Sample records for nanolc-ft-icr ms improves

  1. Top-Down Protein Identification of Proteasome Proteins with nanoLC FT-ICR MS Employing Data-Independent Fragmentation Methods

    PubMed Central

    Lakshmanan, Rajeswari; Wolff, Jeremy J.; Alvarado, Rudy; Loo, Joseph A.

    2014-01-01

    A comparison of different data-independent fragmentation methods combined with liquid chromatography (LC) coupled to high resolution Fourier-transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS) is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complex and their post-translational modifications were identified using a 15-Tesla FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty cycle measurements that better suit on-line LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (Continuous Accumulation of Selected Ions)-CAD. The N-terminus for 9 out of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass measurement accuracy with the LC-FT-ICR system for the 20–30 kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100 kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact protein fragmentation and is an effective addition to the growing inventory of dissociation methods which are compatible with on-line protein separation coupled to FT-ICR MS. PMID:24478249

  2. Analysis of Monoclonal Antibodies in Human Serum as a Model for Clinical Monoclonal Gammopathy by Use of 21 Tesla FT-ICR Top-Down and Middle-Down MS/MS

    NASA Astrophysics Data System (ADS)

    He, Lidong; Anderson, Lissa C.; Barnidge, David R.; Murray, David L.; Hendrickson, Christopher L.; Marshall, Alan G.

    2017-05-01

    With the rapid growth of therapeutic monoclonal antibodies (mAbs), stringent quality control is needed to ensure clinical safety and efficacy. Monoclonal antibody primary sequence and post-translational modifications (PTM) are conventionally analyzed with labor-intensive, bottom-up tandem mass spectrometry (MS/MS), which is limited by incomplete peptide sequence coverage and introduction of artifacts during the lengthy analysis procedure. Here, we describe top-down and middle-down approaches with the advantages of fast sample preparation with minimal artifacts, ultrahigh mass accuracy, and extensive residue cleavages by use of 21 tesla FT-ICR MS/MS. The ultrahigh mass accuracy yields an RMS error of 0.2-0.4 ppm for antibody light chain, heavy chain, heavy chain Fc/2, and Fd subunits. The corresponding sequence coverages are 81%, 38%, 72%, and 65% with MS/MS RMS error 4 ppm. Extension to a monoclonal antibody in human serum as a monoclonal gammopathy model yielded 53% sequence coverage from two nano-LC MS/MS runs. A blind analysis of five therapeutic monoclonal antibodies at clinically relevant concentrations in human serum resulted in correct identification of all five antibodies. Nano-LC 21 T FT-ICR MS/MS provides nonpareil mass resolution, mass accuracy, and sequence coverage for mAbs, and sets a benchmark for MS/MS analysis of multiple mAbs in serum. This is the first time that extensive cleavages for both variable and constant regions have been achieved for mAbs in a human serum background.

  3. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics.

    PubMed

    Cho, Yunju; Ahmed, Arif; Islam, Annana; Kim, Sunghwan

    2015-01-01

    Because of the increasing importance of heavy and unconventional crude oil as an energy source, there is a growing need for petroleomics: the pursuit of more complete and detailed knowledge of the chemical compositions of crude oil. Crude oil has an extremely complex nature; hence, techniques with ultra-high resolving capabilities, such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are necessary. FT-ICR MS has been successfully applied to the study of heavy and unconventional crude oils such as bitumen and shale oil. However, the analysis of crude oil with FT-ICR MS is not trivial, and it has pushed analysis to the limits of instrumental and methodological capabilities. For example, high-resolution mass spectra of crude oils may contain over 100,000 peaks that require interpretation. To visualize large data sets more effectively, data processing methods such as Kendrick mass defect analysis and statistical analyses have been developed. The successful application of FT-ICR MS to the study of crude oil has been critically dependent on key developments in FT-ICR MS instrumentation and data processing methods. This review offers an introduction to the basic principles, FT-ICR MS instrumentation development, ionization techniques, and data interpretation methods for petroleomics and is intended for readers having no prior experience in this field of study. © 2014 Wiley Periodicals, Inc.

  4. 2D FT-ICR MS of Calmodulin: A Top-Down and Bottom-Up Approach.

    PubMed

    Floris, Federico; van Agthoven, Maria; Chiron, Lionel; Soulby, Andrew J; Wootton, Christopher A; Lam, Yuko P Y; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2016-09-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach. 2D IRMPD FT-ICR MS is used to achieve extensive inter-residue bond cleavage and assignment for CaM, using its unique features for fragment identification in a less time- and sample-consuming experiment than doing the same thing using sequential MS/MS experiments. Graphical Abstract ᅟ.

  5. Monitoring the physicochemical degradation of coconut water using ESI-FT-ICR MS.

    PubMed

    Costa, Helber B; Souza, Lindamara M; Soprani, Letícia C; Oliveira, Bruno G; Ogawa, Elizângela M; Korres, Adriana M N; Ventura, José A; Romão, Wanderson

    2015-05-01

    Fresh and aged coconut water (CW) samples were introduced directly into the electrospray ionisation (ESI) source, and were combined with the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) technique to characterise in situ chemical compounds produced during natural ageing (from 0 to 15 days) at room temperature (23 °C). The ESI-FT-ICR MS readings were acquired and the data were correlated to conventional methodologies: pH, total titratable acidity (TA), total soluble solids, microbial analyses, and ultraviolet visibility (UV-vis) spectroscopy analysis. In general, the pH and TA values changed after 3 days of storage making the CW unsuitable for consumption. The ESI(-)-FT-ICR data also showed a clear and evident change in the chemical profile of CW after 3 days of ageing in the m/z 150-250 and 350-450 regions. Initially, the relative intensity of the natural markers (the m/z 215 and 377 ions-sugar molecules) decreases as a function of ageing time, with the last marker disappearing after 3 days of ageing. New chemical species were then identified such as: citric (m/z 191), galacturonic (m/z 193), gluconic (m/z 195), and saccharic (m/z 209) acids. ESI(-)-FT-ICR MS is a powerful tool to predict the physicochemical properties of CW, such as the pH and TA, where species such as fructose, glucose, sucrose, and gluconic acid can be used as natural markers to monitor the quality of the fruits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Probing the Mechanisms of an Air Amplifier using a LTQ-FT-ICR-MS and Fluorescence Spectroscopy

    PubMed Central

    Dixon, R. Brent; Muddiman, David C.; Hawkridge, Adam M.; Fedorov, A. G.

    2008-01-01

    We report the first quantitative assessment of electrosprayed droplet/ion focusing enabled by the use of a voltage-assisted air amplifier between an electrospray ionization emitter and a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (ESI-LTQ-FT-ICR-MS). A solution of fluorescent dye was electrosprayed with a stainless steel mesh screen placed in front of the MS inlet capillary acting as a gas-permeable imaging plate for fluorescence spectroscopy. Without use of the air amplifier no detectable FT-ICR signal was observed, as well as no detectable fluorescence on the screen upon imaging using a fluorescence scanner. When the air amplifier was turned ON while electrospraying the fluorescent dye, FT-ICR mass spectra with high signal to noise ratio were obtained with an average ion injection time of 21 milliseconds for an AGC target value of 5 × 105. Imaging of the screen using a fluorescence scanner produced a distinct spot of cross-sectional area ~33.5 mm2 in front of the MS inlet capillary. These experimental results provide direct evidence of aerodynamic focusing of electrosprayed droplets/ions enabled by an air amplifier, resulting in improved electrospray droplet/ion capture efficiency and reduced ion injection time. A second set of experiments was carried out to explore whether the air amplifier assists in desolvation. By electrospraying a mix of quaternary amines, ratios of increasingly hydrophobic molecules were obtained. Observation of the solvophobic effect associated with electrospray ionization resulted in a higher abundance of the hydrophobic molecule. This bias was eliminated when the air amplifier was turned ON and a response indicative of the respective component concentrations of the molecules in the bulk solution was observed. PMID:17855111

  7. Increasing Polyaromatic Hydrocarbon (PAH) Molecular Coverage during Fossil Oil Analysis by Combining Gas Chromatography and Atmospheric-Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS)

    PubMed Central

    Benigni, Paolo; DeBord, J. Daniel; Thompson, Christopher J.; Gardinali, Piero; Fernandez-Lima, Francisco

    2016-01-01

    Thousands of chemically distinct compounds are encountered in fossil oil samples that require rapid screening and accurate identification. In the present paper, we show for the first time, the advantages of gas chromatography (GC) separation in combination with atmospheric-pressure laser ionization (APLI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the screening of polyaromatic hydrocarbons (PAHs) in fossil oils. In particular, reference standards of organics in shale oil, petroleum crude oil, and heavy sweet crude oil were characterized by GC-APLI-FT-ICR MS and APLI-FT-ICR MS. Results showed that, while APLI increases the ionization efficiency of PAHs, when compared to other ionization sources, the complexity of the fossil oils reduces the probability of ionizing lower-concentration compounds during direct infusion. When gas chromatography precedes APLI-FT-ICR MS, an increase (more than 2-fold) in the ionization efficiency and an increase in the signal-to-noise ratio of lower-concentration fractions are observed, giving better molecular coverage in the m/z 100–450 range. That is, the use of GC prior to APLI-FT-ICR MS resulted in higher molecular coverage, higher sensitivity, and the ability to separate and characterize molecular isomers, while maintaining the ultrahigh resolution and mass accuracy of the FT-ICR MS separation. PMID:27212790

  8. Top-down mass spectrometry imaging of intact proteins by laser ablation ESI FT-ICR MS.

    PubMed

    Kiss, András; Smith, Donald F; Reschke, Brent R; Powell, Matthew J; Heeren, Ron M A

    2014-05-01

    Laser ablation ESI (LAESI) is a recent development in MS imaging. It has been shown that lipids and small metabolites can be imaged in various samples such as plant material, tissue sections or bacterial colonies without any sample pretreatment. Further, LAESI has been shown to produce multiply charged protein ions from liquids or solid surfaces. This presents a means to address one of the biggest challenges in MS imaging; the identification of proteins directly from biological tissue surfaces. Such identification is hindered by the lack of multiply charged proteins in common MALDI ion sources and the difficulty of performing tandem MS on such large, singly charged ions. We present here top-down identification of intact proteins from tissue with a LAESI ion source combined with a hybrid ion-trap FT-ICR mass spectrometer. The performance of the system was first tested with a standard protein with electron capture dissociation and infrared multiphoton dissociation fragmentation to prove the viability of LAESI FT-ICR for top-down proteomics. Finally, the imaging of a tissue section was performed, where a number of intact proteins were measured and the hemoglobin α chain was identified directly from tissue using CID and infrared multiphoton dissociation fragmentation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of Printed Circuit Board Technology to FT-ICR MS Analyzer Cell Construction and Prototyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, Franklin E.; Norheim, Randolph V.; Anderson, Gordon A.

    Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) remains themass spectrometry platform that provides the highest levels of performance for mass accuracy and resolving power, there is room for improvement in analyzer cell design as the ideal quadrupolar trapping potential has yet to be generated for a broadband MS experiment. To this end, analyzer cell designs have improved since the field’s inception, yet few research groups participate in this area because of the high cost of instrumentation efforts. As a step towards reducing this barrier to participation and allowing for more designs to be physically tested, we introduce amore » method of FT-ICR analyzer cell prototyping utilizing printed circuit boards at modest vacuum conditions. This method allows for inexpensive devices to be readily fabricated and tested over short intervals and should open the field to laboratories lacking or unable to access high performance machine shop facilities because of the required financial investment.« less

  10. Chemical Analysis of Water-accommodated Fractions of Crude Oil Spills Using TIMS-FT-ICR MS.

    PubMed

    Benigni, Paolo; Marin, Rebecca; Sandoval, Kathia; Gardinali, Piero; Fernandez-Lima, Francisco

    2017-03-03

    Multiple chemical processes control how crude oil is incorporated into seawater and also the chemical reactions that occur overtime. Studying this system requires the careful preparation of the sample in order to accurately replicate the natural formation of the water-accommodated fraction that occurs in nature. Low-energy water-accommodated fractions (LEWAF) are carefully prepared by mixing crude oil and water at a set ratio. Aspirator bottles are then irradiated, and at set time points, the water is sampled and extracted using standard techniques. A second challenge is the representative characterization of the sample, which must take into consideration the chemical changes that occur over time. A targeted analysis of the aromatic fraction of the LEWAF can be performed using an atmospheric-pressure laser ionization source coupled to a custom-built trapped ion mobility spectrometry-Fourier transform-ion cyclotron resonance mass spectrometer (TIMS-FT-ICR MS). The TIMS-FT-ICR MS analysis provides high-resolution ion mobility and ultrahigh-resolution MS analysis, which further allow the identification of isomeric components by their collision cross-sections (CCS) and chemical formula. Results show that as the oil-water mixture is exposed to light, there is significant photo-solubilization of the surface oil into the water. Over time, the chemical transformation of the solubilized molecules takes place, with a decrease in the number of identifications of nitrogen- and sulfur-bearing species in favor of those with a greater oxygen content than were typically observed in the base oil.

  11. Identification and Characterization of Human Proteoforms by Top-Down LC-21 Tesla FT-ICR Mass Spectrometry.

    PubMed

    Anderson, Lissa C; DeHart, Caroline J; Kaiser, Nathan K; Fellers, Ryan T; Smith, Donald F; Greer, Joseph B; LeDuc, Richard D; Blakney, Greg T; Thomas, Paul M; Kelleher, Neil L; Hendrickson, Christopher L

    2017-02-03

    Successful high-throughput characterization of intact proteins from complex biological samples by mass spectrometry requires instrumentation capable of high mass resolving power, mass accuracy, sensitivity, and spectral acquisition rate. These limitations often necessitate the performance of hundreds of LC-MS/MS experiments to obtain reasonable coverage of the targeted proteome, which is still typically limited to molecular weights below 30 kDa. The National High Magnetic Field Laboratory (NHMFL) recently installed a 21 T FT-ICR mass spectrometer, which is part of the NHMFL FT-ICR User Facility and available to all qualified users. Here we demonstrate top-down LC-21 T FT-ICR MS/MS of intact proteins derived from human colorectal cancer cell lysate. We identified a combined total of 684 unique protein entries observed as 3238 unique proteoforms at a 1% false discovery rate, based on rapid, data-dependent acquisition of collision-induced and electron-transfer dissociation tandem mass spectra from just 40 LC-MS/MS experiments. Our identifications included 372 proteoforms with molecular weights over 30 kDa detected at isotopic resolution, which substantially extends the accessible mass range for high-throughput top-down LC-MS/MS.

  12. Cyclotron Phase-Coherent Ion Spatial Dispersion in a Non-Quadratic Trapping Potential is Responsible for FT-ICR MS at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2018-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at the cyclotron frequency instead of the reduced cyclotron frequency has been experimentally demonstrated using narrow aperture detection electrode (NADEL) ICR cells. Here, based on the results of SIMION simulations, we provide the initial mechanistic insights into the cyclotron frequency regime generation in FT-ICR MS. The reason for cyclotron frequency regime is found to be a new type of a collective motion of ions with a certain dispersion in the initial characteristics, such as pre-excitation ion velocities, in a highly non-quadratic trapping potential as realized in NADEL ICR cells. During ion detection, ions of the same m/z move in phase for cyclotron ion motion but out of phase for magnetron (drift) ion motion destroying signals at the fundamental and high order harmonics that comprise reduced cyclotron frequency components. After an initial magnetron motion period, ion clouds distribute into a novel type of structures - ion slabs, elliptical cylinders, or star-like structures. These structures rotate at the Larmor (half-cyclotron) frequency on a plane orthogonal to the magnetic field, inducing signals at the true cyclotron frequency on each of the narrow aperture detection electrodes. To eliminate the reduced cyclotron frequency peak upon dipolar ion detection, a number of slabs or elliptical cylinders organizing a star-like configuration are formed. In a NADEL ICR cell with quadrupolar ion detection, a single slab or an elliptical cylinder is sufficient to minimize the intensity of the reduced cyclotron frequency components, particularly the second harmonic. [Figure not available: see fulltext.

  13. Ultrahigh-resolution FT-ICR mass spectrometry characterization of a-pinene ozonolysis SOA

    EPA Science Inventory

    Secondary organic aerosol (SOA) of α-pinene ozonolysis with and without hydroxyl radical scavenging hexane was characterized by ultrahigh-resolution. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Molecular formulas for more than 900 negative ions were i...

  14. Usage of FT-ICR-MS Metabolomics for Characterizing the Chemical Signatures of Barrel-Aged Whisky

    PubMed Central

    Roullier-Gall, Chloé; Signoret, Julie; Hemmler, Daniel; Witting, Michael A.; Kanawati, Basem; Schäfer, Bernhard; Gougeon, Régis D.; Schmitt-Kopplin, Philippe

    2018-01-01

    Whisky can be described as a complex matrix integrating the chemical history from the fermented cereals, the wooden barrels, the specific distillery processes, aging, and environmental factors. In this study, using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), we analyzed 150 whisky samples from 49 different distilleries, 7 countries, and ranging from 1 day new make spirit to 43 years of maturation with different types of barrel. Chemometrics revealed the unexpected impact of the wood history on the distillate's composition during barrel aging, regardless of the whisky origin. Flavonols, oligolignols, and fatty acids are examples of important chemical signatures for Bourbon casks, whereas a high number of polyphenol glycosides, including for instance quercetin-glucuronide or myricetin-glucoside as potential candidates, and carbohydrates would discriminate Sherry casks. However, the comparison of barrel aged rums and whiskies revealed specific signatures, highlighting the importance of the initial composition of the distillate and the distillery processes. PMID:29520358

  15. Usage of FT-ICR-MS Metabolomics for characterizing the chemical signatures of barrel-aged whisky

    NASA Astrophysics Data System (ADS)

    Roullier-Gall, Chloé; Signoret, Julie; Hemmler, Daniel; Witting, Michael A.; Kanawati, Basem; Schäfer, Bernhard; Gougeon, Régis D.; Schmitt-Kopplin, Philippe

    2018-02-01

    Whisky can be described as a complex matrix integrating the chemical history from the fermented cereals, the wooden barrels, the specific distillery processes, ageing and environmental factors. In this study, using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), we analysed 150 whisky samples from 49 different distilleries, 7 countries, and ranging from 1 day new make spirit to 43 years of maturation with different types of barrel. Chemometrics revealed the unexpected impact of the wood history on the distillatés composition during barrel ageing, regardless of the whisky origin. Flavonols, oligolignols and fatty acids are examples of important chemical signatures for Bourbon casks, whereas a high number of polyphenol glycosides, including for instance quercetin-glucuronide or myricetin-glucoside as potential candidates, and carbohydrates would discriminate Sherry casks. However, the comparison of barrel aged rums and whiskies revealed specific signatures, highlighting the importance of the initial composition of the distillate and the distillery processes.

  16. Environmental Forensics: Molecular Insight into Oil Spill Weathering Helps Advance High Magnetic Field FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKenna, Amy

    2013-03-01

    The depletion of terrestrial global oil reserves has shifted oil exploration into offshore and ultra-deep water (> 5000 ft) oil reserves to meet global energy demands. Deep water reservoirs are currently in production in many parts of the world, including the Gulf of Mexico, but production is complicated by the water depth and thick salt caps that challenge reservoir characterization / production. The explosion aboard the Deepwater Horizon in April 2010 resulted in an estimated total release of ~5 million barrels (BP claims that they collected ~1M barrels, for a net release of 4 M) of light, sweet crude oil into the Gulf of Mexico and shifted attention toward the environmental risks associated with offshore oil production. The growing emphasis on deep water and ultra-deep water oil production poses a significant environmental threat, and increased regulations require that oil companies minimize environmental impact to prevent oil spills, and mitigate environmental damage when spills occur. Every oil spill is unique. The molecular transformations that occur to petroleum after contact with seawater depend on the physical and chemical properties of the spilled oil, environmental conditions, and deposition environment. Molecular-level knowledge of the composition, distribution, and total mass of released hydrocarbons is essential to disentangle photo- and bio-degradation, source identification, and long-term environmental impact of hydrocarbons released into the environment. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is unsurpassed in its ability to characterize complex mixtures at the level of elemental composition assignment. Only FT-ICR mass spectrometry can routinely achieve the required minimum resolving power necessary to elucidate molecular-level characterization of crude oil. Conversely, the spectral complexity of petroleum facilitates identification of systematic errors in the accumulation, transfer, excitation, and detection

  17. Molecular characterization and comparison of shale oils generated by different pyrolysis methods using FT-ICR mass spectrometry

    USGS Publications Warehouse

    Jin, J.M.; Kim, S.; Birdwell, J.E.

    2011-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) was applied in the analysis of shale oils generated using two different pyrolysis systems under laboratory conditions meant to simulate surface and in situ oil shale retorting. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules. Comparison of FT ICR-MS results to standard oil characterization methods (API gravity, SARA fractionation, gas chromatography-flame ionization detection) indicated correspondence between the average Double Bond Equivalence (DBE) and asphaltene content. The results show that, based on the average DBE values and DBE distributions of the shale oils examined, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions and in the presence of water.

  18. Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis

    NASA Astrophysics Data System (ADS)

    Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.

    2017-09-01

    High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.

  19. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS).

    PubMed

    Han, Fei; Li, Yanting; Mao, Xinjuan; Xu, Rui; Yin, Ran

    2016-05-01

    In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. An External Matrix-Assisted Laser Desorption Ionization Source for Flexible FT-ICR Mass Spectrometry Imaging with Internal Calibration on Adjacent Samples

    NASA Astrophysics Data System (ADS)

    Smith, Donald F.; Aizikov, Konstantin; Duursma, Marc C.; Giskes, Frans; Spaanderman, Dirk-Jan; McDonnell, Liam A.; O'Connor, Peter B.; Heeren, Ron M. A.

    2011-01-01

    We describe the construction and application of a new MALDI source for FT-ICR mass spectrometry imaging. The source includes a translational X-Y positioning stage with a 10 × 10 cm range of motion for analysis of large sample areas, a quadrupole for mass selection, and an external octopole ion trap with electrodes for the application of an axial potential gradient for controlled ion ejection. An off-line LC MALDI MS/MS run demonstrates the utility of the new source for data- and position-dependent experiments. A FT-ICR MS imaging experiment of a coronal rat brain section yields ˜200 unique peaks from m/z 400-1100 with corresponding mass-selected images. Mass spectra from every pixel are internally calibrated with respect to polymer calibrants collected from an adjacent slide.

  1. Chemical characterization of synthetic cannabinoids by electrospray ionization FT-ICR mass spectrometry.

    PubMed

    Kill, Jade B; Oliveira, Izabela F; Tose, Lilian V; Costa, Helber B; Kuster, Ricardo M; Machado, Leandro F; Correia, Radigya M; Rodrigues, Rayza R T; Vasconcellos, Géssica A; Vaz, Boniek G; Romão, Wanderson

    2016-09-01

    The synthetic cannabinoids (SCs) represent the most recent advent of the new psychotropic substances (NPS) and has become popularly known to mitigate the effects of the Δ(9)-THC. The SCs are dissolved in organic solvents and sprayed in a dry herbal blend. However, little information is reported on active ingredients of SCs as well as the excipients or diluents added to the herbal blend. In this work, the direct infusion electrospray ionization Fourier transform ion cyclotron mass spectrometry technique (ESI-FT-ICR MS) was applied to explore the chemical composition of nine samples of herbal extract blends, where a total of 11 SCs (UR-144, JWH-073, XLR-11, JWH-250, JWH-122, AM-2201, AKB48, JWH-210, JWH-081, MAM-2201 and 5F-AKB48) were identified in the positive ionization mode, ESI(+), and other 44 chemical species (saturated and unsaturated fatty acids, sugars, flavonoids, etc.) were detected in the negative ionization mode, ESI(-). Additionally, CID experiments were performed, and fragmentation pathways were proposed to identify the connectivity of SCs. Thus, the direct infusion ESI-FT-ICR MS technique is a powerful tool in forensic chemistry that enables the rapid and unequivocal way for the determination of molecular formula, the degree of unsaturation (DBE-double bond equivalent) and exact mass (<1ppm) of a total of 55 chemical species without the prior separation step. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. FT-ICR MS analysis of blended pine-microalgae feedstock HTL biocrudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Jacqueline M.; Billing, Justin M.; Corilo, Yuri E.

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is utilized for direct comparison of the chemical composition of biocrudes generated from the hydrothermal liquefaction of 100% pine, 100% algae, 75:25 pine:algae, and 50:50 pine:algae feedstocks. This analysis reveals that the of the 72:25 and 50:50 pine:algal HTL biocrudes is essentially a composite of the two parent feeds (i.e., pine and algae) with a lower relative abundance of Ox species and a higher relative abundance of nitrogen-containing species than the pine HTL biocrude. Alternatively, the biocrude blends have a lower relative abundance of nitrogen-containing species where N>2 than the algalmore » HTL biocrude. The 75:25 pine:algal HTL biocrude has more elemental formulae in common with the pine HTL biocrude than the 50:50 blend; however, both blends have more elemental formulae in common with the algal HTL biocrude. Interestingly, >20% of the elemental formulae assigned to monoisotopic peaks within the 75:25 and 50:50 biocrude blends are species not present in either the pine or algal HTL biocrudes. The highest relative abundance of these new species belong to the N2O4-6 classes, which correspond to heteroatom classes with a moderate number of nitrogen atoms and higher number of oxygen atoms per molecules than the species within the pure algal HTL biocrude. Compositionally, the novel species have the same structural motif but are of higher DBE and carbon numbers than the species within the algal HTL biocrude. These original species are most likely generated from reactions between molecules from both feeds, which results in compounds wotj higher oxygen content than typically seen in the algal HTL biocrude but also higher nitrogen contents than observed in the pine HTL biocrude.« less

  3. Extracting biomolecule collision cross sections from the high-resolution FT-ICR mass spectral linewidths.

    PubMed

    Jiang, Ting; Chen, Yu; Mao, Lu; Marshall, Alan G; Xu, Wei

    2016-01-14

    It is known that the ion collision cross section (CCS) may be calculated from the linewidth of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectral peak at elevated pressure (e.g., ∼10(-6) Torr). However, the high mass resolution of FT-ICR is sacrificed in those experiments due to high buffer gas pressure. In this study, we describe a linewidth correction method to eliminate the windowing-induced peak broadening effect. Together with the energetic ion-neutral collision model previously developed by our group, this method enables the extraction of CCSs of biomolecules from high-resolution FT-ICR mass spectral linewidths, obtained at a typical operating buffer gas pressure of modern FT-ICR instruments (∼10(-10) Torr). CCS values of peptides including MRFA, angiotensin I, and bradykinin measured by the proposed method agree well with ion mobility measurements, and the unfolding of protein ions (ubiquitin) at higher charge states is also observed.

  4. Orbitrap-MS and FT-ICR-MS of Free and Labile Organic Matter from Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Orthous-Daunay, F.-R.; Thissen, R.; Vuitton, V.; Somogyi, A.; Mespoulede, M.; Beck, P.; Bonnet, J.-Y.; Dutuit, O.; Schmitt, B.; Quirico, E.

    2011-03-01

    We used two types of high-resolution FT-MS to analyze the free and labile organic matter in carbonaceous chondrites of type 1 and 2. The methanol extraction and laser desorption gave access to highly and poorly functionalized molecules respectively.

  5. Organic environments on Saturn's moon, Titan: simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry.

    PubMed

    Somogyi, Arpad; Oh, Chu-Ha; Smith, Mark A; Lunine, Jonathan I

    2005-06-01

    Laboratory simulations have been carried out to model chemical reactions that possibly take place in the stratosphere of Saturn's moon, Titan. The aerosol products of these reactions (tholin samples) have been systematically analyzed by mass spectrometry using electrospray ionization (ESI) and laser desorption (LD). A wide variety of ions with a general formula C(x)H(y)N(z) detected by ultrahigh resolution and accurate mass measurements in a Fourier transform/ion cyclotron resonance (FT-ICR) cell reflect the complexity of these polymeric products, both in chemical compositions and isomeric distributions. As a common feature, however, tandem mass spectral (MS/MS) data and H/D exchange products in the solution phase support the presence of amino and nitrile functionalities in these (highly unsaturated) "tholin" compounds. The present work demonstrates that ESI-MS coupled with FT-ICR is a suitable and "intact" method to analyze tholin components formed under anaerobic conditions; only species with C(x)H(y)N(z) are detected for freshly prepared and harvested samples. However, when intentionally exposed to water, oxygen-containing compounds are unambiguously detected.

  6. Vacuum Ultraviolet Photodissociation and Fourier Transform-Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited.

    PubMed

    Shaw, Jared B; Robinson, Errol W; Paša-Tolić, Ljiljana

    2016-03-15

    We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations.

  7. Vacuum Ultraviolet Photodissociation and Fourier Transform–Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jared B.; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2016-02-16

    We revisited the implementation of UVPD within the ICR cell of a FT-ICR mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and small protein within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing relative to ion magnetron motion and the potential applied to an ion optical element that photons impinge on. It is shown that UVPD yields efficient and extensive fragmentation resulting in excellent sequence coverage for modelmore » peptide and protein cations.« less

  8. Fractionation and characterization of dissolved organic matter (DOM) in refinery wastewater by revised phase retention and ion-exchange adsorption solid phase extraction followed by ESI FT-ICR MS.

    PubMed

    Fang, Zhi; He, Chen; Li, Yongyong; Chung, Keng H; Xu, Chunming; Shi, Quan

    2017-01-01

    Although the progress of high resolution mass spectrometry in the past decade has enabled the molecular characterization of dissolved organic matter (DOM) in water as a whole, fractionation of DOM is necessary for a comprehensive characterization due to its super-complex nature. Here we proposed a method for the fractionation of DOM in a wastewater based on solubility and acidic-basic properties. Solid phase extraction (SPE) cartridges with reversed phase retention and ion-exchange adsorption capacities, namely MAX and MCX, were used in succession to fractionate a petroleum refinery wastewater into four fractions: hydrophobic acid (HOA), hydrophobic neutral (HON), hydrophobic base (HOB), and hydrophilic substance (HIS) fractions. According to the total organic carbon (TOC) analysis, 72.6% (in term of TOC) of DOM was extracted in hydrophobic fractions, in which HON was the most abundant. Hydrophobic extracts were characterized by negative and positive ion electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. Compounds with multiple oxygen atoms were predominant in the HOA, which were responded strongly in the negative ESI MS. Nitrogen containing compounds were the major detected species by positive ion ESI in all hydrophobic fractions. The molecular composition of the DOM were discussed based on the FT-ICR MS results. The fractionation provided salt free samples which enables the direct analysis of the fractions by ESI and a deep insight into the molecular composition of DOM in the wastewater. The method is potential for routine evaluation of DOM in industry wastewaters, as well as environmental water samples. Copyright © 2016. Published by Elsevier B.V.

  9. Hydrothermal liquefaction oil and hydrotreated product from pine feedstock characterized by heteronuclear two-dimensional NMR spectroscopy and FT-ICR mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudasinghe, Nilusha; Cort, John R.; Hallen, Richard

    2014-12-01

    Hydrothermal liquefaction (HTL) crude oil and hydrotreated product from pine tree farm waste (forest product residual, FPR) have been analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) in both positive- and negative-ionization modes and high-resolution twodimensional heteronuclear 1H-13C NMR spectroscopy. FT-ICR MS resolves thousands of compounds in complex oils and provides unparalleled compositional details for individual molecules for identification of compound class (heteroatom content), type (number of rings plus double bonds to carbon or double bond equivalents (DBE) and carbon number (degree of alkylation). Heteronuclear 1H-13C NMR spectroscopy provides one-bond and multiple-bondmore » correlations between pairs of 1H and 13C chemical shifts that are characteristic of different organic functional groups. Taken together this information provides a picture of the chemical composition of these oils. Pyrolysis crude oil product from pine wood was characterized for comparison. Generally, pyrolysis oil is comprised of a more diverse distribution of heteroatom classes with higher oxygen number relative to HTL oil as shown by both positive- and negative-ion ESI FT-ICR MS. A total of 300 N1, 594 O1 and 267 O2 compounds were observed as products of hydrotreatment. The relative abundance of N1O1, N1O2, N1O3, N2, N2O1, N2O2 and O3 compounds are reduced to different degrees after hydrotreatment and other higher heteroatom containing species (O4-O10, N1O4, N1O5 and N2O3) are completely removed by hydrotreatment.« less

  10. From Supercomputer Modeling to Highest Mass Resolution in FT-ICR.

    PubMed

    N Nikolaev, Evgene; N Vladimirov, Gleb; Jertz, Roland; Baykut, Gökhan

    2013-01-01

    Understanding of behavior of ion ensembles inside FT-ICR cell based on the computer simulation of ion motion gives rise to the new ideas of cell designs. The recently introduced novel FT-ICR cell based on a Penning ion trap with specially shaped excitation and detection electrodes prevents distortion of ion cyclotron motion phases (normally caused by non-ideal electric trapping fields) by averaging the trapping DC electric field during the ion motion in the ICR cell. Detection times of 5 min resulting in resolving power close to 40,000,000 have been reached for reserpine at m/z 609 at a magnetic field of only 7 Tesla. Fine structures of resolved 13Cn isotopic cluster groups could be measured for molecular masses up to 5.7 kDa (insulin) with resolving power of 4,000,000 at 7 Tesla. Based on resolved fine structure patterns atomic compositions can be directly determined using a new developed algorithm for fine structure processing. Mass spectra of proteins and multimers of proteins reaching masses up to 186 kDa (enolase tetramer) could be measured with isotopic resolution. For instance, at 7 Tesla resolving power of 800,000 was achieved for enolase dimer (96 kDa) and 500,000 for molecular masses above 100 kDa. Experimental data indicate that there is practically no limit for the resolving power of this ICR cell except by collisional damping in the ultrahigh vacuum chamber.

  11. FT-ICR mass spectrometric and density functional theory studies of sulfate prenucleation clusters

    NASA Astrophysics Data System (ADS)

    Lemke, K. H.

    2012-12-01

    Recent mass spectrometric1 and relaxation spectroscopic studies2 of metal sulfate salts have demonstrated that aqueous clusters play an important role in sulfate prenucleation processes. While such studies provide evidence that that ion clusters are nucleation relevant species, ultra-high resolution mass spectrumetry, in particular, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) can provide additional valuable information about the molecular composition and stability of individual ion clusters. Prompted by the above studies, our group has begun a systematic survey of metal sulfate clusters using FT-ICR mass spectrometry. Here, I report stoichiometries, structures and thermodynamic properties of calcium sulfate ion clusters, both "dry" and microsolvated, using electrospray ionization FT-ICR mass spectrometry in combination with semi-empirical methods and M062X/aug-cc-PVXZ level density functional theory calculations. In electrosprayed dilute aqueous solutions of CaSO4 (1-20mM), droplet desolvation results in the formation of stable doubly-charged clusters of [Ca(CaSO4)m(H2O)n]+2 (m≤10 & n≤9) as well as larger quadruply-charged ion clusters [Ca2(CaSO4)m(H2O)n]+4 with m≤23 and n≤10, demonstrating considerable sulfate nucleation potential in undersaturated electrolyte solutions. An attempt was also made to assess the extent of ion cluster aggregation in solution prior to electrospray ionization by measuring ion mass spectra at different solution concentrations. In brief, an increase in calcium sulfate concentration from 1-10mM results in a continuous increase in polynuclear ion cluster species, while smaller clusters, for instance, Ca[CaSO4]+2 and corresponding hydrated forms, become increasingly less abundant. Building on semi-empirical methods, M062X calculations have been applied to predict calcium sulfate cluster geometries, both "dry" and microsolvated, as well as the size-dependent evolution of clustering and hydration energies. 1

  12. Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.

    PubMed

    Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei

    2015-04-14

    In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.

  13. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring.

