reliability analyses were used to reduce and refine an initial pool of items. Data then were collected from a cross-sectional, mail survey of older adults living in Minnesota. Data were analyzed using exploratory factor analysis. Summated rating scales then were constructed and assessed further using reliability analyses. Construct validity of summated scales was examined by comparing scale scores across response categories of survey items that collected information on general political attitudes, perceptions of the Medicare Part "D" program, health status, and health care utilization and demographics. The adjusted response rate for the main survey was 55.98% (744/1329). Iterative factor analysis produced 2 interpretable scales. The first, termed "access/equity" (13 items, Cronbach's alpha=0.89) measures beliefs that a Medicare drug benefit should both provide affordable prescription drugs for beneficiaries and do this in a manner that is equitable for all participants. The second, termed "comprehensibility" (6 items, Cronbach's alpha=0.80) assesses beliefs that regulations governing a Medicare drug benefit should be easily understood. Discriminant validity tests suggest that these measures behave in a manner consistent with related research in these areas. Measures of 2 facets of older adults' drug benefit beliefs

  11. The current status of orphan drug development in Europe and the US.

    PubMed

    Hall, Anthony K; Carlson, Marilyn R

    2014-02-01

    Orphan drug legislation has been introduced in a number of countries in order to stimulate the development of treatments for rare diseases by introducing commercial incentives for companies wishing to undertake that development. In order to navigate the maze of regulatory regulations and procedures so that companies can make proper use of the orphan drug incentives, specialist knowledge is required. This article will review the current status of orphan drug development in the EU and the US, explain the incentives and procedures, and touch on the role of patient organisations in the process.

  12. The economics of pediatric formulation development for off-patent drugs.

    PubMed

    Milne, Christopher-Paul; Bruss, Jon B

    2008-11-01

    Many drugs currently used in children have never been adequately studied in rigorous scientific trials. Although these medications can still be prescribed in the pediatric setting, they are considered "off-label" because they are not specifically approved for use in children. The role of the Economics Working Group (EWG) within the Pediatric Formulation Initiative (PFI) of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) is to identify economic barriers and to propose possible mechanisms to create cost-effective and appropriately formulated products for off-patent pediatric drugs and to ensure their distribution and availability. The purpose of this article was to briefly outline the EWG's considerations and recommendations on these topics. Information for this article was gathered from the proceedings of a PFI workshop sponsored by the NICHD, held December 6 and 7, 2005, in Bethesda, Maryland. Other information was based on: the authors' unpublished and published research as well as personal communication with members of the EWG; a comprehensive search of Web sites, publications, and publicly accessible databases of the European Medicines Agency, the US Food and Drug Administration, the Agency for Healthcare Research and Quality, and the NICHD; and the databases and publications available from the Louis Lasagna Library of the Tufts Center for the Study of Drug Development (Boston, Massachusetts). The US Congress has attempted to remedy the lack of incentives to develop pediatric drugs by passing 2 key pieces of legislation. After >10 years, this US pediatric initiative has stimulated a great deal of pediatric drug research, and similar initiatives have been emulated in Europe and proposed in Japan. Although the initiative is generally considered successful in the United States, an incentive gap exists that still hinders pediatric drug development. It results from a series of factors, including: (1) a relatively small

  13. Data-intensive drug development in the information age: applications of Systems Biology/Pharmacology/Toxicology.

    PubMed

    Kiyosawa, Naoki; Manabe, Sunao

    2016-01-01

    Pharmaceutical companies continuously face challenges to deliver new drugs with true medical value. R&D productivity of drug development projects depends on 1) the value of the drug concept and 2) data and in-depth knowledge that are used rationally to evaluate the drug concept's validity. A model-based data-intensive drug development approach is a key competitive factor used by innovative pharmaceutical companies to reduce information bias and rationally demonstrate the value of drug concepts. Owing to the accumulation of publicly available biomedical information, our understanding of the pathophysiological mechanisms of diseases has developed considerably; it is the basis for identifying the right drug target and creating a drug concept with true medical value. Our understanding of the pathophysiological mechanisms of disease animal models can also be improved; it can thus support rational extrapolation of animal experiment results to clinical settings. The Systems Biology approach, which leverages publicly available transcriptome data, is useful for these purposes. Furthermore, applying Systems Pharmacology enables dynamic simulation of drug responses, from which key research questions to be addressed in the subsequent studies can be adequately informed. Application of Systems Biology/Pharmacology to toxicology research, namely Systems Toxicology, should considerably improve the predictability of drug-induced toxicities in clinical situations that are difficult to predict from conventional preclinical toxicology studies. Systems Biology/Pharmacology/Toxicology models can be continuously improved using iterative learn-confirm processes throughout preclinical and clinical drug discovery and development processes. Successful implementation of data-intensive drug development approaches requires cultivation of an adequate R&D culture to appreciate this approach.

  14. Expected Next-Generation Drugs Under Development in Relation to Voiding Symptoms

    PubMed Central

    Chung, Kyung Jin

    2017-01-01

    New drug development is a high-risk venture, but if successful, will bring great revenues to those willing to accept the risk. In the field of urology, in particular for lower urinary tract symptoms (LUTS), the recent successful landing of drugs (e.g., mirabegron, botulinum toxin A, and tadalafil) has resulted in increased interest in new drug development. Benign prostatic hyperplasia and overactive bladder syndrome, representative LUTS diseases, are attractive targets because of their prevalence and market size in the field of urology. Additionally, the awareness about new stream of research is very important not only because of the market size and economic factors, but also because to keep steady attention to these research for the researcher’s. We have reviewed a selection of new drugs currently under development for the treatment of the two aforementioned diseases and hope to offer urologists an overview of the current situation and future directions in the field of urology. PMID:28673067

  15. Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development

    PubMed Central

    Ribas, João; Sadeghi, Hossein; Manbachi, Amir; Leijten, Jeroen; Brinegar, Katelyn; Zhang, Yu Shrike; Ferreira, Lino

    2016-01-01

    Abstract Cardiovascular diseases are prevalent worldwide and are the most frequent causes of death in the United States. Although spending in drug discovery/development has increased, the amount of drug approvals has seen a progressive decline. Particularly, adverse side effects to the heart and general vasculature have become common causes for preclinical project closures, and preclinical models do not fully recapitulate human in vivo dynamics. Recently, organs-on-a-chip technologies have been proposed to mimic the dynamic conditions of the cardiovascular system—in particular, heart and general vasculature. These systems pay particular attention to mimicking structural organization, shear stress, transmural pressure, mechanical stretching, and electrical stimulation. Heart- and vasculature-on-a-chip platforms have been successfully generated to study a variety of physiological phenomena, model diseases, and probe the effects of drugs. Here, we review and discuss recent breakthroughs in the development of cardiovascular organs-on-a-chip platforms, and their current and future applications in the area of drug discovery and development. PMID:28971113

  16. Incentives for orphan drug research and development in the United States.

    PubMed

    Seoane-Vazquez, Enrique; Rodriguez-Monguio, Rosa; Szeinbach, Sheryl L; Visaria, Jay

    2008-12-16

    The Orphan Drug Act (1983) established several incentives to encourage the development of orphan drugs (ODs) to treat rare diseases and conditions. This study analyzed the characteristics of OD designations, approvals, sponsors, and evaluated the effective patent and market exclusivity life of orphan new molecular entities (NMEs) approved in the US between 1983 and 2007. Primary data sources were the FDA Orange Book, the FDA Office of Orphan Drugs Development, and the US Patent and Trademark Office. Data included all orphan designations and approvals listed by the FDA and all NMEs approved by the FDA during the study period. The FDA listed 1,793 orphan designations and 322 approvals between 1983 and 2007. Cancer was the main group of diseases targeted for orphan approvals. Eighty-three companies concentrated 67.7% of the total orphan NMEs approvals. The average time from orphan designation to FDA approval was 4.0 +/- 3.3 years (mean +/- standard deviation). The average maximum effective patent and market exclusivity life was 11.7 +/- 5.0 years for orphan NME. OD market exclusivity increased the average maximum effective patent and market exclusivity life of ODs by 0.8 years. Public programs, federal regulations, and policies support orphan drugs R&D. Grants, research design support, FDA fee waivers, tax incentives, and orphan drug market exclusivity are the main incentives for orphan drug R&D. Although the 7-year orphan drug market exclusivity provision had a positive yet relatively modest overall effect on effective patent and market exclusivity life, economic incentives and public support mechanisms provide a platform for continued orphan drug development for a highly specialized market.

  17. Safe procedure development to manage hazardous drugs in the workplace.

    PubMed

    Gaspar Carreño, Marisa; Achau Muñoz, Rubén; Torrico Martín, Fátima; Agún Gonzalez, Juan José; Sanchez Santos, Jose Cristobal; Cercos Lletí, Ana Cristina; Ramos Orozco, Pedro

    2017-03-01

    To develop a safety working procedure for the employees in the Intermutual Hospital de Levante (HIL) in those areas of activity that deal with the handling of hazardous drugs (MP). The procedure was developed in six phases: 1) hazard definition; 2) definition and identification of processes and development of general correct work practices about hazardous drugs' selection and special handling; 3) detection, selection and set of specific recommendations to handle with hazardous drugs during the processes of preparation and administration included in the hospital GFT; 4) categorization of risk during the preparation/administration and development of an identification system; 5) information and training of professionals; 6) implementation of the identification measures and prevention guidelines. Six processes were detected handling HD. During those processes, thirty HD were identified included in the hospital GFT and a safer alternative was found for 6 of them. The HD were classified into 4 risk categories based on those measures to be taken during the preparation and administration of each of them. The development and implementation of specific safety-work processes dealing with medication handling, allows hospital managers to accomplish effectively with their legal obligations about the area of prevention and provides healthcare professional staff with the adequate techniques and safety equipment to avoid possible dangers and risks of some drugs. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. Development of biosimilars in an era of oncologic drug shortages

    PubMed Central

    Li, Edward; Subramanian, Janakiraman; Anderson, Scott; Thomas, Dolca; McKinley, Jason; Jacobs, Ira A

    2015-01-01

    Acute and chronic shortages of various pharmaceuticals and particularly of sterile injectable products are being reported on a global scale, prompting evaluation of more effective strategies to manage current shortages and development of new, high-quality pharmaceutical products to mitigate the risk of potential future shortages. Oncology drugs such as liposomal doxorubicin and 5-fluorouracil represent examples of first-choice drugs critically affected by shortages. Survey results indicate that the majority of hospitals and practicing oncologists have experienced drug shortages, which may have compromised patient safety and clinical outcomes, and increased health care costs, due to delays or changes in treatment regimens. Clinical trials evaluating novel agents in combination with standard-of-care drugs are also being affected by drug shortages. Clinical and ethical considerations on treatment objectives, drug indication, and availability of alternative options may help in prioritizing cancer patients involved in active drug shortages. The United States Food and Drug Administration and the European Medicines Agency have identified manufacturing problems, delays in supply, and lack of available active ingredients as the most frequent causes of recent or ongoing drug shortages, and have released specific guidance to monitor, manage, and reduce the risk of shortages. The upcoming loss of exclusivity for a number of anticancer biologics, together with the introduction of an abbreviated approval pathway for biosimilars, raises the question of whether these products will be vulnerable to shortages. Future supply by reliable manufacturers of well characterized biosimilar monoclonal antibodies, developed in compliance with regulatory and manufacturing guidelines and with substantial investments, may contribute to prevent future biologics shortages and ensure access to effective and safe treatment options for patients with cancer. Preclinical and clinical characterization

  19. Phenotypic Screening Approaches to Develop Aurora Kinase Inhibitors: Drug Discovery Perspectives.

    PubMed

    Marugán, Carlos; Torres, Raquel; Lallena, María José

    2015-01-01

    Targeting mitotic regulators as a strategy to fight cancer implies the development of drugs against key proteins, such as Aurora-A and -B. Current drugs, which target mitosis through a general mechanism of action (stabilization/destabilization of microtubules), have several side effects (neutropenia, alopecia, and emesis). Pharmaceutical companies aim at avoiding these unwanted effects by generating improved and selective drugs that increase the quality of life of the patients. However, the development of these drugs is an ambitious task that involves testing thousands of compounds through biochemical and cell-based assays. In addition, molecules usually target complex biological processes, involving several proteins and different molecular pathways, further emphasizing the need for high-throughput screening techniques and multiplexing technologies in order to identify drugs with the desired phenotype. We will briefly describe two multiplexing technologies [high-content imaging (HCI) and flow cytometry] and two key processes for drug discovery research (assay development and validation) following our own published industry quality standards. We will further focus on HCI as a useful tool for phenotypic screening and will provide a concrete example of HCI assay to detect Aurora-A or -B selective inhibitors discriminating the off-target effects related to the inhibition of other cell cycle or non-cell cycle key regulators. Finally, we will describe other assays that can help to characterize the in vitro pharmacology of the inhibitors.

  20. [Nanoscale drug carriers for traditional Chinese medicine research and development].

    PubMed

    Yi, Cheng-xue; Yu, Jiang-nan; Xu, Xi-ming

    2008-08-01

    Nanocarriers generally made of natural or artificial polymers ranging in size from about 10-1 000 nm, possess versatile properties suitable for drug delivery, including good biocompatibility and biodegradability, potential capability of targeted delivery and controlled release of incorporated drugs, and have been extensively used in the development of new drug delivery systems (DDS). These types of nano-DDS have considerable potential to traditional Chinese medicine (TCM), and recently have attracted increasing efforts on the TCM research and development. In this review, the recently published literature worldwide is covered to describe the latest advances in the applications as TCM delivery carriers, and to highlight the characteristics and preparation methods of some selected examples of promising nanocarriers such as nanoparticles, lipid nanoparticles, nanoemulsions, nanomicelles and nanoliposomes.

  1. Mass spectrometry-driven drug discovery for development of herbal medicine.

    PubMed

    Zhang, Aihua; Sun, Hui; Wang, Xijun

    2018-05-01

    Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes. © 2016 Wiley Periodicals, Inc.

  2. AMS in drug development at GSK

    NASA Astrophysics Data System (ADS)

    Young, G. C.; Ellis, W. J.

    2007-06-01

    A history of the use of AMS in GSK studies spanning the last 8 years (1998-2005) is presented, including use in pilot studies through to clinical, animal and in vitro studies. A brief summary of the status of GSK's in-house AMS capability is outlined and views on the future of AMS in GSK are presented, including potential impact on drug development and potential advances in AMS technology.

  3. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.

    PubMed

    Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E

    2017-12-11

    Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.

  4. [Consideration of clinical development for new anticancer drugs on Japan, proposal from approval reviewer].

    PubMed

    Urano, Tsutomu

    2007-02-01

    There become problems about a delay on clinical development of anticancer drug in Japan and drug lag. I consider causes and solutions of the problems from a position of drug approval reviewer. I think the drug lag may cause by stating later state in global clinical development or stagnation of clinical trial activities. To prevail against drug lag,it is necessary to attend to multinational clinical studies,and to mature Japanese clinical trial environment and post-market planning. Then, I believe that the most important point is to make a start on early stage of global clinical development.