    PubMed

    Darebna, Petra; Novak, Petr; Kucera, Radek; Topolcan, Ondrej; Sanda, Miloslav; Goldman, Radoslav; Pompach, Petr

    2017-02-05

    Alternations in the glycosylation of proteins have been described in connection with several cancers, including hepatocellular carcinoma (HCC) and colorectal cancer. Analytical tools, which use combination of liquid chromatography and mass spectrometry, allow precise and sensitive description of these changes. In this study, we use MRM and FT-ICR operating in full-MS scan, to determine ratios of intensities of specific glycopeptides in HCC, colorectal cancer, and liver metastasis of colorectal cancer. Haptoglobin, hemopexin and complement factor H were detected after albumin depletion and the N-linked glycopeptides with fucosylated glycans were compared with their non-fucosylated forms. In addition, sialylated forms of an O-linked glycopeptide of hemopexin were quantified in the same samples. We observe significant increase in fucosylation of all three proteins and increase in bi-sialylated O-glycopeptide of hemopexin in HCC of hepatitis C viral (HCV) etiology by both LC-MS methods. The results of the MRM and full-MS scan FT-ICR analyses provide comparable quantitative readouts in spite of chromatographic, mass spectrometric and data analysis differences. Our results suggest that both workflows allow adequate relative quantification of glycopeptides and suggest that HCC of HCV etiology differs in glycosylation from colorectal cancer and liver metastasis of colorectal cancer. The article compares N- and O-glycosylation of several serum proteins in different diseases by a fast and easy sample preparation procedure in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry. The results show successful glycopeptides relative quantification in a complex peptide mixture by the high resolution instrument and the detection of glycan differences between the different types of cancer diseases. The presented method is comparable to conventional targeted MRM approach but allows additional curation of the data. Copyright © 2016 Elsevier B

  14. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring

    PubMed Central

    Darebna, Petra; Novak, Petr; Kucera, Radek; Topolcan, Ondrej; Sanda, Miloslav; Goldman, Radoslav; Pompach, Petr

    2018-01-01

    Alternations in the glycosylation of proteins have been described in connection with several cancers, including hepatocellular carcinoma (HCC) and colorectal cancer. Analytical tools, which use combination of liquid chromatography and mass spectrometry, allow precise and sensitive description of these changes. In this study, we use MRM and FT-ICR operating in full-MS scan, to determine ratios of intensities of specific glycopeptides in HCC, colorectal cancer, and liver metastasis of colorectal cancer. Haptoglobin, hemopexin and complement factor H were detected after albumin depletion and the N-linked glycopeptides with fucosylated glycans were compared with their non-fucosylated forms. In addition, sialylated forms of an O-linked glycopeptide of hemopexin were quantified in the same samples. We observe significant increase in fucosylation of all three proteins and increase in bisialylated O-glycopeptide of hemopexin in HCC of hepatitis C viral (HCV) etiology by both LC-MS methods. The results of the MRM and full-MS scan FT-ICR analyses provide comparable quantitative readouts in spite of chromatographic, mass spectrometric and data analysis differences. Our results suggest that both workflows allow adequate relative quantification of glycopeptides and suggest that HCC of HCV etiology differs in glycosylation from colorectal cancer and liver metastasis of colorectal cancer. Significance The article compares N- and O-glycosylation of several serum proteins in different diseases by a fast and easy sample preparation procedure in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry. The results show successful glycopeptides relative quantification in a complex peptide mixture by the high resolution instrument and the detection of glycan differences between the different types of cancer diseases. The presented method is comparable to conventional targeted MRM approach but allows additional curation of the data. PMID:27646713

  15. High-field FT-ICR-MS and aromaticity equivalent approach for structural identification of water soluble organic compounds (WSOC)

    NASA Astrophysics Data System (ADS)

    Harir, Mourad; Yassine, Mahmoud M.; Dabek-Zlotorzynska, Ewa; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2015-04-01

    Organic aerosol (OA) makes up a large and often dominant fraction, (20 to 90%) of the submicron atmospheric particulate mass, and its effects are becoming increasingly important in determining climatic and health effects of atmospheric aerosols. Despite the abundance of OA, our understanding of the sources, formation processes and atmospheric properties of OA is limited. Atmospheric OA has both primary (directly emitted) and secondary (formed in the atmosphere from precursor gases) sources, which can be natural (e.g. vegetation) and/or anthropogenic (e.g. fossil-based vehicle exhaust or biomass burning). A significant fraction of OA contains as much as 20-70% of water soluble organic compounds (WSOC). The WSOC fraction is a very complex mixture of low volatility, polyfunctional aliphatic and aromatic compounds containing carboxyl, alcohol, carbonyl, sulfo, nitro, and other functionalities. This high degree of chemical complexity of atmospheric organics has inspired a number of sophisticated approaches that are capable of identifying and detecting a variety of different analytes in OA. Accordingly, one of the most challenging areas of atmospheric particulate matter (PM) analysis is to comprehend the molecular complexity of the OA, especially WSOC fraction, a significant component of atmospheric fine PM (PM2.5). The sources of WSOC are not well understood, especially the relative contributions of primary vs. secondary organic aerosol. Therefore, the molecular characterization of WSOC is important because it allows gaining insight into aerosol sources and underlying mechanisms of secondary organic aerosols (SOA) formation and transformation. In this abstract, molecular characterization of WSOC was achieved using high-field mass spectrometry FT-ICR-MS and aromaticity equivalent approach. Aromaticity equivalent (Xc), defined recently as a new parameter calculated from the assigned molecular formulas (complementary to the aromaticity index [1]), is introduced to improve

  16. Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides.

    PubMed

    Lv, Jitao; Zhang, Shuzhen; Wang, Songshan; Luo, Lei; Cao, Dong; Christie, Peter

    2016-03-01

    Adsorption by minerals is a common geochemical process of dissolved organic matter (DOM) which may induce fractionation of DOM at the mineral-water interface. Here, we examine the molecular fractionation of DOM induced by adsorption onto three common iron oxyhydroxides using electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). Ferrihydrite exhibited higher affinity to DOM and induced more pronounced molecular fractionation of DOM than did goethite or lepidocrocite. High molecular weight (>500 Da) compounds and compounds high in unsaturation or rich in oxygen including polycyclic aromatics, polyphenols and carboxylic compounds had higher affinity to iron oxyhydroxides and especially to ferrihydrite. Low molecular weight compounds and compounds low in unsaturation or containing few oxygenated groups (mainly alcohols and ethers) were preferentially maintained in solution. This study confirms that the double bond equivalence and the number of oxygen atoms are valuable parameters indicating the selective fractionation of DOM at mineral and water interfaces. The results of this study provide important information for further understanding the behavior of DOM in the natural environment.

  17. Dissolved organic carbon (DOC) in soil extracts investigated by FT-ICR-MS

    NASA Astrophysics Data System (ADS)

    Hofmann, D.; Steffen, D.; Jablonowski, N. D.; Burauel, P.

    2012-04-01

    Soil drying and rewetting usually increases the release of xenobiotics like pesticides present in agricultural soils. Besides the effect on the release of two aged 14C-labeled pesticide residues we focus on the characterisation of simultaneously remobilized dissolved organic carbon (DOC) to gain new insights into structure and stability aspects of soil organic carbon fractions. The test soil (gleyic cambisol; Corg 1.2%, pH 7.2) was obtained from the upper soil layer of two individual outdoor lysimeter studies containing either environmentally long-term aged 14C residues of the herbicide ethidimuron (0-10 cm depth; time of aging: 9 years) or methabenzthiazuron (0-30 cm depth; time of aging: 17 years). Soil samples (10 g dry soil equivalents) were (A=dry/wet) previously dried (45°C) or (B=wet/wet) directly mixed with pure water (1+2, w:w), shaken (150 rpm, 1 h), and centrifuged (2000 g). This extraction procedure was repeated several individual times, for both setups. The first three individual extractions, respectively were used for further investigations. Salt was removed from samples prior analysis because of a possible quench effect in the electrospray (ESI) source by solid phase extraction (SPE) with Chromabond C18 Hydra-cartridges (Macherey-Nagel) and methanol as backextraction solvent. The so preconcentrated and desalted samples were introduced by flow injection analysis (FIA) in a fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for complex natural systems attributed by their outstanding mass resolution (used 400.000 at m/z 400 Da) and mass accuracy (≤ 1ppm) by simultaneously providing molecular level details of thousands of compounds and was successful applied for the investigations of natural organic matter (NOM) different sources like marine and surface water, soil, sediment, bog and crude oil

  18. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderton, Christopher R.; Chu, Rosalie K.; Tolic, Nikola

    The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it had many limitations that include uneven matrix coverage and limitation in the types of matrices one could employ in their studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over wheremore » matrix is applied and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus Subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.« less

  19. Chemical Composition and Potential Environmental Impacts of Water-Soluble Polar Crude Oil Components Inferred from ESI FT-ICR MS

    PubMed Central

    Liu, Yina; Kujawinski, Elizabeth B.

    2015-01-01

    Polar petroleum components enter marine environments through oil spills and natural seepages each year. Lately, they are receiving increased attention due to their potential toxicity to marine organisms and persistence in the environment. We conducted a laboratory experiment and employed state-of-the-art Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the polar petroleum components within two operationally-defined seawater fractions: the water-soluble fraction (WSF), which includes only water-soluble molecules, and the water-accommodated fraction (WAF), which includes WSF and microscopic oil droplets. Our results show that compounds with higher heteroatom (N, S, O) to carbon ratios (NSO:C) than the parent oil were selectively partitioned into seawater in both fractions, reflecting the influence of polarity on aqueous solubility. WAF and WSF were compositionally distinct, with unique distributions of compounds across a range of hydrophobicity. These compositional differences will likely result in disparate impacts on environmental health and organismal toxicity, and thus highlight the need to distinguish between these often-interchangeable terminologies in toxicology studies. We use an empirical model to estimate hydrophobicity character for individual molecules within these complex mixtures and provide an estimate of the potential environmental impacts of different crude oil components. PMID:26327219

  20. Semi-Targeted Analysis of Complex Matrices by ESI FT-ICR MS or How an Experimental Bias may be Used as an Analytical Tool.

    PubMed

    Hertzog, Jasmine; Carré, Vincent; Dufour, Anthony; Aubriet, Frédéric

    2018-03-01

    Ammonia is well suited to favor deprotonation process in electrospray ionization mass spectrometry (ESI-MS) to increase the formation of [M - H] - . Nevertheless, NH 3 may react with carbonyl compounds (aldehyde, ketone) and bias the composition description of the investigated sample. This is of significant importance in the study of complex mixture such as oil or bio-oil. To assess the ability of primary amines to form imines with carbonyl compounds during the ESI-MS process, two aldehydes (vanillin and cinnamaldehyde) and two ketones (butyrophenone and trihydroxyacetophenone) have been infused in an ESI source with ammonia and two different amines (aniline and 3-chloronaniline). The (+) ESI-MS analyses have demonstrated the formation of imine whatever the considered carbonyl compound and the used primary amine, the structure of which was extensively studied by tandem mass spectrometry. Thus, it has been established that the addition of ammonia, in the solution infused in an ESI source, may alter the composition description of a complex mixture and leads to misinterpretations due to the formation of imines. Nevertheless, this experimental bias can be used to identify the carbonyl compounds in a pyrolysis bio-oil. As we demonstrated, infusion of the bio-oil with 3-chloroaniline in ESI source leads to specifically derivatized carbonyl compounds. Thanks to their chlorine isotopic pattern and the high mass measurement accuracy, (+) ESI Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) unambiguously highlighted them from the numerous C x H y O z bio-oil components. These results offer a new perspective into the detailed molecular structure of complex mixtures such as bio-oils. Graphical Abstract ᅟ.

  1. Semi-Targeted Analysis of Complex Matrices by ESI FT-ICR MS or How an Experimental Bias may be Used as an Analytical Tool

    NASA Astrophysics Data System (ADS)

    Hertzog, Jasmine; Carré, Vincent; Dufour, Anthony; Aubriet, Frédéric

    2018-03-01

    Ammonia is well suited to favor deprotonation process in electrospray ionization mass spectrometry (ESI-MS) to increase the formation of [M - H]-. Nevertheless, NH3 may react with carbonyl compounds (aldehyde, ketone) and bias the composition description of the investigated sample. This is of significant importance in the study of complex mixture such as oil or bio-oil. To assess the ability of primary amines to form imines with carbonyl compounds during the ESI-MS process, two aldehydes (vanillin and cinnamaldehyde) and two ketones (butyrophenone and trihydroxyacetophenone) have been infused in an ESI source with ammonia and two different amines (aniline and 3-chloronaniline). The (+) ESI-MS analyses have demonstrated the formation of imine whatever the considered carbonyl compound and the used primary amine, the structure of which was extensively studied by tandem mass spectrometry. Thus, it has been established that the addition of ammonia, in the solution infused in an ESI source, may alter the composition description of a complex mixture and leads to misinterpretations due to the formation of imines. Nevertheless, this experimental bias can be used to identify the carbonyl compounds in a pyrolysis bio-oil. As we demonstrated, infusion of the bio-oil with 3-chloroaniline in ESI source leads to specifically derivatized carbonyl compounds. Thanks to their chlorine isotopic pattern and the high mass measurement accuracy, (+) ESI Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) unambiguously highlighted them from the numerous CxHyOz bio-oil components. These results offer a new perspective into the detailed molecular structure of complex mixtures such as bio-oils. [Figure not available: see fulltext.

  2. Rapid Screening for Potential Epitopes Reactive with a Polycolonal Antibody by Solution-Phase H/D Exchange Monitored by FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Noble, Kyle A.; Mao, Yuan; Young, Nicolas L.; Sathe, Shridhar K.; Roux, Kenneth H.; Marshall, Alan G.

    2013-07-01

    The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.

  3. Spectral Accuracy and Sulfur Counting Capabilities of the LTQ-FT-ICR and the LTQ-Orbitrap XL for Small Molecule Analysis

    NASA Astrophysics Data System (ADS)

    Blake, Samantha L.; Walker, S. Hunter; Muddiman, David C.; Hinks, David; Beck, Keith R.

    2011-12-01

    Color Index Disperse Yellow 42 (DY42), a high-volume disperse dye for polyester, was used to compare the capabilities of the LTQ-Orbitrap XL and the LTQ-FT-ICR with respect to mass measurement accuracy (MMA), spectral accuracy, and sulfur counting. The results of this research will be used in the construction of a dye database for forensic purposes; the additional spectral information will increase the confidence in the identification of unknown dyes found in fibers at crime scenes. Initial LTQ-Orbitrap XL data showed MMAs greater than 3 ppm and poor spectral accuracy. Modification of several Orbitrap installation parameters (e.g., deflector voltage) resulted in a significant improvement of the data. The LTQ-FT-ICR and LTQ-Orbitrap XL (after installation parameters were modified) exhibited MMA ≤ 3 ppm, good spectral accuracy (χ2 values for the isotopic distribution ≤ 2), and were correctly able to ascertain the number of sulfur atoms in the compound at all resolving powers investigated for AGC targets of 5.00 × 105 and 1.00 × 106.

  4. Automated metal-free multiple-column nanoLC for improved phosphopeptide analysis sensitivity and throughput

    PubMed Central

    Zhao, Rui; Ding, Shi-Jian; Shen, Yufeng; Camp, David G.; Livesay, Eric A.; Udseth, Harold; Smith, Richard D.

    2009-01-01

    We report on the development and characterization of automated metal-free multiple-column nanoLC instrumentation for sensitive and high-throughput analysis of phosphopeptides with mass spectrometry analysis. The system implements a multiple-column capillary LC fluidic design developed for high-throughput analysis of peptides (Anal. Chem. 2001, 73, 3011–3021), incorporating modifications to achieve broad and sensitive analysis of phosphopeptides. The integrated nanoLC columns (50 µm i.d. × 30 cm containing 5 µm C18 particles) and the on-line solid phase extraction columns (150 µm i.d. × 4 cm containing 5 µm C18 particles) were connected to automatic switching valves with non-metal chromatographic accessories, and other modifications to avoid the exposure of the analyte to any metal surfaces during handling, separation, and electrospray ionization. The nanoLC developed provided a separation peak capacity of ∼250 for phosphopeptides (and ∼400 for normal peptides). A detection limit of 0.4 fmol was obtained when a linear ion trap tandem mass spectrometer (Finnegan LTQ) was coupled to a 50-µm i.d. column of the nanoLC. The separation power and sensitivity provided by the nanoLC-LTQ enabled identification of ∼4600 phosphopeptide candidates from ∼60 µg COS-7 cell tryptic digest followed by IMAC enrichment and ∼520 tyrosine phosphopeptides from ∼2 mg of human T cells digests followed by phosphotyrosine peptide immunoprecipitation. PMID:19217835

  5. Identification of Reactive and Refractory Components of Dissolved Organic Nitrogen by FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. T.; Podgorski, D. C.; Osborne, D. M.; Corbett, J.; Chanton, J.

    2010-12-01

    Dissolved organic nitrogen is an often overlooked but potentially significant bioavailable component of dissolved organic matter. Studies of bulk DON turnover have been reported, but the compositions of the reactive and refractory components of DON are largely unknown. Here we show the unique ability of atmospheric pressure photoionization (APPI) coupled to ultrahigh resolution mass spectrometry to identify the reactive and refractory components of DON. Figure 1 is an isolated 0.30 m/z window from an ultrahigh resolution APPI FT-ICR mass spectrum of DON in surface waters draining an agricultural area in South Florida. Using this optimized, negative-ion APPI strategy we have been able to identify the reactive and refractory components of DON in these nitrogen-rich waters. Similar results were observed with samples from soil porewaters in sedge-dominated fens and sphagnum-dominated bogs within the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. Surprisingly, microbes appear to initially use similar enzymatic pathways to degrade DON and DOC, often with little release of nitrogen. Figure 1. Isolated 0.30 m/z window at nominal mass 432 from negative-ion APPI FT-ICR mass spectrum of DOM from waters draining an agricultural area in South Florida. Peaks marked contain nitrogen.

  6. Improving CID, HCD, and ETD FT MS/MS degradome-peptidome identifications using high accuracy mass information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yufeng; Tolic, Nikola; Purvine, Samuel O.

    2011-11-07

    The peptidome (i.e. processed and degraded forms of proteins) of e.g. blood can potentially provide insights into disease processes, as well as a source of candidate biomarkers that are unobtainable using conventional bottom-up proteomics approaches. MS dissociation methods, including CID, HCD, and ETD, can each contribute distinct identifications using conventional peptide identification methods (Shen et al. J. Proteome Res. 2011), but such samples still pose significant analysis and informatics challenges. In this work, we explored a simple approach for better utilization of high accuracy fragment ion mass measurements provided e.g. by FT MS/MS and demonstrate significant improvements relative to conventionalmore » descriptive and probabilistic scores methods. For example, at the same FDR level we identified 20-40% more peptides than SEQUEST and Mascot scoring methods using high accuracy fragment ion information (e.g., <10 mass errors) from CID, HCD, and ETD spectra. Species identified covered >90% of all those identified from SEQUEST, Mascot, and MS-GF scoring methods. Additionally, we found that the merging the different fragment spectra provided >60% more species using the UStags method than achieved previously, and enabled >1000 peptidome components to be identified from a single human blood plasma sample with a 0.6% peptide-level FDR, and providing an improved basis for investigation of potentially disease-related peptidome components.« less

  7. High-resolution droplet-based fractionation of nano-LC separations onto microarrays for MALDI-MS analysis.

    PubMed

    Küster, Simon K; Pabst, Martin; Jefimovs, Konstantins; Zenobi, Renato; Dittrich, Petra S

    2014-05-20

    We present a robust droplet-based device, which enables the fractionation of ultralow flow rate nanoflow liquid chromatography (nano-LC) eluate streams at high frequencies and high peak resolution. This is achieved by directly interfacing the separation column to a micro T-junction, where the eluate stream is compartmentalized into picoliter droplets. This immediate compartmentalization prevents peak dispersion during eluate transport and conserves the chromatographic performance. Subsequently, nanoliter eluate fractions are collected at a rate of one fraction per second on a high-density microarray to retain the separation with high temporal resolution. Chromatographic separations of up to 45 min runtime can thus be archived on a single microarray possessing 2700 sample spots. The performance of this device is demonstrated by fractionating the separation of a tryptic digest of a known protein mixture onto the microarray chip and subsequently analyzing the sample archive using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Resulting peak widths are found to be significantly reduced compared to standard continuous flow spotting technologies as well as in comparison to a conventional nano-LC-electrospray ionization-mass spectrometry interface. Moreover, we demonstrate the advantage of our high-definition nanofractionation device by applying two different MALDI matrices to all collected fractions in an alternating fashion. Since the information that is obtained from a MALDI-MS measurement depends on the choice of MALDI matrix, we can extract complementary information from neighboring spots containing almost identical composition but different matrices.

  8. Petroleomics by electrospray ionization FT-ICR mass spectrometry coupled to partial least squares with variable selection methods: prediction of the total acid number of crude oils.

    PubMed

    Terra, Luciana A; Filgueiras, Paulo R; Tose, Lílian V; Romão, Wanderson; de Souza, Douglas D; de Castro, Eustáquio V R; de Oliveira, Mirela S L; Dias, Júlio C M; Poppi, Ronei J

    2014-10-07

    Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.

  9. Fast Profiling of Natural Pigments in Different Spirulina (Arthrospira platensis) Dietary Supplements by DI-FT-ICR and Evaluation of their Antioxidant Potential by Pre-Column DPPH-UHPLC Assay.

    PubMed

    Sommella, Eduardo; Conte, Giulio Maria; Salviati, Emanuela; Pepe, Giacomo; Bertamino, Alessia; Ostacolo, Carmine; Sansone, Francesca; Prete, Francesco Del; Aquino, Rita Patrizia; Campiglia, Pietro

    2018-05-11

    Arthrospira platensis , better known as Spirulina, is one of the most important microalgae species. This cyanobacterium possesses a rich metabolite pattern, including high amounts of natural pigments. In this study, we applied a combined strategy based on Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Ultra High-Performance Liquid Chromatography (UHPLC) for the qualitative/quantitative characterization of Spirulina pigments in three different commercial dietary supplements. FT-ICR was employed to elucidate the qualitative profile of Spirulina pigments, in both direct infusion mode (DIMS) and coupled to UHPLC. DIMS showed to be a very fast (4 min) and accurate (mass accuracy ≤ 0.01 ppm) tool. 51 pigments were tentatively identified. The profile revealed different classes, such as carotenes, xanthophylls and chlorophylls. Moreover, the antioxidant evaluation of the major compounds was assessed by pre-column reaction with the DPPH radical followed by fast UHPLC-PDA separation, highlighting the contribution of single analytes to the antioxidant potential of the entire pigment fraction. β-carotene, diadinoxanthin and diatoxanthin showed the highest scavenging activity. The method took 40 min per sample, comprising reaction. This strategy could represent a valid tool for the fast and comprehensive characterization of Spirulina pigments in dietary supplements, as well as in other microalgae-based products.

  10. Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Cho, Yunju; Qi, Yulin; O'Connor, Peter B; Barrow, Mark P; Kim, Sunghwan

    2014-01-01

    In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and (13)C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses.

  11. Characterization of organic matter in cloud waters sampled at the puy de Dôme mountain using FT-ICR-MS

    NASA Astrophysics Data System (ADS)

    Bianco, A.; Chaumerliac, N.; Vaitilingom, M.; Deguillaume, L.; Bridoux, M. C.

    2017-12-01

    The chemical composition of organic matter in cloud water is highly complex. The organic species result from their dissolution from the gas phase or from the soluble fraction of the particle phase. They are also produced by aqueous phase reactivity. Several low molecular weight organic species have been quantified such as aldehydes and carboxylic acids. Recently, amino acids were also detected in cloud water and their presence is related to the presence of microorganisms. Compounds presenting similarities with high molecular weight organic substances or HULIS found in aerosols were also observed in clouds. Overall, these studies mainly focused on individual compounds or functional groups rather than the complex mixture at the molecular level. This study presents a non-targeted approach to characterize the organic matter in clouds. Samples were collected at the puy de Dôme Mountain (France). Two cloud water samples (June & July 2016) were analyzed using high resolution mass spectrometry (ESI-FT-ICR-MS 9.4T). A reversed solid phase extraction (SPE) procedure was performed to concentrate dissolved organic matter components. Composer (v.1.5.3) software was used to filter the mass spectral data, recalibrate externally the dataset and calculate all possible formulas for detected anions. The first cloud sample (June) resulted from air mass coming from the North (North Sea) while the second one (July) resulted from air mass coming from the West (Atlantic Ocean). Thus, both cloud events derived from marine air masses but were characterized by different hydrogen peroxide concentration and dissolved organic carbon content and were sampled at different periods during the day. Elemental compositions of 6487 and 3284 unique molecular species were identified in each sample. Nitrogen-containing compounds (CHNO compounds), sulfur-containing compounds (CHOS & CHNOS compounds) and other oxygen-containing compounds (CHO compounds) with molecular weights up to 800 Da were detected

  12. Nano-LC/MALDI-MS using a column-integrated spotting probe for analysis of complex biomolecule samples.

    PubMed

    Hioki, Yusaku; Tanimura, Ritsuko; Iwamoto, Shinichi; Tanaka, Koichi

    2014-03-04

    Nanoflow liquid chromatography (nano-LC) is an essential technique for highly sensitive analysis of complex biological samples, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is advantageous for rapid identification of proteins and in-depth analysis of post-translational modifications (PTMs). A combination of nano-LC and MALDI-MS (nano-LC/MALDI-MS) is useful for highly sensitive and detailed analysis in life sciences. However, the existing system does not fully utilize the advantages of each technique, especially in the interface of eluate transfer from nano-LC to a MALDI plate. To effectively combine nano-LC with MALDI-MS, we integrated a nano-LC column and a deposition probe for the first time (column probe) and incorporated it into a nano-LC/MALDI-MS system. Spotting nanoliter eluate droplets directly from the column onto the MALDI plate prevents postcolumn diffusion and preserves the chromatographic resolution. A DHB prespotted plate was prepared to suit the fabricated column probe to concentrate the droplets of nano-LC eluate. The performance of the advanced nano-LC/MALDI-MS system was substantiated by analyzing protein digests. When the system was coupled with multidimensional liquid chromatography (MDLC), trace amounts of glycopeptides that spiked into complex samples were successfully detected. Thus, a nano-LC/MALDI-MS direct-spotting system that eliminates postcolumn diffusion was constructed, and the efficacy of the system was demonstrated through highly sensitive analysis of the protein digests or spiked glycopeptides.

  13. Oligomers, organosulfates, and nitroxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Turpin, B. J.; Seitzinger, S. P.

    2008-09-01

    Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50% of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Elemental compositions of 552 unique molecular species were determined in the mass range 50 500 Da in the rainwater. Three main groups of organic compounds were identified: compounds containing carbon, hydrogen, and oxygen (CHO) only, sulfur (S) containing CHOS compounds, and S- and nitrogen containing CHONS compounds. Organic acids commonly identified in precipitation were detected, as well as linear alkylbenzene sulfonates, which are persistent pollutants commonly measured in river water, seawater, and sediments, but to our knowledge, not previously documented in atmospheric samples. Within the three main groups of compounds detected in the rainwater, oligomers, organosulfates, and nitroxy-organosulfates were identified. The majority of the compounds identified are products of atmospheric reactions and are known contributors to secondary organic aerosol (SOA) formed from gas phase, aerosol phase, and in-cloud reactions in the atmosphere. It is suggested that the large uncharacterized component of SOA is the main contributor to the large uncharacterized component of rainwater organic matter.

  14. Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry.

    PubMed

    Tao, Yeqing; Fang, Pengfei; Kim, Sunghoon; Guo, Min; Young, Nicolas L; Marshall, Alan G

    2017-01-01

    Aminoacyl-tRNA synthetases-interacting multifunctional protein3 (AIMP3/p18) is involved in the macromolecular tRNA synthetase complex via its interaction with several aminoacyl-tRNA synthetases. Recent reports reveal a novel function of AIMP3 as a tumor suppressor by accelerating cellular senescence and causing defects in nuclear morphology. AIMP3 specifically mediates degradation of mature Lamin A (LmnA), a major component of the nuclear envelope matrix; however, the mechanism of how AIMP3 interacts with LmnA is unclear. Here we report solution-phase hydrogen/deuterium exchange (HDX) for AIMP3, LmnA, and AIMP3 in association with the LmnA C-terminus. Reversed-phase LC coupled with LTQ 14.5 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results in high mass accuracy and resolving power for comparing the D-uptake profiles for AIMP3, LmnA, and their complex. The results show that the AIMP3-LmnA interaction involves one of the two putative binding sites and an adjacent novel interface on AIMP3. LmnA binds AIMP3 via its extreme C-terminus. Together these findings provide a structural insight for understanding the interaction between AIMP3 and LmnA in AIMP3 degradation.

  15. Fragmentation analysis of water-soluble atmospheric organic matter using ultrahigh-resolution FT-ICR mass spectrometry.

    PubMed

    Leclair, Jeffrey P; Collett, Jeffrey L; Mazzoleni, Lynn R

    2012-04-17

    Isolated water-soluble atmospheric organic matter (AOM) analytes extracted from radiation fogwater samples were analyzed using collision induced dissociation with ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Tandem mass analysis was performed on several mass ranges between 100 and 400 Da to characterize the functional groups of AOM species. Compounds containing nitrogen and/or sulfur were targeted because of the high number of oxygen atoms contained in their molecular formulas. Due to the large number of isobaric ions in the precursor isolation ranges, large numbers of product ions resulted from collision induced dissociation. Common neutral losses were assigned by matching the molecular formulas of the expected product ions with the detected product ions within the appropriate mass spectra. Since polar functional groups are expected to affect the hygroscopic properties of aerosols, the losses of H(2)O, CO(2), CH(3)OH, HNO(3), CH(3)NO(3), SO(3), SO(4) and combinations of these were specifically targeted. Among the 421 compounds studied, the most frequently observed neutral losses were CO(2) (54%), H(2)O (43%) and CH(3)OH (40%). HNO(3) losses were observed for 63% of the studied nitrogen containing compounds and 33% of the studied compounds containing both nitrogen and sulfur. SO(3) losses were observed for 85% of the studied sulfur containing compounds and 42% of studied compounds containing both nitrogen and sulfur. A number of molecular formulas matching those of monoterpene ozonolysis SOA were observed; they include organonitrates, organosulfates, and nitroxy-organosulfates. Overall, the results of fragmentation analysis of 400+ individual molecular precursors elucidate the complexity and multifunctional nature of the isolated water-soluble AOM.

  16. Fourier transform (FT)-artifacts and power-function resolution filter in Fourier transform mass spectrometry.

    PubMed

    Kanawati, Basem; Bader, Theresa M; Wanczek, Karl-Peter; Li, Yan; Schmitt-Kopplin, Philippe

    2017-10-15

    Peak picking algorithms in mass spectrometry face the challenge of picking the correct signals from a mass spectrum. In some cases signal wiggles (side lobes) are also chosen in the produced mass list as if they were real signals. Constraints which are defined in such algorithms do not always guarantee wiggle-free accurate mass list generation out of raw mass spectra. This problem intensifies with acquisitions, which are accompanied by longer transients. Thus, the problem represents a contemporary issue, which propagates with modern high-memory digitizers and exists in both MS and MS/MS spectra. A solariX FTMS mass spectrometer with an Infinity ICR cell (Bruker Daltonics, Bremen, Germany) coupled to a 12 Tesla magnet (Magnex, UK) was used for the experimental study. Time-domain transients of several different data point lengths 512k, 1M, 2M, 4M, 8M were obtained and were Fourier-transformed to obtain frequency spectra which show the effect of the transient truncation on sinc wiggle developments in FT-ICR-MS. MATLAB simulations were also performed to investigate the origin of the Fourier transform (FT)-artifacts. A new filter has been developed to identify and remove FT-artifacts (sinc side lobes) from both frequency and mass spectra. The newly developed filter is based on distinguishing between the FWHM of the correct frequency/mass signals and the FWHM of their corresponding wiggles. The filter draws a reliable confidence limit of resolution range, within which a correct frequency/mass signal is identified. The filter is applicable over a wide mass range of metabolic interest (100-1200 amu). The origin of FT-artifacts due to time-domain transient truncations was thoroughly investigated both experimentally and by simulations in this study. A new solution for this problem with automatic recognition and elimination of these FT-artifacts (side lobes/wiggles) is provided, which is independent of any intensity thresholds, magnetic field strengths and time

  17. Intact and Top-Down Characterization of Biomolecules and Direct Analysis Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Coupled to FT-ICR Mass Spectrometry

    PubMed Central

    Sampson, Jason S.; Murray, Kermit K.; Muddiman, David C.

    2013-01-01

    We report the implementation of an infrared laser onto our previously reported matrix-assisted laser desorption electrospray ionization (MALDESI) source with ESI post-ionization yielding multiply charged peptides and proteins. Infrared (IR)-MALDESI is demonstrated for atmospheric pressure desorption and ionization of biological molecules ranging in molecular weight from 1.2 to 17 kDa. High resolving power, high mass accuracy single-acquisition Fourier transform ion cyclotron resonance (FT-ICR) mass spectra were generated from liquid-and solid-state peptide and protein samples by desorption with an infrared laser (2.94 µm) followed by ESI post-ionization. Intact and top-down analysis of equine myoglobin (17 kDa) desorbed from the solid state with ESI post-ionization demonstrates the sequencing capabilities using IR-MALDESI coupled to FT-ICR mass spectrometry. Carbohydrates and lipids were detected through direct analysis of milk and egg yolk using both UV- and IR-MALDESI with minimal sample preparation. Three of the four classes of biological macromolecules (proteins, carbohydrates, and lipids) have been ionized and detected using MALDESI with minimal sample preparation. Sequencing of O-linked glycans, cleaved from mucin using reductive β-elimination chemistry, is also demonstrated. PMID:19185512

  18. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  19. Advanced characterisation of organic matter in oil sands and tailings sands used for land reclamation by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS)

    NASA Astrophysics Data System (ADS)

    Noah, M.; Vieth-Hillebrand, A.; Wilkes, H.

    2012-04-01

    subsequent separation into asphaltenes, aliphatic hydrocarbons, aromatic hydrocarbons, neutral nitrogen, sulphur, oxygen (NSO) compounds and carboxylic acids. The asphaltene fractions are analysed using pyrolysis-GC, all other fractions are analysed by GC-MS. Additionally Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) is used to study the chemical composition of the samples on the molecular level using different ionisation methods.

  20. Extension of the analytical window for characterizing aromatic compounds in oils using a comprehensive suite of high-resolution mass spectrometry techniques and double bond equivalence versus carbon number plot

    USGS Publications Warehouse

    Cho, Yunju; Birdwell, Justin E.; Hur, Manhoi; Lee, Joonhee; Kim, Byungjoo; Kim, Sunghwan

    2017-01-01

    In this study, comprehensive two-dimensional (2D) gas chromatography–mass spectrometry (GC–MS), atmospheric pressure photoionization (APPI) quadrupole-Orbitrap mass spectrometry (MS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to study the aromatic fractions of crude oil and oil shale pyrolysates (shale oils). The collected data were compared and combined in the double bond equivalence (DBE) versus carbon number plot to obtain a more complete understanding of the composition of the oil fractions. The numbers of peaks observed by each technique followed the order 2D GC–MS < Orbitrap MS < FT-ICR MS. The class distributions observed by Orbitrap MS and FT-ICR MS were similar to each other but different from that observed by 2D GC–MS. The DBE and carbon number distributions of the 2D GC–MS and Orbitrap MS data were similar for crude oil aromatics. The FT-ICR MS plots of DBE and carbon number showed an extended range of higher values relative to the other methods. For the aromatic fraction of an oil shale pyrolysate generated by the Fischer assay, only a few nitrogen-containing compounds were observed by 2D GC–MS but a large number of these compounds were detected by Orbitrap MS and FT-ICR MS. This comparison clearly shows that the data obtained from these three techniques can be combined to more completely characterize oil composition. The data obtained by Orbitrap MS and FT-ICR MS agreed well with one another, and the combined DBE versus carbon number plot provided more complete coverage of compounds present in the fractions. In addition, the chemical structure information provided by 2D GC–MS could be matched with the chemical formulas in the DBE versus carbon number plots, providing information not available in ultrahigh-resolution MS results. It was therefore concluded that the combination of 2D GC–MS, Orbitrap MS, and FT-ICR MS in the DBE versus carbon number space facilitates structural assignment of heavy

  1. Functional Groups and Structural Insights of Water-Soluble Organic Carbon using Ultrahigh Resolution FT-ICR Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mazzoleni, L. R.; Habib, D.; Zhao, Y.; Dalbec, M.; Samburova, V.; Hallar, G.; Zielinska, B.; Lowenthal, D.

    2013-12-01

    Water-soluble organic carbon (WSOC) is a complex mixture of thousands of organic compounds which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of WSOC is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas phase, aqueous phase and particle phase reactions contribute to pre-existing aerosol organic mass or nucleate new aerosol particles. Thus, ambient aerosols carry a complex array of WSOC components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize aerosol WSOC collected during the summer of 2010 at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Approximately 4000 molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. The observed trends indicate significant non-oxidative accretion reaction pathways for the formation of high molecular weight WSOC components closely associated with terpene ozonolysis secondary organic aerosol (SOA). The aerosol WSOC was further characterized using ultrahigh resolution tandem MS analysis with infrared multiphoton dissociation to determine the functional groups and structural properties of 1700 WSOC species up to m/z 600. Due to the complex nature of the WSOC, multiple precursor ions were simultaneously fragmented. The exact mass measurements of the precursor and product ions facilitated molecular formula assignments and matching of neutral losses. The most important neutral losses are CO2, H2O, CH3OH, HNO3, CH3NO3, SO3 and SO4. The presence and frequency of these losses indicate the type of functional groups contained in the precursor structures. Consistent with the acidic nature of WSOC compounds, the most frequently observed losses

  2. Improving Large-Scale Testing Capability by Modifying the 40- by 80-ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Mort, Kenneth W.; Soderman, Paul T.; Eckert, William T.

    1979-01-01

    Interagency studies conducted during the last several years have indicated the need to Improve full-scale testing capabilities. The studies showed that the most effective trade between test capability and facility cost was provided by re-powering the existing Ames Research Center 40- by 80-ft Wind Tunnel to Increase the maximum speed from about 100 m/s (200 knots) lo about 150 m/s (300 knots) and by adding a new 24- by 37-m (80- by 120-ft) test section powered for about a 50-m/s (100-knot) maximum speed. This paper reviews the design of the facility, a few or its capabilities, and some of its unique features.

  3. Underivatized oxysterols and nanoLC-ESI-MS: A mismatch.

    PubMed

    Roberg-Larsen, Hanne; Vesterdal, Caroline; Wilson, Steven Ray; Lundanes, Elsa

    2015-07-01

    Due to their non-charged character, liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) measurements of oxysterols are often performed after derivatization with e.g. charged Girard reagents. However, derivatization reactions are time-consuming and may require numerous steps to remove excess reagent. In addition, extensive sample handling can be associated with cholesterol autoxidation, resulting in analyte artifacts and hence false positives. Nano scale liquid chromatography in combination with electrospray-mass spectrometry (nanoLC-ESI-MS) is a powerful tool for analyzing limited samples, due to substantially increased sensitivity compared to conventional LC-ESI-MS. The signal enhancement may compensate for the poor ionization of the oxysterols; hence we have explored the possibility to quantify oxysterols without derivatization using nanoLC-ESI-MS. Non-derivatized oxysterols and nanoLC were however not compatible, due to persistent and large carry-over. This was attributed to the extended contribution of surface to volume ratio in such miniaturized systems and interactions with the materials of the nanoLC instrumentation (e.g. adsorption to the fused silica tubing). Two contemporary MS instruments (Q-Exactive™ hybrid quadrupole-Orbitrap and TSQ Quantiva™ triple quadrupole) were used. However, both the MS and MS/MS spectra of non-derivatized oxysterols were ambiguous and/or unrepeatable for both of the instruments employed. Derivatizing oxysterols is more cumbersome, but provides more selective and reliable results, and Girard derivatization+nanoLC-ESI-MS continues to be our recommended choice for measuring oxysterols in very limited samples. These investigations also indicate that extra care should be taken to remove lipids prior to nanoLC of other analytes, as adsorbed oxysterols, etc. can compromise analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sulfites and the wine metabolome.