  5. Neonatal Safety Information Reported to the FDA During Drug Development Studies

    PubMed Central

    Avant, Debbie; Baer, Gerri; Moore, Jason; Zheng, Panli; Sorbello, Alfred; Ariagno, Ron; Yao, Lynne; Burckart, Gilbert J.; Wang, Jian

    2017-01-01

    Background Relatively few neonatal drug development studies have been conducted, but an increase is expected with the enactment of the Food and Drug Administration Safety and Innovation Act (FDASIA). Understanding the safety of drugs studied in neonates is complicated by the unique nature of the population and the level of illness. The objective of this study was to examine neonatal safety data submitted to the FDA in studies pursuant to the Best Pharmaceuticals for Children Act (BPCA) and the Pediatric Research Equity Act (PREA) between 1998 and 2015. Methods FDA databases were searched for BPCA and/or PREA studies that enrolled neonates. Studies that enrolled a minimum of 3 neonates were analyzed for the presence and content of neonatal safety data. Results The analysis identified 40 drugs that were studied in 3 or more neonates. Of the 40 drugs, 36 drugs received a pediatric labeling change as a result of studies between 1998 and 2015, that included information from studies including neonates. Fourteen drugs were approved for use in neonates. Clinical trials for 20 of the drugs reported serious adverse events (SAEs) in neonates. The SAEs primarily involved cardiovascular events such as bradycardia and/or hypotension or laboratory abnormalities such as anemia, neutropenia, and electrolyte disturbances. Deaths were reported during studies of 9 drugs. Conclusions Our analysis revealed that SAEs were reported in studies involving 20 of the 40 drugs evaluated in neonates, with deaths identified in 9 of those studies. Patients enrolled in studies were often critically ill, which complicated determination of whether an adverse event was drug-related. We conclude that the traditional means for collecting safety information in drug development trials needs to be adjusted for neonates and will require the collaboration of regulators, industry, and the clinical and research communities to establish appropriate definitions and reporting strategies for the neonatal

  6. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-08-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells.

  7. Microdosing and drug development: past, present and future

    PubMed Central

    Lappin, Graham; Noveck, Robert; Burt, Tal

    2015-01-01

    Introduction Microdosing is an approach to early drug development where exploratory pharmacokinetic data are acquired in humans using inherently safe sub-pharmacologic doses of drug. The first publication of microdose data was 10 years ago and this review comprehensively explores the microdose concept from conception, over the past decade, up until the current date. Areas covered The authors define and distinguish the concept of microdosing from similar approaches. The authors review the ability of microdosing to provide exploratory pharmacokinetics (concentration-time data) but exclude microdosing using positron emission tomography. The article provides a comprehensive review of data within the peer-reviewed literature as well as the latest applications and a look into the future, towards where microdosing may be headed. Expert opinion Evidence so far suggests that microdosing may be a better predictive tool of human pharmacokinetics than alternative methods and combination with physiologically based modelling may lead to much more reliable predictions in the future. The concept has also been applied to drug-drug interactions, polymorphism and assessing drug concentrations over time at its site of action. Microdosing may yet have more to offer in unanticipated directions and provide benefits that have not been fully realised to date. PMID:23550938

  8. New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells.

    PubMed

    Heinrich, Jörg C; Donakonda, Sainitin; Haupt, V Joachim; Lennig, Petra; Zhang, Yixin; Schroeder, Michael

    2016-10-18

    Drug resistance is an important open problem in cancer treatment. In recent years, the heat shock protein HSP27 (HSPB1) was identified as a key player driving resistance development. HSP27 is overexpressed in many cancer types and influences cellular processes such as apoptosis, DNA repair, recombination, and formation of metastases. As a result cancer cells are able to suppress apoptosis and develop resistance to cytostatic drugs. To identify HSP27 inhibitors we follow a novel computational drug repositioning approach. We exploit a similarity between a predicted HSP27 binding site to a viral thymidine kinase to generate lead inhibitors for HSP27. Six of these leads were verified experimentally. They bind HSP27 and down-regulate its chaperone activity. Most importantly, all six compounds inhibit development of drug resistance in cellular assays. One of the leads - chlorpromazine - is an antipsychotic, which has a positive effect on survival time in human breast cancer. In summary, we make two important contributions: First, we put forward six novel leads, which inhibit HSP27 and tackle drug resistance. Second, we demonstrate the power of computational drug repositioning.

  9. New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells

    PubMed Central

    Lennig, Petra; Zhang, Yixin; Schroeder, Michael

    2016-01-01

    Drug resistance is an important open problem in cancer treatment. In recent years, the heat shock protein HSP27 (HSPB1) was identified as a key player driving resistance development. HSP27 is overexpressed in many cancer types and influences cellular processes such as apoptosis, DNA repair, recombination, and formation of metastases. As a result cancer cells are able to suppress apoptosis and develop resistance to cytostatic drugs. To identify HSP27 inhibitors we follow a novel computational drug repositioning approach. We exploit a similarity between a predicted HSP27 binding site to a viral thymidine kinase to generate lead inhibitors for HSP27. Six of these leads were verified experimentally. They bind HSP27 and down-regulate its chaperone activity. Most importantly, all six compounds inhibit development of drug resistance in cellular assays. One of the leads – chlorpromazine – is an antipsychotic, which has a positive effect on survival time in human breast cancer. In summary, we make two important contributions: First, we put forward six novel leads, which inhibit HSP27 and tackle drug resistance. Second, we demonstrate the power of computational drug repositioning. PMID:27626687

  10. Three-Dimensional Cell Cultures in Drug Discovery and Development

    PubMed Central

    Fang, Ye; Eglen, Richard M.

    2017-01-01

    The past decades have witnessed significant efforts toward the development of three-dimensional (3D) cell cultures as systems that better mimic in vivo physiology. Today, 3D cell cultures are emerging, not only as a new tool in early drug discovery but also as potential therapeutics to treat disease. In this review, we assess leading 3D cell culture technologies and their impact on drug discovery, including spheroids, organoids, scaffolds, hydrogels, organs-on-chips, and 3D bioprinting. We also discuss the implementation of these technologies in compound identification, screening, and development, ranging from disease modeling to assessment of efficacy and safety profiles. PMID:28520521

  11. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy.

    PubMed

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory's development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery.

  12. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy

    PubMed Central

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory’s development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. PMID:26082630

  13. Accelerating Drug Development: Antiviral Therapies for Emerging Viruses as a Model.

    PubMed

    Everts, Maaike; Cihlar, Tomas; Bostwick, J Robert; Whitley, Richard J

    2017-01-06

    Drug discovery and development is a lengthy and expensive process. Although no one, simple, single solution can significantly accelerate this process, steps can be taken to avoid unnecessary delays. Using the development of antiviral therapies as a model, we describe options for acceleration that cover target selection, assay development and high-throughput screening, hit confirmation, lead identification and development, animal model evaluations, toxicity studies, regulatory issues, and the general drug discovery and development infrastructure. Together, these steps could result in accelerated timelines for bringing antiviral therapies to market so they can treat emerging infections and reduce human suffering.

  14. Drug development in Parkinson's disease: from emerging molecules to innovative drug delivery systems.

    PubMed

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2013-11-01

    Current treatments for Parkinson's disease (PD) are aimed at addressing motor symptoms but there is no therapy focused on modifying the course of the disease. Successful treatment strategies have been so far limited and brain drug delivery remains a major challenge that restricts its treatment. This review provides an overview of the most promising emerging agents in the field of PD drug discovery, discussing improvements that have been made in brain drug delivery for PD. It will be shown that new approaches able to extend the length of the treatment, to release the drug in a continuous manner or to cross the blood-brain barrier and target a specific region are still needed. Overall, the results reviewed here show that there is an urgent need to develop both symptomatic and disease-modifying treatments, giving priority to neuroprotective treatments. Promising perspectives are being provided in this field by rasagiline and by neurotrophic factors like glial cell line-derived neurotrophic factor. The identification of disease-relevant genes has also encouraged the search for disease-modifying therapies that function by identifying molecularly targeted drugs. The advent of new molecular and cellular targets like α-synuclein, leucine-rich repeat serine/threonine protein kinase 2 or parkin, among others, will require innovative delivery therapies. In this regard, drug delivery systems (DDS) have shown great potential for improving the efficacy of conventional and new PD therapy and reducing its side effects. The new DDS discussed here, which include microparticles, nanoparticles and hydrogels among others, will probably open up possibilities that extend beyond symptomatic relief. However, further work needs to be done before DDS become a therapeutic option for PD patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Microfluidics for Drug Discovery and Development: From Target Selection to Product Lifecycle Management

    PubMed Central

    Kang, Lifeng; Chung, Bong Geun; Langer, Robert; Khademhosseini, Ali

    2009-01-01

    Microfluidic technologies’ ability to miniaturize assays and increase experimental throughput have generated significant interest in the drug discovery and development domain. These characteristics make microfluidic systems a potentially valuable tool for many drug discovery and development applications. Here, we review the recent advances of microfluidic devices for drug discovery and development and highlight their applications in different stages of the process, including target selection, lead identification, preclinical tests, clinical trials, chemical synthesis, formulations studies, and product management. PMID:18190858

  16. 78 FR 63223 - Fibromyalgia Public Meeting on Patient-Focused Drug Development; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-N-2013-1041] Fibromyalgia Public Meeting on Patient-Focused Drug Development; Correction AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public meeting; request for comments; correction. SUMMARY: The Food and...

  17. Development of novel drug delivery systems using phage display technology for clinical application of protein drugs.

    PubMed

    Nagano, Kazuya; Tsutsumi, Yasuo

    2016-01-01

    Attempts are being made to develop therapeutic proteins for cancer, hepatitis, and autoimmune conditions, but their clinical applications are limited, except in the cases of drugs based on erythropoietin, granulocyte colony-stimulating factor, interferon-alpha, and antibodies, owing to problems with fundamental technologies for protein drug discovery. It is difficult to identify proteins useful as therapeutic seeds or targets. Another problem in using bioactive proteins is pleiotropic actions through receptors, making it hard to elicit desired effects without side effects. Additionally, bioactive proteins have poor therapeutic effects owing to degradation by proteases and rapid excretion from the circulatory system. Therefore, it is essential to establish a series of novel drug delivery systems (DDS) to overcome these problems. Here, we review original technologies in DDS. First, we introduce antibody proteomics technology for effective selection of proteins useful as therapeutic seeds or targets and identification of various kinds of proteins, such as cancer-specific proteins, cancer metastasis-related proteins, and a cisplatin resistance-related protein. Especially Ephrin receptor A10 is expressed in breast tumor tissues but not in normal tissues and is a promising drug target potentially useful for breast cancer treatment. Moreover, we have developed a system for rapidly creating functional mutant proteins to optimize the seeds for therapeutic applications and used this system to generate various kinds of functional cytokine muteins. Among them, R1antTNF is a TNFR1-selective antagonistic mutant of TNF and is the first mutein converted from agonist to antagonist. We also review a novel polymer-conjugation system to improve the in vivo stability of bioactive proteins. Site-specific PEGylated R1antTNF is uniform at the molecular level, and its bioactivity is similar to that of unmodified R1antTNF. In the future, we hope that many innovative protein drugs will be

  18. HIV and AIDS among adolescents who use drugs: opportunities for drug policy reform within the sustainable development agenda.

    PubMed

    Tinasti, Khalid

    2018-02-01

    The international community's commitment to halve by 2015 the HIV transmission among people who inject drugs has not only been largely missed, instead new HIV infections have increased by 30%. Moreover, drug injection remains one of the drivers of new HIV infections due to punitive responses and lack of harm reduction resourcing. In the midst of this situation, adolescents are a forgotten component of the global response to illegal drugs and their link with HIV infection. The Sustainable Development Goals (SDGs) present an opportunity to achieve the global objective of ending AIDS among adolescents who use drugs, by addressing the structural vulnerabilities they face be they economic, social, criminal, health-related or environmental. The implementation of the SDGs presents an opportunity to address the horizontal nature of drug policy and to efficiently address the drugs-adolescents-HIV risk nexus. Adolescent-focused drug policies are linked to goals 1, 3, 4, 10, 16 and 17. Goals 3 and 16 are the most relevant; the targets of the latter link to the criminalization of drug use and punitive policy environments and their impact on adolescents' health and HIV transmission risks. Moreover, it presents an opportunity to include adolescent needs that are missing in the three drug control conventions (1961, 1971 and 1988), and link them with the provisions of the Convention on the Rights of the Child (1989). Finally, the six principles to deliver on sustainable development are also an opportunity to divert adolescents who use drugs away from criminalization and punitive environments in which their vulnerability to HIV is greater. Addressing HIV among adolescents who use drugs is an extremely complex policy issue depending on different sets of binding and non-binding commitments, interventions and stakeholders. The complexity requires a horizontal response provided by the SDGs framework, starting with the collection of disaggregated data on this specific subgroup. Ending

  19. The Creative Learning Group Drug Education Program Developed by the Creative Learning Group. Product Development Report No. 6.

    ERIC Educational Resources Information Center

    Thompson, Lorna J.; Kratochvil, Daniel W.

    This report of the development of a drug-educational product which appears to have potential impact, is based upon published materials, documents in the files of the developing agency, and interviews with staff who were involved in the development of the product. The long-range goal of the drug program is to encourage young people to develop…

  20. Cancer Drug Development: New Targets for Cancer Treatment.

    PubMed

    Curt

    1996-01-01

    cancer drug screening and cancer drug development. At the NCI, for example, the old in vivo mouse screen using mouse lymphomas has been shelved; it discovered compounds with some activity in lymphomas, but not the common solid tumors of adulthood. It has been replaced with an initial in vitro screen of some sixty cell lines, representing the common solid tumors-ovary, G.I., lung, breast, CNS, melanoma and others. The idea was to not only discover new drugs with specific anti-tumor activity but also to use the small volumes required for in vitro screening as a medium to screen for new natural product compounds, one of the richest sources of effective chemotherapy. The cell line project had an unexpected dividend. The pattern of sensitivity in the panel predicted the mechanism of action of unknown compounds. An antifolate suppressed cell growth of the different lines like other antifolates, anti-tubulin compounds suppressed like other anti-tubulins, and so on. It now became possible, at a very early stage of cancer drug screening, to select for drugs with unknown-and potentially novel-mechanisms of action. The idea was taken to the next logical step, and that was to characterize the entire panel for important molecular properties of human malignancy: mutations in the tumor suppressor gene p53, expression of important oncogenes like ras or myc, the gp170 gene which confers multiple drug resistance, protein-specific kinases, and others. It now became possible to use the cell line panel as a tool to detect new drugs which targeted a specific genetic property of the tumor cell. Researchers can now ask whether a given drug is likely to inhibit multiple drug resistance or kill cells which over-express specific oncogenes at the earliest phase of drug discovery. In this issue of The Oncologist, Tom Connors celebrates the fiftieth anniversary of cancer chemotherapy. His focus is on the importance of international collaboration in clinical trials and the negative impact of

  1. Leveraging model-informed approaches for drug discovery and development in the cardiovascular space.

    PubMed

    Dockendorf, Marissa F; Vargo, Ryan C; Gheyas, Ferdous; Chain, Anne S Y; Chatterjee, Manash S; Wenning, Larissa A

    2018-06-01

    Cardiovascular disease remains a significant global health burden, and development of cardiovascular drugs in the current regulatory environment often demands large and expensive cardiovascular outcome trials. Thus, the use of quantitative pharmacometric approaches which can help enable early Go/No Go decision making, ensure appropriate dose selection, and increase the likelihood of successful clinical trials, have become increasingly important to help reduce the risk of failed cardiovascular outcomes studies. In addition, cardiovascular safety is an important consideration for many drug development programs, whether or not the drug is designed to treat cardiovascular disease; modeling and simulation approaches also have utility in assessing risk in this area. Herein, examples of modeling and simulation applied at various stages of drug development, spanning from the discovery stage through late-stage clinical development, for cardiovascular programs are presented. Examples of how modeling approaches have been utilized in early development programs across various therapeutic areas to help inform strategies to mitigate the risk of cardiovascular-related adverse events, such as QTc prolongation and changes in blood pressure, are also presented. These examples demonstrate how more informed drug development decisions can be enabled by modeling and simulation approaches in the cardiovascular area.

  2. Core competencies for pharmaceutical physicians and drug development scientists

    PubMed Central

    Silva, Honorio; Stonier, Peter; Buhler, Fritz; Deslypere, Jean-Paul; Criscuolo, Domenico; Nell, Gerfried; Massud, Joao; Geary, Stewart; Schenk, Johanna; Kerpel-Fronius, Sandor; Koski, Greg; Clemens, Norbert; Klingmann, Ingrid; Kesselring, Gustavo; van Olden, Rudolf; Dubois, Dominique

    2013-01-01

    Professional groups, such as IFAPP (International Federation of Pharmaceutical Physicians and Pharmaceutical Medicine), are expected to produce the defined core competencies to orient the discipline and the academic programs for the development of future competent professionals and to advance the profession. On the other hand, PharmaTrain, an Innovative Medicines Initiative project, has become the largest public-private partnership in biomedicine in the European Continent and aims to provide postgraduate courses that are designed to meet the needs of professionals working in medicines development. A working group was formed within IFAPP including representatives from PharmaTrain, academic institutions and national member associations, with special interest and experience on Quality Improvement through education. The objectives were: to define a set of core competencies for pharmaceutical physicians and drug development scientists, to be summarized in a Statement of Competence and to benchmark and align these identified core competencies with the Learning Outcomes (LO) of the PharmaTrain Base Course. The objectives were successfully achieved. Seven domains and 60 core competencies were identified and aligned accordingly. The effective implementation of training programs using the competencies or the PharmaTrain LO anywhere in the world may transform the drug development process to an efficient and integrated process for better and safer medicines. The PharmaTrain Base Course might provide the cognitive framework to achieve the desired Statement of Competence for Pharmaceutical Physicians and Drug Development Scientists worldwide. PMID:23986704

  3. Pros and cons for the development of new antiepileptic drugs.

    PubMed

    Bialer, Meir; Walker, Matthew C; Sander, Josemir W

    2002-01-01

    There continues to be an escalation in the number of new antiepileptic drugs, with many recently marketed drugs and many more entering clinical trials. This growth begs the question as to whether we need additional antiepileptic drugs. We consider the answer to this question from the medical perspective and also from the viewpoint of the pharmaceutical industry, health providers and from a more global, international perspective. There is undoubtedly a medical need for new antiepileptic drugs, and despite growing competition, the antiepileptic drug market remains profitable. However, in health services with limited resources, it is important that this expense is not offset by failure to research more appropriate use of existing antiepileptic drugs that may have a greater impact on healthcare. This is especially true for developing countries where resources would be much better spent on prevention and closing the treatment gap (the difference between those who can be treated and those who are treated).

  4. Development of Novel Warfarin-Silica Composite for Controlled Drug Release.

    PubMed

    Parfenyuk, Elena V; Dolinina, Ekaterina S

    2017-04-01

    The work is devoted to synthesis and study of warfarin composites with unmodified, methyl and phenyl modified silica in order to develop controlled release formulation of the anticoagulant. The composites were prepared by two routes, adsorption and sol-gel, and characterized with FTIR spectroscopy, dynamic light scattering and DSC methods. The drug release behavior from the composites in media with pH 1.6, 6.8 and 7.4 was analyzed in vitro. The release kinetics of the warfarin - silica composites prepared by the two routes was compared among each other and with analogous silica composites with water soluble drug molsidomine. The comparative analysis showed that in general the kinetic regularities and mechanisms of release for both drugs are similar and determined by nonuniform distribution of the drugs over the silica matrixes and stability of the matrixes in the studied media for the adsorbed composites and uniformly distributed drug and more brittle structure for the sol-gel composites. The sol-gel composite of warfarin - phenyl modified silica is perspective for further development of novel warfarin formulation with controlled release because it releases warfarin according to zero-order kinetic law with approximately equal rate in the media imitating different segments of gastrointestinal tract.

  5. EMERGING MICROTECHNOLOGIES FOR THE DEVELOPMENT OF ORAL DRUG DELIVERY DEVICES

    PubMed Central

    Chirra, Hariharasudhan D.; Desai, Tejal A.

    2012-01-01

    The development of oral drug delivery platforms for administering therapeutics in a safe and effective manner across the gastrointestinal epithelium is of much importance. A variety of delivery systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, orally administered drugs suffer from poor localization and therapeutic efficacy due to various physiological conditions such as low pH, and high shear intestinal fluid flow. Novel platforms combining controlled release, improved adhesion, tissue penetration, and selective intestinal targeting may overcome these issues and potentially diminish the toxicity and high frequency of administration associated with conventional oral delivery. Microfabrication along with appropriate surface chemistry, provide a means to fabricate these platforms en masse with flexibility in tailoring the shape, size, reservoir volume, and surface characteristics of microdevices. Moreover, the same technology can be used to include integrated circuit technology and sensors for designing sophisticated autonomous drug delivery devices that promise to significantly improve point of care diagnostic and therapeutic medical applications. This review sheds light on some of the fabrication techniques and addresses a few of the microfabricated devices that can be effectively used for controlled oral drug delivery applications. PMID:22981755

  6. Zirconium phosphatidylcholine-based nanocapsules as an in vivo degradable drug delivery system of MAP30, a momordica anti-HIV protein.

    PubMed

    Caizhen, Guo; Yan, Gao; Ronron, Chang; Lirong, Yang; Panpan, Chu; Xuemei, Hu; Yuanbiao, Qiao; Qingshan, Li

    2015-04-10

    An essential in vivo drug delivery system of a momordica anti-HIV protein, MAP30, was developed through encapsulating in chemically synthesized matrices of zirconium egg- and soy-phosphatidylcholines, abbreviated to Zr/EPC and Zr/SPC, respectively. Matrices were characterized by transmission electron microscopy and powder X-ray diffractometry studies. Zr/EPC granule at an approximate diameter of 69.43±7.78 nm was a less efficient encapsulator than the granule of Zr/SPC. Interlayer spacing of the matrices encapsulating MAP30 increased from 8.8 and 9.7 Å to 7.4 and 7.9 nm, respectively. In vivo kinetics on degradation and protein release was performed by analyzing the serum sampling of intravenously injected SPF chickens. The first order and biphasic variations were obtained for in vivo kinetics using equilibrium dialysis. Antimicrobial and anti-HIV assays yielded greatly decreased MIC50 and EC50 values of nanoformulated MAP30. An acute toxicity of MAP30 encapsulated in Zr/EPC occurred at a single intravenous dose above 14.24 mg/kg bw in NIH/KM/ICR mice. The folding of MAP30 from Zr/EPC sustained in vivo chickens for more than 8 days in high performance liquid chromatography assays. These matrices could protect MAP30 efficiently with strong structure retention, lowered toxicity and prolonged in vivo life. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Future technology insight: mass spectrometry imaging as a tool in drug research and development

    PubMed Central

    Cobice, D F; Goodwin, R J A; Andren, P E; Nilsson, A; Mackay, C L; Andrew, R

    2015-01-01

    In pharmaceutical research, understanding the biodistribution, accumulation and metabolism of drugs in tissue plays a key role during drug discovery and development. In particular, information regarding pharmacokinetics, pharmacodynamics and transport properties of compounds in tissues is crucial during early screening. Historically, the abundance and distribution of drugs have been assessed by well-established techniques such as quantitative whole-body autoradiography (WBA) or tissue homogenization with LC/MS analysis. However, WBA does not distinguish active drug from its metabolites and LC/MS, while highly sensitive, does not report spatial distribution. Mass spectrometry imaging (MSI) can discriminate drug and its metabolites and endogenous compounds, while simultaneously reporting their distribution. MSI data are influencing drug development and currently used in investigational studies in areas such as compound toxicity. In in vivo studies MSI results may soon be used to support new drug regulatory applications, although clinical trial MSI data will take longer to be validated for incorporation into submissions. We review the current and future applications of MSI, focussing on applications for drug discovery and development, with examples to highlight the impact of this promising technique in early drug screening. Recent sample preparation and analysis methods that enable effective MSI, including quantitative analysis of drugs from tissue sections will be summarized and key aspects of methodological protocols to increase the effectiveness of MSI analysis for previously undetectable targets addressed. These examples highlight how MSI has become a powerful tool in drug research and development and offers great potential in streamlining the drug discovery process. PMID:25766375

  8. Tuning hERG out: Antitarget QSAR Models for Drug Development

    PubMed Central

    Braga, Rodolpho C.; Alves, Vinícius M.; Silva, Meryck F. B.; Muratov, Eugene; Fourches, Denis; Tropsha, Alexander; Andrade, Carolina H.

    2015-01-01

    Several non-cardiovascular drugs have been withdrawn from the market due to their inhibition of hERG K+ channels that can potentially lead to severe heart arrhythmia and death. As hERG safety testing is a mandatory FDA-required procedure, there is a considerable interest for developing predictive computational tools to identify and filter out potential hERG blockers early in the drug discovery process. In this study, we aimed to generate predictive and well-characterized quantitative structure–activity relationship (QSAR) models for hERG blockage using the largest publicly available dataset of 11,958 compounds from the ChEMBL database. The models have been developed and validated according to OECD guidelines using four types of descriptors and four different machine-learning techniques. The classification accuracies discriminating blockers from non-blockers were as high as 0.83–0.93 on external set. Model interpretation revealed several SAR rules, which can guide structural optimization of some hERG blockers into non-blockers. We have also applied the generated models for screening the World Drug Index (WDI) database and identify putative hERG blockers and non-blockers among currently marketed drugs. The developed models can reliably identify blockers and non-blockers, which could be useful for the scientific community. A freely accessible web server has been developed allowing users to identify putative hERG blockers and non-blockers in chemical libraries of their interest (http://labmol.farmacia.ufg.br/predherg). PMID:24805060

  9. Controversies in Alzheimer’s disease drug development

    PubMed Central

    Cummings, Jeffrey L.

    2010-01-01

    Understanding of the pathophysiological basis of Alzheimer’s disease (AD) is increasing rapidly and a variety of potential treatment modalities have emerged based on these improved mechanistic insights. The optimal way of proceeding with disease-modifying drug development remains to be clarified and controversies have emerged regarding the definition of Alzheimer’s disease, the participation of mild cognitive impairment patients in clinical trials, the definition of disease modification, the potential impediments to satisfaction from patients receiving disease-modifying therapy, the importance of add-on therapy with symptomatic agents, the optimal clinical trial design to demonstrate disease modification, the best means of minimizing time spent in Phase II of drug development, the potential role of adaptive designs in clinical trials, the use of enrichment designs in clinical trials, the role of biomarkers in clinical trials, the treatment of advanced patients with disease-modifying agents, and distinctions between disease modification and disease prevention. The questions surrounding these issues must be resolved as disease-modifying therapies for AD are advanced. These controversies are framed and potential directions towards resolution described. PMID:18925488

  10. Recent developments in drug eluting devices with tailored interfacial properties.

    PubMed

    Sanchez-Rexach, Eva; Meaurio, Emilio; Sarasua, Jose-Ramon

    2017-11-01

    Drug eluting devices have greatly evolved during past years to become fundamental products of great marketing importance in the biomedical field. There is currently a large diversity of highly specialized devices for specific applications, making the development of these devices an exciting field of research. The replacement of the former bare metal devices by devices loaded with drugs allowed the sustained and controlled release of drugs, to achieve the desired local therapeutic concentration of drug. The newer devices have been "engineered" with surfaces containing micro- and nanoscale features in a well-controlled manner, that have shown to significantly affect cellular and subcellular function of various biological systems. For example, the topography can be structured to form an antifouling surface mimicking the defense mechanisms found in nature, like the skin of the shark. In the case of bone implants, well-controlled nanostructured interfaces can promote osteoblast differentiation and matrix production, and enhance short-term and long-term osteointegration. In any case, the goal of current research is to design implants that induce controlled, guided, and rapid healing. This article reviews recent trends in the development of drug eluting devices, as well as recent developments on the micro/nanotechnology scales, and their future challenges. For this purpose medical devices have been divided according to the different systems of the body they are focused to: orthopedic devices, breathing stents, gastrointestinal and urinary systems, devices for cardiovascular diseases, neuronal implants, and wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Regulatory perspective on remaining challenges for utilization of pharmacogenomics-guided drug developments.

    PubMed

    Otsubo, Yasuto; Ishiguro, Akihiro; Uyama, Yoshiaki

    2013-01-01

    Pharmacogenomics-guided drug development has been implemented in practice in the last decade, resulting in increased labeling of drugs with pharmacogenomic information. However, there are still many challenges remaining in utilizing this process. Here, we describe such remaining challenges from the regulatory perspective, specifically focusing on sample collection, biomarker qualification, ethnic factors, codevelopment of companion diagnostics and means to provide drugs for off-target patients. To improve the situation, it is important to strengthen international harmonization and collaboration among academia, industries and regulatory agencies, followed by the establishment of an international guideline on this topic. Communication with a regulatory agency from an early stage of drug development is also a key to success.

  12. New and Future Drug Development for Gastroesophageal Reflux Disease

    PubMed Central

    Maradey-Romero, Carla

    2014-01-01

    Medical therapy remains the most popular treatment for gastroesophageal reflux disease (GERD). Whilst interest in drug development for GERD has declined over the last few years primarily due to the conversion of most proton pump inhibitor (PPI)'s to generic and over the counter compounds, there are still numerous areas of unmet needs in GERD. Drug development has been focused on potent histamine type 2 receptor antagonist's, extended release PPI's, PPI combination, potassium-competitive acid blockers, transient lower esophageal sphincter relaxation reducers, prokinetics, mucosal protectants and esophageal pain modulators. It is likely that the aforementioned compounds will be niched for specific areas of unmet need in GERD, rather than compete with the presently available anti-reflux therapies. PMID:24466441

  13. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs

    PubMed Central

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  14. Clinical Trials in a Dish: A Perspective on the Coming Revolution in Drug Development.

    PubMed

    Fermini, Bernard; Coyne, Shawn T; Coyne, Kevin P

    2018-05-01

    The pharmaceutical industry is facing unprecedented challenges as the cost of developing new drugs has reached unsustainable levels, fueled in large parts by a high attrition rate in clinical development. Strategies to bridge studies between preclinical testing and clinical trials are needed to reduce the knowledge gap and allow earlier decisions to be made on the continuation or discontinuation of further development of drugs. The discovery and development of human induced pluripotent stem cells (hiPSCs) have opened up new avenues that support the concept of screening for cell-based safety and toxicity at the level of a population. This approach, termed "Clinical Trials in a Dish" (CTiD), allows testing medical therapies for safety or efficacy on cells collected from a representative sample of human patients, before moving into actual clinical trials. It can be applied to the development of drugs for specific populations, and it allows predicting not only the magnitude of effects but also the incidence of patients in a population who will benefit or be harmed by these drugs. This, in turn, can lead to the selection of safer drugs to move into clinical development, resulting in a reduction in attrition. The current article offers a perspective of this new model for "humanized" preclinical drug development.