    PubMed

    Roullier-Gall, Chloé; Hemmler, Daniel; Gonsior, Michael; Li, Yan; Nikolantonaki, Maria; Aron, Alissa; Coelho, Christian; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2017-12-15

    In a context of societal concern about food preservation, the reduction of sulfite input plays a major role in the wine industry. To improve the understanding of the chemistry involved in the SO 2 protection, a series of bottle aged Chardonnay wines made from the same must, but with different concentrations of SO 2 added at pressing were analyzed by ultrahigh resolution mass spectrometry (FT-ICR-MS) and excitation emission matrix fluorescence (EEMF). Metabolic fingerprints from FT-ICR-MS data could discriminate wines according to the added concentration to the must but they also revealed chemistry-related differences according to the type of stopper, providing a wine metabolomics picture of the impact of distinct stopping strategies. Spearman rank correlation was applied to link the statistically modeled EEMF components (parallel factor analysis (PARAFAC)) and the exact mass information from FT-ICR-MS, and thus revealing the extent of sulfur-containing compounds which could show some correlation with fluorescence fingerprints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Simultaneous determination of some artificial sweeteners in ternary formulations by FT-IR and EI-MS

    NASA Astrophysics Data System (ADS)

    Tosa, Nicoleta; Moldovan, Zaharie; Bratu, Ioan

    2012-02-01

    Artificial sweeteners are widely used in food, beverage and pharmaceutical industries all over the world. In this study some non-nutritive sweeteners such as aspartame, acesulfame-K, sodium cyclamate and sodium saccharin were simultaneously determined in ternary mixtures using FT-IR and EI-MS measurements. FT-IR method is based on direct measurements of the peak height values and area centered on 1736 cm-1, 836 cm-1, 2854 cm-1 and 1050 cm-1 for aspartame, acesulfame-K, sodium cyclamate and sodium saccharin, respectively. Mass spectrometry determinations show the characteristic peaks at m/z 91 and 262 for aspartame,m/z 43 and 163 acesulfame-K,m/z 83 and 97 for sodium cyclamate andm/z 104 and 183 for sodium saccharin. The results obtained by EI-MS in different formulations are in agreement with the FT-IR ones and provide also essential data concerning the purity grade of the components. It is concluded that FT-IR and EI-MS procedures developed in this work represent a fast, sensitive and low cost alternative in the quality control of such sweeteners in different ternary formulations.

  6. 9-Ft By 7-Ft Supersonic Wind Tunnel Nozzle Improvement Study

    NASA Technical Reports Server (NTRS)

    Paciano, Eric N.

    2014-01-01

    Engineers at the Unitary Plan Wind Tunnel at NASA Ames Research Center have recently embarked on a project focused on improving flow quality and tunnel capabilities in the 9-ft by 7-ft supersonic wind tunnel. Collaborating with Jacobs Tech Group, the project has explored potential improvements to the nozzle design using computational fluid dynamics. Preliminary predictions suggest changes to the nozzle design could significantly improve flow quality at the lower operating range (M1.5-1.8), however potential improvements in the upper operating range have yet to be realized.

  7. Analysis of the low molecular weight fraction of serum by LC-dual ESI-FT-ICR mass spectrometry: precision of retention time, mass, and ion abundance.

    PubMed

    Johnson, Kenneth L; Mason, Christopher J; Muddiman, David C; Eckel, Jeanette E

    2004-09-01

    This study quantifies the experimental uncertainty for LC retention time, mass measurement precision, and ion abundance obtained from replicate nLC-dual ESI-FT-ICR analyses of the low molecular weight fraction of serum. We used ultrafiltration to enrich the < 10-kDa fraction of components from the high-abundance proteins in a pooled serum sample derived from ovarian cancer patients. The THRASH algorithm for isotope cluster detection was applied to five replicate nLC-dual ESI-FT-ICR chromatograms. A simple two-level grouping algorithm was applied to the more than 7000 isotope clusters found in each replicate and identified 497 molecular species that appeared in at least four of the replicates. In addition, a representative set of 231 isotope clusters, corresponding to 188 unique molecular species, were manually interpreted to verify the automated algorithm and to set its tolerances. For nLC retention time reproducibility, 95% of the 497 species had a 95% confidence interval of the mean of +/- 0.9 min or less without the use of chromatographic alignment procedures. Furthermore, 95% of the 497 species had a mass measurement precision of < or = 3.2 and < or = 6.3 ppm for internally and externally calibrated spectra, respectively. Moreover, 95% of replicate ion abundance measurements, covering an ion abundance range of approximately 3 orders of magnitude, had a coefficient of variation of less than 62% without using any normalization functions. The variability of ion abundance was independent of LC retention time, mass, and ion abundance quartile. These measures of analytical reproducibility establish a statistical rationale for differentiating healthy and disease patient populations for the elucidation of biomarkers in the low molecular fraction of serum. Copyright 2004 American Chemical Society

  8. Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification.

    PubMed

    Ohta, Daisaku; Kanaya, Shigehiko; Suzuki, Hideyuki

    2010-02-01

    Metabolomics, as an essential part of genomics studies, intends holistic understanding of metabolic networks through simultaneous analysis of a myriad of both known and unknown metabolites occurring in living organisms. The initial stage of metabolomics was designed for the reproducible analyses of known metabolites based on their comparison to available authentic compounds. Such metabolomics platforms were mostly based on mass spectrometry (MS) technologies enabled by a combination of different ionization methods together with a variety of separation steps including LC, GC, and CE. Among these, Fourier-transform ion cyclotron resonance MS (FT-ICR/MS) is distinguished from other MS technologies by its ultrahigh resolution power in mass to charge ratio (m/z). The potential of FT-ICR/MS as a distinctive metabolomics tool has been demonstrated in nontargeted metabolic profiling and functional characterization of novel genes. Here, we discuss both the advantages and difficulties encountered in the FT-ICR/MS metabolomics studies.

  9. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    PubMed

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  10. High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions.

    PubMed

    Mazur, Dmitry M; Harir, Mourad; Schmitt-Kopplin, Philippe; Polyakova, Olga V; Lebedev, Albert T

    2016-07-01

    High field Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry analysis of eight snow samples from Moscow city allowed us to identify more than 2000 various elemental compositions corresponding to regional air pollutants. The hierarchical cluster analysis (HCA) of the data showed good concordance of three main groups of samples with the main wind directions. The North-West group (A1) is represented by several homologous CHOS series of aliphatic organic aerosols. They may form as a result of enhanced photochemical reactions including oxidation of hydrocarbons with sulfonations due to higher amount of SO2 emissions in the atmosphere in this region. Group A2, corresponding to the South-East part of Moscow, contains large amount of oxidized hydrocarbons of different sources that may form during oxidation in atmosphere. These hydrocarbons appear correlated to emissions from traffic, neighboring oil refinery, and power plants. Another family of compounds specific for this region involves CHNO substances formed during oxidation processes including NOx and NO3 radical since emissions of NOx are higher in this part of the city. Group A3 is rich in CHO type of compounds with high H/C and low O/C ratios, which is characteristic of oxidized hydrocarbon-like organic aerosol. CHNO types of compounds in A3 group are probably nitro derivatives of condensed hydrocarbons such as PAH. This non-targeted profiling revealed site specific distribution of pollutants and gives a chance to develop new strategies in air quality control and further studies of Moscow environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Investigation of Cu-, Zn- and Fe-containing human brain proteins using isotopic-enriched tracers by LA-ICP-MS and MALDI-FT-ICR-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Becker, J. Sabine

    2005-04-01

    Identification of metal-containing proteins and determination of Cu, Fe, Zn concentration in very small protein volumes is of increasing importance in protein research. Proteins containing metal ions were analyzed directly and simultaneously in separated protein spots in two-dimensional gels (2D gels) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as an element mass spectrometric technique. In order to study the formation of proteins containing Cu, Zn and Fe in a human brain sample, isotopic-enriched tracers (54Fe, 65Cu and 67Zn) were doped to two-dimensional gels of separated Alzheimer-diseased brain proteins after two-dimensional (2D) gel electrophoresis. The protein spots were screened systematically by LA-ICP-MS with respect to these metal ion intensities. 54Fe/56Fe, 65Cu/63Cu and 67Zn/64Zn isotope ratios in metal-containing proteins were measured directly by LA-ICP-MS. The isotope ratio measurements obtained by LA-ICP-MS indicate certain protein spots with a natural isotope composition of Cu, Zn and/or Fe. These proteins already contained the metal investigated in the original proteins and are stable enough to survive the reducing conditions during gel electrophoresis. On the other hand, proteins with a changed isotope ratio of metals in comparison to the isotope ratio in nature demonstrate the accumulation of tracers within the protein complexes during the tracer experiments in 2D gels. The identification of singular protein spots from Alzheimer-diseased brain separated by 2D gel electrophoresis was attempted by biopolymer mass spectrometry using MALDI-FTICR-MS after excision from the 2D gel and tryptic digestion.

  12. Nano-LC FTICR tandem mass spectrometry for top-down proteomics: routine baseline unit mass resolution of whole cell lysate proteins up to 72 kDa.

    PubMed

    Tipton, Jeremiah D; Tran, John C; Catherman, Adam D; Ahlf, Dorothy R; Durbin, Kenneth R; Lee, Ji Eun; Kellie, John F; Kelleher, Neil L; Hendrickson, Christopher L; Marshall, Alan G

    2012-03-06

    Current high-throughput top-down proteomic platforms provide routine identification of proteins less than 25 kDa with 4-D separations. This short communication reports the application of technological developments over the past few years that improve protein identification and characterization for masses greater than 25 kDa. Advances in separation science have allowed increased numbers of proteins to be identified, especially by nanoliquid chromatography (nLC) prior to mass spectrometry (MS) analysis. Further, a goal of high-throughput top-down proteomics is to extend the mass range for routine nLC MS analysis up to 80 kDa because gene sequence analysis predicts that ~70% of the human proteome is transcribed to be less than 80 kDa. Normally, large proteins greater than 50 kDa are identified and characterized by top-down proteomics through fraction collection and direct infusion at relatively low throughput. Further, other MS-based techniques provide top-down protein characterization, however at low resolution for intact mass measurement. Here, we present analysis of standard (up to 78 kDa) and whole cell lysate proteins by Fourier transform ion cyclotron resonance mass spectrometry (nLC electrospray ionization (ESI) FTICR MS). The separation platform reduced the complexity of the protein matrix so that, at 14.5 T, proteins from whole cell lysate up to 72 kDa are baseline mass resolved on a nano-LC chromatographic time scale. Further, the results document routine identification of proteins at improved throughput based on accurate mass measurement (less than 10 ppm mass error) of precursor and fragment ions for proteins up to 50 kDa.

  13. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    PubMed Central

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  14. Characterization and differentiation of high energy cyclic organic peroxides by GC/FT-IR, GC-MS, FT-IR, and Raman microscopy

    NASA Astrophysics Data System (ADS)

    Pena, Alvaro J.; Pacheco-Londono, Leonardo; Figueroa, Javier; Rivera-Montalvo, Luis A.; Roman-Velazquez, Felix R.; Hernandez-Rivera, Samuel P.

    2005-05-01

    The characterization of Tetracetone Tetraperoxide (TRATRP), Triacetone Triperoxide (TATP), Diacetone Diperoxide (DADP), Tricyclohexylidene Triperoxide and Dibenzo Diperoxide using GC-MS, GC-FTIR, FTIR, FT-NMR and Raman Spectroscopy is reported. These compounds were synthesized, purified and characterized in the laboratory in order to develop methodologies for their trace detection. During this study, TATP has been synthesized by different methods obtaining high purity and good yields, even using common household products. DADP synthetic routes reported in the literature were verified. The methods described, including those that produce mixtures with TATP and other peroxides forms were also tested. This study will also focused in the preparation of other cyclic peroxides, including Hexamethelene Triperoxide Diamine (HMTD) and different forms of cyclic peroxides from ketones. This issue of thermodynamic versus kinetic control of secondary products of all syntheses and the effect of temperature in the distribution sub products of the syntheses was also addressed. A vibrational differentiation study of was carried out. Differences were found computationally in the υ(O-O), υ(C-O), δ(CH3-C) and δ(C-O) for Raman and IR bands and retention time and fragment patron for GC-MS and GC-FT-IR.

  15. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification.

    PubMed

    Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes

    2018-02-01

    Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.

  16. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins.

    PubMed

    Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique

    2016-03-24

    It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks ("seeds") for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn's largest moon, Titan.

  17. Label-Free Relative Quantitation of Isobaric and Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron Resonance Top-Down MS/MS.

    PubMed

    Dang, Xibei; Singh, Amar; Spetman, Brian D; Nolan, Krystal D; Isaacs, Jennifer S; Dennis, Jonathan H; Dalton, Stephen; Marshall, Alan G; Young, Nicolas L

    2016-09-02

    Histone variants are known to play a central role in genome regulation and maintenance. However, many variants are inaccessible by antibody-based methods or bottom-up tandem mass spectrometry due to their highly similar sequences. For many, the only tractable approach is with intact protein top-down tandem mass spectrometry. Here, ultra-high-resolution FT-ICR MS and MS/MS yield quantitative relative abundances of all detected HeLa H2A and H2B isobaric and isomeric variants with a label-free approach. We extend the analysis to identify and relatively quantitate 16 proteoforms from 12 sequence variants of histone H2A and 10 proteoforms of histone H2B from three other cell lines: human embryonic stem cells (WA09), U937, and a prostate cancer cell line LaZ. The top-down MS/MS approach provides a path forward for more extensive elucidation of the biological role of many previously unstudied histone variants and post-translational modifications.

  18. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  19. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins

    PubMed Central

    Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique

    2016-01-01

    It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks (“seeds”) for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn’s largest moon, Titan. PMID:27023520

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco

    High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, butmore » requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.« less

  1. Forensic Drug Identification, Confirmation, and Quantification Using Fully Integrated Gas Chromatography with Fourier Transform Infrared and Mass Spectrometric Detection (GC-FT-IR-MS).

    PubMed

    Lanzarotta, Adam; Lorenz, Lisa; Voelker, Sarah; Falconer, Travis M; Batson, JaCinta S

    2018-05-01

    This manuscript is a continuation of a recent study that described the use of fully integrated gas chromatography with direct deposition Fourier transform infrared detection and mass spectrometric detection (GC-FT-IR-MS) to identify and confirm the presence of sibutramine and AB-FUBINACA. The purpose of the current study was to employ the GC-FT-IR portion of the same instrument to quantify these compounds, thereby demonstrating the ability to identify, confirm, and quantify drug substances using a single GC-FT-IR-MS unit. The performance of the instrument was evaluated by comparing quantitative analytical figures of merit to those measured using an established, widely employed method for quantifying drug substances, high performance liquid chromatography with ultraviolet detection (HPLC-UV). The results demonstrated that GC-FT-IR was outperformed by HPLC-UV with regard to sensitivity, precision, and linear dynamic range (LDR). However, sibutramine and AB-FUBINACA concentrations measured using GC-FT-IR were not significantly different at the 95% confidence interval compared to those measured using HPLC-UV, which demonstrates promise for using GC-FT-IR as a semi-quantitative tool at the very least. The most significant advantage of GC-FT-IR compared to HPLC-UV is selectivity; a higher level of confidence regarding the identity of the analyte being quantified is achieved using GC-FT-IR. Additional advantages of using a single GC-FT-IR-MS instrument for identification, confirmation, and quantification are efficiency, increased sample throughput, decreased consumption of laboratory resources (solvents, chemicals, consumables, etc.), and thus cost.

  2. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.

    PubMed

    Özsin, Gamzenur; Pütün, Ayşe Eren

    2017-06-01

    The objective of this study was to identify the pyrolysis of different bio-waste produced by food processing industry in a comprehensible manner. For this purpose, pyrolysis behaviors of chestnut shells (CNS), cherry stones (CS) and grape seeds (GS) were investigated by thermogravimetric analysis (TGA) combined with a Fourier-transform infrared (FT-IR) spectrometer and a mass spectrometer (MS). In order to make available theoretical groundwork for biomass pyrolysis, activation energies were calculated with the help of four different model-free kinetic methods. The results are attributed to the complex reaction schemes which imply parallel, competitive and complex reactions during pyrolysis. During pyrolysis, the evolution of volatiles was also characterized by FT-IR and MS. The main evolved gases were determined as H 2 O, CO 2 and hydrocarbons such as CH 4 and temperature dependent profiles of the species were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evidence for electron-based ion generation in radio-frequency ionization.

    PubMed

    Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2016-01-01

    Radio-frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi-volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive- and negative-ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4-T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. We show that RF-generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6 F6 ) molecules to generate C6 F6 (●-) . Intensity of observed C6 F6 (●-) species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post-RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) for post-RF FT-ICR MS agreed with the previously reported value (1.60 (±0.30) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) from low-pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF-generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    PubMed

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  5. Observation of CO2 and solvent adduct ions during negative mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of monohydric alcohols.

    PubMed

    Zhou, Xibin; Zhang, Yahe; Zhao, Suoqi; Hsu, Chang Samuel; Shi, Quan

    2013-12-15

    Monohydric alcohols are common in natural products, bio-oils, and medicine. We have found that monohydric alcohols can form O3 (ions containing three oxygen atoms) and O4 adduct ions in negative electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which would significantly affect the composition analysis of alcohols, especially in a complex mixture. It is necessary to study the reaction pathways and the method to eliminate or reduce the 'artifact' adducts. Octadecanol, cholesterol, squalanol and two complex monohydric alcohol mixtures were selected as model compounds. These samples were subjected to negative ion ESI FT-ICR MS analysis. The composition and formation mechanism of adducts were studied by the ultrahigh-resolution accurate mass measurement for elemental composition, along with the MS(2) isolation and collision-induced dissociation (CID) experiments for structural determination. The reaction pathway of O3 adduct formation is the coupling of a monohydric alcohol ion with a CO2 to form a stable O3 ionic species by likely a covalent bond (source of CO2 is not clear). The O4 species are formed by O3 ionic species adducted with an alcohol molecule of the solvent, such as methanol or ethanol, by likely a hydrogen bond. These adduct ions could be eliminated or reduced by increasing collision energy. However, excessive collision energy would fragment monohydric alcohol ions. The formation mechanisms of O3 and O4 adducts from monohydric alcohols in negative ion ESI FT-ICR MS were proposed. The solvent adduction effects can be eliminated or reduced by optimizing the collision energy of CID in FT-ICR MS. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aizikov, Konstantin; Lin, Tzu-Yung; Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in {approx}1 x 10{sup -8} mbar vacuum. The rangemore » of motion is set to 100 mm x 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The ''oversampling'' MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.« less

  7. Plasma protein absolute quantification by nano-LC Q-TOF UDMSE for clinical biomarker verification

    PubMed Central

    ILIES, MARIA; IUGA, CRISTINA ADELA; LOGHIN, FELICIA; DHOPLE, VISHNU MUKUND; HAMMER, ELKE

    2017-01-01

    Background and aims Proteome-based biomarker studies are targeting proteins that could serve as diagnostic, prognosis, and prediction molecules. In the clinical routine, immunoassays are currently used for the absolute quantification of such biomarkers, with the major limitation that only one molecule can be targeted per assay. The aim of our study was to test a mass spectrometry based absolute quantification method for the verification of plasma protein sets which might serve as reliable biomarker panels for the clinical practice. Methods Six EDTA plasma samples were analyzed after tryptic digestion using a high throughput data independent acquisition nano-LC Q-TOF UDMSE proteomics approach. Synthetic Escherichia coli standard peptides were spiked in each sample for the absolute quantification. Data analysis was performed using ProgenesisQI v2.0 software (Waters Corporation). Results Our method ensured absolute quantification of 242 non redundant plasma proteins in a single run analysis. The dynamic range covered was 105. 86% were represented by classical plasma proteins. The overall median coefficient of variation was 0.36, while a set of 63 proteins was found to be highly stable. Absolute protein concentrations strongly correlated with values reviewed in the literature. Conclusions Nano-LC Q-TOF UDMSE proteomic analysis can be used for a simple and rapid determination of absolute amounts of plasma proteins. A large number of plasma proteins could be analyzed, while a wide dynamic range was covered with low coefficient of variation at protein level. The method proved to be a reliable tool for the quantification of protein panel for biomarker verification in the clinical practice. PMID:29151793

  8. Evaluating Changes in the Molecular Composition and Optical Properties of Pacific Ocean Dissolved Organic Matter (DOM) caused by Borodeuteride Reduction

    NASA Astrophysics Data System (ADS)

    Bianca, M.; Blough, N. V.; Del Vecchio, R.; Cartisano, C. M.; Schmitt-Kopplin, P.; Gonsior, M.

    2016-02-01

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS) is a powerful tool to obtain detailed molecular information for complex DOM and was combined in this study with optical measurements to determine the molecular fingerprint of Pacific Ocean DOM before and after borodeuteride reduction. Selective chemical reductions, using sodium borodeuteride, has been previously demonstrated to produce unique mass markers of ketone and aldehyde-containing species in ultrahigh resolution mass spectrometry. These functional groups have also been proposed to be responsible for chromophoric dissolved organic matter (CDOM) long wavelength optical properties through charge transfer interactions and their chemical reduction has shown to irreversibly alter the CDOM optical properties. ESI-FT-ICR MS coupled with borodeuteride reduction was thus applied to reference material, Suwannee River Fulvic Acid (SRFA), and CDOM extracts collected from Station ALOHA, in the North Pacific Ocean during December 2014. Results showed distinct differences between samples collected at different depths, indicating that the combination of FT-ICR-MS with borodeuteride reduction is a useful analytical tool to further understand marine DOM molecular composition. When this method is combined with optical measurements, specific insights into the CDOM composition can also be obtained.

  9. Metabolite profiling and fingerprinting of Suillus species (Basidiomycetes) by electrospray mass spectrometry.

    PubMed

    Heinke, Ramona; Schöne, Pia; Arnold, Norbert; Wessjohann, Ludger; Schmidt, Jürgen; Schmidt, Jürgen

    2014-01-01

    The genus Suillus is known for the occurrence of a series of prenylated phenols and boviquinones. The extracts of four different Suillus species [S. bovinus, S. granulatus, S. tridentinus and S.variegatus) were investigated by using rapid ultra-performance Liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS) and direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). While direct infusion ESI-FT-ICR mass spectra give a fast overview concerning the elemental compositions of the compounds and, therefore, hints to the main metabolites, UPLC/ESI-tandem mass spectrometry is shown to be a useful tool for their identification. A principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on the UPLC/ESI-MS clearly showed that the metabolite profiles can be used not only for the identification and classification of such fungi but also as a sophisticated and powerful tool for the chemotaxonomy of fungi. Furthermore, a clear discrimination of various types of biological samples (fruiting bodies versus mycelial cultures) is also possible. The orthogonal partial least squares (OPLS) two-class models of both UPLC/ESI-MS and ESI-FT-ICR-MS possess a clear differentiation of two compared Suillus species representing the between class variation and the within class variation. Based on generated S-plots and Loading plots, statistically significant metabolites could be identified as potential biomarker for one species.

  10. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less

  11. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  12. A new algorithm using cross-assignment for label-free quantitation with LC-LTQ-FT MS.

    PubMed

    Andreev, Victor P; Li, Lingyun; Cao, Lei; Gu, Ye; Rejtar, Tomas; Wu, Shiaw-Lin; Karger, Barry L

    2007-06-01

    A new algorithm is described for label-free quantitation of relative protein abundances across multiple complex proteomic samples. Q-MEND is based on the denoising and peak picking algorithm, MEND, previously developed in our laboratory. Q-MEND takes advantage of the high resolution and mass accuracy of the hybrid LTQ-FT MS mass spectrometer (or other high-resolution mass spectrometers, such as a Q-TOF MS). The strategy, termed "cross-assignment", is introduced to increase substantially the number of quantitated proteins. In this approach, all MS/MS identifications for the set of analyzed samples are combined into a master ID list, and then each LC-MS run is searched for the features that can be assigned to a specific identification from that master list. The reliability of quantitation is enhanced by quantitating separately all peptide charge states, along with a scoring procedure to filter out less reliable peptide abundance measurements. The effectiveness of Q-MEND is illustrated in the relative quantitative analysis of Escherichia coli samples spiked with known amounts of non-E. coli protein digests. A mean quantitation accuracy of 7% and mean precision of 15% is demonstrated. Q-MEND can perform relative quantitation of a set of LC-MS data sets without manual intervention and can generate files compatible with the Guidelines for Proteomic Data Publication.

  13. Analysis of archaeological triacylglycerols by high resolution nanoESI, FT-ICR MS and IRMPD MS/MS: Application to 5th century BC-4th century AD oil lamps from Olbia (Ukraine)

    NASA Astrophysics Data System (ADS)

    Garnier, Nicolas; Rolando, Christian; Høtje, Jakob Munk; Tokarski, Caroline

    2009-07-01

    This work presents the precise identification of triacylglycerols (TAGs) extracted from archaeological samples using a methodology based on nanoelectrospray and Fourier transform mass spectrometry. The archaeological TAG identification needs adapted sample preparation protocols to trace samples in advanced degradation state. More precisely, the proposed preparation procedure includes extraction of the lipid components from finely grinded ceramic using dichloromethane/methanol mixture with additional ultrasonication treatment, and TAG purification by solid phase extraction on a diol cartridge. Focusing on the analytical approach, the implementation of "in-house" species-dependent TAG database was investigated using MS and InfraRed Multiphoton Dissociation (IRMPD) MS/MS spectra; several vegetal oils, dairy products and animal fats were studied. The high mass accuracy of the Fourier transform analyzer ([Delta]m below 2.5 ppm) provides easier data interpretation, and allows distinction between products of different origins. In details, the IRMPD spectra of the lithiated TAGs reveal fragmentation reactions including loss of free neutral fatty acid and loss of fatty acid as [alpha],[beta]-unsaturated moieties. Based on the developed preparation procedure and on the constituted database, TAG extracts from 5th century BC to 4th century AD Olbia lamps were analyzed. The structural information obtained succeeds in identifying that bovine/ovine fats were used as fuel used in these archaeological Olbia lamps.

  14. Experimental Investigations of the Internal Energy of Molecules Evaporated via Laser-induced Acoustic Desorption into a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer (LIAD/FT-ICR)

    PubMed Central

    Shea, Ryan C.; Petzold, Christopher J.; Liu, Ji-ang; Kenttämaa, Hilkka I.

    2008-01-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR), was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity (GB) values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kcal/mol. Chemical ionization with a series of proton transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, val-pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have less internal energy than those evaporated via SALD. PMID:17263513

  15. Structural characterization of arginine-vasopressin and lysine-vasopressin by Fourier- transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation.

    PubMed

    Bianco, Giuliana; Battista, Fabio; Buchicchio, Alessandro; Amarena, Concetta G; Schmitt-Kopplin, Philippe; Guerrieri, Antonio

    2015-01-01

    Arginine-vasopressin (AVP) and lysine-vasopressin (LVP) were analyzed by reversed-phase liquid chromatography/mass spectrometry (LC-MS) using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) electrospray ionization (ESI) in the positive ion mode. LVP and AVP exhibited the protonated adduct [M+H](+) as the predominant ion at m/z 1056.43965 and at m/z 1084.44561, respectively. Infrared multiphoton dissociation (IRMPD), using a CO(2) laser source at a wavelength of 10.6 μm, was applied to protonated vasopressin molecules. The IRMPD mass spectra presented abundant mass fragments essential for a complete structural information. Several fragment ions, shared between two target molecules, are discussed in detail. Some previously unpublished fragments were identified unambiguously utilizing the high resolution and accurate mass information provided by the FT-ICR mass spectrometer. The opening of the disulfide loop and the cleavage of the peptide bonds within the ring were observed even under low-energy fragmentation conditions. Coupling the high-performance FT-ICR mass spectrometer with IRMPD as a contemporary fragmentation technique proved to be very promising for the structural characterization of vasopressin.

  16. Top-down approach for the direct characterization of low molecular weight heparins using LC-FT-MS.

    PubMed

    Li, Lingyun; Zhang, Fuming; Zaia, Joseph; Linhardt, Robert J

    2012-10-16

    Low molecular heparins (LMWHs) are structurally complex, heterogeneous, polydisperse, and highly negatively charged mixtures of polysaccharides. The direct characterization of LMWH is a major challenge for currently available analytical technologies. Electrospray ionization (ESI) liquid chromatography-mass spectrometry (LC-MS) is a powerful tool for the characterization complex biological samples in the fields of proteomics, metabolomics, and glycomics. LC-MS has been applied to the analysis of heparin oligosaccharides, separated by size exclusion, reversed phase ion-pairing chromatography, and chip-based amide hydrophilic interaction chromatography (HILIC). However, there have been limited applications of ESI-LC-MS for the direct characterization of intact LMWHs (top-down analysis) due to their structural complexity, low ionization efficiency, and sulfate loss. Here we present a simple and reliable HILIC-Fourier transform (FT)-ESI-MS platform to characterize and compare two currently marketed LMWH products using the top-down approach requiring no special sample preparation steps. This HILIC system relies on cross-linked diol rather than amide chemistry, affording highly resolved chromatographic separations using a relatively high percentage of acetonitrile in the mobile phase, resulting in stable and high efficiency ionization. Bioinformatics software (GlycReSoft 1.0) was used to automatically assign structures within 5-ppm mass accuracy.

  17. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production.

    PubMed

    Lavonen, E E; Kothawala, D N; Tranvik, L J; Gonsior, M; Schmitt-Kopplin, P; Köhler, S J

    2015-11-15

    Absorbance, 3D fluorescence and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were used to explain patterns in the removal of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) at the molecular level during drinking water production at four large drinking water treatment plants in Sweden. When dissolved organic carbon (DOC) removal was low, shifts in the dissolved organic matter (DOM) composition could not be detected with commonly used DOC-normalized parameters (e.g. specific UV254 absorbance - SUVA), but was clearly observed by using differential absorbance and fluorescence or ESI-FT-ICR-MS. In addition, we took a novel approach by identifying how optical parameters were correlated to the elemental composition of DOM by using rank correlation to connect optical properties to chemical formulas assigned to mass peaks from FT-ICR-MS analyses. Coagulation treatment selectively removed FDOM at longer emission wavelengths (450-600 nm), which significantly correlated with chemical formulas containing oxidized carbon (average carbon oxidation state ≥ 0), low hydrogen to carbon ratios (H/C: average ± SD = 0.83 ± 0.13), and abundant oxygen-containing functional groups (O/C = 0.62 ± 0.10). Slow sand filtration was less efficient in removing DOM, yet selectively targeted FDOM at shorter emission wavelengths (between 300 and 450 nm), which commonly represents algal rather than terrestrial sources. This shorter wavelength FDOM correlated with chemical formulas containing reduced carbon (average carbon oxidation state ≤ 0), with relatively few carbon-carbon double bonds (H/C = 1.32 ± 0.16) and less oxygen per carbon (O/C = 0.43 ± 0.10) than those removed during coagulation. By coupling optical approaches with FT-ICR-MS to characterize DOM, we were for the first time able to confirm the molecular composition of absorbing and fluorescing DOM selectively targeted during drinking

  18. Characterization of ANFO explosive by high accuracy ESI(±)-FTMS with forensic identification on real samples by EASI(-)-MS.

    PubMed

    Hernandes, Vinicius Veri; Franco, Marcos Fernado; Santos, Jandyson Machado; Melendez-Perez, Jose J; de Morais, Damila Rodrigues; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Zacca, Jorge Jardim; Logrado, Lucio Paulo Lima; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-04-01

    Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Glycoproteomics of cerebrospinal fluid in neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Sihlbom, Carina; Davidsson, Pia; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Cerebrospinal fluid (CSF) from individual patients with Alzheimer's disease (AD) was separated by narrow range two-dimensional (2D) gel electrophoresis and analyzed by electrospray FT-ICR MS in this glycoproteomic study. Because several altered proteins in the comparison between AD patients and healthy controls individuals are isoforms of glycoproteins, it is important to determine if the modifying glycans are also altered. FT-ICR MS and fragmentation of glycopeptides with infrared multiphoton dissociation (IRMPD) offers abundant fragment ions through breakage at the glycosidic linkages with excellent mass accuracy, which facilitates the structural determination of the site-specific N-linked glycosylation. We present results from a structural comparison of proteins from three AD patients and three control individuals of different glycosylated isomers of [alpha]-1-antitrypsin, [beta]-trace and apolipoprotein J.

  20. Biomarkers to Assess Possible Biological Effects on Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars

    DTIC Science & Technology

    2013-09-30

    ion modes. The resulting chromatograms were then processed using XCMS (alignment and peak picking ). The data were processed with in-house...UHPLC liquid chromatography Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry ( MS ). A standard method was developed for rapid analysis...extraction protocols and then implemented LC- MS / MS analyses on our Thermo Fisher Scientific TSQ Vantage triple quadrupole mass spectrometer. This

  1. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

    PubMed

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D; Wolff, Jeremy J; Somogyi, Árpád; Pedder, Randall E; Quintyn, Royston S; Morrison, Lindsay J; Easterling, Michael L; Paša-Tolić, Ljiljana; Wysocki, Vicki H

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  2. Automatic and rapid identification of glycopeptides by nano-UPLC-LTQ-FT-MS and proteomic search engine.

    PubMed

    Giménez, Estela; Gay, Marina; Vilaseca, Marta

    2017-01-30

    Here we demonstrate the potential of nano-UPLC-LTQ-FT-MS and the Byonic™ proteomic search engine for the separation, detection, and identification of N- and O-glycopeptide glycoforms in standard glycoproteins. The use of a BEH C18 nanoACQUITY column allowed the separation of the glycopeptides present in the glycoprotein digest and a baseline-resolution of the glycoforms of the same glycopeptide on the basis of the number of sialic acids. Moreover, we evaluated several acquisition strategies in order to improve the detection and characterization of glycopeptide glycoforms with the maximum number of identification percentages. The proposed strategy is simple to set up with the technology platforms commonly used in proteomic labs. The method allows the straightforward and rapid obtention of a general glycosylated map of a given protein, including glycosites and their corresponding glycosylated structures. The MS strategy selected in this work, based on a gas phase fractionation approach, led to 136 unique peptides from four standard proteins, which represented 78% of the total number of peptides identified. Moreover, the method does not require an extra glycopeptide enrichment step, thus preventing the bias that this step could cause towards certain glycopeptide species. Data are available via ProteomeXchange with identifier PXD003578. We propose a simple and high-throughput glycoproteomics-based methodology that allows the separation of glycopeptide glycoforms on the basis of the number of sialic acids, and their automatic and rapid identification without prior knowledge of protein glycosites or type and structure of the glycans. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Jacqueline M.; Sudasinghe, Nilusha M.; Albrecht, Karl O.

    We apply Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for direct characterization of iron-porphyrins in hydrothermal liquefaction (HTL) biocrude oils derived from two algae: Tetraselmis sp. and cyanobacteria. The ironporphyrin compounds are shown to cause catalyst bed plugging during hydroprocessing due to iron deposition. Inductively-coupled plasma optical emission spectrometry (ICPOES) was utilized for iron quantitation in the plugged catalyst beds formed through hydroprocessing of the two HTL biocrudes and identifies an enrichment of iron in the upper five centimeters of the catalyst bed for Tetraselmis sp. (Fe=100,728 ppm) and cyanobacteria (Fe=115,450 ppm). Direct infusion FT-ICR MS analysis ofmore » the two HTL biocrudes with optimized instrument conditions facilitates rapid screening and identification of iron-porphyrins without prior chromatographic separation. With FT-ICR MS we identify 138 unique iron-porphyrin compounds in the two HTL biocrudes that are structurally similar to metal-porphyrins (e.g. Ni and V) observed in petroleum. No ironporphyrins are observed in the cyanobacteria HTL biocrude after hydroprocessing, which indicates that iron-porphyrin structures in the HTL biocrude are degraded during hydroprocessing. Hydrodemetallization reactions that occur through hydroprocessing of HTL biocrudes could be responsible for the decomposition of iron-porphyrin structures leading to metal deposition in the catalyst bed that result in catalyst deactivation and bed plugging, and must be addressed for effective upgrading of algal HTL biocrudes.« less

  4. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  5. Chemical profile of pineapple cv. Vitória in different maturation stages using electrospray ionization mass spectrometry.