  15. The price of innovation: new estimates of drug development costs.

    PubMed

    DiMasi, Joseph A; Hansen, Ronald W; Grabowski, Henry G

    2003-03-01

    The research and development costs of 68 randomly selected new drugs were obtained from a survey of 10 pharmaceutical firms. These data were used to estimate the average pre-tax cost of new drug development. The costs of compounds abandoned during testing were linked to the costs of compounds that obtained marketing approval. The estimated average out-of-pocket cost per new drug is 403 million US dollars (2000 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a real discount rate of 11% yields a total pre-approval cost estimate of 802 million US dollars (2000 dollars). When compared to the results of an earlier study with a similar methodology, total capitalized costs were shown to have increased at an annual rate of 7.4% above general price inflation. Copyright 2003 Elsevier Science B.V.

  16. Drugs of abuse that cause developing neurons to commit suicide.

    PubMed

    Farber, Nuri B; Olney, John W

    2003-12-30

    When neuronal activity is abnormally suppressed during the developmental period of synaptogenesis, the timing and sequence of synaptic connections is disrupted, and this causes nerve cells to receive an internal signal to commit suicide, a form of cell death known as "apoptosis". By altering glutamate and GABA transmission alcohol suppresses neuronal activity, causing millions of nerve cells to commit suicide in the developing brain. This proapoptotic effect of alcohol provides a likely explanation for the diminished brain size and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome. These findings have public health significance, not only in relation to fetal alcohol syndrome, but also in relation to several other drugs of abuse and various drugs used in obstetric and pediatric medicine, because these additional drugs (e.g. phencyclidine, ketamine, benzodiazepines, barbiturates) also suppress neuronal activity and drive developing neurons to commit suicide.

  17. Qualification of imaging biomarkers for oncology drug development.

    PubMed

    Waterton, John C; Pylkkanen, Liisa

    2012-03-01

    Although many imaging biomarkers have been described for cancer research, few are sufficiently robust, reliable and well-characterised to be used as routine tools in clinical cancer research. In particular, biomarkers which show that investigational therapies have reduced tumour cell proliferation, or induced necrotic or apoptotic cell death are not commonly used to support decision-making in drug development, even though such pharmacodynamic effects are common goals of many classes of investigational drugs. Moreover we lack well-qualified biomarkers of propensity to metastasise. The qualification and technical validation of imaging biomarkers poses unique challenges not always encountered when validating biospecimen biomarkers. These include standardisation of acquisition and analysis, imaging-pathology correlation, cross-sectional clinical-biomarker correlations and correlation with outcome. Such work is ideally suited to precompetitive research and public-private partnerships, and this has been recognised within the Innovative Medicines Initiative (IMI), a Joint Undertaking between the European Union and the European Federation of Pharmaceutical Industries and Associations, which has initiated projects in the areas of drug safety, drug efficacy, knowledge management and training. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Points to consider: efficacy and safety evaluations in the clinical development of ultra-orphan drugs.

    PubMed

    Maeda, Kojiro; Kaneko, Masayuki; Narukawa, Mamoru; Arato, Teruyo

    2017-08-23

    The unmet medical needs of individuals with very rare diseases are high. The clinical trial designs and evaluation methods used for 'regular' drugs are not applicable in the clinical development of ultra-orphan drugs (<1000 patients) in many cases. In order to improve the clinical development of ultra-orphan drugs, we examined several points regarding the efficient evaluations of drug efficacy and safety that could be conducted even with very small sample sizes, based on the review reports of orphan drugs approved in Japan. The clinical data packages of 43 ultra-orphan drugs approved in Japan from January 2001 to December 2014 were investigated. Japanese clinical trial data were not included in the clinical data package for eight ultra-orphan drugs, and non-Japanese clinical trial data were included for six of these eight drug. Japanese supportive data that included retrospective studies, published literature, clinical research and Japanese survey results were clinical data package attachments in 22 of the 43 ultra-orphan drugs. Multinational trials were conducted for three ultra-orphan drugs. More than two randomized controlled trials (RCTs) were conducted for only 11 of the 43 ultra-orphan drugs. The smaller the number of patients, the greater the proportion of forced titration and optional titration trials were conducted. Extension trials were carried out for enzyme preparations and monoclonal antibodies with high ratio. Post-marketing surveillance of all patients was required in 36 of the 43 ultra-orphan drugs. For ultra-orphan drugs, clinical endpoints were used as the primary efficacy endpoint of the pivotal trial only for two drugs. The control groups in RCTs were classified as follows: placebo groups different dosage groups, and active controls groups. Sample sizes have been determined on the basis of feasibility for some ultra-orphan drugs. We provide "Draft Guidance on the Clinical Development of Ultra-Orphan Drugs" based on this research. The development

  19. Affective and behavioral dysfunction under antiepileptic drugs in epilepsy: Development of a new drug-sensitive screening tool.

    PubMed

    Mertens, Lea Julia; Witt, Juri-Alexander; Helmstaedter, Christoph

    2018-06-01

    Behavioral problems and psychiatric symptoms are common in patients with epilepsy and have a multifactorial origin, including adverse effects of antiepileptic drugs (AEDs). In order to develop a screening tool for behavioral AED effects, the aim of this study was to identify behavioral problems and symptoms particularly sensitive to AED drug load and the presence/absence of AEDs with known negative psychotropic profiles. Four hundred ninety-four patients with epilepsy were evaluated who had been assessed with three self-report questionnaires on mood, personality, and behavior (Beck Depression Inventory, BDI; Neurological Disorders Depression Inventory for Epilepsy extended, NDDI-E; and Fragebogen zur Persönlichkeit bei zerebralen Erkrankungen, FPZ). Drug-sensitive items were determined via correlation analyses and entered into an exploratory factor analysis for scale construction. The resulting scales were then analyzed as a function of drug treatment. Analyses revealed 30 items, which could be allocated to six behavioral domains: Emotional Lability, Depression, Aggression/Irritability, Psychosis & Suicidality, Risk- & Sensation-seeking, and Somatization. Subsequent analysis showed significant effects of the number of AEDs on behavior, as in Emotional Lability (F=2.54, p=.029), Aggression/Irritability (F=2.29, p=.046), Psychosis & Suicidality (F=2.98, p=.012), and Somatization (F=2.39, p=.038). Affective and behavioral difficulties were more prominent in those patients taking AEDs with supposedly negative psychotropic profiles. These effects were largely domain-unspecific and primarily manifested in polytherapy. Drug-sensitive behavioral domains and items were identified which qualify for a self-report screening tool. The tool indicates impairments with a higher drug load and when administering AEDs with negative psychotropic profiles. The next steps require normalization in healthy subjects and the clinical validation of the newly developed screening tool Psy

  20. The application of absolute quantitative (1)H NMR spectroscopy in drug discovery and development.

    PubMed

    Singh, Suruchi; Roy, Raja

    2016-07-01

    The identification of a drug candidate and its structural determination is the most important step in the process of the drug discovery and for this, nuclear magnetic resonance (NMR) is one of the most selective analytical techniques. The present review illustrates the various perspectives of absolute quantitative (1)H NMR spectroscopy in drug discovery and development. It deals with the fundamentals of quantitative NMR (qNMR), the physiochemical properties affecting qNMR, and the latest referencing techniques used for quantification. The precise application of qNMR during various stages of drug discovery and development, namely natural product research, drug quantitation in dosage forms, drug metabolism studies, impurity profiling and solubility measurements is elaborated. To achieve this, the authors explore the literature of NMR in drug discovery and development between 1963 and 2015. It also takes into account several other reviews on the subject. qNMR experiments are used for drug discovery and development processes as it is a non-destructive, versatile and robust technique with high intra and interpersonal variability. However, there are several limitations also. qNMR of complex biological samples is incorporated with peak overlap and a low limit of quantification and this can be overcome by using hyphenated chromatographic techniques in addition to NMR.

  1. Site-Specific Antibody–Drug Conjugates: The Nexus of Bioorthogonal Chemistry, Protein Engineering, and Drug Development

    PubMed Central

    2015-01-01

    Antibody–drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering. PMID:25494884

  2. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development.

    PubMed

    Agarwal, Paresh; Bertozzi, Carolyn R

    2015-02-18

    Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering.

  3. Developing an Occupational Drug Abuse Program: Considerations and Approaches. Services Research Monograph Series.

    ERIC Educational Resources Information Center

    Stephen, Mae; Prentice, Robert

    This monograph, developed as a guide for companies interested in establishing drug abuse programs, begins with a brief summary of studies assessing the extent and costs of employee drug use. The next section addresses some practical and conceptual issues about establishing a drug abuse program. Suggestions for implementing a drug abuse program are…

  4. Updates on Managing Type 2 Diabetes Mellitus with Natural Products: Towards Antidiabetic Drug Development.

    PubMed

    Alam, Fahmida; Islam, Md Asiful; Kamal, M A; Gan, Siew Hua

    2016-08-13

    Over the years, natural products have shown success as antidiabetics in vitro, in vivo and in clinical trials. Because natural product-derived drugs are more affordable and effective with fewer side-effects compared to conventional therapies, pharmaceutical research is increasingly leaning towards the discovery of new antidiabetic drugs from natural products targeting pathways or components associated with type 2 diabetes mellitus (T2DM) pathophysiology. However, the drug discovery process is very lengthy and costly with significant challenges. Therefore, various techniques are currently being developed for the preclinical research phase of drug discovery with the aim of drug development with less time and efforts from natural products. In this review, we have provided an update on natural products including fruits, vegetables, spices, nuts, beverages and mushrooms with potential antidiabetic activities from in vivo, in vitro and clinical studies. Synergistic interactions between natural products and antidiabetic drugs; and potential antidiabetic active compounds from natural products are also documented to pave the way for combination treatment and new drug discovery, respectively. Additionally, a brief idea of the drug discovery process along with the challenges that arise during drug development from natural products and the methods to conquer those challenges are discussed to create a more convenient future drug discovery process.

  5. Thirty Years of Orphan Drug Legislation and the Development of Drugs to Treat Rare Seizure Conditions: A Cross Sectional Analysis.

    PubMed

    Döring, Jan Henje; Lampert, Anette; Hoffmann, Georg F; Ries, Markus

    2016-01-01

    Epilepsy is a serious chronic health condition with a high morbidity impairing the life of patients and afflicted families. Many epileptic conditions, especially those affecting children, are rare disorders generating an urgent medical need for more efficacious therapy options. Therefore, we assessed the output of the US and European orphan drug legislations. Quantitative analysis of the FDA and EMA databases for orphan drug designations according to STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) criteria. Within the US Orphan Drug Act 40 designations were granted delivering nine approvals, i.e. clobazam, diazepam viscous solution for rectal administration, felbamate, fosphenytoin, lamotrigine, repository corticotropin, rufinamide, topiramate, and vigabatrin. Since 2000 the EMA granted six orphan drug designations whereof two compounds were approved, i.e. rufinamide and stiripentol. In the US, two orphan drug designations were withdrawn. Orphan drugs were approved for conditions including Lennox-Gastaut syndrome, infantile spasms, Dravet syndrome, and status epilepticus. Comparing time to approval for rufinamide, which was approved in the US and the EU to treat rare seizure conditions, the process seems faster in the EU (2.2 years) than in the US (4.3 years). Orphan drug development in the US and in the EU delivered only few molecular entities to treat rare seizure disorders. The development programs focused on already approved antiepileptic drugs or alternative pharmaceutical formulations. Most orphan drugs approved in the US are not approved in the EU to treat rare seizures although some were introduced after 2000 when the EU adopted the Orphan Drug Regulation.

  6. Assessment of interactions of efavirenz solid drug nanoparticles with human immunological and haematological systems.

    PubMed

    Liptrott, Neill J; Giardiello, Marco; McDonald, Tom O; Rannard, Steve P; Owen, Andrew

    2018-03-15

    Recent work has developed solid drug nanoparticles (SDNs) of efavirenz that have been demonstrated, preclinically, improved oral bioavailability and the potential to enable up to a 50% dose reduction, and is currently being studied in a healthy volunteer clinical trial. Other SDN formulations are being studied for parenteral administration, either as intramuscular long-acting formulations, or for direct administration intravenously. The interaction of nanoparticles with the immunological and haematological systems can be a major barrier to successful translation but has been understudied for SDN formulations. Here we have conducted a preclinical evaluation of efavirenz SDN to assess their potential interaction with these systems. Platelet aggregation and activation, plasma coagulation, haemolysis, complement activation, T cell functionality and phenotype, monocyte derived macrophage functionality, and NK cell function were assessed in primary healthy volunteer samples treated with either aqueous efavirenz or efavirenz SDN. Efavirenz SDNs were shown not to interfere with any of the systems studied in terms of immunostimulation nor immunosuppression. Although efavirenz aqueous solution was shown to cause significant haemolysis ex vivo, efavirenz SDNs did not. No other interaction with haematological systems was observed. Efavirenz SDNs have been demonstrated to be immunologically and haematologically inert in the utilised assays. Taken collectively, along with the recent observation that lopinavir SDN formulations did not impact immunological responses, these data indicate that this type of nanoformulation does not elicit immunological consequences seen with other types of nanomaterial. The methodologies presented here provide a framework for pre-emptive preclinical characterisation of nanoparticle safety.

  7. In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB

    PubMed Central

    Vaddady, Pavan K; Lee, Richard E; Meibohm, Bernd

    2011-01-01

    For rapid anti-tuberculosis (TB) drug development in vitro pharmacokinetic/pharmacodynamic (PK/PD) models are useful in evaluating the direct interaction between the drug and the bacteria, thereby guiding the selection of candidate compounds and the optimization of their dosing regimens. Utilizing in vivo drug-clearance profiles from animal and/or human studies and simulating them in an in vitro PK/PD model allows the in-depth characterization of antibiotic activity of new and existing antibacterials by generating time–kill data. These data capture the dynamic interplay between mycobacterial growth and changing drug concentration as encountered during prolonged drug therapy. This review focuses on important PK/PD parameters relevant to anti-TB drug development, provides an overview of in vitro PK/PD models used to evaluate the efficacy of agents against mycobacteria and discusses the related mathematical modeling approaches of time–kill data. Overall, it provides an introduction to in vitro PK/PD models and their application as critical tools in evaluating anti-TB drugs. PMID:21359155

  8. Drug Discovery and Development of Antimalarial Agents: Recent Advances.

    PubMed

    Thota, Sreekanth; Yerra, Rajeshwar

    2016-01-01

    Malaria, a deadly infectious parasitic disease, is a major issue of public health in the world today and already produces serious economic constraints in the endemic countries. Most of the malarial infections and deaths are due to Plasmodium falciparum and Plasmodium vivax species. The recent emergence of resistance necessitates the search for new antimalarial drugs, which overcome the resistance and act through new mechanisms. Although much effort has been directed towards the discovery of novel antimalarial drugs. 4-anilino quinolone triazines as potent antimalarial agents, their in silico modelling and bioevaluation as Plasmodium falciparum transketolase and β-hematin inhibitors has been reported. This review is primarily focused on the drug discovery of the recent advances in the development of antimalarial agents and their mechanism of action.

  9. The druggable genome and support for target identification and validation in drug development.

    PubMed

    Finan, Chris; Gaulton, Anna; Kruger, Felix A; Lumbers, R Thomas; Shah, Tina; Engmann, Jorgen; Galver, Luana; Kelley, Ryan; Karlsson, Anneli; Santos, Rita; Overington, John P; Hingorani, Aroon D; Casas, Juan P

    2017-03-29

    Target identification (determining the correct drug targets for a disease) and target validation (demonstrating an effect of target perturbation on disease biomarkers and disease end points) are important steps in drug development. Clinically relevant associations of variants in genes encoding drug targets model the effect of modifying the same targets pharmacologically. To delineate drug development (including repurposing) opportunities arising from this paradigm, we connected complex disease- and biomarker-associated loci from genome-wide association studies to an updated set of genes encoding druggable human proteins, to agents with bioactivity against these targets, and, where there were licensed drugs, to clinical indications. We used this set of genes to inform the design of a new genotyping array, which will enable association studies of druggable genes for drug target selection and validation in human disease. Copyright © 2017, American Association for the Advancement of Science.