    PubMed

    Ogawa, Elizângela M; Costa, Helber B; Ventura, José A; Caetano, Luiz Cs; Pinto, Fernanda E; Oliveira, Bruno G; Barroso, Maria Eduarda S; Scherer, Rodrigo; Endringer, Denise C; Romão, Wanderson

    2018-02-01

    Pineapple is the fruit of Ananas comosus var. comosus plant, being cultivated in tropical areas and has high energy content and nutritional value. Herein, 30 samples of pineapple cv. Vitória were analyzed as a function of the maturation stage (0-5) and their physico-chemical parameters monitored. In addition, negative-ion mode electrospray ionization mass spectrometry [ESI(-)FT-ICR MS] was used to identify and semi-quantify primary and secondary metabolites present in the crude and phenolic extracts of pineapple, respectively. Physico-chemical tests show an increase in the total soluble solids (TSS) values and in the TSS/total titratable acidity ratio as a function of the maturity stage, where a maximum value was observed in stage 3 (¾ of the fruit is yellow, which corresponds to the color of the fruit peel). ESI(-)FT-ICR MS analysis for crude extracts showed the presence mainly of sugars as primary metabolites present in deprotonated molecule form ([M - H] - and [2 M - H] - ions) whereas, for phenolic fractions, 11 compounds were detected, being the most abundant in the third stage of maturation. This behavior was confirmed by quantitative analysis of total polyphenols. ESI-FT-ICR MS was efficient in identifying primary (carbohydrates and organic acids) and secondary metabolites (13 phenolic compounds) presents in the crude and phenolic extract of the samples, respectively. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Recorded ICR Overview Presentations

    EPA Pesticide Factsheets

    This presentation provides a brief overview of the applicability of the EPA’s Plywood and Composite Wood Products Information Collection Request, or “ICR,” for facilities that produce kiln‐dried lumber.

  7. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches.

    PubMed

    Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2010-05-01

    To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel-based and a LC MS/MS-based proteomics method. Two-day-old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two-phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel-based proteomics, four and eight protein spots were identified as up- and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up- and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low-abundance proteins could be identified by the LC MS/MS-based method. Three homologues of plasma membrane H(+)-ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H(+)-ATPase protein.

  8. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry.

    PubMed

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Zheng, Hongdie; Yang, Min

    2014-03-18

    Brominated disinfection byproducts (Br-DBPs), formed from the reaction of disinfectant(s) with natural organic matter in the presence of bromide in raw water, are generally more cytotoxic and genotoxic than their chlorinated analogues. To date, only a few Br-DBPs in drinking water have been identified, while a significant portion of Br-DBPs in drinking water is still unknown. In this study, negative ion electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown Br-DBPs in artificial drinking water. In total, 441 formulas for one-bromine-containing products and 37 formulas for two-bromine-containing products, most of which had not been previously reported, were detected in the chlorinated sample. Most Br-DBPs have corresponding chlorine-containing analogues with identical CHO composition. In addition, on-resonance collision-induced dissociation (CID) of single ultrahigh resolved bromine containing mass peaks was performed in the ICR cell to isolate single bromine-containing components in a very complex natural organic matter spectrum and provide structure information. Relatively abundant neutral loss of CO2 was observed in MS-MS spectra, indicating that the unknown Br-DBPs are rich in carboxyl groups. The results demonstrate that the ESI FT-ICR MS method could provide valuable molecular composition and structure information on unknown Br-DBPs.

  9. Ions generated from uranyl nitrate solutions by electrospray ionization (ESI) and detected with Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometry.

    PubMed

    Pasilis, Sofie; Somogyi, Arpád; Herrmann, Kristin; Pemberton, Jeanne E

    2006-02-01

    Electrospray ionization (ESI) of uranyl nitrate solutions generates a wide variety of positively and negatively charged ions, including complex adducts of uranyl ions with methoxy, hydroxy, and nitrate ligands. In the positive ion mode, ions detected by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry are sensitive to instrumental tuning parameters such as quadrupole operating frequency and trapping time. Positive ions correspond to oligomeric uranyl nitrate species that can be characterized as having a general formula of [(UO(2))(n)(A)(m)(CH(3)OH)(s)](+) or [(UO(2))(n)(O)(A)(m)(CH(3)OH)(s)](+) with n = 1-4, m = 1-7, s = 0 or 1, and A = OH, NO(3), CH(3)O or a combination of these, although the formation of NO(3)-containing species is preferred. In the negative ion mode, complexes of the form [(UO(2))(NO(3))(m)](-) (m = 1-3) are detected, although the formation of the oxo-containing ions [(UO(2))(O)(n)(NO(3))(m)](-) (n = 1-2, m = 1-2) and the hydroxy-containing ions [(UO(2))(OH)(n)(NO(3))(m)](-) (n = 1-2, m = 0-1) are also observed. The extent of coordinative unsaturation of both positive and negative ions can be determined by ligand association/exchange and H/D exchange experiments using D(2)O and CD(3)OD as neutral reaction partners in the gas-phase. Positive ions are of varying stability and reactivity and may fragment extensively upon collision with D(2)O, CD(3)OD and N(2) in sustained off-resonance irradiation/collision-induced dissociation (SORI-CID) experiments. Electron-transfer reactions, presumably occurring during electrospray ionization but also in SORI-CID, can result in reduction of U(VI) to U(V) and perhaps even U(IV).

  10. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  11. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybridmore » FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  12. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE PAGES

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; ...

    2016-12-02

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  13. Molecular-Scale Characterization of Natural Organic Matter From A Uranium Contaminated Aquifer and its Utilization by Native Microbial Communities

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.; Wilkins, M. J.; Williams, K. H.; Smith, D. F.; Paša-Tolić, L.

    2011-12-01

    The availability and form of natural organic matter (NOM) strongly influences rates of microbial metabolism and associated redox processes in subsurface environments. This is an important consideration in metal-contaminated aquifers, such as the DOE's Rifle Integrated Field Research Challenge (IFRC) site, where naturally occurring suboxic conditions in groundwater may play an important function in controlling uranium mobility, and therefore the long-term stewardship of the site. Currently, the biophysiochemical processes surrounding the nature of the aquifer and its role in controlling the fate and transport of uranium are poorly understood. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) with electrospray ionization (ESI), we characterized dissolved organic matter (DOM) chemistry for three surface and groundwater sources at Rifle and assessed microbial utilization in batch incubation experiments. FT-ICR-MS uniquely offers ultrahigh mass measurement accuracy and resolving power for polar organics, in addition to enabling elemental composition assignments of these compounds. Samples were collected from the Colorado River, a shallow groundwater aquifer adjacent to the river, and a spring/seep discharge point upgradient from the aquifer. DOM was concentrated and purified from each source and analyzed using FT-ICR-MS with ESI. We identified between 6,000 and 7,000 formulae at each location, with the river sample having the smallest and the spring sample having the largest number of identified peaks. The groundwater and spring samples contained DOM with a large percentage of formulae containing nitrogen and sulfur species, while the river sample was dominated by carbon, hydrogen, and oxygen species. Less than 38% of the formulae were shared between any two samples, indicating a significant level of uniqueness across the samples. Unsaturated hydrocarbons, cellulose, and lipids were rapidly utilized by indigenous bacteria during a 24-day

  14. Application of mass spectrometry in the characterization of chemicals in coal-derived liquids.

    PubMed

    Liu, Fang-Jing; Fan, Maohong; Wei, Xian-Yong; Zong, Zhi-Min

    2017-07-01

    Coal-derived liquids (CDLs) are primarily generated from pyrolysis, carbonization, gasification, direct liquefaction, low-temperature extraction, thermal dissolution, and mild oxidation. CDLs are important feedstocks for producing value-added chemicals and clean liquid fuels as well as high performance carbon materials. Accordingly, the compositional characterization of chemicals in CDLs at the molecular level with advanced analytical techniques is significant for the efficient utilization of CDLs. Although reviews on advancements have been rarely reported, great progress has been achieved in this area by using gas chromatography/mass spectrometry (GC/MS), two-dimensional GC-time of flight mass spectrometry (GC × GC-TOFMS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This review focuses on characterizing hydrocarbon, oxygen-containing, nitrogen-containing, sulfur-containing, and halogen-containing chemicals in various CDLs with these three mass spectrometry techniques. Small molecular (< 500 u), volatile and semi-volatile, and less polar chemicals in CDLs have been identified with GC/MS and GC × GC-TOFMS. By equipped with two-dimensional GC, GC × GC-TOFMS can achieve a clearly chromatographic separation of complex chemicals in CDLs without prior fractionation, and thus can overcome the disadvantages of co-elution and serious peak overlap in GC/MS analysis, providing much more compositional information. With ultrahigh resolving power and mass accuracy, FT-ICR MS reveals a huge number of compositionally distinct compounds assigned to various chemical classes in CDLs. It shows excellent performance in resolving and characterizing higher-molecular, less volatile, and polar chemicals that cannot be detected by GC/MS and GC × GC-TOFMS. The application of GC × GC-TOFMS and FT-ICR MS to chemical characterization of CDLs is not as prevalent as that of petroleum and largely remains to be developed in many respects

  15. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  16. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal

    PubMed Central

    Zuber, Jan; Kroll, Marius M.; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  17. Relationships Between Dissolved Organic Matter Composition and Photochemistry in Lakes of Diverse Trophic Status.

    PubMed

    Maizel, Andrew C; Li, Jing; Remucal, Christina K

    2017-09-05

    The North Temperate Lakes Long-Term Ecological Research site includes seven lakes in northern Wisconsin that vary in hydrology, trophic status, and landscape position. We examine the molecular composition of dissolved organic matter (DOM) within these lakes using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) and quantify DOM photochemical activity using probe compounds. Correlations between the relative intensity of individual molecular formulas and reactive species production demonstrate the influence of DOM composition on photochemistry. For example, highly aromatic, tannin-like formulas correlate positively with triplet formation rates, but negatively with triplet quantum yields, as waters enriched in highly aromatic formulas exhibit much higher rates of light absorption, but only slightly higher rates of triplet production. While commonly utilized optical properties also correlate with DOM composition, the ability of FT-ICR MS to characterize DOM subpopulations provides unique insight into the mechanisms through which DOM source and environmental processing determine composition and photochemical activity.

  18. A regional study of the seasonal variation in the molecular composition of rainwater

    NASA Astrophysics Data System (ADS)

    Cottrell, Barbara A.; Gonsior, Michael; Isabelle, Lorne M.; Luo, W.; Perraud, Véronique; McIntire, Theresa M.; Pankow, James F.; Schmitt-Kopplin, Philippe; Cooper, William J.; Simpson, André J.

    2013-10-01

    Rainwater is not only a critical source of drinking and agricultural water but it plays a key role in the fate and transport of contaminants through their removal by wet deposition. Rainwater is a complex mixture of organic compounds yet despite its importance its spatial and temporal variability are not well understood and less than 50% of the organic matter has been characterized. In-depth analytical approaches were used in this study to characterize the seasonal variation in rainwater composition. Rainwater samples were collected over a one-year period in Scarborough, Ontario, Canada. The seasonal variation of atmospheric organic carbon (AOC) in rainwater was analyzed by excitation-emission matrix spectroscopy (EEMs), 1D and 2D NMR with compound identification by spectral database matching, GC-MS, FT-ICR-MS, and GC × GC-TOFMS. This combination of techniques provided four complementary datasets, with less than 10% overlap, of anthropogenic and biogenic AOC. NMR with database matching identified over 100 compounds, primarily carboxylic acids, carbohydrates, and nitrogen-containing compounds. GC × GC-TOFMS analysis identified 344 compounds in two rain events with 33% of the compounds common to both events. FT-ICR-MS generated a seasonally dependent profile of 1226-1575 molecular ions of CHO, CHOS, and CHON elemental composition. FT-ICR-MS and GC × GC-TOFMS datasets were compared using van Krevelen diagrams (H/C vs. O/C), the H/C ratio vs. mass/charge (m/z), and the carbon oxidation state/carbon number matrix. Fluorescence patterns were correlated with NMR results resulting in the identification one seasonally-dependent component of chromophoric dissolved organic matter (CDOM). This study demonstrated the importance of using of an integrated analytical approach to monitor the compositional variation of AOC.

  19. Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS).

    PubMed

    Oliveira, Bruno G; Costa, Helber B; Ventura, José A; Kondratyuk, Tamara P; Barroso, Maria E S; Correia, Radigya M; Pimentel, Elisângela F; Pinto, Fernanda E; Endringer, Denise C; Romão, Wanderson

    2016-08-01

    Mangifera indica L., mango fruit, is consumed as a dietary supplement with purported health benefits; it is widely used in the food industry. Herein, the chemical profile of the Ubá mango at four distinct maturation stages was evaluated during the process of growth and maturity using negative-ion mode electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI(-)FT-ICR MS) and physicochemical characterisation analysis (total titratable acidity (TA), total soluble solids (TSS), TSS/TA ratio, and total polyphenolic content). Primary (organic acids and sugars) and secondary metabolites (polyphenolic compounds) were mostly identified in the third maturation stage, thus indicating the best stage for harvesting and consuming the fruit. In addition, the potential cancer chemoprevention of the secondary metabolites (phenolic extracts obtained from mango samples) was evaluated using the induction of quinone reductase activity, concluding that fruit polyphenols have the potential for cancer chemoprevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Generation of chemical movies: FT-IR spectroscopic imaging of segmented flows.

    PubMed

    Chan, K L Andrew; Niu, X; deMello, A J; Kazarian, S G

    2011-05-01

    We have previously demonstrated that FT-IR spectroscopic imaging can be used as a powerful, label-free detection method for studying laminar flows. However, to date, the speed of image acquisition has been too slow for the efficient detection of moving droplets within segmented flow systems. In this paper, we demonstrate the extraction of fast FT-IR images with acquisition times of 50 ms. This approach allows efficient interrogation of segmented flow systems where aqueous droplets move at a speed of 2.5 mm/s. Consecutive FT-IR images separated by 120 ms intervals allow the generation of chemical movies at eight frames per second. The technique has been applied to the study of microfluidic systems containing moving droplets of water in oil and droplets of protein solution in oil. The presented work demonstrates the feasibility of the use of FT-IR imaging to study dynamic systems with subsecond temporal resolution.

  1. Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis.

    PubMed

    Wei, Wenhui; Srinivas, Swaminath; Lin, Jingxia; Tang, Zichen; Wang, Shihua; Ullah, Saif; Kota, Vishnu Goutham; Feng, Youjun

    2018-05-14

    Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested that Moraxella species are a putative reservoir for MCR-1/2 genetic determinants. Here, we report the functional definition of ICR-Mo from M. osloensis, a chromosomally encoded determinant of colistin resistance, in close relation to current MCR-1/2 family. ICR-Mo transmembrane protein was prepared and purified to homogeneity. Taken along with an in vitro enzymatic detection, MALDI-TOF mass spectrometry of bacterial lipid A pools determined that the ICR-Mo enzyme might exploit a possible "ping-pong" mechanism to accept the phosphoethanolamine (PEA) moiety from its donor phosphatidylethanolamine (PE) and then transfer it to the 1(or 4')-phosphate position of lipid A via an ICR-Mo-bound PEA adduct. Structural decoration of LPS-lipid A by ICR-Mo renders the recipient strain of E. coli resistant to polymyxin. Domain swapping assays indicate that the two domains of ICR-Mo cannot be functionally-exchanged with its counterparts in MCR-1/2 and EptA, validating its phylogenetic position in a distinct set of MCR-like genes. Structure-guided functional mapping of ICR-Mo reveals a PE lipid substrate recognizing cavity having a role in enzymatic catalysis and the resultant conference of antibiotic resistance. Expression of icr-Mo in E. coli significantly prevents the formation of reactive oxygen species (ROS) induced by colistin. Taken together, our results define a member of a group of intrinsic colistin resistance genes phylogenetically close to the MCR-1/2 family, highlighting the evolution of transferable colistin resistance.

  2. Protein expression profiles of human lymph and plasma mapped by 2D-DIGE and 1D SDS–PAGE coupled with nanoLC–ESI–MS/MS bottom-up proteomics

    PubMed Central

    Clement, Cristina C.; Aphkhazava, David; Nieves, Edward; Callaway, Myrasol; Olszewski, Waldemar; Rotzschke, Olaf; Santambrogio, Laura

    2013-01-01

    In this study a proteomic approach was used to define the protein content of matched samples of afferent prenodal lymph and plasma derived from healthy volunteers. The analysis was performed using two analytical methodologies coupled with nanoliquid chromatography-tandem mass spectrometry: one-dimensional gel electrophoresis (1DEF nanoLC Orbitrap–ESI–MS/MS), and two-dimensional fluorescence difference-in-gel electrophoresis (2D-DIGE nanoLC–ESI–MS/MS). The 253 significantly identified proteins (p<0.05), obtained from the tandem mass spectrometry data, were further analyzed with pathway analysis (IPA) to define the functional signature of prenodal lymph and matched plasma. The 1DEF coupled with nanoLC–MS–MS revealed that the common proteome between the two biological fluids (144 out of 253 proteins) was dominated by complement activation and blood coagulation components, transporters and protease inhibitors. The enriched proteome of human lymph (72 proteins) consisted of products derived from the extracellular matrix, apoptosis and cellular catabolism. In contrast, the enriched proteome of human plasma (37 proteins) consisted of soluble molecules of the coagulation system and cell–cell signaling factors. The functional networks associated with both common and source-distinctive proteomes highlight the principal biological activity of these immunologically relevant body fluids. PMID:23202415

  3. Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods

    PubMed Central

    Shen, Yufeng; Tolić, Nikola; Xie, Fang; Zhao, Rui; Purvine, Samuel O.; Schepmoes, Athena A.; Ronald, J. Moore; Anderson, Gordon A.; Smith, Richard D.

    2011-01-01

    We report on the effectiveness of CID, HCD, and ETD for LC-FT MS/MS analysis of peptides using a tandem linear ion trap-Orbitrap mass spectrometer. A range of software tools and analysis parameters were employed to explore the use of CID, HCD, and ETD to identify peptides isolated from human blood plasma without the use of specific “enzyme rules”. In the evaluation of an FDR-controlled SEQUEST scoring method, the use of accurate masses for fragments increased the numbers of identified peptides (by ~50%) compared to the use of conventional low accuracy fragment mass information, and CID provided the largest contribution to the identified peptide datasets compared to HCD and ETD. The FDR-controlled Mascot scoring method provided significantly fewer peptide identifications than with SEQUEST (by 1.3–2.3 fold) at the same confidence levels, and CID, HCD, and ETD provided similar contributions to identified peptides. Evaluation of de novo sequencing and the UStags method for more intense fragment ions revealed that HCD afforded more sequence consecutive residues (e.g., ≥7 amino acids) than either CID or ETD. Both the FDR-controlled SEQUEST and Mascot scoring methods provided peptide datasets that were affected by the decoy database and mass tolerances applied (e.g., the identical peptides between the datasets could be limited to ~70%), while the UStags method provided the most consistent peptide datasets (>90% overlap) with extremely low (near zero) numbers of false positive identifications. The m/z ranges in which CID, HCD, and ETD contributed the largest number of peptide identifications were substantially overlapping. This work suggests that the three peptide ion fragmentation methods are complementary, and that maximizing the number of peptide identifications benefits significantly from a careful match with the informatics tools and methods applied. These results also suggest that the decoy strategy may inaccurately estimate identification FDRs. PMID:21678914

  4. Psychometric properties of the Italian version of the Cognitive Reserve Scale (I-CRS).

    PubMed

    Altieri, Manuela; Siciliano, Mattia; Pappacena, Simona; Roldán-Tapia, María Dolores; Trojano, Luigi; Santangelo, Gabriella

    2018-05-04

    The original definition of cognitive reserve (CR) refers to the individual differences in cognitive performance after a brain damage or pathology. Several proxies were proposed to evaluate CR (education, occupational attainment, premorbid IQ, leisure activities). Recently, some scales were developed to measure CR taking into account several cognitively stimulating activities. The aim of this study is to adapt the Cognitive Reserve Scale (I-CRS) for the Italian population and to explore its psychometric properties. I-CRS was administered to 547 healthy participants, ranging from 18 to 89 years old, along with neuropsychological and behavioral scales to evaluate cognitive functioning, depressive symptoms, and apathy. Cronbach's α, corrected item-total correlations, and the inter-item correlation matrix were calculated to evaluate the psychometric properties of the scale. Linear regression analysis was performed to build a correction grid of the I-CRS according to demographic variables. Correlational analyses were performed to explore the relationships between I-CRS and neuropsychological and behavioral scales. We found that age, sex, and education influenced the I-CRS score. Young adults and adults obtained higher I-CRS scores than elderly adults; women and participants with high educational attainment scored higher on I-CRS than men and participants with low education. I-CRS score correlated poorly with cognitive and depression scale scores, but moderately with apathy scale scores. I-CRS showed good psychometric properties and seemed to be a useful tool to assess CR in every adult life stage. Moreover, our findings suggest that apathy rather than depressive symptoms may interfere with the building of CR across the lifespan.

  5. Annual tendency of research papers used ICR mice as experimental animals in biomedical research fields.

    PubMed

    Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo; Hwang, Dae Youn

    2017-06-01

    Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields.

  6. Annual tendency of research papers used ICR mice as experimental animals in biomedical research fields

    PubMed Central

    Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo

    2017-01-01

    Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields. PMID:28747984

  7. Characterization of fast pyrolysis products generated from several western USA woody species

    Treesearch

    Jacqueline M. Jarvis; Deborah S. Page-Dumroese; Nathaniel M. Anderson; Yuri Corilo; Ryan P. Rodgers

    2014-01-01

    Woody biomass has the potential to be utilized at an alternative fuel source through its pyrolytic conversion. Here, fast pyrolysis bio-oils derived from several western USA woody species are characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to determine molecular-level composition. The...

  8. The (CA)n polymorphism of ERβ gene is associated with FtM transsexualism.

    PubMed

    Fernández, Rosa; Esteva, Isabel; Gómez-Gil, Esther; Rumbo, Teresa; Almaraz, Mari Cruz; Roda, Ester; Haro-Mora, Juan-Jesús; Guillamón, Antonio; Pásaro, Eduardo

    2014-03-01

    Transsexualism is a gender identity disorder with a multifactorial etiology. Neurodevelopmental processes and genetic factors seem to be implicated. The aim of this study was to investigate the possible influence of the sex hormone-related genes ERβ (estrogen receptor β), AR (androgen receptor), and CYP19A1 (aromatase) in the etiology of female-to-male (FtM) transsexualism. In 273 FtMs and 371 control females, we carried out a molecular analysis of three variable regions: the CA repeats in intron 5 of ERβ; the CAG repeats in exon 1 of AR, and the TTTA repeats in intron 4 of CYP19A1. We investigated the possible influence of genotype on transsexualism by performing a molecular analysis of the variable regions of genes ERβ, AR, and CYP19A1 in 644 individuals (FtMs and control females). FtMs differed significantly from control group with respect to the median repeat length polymorphism ERβ (P = 0.002) but not with respect to the length of the other two studied polymorphisms. The repeat numbers in ERβ were significantly higher in FtMs than in control group, and the likelihood of developing transsexualism was higher (odds ratio: 2.001 [1.15-3.46]) in the subjects with the genotype homozygous for long alleles. There is an association between the ERβ gene and FtM transsexualism. Our data support the finding that ERβ function is directly proportional to the size of the analyzed polymorphism, so a greater number of repeats implies greater transcription activation, possibly by increasing the function of the complex hormone ERβ receptor and thereby encouraging less feminization or a defeminization of the female brain and behavior. © 2013 International Society for Sexual Medicine.

  9. 78 FR 33409 - Proposed Information Collection Request; Comment Request; See Item Specific ICR Titles Provided...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Item Specific ICR Titles Provided in the Text AGENCY: Environmental Protection Agency (EPA). ACTION... request (ICR) (See item specific ICR title, EPA ICR Number, and OMB Control Number provided in the text... additional comments to OMB. (1) Docket ID Number: EPA-HQ-OECA-2013-0337; Title: NESHAP for Portland Cement...

  10. 78 FR 35023 - Proposed Information Collection Request; Comment Request; See Item Specific ICR Titles Provided...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ...; See Item Specific ICR Titles Provided in the Text AGENCY: Environmental Protection Agency (EPA... collection request (ICR) (See item specific ICR title, EPA ICR Number, and OMB Control Number provided in the... opportunity to submit additional comments to OMB. (1) Docket ID Number: EPA-HQ-OECA-2013-0303; Title: NSPS for...

  11. Application of Atmospheric Solids Analysis Probe Mass Spectrometry (ASAP-MS) in Petroleomics: Analysis of Condensed Aromatics Standards, Crude Oil, and Paraffinic Fraction.

    PubMed

    Tose, Lilian V; Murgu, Michael; Vaz, Boniek G; Romão, Wanderson

    2017-11-01

    Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min -1 , and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250-1300 and 200-1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M] +• , and protonated cations, [M + H] + , with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. Graphical Abstract ᅟ.

  12. Application of Atmospheric Solids Analysis Probe Mass Spectrometry (ASAP-MS) in Petroleomics: Analysis of Condensed Aromatics Standards, Crude Oil, and Paraffinic Fraction

    NASA Astrophysics Data System (ADS)

    Tose, Lilian V.; Murgu, Michael; Vaz, Boniek G.; Romão, Wanderson

    2017-08-01

    Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min-1, and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250-1300 and 200-1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M]+•, and protonated cations, [M + H]+, with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. [Figure not available: see fulltext.

  13. In-depth molecular characterization and biodegradability of water-extractable organic nitrogen in Erhai Lake sediment.

    PubMed

    Zhang, Li; Wang, Shengrui; Yang, Jiachun; Xu, Kechen

    2018-05-08

    Dissolved organic nitrogen (DON) constitutes a significant fraction of the total dissolved nitrogen content of most aquatic systems and is thus a major nitrogen source for bacteria and phytoplankton. The present work applied Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to a compound-level analysis of the depth-dependent molecular composition of water-extractable organic nitrogen (WEON) in lake sediment. The study focused on Erhai Lake, China. It was found that a large portion (from 16.33 ± 7.87 to 39.54 ± 5.77%) of the WEON in the lake sediment was reactive under cultivation by algal or bacteria. The WEON in the mid-region of Erhai sediment particularly exhibited a lower bioavailability, having been less affected by the basin environment. The FT-ICR MS results revealed the presence of thousands of compounds in the Erhai Lake sediment samples collected at different depths, with the N-containing compounds accounting for 28.3-34.4% of all the compounds. The WEON molecular weight was also observed to increase with increasing sediment depth. A van Krevelen diagram showed that the lignin-type components were dominant (~ 56.2%) in the sediment WEON, contributing to its stabilization and reducing the risk of sediment nutrient release. The FT-ICR MS results further revealed 204 overlapping formulas of WEON for each core sediment sample, attributable to the presence of refractory components. It was observed that 78.4% of the formulas were within the lignin-like region, suggesting unique allochthonous DON sources. The aliphatic component proportion of all the unique formulas was also found to increase with increasing sediment depth. This indicates that, with the development and evolution of the Erhai Basin, the more labile WEON components were transformed into more stable lignin-like substrates, with a positive effect on the Lake Erhai ecosystem. Graphical abstract ᅟ.

  14. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    PubMed

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω + ), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω + quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω + frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω + frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  15. Complex tissue-specific epigenotypes in Russell-Silver Syndrome associated with 11p15 ICR1 hypomethylation.

    PubMed

    Azzi, Salah; Blaise, Annick; Steunou, Virginie; Harbison, Madeleine D; Salem, Jennifer; Brioude, Frédéric; Rossignol, Sylvie; Habib, Walid Abi; Thibaud, Nathalie; Neves, Cristina Das; Jule, Marilyne Le; Brachet, Cécile; Heinrichs, Claudine; Bouc, Yves Le; Netchine, Irène

    2014-10-01

    Russell-Silver Syndrome (RSS) is a prenatal and postnatal growth retardation syndrome caused mainly by 11p15 ICR1 hypomethylation. Clinical presentation is heterogeneous in RSS patients with 11p15 ICR1 hypomethylation. We previously identified a subset of RSS patients with 11p15 ICR1 and multilocus hypomethylation. Here, we examine the relationships between IGF2 expression, 11p15 ICR1 methylation, and multilocus imprinting defects in various cell types from 39 RSS patients with 11p15 ICR1 hypomethylation in leukocyte DNA. 11p15 ICR1 hypomethylation was more pronounced in leukocytes than in buccal mucosa cells. Skin fibroblast IGF2 expression was correlated with the degree of ICR1 hypomethylation. Different tissue-specific multilocus methylation defects coexisted in 38% of cases, with some loci hypomethylated and others hypermethylated within the same cell type in some cases. Our new results suggest that tissue-specific epigenotypes may lead to clinical heterogeneity in RSS. © 2014 WILEY PERIODICALS, INC.

  16. Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry as a Platform for Characterizing Multimeric Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Lippens, Jennifer L.; Nshanian, Michael; Spahr, Chris; Egea, Pascal F.; Loo, Joseph A.; Campuzano, Iain D. G.

    2018-01-01

    Membrane protein characterization is consistently hampered by challenges with expression, purification, and solubilization. Among several biophysical techniques employed for their characterization, native-mass spectrometry (MS) has emerged as a powerful tool for the analysis of membrane proteins and complexes. Here, two MS platforms, the FT-ICR and Q-ToF, have been explored to analyze the homotetrameric water channel protein, AquaporinZ (AqpZ), under non-denaturing conditions. This 97 kDa membrane protein complex can be readily liberated from the octylglucoside (OG) detergent micelle under a range of instrument conditions on both MS platforms. Increasing the applied collision energy of the FT-ICR collision cell yielded varying degrees of tetramer (97 kDa) liberation from the OG micelles, as well as dissociation into the trimeric (72 kDa) and monomeric (24 kDa) substituents. Tandem-MS on the Q-ToF yielded higher intensity tetramer signal and, depending on the m/z region selected, the observed monomer signal varied in intensity. Precursor ion selection of an m/z range above the expected protein signal distribution, followed by mild collisional activation, is able to efficiently liberate AqpZ with a high S/N ratio. The tetrameric charge state distribution obtained on both instruments demonstrated superpositioning of multiple proteoforms due to varying degrees of N-terminal formylation. [Figure not available: see fulltext.

  17. Advancing a High Throughput Glycotope-centric Glycomics Workflow Based on nanoLC-MS2-product Dependent-MS3 Analysis of Permethylated Glycans.

    PubMed

    Hsiao, Cheng-Te; Wang, Po-Wei; Chang, Hua-Chien; Chen, Yen-Ying; Wang, Shui-Hua; Chern, Yijuang; Khoo, Kay-Hooi

    2017-12-01

    The intrinsic nature of glycosylation, namely nontemplate encoded, stepwise elongation and termination with a diverse range of isomeric glyco-epitopes (glycotopes), translates into ambiguity in most cases of mass spectrometry (MS)-based glycomic mapping. It is arguable that whether one needs to delineate every single glycomic entity, which may be counterproductive. Instead, one should focus on identifying as many structural features as possible that would collectively define the glycomic characteristics of a cell or tissue, and how these may change in response to self-programmed development, immuno-activation, and malignant transformation. We have been pursuing this line of analytical strategy that homes in on identifying the terminal sulfo-, sialyl, and/or fucosylated glycotopes by comprehensive nanoLC-MS 2 -product dependent MS 3 analysis of permethylated glycans, in conjunction with development of a data mining computational tool, GlyPick, to enable an automated, high throughput, semi-quantitative glycotope-centric glycomic mapping amenable to even nonexperts. We demonstrate in this work that diagnostic MS 2 ions can be relied on to inform the presence of specific glycotopes, whereas their possible isomeric identities can be resolved at MS 3 level. Both MS 2 and associated MS 3 data can be acquired exhaustively and processed automatically by GlyPick. The high acquisition speed, resolution, and mass accuracy afforded by top-notch Orbitrap Fusion MS system now allow a sensible spectral count and/or summed ion intensity-based glycome-wide glycotope quantification. We report here the technical aspects, reproducibility and optimization of such an analytical approach that uses the same acidic reverse phase C18 nanoLC conditions fully compatible with proteomic analysis to allow rapid hassle-free switching. We further show how this workflow is particularly effective when applied to larger, multiply sialylated and fucosylated N-glycans derived from mouse brain. The

  18. Improving LC-MS sensitivity through increases in chromatographic performance: comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS.

    PubMed

    Churchwell, Mona I; Twaddle, Nathan C; Meeker, Larry R; Doerge, Daniel R

    2005-10-25

    Recent technological advances have made available reverse phase chromatographic media with a 1.7 microm particle size along with a liquid handling system that can operate such columns at much higher pressures. This technology, termed ultra performance liquid chromatography (UPLC), offers significant theoretical advantages in resolution, speed, and sensitivity for analytical determinations, particularly when coupled with mass spectrometers capable of high-speed acquisitions. This paper explores the differences in LC-MS performance by conducting a side-by-side comparison of UPLC for several methods previously optimized for HPLC-based separation and quantification of multiple analytes with maximum throughput. In general, UPLC produced significant improvements in method sensitivity, speed, and resolution. Sensitivity increases with UPLC, which were found to be analyte-dependent, were as large as 10-fold and improvements in method speed were as large as 5-fold under conditions of comparable peak separations. Improvements in chromatographic resolution with UPLC were apparent from generally narrower peak widths and from a separation of diastereomers not possible using HPLC. Overall, the improvements in LC-MS method sensitivity, speed, and resolution provided by UPLC show that further advances can be made in analytical methodology to add significant value to hypothesis-driven research.

  19. Biodegradability and Molecular Composition of Dissolved Organic Nitrogen in Urban Stormwater Runoff and Outflow Water from a Stormwater Retention Pond.

    PubMed

    Lusk, Mary G; Toor, Gurpal S

    2016-04-05

    Dissolved organic nitrogen (DON) can be a significant part of the reactive N in aquatic ecosystems and can accelerate eutrophication and harmful algal blooms. A bioassay method was coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to determine the biodegradability and molecular composition of DON in the urban stormwater runoff and outflow water from an urban stormwater retention pond. The biodegradability of DON increased from 10% in the stormwater runoff to 40% in the pond outflow water and DON was less aromatic and had lower overall molecular weight in the pond outflow water than in the stormwater runoff. More than 1227 N-bearing organic formulas were identified with FT-ICR-MS in the stormwater runoff and pond outflow water, which were only 13% different in runoff and outflow water. These molecular formulas represented a wide range of biomolecules such as lipids, proteins, amino sugars, lignins, and tannins in DON from runoff and pond outflow water. This work implies that the urban infrastructure (i.e., stormwater retention ponds) has the potential to influence biogeochemical processes in downstream water bodies because retention ponds are often a junction between the natural and the built environment.

  20. MS/MS-Assisted Design of Sequence-Controlled Synthetic Polymers for Improved Reading of Encoded Information

    NASA Astrophysics Data System (ADS)

    Charles, Laurence; Cavallo, Gianni; Monnier, Valérie; Oswald, Laurence; Szweda, Roza; Lutz, Jean-François

    2017-06-01

    In order to improve their MS/MS sequencing, structure of sequence-controlled synthetic polymers can be optimized based on considerations regarding their fragmentation behavior in collision-induced dissociation conditions, as demonstrated here for two digitally encoded polymer families. In poly(triazole amide)s, the main dissociation route proceeded via cleavage of the amide bond in each monomer, hence allowing the chains to be safely sequenced. However, a competitive cleavage of an ether bond in a tri(ethylene glycol) spacer placed between each coding moiety complicated MS/MS spectra while not bringing new structural information. Changing the tri(ethylene glycol) spacer to an alkyl group of the same size allowed this unwanted fragmentation pathway to be avoided, hence greatly simplifying the MS/MS reading step for such undecyl-based poly(triazole amide)s. In poly(alkoxyamine phosphodiester)s, a single dissociation pathway was achieved with repeating units containing an alkoxyamine linkage, which, by very low dissociation energy, made any other chemical bonds MS/MS-silent. Structure of these polymers was further tailored to enhance the stability of those precursor ions with a negatively charged phosphate group per monomer in order to improve their MS/MS readability. Increasing the size of both the alkyl coding moiety and the nitroxide spacer allowed sufficient distance between phosphate groups for all of them to be deprotonated simultaneously. Because the charge state of product ions increased with their polymerization degree, MS/MS spectra typically exhibited groups of fragments at one or the other side of the precursor ion depending on the original α or ω end-group they contain, allowing sequence reconstruction in a straightforward manner. [Figure not available: see fulltext.

  1. Combining TXRF, FT-IR and GC-MS information for identification of inorganic and organic components in black pigments of rock art from Alero Hornillos 2 (Jujuy, Argentina).

    PubMed

    Vázquez, Cristina; Maier, Marta S; Parera, Sara D; Yacobaccio, Hugo; Solá, Patricia

    2008-06-01

    Archaeological samples are complex in composition since they generally comprise a mixture of materials submitted to deterioration factors largely dependent on the environmental conditions. Therefore, the integration of analytical tools such as TXRF, FT-IR and GC-MS can maximize the amount of information provided by the sample. Recently, two black rock art samples of camelid figures at Alero Hornillos 2, an archaeological site located near the town of Susques (Jujuy Province, Argentina), were investigated. TXRF, selected for inorganic information, showed the presence of manganese and iron among other elements, consistent with an iron and manganese oxide as the black pigment. Aiming at the detection of any residual organic compounds, the samples were extracted with a chloroform-methanol mixture and the extracts were analyzed by FT-IR, showing the presence of bands attributable to lipids. Analysis by GC-MS of the carboxylic acid methyl esters prepared from the sample extracts, indicated that the main organic constituents were saturated (C(16:0) and C(18:0)) fatty acids in relative abundance characteristic of degraded animal fat. The presence of minor C(15:0) and C(17:0) fatty acids and branched-chain iso-C(16:0) pointed to a ruminant animal source.

  2. Molecular Signature of Organic Carbon Along a Salinity Gradient in Suwannee River Plume

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Bianchi, T. S.; Ward, N. D.; Arellano, A. R.; Paša-Tolić, L.; Tolic, N.; Kuo, L. J.

    2016-12-01

    Humic and fulvic acid isolates from Suwannee River dissolved organic matter (DOM) have served as reference standards for the International Humic Substances Society (IHSS) for many decades. The large database on Suwannee DOM provides an excellent framework to further expand the application of Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS) in characterizing the chemical composition of aquatic DOM. In this study, we examined the DOM signature of the lower Suwannee River and plume region at 5 stations along a salinity gradient (0 to 28) using FT-ICR-MS. The chemical characteristics of DOM show distinct differences across this steep salinity gradient. In general, samples collected from the coastal station have lower carbon number and are less aromatic. Molecular level analysis reveals that the magnitude weighted proportion of lipids increased as salinity increased. Interestingly, a similar trend was observed for lignin-like compounds. Target quantification of lignin-phenols showed that while the concentrations of these compounds were lower at the coastal station, the DOC-normalized concentrations were not significantly different between the river and coastal stations. In addition to traditional DOM moieties, we identified for the first time, halogenated organic compounds (HOC). We observed more chlorinated compounds in DOM and increased Cl/C as salinity increased. A relatively high proportion of halogenated lipids (compared to non-halogenated) were observed in the total pool of HOC across all stations. Although not significant in relative proportion, halogenated lignin-like compounds were the most abundant HOC moieties in our samples. CO2 concentrations decreased and became more 13C-enriched along the salinity gradient, ranging from 3,990 ppm (13CO2 = -17.3‰) at salinity 0 to 520 ppm (13CO2 = -7.5‰) at salinity 28, indicating high levels of DOM degradation in the river and a shift to primary production in the marine receiving waters, which is

  3. One-pot preparation of a mixed-mode organic-silica hybrid monolithic capillary column and its application in determination of endogenous gibberellins in plant tissues.

    PubMed

    Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-10-16

    A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    PubMed

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  6. 75 FR 7584 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA-ICR No. 1774...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... Program, OMB Control No. 2060-0350 AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY.... 1774.05, OMB Control No. 2060-0350. ICR status: This ICR is currently scheduled to expire on July 31...

  7. Improved profiling of estrogen metabolites by orbitrap LC/MS

    PubMed Central

    Li, Xingnan; Franke, Adrian A.

    2015-01-01

    Estrogen metabolites are important biomarkers to evaluate cancer risks and metabolic diseases. Due to their low physiological levels, a sensitive and accurate method is required, especially for the quantitation of unconjugated forms of endogenous steroids and their metabolites in humans. Here, we evaluated various derivatives of estrogens for improved analysis by orbitrap LC/MS in human serum samples. A new chemical derivatization reagent was applied modifying phenolic steroids to form 1-methylimidazole-2-sulfonyl adducts. The method significantly improves the sensitivity 2–100 fold by full scan MS and targeted selected ion monitoring MS over other derivatization methods including, dansyl, picolinoyl, and pyridine-3-sulfonyl products. PMID:25543003

  8. Petroleum Refinery Information Collection Request (ICR) Emissions Test Report for BP-Husky Refining LLC

    EPA Pesticide Factsheets

    On March 31, 2011, U.S. EPA sent a Section 114 letter to the BP-Husky Refining Company in Oregon, Ohio stating that the facility was subject to the ICR and that certain information would need to be submitted by the facility to satisfy U.S. EPA’s ICR.

  9. Molecular characterization of lake sediment WEON by Fourier transform ion cyclotron resonance mass spectrometry and its environmental implications.

    PubMed

    Zhang, Li; Wang, Shengrui; Xu, Yisheng; Shi, Quan; Zhao, Haichao; Jiang, Bin; Yang, Jiachun

    2016-12-01

    The compositional properties of water-extractable organic nitrogen (WEON) affect its behavior in lake ecosystems. This work is the first comprehensive study using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the characterization of the molecular composition of WEON in lake sediment. In sediments of Erhai Lake in China, this study found complex WEON species, with N-containing compounds in the northern, central, and southern regions contributing 34.47%, 42.44%, and 40.6%, respectively, of total compounds. Additionally, a van Krevelen diagram revealed that lignin components were dominant in sediment WEON structures (68% of the total), suggesting terrestrial sources. Furthermore, this study applied ESI-FT-ICR-MS to the examination of the environmental processes of lake sediment WEON on a molecular level. The results indicated that sediment depth impacted WEON composition and geochemical processes. Compared with other ecosystems, the double bond equivalent (DBE) value was apparently lower in Erhai sediment, indicating the presence of relatively fewer and smaller aromatic compounds. In addition, the presence of a large number of N-containing species and abundant oxidized nitrogen functional compounds that were likely to biodegrade may have further increased the potential releasing risk of WEON from Erhai sediment under certain environmental conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Molecular evidence of heavy-oil weathering following the M/V Cosco Busan spill: insights from Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Lemkau, Karin L; McKenna, Amy M; Podgorski, David C; Rodgers, Ryan P; Reddy, Christopher M

    2014-04-01

    Recent studies have highlighted a critical need to investigate oil weathering beyond the analytical window afforded by conventional gas chromatography (GC). In particular, techniques capable of detecting polar and higher molecular weight (HMW; > 400 Da) components abundant in crude and heavy fuel oils (HFOs) as well as transformation products. Here, we used atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) to identify molecular transformations in oil-residue samples from the 2007 M/V Cosco Busan HFO spill (San Francisco, CA). Over 617 days, the abundance and diversity of oxygen-containing compounds increased relative to the parent HFO, likely from bio- and photodegradation. HMW, highly aromatic, alkylated compounds decreased in relative abundance concurrent with increased relative abundance of less alkylated stable aromatic structures. Combining these results with GC-based data yielded a more comprehensive understanding of oil spill weathering. For example, dealkylation trends and the overall loss of HMW species observed by FT-ICR MS has not previously been documented and is counterintuitive given losses of lower molecular weight species observed by GC. These results suggest a region of relative stability at the interface of these techniques, which provides new indicators for studying long-term weathering and identifying sources.

  11. Continuous summer export of nitrogen-rich organic matter from the Greenland Ice Sheet inferred by ultrahigh resolution mass spectrometry.

    PubMed

    Lawson, Emily C; Bhatia, Maya P; Wadham, Jemma L; Kujawinski, Elizabeth B

    2014-12-16

    Runoff from glaciers and ice sheets has been acknowledged as a potential source of bioavailable dissolved organic matter (DOM) to downstream ecosystems. This source may become increasingly significant as glacial melt rates increase in response to future climate change. Recent work has identified significant concentrations of bioavailable carbon and iron in Greenland Ice Sheet (GrIS) runoff. The flux characteristics and export of N-rich DOM are poorly understood. Here, we employed electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to determine the elemental compositions of DOM molecules in supraglacial water and subglacial runoff from a large GrIS outlet glacier. We provide the first detailed temporal analysis of the molecular composition of DOM exported over a full melt season. We find that DOM pools in supraglacial and subglacial runoff are compositionally diverse and that N-rich material is continuously exported throughout the melt season, as the snowline retreats further inland. Identification of protein-like compounds and a high proportion of N-rich DOM, accounting for 27-41% of the DOM molecules identified by ESI FT-ICR MS, may suggest a microbial provenance and high bioavailability of glacially exported DOM to downstream microbial communities.

  12. 77 FR 58127 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA ICR No. 2104...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... . FOR FURTHER INFORMATION CONTACT: Rachel Lentz, Office of Brownfields and Land Revitalization, (5105T.... Title: Brownfields Program--Accomplishment Reporting (Renewal). ICR numbers: EPA ICR No. 2104.04, OMB... and Brownfields Revitalization Act (Pub. L. 107-118) (``the Brownfields Amendments'') was signed into...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample.more » The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.« less

  14. Quantitative determination and evaluation of Paris polyphylla var. yunnanensis with different harvesting times using UPLC-UV-MS and FT-IR spectroscopy in combination with partial least squares discriminant analysis.

    PubMed

    Yang, Yuan-Gui; Zhang, Ji; Zhao, Yan-Li; Zhang, Jin-Yu; Wang, Yuan-Zhong

    2017-07-01

    A rapid method was developed and validated by ultra-performance liquid chromatography-triple quadrupole mass spectroscopy with ultraviolet detection (UPLC-UV-MS) for simultaneous determination of paris saponin I, paris saponin II, paris saponin VI and paris saponin VII. Partial least squares discriminant analysis (PLS-DA) based on UPLC and Fourier transform infrared (FT-IR) spectroscopy was employed to evaluate Paris polyphylla var. yunnanensis (PPY) at different harvesting times. Quantitative determination implied that the various contents of bioactive compounds with different harvesting times may lead to different pharmacological effects; the average content of total saponins for PPY harvested at 8 years was higher than that from other samples. The PLS-DA of FT-IR spectra had a better performance than that of UPLC for discrimination of PPY from different harvesting times. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Rotation Matrix from the Mean Dynamical Equator and Equinox at J2000.0 to the ICRS

    DTIC Science & Technology

    2004-01-01

    the ICRS is offset from its equinox by ∆o. The angle 0 is the obliquity of the ecliptic on the ICRS, that is the angle between the ICRS equator and... obliquity is caused solely by a change in the position of the pole of the mean ecliptic . Thus, the sole effect of using the rotating definition of the mean...the mean ecliptic as determined by Chapront et al. from LLR observations (23◦26′21.′′41100 ± 0.′′00005). The angle γy is the separation between the

  16. Polymer architectures via mass spectrometry and hyphenated techniques: A review.

    PubMed

    Crotty, Sarah; Gerişlioğlu, Selim; Endres, Kevin J; Wesdemiotis, Chrys; Schubert, Ulrich S

    2016-08-17

    This review covers the application of mass spectrometry (MS) and its hyphenated techniques to synthetic polymers of varying architectural complexities. The synthetic polymers are discussed as according to their architectural complexity from linear homopolymers and copolymers to stars, dendrimers, cyclic copolymers and other polymers. MS and tandem MS (MS/MS) has been extensively used for the analysis of synthetic polymers. However, the increase in structural or architectural complexity can result in analytical challenges that MS or MS/MS cannot overcome alone. Hyphenation to MS with different chromatographic techniques (2D × LC, SEC, HPLC etc.), utilization of other ionization methods (APCI, DESI etc.) and various mass analyzers (FT-ICR, quadrupole, time-of-flight, ion trap etc.) are applied to overcome these challenges and achieve more detailed structural characterizations of complex polymeric systems. In addition, computational methods (software: MassChrom2D, COCONUT, 2D maps etc.) have also reached polymer science to facilitate and accelerate data interpretation. Developments in technology and the comprehension of different polymer classes with diverse architectures have significantly improved, which allow for smart polymer designs to be examined and advanced. We present specific examples covering diverse analytical aspects as well as forthcoming prospects in polymer science. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Nucleic Acid analysis by fourier transform ion cyclotron resonance mass spectrometry at the beginning of the twenty-first century.

    PubMed

    Frahm, J L; Muddiman, D C

    2005-01-01

    Mass spectrometers measure an intrinsic property (i.e., mass) of a molecule, which makes it an ideal platform for nucleic acid analysis. Importantly, the unparalleled capabilities of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry further extend its usefulness for nucleic acid analysis. The beginning of the twenty-first century has been marked with notable advances in the field of FT-ICR mass spectrometry analysis of nucleic acids. Some of these accomplishments include fundamental studies of nucleic acid properties, improvements in sample clean up and preparation, better methods to obtain higher mass measurement accuracy, analysis of noncovalent complexes, tandem mass spectrometry, and characterization of peptide nucleic acids. This diverse range of studies will be presented herein.

  18. Relationships between Molecular Composition and Optical Properties of Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Cooper, W. T.; Tfaily, M.; Osborne, D.; Paul, A.; Podgorski, D. C.; Corbett, J.; Chanton, J.

    2009-12-01

    Our focus is on the relationships between the optical properties of dissolved organic matter (DOM) and its molecular composition. For example, we demonstrated that changes in the absorption and fluorescence characteristics of DOM in outwelling from Brazilian mangrove forests correlated with decreases in highly unsaturated organic compounds as DOM was transported from mangrove porewaters to the continental shelf. In that work we combined ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) that provided detailed compositional information with absorption and Excitation/Emission Matrix (EEM) spectroscopy This presentation will highlight new results utilizing the combination of optical spectroscopy and FT-ICR mass spectrometry to illuminate the processes which control DOM cycling. Our focus will be on the contributions of the heteroatom components of DOM (i.e. organic sulfur and organic nitrogen) to its optical properties and how changes in optical properties correlate with important environmental processes like humification and bioavailability. Figure 1 below includes a narrow 0.20 Dalton window from a mass spectrum which demonstrates the ability of ultrahigh resolution mass spectrometry to resolve and identify nitrogen heteroatom compounds in DOM. Our study sites include the Glacial Lake Agassiz Peatlands (GLAP) in northern Minnesota and wetlands in the Caloosahatchee River basin in South Florida. Figure 1. Isolated 0.20 Da window of an ESI-FT-ICR mass spectrum of DOM from a GLAP bog. Labels identify N1 (d,e,f) and N3 classes of nitrogen heteroatoms. The 0.0031 Da mass spacing is used to confirm the N3 class.

  19. Rubus coreanus Miquel ameliorates scopolamine-induced memory impairments in ICR mice.

    PubMed

    Choi, Mi-Ran; Lee, Min Young; Hong, Ji Eun; Kim, Jeong Eun; Lee, Jae-Yong; Kim, Tae Hwan; Chun, Jang Woo; Shin, Hyun Kyung; Kim, Eun Ji

    2014-10-01

    The present study investigated the effect of Rubus coreanus Miquel (RCM) on scopolamine-induced memory impairments in ICR mice. Mice were orally administrated RCM for 4 weeks and scopolamine was intraperitoneally injected into mice to induce memory impairment. RCM improved the scopolamine-induced memory impairment in mice. The increase of acetylcholinesterase activity caused by scopolamine was significantly attenuated by RCM treatment. RCM increased the levels of acetylcholine in the brain and serum of mice. The expression of choline acetyltransferase, phospho-cyclic AMP response element-binding protein, and phospho-extracellular signal-regulated kinase was significantly increased within the brain of mice treated with RCM. The brain antioxidant enzyme activity decreased by scopolamine was increased by RCM. These results demonstrate that RCM exerts a memory-enhancing effect via the improvement of cholinergic function and the potentiated antioxidant activity in memory-impaired mice. The results suggest that RCM may be a useful agent for improving memory impairment.

  20. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry

    PubMed Central

    Prokai, Laszlo; Stevens, Stanley M.

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  1. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry.

    PubMed

    Prokai, Laszlo; Stevens, Stanley M

    2016-01-16

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae.

  2. Determination of heavy polycyclic aromatic hydrocarbons by non-aqueous reversed phase liquid chromatography: Application and limitation in refining streams.

    PubMed

    Panda, Saroj K; Muller, Hendrik; Al-Qunaysi, Thunayyan A; Koseoglu, Omer R

    2018-01-19

    The heavy polycyclic aromatic hydrocarbons (HPAHs) cause detrimental effects to hydrocracker operations by deactivating the catalysts and depositing in the downstream of the reactor/ exchangers. Therefore, it is essential to continuously monitor the accumulation of HPAHs in a hydrocracker unit. To accurately measure the concentration of HPAHs, the development of a fast and reliable analytical method is inevitable. In this work, an analytical method based on non-aqueous reversed phase chromatography in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was developed. As a first step, five different types of stationary phases were evaluated for the separation of HPAHs in non-aqueous mode and the best suited phase was further used for the fractionation of HPAHs in a fractionator bottom sample obtained from a refinery hydrocracker unit. The eight major fractions or peaks obtained from the separation were further characterized by UV spectroscopy and FT-ICR MS and the compounds in the fractions were tentatively confirmed as benzoperylene, coronene, methylcoronene, naphthenocoronene, benzocoronene, dibenzoperylene, naphthocoronene and ovalene. The developed liquid chromatography method can be easily adapted in a refinery laboratory for the quantitation of HPAHs in hydrocracking products. The method was further tested to check the interference of sulfur aromatics and/or large alkylated aromatic hydrocarbons on the determination of HPAHs in hydrocracking products. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Visualizing DOM super-spectrum covariance in vanKrevelen space

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Kalawe, J.; Stubbins, A.; Spencer, R. G.; Sleighter, R. L.; Abdulla, H. A.; Dittmar, T.

    2011-12-01

    We investigate the fate of terrigenous organic matter, DOM exported to the coastal marine environ. Many methods (fluor., FT-ICR-MS, NMR, 13C, lignin, etc) help characterize this DOM. We define a 'super spectrum' as amalgamation of analyses to a data stack and we search for physically significant patterns therein beginning with covariance across 31 samples from six circum-Arctic rivers: The Ob, Kolyma, Mackenzie, Yukon, Lena, and Yenisey sampled five times throughout the year. A vanKrevelen diagram is convenient to view distributions of molecules provided by Fourier Transform Ion Cyclotron Resonance Mass Spectometry (FT-ICR-MS). We augment this distribution space in the vertical dimension, for example to show peak height, molecular mass, principle component weighting or covariance. We use Worldwide Telescope, a virtual globe with strong data support from Microsoft Research to explore covariance results along 3+ dimensions (adding brightness, color and a parameter slide). The results show interesting covariance e.g. between molecules and PARAFAC peaks, a step towards fluorophore and cohort identification in the terrigenous DOM spectrum. Given the geoscience explosion in data volume and data complexity we feel these results should survive beyond the end point of a journal article. We are building a cloud-based Library on the Microsoft Azure platform to support this and subsequent analyses to enable data and methods to carry over and benefit other research groups and objectives.

  4. The Exometabolome of Two Model Strains of the Roseobacter Group: A Marketplace of Microbial Metabolites

    PubMed Central

    Wienhausen, Gerrit; Noriega-Ortega, Beatriz E.; Niggemann, Jutta; Dittmar, Thorsten; Simon, Meinhard

    2017-01-01

    Recent studies applying Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed that the exometabolome of marine bacteria is composed of a surprisingly high molecular diversity. To shed more light on how this diversity is generated we examined the exometabolome of two model strains of the Roseobacter group, Phaeobacter inhibens and Dinoroseobacter shibae, grown on glutamate, glucose, acetate or succinate by FT-ICR-MS. We detected 2,767 and 3,354 molecular formulas in the exometabolome of each strain and 67 and 84 matched genome-predicted metabolites of P. inhibens and D. shibae, respectively. The annotated compounds include late precursors of biosynthetic pathways of vitamins B1, B2, B5, B6, B7, B12, amino acids, quorum sensing-related compounds, indole acetic acid and methyl-(indole-3-yl) acetic acid. Several formulas were also found in phytoplankton blooms. To shed more light on the effects of some of the precursors we supplemented two B1 prototrophic diatoms with the detected precursor of vitamin B1 HET (4-methyl-5-(β-hydroxyethyl)thiazole) and HMP (4-amino-5-hydroxymethyl-2-methylpyrimidine) and found that their growth was stimulated. Our findings indicate that both strains and other bacteria excreting a similar wealth of metabolites may function as important helpers to auxotrophic and prototrophic marine microbes by supplying growth factors and biosynthetic precursors. PMID:29075248

  5. Structural measurements and cell line studies of the copper-PEG-Rifampicin complex against Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Mikula, Rachel; Wylie, Greg; Phillips, Dennis; Jarvis, Jackie; Zhang, Fengli

    2015-02-01

    The bacterium responsible for tuberculosis is increasing its resistance to antibiotics resulting in new multidrug-resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). In this study, several analytical techniques including NMR, FT-ICR, MALDI-MS, LC-MS and UV/Vis are used to study the copper-Rifampicin-Polyethylene glycol (PEG-3350) complex. The copper (II) cation is a carrier for the antibiotic Rifampicin as well as nutrients for the bacterium. The NIH-NIAID cell line containing several Tb strains (including antibiotic resistant strains) is tested against seven copper-PEG-RIF complex variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Improved mb-Ms Discrimination Using mb(P-coda) and MsU with Application to the Six North Korean Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Napoli, V.; Yoo, S. H.; Russell, D. R.

    2017-12-01

    To improve discrimination of small explosions and earthquakes, we developed a new magnitude scale based on the standard Ms:mb discrimination method. In place of 20 second Ms measurements we developed a unified Rayleigh and Love wave magnitude scale (MsU) that is designed to maximize available information from single stations and then combine magnitude estimates into network averages. Additionally, in place of mb(P) measurements we developed an mb(P-Coda) magnitude scale as the properties of the coda make sparse network mb(P-Coda) more robust and less variable than network mb(P) estimates. A previous mb:MsU study conducted in 2013 in the Korean Peninsula shows that the use of MsU in place of standard 20 second Ms, leads to increased population separation and reduced scattering. The goals of a combined mb(P-coda):MsU scale are reducing scatter, ensuring applicability at small magnitudes with sparse networks, and improving the overall distribution for mb:Ms earthquake and explosion populations. To test this method we are calculating mb(P-coda)and MsU for a catalog earthquakes located in and near the Korean Peninsula, for the six North Korean nuclear tests (4.1 < mb < 6.3) and for the 3 aftershocks to date that occurred after the sixth test (2.6 < ML < 4.0). Compared to the previous 2013 study, we expect to see greater separation in the populations and less scattering with the inclusion of mb(P-coda) and with the implementation of additional filters for MsU to improve signal-to-noise levels; this includes S-transform filtering for polarization and off-azimuth signal reduction at regional distances. As we are expanding our database of mb(P-coda):MsU measurements in the Korean Peninsula to determine the earthquake and explosion distribution, this research will address the limitations and potential for discriminating small magnitude events using sparse networks.

  7. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice.

    PubMed

    Homs, Judit; Ariza, Lorena; Pagès, Gemma; Verdú, Enrique; Casals, Laura; Udina, Esther; Chillón, Miguel; Bosch, Assumpció; Navarro, Xavier

    2011-09-01

    The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice. © 2011 Peripheral Nerve Society.

  8. Direct and non-destructive proof of authenticity for the 2nd generation of Brazilian real banknotes via easy ambient sonic spray ionization mass spectrometry.

    PubMed

    Schmidt, Eduardo Morgado; Franco, Marcos Fernando; Regino, Karen Gomes; Lehmann, Eraldo Luiz; Arruda, Marco Aurélio Zezzi; de Carvalho Rocha, Werickson Fortunato; Borges, Rodrigo; de Souza, Wanderley; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2014-12-01

    Using a desorption/ionization technique, easy ambient sonic-spray ionization coupled to mass spectrometry (EASI-MS), documents related to the 2nd generation of Brazilian Real currency (R$) were screened in the positive ion mode for authenticity based on chemical profiles obtained directly from the banknote surface. Characteristic profiles were observed for authentic, seized suspect counterfeit and counterfeited homemade banknotes from inkjet and laserjet printers. The chemicals in the authentic banknotes' surface were detected via a few minor sets of ions, namely from the plasticizers bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP), most likely related to the official offset printing process, and other common quaternary ammonium cations, presenting a similar chemical profile to 1st-generation R$. The seized suspect counterfeit banknotes, however, displayed abundant diagnostic ions in the m/z 400-800 range due to the presence of oligomers. High-accuracy FT-ICR MS analysis enabled molecular formula assignment for each ion. The ions were separated by 44 m/z, which enabled their characterization as Surfynol® 4XX (S4XX, XX=40, 65, and 85), wherein increasing XX values indicate increasing amounts of ethoxylation on a backbone of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104). Sodiated triethylene glycol monobutyl ether (TBG) of m/z 229 (C10H22O4Na) was also identified in the seized counterfeit banknotes via EASI(+) FT-ICR MS. Surfynol® and TBG are constituents of inks used for inkjet printing. Copyright © 2014. Published by Elsevier Ireland Ltd.

  9. Rapid LC-MS method for the detection of common fragrances in personal care products without sample preparation.

    PubMed

    Famiglini, Giorgio; Termopoli, Veronica; Palma, Pierangela; Capriotti, Fabiana; Cappiello, Achille

    2014-05-01

    An LC-MS method for the analysis of personal care and household products without sample preparation is presented. The method takes advantage of the Direct-electron ionization (EI) LC-MS interface for the quantitation of principal components, as well as for the identification of unknown or undeclared ingredients. The technique has proven its inertness toward matrix effects and the electron ionization allows quantitation and library identification. Commercially available products (shower gel, perfume, and hand cream) were diluted with methanol and injected directly into a nano-LC column. Limonene, linalool, and citral were selected as target compounds because of their use as fragrances in toiletry and detergent products. These and all other fragrances are commonly determined with GC-MS analysis, prior to sample cleanup, a procedure that can lead to analytes loss. The selected compounds are not detected with ESI because of their poor or very low response. Figures of merit and validation studies were executed and special attention was devoted to matrix-effects evaluation, because a sample preparation procedure is not involved. No matrix effects were observed, and the repeatability was excellent even after several weeks of operation. Products composition was investigated in full scan mode to determine the presence of unknown or not listed ingredients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  11. Linear excitation and detection in Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grosshans, Peter B.; Chen, Ruidan; Limbach, Patrick A.; Marshall, Alan G.

    1994-11-01

    We present the first Fourier transform ion cyclotron resonance (FT-ICR) ion trap designed to produce both a linear spatial variation of the excitation electric potential field and a linear response of the detection circuit to the motion of the confined ions. With this trap, the magnitude of the detected signal at a given ion cyclotron frequency varies linearly with both the number of ions of given mass-to-charge ratio and also with the magnitude-mode excitation signal at the ion cyclotron orbital frequency; the proportionality constant is mass independent. Interestingly, this linearization may be achieved with any ion trap geometry. The excitation/detection design consists of an array of capacitively coupled electrodes which provide a voltage-divider network that produces a nearly spatially homogeneous excitation electric field throughout the linearized trap; resistive coupling to the electrodes isolates the a.c. excitation (or detection) circuit from the d.c. (trapping) potential. The design is based on analytical expressions for the potential associated with each electrode, from which we are able to compute the deviation from linearity for a trap with a finite number of elements. Based on direct experimental comparisons to an unmodified cubic trap, the linearized trap demonstrates the following performance advantages at the cost of some additional mechanical complexity: (a) signal response linearly proportional to excitation electric field amplitude; (b) vastly reduced axial excitation/ejection for significantly improved ion relative abundance accuracy; (c) elimination of harmonics and sidebands of the fundamental frequencies of ion motion. As a result, FT-ICR mass spectra are now more reproducible. Moreover, the linearized trap should facilitate the characterization of other fundamental aspects of ion behavior in an ICR ion trap, e.g. effects of space charge, non-quadrupolar electrostatic trapping field, etc. Furthermore, this novel design should improve

  12. Cognitive Function of Artemisia argyi H. Fermented by Monascus purpureus under TMT-Induced Learning and Memory Deficits in ICR Mice

    PubMed Central

    Kang, Jin Yong; Lee, Du Sang; Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Ha, Gi Jeong; Seo, Weon Taek

    2017-01-01

    The cognitive effect of Artemisia argyi H. under liquid-state fermentation by Monascus purpureus (AAFM), which has cellular antioxidant activity and neuronal cell viability, on trimethyltin- (TMT-) induced learning and memory impairment in Institute of Cancer Research (ICR) mice was confirmed. Tests were conducted to determine the neuroprotective effects against H2O2-induced oxidative stress, and the results showed that AAFM has protective effects through the repression of mitochondrial injury and cellular membrane damage against H2O2-induced neurotoxicity. In animal experiments, such as the Y-maze, passive avoidance, and Morris water maze tests, AAFM also showed excellent ameliorating effects on TMT-induced cognitive dysfunction. After behavioral tests, brain tissues were extracted to assess damage to brain tissue. According to the experimental results, AAFM improved the cholinergic system by upregulating acetylcholine (ACh) contents and inhibiting acetylcholinesterase (AChE) activity. AAFM effectively improved the decline of the superoxide dismutase (SOD) level and the increase of the oxidized glutathione (GSH) ratio and lipid peroxidation (malondialdehyde (MDA) production) caused by TMT-induced oxidative stress. The occurrence of mitochondrial dysfunction and apoptosis was also decreased compared with the TMT group. Finally, quinic acid derivatives were identified as the major phenolic compounds in AAFM using ultra-performance liquid chromatography quadrupole-time-of-flight (UPLC-Q-TOF) MS analysis. PMID:29081819

  13. Cognitive Function of Artemisia argyi H. Fermented by Monascus purpureus under TMT-Induced Learning and Memory Deficits in ICR Mice.

    PubMed

    Kang, Jin Yong; Lee, Du Sang; Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Ha, Gi Jeong; Seo, Weon Taek; Heo, Ho Jin

    2017-01-01

    The cognitive effect of Artemisia argyi H. under liquid-state fermentation by Monascus purpureus (AAFM), which has cellular antioxidant activity and neuronal cell viability, on trimethyltin- (TMT-) induced learning and memory impairment in Institute of Cancer Research (ICR) mice was confirmed. Tests were conducted to determine the neuroprotective effects against H 2 O 2 -induced oxidative stress, and the results showed that AAFM has protective effects through the repression of mitochondrial injury and cellular membrane damage against H 2 O 2 -induced neurotoxicity. In animal experiments, such as the Y-maze, passive avoidance, and Morris water maze tests, AAFM also showed excellent ameliorating effects on TMT-induced cognitive dysfunction. After behavioral tests, brain tissues were extracted to assess damage to brain tissue. According to the experimental results, AAFM improved the cholinergic system by upregulating acetylcholine (ACh) contents and inhibiting acetylcholinesterase (AChE) activity. AAFM effectively improved the decline of the superoxide dismutase (SOD) level and the increase of the oxidized glutathione (GSH) ratio and lipid peroxidation (malondialdehyde (MDA) production) caused by TMT-induced oxidative stress. The occurrence of mitochondrial dysfunction and apoptosis was also decreased compared with the TMT group. Finally, quinic acid derivatives were identified as the major phenolic compounds in AAFM using ultra-performance liquid chromatography quadrupole-time-of-flight (UPLC-Q-TOF) MS analysis.

  14. An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Erin Shammel; Livesay, Eric A.; Orton, Daniel J.

    2010-02-05

    A high-throughput approach and platform using 15 minute reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking twenty reference peptides at varying concentrations from 1 ng/mL to 10 µg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected thirteen out of the twenty spiked peptides that had concentrations ≥100 ng/mL.more » In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for nineteen of the twenty peptides with all spiking level present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects, but in turn limits the achievable dynamic range compared to the TOF detector.« less

  15. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz).

    PubMed

    Adeyemo, O Sarah; Chavarriaga, Paul; Tohme, Joe; Fregene, Martin; Davis, Seth J; Setter, Tim L

    2017-01-01

    Cassava is a tropical storage-root crop that serves as a worldwide source of staple food for over 800 million people. Flowering is one of the most important breeding challenges in cassava because in most lines flowering is late and non-synchronized, and flower production is sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined angiosperms. The objective of the current work was to determine the potential roles of the FT signaling system in cassava. The Arabidopsis thaliana FT gene (atFT) was transformed into the cassava cultivar 60444 through Agrobacterium-mediated transformation and was found to be overexpressed constitutively. FT overexpression hastened flower initiation and associated fork-type branching, indicating that cassava has the necessary signaling factors to interact with and respond to the atFT gene product. In addition, overexpression stimulated lateral branching, increased the prolificacy of flower production and extended the longevity of flower development. While FT homologs in some plant species stimulate development of vegetative storage organs, atFT inhibited storage-root development and decreased root harvest index in cassava. These findings collectively contribute to our understanding of flower development in cassava and have the potential for applications in breeding.

  16. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz)

    PubMed Central

    Adeyemo, O. Sarah; Chavarriaga, Paul; Tohme, Joe; Fregene, Martin; Davis, Seth J.

    2017-01-01

    Cassava is a tropical storage-root crop that serves as a worldwide source of staple food for over 800 million people. Flowering is one of the most important breeding challenges in cassava because in most lines flowering is late and non-synchronized, and flower production is sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined angiosperms. The objective of the current work was to determine the potential roles of the FT signaling system in cassava. The Arabidopsis thaliana FT gene (atFT) was transformed into the cassava cultivar 60444 through Agrobacterium-mediated transformation and was found to be overexpressed constitutively. FT overexpression hastened flower initiation and associated fork-type branching, indicating that cassava has the necessary signaling factors to interact with and respond to the atFT gene product. In addition, overexpression stimulated lateral branching, increased the prolificacy of flower production and extended the longevity of flower development. While FT homologs in some plant species stimulate development of vegetative storage organs, atFT inhibited storage-root development and decreased root harvest index in cassava. These findings collectively contribute to our understanding of flower development in cassava and have the potential for applications in breeding. PMID:28753668

  17. Evaluation of Fungal Deterioration in Liquidambar orientalis Mill. heartwood by FT-IR and light microscopy.

    Treesearch

    Nural Yilgor; Dilek Dogu; Roderquita Moore; Evren Terzi; S. Nami Kartal

    2013-01-01

    The chemical and morphological changes in heartwood specimens of Liquidambar orientalis Mill. caused by the white-rot fungus Trametes versicolor and the brown-rot fungi Tyromyces palustris and Gloeophyllum trabeum were studied by wet chemistry, FT-IR, GC-MS analyses, and photo-...

  18. Measuring fecal testosterone in females and fecal estrogens in males: comparison of RIA and LC/MS/MS methods for wild baboons (Papio cynocephalus)

    PubMed Central

    Gesquiere, Laurence R.; Ziegler, Toni E.; Chen, Patricia A.; Epstein, Katherine A.; Alberts, Susan C.; Altmann, Jeanne

    2014-01-01

    The development of non-invasive methods, particularly fecal determination, has made possible the assessment of hormone concentrations in wild animal populations. However, measuring fecal metabolites needs careful validation for each species and for each sex. We investigated whether radioimmunoassays (RIAs) previously used to measure fecal testosterone (fT) in male baboons and fecal estrogens (fE) in female baboons were well suited to measure these hormones in the opposite sex. We compared fE and fT concentrations determined by RIA to those measured by liquid chromatography combined with triple quadropole mass spectrometry (LC/MS/MS), a highly specific method. Additionally, we conducted a biological validation to assure that the measurements of fecal concentrations reflected physiological levels of the hormone of interest. Several tests produced expected results that led us to conclude that our RIAs can reliably measure fT and fE in both sexes, and that within-sex comparisons of these measures are valid: (i) fTRIA were significantly correlated to fTLC/MS/MS for both sexes; (ii) fTRIA were higher in adult than in immature males; (iii) fTRIA were higher in pregnant than non-pregnant females; (iv) fERIA were correlated with 17β-estradiol (fE2) and with estrone (fE1) determined by LC/MS/MS in pregnant females; (v) fERIA were significantly correlated with fE2 in non-pregnant females and nearly significantly correlated in males; (vi) fERIA were higher in adult males than in immature males. fERIA were higher in females than in males, as predicted, but unexpectedly, fTRIA were higher in females than in males, suggesting a difference in steroid metabolism in the two sexes; consequently, we conclude that while within-sex comparisons are valid, fTRIA should not be used for intersexual comparisons. Our results should open the field to important additional studies, as to date the roles of testosterone in females and estrogens in males have been little investigated. PMID

  19. Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River

    NASA Astrophysics Data System (ADS)

    Roth, Vanessa-Nina; Dittmar, Thorsten; Gaupp, Reinhard; Gleixner, Gerd

    2013-12-01

    We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) to identify the molecular composition of dissolved organic matter (DOM) collected from different ecosystems along a transect crossing Siberia’s northern and middle Taiga. This information is urgently needed to help elucidate global carbon cycling and export through Russian rivers. In total, we analyzed DOM samples from eleven Yenisei tributaries and seven bogs. Freeze-dried and re-dissolved DOM was desalted via solid phase extraction (SPE) and eluted in methanol for ESI-FT-ICR-MS measurements. We recorded 15209 different masses and identified 7382 molecular formulae in the mass range between m/z = 150 and 800. We utilized the relative FT-ICR-MS signal intensities of 3384 molecular formulae above a conservatively set limit of detection and summarized the molecular characteristics for each measurement using ten magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (DBE)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w and (AI)w) for redundancy analysis. Consequently, we revealed that the molecular composition of DOM depends mainly on pH and geographical latitude. After applying variation partitioning to the peak data, we isolated molecular formulae that were strongly positive or negatively correlated with latitude and pH. We used the chemical information from 13 parameters (C#, H#, N#, O#, O/C, H/C, DBE, DBE/C, DBE/O, AI, N/C, DBE-O and MW) to characterize the extracted molecular formulae. Using latitude along the gradient representing climatic variation, we found a higher abundance of smaller molecules, nitrogen-containing compounds and unsaturated Cdbnd C functionalities at higher latitudes. As possible reasons for the different molecular characteristics occurring along this gradient, we suggested that the decomposition was temperature dependent resulting to a higher abundance of non-degraded lignin-derived phenolic substances. We demonstrated that bog samples

  20. Nanospray FAIMS Fractionation Provides Significant Increases in Proteome Coverage of Unfractionated Complex Protein Digests*

    PubMed Central

    Swearingen, Kristian E.; Hoopmann, Michael R.; Johnson, Richard S.; Saleem, Ramsey A.; Aitchison, John D.; Moritz, Robert L.