  10. Applicability of bioanalysis of multiple analytes in drug discovery and development: review of select case studies including assay development considerations.

    PubMed

    Srinivas, Nuggehally R

    2006-05-01

    The development of sound bioanalytical method(s) is of paramount importance during the process of drug discovery and development culminating in a marketing approval. Although the bioanalytical procedure(s) originally developed during the discovery stage may not necessarily be fit to support the drug development scenario, they may be suitably modified and validated, as deemed necessary. Several reviews have appeared over the years describing analytical approaches including various techniques, detection systems, automation tools that are available for an effective separation, enhanced selectivity and sensitivity for quantitation of many analytes. The intention of this review is to cover various key areas where analytical method development becomes necessary during different stages of drug discovery research and development process. The key areas covered in this article with relevant case studies include: (a) simultaneous assay for parent compound and metabolites that are purported to display pharmacological activity; (b) bioanalytical procedures for determination of multiple drugs in combating a disease; (c) analytical measurement of chirality aspects in the pharmacokinetics, metabolism and biotransformation investigations; (d) drug monitoring for therapeutic benefits and/or occupational hazard; (e) analysis of drugs from complex and/or less frequently used matrices; (f) analytical determination during in vitro experiments (metabolism and permeability related) and in situ intestinal perfusion experiments; (g) determination of a major metabolite as a surrogate for the parent molecule; (h) analytical approaches for universal determination of CYP450 probe substrates and metabolites; (i) analytical applicability to prodrug evaluations-simultaneous determination of prodrug, parent and metabolites; (j) quantitative determination of parent compound and/or phase II metabolite(s) via direct or indirect approaches; (k) applicability in analysis of multiple compounds in select

  11. Considerations for a business model for the effective integration of novel biomarkers into drug development.

    PubMed

    Frueh, Felix W

    2008-11-01

    It is 10 years since the introduction of trastuzumab into the US market, and we are still waiting for a validation of the business case for biomarker-driven drug development. While many reasons for the lack of duplication of this model may exist, the need for accelerated innovation in drug development paired with the opportunity of integrating biomarker-driven research into drug development programs may lead to new and creative ways of fostering the cooperation between drug developers and test manufacturers. The rapid increase in knowledge about biomarkers and our understanding of disease and disease mechanisms open unprecedented prospects to make not only better, more informed decisions regarding patient care, but also strategic decisions during drug development. This requires that a biomarker strategy becomes an integral part of (early) drug development and that new, innovative paths are tried towards a model that combines the scientific approach with an economically feasible implementation strategy. Collaborative research, the use of new communication tools, the exploration of alternative ways to position a product in the market, and other considerations are part of such a strategy. This perspective article illustrates the current landscape and takes a look at some of these new ways for more effectively integrating biomarkers into drug development.

  12. Polymeric drugs: Advances in the development of pharmacologically active polymers

    PubMed Central

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  13. Application of Proteomic Approaches to Accelerate Drug Development for Psychiatric Disorders.

    PubMed

    Rahmoune, Hassan; Martins-de-Souza, Daniel; Guest, Paul C

    2017-01-01

    Proteomic-based biomarkers are now an integral part of the drug development process. This chapter covers the role of proteomic biomarker tests as useful tools for improving preclinical research and clinical development. One medical area that has been lagging behind this process is the study of psychiatric disorders, and this is most likely due to the complexity of these diseases. The potential of incorporating biomarkers in the clinical pipeline to improve decision-making, accelerate drug development, improve translation and reduce development costs is also discussed, with a focus on psychiatric diseases like schizophrenia. This chapter will also discuss the next steps that must be taken to keep moving this process forwards.

  14. Which Benefits Are Mentioned Most Often in Drug Development Publications?

    PubMed

    Strüver, Vanessa

    2017-01-01

    The aim was to identify theoretically expected as well as actually reported benefits from drug development and the importance of individual patient benefits compared to the collective benefits to society in general. Ethical guidelines require that clinical research involving humans offer the potential for benefit. A number of characteristics can be applied to define research benefit. Often benefit is categorized as being either direct or indirect. Indirect benefits can involve collective benefits for society rather than any benefits to the trial patient or subject. The purpose of this review was to examine which potential individual and societal benefits were mentioned as being expected in publications from government experts and which were mentioned in publications describing completed drug development trial results. Literature on research benefit was first identified by searching the PubMed database using several combinations of the key words benefit and clinical research . The search was limited to articles published in English. A Google search with the same combinations of key words but without any language limitation was then performed. Additionally, the reference lists of promising articles were screened for further thematically related articles. Finally, a narrative review was performed of relevant English- and German-language articles published between 1996 and 2016 to identify which of several potential benefits were either theoretically expected or which were mentioned in publications on clinical drug development trial results. The principal benefits from drug development discussed included 2 main types of benefit, namely individual benefits for the patients and collective benefits for society. Twenty-one of an overall total of 26 articles discussing theoretically expected benefits focused on individual patient benefits, whereas 17 out of 26 articles mentioned collective benefits to society. In these publications, the most commonly mentioned theoretically

  15. A Case for Developing Community Drug Indicators

    ERIC Educational Resources Information Center

    Loughran, Hilda; McCann, Mary Ellen

    2011-01-01

    The EU Action Plan on Drugs (2005-2008) calls for member states of the European Union to provide information on five key epidemiological indicators. These are: general population surveys, prevalence and patterns of problem drug use, drug related infectious diseases, drug related deaths and mortality of drug users, and demand for drug treatment.…

  16. Taxane anticancer agents: a patent perspective

    PubMed Central

    Ojima, Iwao; Lichtenthal, Brendan; Lee, Siyeon; Wang, Changwei; Wang, Xin

    2016-01-01

    Introduction Paclitaxel and docetaxel were two epoch-making anticancer drugs and have been successfully used in chemotherapy for a variety of cancer types. In 2010, a new taxane, cabazitaxel, was approved by FDA for use in combination with prednisone for the treatment of metastatic hormone-refractory prostate cancer. Albumin-bound paclitaxel (nab™-paclitaxel; abraxane) nanodroplet formulation was another notable invention (FDA approval 2005 for refractory, metastatic, or relapsed breast cancer). Abraxane in combination with gemcitabine for the treatment of pancreatic cancer was approved by FDA in 2013. Accordingly, there have been a huge number of patent applications dealing with taxane anticancer agents in the last five years. Thus, it is a good time to review the progress in this area and find the next wave for new developments. Area covered This review article covers the patent literature from 2010 to early 2015 on various aspects of taxane-based chemotherapies and drug developments. Expert opinion Three FDA-approved taxane anticancer drugs will continue to expand their therapeutic applications, especially through drug combinations and new formulations. Inspired by the success of abraxane, new nano-formulations are emerging. Highly potent new-generation taxanes will play a key role in the development of efficacious tumor-targeted drug delivery systems. PMID:26651178

  17. Self-contained, low-cost Body-on-a-Chip systems for drug development.

    PubMed

    Wang, Ying I; Oleaga, Carlota; Long, Christopher J; Esch, Mandy B; McAleer, Christopher W; Miller, Paula G; Hickman, James J; Shuler, Michael L

    2017-11-01

    Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.

  18. Patents and access to drugs in developing countries: an ethical analysis.

    PubMed

    Sterckx, Sigrid

    2004-05-01

    More than a third of the world's population has no access to essential drugs. More than half of this group of people live in the poorest regions of Africa and Asia. Several factors determine the accessibility of drugs in developing countries. Hardly any medicines for tropical diseases are being developed, but even existing drugs are often not available to the patients who need them. One of the important determinants of access to drugs is the working of the patent system. This paper first maps out some facts about the global patent regime that has emerged as a consequence of the conclusion of the WTO-TRIPs Agreement in 1994. Attempts to construct a moral justification of the patent system have been based on three grounds: natural rights, distributive justice, and utilitarian arguments. This paper examines to what extent and on which grounds drug patents can be justified. The final section looks at the so-called 'Doha Declaration on the TRIPs Agreement and Public Health', which was adopted by the WTO Ministerial Conference two years ago, recognising the primacy of public health over the interests of patent proprietors.

  19. A peek into the drug development scenario of endometriosis - A systematic review.

    PubMed

    Goenka, Luxitaa; George, Melvin; Sen, Maitrayee

    2017-06-01

    Endometriosis is a gynaecological disease that is characterised by the presence of endometrium like tissue-epithelium and stroma that develops outside the uterine cavity, which is responsible for pelvic pain and infertility. Even though several medical therapies exist for the treatment of endometriosis, each of the drug class has its own limitations such as cost of treatment, side-effects and its short-term effect on the symptoms of endometriosis. In this review, we have attempted to summarize the current status and challenges of drug development for endometriosis. A systematic review was done and all the RCTs were selected from the identified hits. We included studies that explored the usage of therapeutic drugs on endometriosis patients from inception till November 2016. The search term used was 'Endometriosis' using PubMed and Clinicaltrials.gov. For the final analysis, 60 articles were analyzed and we identified the newly emerging drug therapies for endometriosis treatment and have briefed their current status and challenges in drug development for endometriosis. The quality of the selected studies was assessed based on the degree of bias. The current classes of drugs that have shown promising therapeutic results include Gonadotropin- releasing hormone (GnRH) antagonists, aromatase inhibitors (AI), and selective progesterone and estrogen receptor modulators, dopamine receptor-2-agonists and statins. The drugs that failed midway during development include tanezumab, rosiglitazone, infliximab, pentoxifylline, telapristone acetate, asoprisnil and raloxifene. From the literature review, it appears that the most promising molecules for the treatment of endometriosis in the near future include elagolix, mifepristone, TAK-385, KLH-2109 and ASP1707 and cabergoline. It remains to be seen if these molecules would succeed large phase 3 clinical trials and overcome the regulatory hurdles to become an essential tool in the gynaecologist's armamentarium against endometriosis

  20. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development.

    PubMed

    Burt, T; Yoshida, K; Lappin, G; Vuong, L; John, C; de Wildt, S N; Sugiyama, Y; Rowland, M

    2016-04-01

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications and design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. All phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.

  1. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Bilan; Wei, Xiawei; Men, Ke; Zheng, Fengjin; Zhou, Yingfeng; Zheng, Yu; Gou, Maling; Huang, Meijuan; Guo, Gang; Huang, Ning; Qian, Zhiyong; Wei, Yuquan

    2012-10-01

    Encapsulation of hydrophobic agents in polymer micelles can improve the water solubility of cargos, contributing to develop novel drugs. Quercetin (QU) is a hydrophobic agent with potential anticancer activity. In this work, we encapsulated QU into biodegradable monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles and tried to provide proof-of-principle for treating ovarian cancer with this nano-formulation of quercetin. These QU loaded MPEG-PCL (QU/MPEG-PCL) micelles with drug loading of 6.9% had a mean particle size of 36 nm, rendering the complete dispersion of quercetin in water. QU inhibited the growth of A2780S ovarian cancer cells on a dose dependent manner in vitro. Intravenous administration of QU/MPEG-PCL micelles significantly suppressed the growth of established xenograft A2780S ovarian tumors through causing cancer cell apoptosis and inhibiting angiogenesis in vivo. Furthermore, the anticancer activity of quercetin on ovarian cancer cells was studied in vitro. Quercetin treatment induced the apoptosis of A2780S cells associated with activating caspase-3 and caspase-9. MCL-1 downregulation, Bcl-2 downregulation, Bax upregulation and mitochondrial transmembrane potential change were observed, suggesting that quercetin may induce apoptosis of A2780S cells through the mitochondrial apoptotic pathway. Otherwise, quercetin treatment decreased phosphorylated p44/42 mitogen-activated protein kinase and phosphorylated Akt, contributing to inhibition of A2780S cell proliferation. Our data suggested that QU/MPEG-PCL micelles were a novel nano-formulation of quercetin with a potential clinical application in ovarian cancer therapy.

  2. Research and Development Spending to Bring a Single Cancer Drug to Market and Revenues After Approval.

    PubMed

    Prasad, Vinay; Mailankody, Sham

    2017-11-01

    A common justification for high cancer drug prices is the sizable research and development (R&D) outlay necessary to bring a drug to the US market. A recent estimate of R&D spending is $2.7 billion (2017 US dollars). However, this analysis lacks transparency and independent replication. To provide a contemporary estimate of R&D spending to develop cancer drugs. Analysis of US Securities and Exchange Commission filings for drug companies with no drugs on the US market that received approval by the US Food and Drug Administration for a cancer drug from January 1, 2006, through December 31, 2015. Cumulative R&D spending was estimated from initiation of drug development activity to date of approval. Earnings were also identified from the time of approval to the present. The study was conducted from December 10, 2016, to March 2, 2017. Median R&D spending on cancer drug development. Ten companies and drugs were included in this analysis. The 10 companies had a median time to develop a drug of 7.3 years (range, 5.8-15.2 years). Five drugs (50%) received accelerated approval from the US Food and Drug Administration, and 5 (50%) received regular approval. The median cost of drug development was $648.0 million (range, $157.3 million to $1950.8 million). The median cost was $757.4 million (range, $203.6 million to $2601.7 million) for a 7% per annum cost of capital (or opportunity costs) and $793.6 million (range, $219.1 million to $2827.1 million) for a 9% opportunity costs. With a median of 4.0 years (range, 0.8-8.8 years) since approval, the total revenue from sales of these 10 drugs since approval was $67.0 billion compared with total R&D spending of $7.2 billion ($9.1 billion, including 7% opportunity costs). The cost to develop a cancer drug is $648.0 million, a figure significantly lower than prior estimates. The revenue since approval is substantial (median, $1658.4 million; range, $204.1 million to $22 275.0 million). This analysis provides a transparent estimate

  3. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer's disease.

    PubMed

    Bhatt, Prakash Chandra; Verma, Amita; Al-Abbasi, Fahad A; Anwar, Firoz; Kumar, Vikas; Panda, Bibhu Prasad

    2017-01-01

    According to the World Health Organization, globally there are around 18 million patients suffering from Alzheimer's disease (AD), and this number is expected to double by 2025. The pathophysiology of AD includes selective deposition of Aβ peptide in the mitochondria of cells, which inhibits uptake of glucose by neurons and key enzyme functions. Current drug treatments for AD are unable to rectify the underlying pathology of the disease; they only provide short-term symptomatic relief, so there is a need for the development of newer treatment regimes. The antiamyloid activity, antifibrinolytic activity, and antithrombotic activity of nattokinase holds potential for the treatment of AD. As nattokinase is a protein, its stability restricts its usage to a greater extent, but this limitation can be overcome by nanoencapsulation. In this work, we successfully synthesized polymeric nanoparticles of nattokinase and characterized its use by different techniques: transmission electron microscopy, scanning electron microscopy, DTS Nano, differential scanning calorimetry, Fourier-transform infrared spectroscopy, thioflavin T-binding assay, in vitro drug release, antifibrinolytic activity, and in vivo antiamyloid activity. As brain targeting of hydrophilic drugs is complicated due to the stringent nature of blood-brain barrier, in the current experimental study, we conjugated poly(lactic- co -glycolic acid) (PLGA)-encapsulated nattokinase with Tet1 peptide, which exhibits retrograde transportation properties because of its affinity to neurons. Our study suggests that PLGA-encapsulated nattokinase polymeric nanoparticles are able to downregulate amyloid aggregation and exhibit antifibrinolytic activity. The encapsulation of nattokinase in PLGA did not affect its enzyme activity, so the prepared nanoformulation containing nattokinase can be used as an effective drug treatment against AD.