    2012-01-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that can be used to reduce sample complexity and increase dynamic range in tandem mass spectrometry experiments. FAIMS fractionates ions in the gas-phase according to characteristic differences in mobilities in electric fields of different strengths. Undesired ion species such as solvated clusters and singly charged chemical background ions can be prevented from reaching the mass analyzer, thus decreasing chemical noise. To date, there has been limited success using the commercially available Thermo Fisher FAIMS device with both standard ESI and nanoLC-MS. We have modified a Thermo Fisher electrospray source to accommodate a fused silica pulled tip capillary column for nanospray ionization, which will enable standard laboratories access to FAIMS technology. Our modified source allows easily obtainable stable spray at flow rates of 300 nL/min when coupled with FAIMS. The modified electrospray source allows the use of sheath gas, which provides a fivefold increase in signal obtained when nanoLC is coupled to FAIMS. In this work, nanoLC-FAIMS-MS and nanoLC-MS were compared by analyzing a tryptic digest of a 1:1 mixture of SILAC-labeled haploid and diploid yeast to demonstrate the performance of nanoLC-FAIMS-MS, at different compensation voltages, for post-column fractionation of complex protein digests. The effective dynamic range more than doubled when FAIMS was used. In total, 10,377 unique stripped peptides and 1649 unique proteins with SILAC ratios were identified from the combined nanoLC-FAIMS-MS experiments, compared with 6908 unique stripped peptides and 1003 unique proteins with SILAC ratios identified from the combined nanoLC-MS experiments. This work demonstrates how a commercially available FAIMS device can be combined with nanoLC to improve proteome coverage in shotgun and targeted type proteomics experiments. PMID:22186714

  1. Mercury in US coal: Observations using the COALQUAL and ICR data

    USGS Publications Warehouse

    Quick, J.C.; Brill, T.C.; Tabet, D.E.

    2003-01-01

    The COALQUAL data set lists the mercury content of samples collected from the in-ground US coal resource, whereas the ICR data set lists the mercury content of samples collected from coal shipments delivered to US electric utilities. After selection and adjustment of records, the COALQUAL data average 0.17 ??g Hg/g dry coal or 5.8 kg Hg/PJ, whereas the ICR data average 0.10 ??g Hg/g dry coal or 3.5 kg Hg/PJ. Because sample frequency does not correspond to the inground or produced tonnage, these values are not accurate estimates of the mercury content of either in-ground or delivered US coal. Commercial US coal contains less mercury than previously estimated, and its mercury content has declined during the 1990s. Selective mining and more extensive coal washing may accelerate the current trend towards lower mercury content in coal burned at US electric utilities.

  2. [Effects of postnatal lambda-cyhalothrin exposure on synaptic proteins in ICR mouse brain].

    PubMed

    Bao, Xun-Di; Wang, Qu-Nan; Li, Fang-Fang; Chai, Xiao-Yu; Gao, Ye

    2011-04-01

    To evaluate the influence on the synaptic protein expression in different brain regions of ICR mice after lambda-cyhalothrin (LCT) exposure during postnatal period. Two male and 4 female healthy ICR mice were put in one cage. It was set as pregnancy if vaginal plug was founded. Offspring were divided into 5 groups randomly, and exposed to LCT (0.01% DMSO solution) at the doses of 0.1, 1.0 and 10.0 mg/kg by intragastric rout every other day from postnatal days (PND) 5 to PND13, control animals were treated with normal saline or DMSO by the same route. The brains were removed from pups on PND 14, the synaptic protein expression levels in cortex, hippocampus and striatum were measured by western blot. GFAP levels of cortex and hippocampus in the LCT exposure group increased with doses, as compared with control group (P < 0.05), while Tuj protein expression did not change significantly in the various brain regions of ICR mice. GAP-43 protein expression levels in the LCT exposed mouse hippocampus and in female ICR mouse cortex increased with doses, as compared with control group (P < 0.05). Presynaptic protein (Synapsin I) expression levels did not change obviously in various brain regions. However, postsynaptic density protein 95 (PSD95) expression levels of the hippocampus and striatum in male offspring of 10.0 mg/kg LCT group, of cortex of female LCT groups, and of female offspring in all exposure groups, of striatum, in 1.0 or 10.0 mg/kg LCT exposure groups significantly decreased (P < 0.05). Early postnatal exposure to LCT affects synaptic protein expression. These effects may ultimately affect the construction of synaptic connections.

  3. IR, FT-ICR-MS studies on (1'S, 6'S)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0] non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid hydrochloride salt.

    PubMed

    Lin, Zhiwei

    2014-01-01

    The infrared spectra of (1'S, 6'S)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0] non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid hydrochloride salt (CLF-HCl) were studied and compared with free base. Their fragmentation pathways were investigated using tandem mass spectrometric (MS/MS) techniques on Fourier-transform ion cyclotron resonance spectrum, and many characteristic fragment ions were found. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. In vivo irritation study of Melastoma malabathricum cream formulation on ICR mice

    NASA Astrophysics Data System (ADS)

    Yasin, Rabiahtul Adarwiyah Mohd; Jemon, Khairunadwa; Nor, Norefrina Shafinaz Md

    2016-11-01

    Melastoma malabathricum is a traditional herb that is used to treat wound on skin. It has also been proven to have antiviral activity against Herpes Simplex virus type 1 (HSV-1). In this study, M. malabathricum cream formulation was developed by incorporating M. malabathricum aqueous extract into cream base. The safety and biocompatibility of the formulated cream was investigated by topically applying the cream onto the back of ICR mice skin. Treatment with M. malabathricum was found to accelerate wound contraction with less scar formation. The effect of M. malabathricum has prompted a possibility that M. malabathricum might contribute in enhancing the healing process of cutaneous lesion caused by HSV-1. The formulated cream did not cause any skin irritation or adverse effect to ICR mice when topically applied within seven days of exposure.

  5. Molecular Characterization of Organosulfates in Urban Aerosols during the Spring Festival by FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xie, Q.; Fu, P.

    2017-12-01

    Aerosol particles collected at daytime and nighttime in Beijing during the spring festival, including the episodes of various gradient level pollution and short-term pollution raised by fireworks, were analyzed using 15T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS). Organosulfates (OSs), tracers for secondary organic aerosol formation, were identified through accurate mass measurements. Both the total number and the arbitrary abundance of OSs were consistent with the total OC concentrations of the aerosol samples. Nitrooxy-organosulfates were more abundant in the nighttime than those in the daytime due to high NOX concentrations at night. Although all subgroups OSs increased with the deterioration of air quality, especially for the relative abundance of aromatic OSs with high double bond equivalents, the percentage contributions of aliphatic OSs with low degree of unsaturation decreased. It was worth to note that aliphatic OSs with a wide range in carbon-chain length of C6-40 were identified in this study. The candidates for their potential precursors were alkanes and fatty acids. Moreover, a large number of aromatic OSs, about two thirds of OSs, were detected. The rapid formation of these compounds in New Year's Eve with plentiful aromatics from firework burning suggests that they may be derived from PAHs. The high carbon and oxygen contents of OSs may indicate the presence of dimmers, even polymers. Our results support the important contribution of anthropogenic precursors to OSs in ambient aerosols on the basis of aromatic and aliphatic OSs, which may have a significant impact on the hygroscopic properties of ambient aerosol particles.

  6. Stage-frit: A straightforward sub-2 μm nano-liquid chromatography column fabrication for proteomic analysis.

    PubMed

    Hsieh, Ming-Yueh; Hsiao, He-Hsuan

    2015-07-30

    In this work we demonstrated a facile method for the fabrication of C18 coordination polymer gel in a capillary, called stage-frit, which was efficiently applied to pack sub-2 μm C18 beads into the capillary by a high pressure bomb for the online separation of proteolytic peptides. The back pressure of the column with 10 cm × 75 μm i.d. is regularly lower than 170 bar at a flow rate of 300 nl/min, which could be operated on a common nanoLC system instead of nanoUPLC system due to the good permeability, low back pressure and high mechanical stress of the frit that will totally reduce the cost for the purchase of instrument. The stage-frit allows long-term continuous flow of the solvent and no significant beads loss or pressure instability was observed during the period. The repeatability of retention time for fifteen BSA tryptic peaks was found to be less than 1.08% (RSD) in six time nanoLC-ESI-MS/MS experiments. The average full width at half maximum (FWHM) of peptide peaks is 5.87 s. The sub-2 μm stage-frit nanoLC column showed better sensitivity than the commercial available for large scale proteomic analysis of total tissue proteins from human spleen. The number of identified peptides is approximately 0.4-fold and 0.2-fold higher than that obtained by utilizing commercial columns packed with 3 μm and 1.8 μm C18 materials, respectively. In the field of analytical chemistry, particularly the use of nanoLC systems, stage-frit nanoLC column offers a great potential for the separation of complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. THE OCCURRENCE OF A NEW GENERATION OF DBPS (BEYOND THE ICR)

    EPA Science Inventory

    A nationwide survey of 12 full-scale treatment plants for disinfection by-products (DBPs) was initiated in the U.S. in 2000. Approximately 50DBPs that rated a high priority for potential toxicity and were not included in the Information Collection Rule (ICR) are being quantified...

  8. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    PubMed Central

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  9. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    NASA Astrophysics Data System (ADS)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  10. Exhaustive methylation analysis revealed uneven profiles of methylation at IGF2/ICR1/H19 11p15 loci in Russell Silver syndrome.

    PubMed

    Azzi, Salah; Steunou, Virginie; Tost, Jörg; Rossignol, Sylvie; Thibaud, Nathalie; Das Neves, Cristina; Le Jule, Marilyne; Habib, Walid Abi; Blaise, Annick; Koudou, Yves; Busato, Florence; Le Bouc, Yves; Netchine, Irène

    2015-01-01

    The structural organisation of the human IGF2/ICR1/H19 11p15 domain is very complex, and the mechanisms underlying its regulation are poorly understood. The Imprinted Center Region 1 (ICR1) contains seven binding sites for the zinc-finger protein CTCF (CBS: CTCF Binding Sites); three additional differentially methylated regions (DMR) are located at the H19 promoter (H19DMR) and two in the IGF2 gene (DMR0 and DMR2), respectively. Loss of imprinting at the IGF2/ICR1/H19 domain results in two growth disorders with opposite phenotypes: Beckwith-Wiedemann syndrome and Russell Silver syndrome (RSS). Despite the IGF2/ICR1/H19 locus being widely studied, the extent of hypomethylation across the domain remains not yet addressed in patients with RSS. We assessed a detailed investigation of the methylation status of the 11p15 ICR1 CBS1-7, IGF2DMR0 and H19DMR (H19 promoter) in a population of controls (n=50) and RSS carrying (n=104) or not (n=65) carrying a hypomethylation at the 11p15 ICR1 region. The methylation indexes (MI) were balanced at all regions in the control population and patients with RSS without any as yet identified molecular anomaly. Interestingly, patients with RSS with ICR1 hypomethylation showed uneven profiles of methylation among the CBSs and DMRs. Furthermore, normal MIs at CBS1 and CBS7 were identified in 9% of patients. The hypomethylation does not spread equally throughout the IGF2/ICR1/H19 locus, and some loci could have normal MI, which may lead to underdiagnosis of patients with RSS with ICR1 hypomethylation. The uneven pattern of methylation suggests that some CBSs may play different roles in the tridimensional chromosomal looping regulation of this locus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Fourier transform ion cyclotron resonance mass resolution and dynamic range limits calculated by computer modeling of ion cloud motion.

    PubMed

    Vladimirov, Gleb; Hendrickson, Christopher L; Blakney, Greg T; Marshall, Alan G; Heeren, Ron M A; Nikolaev, Eugene N

    2012-02-01

    was determined for two ion ensembles of different m/z, equal abundance, and equal cyclotron radius. We find that N and dynamic range depend quadratically on magnetic field strength in the range 1-21 Tesla. Dependences on cyclotron radius and Δm/z are linear. N depends on m/z as (m/z)(-2). Empirical expressions for mass resolution as a function of each of the experimental parameters are presented. Here, we provide the first exposition of the origin and extent of trade-off between FT-ICR MS dynamic range and mass resolution (defined not as line width, but as the separation between the most closely resolved masses). © American Society for Mass Spectrometry, 2011

  12. A New Algorithm Using Cross-Assignment for Label-Free Quantitation with LC/LTQ-FT MS

    PubMed Central

    Andreev, Victor P.; Li, Lingyun; Cao, Lei; Gu, Ye; Rejtar, Tomas; Wu, Shiaw-Lin; Karger, Barry L.

    2008-01-01

    A new algorithm is described for label-free quantitation of relative protein abundances across multiple complex proteomic samples. Q-MEND is based on the denoising and peak picking algorithm, MEND, previously developed in our laboratory. Q-MEND takes advantage of the high resolution and mass accuracy of the hybrid LTQFT MS mass spectrometer (or other high resolution mass spectrometers, such as a Q-TOF MS). The strategy, termed “cross-assignment”, is introduced to increase substantially the number of quantitated proteins. In this approach, all MS/MS identifications for the set of analyzed samples are combined into a master ID list, and then each LC/MS run is searched for the features that can be assigned to a specific identification from that master list. The reliability of quantitation is enhanced by quantitating separately all peptide charge states, along with a scoring procedure to filter out less reliable peptide abundance measurements. The effectiveness of Q-MEND is illustrated in the relative quantitative analysis of E.coli samples spiked with known amounts of non-E.coli protein digests. A mean quantitation accuracy of 7% and mean precision of 15% is demonstrated. Q-MEND can perform relative quantitation of a set of LC/MS datasets without manual intervention and can generate files compatible with the Guidelines for Proteomic Data Publication. PMID:17441747

  13. 75 FR 61481 - Agency Information Collection Activities; Submission of EPA ICR No. 2078.01 to OMB for Review and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... identity or contact information unless you provide it in the body of your comment. If you send an e-mail... and other contact information in the body of your comment and with any disk or CD-ROM you submit. If..., OMB Control No. 2060-0528. ICR Status: This ICR is currently scheduled to expire on March 31, 2011. An...

  14. Analysis of anthocyanins in commercial fruit juices by using nano-liquid chromatography-electrospray-mass spectrometry and high-performance liquid chromatography with UV-vis detector.

    PubMed

    Fanali, Chiara; Dugo, Laura; D'Orazio, Giovanni; Lirangi, Melania; Dachà, Marina; Dugo, Paola; Mondello, Luigi

    2011-01-01

    Nano-LC and conventional HPLC techniques were applied for the analysis of anthocyanins present in commercial fruit juices using a capillary column of 100 μm id and a 2.1 mm id narrow-bore C(18) column. Analytes were detected by UV-Vis at 518 nm and ESI-ion trap MS with HPLC and nano-LC, respectively. Commercial blueberry juice (14 anthocyanins detected) was used to optimize chromatographic separation of analytes and other analysis parameters. Qualitative identification of anthocyanins was performed by comparing the recorded mass spectral data with those of published papers. The use of the same mobile phase composition in both techniques revealed that the miniaturized method exhibited shorter analysis time and higher sensitivity than narrow-bore chromatography. Good intra-day and day-to-day precision of retention time was obtained in both methods with values of RSD less than 3.4 and 0.8% for nano-LC and HPLC, respectively. Quantitative analysis was performed by external standard curve calibration of cyanidin-3-O-glucoside standard. Calibration curves were linear in the concentration ranges studied, 0.1-50 and 6-50 μg/mL for HPLC-UV/Vis and nano-LC-MS, respectively. LOD and LOQ values were good for both methods. In addition to commercial blueberry juice, qualitative and quantitative analysis of other juices (e.g. raspberry, sweet cherry and pomegranate) was performed. The optimized nano-LC-MS method allowed an easy and selective identification and quantification of anthocyanins in commercial fruit juices; it offered good results, shorter analysis time and reduced mobile phase volume with respect to narrow-bore HPLC. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin

    NASA Astrophysics Data System (ADS)

    Floris, Federico; Chiron, Lionel; Lynch, Alice M.; Barrow, Mark P.; Delsuc, Marc-André; O'Connor, Peter B.

    2018-06-01

    Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about 23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from 23% to 42%.

  16. A Robust Two-Dimensional Separation for Top-Down Tandem Mass Spectrometry of the Low-Mass Proteome

    PubMed Central

    Lee, Ji Eun; Kellie, John F.; Tran, John C.; Tipton, Jeremiah D.; Catherman, Adam D.; Thomas, Haylee M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Vellaichamy, Adaikkalam; Ntai, Ioanna; Marshall, Alan G.; Kelleher, Neil L.

    2010-01-01

    For fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The “GELFrEE” (i.e., gel-eluted liquid fraction entrapment electrophoresis) approach is implemented by use of Tris-glycine and Tris-tricine gel systems applied to human cytosolic and nuclear extracts from HeLa S3 cells, to achieve a MW-based fractionation of proteins from 5 to >100 kDa in 1 h. For top-down tandem mass spectroscopy (MS/MS) of the low-mass proteome (5–25 kDa), between 5 and 8 gel-elution (GE) fractions are sampled by nanocapillary-LC-MS/MS with 12 or 14.5 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Single injections give about 40 detectable proteins, about half of which yield automated ProSight identifications. Reproducibility metrics of the system are presented, along with comparative analysis of protein targets in mitotic versus asynchronous cells. We forward this basic 2D approach to facilitate wider implementation of top-down mass spectrometry and a variety of other protein separation and/or characterization approaches. PMID:19747844

  17. Chemical Composition of Microbe-Derived Dissolved Organic Matter in Cryoconite in Tibetan Plateau Glaciers: Insights from Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Analysis.

    PubMed

    Feng, Lin; Xu, Jianzhong; Kang, Shichang; Li, Xiaofei; Li, Yang; Jiang, Bin; Shi, Quan

    2016-12-20

    Cryoconite in mountain glaciers plays important roles in glacial ablation and biogeochemical cycles. In this study, the composition and sources of dissolved organic matter (DOM) in cryoconite from the ablation regions of two Tibetan Plateau glaciers were determined using electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and fluorescence spectrometry. A marked absorbance between 300 and 350 nm in the DOM absorption spectra was observed which was consistent with microbe-derived mycosporine-like amino acids. Fluorescence excitation-emission matrices showed that DOM had intense signals at protein-like substance peaks and weak signals at humic-like substance peaks. The high-resolution mass spectra of FT-ICR-MS showed cryoconite DOM from both glaciers contained diverse lignins, lipids, proteins, and unsaturated hydrocarbons. The lipids and proteins were consistent with material from microbial sources, and the lignins and unsaturated hydrocarbons were probably from vascular plant material supplied in atmospheric aerosols and debris from around the glaciers. Almost one-third of the identified DOM molecules had low C/N ratios (≤20), indicating their high bioavailability. Using a conservative cryoconite distribution on Chinese mountain glacier surfaces (6%) and an average debris mass per square meter of cryoconite (292 ± 196 g m -2 ), we found that the amount of DOC produced in cryoconite on Chinese glaciers as much as 0.23 ± 0.1 Gg per cryoconite formation process. This dissolved organic carbon may absorb solar radiation, accelerate glacial melting, and be an important source of bioavailable DOM to proglacial and downstream aquatic ecosystems.

  18. Characterization of low molecular weight dissolved natural organic matter along the treatment trait of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Ren, Shuoyi; Yu, Jianwei; Ji, Feng; Luo, Wenbin; Yang, Min

    2012-10-15

    Dissolved natural organic matter (DOM), particularly the low molecular weight DOM, can affect the performance of water treatment processes and serve as a main precursor of disinfection by-products (DBPs) during chlorination. In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize the low molecular weight DOM along the treatment trait of a conventional drinking water treatment plant. The ESI FT-ICR MS data showed that various C, H, O-only class species were the major components in the source water. According to the van Krevelen diagram analysis, lignin- and tannin-like compounds were the most abundant components. Within an isobaric group, the DOM molecules with a high degree of oxidation (high O/C value) were preferentially removed during coagulation, while those with low degree of oxidation were found to be more reactive toward chlorine. In addition, 357 one-chlorine containing products and 199 two-chlorine containing products formed during chlorination were detected in the chlorination effluent sample at a high confidence level. The chlorinated products can be arranged into series, suggesting that they were originated from C, H, O-only precursor compounds, which were in series related by the replacement of CH(4) against oxygen. For the first time, this study explored the behavior of low molecular weight DOM along a drinking water treatment trait on the molecular level, and revealed the presence of abundant unknown chlorinated products, which are probably rich in carboxylic and phenolic groups, in drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Sunlight creates oxygenated species in water-soluble fractions of Deepwater Horizon oil.

    PubMed

    Ray, Phoebe Z; Chen, Huan; Podgorski, David C; McKenna, Amy M; Tarr, Matthew A

    2014-09-15

    In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid-liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O5), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O2). Higher-order oxygen classes (O5-O9) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N1) concurrent with an increased abundance of N1Ox classes after irradiation. The predominance of higher-order oxygen classes indicates that multiple photochemical pathways exist that result in oxidation of petroleum compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. 77 FR 4299 - Agency Information Collection Activities; Proposed Collection; Comment Request; Valuing Improved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Activities; Proposed Collection; Comment Request; Valuing Improved Water Quality in the Chesapeake Bay Using...: Willingness to Pay for Improved Water Quality in the Chesapeake Bay. ICR numbers: EPA ICR No. 2456.01, OMB... Economics (NCEE) is undertaking a benefits analysis of improvements in Bay water quality under the TMDLs, as...

  1. Conductive carbon tape used for support and mounting of both whole animal and fragile heat-treated tissue sections for MALDI MS imaging and quantitation.

    PubMed

    Goodwin, Richard J A; Nilsson, Anna; Borg, Daniel; Langridge-Smith, Pat R R; Harrison, David J; Mackay, C Logan; Iverson, Suzanne L; Andrén, Per E

    2012-08-30

    Analysis of whole animal tissue sections by MALDI MS imaging (MSI) requires effective sample collection and transfer methods to allow the highest quality of in situ analysis of small or hard to dissect tissues. We report on the use of double-sided adhesive conductive carbon tape during whole adult rat tissue sectioning of carboxymethyl cellulose (CMC) embedded animals, with samples mounted onto large format conductive glass and conductive plastic MALDI targets, enabling MSI analysis to be performed on both TOF and FT-ICR MALDI mass spectrometers. We show that mounting does not unduly affect small molecule MSI detection by analyzing tiotropium abundance and distribution in rat lung tissues, with direct on-tissue quantitation achieved. Significantly, we use the adhesive tape to provide support to embedded delicate heat-stabilized tissues, enabling sectioning and mounting to be performed that maintained tissue integrity on samples that had previously been impossible to adequately prepare section for MSI analysis. The mapping of larger peptidomic molecules was not hindered by tape mounting samples and we demonstrate this by mapping the distribution of PEP-19 in both native and heat-stabilized rat brains. Furthermore, we show that without heat stabilization PEP-19 degradation fragments can detected and identified directly by MALDI MSI analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos.

    PubMed

    Mekonnen, Tessema F; Panne, Ulrich; Koch, Matthias

    2017-05-01

    An automated method is presented for fast simulation of (bio)transformation products (TPs) of the organophosphate insecticide chlorpyrifos (CPF) based on electrochemistry coupled online to liquid chromatography-mass spectrometry (EC-LC-MS). Oxidative TPs were produced by a boron doped diamond (BDD) electrode, separated by reversed phase HPLC and online detected by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, EC oxidative TPs were investigated by HPLC-tandem mass spectrometry (LC-MS/MS) and FT-ICR high resolution mass spectrometry (HRMS) and compared to in vitro assay metabolites (rat and human liver microsomes). Main phase I metabolites of CPF: chlorpyrifos oxon (CPF oxon), trichloropyridinol (TCP), diethylthiophosphate (DETP), diethylphosphate (DEP), desethyl chlorpyrifos (De-CPF), and desethyl chlorpyrifos oxon (De-CPF oxon), were successfully identified by the developed EC-LC-MS method. The EC-LC-MS method showed similar metabolites compared to the in vitro assay with possibilities of determining reactive species. Our results reveal that online EC-(LC)-MS brings an advantage on time of analysis by eliminating sample preparation steps and matrix complexity compared to conventional in vivo or in vitro methods.

  3. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    PubMed Central

    Dhakal, Sagar; Chao, Kuanglin; Schmidt, Walter; Qin, Jianwei; Kim, Moon; Chan, Diane

    2016-01-01

    Turmeric powder (Curcuma longa L.) is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman) and Fourier Transform-Infra Red (FT-IR) spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w). FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively. PMID:28231130

  4. The characterization of natural gemstones using non-invasive FT-IR spectroscopy: New data on tourmalines.

    PubMed

    Mercurio, Mariano; Rossi, Manuela; Izzo, Francesco; Cappelletti, Piergiulio; Germinario, Chiara; Grifa, Celestino; Petrelli, Maurizio; Vergara, Alessandro; Langella, Alessio

    2018-02-01

    Fourteen samples of tourmaline from the Real Museo Mineralogico of Federico II University (Naples) have been characterized through multi-methodological investigations (EMPA-WDS, SEM-EDS, LA-ICP-MS, and FT-IR spectroscopy). The samples show different size, morphology and color, and are often associated with other minerals. Data on major and minor elements allowed to identify and classify tourmalines as follows: elbaites, tsilaisite, schorl, dravites, uvites and rossmanite. Non-invasive, non-destructive FT-IR and in-situ analyses were carried out on the same samples to validate this chemically-based identification and classification. The results of this research show that a complete characterization of this mineral species, usually time-consuming and expensive, can be successfully achieved through non-destructive FT-IR technique, thus representing a reliable tool for a fast classification extremely useful to plan further analytical strategies, as well as to support gemological appraisals. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  6. Molecular cloning and functional analysis of the FLOWERING LOCUS T (FT) homolog GhFT1 from Gossypium hirsutum.

    PubMed

    Guo, Danli; Li, Chao; Dong, Rui; Li, Xiaobo; Xiao, Xiangwen; Huang, Xianzhong

    2015-06-01

    FLOWERING LOCUS T (FT) encodes a member of the phosphatidylethanolamine-binding protein (PEBP) family that functions as the mobile floral signal, playing an important role in regulating the floral transition in angiosperms. We isolated an FT-homolog (GhFT1) from Gossypium hirsutum L. cultivar, Xinluzao 33 GhFT1 was predominantly expressed in stamens and sepals, and had a relatively higher expression level during the initiation stage of fiber development. GhFT1 mRNA displayed diurnal oscillations in both long-day and short-day condition, suggesting that the expression of this gene may be under the control of the circadian clock. Subcellular analysis revealed that GhFT1 protein located in the cytoplasm and nucleus. Ectopic expression of GhFT1 in transgenic arabidopsis plants resulted in early flowering compared with wild-type plants. In addition, ectopic expression of GhFT1 in arabidopsis ft-10 mutants partially rescued the extremely late flowering phenotype. Finally, several flowering related genes functioning downstream of AtFT were highly upregulated in the 35S::GhFT1 transgenic arabidopsis plants. In summary, GhFT1 is an FT-homologous gene in cotton that regulates flower transition similar to its orthologs in other plant species and thus it may be a candidate target for promoting early maturation in cotton breeding. © 2014 Institute of Botany, Chinese Academy of Sciences.

  7. Toxicological effects of benzo[a]pyrene on DNA methylation of whole genome in ICR mice.

    PubMed

    Zhao, L; Zhang, S; An, X; Tan, W; Pang, D; Ouyang, H

    2015-10-30

    It has been well known that alterations in DNA methylation - an important regulator of gene transcription - lead to cancer. Therefore a change in the level of DNA methylation of whole genome has been considered as a biomarker of carcinogenesis. Previously, a large number of experimental results in genetic toxicology have showed that benzo[a]pyrene could cause DNA mutation and fragmentation. However, there was little to no studies on alterations in DNA methylation of genome directly result from exposure to benzo[a]pyrene. In this paper, possible mechanisms of alterations in whole genomic DNA methylation by benzo[a]pyrene were investigated using ICR mice after benzo[a]pyrene exposure. The blood, liver, pancreas, skin, lung and bladder of ICR mice were removed and checked after a fixed time interval (6 hours) of benzo[a]pyrene exposure, and whole genomic DNA methylation level was determined by high performance liquid chromatography (HPLC). The results exhibited tissue specificity, that is, the level of whole genomic DNA methylation decreases significantly in blood and liver, rather than pancreas, lung, skin and bladder of ICR mice. This study investigated the direct relationship between aberrant DNA methylation level and benzo[a]pyrene exposure, which might be helpful to clarify the toxicological mechanism of benzo[a]pyrene in epigenetic perspectives.

  8. Differential effects of MK-801 on cerebrocortical neuronal injury in C57BL/6J, NSA, and ICR mice.

    PubMed

    Brosnan-Watters, G; Ogimi, T; Ford, D; Tatekawa, L; Gilliam, D; Bilsky, E J; Nash, D

    2000-08-01

    1. Antagonists of the N-methyl-D-aspartate (NMDA) glutamate (Glu) receptor, including [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], dizocilpine maleate (MK-801), injure pyramidal neurons in the posterior cingulate/retrosplenial (PC/RS) cortex when administered systemically to adult rats and mice. 2. These results have, to our knowledge, only been reported previously in Harlan Sprague Dawley albino rats and International Cancer Research (ICR) mice, an outbred albino strain. 3. Male Non-Swiss Albino (NSA) mice, an albino outbred strain, and male C57BL/6J (B6) mice, a pigmented inbred strain, were injected systemically with 1 mg/kg of MK-801 in the first experiment. This dose of MK-801 reliably produces cytoplasmic vacuoles in neurons in layers III and IV of the PC/RS cortex in 100% of ICR mice treated 4. There was a significant difference in the number of vacuolated neurons in B6 and NSA mice, as assessed by ANOVA. The NSA were not significantly different than previously examined ICR mice, but the B6 had fewer vacuolated neurons than either of the two outbred strains. 5. In the second experiment, male NSA, ICR, and B6 mice were injected systemically with a high dose, 10 mg/kg, of MK-801. This dose has been demonstrated to result in necrosis in the same population of neurons injured by lower doses of MK-801. 6. An ANOVA indicated that there was a significant difference among the three strains of mice, and a Fisher's protected t revealed that the B6 mice were significantly different from both the NSA and ICR, but that, with our test, those two strains were indistinguishable. 7. Male ICR, NSA, and B6 mice were tested in the holeboard food search task 5 hours after 1 mg/kg of MK-801. There were significant differences between the strains in performance both pre and posttreatment. The effect of the drug was not statistically significant. 8. These results suggest that there may be a genetically mediated difference in the reaction to NMDA

  9. MS Non-Pharmacological Countermeasure to Decrease Landing Sickness and Improve Functional Performance While Disorientad

    NASA Technical Reports Server (NTRS)

    Rosenberg, M. J. F.; Kreutzberg, G. A.; Galvan-Garza, R. C.; Mulavara, A. P.; Reschke, M. F.

    2017-01-01

    Upon return from spaceflight, a majority of crewmembers experience motion sickness (MS) symptoms. The interactions between crewmembers' adaptation to a gravitational transition, the performance decrements resulting from MS and/or use of promethazine (PMZ), and the constraints imposed by mission task demands could significantly challenge and limit an astronaut's ability to perform functional tasks during gravitational transitions. No operational countermeasure currently exists to mitigate the risks associated with these sensorimotor disturbances. Stochastic resonance (SR) can be thought of simply as "noise benefit" or an increase in information transfer by a system when in the presence of a non-zero level of noise. We have shown that low levels of stochastic vestibular stimulation (SVS) improve balance and locomotor performance due to SR (Goel et al. 2015, Mulavara et al. 2011, 2015). Additionally, a study in a 6-hydroxydopamine (6-OHDA) hemi-lesioned rat model of Parkinson's disease demonstrated improvements in locomotor activity after low-level SVS delivery possibly due to an increase in nigral gamma-aminobutyric acid (GABA) release in a dopamine independent way (Samoudi et al. 2012). SVS specifically increased GABA release on the lesioned, but not the intact side. These results suggest that SVS can cause targeted alterations of GABA release to affect performance of functional tasks. Activation of the GABA pathway is important in modulating MS and promoting adaptability (Cohen 2008). Magnusson et al. (2000) supported this finding by showing that the administration of a GABAB agonist caused a reversal of the symptoms that is normally seen after unilateral labyrinthectomy. Thus, GABA could play a significant role in reducing MS and promoting adaptability. We have taken advantage of the SR mechanism as a modulator of neurotransmitters to develop a unique SVS countermeasure system to mitigate MS symptoms and improve functional performance after landing. Healthy

  10. Using ICR and SCID mice as animal models for smallpox to assess antiviral drug efficacy.

    PubMed

    Titova, Ksenya A; Sergeev, Alexander A; Zamedyanskaya, Alena S; Galahova, Darya O; Kabanov, Alexey S; Morozova, Anastasia A; Bulychev, Leonid E; Sergeev, Artemiy A; Glotova, Tanyana I; Shishkina, Larisa N; Taranov, Oleg S; Omigov, Vladimir V; Zavjalov, Evgenii L; Agafonov, Alexander P; Sergeev, Alexander N

    2015-09-01

    The possibility of using immunocompetent ICR mice and immunodeficient SCID mice as model animals for smallpox to assess antiviral drug efficacy was investigated. Clinical signs of the disease did not appear following intranasal (i.n.) challenge of mice with strain Ind-3a of variola virus (VARV), even when using the highest possible dose of the virus (5.2 log10 p.f.u.). The 50 % infective doses (ID50) of VARV, estimated by the virus presence or absence in the lungs 3 and 4 days post-infection, were 2.7 ± 0.4 log10 p.f.u. for ICR mice and 3.5 ± 0.7 log10 p.f.u. for SCID mice. After i.n. challenge of ICR and SCID mice with VARV 30 and 50 ID50, respectively, steady reproduction of the virus occurred only in the respiratory tract (lungs and nose). Pathological inflammatory destructive changes were revealed in the respiratory tract and the primary target cells for VARV (macrophages and epithelial cells) in mice, similar to those in humans and cynomolgus macaques. The use of mice to assess antiviral efficacies of NIOCH-14 and ST-246 demonstrated the compliance of results with those described in scientific literature, which opens up the prospect of their use as an animal model for smallpox to develop anti-smallpox drugs intended for humans.

  11. SWiFT Software Quality Assurance Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Jonathan Charles

    This document describes the software development practice areas and processes which contribute to the ability of SWiFT software developers to provide quality software. These processes are designed to satisfy the requirements set forth by the Sandia Software Quality Assurance Program (SSQAP). APPROVALS SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Controls Engineer Jonathan Berg (6121) Date CHANGE HISTORY Issue Date Originator(s) Description A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality Assurance Plan

  12. Advances in handheld FT-IR instrumentation

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Cardillo, Len; Judge, Kevin; Frayer, Maxim; Frunzi, Michael; Hetherington, Paul; Levy, Dustin; Oberndorfer, Kyle; Perec, Walter; Sauer, Terry; Stein, John; Zuidema, Eric

    2012-06-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenges of ConOps (Concepts of Operation) in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the advances resulting from a project designed to overcome the challenges associated with miniaturizing FT-IR instruments. The project team developed a disturbance-corrected permanently aligned cube corner interferometer for improved robustness and optimized opto-mechanical design to maximize optical throughput and signal-to-noise ratios. Thermal management and heat flow were thoroughly modeled and studied to isolate sensitive components from heat sources and provide the widest temperature operation range. Similarly, extensive research on mechanical designs and compensation techniques to protect against shock and vibration will be discussed. A user interface was carefully created for military and emergency response applications to provide actionable information in a visual, intuitive format. Similar to the HazMatID family of products, state-of-the-art algorithms were used to quickly identify the chemical composition of complex samples based on the spectral information. This article includes an overview of the design considerations, tests results, and performance validation of the mechanical ruggedness, spectral, and thermal performance.

  13. Depth-dependent variations of sedimentary dissolved organic matter composition in a eutrophic lake: Implications for lake restoration.

    PubMed

    Xu, Huacheng; Guo, Laodong; Jiang, Helong

    2016-02-01

    Dissolved organic matter (DOM) plays a significant role in regulating nutrients and carbon cycling and the reactivity of trace metals and other contaminants in the environment. However, the environmental/ecological role of sedimentary DOM is highly dependent on organic composition. In this study, fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis, two dimensional correlation spectroscopy (2D-COS), and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) were applied to investigate the depth-dependent variations of sediment-leached DOM components in a eutrophic lake. Results of EEM-PARAFAC and 2D-COS showed that fluorescent humic-like component was preferentially degraded microbially over fulvic-like component at greater sediment depths, and the relative abundance of non-fluorescent components decreased with increasing depth, leaving the removal rate of carbohydrates > lignins. The predominant sedimentary DOM components derived from FT-ICR-MS were lipids (>50%), followed by lignins (∼15%) and proteins (∼15%). The relative abundance of carbohydrates, lignins, and condensed aromatics decreased significantly at greater depths, whereas that of lipids increased in general with depth. There existed a significant negative correlation between the short-range ordered (SRO) minerals and the total dissolved organic carbon concentration or the relative contents of lignins and condensed aromatics (p < 0.05), suggesting that SRO mineral sorption plays a significant role in controlling the composition heterogeneity and releasing of DOM in lake sediments. Higher metal binding potential observed for DOM at deeper sediment depth (e.g., 25-30 cm) supported the ecological safety of sediment dredging technique from the viewpoint of heavy metal de-toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Novel software for data analysis of Fourier transform ion cyclotron resonance mass spectra applied to natural organic matter.