  4. The impact of the written request process on drug development in childhood cancer.

    PubMed

    Snyder, Kristen M; Reaman, Gregory; Avant, Debbie; Pazdur, Richard

    2013-04-01

    The Food and Drug Administration (FDA) Modernization Act, enacted in 1997, created a pediatric exclusivity incentive allowing sponsors to qualify for an additional 6 months of marketing exclusivity after satisfying the requirements outlined in the Written Request (WR). This review evaluates the impact of the WR mechanism on the development of oncology drugs in children. A search of the FDA document archiving, reporting, and regulatory tracking system was performed for January 1, 2000 to December 31, 2010. Drugs were identified and pediatric-specific labeling information was obtained from Drugs@fda.gov and FDA Pediatric Labeling Changes Table. Fifty WRs have been issued for oncology drugs. Pediatric studies have been submitted for 14 drugs. Thirteen received pediatric exclusivity. As of December 31, 2010, labeling changes have been made for 11 drugs. Three drugs were approved for pediatric use. WRs have provided a mechanism to promote the study of drugs in pediatric malignancies. Information from studies resulting from the WRs regarding safety, pharmacokinetics, and tolerability of oncology drugs has been incorporated into pediatric labeling for 11/14 of the drugs. Earlier communication and collaboration between the FDA, National Cancer Institute, clinical investigators, and commercial sponsors are envisioned to facilitate the identification and prioritization of emerging new drugs of interest for WR consideration. Since this is the only regulatory mechanism, resulting from specific legislative initiatives relevant to cancer drug development for children, efforts to enhance its impact on increasing drug approval for pediatric cancer indications are warranted. Copyright © 2013 Wiley Periodicals, Inc.

  5. The evolving landscape of therapeutic drug development for hepatocellular carcinoma.

    PubMed

    Chong, Dawn Qingqing; Tan, Iain Beehuat; Choo, Su-Pin; Toh, Han Chong

    2013-11-01

    Currently, only one drug, sorafenib, is FDA approved for the treatment of advanced hepatocellular carcinoma (HCC), achieving modest objective response rates while still conferring an overall survival benefit. Unlike other solid tumors, no oncogenic addiction loops have been validated as clinically actionable targets in HCC. Outcomes of HCC could potentially be improved if critical molecular subclasses with distinct therapeutic vulnerabilities can be identified, biomarkers that predict recurrence or progression early can be determined and key epigenetic, genetic or microenvironment drivers that determine best response to a specific targeting treatment can be uncovered. Our group and others have examined the molecular heterogeneity of hepatocellular carcinoma. We have developed a panel of patient derived xenograft models to enable focused pre-clinical drug development of rationally designed therapies in specific molecular subgroups. We observed unique patterns, including synergies, of drug activity across our molecularly diverse HCC xenografts, pointing to specific therapeutic vulnerabilities for individual tumors. These efforts inform clinical trial designs and catalyze therapeutic development. It also argues for efficient strategic allocation of patients into appropriate enriched clinical trials. Here, we will discuss some of the recent important therapeutic studies in advanced HCC and also some of the potential strategies to optimize clinical therapeutic development moving forward. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Implementation of mechanism of action biology-driven early drug development for children with cancer.

    PubMed

    Pearson, Andrew D J; Herold, Ralf; Rousseau, Raphaël; Copland, Chris; Bradley-Garelik, Brigid; Binner, Debbie; Capdeville, Renaud; Caron, Hubert; Carleer, Jacqueline; Chesler, Louis; Geoerger, Birgit; Kearns, Pamela; Marshall, Lynley V; Pfister, Stefan M; Schleiermacher, Gudrun; Skolnik, Jeffrey; Spadoni, Cesare; Sterba, Jaroslav; van den Berg, Hendrick; Uttenreuther-Fischer, Martina; Witt, Olaf; Norga, Koen; Vassal, Gilles

    2016-07-01

    An urgent need remains for new paediatric oncology drugs to cure children who die from cancer and to reduce drug-related sequelae in survivors. In 2007, the European Paediatric Regulation came into law requiring industry to create paediatric drug (all types of medicinal products) development programmes alongside those for adults. Unfortunately, paediatric drug development is still largely centred on adult conditions and not a mechanism of action (MoA)-based model, even though this would be more logical for childhood tumours as these have much fewer non-synonymous coding mutations than adult malignancies. Recent large-scale sequencing by International Genome Consortium and Paediatric Cancer Genome Project has further shown that the genetic and epigenetic repertoire of driver mutations in specific childhood malignancies differs from more common adult-type malignancies. To bring about much needed change, a Paediatric Platform, ACCELERATE, was proposed in 2013 by the Cancer Drug Development Forum, Innovative Therapies for Children with Cancer, the European Network for Cancer Research in Children and Adolescents and the European Society for Paediatric Oncology. The Platform, comprising multiple stakeholders in paediatric oncology, has three working groups, one with responsibility for promoting and developing high-quality MoA-informed paediatric drug development programmes, including specific measures for adolescents. Key is the establishment of a freely accessible aggregated database of paediatric biological tumour drug targets to be aligned with an aggregated pipeline of drugs. This will enable prioritisation and conduct of early phase clinical paediatric trials to evaluate these drugs against promising therapeutic targets and to generate clinical paediatric efficacy and safety data in an accelerated time frame. Through this work, the Platform seeks to ensure that potentially effective drugs, where the MoA is known and thought to be relevant to paediatric

  7. Nonimaging detectors in drug development and approval.

    PubMed

    Wagner, H N

    2001-07-01

    Regulatory applications for imaging biomarkers will expand in proportion to the validation of specific parameters as they apply to individual questions in the management of disease. This validation is likely to be applicable only to a particular class of drug or a single mechanism of action. Awareness among the world's regulatory authorities of the potential for these emerging technologies is high, but so is the cost to the sponsor (including the logistics of including images in a dossier), and therefore the pharmaceutical industry must evaluate carefully the potential benefit of each technology for its drug development programs, just as the authorities must consider carefully the extent to which the method is valid for the use to which the applicant has put it. For well-characterized tracer systems, it may be possible to design inexpensive cameras that make rapid assessments.

  8. Extracellular proteases as targets for drug development

    PubMed Central

    Cudic, Mare

    2015-01-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV), cysteine proteases (cathepsin B), and renin system are discussed herein. PMID:19689354

  9. Advances in the development of new tuberculosis drugs and treatment regimens.

    PubMed

    Zumla, Alimuddin; Nahid, Payam; Cole, Stewart T

    2013-05-01

    Despite the introduction 40 years ago of the inexpensive and effective four-drug (isoniazid, rifampicin, pyrazinamide and ethambutol) treatment regimen, tuberculosis (TB) continues to cause considerable morbidity and mortality worldwide. For the first time since the 1960s, new and novel drugs and regimens for all forms of TB are emerging. Such regimens are likely to utilize both repurposed drugs and new chemical entities, and several of these regimens are now progressing through clinical trials. This article covers current concepts and recent advances in TB drug discovery and development, including an update of ongoing TB treatment trials, newer clinical trial designs, TB biomarkers and adjunct host-directed therapies.

  10. CNS drug development: lessons from the development of ondansetron, aprepitant, ramelteon, varenicline, lorcaserin, and suvorexant. Part I.

    PubMed

    Preskorn, Sheldon H

    2014-11-01

    This column is the first in a two-part series exploring lessons for psychiatric drug development that can be learned from the development of six central nervous system drugs with novel mechanisms of action over the past 25 years. Part 1 presents a brief overview of the neuroscience that supported the development of each drug, including the rationale for selecting a) the target, which in each case was a receptor for a specific neurotransmitter system, and b) the indication, which was based on an understanding of the role that target played in a specific neural circuit in the brain. The neurotransmitter systems on which the development of these agents were based included serotonin for ondansetron and lorcaserin, dopamine for varenicline, substance P (or neurokinin) for aprepitant, melatonin for ramelteon, and orexin for suvorexant. The indications were chemotherapy-induced nausea and vomiting for ondansetron and aprepitant, smoking cessation for varenicline, weight loss for lorcaserin, and insomnia for suvorexant and ramelteon.

  11. Drug development for breast, colorectal, and non-small cell lung cancers from 1979 to 2014.

    PubMed

    Nixon, Nancy A; Khan, Omar F; Imam, Hasiba; Tang, Patricia A; Monzon, Jose; Li, Haocheng; Sun, Gavin; Ezeife, Doreen; Parimi, Sunil; Dowden, Scot; Tam, Vincent C

    2017-12-01

    Understanding the drug development pathway is critical for streamlining the development of effective cancer treatments. The objective of the current study was to delineate the drug development timeline and attrition rate of different drug classes for common cancer disease sites. Drugs entering clinical trials for breast, colorectal, and non-small cell lung cancer were identified using a pharmaceutical business intelligence database. Data regarding drug characteristics, clinical trials, and approval dates were obtained from the database, clinical trial registries, PubMed, and regulatory Web sites. A total of 411 drugs met the inclusion criteria for breast cancer, 246 drugs met the inclusion criteria for colorectal cancer, and 315 drugs met the inclusion criteria for non-small cell lung cancer. Attrition rates were 83.9% for breast cancer, 87.0% for colorectal cancer, and 92.0% for non-small cell lung cancer drugs. In the case of non-small cell lung cancer, there was a trend toward higher attrition rates for targeted monoclonal antibodies compared with other agents. No tumor site-specific differences were noted with regard to cytotoxic chemotherapy, immunomodulatory, or small molecule kinase inhibitor drugs. Drugs classified as "others" in breast cancer had lower attrition rates, primarily due to the higher success of hormonal medications. Mean drug development times were 8.9 years for breast cancer, 6.7 years for colorectal cancer, and 6.6 years for non-small cell lung cancer. Overall oncologic drug attrition rates remain high, and drugs are more likely to fail in later-stage clinical trials. The refinement of early-phase trial design may permit the selection of drugs that are more likely to succeed in the phase 3 setting. Cancer 2017;123:4672-4679. © 2017 American Cancer Society. © 2017 American Cancer Society.

  12. Public and private sector contributions to the discovery and development of "impact" drugs.

    PubMed

    Reichert, Janice M; Milne, Christopher-Paul

    2002-01-01

    Recently, well-publicized reports by Public Citizen and the Joint Economic Committee (JEC) of the US Congress questioned the role of the drug industry in the discovery and development of therapeutically important drugs. To gain a better understanding of the relative roles of the public and private sectors in pharmaceutic innovation, the Tufts Center for the Study of Drug Development evaluated the underlying National Institutes of Health (NIH) and academic research cited in the Public Citizen and JEC reports and performed its own assessment of the relationship between the private and public sectors in drug discovery and development of 21 "impact" drugs. We found that, ultimately, any attempt to measure the relative contribution of the public and private sectors to the research and development (R&D) of therapeutically important drugs by output alone, such as counting publications or even product approvals, is flawed. Several key factors (eg, degree of uncertainty, expected market value, potential social benefit) affect investment decisions and determine whether public or private sector funds, or both, are most appropriate. Because of the competitiveness and complexity of today's R&D environment, both sectors are increasingly challenged to show returns on their investment and the traditional boundaries separating the roles of the private and public research spheres have become increasingly blurred. What remains clear, however, is that the process still starts with good science and ends with good medicine.

  13. Bridging Adult Experience to Pediatrics in Oncology Drug Development.

    PubMed

    Leong, Ruby; Zhao, Hong; Reaman, Gregory; Liu, Qi; Wang, Yaning; Stewart, Clinton F; Burckart, Gilbert

    2017-10-01

    Pediatric drug development in the United States has grown under the current regulations made permanent by the Food and Drug Administration Safety and Innovation Act of 2012. Over 1200 pediatric studies have now been submitted to the US FDA, but there is still a high rate of failure to obtain pediatric labeling for the indication pursued. Pediatric oncology represents special problems in that the disease is most often dissimilar to any cancer found in the adult population. Therefore, the development of drug dosing in pediatric oncology patients represents a special challenge. Potential approaches to pediatric dosing in oncology patients include extrapolation of efficacy from adult studies in those few cases where the disease is similar, inclusion of adolescent patients in adult trials when possible, and bridging the adult dose to the pediatric dose. An analysis of the recommended phase 2 dose for 40 molecularly targeted agents in pediatric patients provides some insight into current practices. Increased knowledge of tumor biology and efforts to identify and validate molecular targets and genetic abnormalities that drive childhood cancers can lead to increased opportunities for precision medicine in the treatment of pediatric cancers. © 2017, The American College of Clinical Pharmacology.

  14. Evaluating cardiac risk: exposure response analysis in early clinical drug development.

    PubMed

    Grenier, Julie; Paglialunga, Sabina; Morimoto, Bruce H; Lester, Robert M

    2018-01-01

    The assessment of a drug's cardiac liability has undergone considerable metamorphosis by regulators since International Council for Harmonization of Technical Requirement for Pharmaceuticals for Human Use E14 guideline was introduced in 2005. Drug developers now have a choice in how proarrhythmia risk can be evaluated; the options include a dedicated thorough QT (TQT) study or exposure response (ER) modeling of intensive electrocardiogram (ECG) captured in early clinical development. The alternative approach of ER modeling was incorporated into a guidance document in 2015 as a primary analysis tool which could be utilized in early phase dose escalation studies as an option to perform a dedicated TQT trial. This review will describe the current state of ER modeling of intensive ECG data collected during early clinical drug development; the requirements with regard to the use of a positive control; and address the challenges and opportunities of this alternative approach to assessing QT liability.