    PubMed

    Grinhut, Tzafrir; Lansky, Dedy; Gaspar, Andras; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Hadar, Yitzhak; Chen, Yona

    2010-10-15

    Natural organic matter (NOM) occurs as an extremely complex mixture of large, charged molecules that are formed by secondary synthesis reactions. Due to their nature, their full characterization is an important challenge to scientists specializing in NOM as well as analytical chemistry. Ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis enables the identification of thousands of masses in a single measurement. A major challenge in the data analysis process of NOM using the FT-ICR MS technique is the need to sort the entire data set and to present it in an accessible mode. Here we present a simple targeted algorithm called the David Mass Sort (DMS) algorithm which facilitates the detection and counting of consecutive series of masses correlated to any selected mass spacing. This program searches for specific mass differences among all of the masses in a single spectrum against all of the masses in the same spectrum. As a representative case, the current study focuses on the analysis of the well-characterized Suwannee River humic and fulvic acid (SRHA and SRFA, respectively). By applying this algorithm, we were able to find and assess the amount of singly and doubly charged molecules. In addition we present the capabilities of the program to detect any series of consecutive masses correlated to specific mass spacing, e.g. COO, H(2), OCH(2) and O(2). Under several limitations, these mass spacings may be correlated to both chemical and biochemical changes which occur simultaneously during the formation and/or degradation of large mixtures of compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  15. The Molecular Composition of Dissolved Organic Matter in Forest Soils as a Function of pH and Temperature

    PubMed Central

    Roth, Vanessa-Nina; Dittmar, Thorsten; Gaupp, Reinhard; Gleixner, Gerd

    2015-01-01

    We examined the molecular composition of forest soil water during three different seasons at three different sites, using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). We examined oxic soils and tested the hypothesis that pH and season correlate with the molecular composition of dissolved organic matter (DOM). We used molecular formulae and their relative intensity from ESI-FT-ICR-MS for statistical analysis. Applying unconstrained and constrained ordination methods, we observed that pH, dissolved organic carbon (DOC) concentration and season were the main factors correlating with DOM molecular composition. This result is consistent with a previous study where pH was a main driver of the molecular differences between DOM from oxic rivers and anoxic bog systems in the Yenisei River catchment. At a higher pH, the molecular formulae had a lower degree of unsaturation and oxygenation, lower molecular size and a higher abundance of nitrogen-containing compounds. These characteristics suggest a higher abundance of tannin connected to lower pH that possibly inhibited biological decomposition. Higher biological activity at a higher pH might also be related to the higher abundance of nitrogen-containing compounds. Comparing the seasons, we observed a decrease in unsaturation, molecular diversity and the number of nitrogen-containing compounds in the course of the year from March to November. Temperature possibly inhibited biological degradation during winter, which could cause the accumulation of a more diverse compound spectrum until the temperature increased again. Our findings suggest that the molecular composition of DOM in soil pore waters is dynamic and a function of ecosystem activity, pH and temperature. PMID:25793306

  16. Surface-induced dissociation: a unique tool for studying energetics and kinetics of the gas-phase fragmentation of large ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia

    2015-01-01

    Surface-induced dissociation (SID) is valuable tool for investigating activation and dissociation of large ions in tandem mass spectrometry. This account summarizes key findings from studies of the energetics and mechanisms of complex ion dissociation, in which SID experiments were combined with Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental data. These studies used time- and collision-energy-resolved SID experiments and SID combined with resonant ejection of selected fragment ions on a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Fast ion activation by collision with a surface combined with the long and variable timescale of a FT-ICR MS is perfectlymore » suited for studying the energetics and dynamics of complex ion dissociation in the gas phase. Modeling of time- and collision-energy-resolved SID enables accurate determination of energy and entropy effects in the dissociation process. It has been demonstrated that entropy effects play an important role in determining the dissociation rates of both covalent and non-covalent bonds in large gaseous ions. SID studies have provided important insights on the competition between charge-directed and charge-remote fragmentation in even-electron peptide ions and the role of charge and radical site on the energetics of the dissociation of odd-electron peptide ions. Furthermore, this work examined factors that affect the strength of non-covalent binding, as well as the competition between covalent and non-covalent bond cleavages and between proton and electron transfer in model systems. Finally, SID studies have been used to understand the factors affecting nucleation and growth of clusters in solution and the gas phase.« less

  17. Further insight into the roles of the chemical composition of dissolved organic matter (DOM) on ultrafiltration membranes as revealed by multiple advanced DOM characterization tools.

    PubMed

    Ly, Quang Viet; Hur, Jin

    2018-06-01

    This study assessed the relative contributions of different constitutes in dissolved organic matter (DOM) with two different sources (i.e., urban river and effluent) to membrane fouling on three types of ultrafiltration (UF) membranes via excitation emission matrix - parallel factor analysis (EEM-PARAFAC), size exclusion chromatography (SEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Two polyethersulfone membranes with different pore sizes and one regenerated cellulose membrane were used as representative hydrophobic (HPO) and hydrophilic (HPI) UF membranes, respectively. Although size exclusion effect was found to be the most prevailing rejection mechanism, the behaviors of individual fluorescent components (one tryptophan-like, one microbial-humic-like, and terrestrial humic-like) and different size fractions upon the UF filtration revealed that chemical interactions (e.g., hydrophobic interactions and hydrogen bonding) between DOM and membrane might play important roles in UF membrane fouling, especially for small sized DOM molecules. Based on the molecular level composition determined by FT-ICR-MS, the CHOS formula group showed a greater removal tendency toward the HPO membrane, while the CHONS group was prone to be removed by the HPI membrane. The changes in the overall molecular composition of DOM upon UF filtration were highly dependent on the sources of DOM. The molecules of more acidic nature tended to remain in the permeate of effluent DOM, while the river DOM was shifted into more nitrogen-enriched composition after filtration. Regardless of the DOM sources, the HPO membrane with a smaller pore size led to the most pronounced changes in the molecular composition of DOM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Improved LC-MS/MS method for the quantification of hepcidin-25 in clinical samples.

    PubMed

    Abbas, Ioana M; Hoffmann, Holger; Montes-Bayón, María; Weller, Michael G

    2018-06-01

    Mass spectrometry-based methods play a crucial role in the quantification of the main iron metabolism regulator hepcidin by singling out the bioactive 25-residue peptide from the other naturally occurring N-truncated isoforms (hepcidin-20, -22, -24), which seem to be inactive in iron homeostasis. However, several difficulties arise in the MS analysis of hepcidin due to the "sticky" character of the peptide and the lack of suitable standards. Here, we propose the use of amino- and fluoro-silanized autosampler vials to reduce hepcidin interaction to laboratory glassware surfaces after testing several types of vials for the preparation of stock solutions and serum samples for isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). Furthermore, we have investigated two sample preparation strategies and two chromatographic separation conditions with the aim of developing a LC-MS/MS method for the sensitive and reliable quantification of hepcidin-25 in serum samples. A chromatographic separation based on usual acidic mobile phases was compared with a novel approach involving the separation of hepcidin-25 with solvents at high pH containing 0.1% of ammonia. Both methods were applied to clinical samples in an intra-laboratory comparison of two LC-MS/MS methods using the same hepcidin-25 calibrators with good correlation of the results. Finally, we recommend a LC-MS/MS-based quantification method with a dynamic range of 0.5-40 μg/L for the assessment of hepcidin-25 in human serum that uses TFA-based mobile phases and silanized glass vials. Graphical abstract Structure of hepcidin-25 (Protein Data Bank, PDB ID 2KEF).

  19. Ariel: a UAV designed to fly at 100,000 ft

    NASA Astrophysics Data System (ADS)

    Papadales, Basil S.; Schoenung, Susan M.

    1996-11-01

    The Ariel unmanned aerial vehicle (UAV) was designed for NASA Ames Research Center to satisfy emerging civil science needs for subsonic flight at altitudes on the order of 100,000 ft. These include atmospheric monitoring of chemical species and environmental conditions related to global climate change. Ariel may be useful for a variety of civil and military remote sensing applications since, at an altitude of 100,000 ft, the UAV wold fly above all manned aircraft. The Ariel has a gross weight of 6400 lb with a wing span of 105 ft, a little shorter than that of the manned ER-2. Ariel is powered by a new propulsion system called the Bipropellant Expansion Turbine (BET). With a 300 hp BET, Ariel can climb to an altitude of 100,000 ft and loiter at Mach 0.63 for two hours while carrying a 600 lb payload. During this loiter, the UAV travels about 750 nm at 100,000 ft. It is possible to trade payload weight for range or endurance. Further design optimization or use of more advanced technology can result in substantially improved performance. With adequate funding, a proof of concept version of Ariel could be developed for initial flights by the year 2000.

  20. New Approach for Studying Slow Fragmentation Kinetics in FT-ICR: Surface-Induced Dissociation Combined with Resonant Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Futrell, Jean H.

    2015-02-01

    We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65–95 eV. The kinetics of peptidemore » fragmentation are probed by varying the delay time between resonant ejection and fragment ion detection at a constant total reaction time. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels.« less

  1. A novel microreactor approach for analysis of ketones and aldehydes in breath.

    PubMed

    Fu, Xiao-An; Li, Mingxiao; Biswas, Souvik; Nantz, Michael H; Higashi, Richard M

    2011-11-21

    We report a fabricated microreactor with thousands of micropillars in channels. Each micropillar surface is chemically functionalized to selectively preconcentrate gaseous ketones and aldehydes of exhaled breath and to enhance ultra-trace, rapid analysis by direct-infusion Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). The micropillar reactive coating contains the quaternary ammonium aminooxy salt 2-(aminooxy)ethyl-N,N,N-trimethylammonium iodide (ATM) for capturing trace carbonyl VOCs by means of an oximation reaction. We demonstrate the utility of this approach for detection of C(1) to C(12) aldehydes and ketones in exhaled breath, but the approach is applicable to any gaseous sample.

  2. Calibration of marginal oscillator sensitivity for use in ICR spectrometry

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Huntress, W. T., Jr.

    1977-01-01

    A constant-reference load is utilized as Q-spoiler in calibrations of relative sensitivity variations of a marginal oscillator with frequency. Frequency-dependent effects troublesome in earlier Q-spoilers are compensated by employing a pure resistive calibration load with compensation for the small distributed capacitance of large resistors. The validity of the approach is demonstrated for a 2:1 mass ratio range, and validity for a mass ratio range greater than 10:1 is claimed. The circuit and technique were developed for use in ion cyclotron resonance (ICR) spectrometric practice.

  3. Improving fatigue in multiple sclerosis by smartphone-supported energy management: The MS TeleCoach feasibility study.

    PubMed

    D'hooghe, Marie; Van Gassen, Geert; Kos, Daphne; Bouquiaux, Olivier; Cambron, Melissa; Decoo, Danny; Lysandropoulos, Andreas; Van Wijmeersch, Bart; Willekens, Barbara; Penner, Iris-Katharina; Nagels, Guy

    2018-03-27

    Fatigue is a frequently occurring, often disabling symptom in MS with no single effective treatment. In current fatigue management interventions, personalized, real-time follow-up is often lacking. The objective of the study is to assess the feasibility of the MS TeleCoach, a novel intervention offering telemonitoring of fatigue and telecoaching of physical activity and energy management in persons with MS (pwMS) over a 12-week period. The goal of the MS TeleCoach, conceived as a combination of monitoring, self-management and motivational messages, is to enhance levels of physical activity thereby improving fatigue in pwMS in an accessible and interactive way, reinforcing self-management of patients. We conducted a prospective, open-label feasibility study of the MS TeleCoach in pwMS with Expanded Disability Status Scale ≤ 4 and moderate to severe fatigue as measured by the Fatigue Scale for Motor and Cognitive Functions (FSMC). Following a 2-week run-in period to assess the baseline activity level per patient, the target number of activity counts was gradually increased over the 12-week period through telecoaching. The primary efficacy outcome was change in FSMC total score from baseline to study end. A subset of patients was asked to fill in D-QUEST 2.0, a usability questionnaire, to evaluate the satisfaction with the MS TeleCoach device and the experienced service. Seventy-five patients were recruited from 16 centres in Belgium, of which 57 patients (76%) completed the study. FSMC total score (p = 0.009) and motor and cognitive subscores (p = 0.007 and p = 0.02 respectively) decreased from baseline to week 12, indicating an improvement in fatigue. One third of participants with severe fatigue changed to a lower FSMC category for both FSMC total score and subscores. The post-study evaluation of patient satisfaction showed that the intervention was well accepted and that patients were very satisfied with the quality of the professional services

  4. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1–35 wt% starch) were collected and preprocessed to generate calibration and predi...

  5. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Shun; Ebitani, Kohki, E-mail: ebitani@jaist.ac.jp; Miyazato, Akio

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H{sub 2}O: 18.4 wt%, and served a good calorific value ofmore » 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, {sup 13}C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously.« less

  6. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas.

    PubMed

    Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu

    2014-05-08

    Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

  7. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas

    PubMed Central

    2014-01-01

    Background Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) –like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. Results To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. Conclusions JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha. PMID:24886195

  8. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2012-04-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.

  9. Development of a three component complex to increase isoniazid efficacy against isoniazid resistant and nonresistant Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Plummer, Sydney; Baker, Tess; Wylie, Greg; Clingenpeel, Amy C; Phillips, Dennis

    2015-10-15

    The bacterium responsible for causing tuberculosis has evolved resistance to antibiotics used to treat the disease, resulting in new multidrug resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug resistant M. tuberculosis (XDR-TB) strains. Analytical techniques (1)H and (13)C Nuclear Magnetic Resonance (NMR), Fourier Transform-Ion Cyclotron Resonance with Electrospray Ionization (FT-ICR/ESI), and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-TOF-MS) were used to study different aspects of the Cu(II)-polyethylene glycol (PEG-3350)-sucrose-isoniazid and Cu(II)-polyethylene glycol (PEG3350)-glucose-isoniazid complexes. The Cu(II) cation, sucrose or glucose, and the aggregate formed by PEG primarily serve as a composite drug delivery agent for the frontline antibiotic, however the improvement in MIC values produced with the CU-PEG-SUC-INH complex suggest an additional effect. Several Cu-PEG-SUC-INH complex variations were tested against INH resistant and nonresistant strains of M. tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. FT-Raman and FT-IR spectra of some heterobimetallic complexes with phenylcyclopentadienyl ligands

    NASA Astrophysics Data System (ADS)

    Nie, Chong-Shi; Guo, Jianhua; Qian, Changtao; Tan, Ying

    1996-11-01

    The FT-Raman and selected IR spectra of 14 heterobimetallic complexes of (CO) 3CrC 6H 5-C 5H 4M(CO) n(NO) mX (M = transition metal, X = other ligands) are reported. FT-Raman exhibits distinct strong characteristic bands of coordinated C 6H 5-C 5H 4 ligand ring deformation near 1540, 1490 and 1280 cm -1 and the coordinated phenyl ring deformation mode near 1000 cm -1, which are negligible in IR spectra. It is also easy to find the M-CO stretching and M-C-O bending as well as phenyl-M stretching bands in the FT-Raman spectra. The v(CO) IR absorptions in THF solution were reasonably assigned according to the local symmetry of the complexes.

  11. Balance and gait improved in patients with MS after physiotherapy based on the Bobath concept.

    PubMed

    Smedal, Tori; Lygren, Hildegunn; Myhr, Kjell-Morten; Moe-Nilssen, Rolf; Gjelsvik, Bente; Gjelsvik, Olav; Strand, Liv Inger; Inger, Liv

    2006-06-01

    Patients with multiple sclerosis (MS) tend to have movement difficulties, and the effect of physiotherapy for this group of patients has been subjected to limited systematic research. In the present study physiotherapy based on the Bobath concept, applied to MS patients with balance and gait problems, was evaluated. The ability of different functional tests to demonstrate change was evaluated. A single-subject experimental study design with ABAA phases was used, and two patients with relapsing-remitting MS in stable phase were treated. Tests were performed 12 times, three at each phase: A (at baseline); B (during treatment); A (immediately after treatment); and A (after two months). The key feature of treatment was facilitation of postural activity and selective control of movement. Several performance and self report measures and interviews were used. After intervention, improved balance was shown by the Berg Balance Scale (BBS) in both patients, and improved quality of gait was indicated by the Rivermead Visual Gait Assessment (RVGA). The patients also reported improved balance and gait function in the interviews and scored their condition as 'much improved'. Gait parameters, recorded by an electronic walkway, changed, but differently in the two patients. Among the physical performance tests the BBS and the RVGA demonstrated the highest change, while no or minimal change was demonstrated by the Rivermead Mobility Index (RMI) and Ratings of Perceived Exertion (RPE). The findings indicate that balance and gait can be improved after physiotherapy based on the Bobath concept, but this should be further evaluated in larger controlled trials of patients with MS.

  12. Sandia SWiFT Wind Turbine Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Jonathan; LeBlanc, Bruce Philip; Berg, Jonathan Charles

    The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems. Further dissemination only asmore » authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority. 111 UNCLASSIFIED UNLIMITED RELEASE Sandia SWiFT Wind Turbine Manual (SAND2016-0746 ) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Site Supervisor Dave Mitchell (6121) Date Note: Document revision logs are found after the title page of each volume of this manual. iv« less

  13. FT Duplication Coordinates Reproductive and Vegetative Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Chuan-Yu; Adams, Joshua P.; Kim, Hyejin

    2011-01-01

    Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles ofmore » vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.« less

  14. Spectroscopic (FT-IR, FT-Raman, FT-NMR and UV-Vis) investigation on benzil dioxime using quantum computational methods

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-03-01

    The spectral analysis of benzil dioxime is carried out using the FTIR, FT Raman, FT NMR and UV-Vis spectra of the compound with the help of quantum computations by density functional theories. The FT-IR (4000 - 400 cm-1) and FT-Raman (4000-100 cm-1) spectra are recorded in solid phase, the 1H and 13C NMR spectra in DMSO phase and the UV spectrum (200-400 nm) in ethanol phase. The different conformers of the compound and their minimum energies are studied by potential energy surface scan, using semi-empirical method PM6. The computed wavenumbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure the molecule is analyzed interms of parameters like bond length, bond angle and dihedral angles predicted byB3LYP and CAM-B3LYP methods with cc-pVDZ basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non -linear optical property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for 1H and 13C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts and the same is discussed in comparison with atomic charges, predicted by Mullikan and APT charge analysis. NBO analysis is carried out to picture the probable electronic transitions in the molecule.

  15. Establishment and characterization of a new human acinar cell carcinoma cell line, Faraz-ICR, from pancreas.

    PubMed

    Rezaei, Marzieh; Hosseini, Ahmad; Nikeghbalian, Saman; Ghaderi, Abbas

    Basic research in the field of acinar cell carcinoma (ACC) as a rare neoplasm of the pancreas is dependent on the availability of pragmatic model such as new pancreatic cancer cell lines. Thus, establishment and characterization of new pancreatic cancer cell lines from ACC origin are deemed important. Faraz-ICR cell line was derived from a 58-years old woman with pancreatic acinar cell carcinoma by the collagenase digestion protocol. We characterized the cell line by examining its morphology and cytostructural and functional profile. Faraz-ICR has a doubling time of 35 hours and grows in soft agar with a colony-forming efficiency of 25%. The cell had nearly normal pattern of chromosomes in karyotype analysis and Comparative Genomic Hybridization (CGH) array analysis. Evaluation of cells by flowcytometry showed that Faraz-ICR is negative for EpCAM and mesenchymal markers in different passages, and has epithelial nature. Immunofluorescence staining revealed that cells were strongly positive for vimentin, desmin, ezrin, S100, nestin and they were negative for pan-cytokeratins, chromogranin and alpha smooth muscle actin. We were able to establish a new pancreatic carcinoma cell line with partial aspects of Epithelial-mesenchymal transition and aggressiveness. This cell line might be suitable for studying various anticancer drugs and protein profile aiming to see any possible tumor associated marker for ACC. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  16. Improving N-Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marginean, Ioan; Kronewitter, Scott R.; Moore, Ronald J.

    Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the poor glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by themore » SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.« less

  17. Quantitative DNA methylation analysis improves epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome

    PubMed Central

    Calvello, Mariarosaria; Tabano, Silvia; Colapietro, Patrizia; Maitz, Silvia; Pansa, Alessandra; Augello, Claudia; Lalatta, Faustina; Gentilin, Barbara; Spreafico, Filippo; Calzari, Luciano; Perotti, Daniela; Larizza, Lidia; Russo, Silvia; Selicorni, Angelo; Sirchia, Silvia M; Miozzo, Monica

    2013-01-01

    Beckwith-Wiedemann syndrome (BWS) is a rare disorder characterized by overgrowth and predisposition to embryonal tumors. BWS is caused by various epigenetic and/or genetic alterations that dysregulate the imprinted genes on chromosome region 11p15.5. Molecular analysis is required to reinforce the clinical diagnosis of BWS and to identify BWS patients with cancer susceptibility. This is particularly crucial prenatally because most signs of BWS cannot be recognized in utero. We established a reliable molecular assay by pyrosequencing to quantitatively evaluate the methylation profiles of ICR1 and ICR2. We explored epigenotype-phenotype correlations in 19 patients that fulfilled the clinical diagnostic criteria for BWS, 22 patients with suspected BWS, and three fetuses with omphalocele. Abnormal methylation was observed in one prenatal case and 19 postnatal cases, including seven suspected BWS. Seven cases showed ICR1 hypermethylation, five cases showed ICR2 hypomethylation, and eight cases showed abnormal methylation of ICR1 and ICR2 indicating paternal uniparental disomy (UPD). More cases of ICR1 alterations and UPD were found than expected. This is likely due to the sensitivity of this approach, which can detect slight deviations in methylation from normal levels. There was a significant correlation (p < 0.001) between the percentage of ICR1 methylation and BWS features: severe hypermethylation (range: 75–86%) was associated with macroglossia, macrosomia, and visceromegaly, whereas mild hypermethylation (range: 55–59%) was associated with umbilical hernia and diastasis recti. Evaluation of ICR1 and ICR2 methylation by pyrosequencing in BWS can improve epigenotype-phenotype correlations, detection of methylation alterations in suspected cases, and identification of UPD. PMID:23917791

  18. Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: a case study of the Henares River (Madrid, Spain).

    PubMed

    Pérez-Parada, Andrés; Gómez-Ramos, María del Mar; Martínez Bueno, María Jesús; Uclés, Samanta; Uclés, Ana; Fernández-Alba, Amadeo R

    2012-02-01

    Instrumental capabilities and software tools of modern hybrid mass spectrometry (MS) instruments such as high-resolution mass spectrometry (HRMS), quadrupole time-of-flight (QTOF), and quadrupole linear ion trap (QLIT) were experimentally investigated for the study of emerging contaminants in Henares River water samples. Automated screening and confirmatory capabilities of QTOF working in full-scan MS and tandem MS (MS/MS) were explored when dealing with real samples. Investigations on the effect of sensitivity and resolution power influence on mass accuracy were studied for the correct assignment of the amoxicillin transformation product 5(R) amoxicillin-diketopiperazine-2',5' as an example of a nontarget compound. On the other hand, a comparison of quantitative and qualitative strategies based on direct injection analysis and off-line solid-phase extraction sample treatment were assayed using two different QLIT instruments for a selected group of emerging contaminants when operating in selected reaction monitoring (SRM) and information-dependent acquisition (IDA) modes. Software-aided screening usually needs a further confirmatory step. Resolving power and MS/MS feature of QTOF showed to confirm/reject most findings in river water, although sensitivity-related limitations are usually found. Superior sensitivity of modern QLIT-MS/MS offered the possibility of direct injection analysis for proper quantitative study of a variety of contaminants, while it simultaneously reduced the matrix effect and increased the reliability of the results. Confirmation of ethylamphetamine, which lacks on a second SRM transition, was accomplished by using the IDA feature. Hybrid MS instruments equipped with high resolution and high sensitivity contributes to enlarge the scope of targeted analytes in river waters. However, in the tested instruments, there is a margin of improvement principally in required sensitivity and data treatment software tools devoted to reliable confirmation

  19. FT-NIR: A Tool for Process Monitoring and More.

    PubMed

    Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban

    2018-03-30

    With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.

  20. Isolation and structural characterization of a novel sibutramine analogue, chlorosipentramine, in a slimming dietary supplement, by using HPLC-PDA, LC-Q-TOF/MS, FT-IR, and NMR.

    PubMed

    Yun, Jisuk; Shin, Kye Jung; Choi, Jangduck; Jo, Cheon-Ho

    2018-05-01

    A novel sibutramine analogue was detected in a slimming formula by high performance liquid chromatography with a photo diode detector array (HPLC-PDA). The unknown compound exhibited an ultraviolet (UV) spectrum that was similar to that of chlorosibutramine, despite having a different HPLC retention time. Further analysis of the slimming formula by LC-quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) showed that the unknown compound had the formula C 18 H 27 Cl 2 N. To elucidate the structure of this new sibutramine analogue, the target compound in the slimming formula was isolated on a preparative-LC system equipped with a PDA. After analysis by fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy, the unknown compound was identified as a sibutramine analogue in which the iso-butyl group on the side chain is replaced with an iso-pentyl group. This new sibutramine analogue was identified to be 1-(1-(3,4-dichlorophenyl)cyclobutyl)-N,N,4-trimethylpentan-1-amine and has been named as chlorosipentramine. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Molecular fractionation of dissolved organic matter with metal salts.

    PubMed

    Riedel, Thomas; Biester, Harald; Dittmar, Thorsten

    2012-04-17

    Coagulation of dissolved organic matter (DOM) by hydrolyzing metals is an important environmental process with particular relevance, e.g., for the cycling of organic matter in metal-rich aquatic systems or the flocculation of organic matter in wastewater treatment plants. Often, a nonremovable fraction of DOM remains in solution even at low DOM/metal ratios. Because coagulation by metals results from interactions with functional groups, we hypothesize that noncoagulating fractions have a distinct molecular composition. To test the hypothesis, we analyzed peat-derived dissolved organic matter remaining in solution after mixing with salts of Ca, Al, and Fe using 15 T Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR-MS). Addition of metals resulted in a net removal of DOM. Also a reduction of molecular diversity was observed, as the number of peaks from the ESI-FT-ICR-MS spectra decreased. At DOM/metal ratios of ∼9 Ca did not show any preference for distinct molecular fractions, while Fe and Al removed preferentially the most oxidized compounds (O/C ratio >0.4) of the peat leachate. Lowering DOM/metal ratios to ∼1 resulted in further removal of less oxidized as well as more aromatic compounds ("black carbon"). Molecular composition in the residual solution after coagulation was more saturated, less polar, and less oxidized compared to the original peat leachate and exhibited a surprising similarity with DOM of marine origin. By identifying more than 9200 molecular formulas we can show that structural properties (saturation and aromaticity) and oxygen content of individual DOM molecules play an important role in coagulation with metals. We conclude that polyvalent cations not only alter the net mobility but also the very molecular composition of DOM in aquatic environments.

  2. Uncoupling of Bacterial and Terrigenous Dissolved Organic Matter Dynamics in Decomposition Experiments

    PubMed Central

    Herlemann, Daniel P. R.; Manecki, Marcus; Meeske, Christian; Pollehne, Falk; Labrenz, Matthias; Schulz-Bull, Detlef; Dittmar, Thorsten; Jürgens, Klaus

    2014-01-01

    The biodegradability of terrigenous dissolved organic matter (tDOM) exported to the sea has a major impact on the global carbon cycle, but our understanding of tDOM bioavailability is fragmentary. In this study, the effects of preparative tDOM isolation on microbial decomposition were investigated in incubation experiments consisting of mesocosms containing mesohaline water from the Baltic Sea. Dissolved organic carbon (DOC) consumption, molecular DOM composition, bacterial activities, and shifts in bacterial community structure were compared between mesocosms supplemented with riverine tDOM, either as filtered, particle-free river water or as a concentrate obtained by lyophilization/tangential ultrafiltration, and those containing only Baltic Sea water or river water. As shown using ultra-high-resolution mass spectrometry (15 Tesla Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) covering approximately 4600 different DOM compounds, the three DOM preparation protocols resulted in distinct patterns of molecular DOM composition. However, despite DOC losses of 4–16% and considerable bacterial production, there was no significant change in DOM composition during the 28-day experiment. Moreover, tDOM addition affected neither DOC degradation nor bacterial dynamics significantly, regardless of the tDOM preparation. This result suggested that the introduced tDOM was largely not bioavailable, at least on the temporal scale of our experiment, and that the observed bacterial activity and DOC decomposition mainly reflected the degradation of unknown, labile, colloidal and low-molecular weight DOM, both of which escape the analytical window of FT-ICR-MS. In contrast to the different tDOM preparations, the initial bacterial inoculum and batch culture conditions determined bacterial community succession and superseded the effects of tDOM addition. The uncoupling of tDOM and bacterial dynamics suggests that mesohaline bacterial communities cannot

  3. Is the molecular diversity of marine dissolved organic matter already imprinted in the exometabolome of single strains?

    NASA Astrophysics Data System (ADS)

    Noriega-Ortega, B. E.; Wienhausen, G.; Dittmar, T.; Simon, M.; Niggemann, J.

    2016-02-01

    Dissolved organic matter (DOM) in the ocean, the marine geometabolome, is an extremely complex mixture composed of a wide variety of compounds. The molecular chemodiversity affects the function and turnover rate of DOM in the ocean. We hypothesize that the active microbial community essentially contributes to the complexity of the DOM pool through uptake and excretion of compounds. We tested this hypothesis in culture experiments with fully-sequenced strains of the Roseobacter clade. Bacteria of the Roseobacter clade are among the most abundant microbial players in the ocean. We studied the exometabolome of two representatives of the Roseobacter clade, Phaeobacter inhibens DSM 17395 and Dinoroseobacter shibae. The organisms were grown separately in cultures on defined single model substrates (acetate, succinate, glutamate, glucose). We used a non-targeted analytical approach via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the exometabolome at the molecular level, complemented by compound-specific analyses of free and combined amino acids and carbohydrates. The exometabolome composition varied between the tested strains, which released a different suite of compounds depending on the growth phase as well as on growth conditions (substrate). Both organisms exhibited a core exometabolome with compounds released when growing on either substrate and at all growth phases, and a variable exometabolome specific for different substrates and growth phases. However, only a small fraction of the exometabolites detected by FT-ICR-MS could be directly linked to the genome or transcriptome. We interpret these findings as evidence for the excretion of molecularly highly-diverse metabolic waste, whose composition is dependent on the metabolic state and genetic repertoire of the organisms. The molecular diversity of compounds excreted by a single strain is extraordinary and is likely the reason for the molecular diversity of natural DOM in

  4. Deamidation and transamidation of substance P by tissue transglutaminase revealed by electron-capture dissociation fourier transform mass spectrometry.

    PubMed

    Fornelli, Luca; Schmid, Adrien W; Grasso, Luigino; Vogel, Horst; Tsybin, Yury O

    2011-01-10

    Tissue transglutaminase (tTGase) catalyzes both deamidation and transamidation of peptides and proteins by using a peptidyl glutamine as primary substrate. A precise consensus sequence for the enzyme is unknown and the ratio between deamidated and transamidated (or cross-linked) reaction products is highly substrate-dependent. Due to its overlapping body distribution with tTGase and ease of manipulation with tandem mass spectrometry, we used the neuropeptide substance P as a model to investigate the associated enzymatic kinetics and reaction products. Online liquid-chromatography Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS) combined with electron-capture dissociation (ECD) was employed to study the tTGase-induced modifications of substance P. A particular strength of ECD for peptide-enzyme reaction product monitoring is its ability to distinguish isomeric amino acids, for example, Glu and iso-Glu, by signature product ions. Our studies show that the primary reaction observed is deamidation, with the two consecutive glutamine residues converted sequentially into glutamate: first Gln(5) , and subsequently Gln(6) . We then applied ECD FT-ICR MS to identify the transamidation site on an enzymatically cross-linked peptide, which turned out to correspond to Gln(5) . Three populations of substance-P dimers were detected that differed by the number of deamidated Gln residues. The higher reactivity of Gln(5) over Gln(6) was further confirmed by cross-linking SP with monodansylcadaverine (MDC). Overall, our approach described herein is of a general importance for mapping both enzymatically induced post-translational protein modifications and cross-linking. Finally, in vitro Ca-signaling assays revealed that the main tTGase reaction product, the singly deamidated SP (RPKPEQFFGLM-NH(2) ), has increased agonist potency towards its natural receptor, thus confirming the biologically relevant role of deamidation. Copyright © 2011 WILEY-VCH Verlag

  5. Energy profile, spectroscopic (FT-IR, FT-Raman and FT-NMR) and DFT studies of 4-bromoisophthalic acid

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Thirunarayanan, S.; Mohan, S.

    2018-04-01

    The stable conformer of 4-bromoisophthalic acid (BIPA) has been identified by potential energy profile analysis. All the structural parameters of 4-bromoisophthalic acid are determined by B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. The fundamental vibrations are analysed with the use of FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra. The harmonic vibrational frequencies are theoretically calculated and compared with experimental FTIR and FT-Raman frequencies. The 1H and 13C NMR spectra have been analysed and compared with theoretical 1H and 13C NMR chemical shifts calculated by gauge independent atomic orbital (GIAO) method. The electronic properties, such as HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies are determined by B3LYP/cc-pVTZ method. The electron density distribution and site of chemical reactivity of BIPA molecule have been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Stability of the molecules arising from hyperconjugative interactions, charge delocalizations have been analysed by using natural bond orbital (NBO) analysis. The thermodynamic properties and atomic natural charges of the compound are analysed and the reactive sites of the molecule are identified. The global and local reactivity descriptors are evaluated to analyse the chemical reactivity and site selectivity of molecule through Fukui functions.

  6. Improved Detection of Botulinum Neurotoxin Serotype A by Endopep-MS through Peptide Substrate Modification

    PubMed Central

    Wang, Dongxia; Baudys, Jakub; Ye, Yiming; Rees, Jon C.; Barr, John R.; Pirkle, James L.; Kalb, Suzanne R.

    2015-01-01

    Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to man. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep-MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype specific antibodies and detecting the unique and serotype specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep-MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity five fold with toxin spiked into buffer solution or different biological matrices. PMID:23017875

  7. Potential of dynamically harmonized Fourier transform ion cyclotron resonance cell for high-throughput metabolomics fingerprinting: control of data quality.

    PubMed

    Habchi, Baninia; Alves, Sandra; Jouan-Rimbaud Bouveresse, Delphine; Appenzeller, Brice; Paris, Alain; Rutledge, Douglas N; Rathahao-Paris, Estelle

    2018-01-01

    Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 10 6 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.

  8. [Effect of selenium on serum TGAb, TMAb, FT3, FT4 and TSH of rats with excessive intake of iodine].

    PubMed

    Chi, Haiyan; Zhou, Yuping; Li, Li

    2012-07-01

    To investigate the effect of selenium on the TGAb, TMAb, FT3, FT4 and TSH level of rats with excessive intake of iodine. Wistar rats were divided into three groups by random:normal control, high iodine group and high iodine plus selenium group. Rats in the high iodine plus selenium group were lavaged with sodium selenite for 10 weeks. The levels of serum TGAb, TMAb, FT3, FT4 and TSH were tested at different time of the experiment. There were no significant change on levels of FT3, FT4 and TSH (P > 0.05). The levels of TGAb and TMAb in the high iodine group were increased slowly (P < 0.05), but no significant change was observed in the high iodine plus selenium group. Excessive intake of iodine might induce goiter, and selenium might have antagonistic effect on it.

  9. Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.

    PubMed

    Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2018-06-04

    Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.

  10. Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Oro, Nicole E; Whittal, Randy M; Lucy, Charles A

    2012-09-05

    Normal phase high performance liquid chromatography (HPLC) is used to separate a gas oil petroleum sample, and the fractions are collected offline and analyzed on a high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The separation prior to MS analysis dilutes the sample significantly; therefore the fractions need to be prepared properly to achieve the best signal possible. The methods used to prepare the HPLC fractions for MS analysis are described, with emphasis placed on increasing the concentration of analyte species. The dilution effect also means that contamination in the MS spectra needs to be minimized. The contamination from molecular sieves, plastics, soap, etc. and interferences encountered during the offline fraction collection process are described and eliminated. A previously unreported MS contamination of iron formate clusters with a 0.8 mass defect in positive mode electrospray is also described. This interference resulted from the stainless steel tubing in the HPLC system. Contamination resulting from what has tentatively been assigned as palmitoylglycerol and stearoylglycerol was also observed; these compounds have not previously been reported as contaminant peaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. 77 FR 2760 - Proposed Information Collection Request (ICR) for the Mining Voice in the Workplace Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... DEPARTMENT OF LABOR Proposed Information Collection Request (ICR) for the Mining Voice in the...)(A)]. This program helps to ensure that required data can be provided in the desired format...' voice in mining workplaces under the jurisdiction of DOL's Mine Safety and Health Administration (MSHA...

  12. Has your ancient stamp been regummed with synthetic glue? A FT-NIR and FT-Raman study.

    PubMed

    Simonetti, Remo; Oliveri, Paolo; Henry, Adrien; Duponchel, Ludovic; Lanteri, Silvia

    2016-01-01

    The potential of FT-NIR and FT-Raman spectroscopies to characterise the gum applied on the backside of ancient stamps was investigated for the first time. This represents a very critical issue for the collectors' market, since gum conditions heavily influence stamp quotations, and fraudulent application of synthetic gum onto damaged stamp backsides to increase their desirability is a well-documented practice. Spectral data were processed by exploratory pattern recognition tools. In particular, application of principal component analysis (PCA) revealed that both of the spectroscopic techniques provide information useful to characterise stamp gum. Examination of PCA loadings and their chemical interpretation confirmed the robustness of the outcomes. Fusion of FT-NIR and FT-Raman spectral data was performed, following both a low-level and a mid-level procedure. The results were critically compared with those obtained separately for the two spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. FT-IR, FT-Raman and UV-visible spectra of potassium 3-furoyltrifluoroborate salt

    NASA Astrophysics Data System (ADS)

    Iramain, Maximiliano A.; Davies, Lilian; Brandán, Silvia Antonia

    2018-04-01

    The potassium 3-furoyltrifluoroborate salt has been experimentally characterized by means of FT-IR, FT-Raman and UV-Visible spectroscopies. Here, the predicted FT-IR, FT-Raman and UV-visible spectra by using theoretical B3LYP/6-31G* and 6-311++G** calculations show very good correlations with the corresponding experimental ones. The solvation energies were predicted by using both levels of calculations. The NBO analyses reveal the high stability of the salt by using the B3LYP/6-31G* level of theory while the AIM studies evidence the ionic characteristics of the salt in both media. The strong blue colour observed on the K atom by using the molecular electrostatic potential mapped suggests that this region act as typical electrophilic site. The gap values have revealed that the salt in gas phase is more reactive than in solution, as was reported in the literature while, the F13⋯H6 interaction together with the Ksbnd O bond observed by the studies of their charges could probably modulate the reactivities of this salt in aqueous solution. The force fields were computed with the SQMFF methodology and the Molvib program to perform the complete vibrational analysis. Then, the 39 vibration normal modes classified as 26 A'+ 13 A″ were completely assigned and their force constants are also reported.