  15. A Survey of Neonatal Pharmacokinetic and Pharmacodynamic Studies in Pediatric Drug Development.

    PubMed

    Wang, J; Avant, D; Green, D; Seo, S; Fisher, J; Mulberg, A E; McCune, S K; Burckart, G J

    2015-09-01

    Conducting clinical trials in neonates is challenging, and knowledge gaps in neonatal clinical pharmacology exist. We surveyed the US Food and Drug Administration databases and identified 43 drugs studied in neonates or referring to neonates between 1998 and 2014. Twenty drugs were approved in neonates. For 10 drugs, approval was based on efficacy data in neonates, supplemented by pharmacokinetic data for four drugs. Approval for neonates was based on full extrapolation from older patients for six drugs, and partial extrapolation was the basis of approval for four drugs. Dosing recommendations differed from older patients for most drugs, and used body-size based adjustment in neonates. Trial failures were associated with various factors including inappropriate dose selection. Successful drug development in neonates could be facilitated by an improved understanding of the natural history and pathophysiology of neonatal diseases and identification and validation of clinically relevant biomarkers. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease

    PubMed Central

    Bhatt, Prakash Chandra; Verma, Amita; Al-Abbasi, Fahad A; Anwar, Firoz; Kumar, Vikas; Panda, Bibhu Prasad

    2017-01-01

    According to the World Health Organization, globally there are around 18 million patients suffering from Alzheimer’s disease (AD), and this number is expected to double by 2025. The pathophysiology of AD includes selective deposition of Aβ peptide in the mitochondria of cells, which inhibits uptake of glucose by neurons and key enzyme functions. Current drug treatments for AD are unable to rectify the underlying pathology of the disease; they only provide short-term symptomatic relief, so there is a need for the development of newer treatment regimes. The antiamyloid activity, antifibrinolytic activity, and antithrombotic activity of nattokinase holds potential for the treatment of AD. As nattokinase is a protein, its stability restricts its usage to a greater extent, but this limitation can be overcome by nanoencapsulation. In this work, we successfully synthesized polymeric nanoparticles of nattokinase and characterized its use by different techniques: transmission electron microscopy, scanning electron microscopy, DTS Nano, differential scanning calorimetry, Fourier-transform infrared spectroscopy, thioflavin T-binding assay, in vitro drug release, antifibrinolytic activity, and in vivo antiamyloid activity. As brain targeting of hydrophilic drugs is complicated due to the stringent nature of blood–brain barrier, in the current experimental study, we conjugated poly(lactic-co-glycolic acid) (PLGA)-encapsulated nattokinase with Tet1 peptide, which exhibits retrograde transportation properties because of its affinity to neurons. Our study suggests that PLGA-encapsulated nattokinase polymeric nanoparticles are able to downregulate amyloid aggregation and exhibit antifibrinolytic activity. The encapsulation of nattokinase in PLGA did not affect its enzyme activity, so the prepared nanoformulation containing nattokinase can be used as an effective drug treatment against AD. PMID:29263666

  17. Implications of pharmacogenomics for drug development and clinical practice.

    PubMed

    Ginsburg, Geoffrey S; Konstance, Richard P; Allsbrook, Jennifer S; Schulman, Kevin A

    2005-11-14

    Pharmacogenomics is likely to be among the first clinical applications of the Human Genome Project and is certain to have an enormous impact on the clinical practice of medicine. Herein, we discuss the potential implications of pharmacogenomics on the drug development process, including drug safety, productivity, market segmentation, market expansion, differentiation, and personalized health care. We also review 3 challenges facing the translation of pharmacogenomics into clinical practice: dependence on information technology, limited health care financing, and the scientific uncertainty surrounding validation of specific applications of the technology. To our knowledge, there is currently no formal agenda to promote and cultivate innovation, to develop progressive information technology, or to obtain the financing that would be required to advance the use of pharmacogenomic technologies in patient care. Although the potential of these technologies is driving change in the development of clinical sciences, it remains to be seen which health care systems level needs will be addressed.

  18. Developments in platinum anticancer drugs

    NASA Astrophysics Data System (ADS)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  19. Towards nanomedicines for neuro-AIDS

    PubMed Central

    Sagar, Vidya; Pilakka-Kanthikeel, Sudheesh; Pottathil, Ravi; Saxena, Shailendra K; Nair, Madhavan

    2014-01-01

    Although Highly Active Antiretroviral Therapy (HAART) has resulted in remarkable decline in the morbidity and mortality in AIDS Patients, controlling HIV infections still remain a global health priority. HIV access to the central nervous system (CNS) serves as the natural viral preserve because most anti-retro viral (ARV) drugs possess inadequate or zero delivery across the brain barriers. Thus, development of target-specific, effective, safe and controllable drug-delivery approach is an important health priority for global elimination of AIDS progression. Emergence of nanotechnology in medicine has shown exciting prospect for development of novel drug delivery systems to administer the desired therapeutic levels of ARV drugs in the CNS. Neuron-resuscitating and/or anti-dependence agents may also be delivered in the brain though nanocarriers to countercheck the rate of neuronal degradation during HIV infection. Several nanovehicles such as liposomes, dendrimers, polymeric nanoparticles, micelles, solid lipid nanoparticles, etc. have been intensively explored. Recently, magnetic nanoparticles and monocytes/macrophages have also been used as carrier to improve the delivery of nanoformulated ARV drugs across the blood-brain barrier (BBB). Nevertheless, more rigorous research-homework has to be elucidated to sort out the shortcomings that affect the target specificity, delivery, release and/or bioavailability of desired amount of drugs for treatment of neuroAIDS. PMID:24395761

  20. Antiviral Information Management System (AIMS): a prototype for operational innovation in drug development.

    PubMed

    Jadhav, Pravin R; Neal, Lauren; Florian, Jeff; Chen, Ying; Naeger, Lisa; Robertson, Sarah; Soon, Guoxing; Birnkrant, Debra

    2010-09-01

    This article presents a prototype for an operational innovation in knowledge management (KM). These operational innovations are geared toward managing knowledge efficiently and accessing all available information by embracing advances in bioinformatics and allied fields. The specific components of the proposed KM system are (1) a database to archive hepatitis C virus (HCV) treatment data in a structured format and retrieve information in a query-capable manner and (2) an automated analysis tool to inform trial design elements for HCV drug development. The proposed framework is intended to benefit drug development by increasing efficiency of dose selection and improving the consistency of advice from US Food and Drug Administration (FDA). It is also hoped that the framework will encourage collaboration among FDA, industry, and academic scientists to guide the HCV drug development process using model-based quantitative analysis techniques.

  1. Development of a Microfluidics-Based Intracochlear Drug Delivery Device

    PubMed Central

    Sewell, William F.; Borenstein, Jeffrey T.; Chen, Zhiqiang; Fiering, Jason; Handzel, Ophir; Holmboe, Maria; Kim, Ernest S.; Kujawa, Sharon G.; McKenna, Michael J.; Mescher, Mark M.; Murphy, Brian; Leary Swan, Erin E.; Peppi, Marcello; Tao, Sarah

    2009-01-01

    Background Direct delivery of drugs and other agents into the inner ear will be important for many emerging therapies, including the treatment of degenerative disorders and guiding regeneration. Methods We have taken a microfluidics/MEMS (MicroElectroMechanical Systems) technology approach to develop a fully implantable reciprocating inner-ear drug-delivery system capable of timed and sequenced delivery of agents directly into perilymph of the cochlea. Iterations of the device were tested in guinea pigs to determine the flow characteristics required for safe and effective delivery. For these tests, we used the glutamate receptor blocker DNQX, which alters auditory nerve responses but not cochlear distortion product otoacoustic emissions. Results We have demonstrated safe and effective delivery of agents into the scala tympani. Equilibration of the drug in the basal turn occurs rapidly (within tens of minutes) and is dependent on reciprocating flow parameters. Conclusion We have described a prototype system for the direct delivery of drugs to the inner ear that has the potential to be a fully implantable means for safe and effective treatment of hearing loss and other diseases. PMID:19923811

  2. The principle of safety evaluation in medicinal drug - how can toxicology contribute to drug discovery and development as a multidisciplinary science?

    PubMed

    Horii, Ikuo

    2016-01-01

    Pharmaceutical (drug) safety assessment covers a diverse science-field in the drug discovery and development including the post-approval and post-marketing phases in order to evaluate safety and risk management. The principle in toxicological science is to be placed on both of pure and applied sciences that are derived from past/present scientific knowledge and coming new science and technology. In general, adverse drug reactions are presented as "biological responses to foreign substances." This is the basic concept of thinking about the manifestation of adverse drug reactions. Whether or not toxic expressions are extensions of the pharmacological effect, adverse drug reactions as seen from molecular targets are captured in the category of "on-target" or "off-target", and are normally expressed as a biological defense reaction. Accordingly, reactions induced by pharmaceuticals can be broadly said to be defensive reactions. Recent molecular biological conception is in line with the new, remarkable scientific and technological developments in the medical and pharmaceutical areas, and the viewpoints in the field of toxicology have shown that they are approaching toward the same direction as well. This paper refers to the basic concept of pharmaceutical toxicology, the differences for safety assessment in each stage of drug discovery and development, regulatory submission, and the concept of scientific considerations for risk assessment and management from the viewpoint of "how can multidisciplinary toxicology contribute to innovative drug discovery and development?" And also realistic translational research from preclinical to clinical application is required to have a significant risk management in post market by utilizing whole scientific data derived from basic and applied scientific research works. In addition, the significance for employing the systems toxicology based on AOP (Adverse Outcome Pathway) analysis is introduced, and coming challenges on precision

  3. Discovery and development of antiviral drugs for biodefense: experience of a small biotechnology company.

    PubMed

    Bolken, Tove C; Hruby, Dennis E

    2008-01-01

    The unmet need for effective antivirals against potential agents of bioterrorism and emerging infections is obvious; however, the challenges to develop such drugs are daunting. Even with the passage of Project BioShield and more recently the BARDA legislation, there is still not a clear market for these types of drugs and limited federal funding available to support expensive drug development studies. SIGA Technologies, Inc. is a small biotech company committed to developing novel products for the prevention and treatment of severe infectious diseases, with an emphasis on products for diseases that could result from bioterrorism. Through trials and error SIGA has developed an approach to this problem in order to establish the infrastructure necessary to successfully advance new antiviral drugs from the discovery stage on through to licensure. The approach that we have taken to drug development is biology driven and dependent on a dispersive development model utilizing essential collaborations with academic, federal, and private sector partners. This consortium approach requires success in acquiring grants and contracts as well as iterative communication with the government and regulatory agencies. However, it can work as evidenced by the rapid progress of our lead antiviral against smallpox, ST-246, and should serve as the template for development of new antivirals against important biological pathogens.

  4. A matrix approach to guide IHC-based tissue biomarker development in oncology drug discovery.

    PubMed

    Smith, Neil R; Womack, Christopher

    2014-01-01

    Immunohistochemistry (IHC) is a core platform for the analysis of tissue samples, and there is an increasing demand for reliable and quantitative IHC-based tissue biomarkers in oncology clinical research and development (R&D) environments. Biomarker assay and drug development proceed in parallel. Furthermore, biomarker assay requirements change with each phase of drug development. We have therefore developed a matrix tool to enable researchers to evaluate whether a particular IHC biomarker assay is fit for purpose. Experience gained from the development of 130 IHC biomarkers, supporting a large number of oncology drug projects, was used to formulate a practical approach to IHC assay development. The resultant matrix grid and accompanying work flow incorporates 16 core decision points that link antibody and assay specificity and sensitivity, and assay performance in preclinical and clinical samples, with stages of drug development. The matrix provides a means to ensure that relevant information on an IHC assay in development is recorded and communicated consistently and that minimum assay validation requirements are met. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Manipulation of the mouse genome: a multiple impact resource for drug discovery and development.

    PubMed

    Prosser, Haydn; Rastan, Sohaila

    2003-05-01

    Few would deny that the pharmaceutical industry's investment in genomics throughout the 1990s has yet to deliver in terms of drugs on the market. The reasons are complex and beyond the scope of this review. The unique ability to manipulate the mouse genome, however, has already had a positive impact on all stages of the drug discovery process and, increasingly, on the drug development process too. We give an overview of some recent applications of so-called 'transgenic' mouse technology in pharmaceutical research and development. We show how genetic manipulation in the mouse can be employed at multiple points in the drug discovery and development process, providing new solutions to old problems.

  6. Drugs in development for Parkinson's disease: an update.

    PubMed

    Johnston, Tom H; Brotchie, Jonathan M

    2006-01-01

    The current development of emerging pharmacological treatments for Parkinson's disease (PD), front preclinical to launch, is summarized. Advances over the past year are highlighted, including the significant progress of several drugs through various stages of development. Several agents have been discontinued from development, either because of adverse effects or lack of clinical efficacy. The methyl-esterified form of L-DOPA (melevodopa) and the monoamine oxidase type B inhibitor rasagiline have both been launched. With regard to the monoamine re-uptake inhibitors, many changes have been witnessed, with new agents reaching preclinical development and pre-existing ones being discontinued or having no development reported. Of the dopamine agonists, many continue to progress successfully through clinical trials. Others have struggled to demonstrate a significant advantage over currently available treatments and have been discontinued. The field of non-dopaminergic treatments remains dynamic. The alpha2 adrenergic receptor antagonists and the adenosine A2A receptor antagonists remain in clinical trials. Trials of the neuronal' synchronization modulator levetiracetam are at an advanced stage, and there has also been a new addition to the class (ie, seletracetam). There has been a change in the landscape of neuroprotective agents that modulate disease progression. Candidates from the classes of growth factors and glyceraldehyde-3-phosphate dehydrogenase inhibitors have been discontinued, or no development has been reported, and the mixed lineage kinase inhibitor CEP-1347 has been discontinued for PD treatment. Other drugs in this field, such as neuroimmunophilins, estrogens and alpha-synuclein oligomerization inhibitors, remain in development.

  7. 78 FR 58311 - Complex Issues in Developing Drug and Biological Products for Rare Diseases; Public Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...] Complex Issues in Developing Drug and Biological Products for Rare Diseases; Public Workshop; Request for... Issues in Developing Drug and Biological Products for Rare Diseases.'' The purpose of the public workshop is twofold: To discuss complex issues in clinical trials for developing drug and biological products...

  8. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development

    DOE PAGES

    Burt, T.; Yoshida, K.; Lappin, G.; ...

    2016-02-26

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications andmore » design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. Lastly, all phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.« less

  9. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, T.; Yoshida, K.; Lappin, G.

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications andmore » design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. Lastly, all phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.« less

  10. Conference report: hot topics in antibody-drug conjugate development.

    PubMed

    Thudium, Karen; Bilic, Sanela

    2013-12-01

    American Association of Pharmaceutical Scientists National Biotechnology Conference Sheraton San Diego Hotel and Marina, San Diego, CA, USA, 19-23 May 2013 The National Biotechnology Conference, is a premier meeting for biotechnology professionals covering a broad range of hot topics in the biotechnology industry. Attracting participants from academia, industry and regulatory, this meeting features sessions that aim to address emerging subjects of interest and allows for open exchange between scientists. The 2013 conference featured leading researchers in the fields of antibody-drug conjugates (ADCs) and immunogenicity. Herein, we present a summary of the ADC hot topics, including bioanalytical and PK considerations, quantitative evaluation of the impact of immunogenicity and ADME to understand ADC drug-drug interactions, and clinical considerations for ADC development. This article aims to summarize the recommendations that were made by the speakers during various sessions throughout the conference.

  11. Evaluating the administration costs of biologic drugs: development of a cost algorithm.

    PubMed

    Tetteh, Ebenezer K; Morris, Stephen

    2014-12-01

    Biologic drugs, as with all other medical technologies, are subject to a number of regulatory, marketing, reimbursement (financing) and other demand-restricting hurdles applied by healthcare payers. One example is the routine use of cost-effectiveness analyses or health technology assessments to determine which medical technologies offer value-for-money. The manner in which these assessments are conducted suggests that, holding all else equal, the economic value of biologic drugs may be determined by how much is spent on administering these drugs or trade-offs between drug acquisition and administration costs. Yet, on the supply-side, it seems very little attention is given to how manufacturing and formulation choices affect healthcare delivery costs. This paper evaluates variations in the administration costs of biologic drugs, taking care to ensure consistent inclusion of all relevant cost resources. From this, it develops a regression-based algorithm with which manufacturers could possibly predict, during process development, how their manufacturing and formulation choices may impact on the healthcare delivery costs of their products.

  12. A step toward development of printable dosage forms for poorly soluble drugs.

    PubMed

    Raijada, Dhara; Genina, Natalja; Fors, Daniela; Wisaeus, Erik; Peltonen, Jouko; Rantanen, Jukka; Sandler, Niklas

    2013-10-01

    The purpose of this study was to formulate printable dosage forms for a poorly soluble drug (piroxicam; PRX) and to gain understanding of critical parameters to be considered during development of such dosage forms. Liquid formulations of PRX were printed on edible paper using piezoelectric inkjet printing (PIJ) and impression printing (flexography). The printed dosage forms were characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and the amount of drug was determined using high-performance liquid chromatography. Solutions of PRX in polyethylene glycol 400 (PEG-400):ethanol (40:60) and in PEG-400 were found to be optimal formulations for PIJ and flexography, respectively. SEM-EDX analysis revealed no visible solid particles on the printed dosage forms indicating the drug most likely remained in solution after printing. More accurate drug deposition was obtained by PIJ as compared with flexography. More than 90% drug release was achieved within 5 min regardless of printing method used. The solubility of drug in solvents/cosolvents, rheological properties of formulations, properties of substrate, feasibility and accuracy of the printing methods, and detection limit of analytical techniques for characterization of printed dosage forms are some of the concerns that need to be addressed for development of printable dosage forms of poorly soluble drugs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. The Role of VET in Alcohol and Other Drugs Workforce Development. Support Document

    ERIC Educational Resources Information Center

    Pidd, Ken; Carne, Amanda; Roche, Ann

    2010-01-01

    This document was produced by the authors, based on their research for the report "The Role of VET in Alcohol and Other Drugs Workforce Development", and is an added resource for further information. "The Role of VET in Alcohol and Other Drugs Workforce Development" uncovers concerns managers have around the training content,…

  14. Development of curcumin-loaded solid lipid nanoparticles utilizing glyceryl monostearate as single lipid using QbD approach: Characterization and Evaluation of anticancer activity against human breast cancer cell line.

    PubMed

    Bhatt, Himanshu; Rompicharla, Sri Vishnu Kiran; Komanduri, Neeraja; Shah, Aashma; Paradkar, Sateja; Ghosh, Balaram; Biswas, Swati

    2018-05-03

    Solid lipid nanoparticles (SLNs) represent an affordable, easily scalable, stable and biocompatible drug delivery system with a high drug to lipid ratio which also improves solubility of poorly soluble drugs. SLNs were developed by using glyceryl monostearate as the single lipid in presence of surfactant Poloxamer 188 and evaluated the efficiency of the SLNs to load the therapeutic cargo, curcumin (CUR). The nano-formulation was optimized by Quality by Design approach to understand the effect of various process parameters on various quality attributes, including drug loadability, particle size and polydispersity. The nanoparticles were characterized using Differential scanning calorimetry (DSC), Fourier Transform Infra-red Spectroscopy (FT-IR) and X-Ray Diffraction (XRD) analysis. These novel SLNs were evaluated for in-vitro anticancer activity using breast adenocarcinoma cells (MDA-MB-231). The optimized formulation had particle size of 226.802±3.92 nm with low polydispersity index of 0.244±0.018. The % encapsulation of CUR into SLNs was found to be 67.88±2.08 %. DSC, FT-IR and XRD confirmed that the CUR was encapsulated stably into the lipid matrix, thereby improving the solubility of the drug. CUR-SLN showed sustained drug release in comparison to the free CUR solution. CUR-SLNs exhibited higher cellular uptake in human breast adenocarcinoma cells compared to free CUR at both 1 and 4 h time points. CUR-SLNs demonstrated decreased cell viability (43.97±1.53%) compared to free CUR (59.33±0.95%) at a concentration of 50 μg/mL after 24 h treatment. Further, treatment of MDA-MB-231 cells with CUR-SLNs for 24 h induced significantly higher apoptosis (37.28±5.3%) in cells compared to the free CUR (21.06±0.97%). The results provide strong rationale for further exploration of the newly developed CUR-SLN to be utilized as a potent chemotherapeutic agent in cancer therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Strategies for Utilizing Neuroimaging Biomarkers in CNS Drug Discovery and Development: CINP/JSNP Working Group Report.

    PubMed

    Suhara, Tetsuya; Chaki, Shigeyuki; Kimura, Haruhide; Furusawa, Makoto; Matsumoto, Mitsuyuki; Ogura, Hiroo; Negishi, Takaaki; Saijo, Takeaki; Higuchi, Makoto; Omura, Tomohiro; Watanabe, Rira; Miyoshi, Sosuke; Nakatani, Noriaki; Yamamoto, Noboru; Liou, Shyh-Yuh; Takado, Yuhei; Maeda, Jun; Okamoto, Yasumasa; Okubo, Yoshiaki; Yamada, Makiko; Ito, Hiroshi; Walton, Noah M; Yamawaki, Shigeto

    2017-04-01

    Despite large unmet medical needs in the field for several decades, CNS drug discovery and development has been largely unsuccessful. Biomarkers, particularly those utilizing neuroimaging, have played important roles in aiding CNS drug development, including dosing determination of investigational new drugs (INDs). A recent working group was organized jointly by CINP and Japanese Society of Neuropsychopharmacology (JSNP) to discuss the utility of biomarkers as tools to overcome issues of CNS drug development.The consensus statement from the working group aimed at creating more nuanced criteria for employing biomarkers as tools to overcome issues surrounding CNS drug development. To accomplish this, a reverse engineering approach was adopted, in which criteria for the utilization of biomarkers were created in response to current challenges in the processes of drug discovery and development for CNS disorders. Based on this analysis, we propose a new paradigm containing 5 distinct tiers to further clarify the use of biomarkers and establish new strategies for decision-making in the context of CNS drug development. Specifically, we discuss more rational ways to incorporate biomarker data to determine optimal dosing for INDs with novel mechanisms and targets, and propose additional categorization criteria to further the use of biomarkers in patient stratification and clinical efficacy prediction. Finally, we propose validation and development of new neuroimaging biomarkers through public-private partnerships to further facilitate drug discovery and development for CNS disorders. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  16. Integrating ADNI Results into Alzheimer’s Disease Drug Development Programs

    PubMed Central

    Cummings, Jeffrey L.

    2010-01-01

    The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is providing critical new information on biomarkers in cognitively normal elderly, persons with mild cognitive impairment (MCI), and patients with mild Alzheimer’s disease (AD). The data provide insights into the progression of the pathology of AD over time, assist in understanding which biomarkers might be most useful in clinical trials, and facilitate development of disease-modifying treatments. ADNI results are intended to support new AD Treatments development; this paper considers how ADNI information can be integrated in AD drug development programs. Cerebrospinal fluid (CSF) amyloid beta protein (Aβ) measures can be used in Phase I studies to detect any short term effects on Aβ levels in the CSF. Phase II studies may benefit most from biomarker measures that can inform decisions about Phase III. CSF Aβ levels, CSF total tau and phospotau measures, fluorodexoyglucose positron emission tomography (FDG PET), Pittsburgh Compound B (PIB) amyloid imaging, or magnetic resonance imaging (MRI) may be employed to select patient in enriched trials or as outcomes for specific disease-modifying interventions. Use of biomarkers may allow Phase II trials to be conducted more efficiently with smaller populations of patients or shorted treatment times. New drug applications (NDA) may include biomarker outcomes of phase III trials. ADNI patients are highly educated and are nearly all of Caucasian ethnicity limiting the generalizability of the results to other populations commonly included in global clinical trials. ADNI has inspired or collaborates with biomarker investigations worldwide and together these studies will provide biomarker information that can reduce development times and costs, improve drug safety, optimize drug efficacy, and bring new treatments to patients with or at risk for AD. PMID:20447734

  17. Development and Validation of Liquid Chromatographic Method for Estimation of Naringin in Nanoformulation

    PubMed Central

    Musmade, Kranti P.; Trilok, M.; Dengale, Swapnil J.; Bhat, Krishnamurthy; Reddy, M. S.; Musmade, Prashant B.; Udupa, N.

    2014-01-01

    A simple, precise, accurate, rapid, and sensitive reverse phase high performance liquid chromatography (RP-HPLC) method with UV detection has been developed and validated for quantification of naringin (NAR) in novel pharmaceutical formulation. NAR is a polyphenolic flavonoid present in most of the citrus plants having variety of pharmacological activities. Method optimization was carried out by considering the various parameters such as effect of pH and column. The analyte was separated by employing a C18 (250.0 × 4.6 mm, 5 μm) column at ambient temperature in isocratic conditions using phosphate buffer pH 3.5: acetonitrile (75 : 25% v/v) as mobile phase pumped at a flow rate of 1.0 mL/min. UV detection was carried out at 282 nm. The developed method was validated according to ICH guidelines Q2(R1). The method was found to be precise and accurate on statistical evaluation with a linearity range of 0.1 to 20.0 μg/mL for NAR. The intra- and interday precision studies showed good reproducibility with coefficients of variation (CV) less than 1.0%. The mean recovery of NAR was found to be 99.33 ± 0.16%. The proposed method was found to be highly accurate, sensitive, and robust. The proposed liquid chromatographic method was successfully employed for the routine analysis of said compound in developed novel nanopharmaceuticals. The presence of excipients did not show any interference on the determination of NAR, indicating method specificity. PMID:26556205

  18. Improving and Accelerating Drug Development for Nervous System Disorders

    PubMed Central

    Pankevich, Diana E.; Altevogt, Bruce M.; Dunlop, John; Gage, Fred H.; Hyman, Steve E.

    2014-01-01

    Advances in the neurosciences have placed the field in the position where it is poised to significantly reduce the burden of nervous system disorders. However, drug discovery, development and translation for nervous system disorders still pose many unique challenges. The key scientific challenges can be summarized as follows: mechanisms of disease, target identification and validation, predictive models, biomarkers for patient stratification and as endpoints for clinical trials, clear regulatory pathways, reliability and reproducibility of published data, and data sharing and collaboration. To accelerate nervous system drug development the Institute of Medicine’s Forum on Neuroscience and Nervous System Disorders has hosted a series of public workshops that brought together representatives of industry, government (including both research funding and regulatory agencies), academia, and patient groups to discuss these challenges and offer potential strategies to improve the translational neuroscience. PMID:25442933

  19. Regulatory considerations on endpoints in ovarian cancer drug development.

    PubMed

    Balasubramaniam, Sanjeeve; Kim, Geoffrey S; McKee, Amy E; Pazdur, Richard

    2017-07-15

    Ovarian cancer remains a disease entity that is responsible for considerable morbidity and mortality among women worldwide. Modern drug research pipelines and accelerated drug development timelines applied to other disease entities have begun to make an impact on treatment options for patients with advanced ovarian cancer, as exemplified by the recent accelerated approval of 2 agents for this disease as the forerunners of a growing number of registrational trials. Regulatory flexibility for this serious and life-threatening condition spurs the consideration of intermediate endpoints for regulatory trial design, including potential applications in the development of newer therapeutic classes such as targeted therapies and immunotherapies for patients with advanced ovarian cancer. Cancer 2017;123:2604-8. © 2017 American Cancer Society. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  20. Provisional in-silico biopharmaceutics classification (BCS) to guide oral drug product development

    PubMed Central

    Wolk, Omri; Agbaria, Riad; Dahan, Arik

    2014-01-01

    The main objective of this work was to investigate in-silico predictions of physicochemical properties, in order to guide oral drug development by provisional biopharmaceutics classification system (BCS). Four in-silico methods were used to estimate LogP: group contribution (CLogP) using two different software programs, atom contribution (ALogP), and element contribution (KLogP). The correlations (r2) of CLogP, ALogP and KLogP versus measured LogP data were 0.97, 0.82, and 0.71, respectively. The classification of drugs with reported intestinal permeability in humans was correct for 64.3%–72.4% of the 29 drugs on the dataset, and for 81.82%–90.91% of the 22 drugs that are passively absorbed using the different in-silico algorithms. Similar permeability classification was obtained with the various in-silico methods. The in-silico calculations, along with experimental melting points, were then incorporated into a thermodynamic equation for solubility estimations that largely matched the reference solubility values. It was revealed that the effect of melting point on the solubility is minor compared to the partition coefficient, and an average melting point (162.7°C) could replace the experimental values, with similar results. The in-silico methods classified 20.76% (±3.07%) as Class 1, 41.51% (±3.32%) as Class 2, 30.49% (±4.47%) as Class 3, and 6.27% (±4.39%) as Class 4. In conclusion, in-silico methods can be used for BCS classification of drugs in early development, from merely their molecular formula and without foreknowledge of their chemical structure, which will allow for the improved selection, engineering, and developability of candidates. These in-silico methods could enhance success rates, reduce costs, and accelerate oral drug products development. PMID:25284986

  1. Cancer epigenetics drug discovery and development: the challenge of hitting the mark

    PubMed Central

    Campbell, Robert M.; Tummino, Peter J.

    2014-01-01

    Over the past several years, there has been rapidly expanding evidence of epigenetic dysregulation in cancer, in which histone and DNA modification play a critical role in tumor growth and survival. These findings have gained the attention of the drug discovery and development community, and offer the potential for a second generation of cancer epigenetic agents for patients following the approved “first generation” of DNA methylation (e.g., Dacogen, Vidaza) and broad-spectrum HDAC inhibitors (e.g., Vorinostat, Romidepsin). This Review provides an analysis of prospects for discovery and development of novel cancer agents that target epigenetic proteins. We will examine key examples of epigenetic dysregulation in tumors as well as challenges to epigenetic drug discovery with emerging biology and novel classes of drug targets. We will also highlight recent successes in cancer epigenetics drug discovery and consider important factors for clinical success in this burgeoning area. PMID:24382391

  2. Advancements in nano-enabled therapeutics for neuroHIV management.

    PubMed

    Kaushik, Ajeet; Jayant, Rahul Dev; Nair, Madhavan

    This viewpoint is a global call to promote fundamental and applied research aiming toward designing smart nanocarriers of desired properties, novel noninvasive strategies to open the blood-brain barrier (BBB), delivery/release of single/multiple therapeutic agents across the BBB to eradicate neurohuman immunodeficiency virus (HIV), strategies for on-demand site-specific release of antiretroviral therapy, developing novel nanoformulations capable to recognize and eradicate latently infected HIV reservoirs, and developing novel smart analytical diagnostic tools to detect and monitor HIV infection. Thus, investigation of novel nanoformulations, methodologies for site-specific delivery/release, analytical methods, and diagnostic tools would be of high significance to eradicate and monitor neuroacquired immunodeficiency syndrome. Overall, these developments will certainly help to develop personalized nanomedicines to cure HIV and to develop smart HIV-monitoring analytical systems for disease management.

  3. Enrichment Strategies in Pediatric Drug Development: An Analysis of Trials Submitted to the US Food and Drug Administration.

    PubMed

    Green, Dionna J; Liu, Xiaomei I; Hua, Tianyi; Burnham, Janelle M; Schuck, Robert; Pacanowski, Michael; Yao, Lynne; McCune, Susan K; Burckart, Gilbert J; Zineh, Issam

    2017-12-08

    Clinical trial enrichment involves prospectively incorporating trial design elements that increase the probability of detecting a treatment effect. The use of enrichment strategies in pediatric drug development has not been systematically assessed. We analyzed the use of enrichment strategies in pediatric trials submitted to the US Food and Drug Administration from 2012-2016. In all, 112 efficacy studies associated with 76 drug development programs were assessed and their overall success rates were 78% and 75%, respectively. Eighty-eight trials (76.8%) employed at least one enrichment strategy; of these, 66.3% employed multiple enrichment strategies. The highest trial success rates were achieved when all three enrichment strategies (practical, predictive, and prognostic) were used together within a single trial (87.5%), while the lowest success rate was observed when no enrichment strategy was used (65.4%). The use of enrichment strategies in pediatric trials was found to be associated with trial and program success in our analysis. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  4. Reaching out and reaching up - developing a low cost drug treatment system in Cambodia

    PubMed Central

    2012-01-01

    Cambodia,