  14. Improved liquid chromatography-MS/MS of heparan sulfate oligosaccharides via chip-based pulsed makeup flow.

    PubMed

    Huang, Yu; Shi, Xiaofeng; Yu, Xiang; Leymarie, Nancy; Staples, Gregory O; Yin, Hongfeng; Killeen, Kevin; Zaia, Joseph

    2011-11-01

    Microfluidic chip-based hydrophilic interaction chromatography (HILIC) is a useful separation system for liquid chromatography-mass spectrometry (LC-MS) in compositional profiling of heparan sulfate (HS) oligosaccharides; however, ions observed using HILIC LC-MS are low in charge. Tandem MS of HS oligosaccharide ions with low charge results in undesirable losses of SO(3) from precursor ions during collision induced dissociation. One solution is to add metal cations to stabilize sulfate groups. Another is to add a nonvolatile, polar compound such as sulfolane, a molecule known to supercharge proteins, to produce a similar effect for oligosaccharides. We demonstrate use of a novel pulsed makeup flow (MUF) HPLC-chip. The chip enables controlled application of additives during specified chromatographic time windows and thus minimizes the extent to which nonvolatile additives build up in the ion source. The pulsed MUF system was applied to LC-MS/MS of HS oligosaccharides. Metal cations and sulfolane were tested as additives. The most promising results were obtained for sulfolane, for which supercharging of the oligosaccharide ions increased their signal strengths relative to controls. Tandem MS of these supercharged precursor ions showed decreased abundances of product ions from sulfate losses yet more abundant product ions from backbone cleavages.

  15. Involvement of the BLT2 receptor in the itch-associated scratching induced by 12-(S)-lipoxygenase products in ICR mice

    PubMed Central

    Kim, H J; Kim, D K; Kim, H; Koh, J Y; Kim, K M; Noh, M S; Lee, S; Kim, S; Park, S H; Kim, J J; Kim, S Y; Lee, C H

    2008-01-01

    Background and purpose: Recently, we reported that 12(S)-HPETE (12(S)-hydroperoxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid) induces scratching in ICR mice. We hypothesized that 12(S)-HPETE might act as an agonist of the low-affinity leukotriene B4 receptor BLT2. To confirm the involvement of the BLT2 receptor in 12(S)-HPETE-induced scratching, we studied the scratch response using the BLT2 receptor agonists compound A (4′-{[pentanoyl (phenyl) amino]methyl}-1,1′-biphenyl-2-carboxylic acid) and 12(S)-HETE (12(S)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid). Experimental approach: A video recording was used to determine whether the BLT2 receptor agonists caused itch-associated scratching in ICR mice. Selective antagonists and several chemicals were used. Key results: Both 12(S)-HETE and compound A dose dependently induced scratching in the ICR mice. The dose–response curve for compound A showed peaks at around 0.005–0.015 nmol per site. Compound A- and 12(S)-HETE-induced scratching was suppressed by capsaicin and naltrexon. We examined the suppressive effects of U75302 (6-[6-(3-hydroxy-1E,5Z-undecadienyl)-2-pyridinyl]-1,5-hexanediol, the BLT1 receptor antagonist) and LY255283 (1-[5-ethyl-2-hydroxy-4-[[6-methyl-6-(1H-tetrazol-5-yl)heptyl]oxy]phenyl]-ethanone, the BLT2 receptor antagonist) on the BLT2 agonist-induced scratching. LY255283 suppressed compound A- and 12(S)-HETE-induced scratching, but U75302 did not. LY255283 required a higher dose to suppress the compound A-induced scratching than it did to suppress the 12(S)-HETE-induced scratching. One of the BLT2 receptor agonists, 12(R)-HETE (12(R)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid), also induced scratching in the ICR mice. Conclusions and implications: Our present results corroborate the hypothesis that the BLT2 receptor is involved in 12(S)-lipoxygenase-product-induced scratching in ICR mice. We also confirmed that this animal model could be a valuable means of evaluating the effects of BLT2 receptor

  16. Effect of the Basic Residue on the Energetics, Dynamics and Mechanisms of Gas- Phase Fragmentation of Protonated Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Yang, Zhibo; Song, Tao

    2010-11-17

    The effect of the basic residue on the energetics, dynamics and mechanisms of backbone fragmentation of protonated peptides was investigated. Time- and collision energy-resolved surface-induced dissociation (SID) of singly protonated peptides with the N-terminal arginine residue and their analogs, in which arginine is replaced with less basic lysine and histidine residues was examined using in a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). SID experiments demonstrated very different kinetics of formation of several primary product ions of peptides with and without arginine residue. The energetics and dynamics of these pathways were determined from the RRKM modelingmore » of the experimental data. Comparison between the kinetics and energetics of fragmentation of arginine-containing peptides and the corresponding methyl ester derivatives provides important information on the effect of dissociation pathways involving salt bridge (SB) intermediates on the observed fragmentation behavior. It is found that because pathways involving SB intermediates are characterized by low threshold energies, they efficiently compete with classical oxazolone pathways of arginine-containing peptides on a long timescale of the FT-ICR instrument. In contrast, fragmentation of histidine- and lysine-containing peptides is largely determined by classical oxazolone pathways. Because SB pathways are characterized by negative activation entropies, fragmentation of arginine-containing peptides is kinetically hindered and observed at higher collision energies as compared to their lysine- and histidine-containing analogs.« less

  17. FT-IR spectroscopy characterization of schwannoma: a case study

    NASA Astrophysics Data System (ADS)

    Ferreira, Isabelle; Neto, Lazaro P. M.; das Chagas, Maurilio José; Carvalho, Luís. Felipe C. S.; dos Santos, Laurita; Ribas, Marcelo; Loddi, Vinicius; Martin, Airton A.

    2016-03-01

    Schwannoma are rare benign neural neoplasia. The clinical diagnosis could be improved if novel optical techniques are performed. Among these techniques, FT-IR is one of the currently techniques which has been applied for samples discrimination using biochemical information with minimum sample preparation. In this work, we report a case of a schwannoma in the cervical region. A histological examination described a benign process. An immunohistochemically examination demonstrated positivity to anti-S100 protein antibody, indicating a diagnosis of schwannoma. The aim of this analysis was to characterize FT-IR spectrum of the neoplastic and normal tissue in the fingerprint (1000-1800 cm-1) and high wavenumber region (2800-3600 cm-1). The IR spectra were collect from tumor tissue and normal nerve samples by a FT-IR spectrophotometer (Spotlight Perkin Elmer 400, USA) with 64 scans, and resolution of 4 cm-1. A total of twenty spectra were recorded (10 from schwannoma and 10 from nerve). Multivariate Analysis was used to classify the data. Through average and standard deviation analysis we observed that the main spectral change occurs at ≍1600 cm-1 (amide I) and ≍1400 cm-1 (amide III) in the fingerprint region, and in CH2/CH3 protein-lipids and OH-water vibrations for the high wavenumber region. In conclusion, FT-IR could be used as a technique for schwannoma analysis helping to establish specific diagnostic.

  18. 76 FR 27363 - Proposed Information Collection Request (ICR) for the Impact Evaluation of the YouthBuild Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... characteristics? What are YouthBuild's impacts on crime and delinquency? What are the program's impacts on social... (ICR) for the Impact Evaluation of the YouthBuild Program; Comment Request AGENCY: Employment and..., collection instruments are clearly understood, and [[Page 27364

  19. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate.

    PubMed

    Kanagathara, N; Marchewka, M K; Drozd, M; Renganathan, N G; Gunasekaran, S; Anbalagan, G

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by (1)H and (13)C NMR spectra. No detectable signal was observed during powder test for second harmonic generation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  1. Analysis of poly-beta-hydroxybutyrate in environmental samples by GC-MS/MS.

    PubMed

    Elhottová, D; Tríska, J; Petersen, S O; Santrůcková, H

    2000-05-01

    Application of gas chromatography-mass spectrometry (GC-MS) can significantly improve trace analyses of compounds in complex matrices from natural environments compared to gas chromatography only. A GC-MS/MS technique for determination of poly-beta-hydroxybutyrate (PHB), a bacterial storage compound, has been developed and used for analysis of two soils stored for up to 319 d, fresh samples of sewage sludge, as well as a pure culture of Bacillus megaterium. Specific derivatization of beta-hydroxybutyrate (3-OH C4:0) PHB monomer units by N-tert-butyl-dimethylsilyl-N-methyltrifluoracetamide (MTBSTFA) improved chromatographic and mass spectrometric properties of the analyte. The diagnostic fragmentation scheme of the derivates tert-butyldimethylsilyl ester and ether of beta-hydroxybutyric acid (MTBSTFA-HB) essential for the PHB identification was shown. The ion trap MS was used, therefore the scan gave the best sensitivity and with MS/MS the noise decreased, so the S/N was better and also with second fragmentation the amount of ions increased compared to SIM. The detection limit for MTBSTFA-HB by GC-MS/MS was about 10(-13) g microL(-1) of injected volume, while by GC (FID) and GC-MS (scan) it was around 10(-10) g microL(-1) of injected volume. Sensitivity of GC-MS/MS measurements of PHB in arable soil and activated sludge samples was down to 10 pg of PHB g(-1) dry matter. Comparison of MTBSTFA-HB detection in natural soil sample by GC (FID), GC-MS (scan) and by GC-MS/MS demonstrated potentials and limitations of the individual measurement techniques.

  2. Distress improves after mindfulness training for progressive MS: A pilot randomised trial.

    PubMed

    Bogosian, A; Chadwick, P; Windgassen, S; Norton, S; McCrone, P; Mosweu, I; Silber, E; Moss-Morris, R

    2015-08-01

    Mindfulness-based interventions have been shown to effectively reduce anxiety, depression and pain in patients with chronic physical illnesses. We assessed the potential effectiveness and cost-effectiveness of a specially adapted Skype distant-delivered mindfulness intervention, designed to reduce distress for people affected by primary and secondary progressive MS. Forty participants were randomly assigned to the eight-week intervention (n = 19) or a waiting-list control group (n = 21). Participants completed standardised questionnaires to measure mood, impact of MS and symptom severity, quality of life and service costs at baseline, post-intervention and three-month follow-up. Distress scores were lower in the intervention group compared with the control group at post-intervention and follow-up (p < 0.05), effect size -0.67 post-intervention and -0.97 at follow-up. Mean scores for pain, fatigue, anxiety, depression and impact of MS were reduced for the mindfulness group compared with control group at post-therapy and follow-up; effect sizes ranged from -0.27 to -0.99 post-intervention and -0.29 to -1.12 at follow-up. There were no differences in quality-adjusted life years, but an 87.4% probability that the intervention saves on service costs and improves outcome. A mindfulness intervention delivered through Skype video conferences appears accessible, feasible and potentially effective and cost-effective for people with progressive MS. © The Author(s), 2015.

  3. Speciation of organic matter in sandy soil size fractions as revealed by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Jordán, Antonio; Zavala, Lorena M.; de la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    This research deals with the assessment of organic matter structural differences in soil physical fractions before and after lipid extractions. Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: 0.05-0.25 mm) were studied from each soil. . In addition, the two fractions from each soil were exhaustively Soxhlet extracted with a Dichlorometane-Methanol (3:1) mixture to obtain the lipid-free fractions (LF) from each size fraction (LFC and LFF). The composition of the organic matter at a molecular level in the different soil fractions was approached by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy. These techniques are complementary and have been found suitable for the structural characterization of complex organic matrices (Moldoveanu, 1998; Piccolo and Stevenson, 1982); whereas Py-GC/MS provides detailed structural information of individual compounds present and a finger-printing of soil organic matter, FT-IR is informative about major functional groups present. The advantages of these techniques are well known: no need for pretreatment are fast to perform, highly reproducible and only small amount of samples are needed. Soil size fractions show contrasting differences in organic matter content (C 4-7 % and F > 40 %) and conspicuous differences were found in the pyrolysis products released by the fractions studied. The main families of pyrolysis compounds have well defined macromolecular precursors, such as lignin, polypeptides, polysaccharides and lipids (González-Vila et al., 2001). The C fractions yield higher relative abundance of lignin and polysaccharide derived pyrolysis compounds. Regarding the differences in the soil organic matter as affected by the different vegetation covers

  4. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    PubMed Central

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon

    2013-01-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861

  5. 77 FR 6585 - Proposed Information Collection Request (ICR) for the Impact Evaluation of the YouthBuild Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... job characteristics? What are YouthBuild's impacts on crime and delinquency? What are the program's... (ICR) for the Impact Evaluation of the YouthBuild Program; New Collection AGENCY: Employment and... instruments are clearly understood, and the impact of collection requirements on respondents can be properly...

  6. Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry.

    PubMed

    Remucal, Christina K; Cory, Rose M; Sander, Michael; McNeill, Kristopher

    2012-09-04

    Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses <600 Da in a complex mixture, such as SRFA. The most intense masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.

  7. Isolated cognitive relapses in multiple sclerosis.

    PubMed

    Pardini, Matteo; Uccelli, Antonio; Grafman, Jordan; Yaldizli, Özgür; Mancardi, Gianluigi; Roccatagliata, Luca

    2014-09-01

    While cognition can be affected during sensorimotor multiple sclerosis (MS) relapses, the relevance of isolated cognitive relapses (ICRs ie, those occurring in absence of new sensorimotor symptoms) remain poorly characterised. Here, we decided to explore the relationship between ICR, subjective evaluation of cognitive performance and long-term cognitive decline in a group of subjects with relapsing-remitting MS. We analysed the cognitive performance of 99 clinically stable relapsing-remitting MS for whom data from four consequent clinical and cognitive evaluations were available, that is, a baseline evaluation (t₀), followed in the subsequent 6 months by a second evaluation performed not later than 2 weeks after a routine brain scan positive for at least one area of gadolinium enhancement (t₁) and two gadolinium enhancement-negative follow-up evaluations after 6 months (t₂) and 1 year (t₃) from t₁. Based on published literature, we defined as a meaningful change in cognition a transient reduction of Symbol Digit Modalities Test score of at least four points at t₁ compared with t₀ and t₂. ICRs were found in 17 patients and were not associated with subjective cognitive deficits or depression. Subjects who presented with an ICR at t₁ presented with a significantly reduced cognitive performance at the follow-up evaluations compared with patients without ICR. We showed that ICRs were not associated with changes in mood, fatigue levels or cognitive performance self-evaluations. Our study introduces an operational definition of ICRs and suggests to their role as a factor for cognitive decline in MS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS.

    PubMed

    Fitian, Asem I; Nelson, David R; Liu, Chen; Xu, Yiling; Ararat, Miguel; Cabrera, Roniel

    2014-10-01

    The metabolic pathway disturbances associated with hepatocellular carcinoma (HCC) remain unsatisfactorily characterized. Determination of the metabolic alterations associated with the presence of HCC can improve our understanding of the pathophysiology of this cancer and may provide opportunities for improved disease monitoring of patients at risk for HCC development. To characterize the global metabolic alterations associated with HCC arising from hepatitis C (HCV)-associated cirrhosis using an integrated non-targeted metabolomics methodology employing both gas chromatography/mass spectrometry (GC/MS) and ultrahigh-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC/MS-MS). The global serum metabolomes of 30 HCC patients, 27 hepatitis C cirrhosis disease controls and 30 healthy volunteers were characterized using a metabolomics approach that combined two metabolomics platforms, GC/MS and UPLC/MS-MS. Random forest, multivariate statistics and receiver operator characteristic analysis were performed to identify the most significantly altered metabolites in HCC patients vs. HCV-cirrhosis controls and which therefore exhibited a close association with the presence of HCC. Elevated 12-hydroxyeicosatetraenoic acid (12-HETE), 15-HETE, sphingosine, γ-glutamyl oxidative stress-associated metabolites, xanthine, amino acids serine, glycine and aspartate, and acylcarnitines were strongly associated with the presence of HCC. Elevations in bile acids and dicarboxylic acids were highly correlated with cirrhosis. Integrated metabolomic profiling through GC/MS and UPLC/MS-MS identified global metabolic disturbances in HCC and HCV-cirrhosis. Aberrant amino acid biosynthesis, cell turnover regulation, reactive oxygen species neutralization and eicosanoid pathways may be hallmarks of HCC. Aberrant dicarboxylic acid metabolism, enhanced bile acid metabolism and elevations in fibrinogen cleavage peptides may be signatures of cirrhosis. © 2014 John

  9. A low noise single-transistor transimpedance preamplifier for Fourier-transform mass spectrometry using a T feedback network

    PubMed Central

    Lin, Tzu-Yung; Green, Roger J.; O’Connor, Peter B.

    2012-01-01

    A novel single-transistor transimpedance preamplifier has been introduced for improving performance in Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry. A low noise junction field-effect transistor (JFET), BF862, is used as the main amplification stage of this trans-impedance preamplifier, and a T-shaped feedback network is introduced as both the feedback and the gate biasing solutions. The T feedback network has been studied using an operational amplifier (Op Amp), AD8099. Such a feedback system allows ∼100-fold less feedback resistance at a given transimpedance, hence preserving bandwidth, which is beneficial to applications demanding high gain. The single-transistor preamplifier yields a tested transimpedance of ∼104 Ω (80 dBΩ) in the frequency range between 1 kHz and 1 MHz (mass-to-charge ratio, m/z, of around 180-180k for a 12-T FT-ICR system), with a low power consumption of ∼6 mW, which implies that this preamplifier is well suited to a 12-T FT-ICR mass spectrometer. In trading noise performance for higher trans-impedance, an alternative preamplifier design, an AD8099 preamplifier with the T feedback network, has also been studied with a capability of ∼106 Ω (120 dBΩ) transimpedance in the same frequency range. The resistive components in the T feedback network reported here can be replaced by complex impedances, which allows adaptation of this feedback system to other frequency, transimpedance, and noise characteristics for applications not only in other mass spectrometers, such as Orbitrap, time-of-flight (TOF), and ion trap systems, but also in other charge/current detecting systems such as spectroscopy systems, microscopy systems, optical communication systems, or charge-coupled devices (CCDs). PMID:23020394

  10. A low noise single-transistor transimpedance preamplifier for Fourier-transform mass spectrometry using a T feedback network.

    PubMed

    Lin, Tzu-Yung; Green, Roger J; O'Connor, Peter B

    2012-09-01

    A novel single-transistor transimpedance preamplifier has been introduced for improving performance in Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry. A low noise junction field-effect transistor (JFET), BF862, is used as the main amplification stage of this trans-impedance preamplifier, and a T-shaped feedback network is introduced as both the feedback and the gate biasing solutions. The T feedback network has been studied using an operational amplifier (Op Amp), AD8099. Such a feedback system allows ~100-fold less feedback resistance at a given transimpedance, hence preserving bandwidth, which is beneficial to applications demanding high gain. The single-transistor preamplifier yields a tested transimpedance of ~10(4) Ω (80 dBΩ) in the frequency range between 1 kHz and 1 MHz (mass-to-charge ratio, m/z, of around 180-180k for a 12-T FT-ICR system), with a low power consumption of ~6 mW, which implies that this preamplifier is well suited to a 12-T FT-ICR mass spectrometer. In trading noise performance for higher trans-impedance, an alternative preamplifier design, an AD8099 preamplifier with the T feedback network, has also been studied with a capability of ~10(6) Ω (120 dBΩ) transimpedance in the same frequency range. The resistive components in the T feedback network reported here can be replaced by complex impedances, which allows adaptation of this feedback system to other frequency, transimpedance, and noise characteristics for applications not only in other mass spectrometers, such as Orbitrap, time-of-flight (TOF), and ion trap systems, but also in other charge/current detecting systems such as spectroscopy systems, microscopy systems, optical communication systems, or charge-coupled devices (CCDs).

  11. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice

    NASA Astrophysics Data System (ADS)

    Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Amin, Faiz Ul; Kim, Myeong Ok

    2015-09-01

    The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.

  12. Improvement of chromatographic performances of in-situ synthesized hybrid C8 silica monoliths by reduction of structural radial heterogeneities.

    PubMed

    Roux, R; Abi Jaoudé, M; Demesmay, C

    2009-05-01

    Several modifications of a previously described protocol are proposed to improve the performances of in-situ synthesized C(8) hybrid silica monoliths. Our attention was focused on reducing the sources of radial heterogeneity that may be responsible for the poor efficiencies observed in the hydrodynamic elution mode. It was demonstrated that a decrease in the temperature of the capillary during the filling step equally to that of the polymerization mixture (0 degrees C), associated with a decrease of the gelation temperature to 20 degrees C along with a new pre-treatment of the capillary's internal walls [with a mixture of tetraethoxysilane (TEOS)/EtOH (1/3, v/v)] allows (i) increasing the radial homogeneity of the monolith, thus further enhancing the performances in the nano-liquid chromatography (nano-LC) mode, (ii) improving the capillary to capillary reproducibility in terms of permeability and efficiencies. In fact, the average minimum plate height H(min) was lowered from 24 to 14 microm and the capillary-to-capillary reproducibility of the synthesis was widely improved by factors two and three of reduction on the calculated standard deviation, respectively for both the efficiency in the nano-LC mode and the permeability. At last, the improved radial homogeneity and anchoring of the synthesized monoliths allowed increasing the inner diameter of the capillary (up to 150 microm) without any significant loss in efficiency. Finally, long term stability of the as-obtained monolithic stationary phases in terms of retention and efficiency was studied. In addition, the evaluation of their chromatographic behaviour was also achieved with the Tanaka test and the results were compared to those already published for commercial monoliths (Chromolith) as well as for particulate stationary phases.

  13. Towards unsupervised polyaromatic hydrocarbons structural assignment from SA-TIMS-FTMS data.

    PubMed

    Benigni, Paolo; Marin, Rebecca; Fernandez-Lima, Francisco

    2015-10-01

    With the advent of high resolution ion mobility analyzers and their coupling to ultrahigh resolution mass spectrometers, there is a need to further develop a theoretical workflow capable of correlating experimental accurate mass and mobility measurements with tridimensional candidate structures. In the present work, a general workflow is described for unsupervised tridimensional structural assignment based on accurate mass measurements, mobility measurements, in silico 2D-3D structure generation, and theoretical mobility calculations. In particular, the potential of this workflow will be shown for the analysis of polyaromatic hydrocarbons from Coal Tar SRM 1597a using selected accumulation - trapped ion mobility spectrometry (SA-TIMS) coupled to Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). The proposed workflow can be adapted to different IMS scenarios, can utilize different collisional cross-section calculators and has the potential to include MS n and IMS n measurements for faster and more accurate tridimensional structural assignment.

  14. Pyrrole Oligoglycosides from the Starfish Acanthaster planci Suppress Lipopolysaccharide-Induced Nitric Oxide Production in RAW264.7 Macrophages.

    PubMed

    Vien, Le Thi; Hanh, Tran Thi Hong; Huong, Phan Thi Thanh; Dang, Nguyen Hai; Thanh, Nguyen Van; Lyakhova, Ekaterina; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Kiem, Phan Van; Kicha, Alla; Minh, Chau Van

    2016-11-01

    Two new pyrrole oligoglycosides, plancipyrrosides A and B (1 and 2), were isolated from methanol extract of the Vietnamese starfish Acanthaster planci using various chromatographic procedures. Their structures were elucidated by spectroscopic methods including one and two dimensional (1D- and 2D)-NMR and Fourier transform ion cyclotron resonance (FT-ICR)-MS. The finding of 1 and 2 represents the third case of pyrrole oligoglycosides obtaining reported to date. Moreover, plancipyrroside B (2) exhibits a potent inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells with IC 50 of 5.94±0.34 µM, whereas plancipyrroside A (1) shows this inhibitory activity with IC 50 of 16.61±1.85 µM.

  15. Phase portraits of general f(T) cosmology

    NASA Astrophysics Data System (ADS)

    Awad, A.; El Hanafy, W.; Nashed, G. G. L.; Saridakis, Emmanuel N.

    2018-02-01

    We use dynamical system methods to explore the general behaviour of f(T) cosmology. In contrast to the standard applications of dynamical analysis, we present a way to transform the equations into a one-dimensional autonomous system, taking advantage of the crucial property that the torsion scalar in flat FRW geometry is just a function of the Hubble function, thus the field equations include only up to first derivatives of it, and therefore in a general f(T) cosmological scenario every quantity is expressed only in terms of the Hubble function. The great advantage is that for one-dimensional systems it is easy to construct the phase space portraits, and thus extract information and explore in detail the features and possible behaviours of f(T) cosmology. We utilize the phase space portraits and we show that f(T) cosmology can describe the universe evolution in agreement with observations, namely starting from a Big Bang singularity, evolving into the subsequent thermal history and the matter domination, entering into a late-time accelerated expansion, and resulting to the de Sitter phase in the far future. Nevertheless, f(T) cosmology can present a rich class of more exotic behaviours, such as the cosmological bounce and turnaround, the phantom-divide crossing, the Big Brake and the Big Crunch, and it may exhibit various singularities, including the non-harmful ones of type II and type IV. We study the phase space of three specific viable f(T) models offering a complete picture. Moreover, we present a new model of f(T) gravity that can lead to a universe in agreement with observations, free of perturbative instabilities, and applying the Om(z) diagnostic test we confirm that it is in agreement with the combination of SNIa, BAO and CMB data at 1σ confidence level.

  16. Improving the quality of depression and pain care in multiple sclerosis using collaborative care: The MS-care trial protocol.

    PubMed

    Ehde, Dawn M; Alschuler, Kevin N; Sullivan, Mark D; Molton, Ivan P; Ciol, Marcia A; Bombardier, Charles H; Curran, Mary C; Gertz, Kevin J; Wundes, Annette; Fann, Jesse R

    2018-01-01

    Evidence-based pharmacological and behavioral interventions are often underutilized or inaccessible to persons with multiple sclerosis (MS) who have chronic pain and/or depression. Collaborative care is an evidence-based patient-centered, integrated, system-level approach to improving the quality and outcomes of depression care. We describe the development of and randomized controlled trial testing a novel intervention, MS Care, which uses a collaborative care model to improve the care of depression and chronic pain in a MS specialty care setting. We describe a 16-week randomized controlled trial comparing the MS Care collaborative care intervention to usual care in an outpatient MS specialty center. Eligible participants with chronic pain of at least moderate intensity (≥3/10) and/or major depressive disorder are randomly assigned to MS Care or usual care. MS Care utilizes a care manager to implement and coordinate guideline-based medical and behavioral treatments with the patient, clinic providers, and pain/depression treatment experts. We will compare outcomes at post-treatment and 6-month follow up. We hypothesize that participants randomly assigned to MS Care will demonstrate significantly greater control of both pain and depression at post-treatment (primary endpoint) relative to those assigned to usual care. Secondary analyses will examine quality of care, patient satisfaction, adherence to MS care, and quality of life. Study findings will aid patients, clinicians, healthcare system leaders, and policy makers in making decisions about effective care for pain and depression in MS healthcare systems. (PCORI- IH-1304-6379; clinicaltrials.gov: NCT02137044). This trial is registered at ClinicalTrials.gov, protocol NCT02137044. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.

    PubMed

    Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing

    2018-07-05

    Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. An Improved LC-MS/MS Method for Simultaneous Determination of the Eleven Bioactive Constituents for Quality Control of Radix Angelicae Pubescentis and Its Related Preparations

    PubMed Central

    Li, Jin; Zhang, Qiu-Hong; He, Jun; Liu, Er-wei; Gao, Xiu-mei; Chang, Yan-xu

    2015-01-01

    An improved LC-MS/MS method was developed for simultaneous determination of eleven bioactive constituents of Radix Angelicae Pubescentis and its related preparations. It was the first report on the quantification of bioactive constituents in different preparations of Radix Angelicae Pubescentis by LC-MS/MS analytical method. These samples were separated with an Agilent Zorbax Extend reversed-phase C18 column (1.8 μm, 4.6 × 100 mm) by linear gradient elution using aqueous ammonium acetate and acetonitrile as mobile phase. The flow rate was 0.3 mL min−1. The eleven bioactive constituents showed good regression (R > 0.990) within test ranges and the recoveries were in the range of 87.1–110%. The limit of detections and quantifications for most of the major constituents were less than 0.5 and 1.0 ng mL−1, respectively. All results indicated that the developed method could be readily utilized as a suitable quality control method for Radix Angelicae Pubescentis and related preparations. PMID:26078992

  19. Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag(+) CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control.

    PubMed

    Cha, Eunju; Kim, Sohee; Kim, Ho Jun; Lee, Kang Mi; Kim, Ki Hun; Kwon, Oh-Seung; Lee, Jaeick

    2015-01-01

    This study compared the sensitivity of various separation and ionization methods, including gas chromatography with an electron ionization source (GC-EI), liquid chromatography with an electrospray ionization source (LC-ESI), and liquid chromatography with a silver ion coordination ion spray source (LC-Ag(+) CIS), coupled to a mass spectrometer (MS) for steroid analysis. Chromatographic conditions, mass spectrometric transitions, and ion source parameters were optimized. The majority of steroids in GC-EI/MS/MS and LC-Ag(+) CIS/MS/MS analysis showed higher sensitivities than those obtained with other analytical methods. The limits of detection (LODs) of 65 steroids by GC-EI/MS/MS, 68 steroids by LC-Ag(+) CIS/MS/MS, 56 steroids by GC-EI/MS, 54 steroids by LC-ESI/MS/MS, and 27 steroids by GC-ESI/MS/MS were below cut-off value of 2.0 ng/mL. LODs of steroids that formed protonated ions in LC-ESI/MS/MS analysis were all lower than the cut-off value. Several steroids such as unconjugated C3-hydroxyl with C17-hydroxyl structure showed higher sensitivities in GC-EI/MS/MS analysis relative to those obtained using the LC-based methods. The steroids containing 4, 9, 11-triene structures showed relatively poor sensitivities in GC-EI/MS and GC-ESI/MS/MS analysis. The results of this study provide information that may be useful for selecting suitable analytical methods for confirmatory analysis of steroids. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  1. No further gravitational wave modes in F(T) gravity

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Nojiri, Shin'ichi; Sáez-Gómez, Diego

    2013-11-01

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar-tensor representation of F(T) gravity.

  2. Organic Scintillator Detector Response Simulations with DRiFT

    DOE PAGES

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; ...

    2016-06-11

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less

  3. The patient's perspective: How to create awareness for improving access to care and treatment of MS patients?

    PubMed

    Vermersch, Patrick; Faller, Andreas; Czarnota-Szałkowska, Dominika; Meesen, Bianca; Thalheim, Christoph

    2016-08-01

    There is currently no known cure for multiple sclerosis (MS). Four stakeholders play a major role in MS: healthcare professionals, regulators, payers and patients. In Europe, patients are represented by the European Multiple Sclerosis Platform (EMSP), which aims to improve MS management and patients' quality of life. The EMSP has recently shown that there are major disparities in Europe in terms of access to care and treatment. Implementing the Code of Good Practice and a standardised MS nurse training may be useful in harmonising MS management across Europe. Additionally, the burden for novel therapeutic options to be approved by regulatory agencies has to decrease in order to provide faster access of treatment to patients. Data collection (e.g. national registers) also appears crucial to help research and shape the most effective policy in each country. Finally, people with MS should get appropriate (financial) support in order to complete their studies and find a job, as their active participation in society requires proper access to education and employment. Moreover, as they are the ones affected by MS, they seem to be best placed to represent themselves and their needs and should be consulted more often during decision-making processes by policy makers, regulators and payers. © The Author(s), 2016.

  4. [Study of alkaline lignin from Arundo donax linn based on FT Raman spectroscopy].

    PubMed

    You, Ting-ting; Ma, Jian-feng; Guo, Si-qin; Xu, Feng

    2014-08-01

    Arundo donax linn, as a perennial energy crop, has promising application prospect. In the present study, Fourier transform Raman (FT Raman) spectroscopy was applied to determine the structural information of materials, milled wood lignin (MWL), and alkaline lignins (AL, under different treated time) from A. donax stem nondestructively. The results indicated that, extractable compounds in A. donax had negative contribution to the Raman spectra without rising new Raman peaks. FT Raman spectrum of MWL indicated that MWL from A. donax was HGS type lignins. Compared with the spectra of MWL from wood materials, the peak at 1173 cm(-1) was much higher in intensity for the MWL from A. donax stem, which may be assigned to hydroxycinnamic acid by analyzing the standard. With respect to FT Raman spectra of ALs, the relatively highest intensity of 1173 cm(-1) was found in alkaline lignin (AL2), which was treated for 40 min by alkaline. Moreover, the peak of coniferaldehyde/sinapaldehyde (1630 cm(-1)) was lowest in intensity while the band attributed to coniferyl alcohol/sinapyl alcohol (1660 cm(-1)) was almost disappeared in AL2. It could be inferred that AL2 demonstrated a highest content of phenolic acid, which may improve its potential application, such as for antioxidant activity. Furthermore, the results obtained by FT Raman spectra were verified by two dimensional heteronuclear singlequantum coherence nuclear magnetic resonance analyses. Above all, FT Raman spectroscopy provided alternative safe, rapid, accurate, and nondestructive technology for lignin structure determination.

  5. STS-52 MS Jemison, in LES/LEH, during JSC WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Tamara E. Jernigan, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing about water landings during an emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Jernigan waits her turn to be dropped into the WETF's 25-ft deep pool which will simulate the ocean during of her water landing.

  6. Technical Capability Upgrades to the NASA Langley Research Center 8 ft. by 15 ft. Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Duncan, Dwight L.

    2016-01-01

    The 8 ft. by 15 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen distribution manifold for supplying the shroud and other cold surfaces to liquid nitrogen temperatures; a new power supply and distribution system for accurately controlling a quartz IR lamp suite; a suite of contamination monitoring sensors for outgassing measurements and species identification; a new test article support system; signal and power feed-throughs; elimination of unnecessary penetrations; and a new data acquisition and control commanding system including safety interlocks. This paper will provide a general overview of the LaRC 8 ft. by 15 ft. TVAC chamber, an overview of the new technical capabilities, and will illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  7. Technical Capability Upgrades to the NASA Langley Research Center 6 ft. by 6 ft. Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Mau, Johnny C.; Duncan, Dwight L.

    2014-01-01

    The 6 ft. by 6 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen thermal conditioning unit for controlling shroud temperatures from -150degC to +150degC; two horizontal auxiliary cold plates for independent temperature control from -150degC to +200degC; a suite of contamination monitoring sensors for outgassing measurements and species identification; signal and power feed-throughs; new pressure gauges; and a new data acquisition and control commanding system including safety interlocks. This presentation will provide a general overview of the LaRC 6 ft. by 6 ft. TVAC chamber, an overview of the new technical capabilities, and illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  8. Export of Dissolved Organic Carbon following Prescribed Fire on Forested Watersheds: Implications for Watershed Management for Drinking Water Supply

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Olivares, C. I.; Uzun, H.; Erdem, C. U.; Trettin, C.; Liu, Y.; Robinson, E. R.; Karanfil, T.; Chow, A. T.

    2016-12-01

    Detrital material in forest watersheds is the major terrestrial source of dissolved organic matter (DOM) and disinfection byproduct (DBP) precursors in surface source waters, but it is also the fuel for forest fires. Prescribed fire, as a fuel reduction technique is intended to reduce the amount of forest detritus, and therefore the risk of wildfire. Accordingly, periodic prescribed fire can reduce the accumulation of detritus on forest floor and the amount of DOM export after forest treatments. To evaluate the effects of prescribed fire on water quality, we conducted a controlled study on a paired first-order watershed system that includes a 160 ha treatment watershed (WS77) and 200 ha control watershed (WS80) on the Santee Experimental Forest, near Charleston South Carolina. WS77 has been used for prescribed fire research since the 1960's, the current experimental burn occurred on April, 2016. WS80 has not been managed or burned for at least 55 years. Gauging stations were equipped with in-situ TOC sensors and flow-proportional water samplers for monitoring temporal trends on water quality. Water samples taken from the first runoff event from both watersheds including rising limb, peak discharge, and falling limb were used for detailed chemical characterizations including DOC and nutrient concentrations, coagulation efficiency, and DBP formation such as trihalomethanes (THMs) and halocacetic acids (HAAs) from chlorination as well as N-nitrosodimethylamine (NDMA) from chlorination, and chemical formula assignment on DOM using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) before and after chlorination and chloramination. Preliminary FT-ICR-MS data shows that DOM chemical compositions are different between raw samples collected from WS77 and WS80. Chlorination resulted in a shift toward lower molecular mass compared to the raw materials. While chloramination did not cause a drastic mass shift, such a treatment also produced DOM moieties

  9. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls

    PubMed Central

    Titulaer, Mark K; Siccama, Ivar; Dekker, Lennard J; van Rijswijk, Angelique LCT; Heeren, Ron MA; Sillevis Smitt, Peter A; Luider, Theo M

    2006-01-01

    Background Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. Results A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. Conclusion The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry

  10. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls.

    PubMed

    Titulaer, Mark K; Siccama, Ivar; Dekker, Lennard J; van Rijswijk, Angelique L C T; Heeren, Ron M A; Sillevis Smitt, Peter A; Luider, Theo M

    2006-09-05

    Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry experiments. It is expected that the

  11. Environmental drivers of dissolved organic matter molecular composition in the Delaware Estuary

    NASA Astrophysics Data System (ADS)

    Osterholz, Helena; Kirchman, David L.; Niggemann, Jutta; Dittmar, Thorsten

    2016-11-01

    Estuaries as connectors of freshwater and marine aquatic systems are hotspots of biogeochemical element cycling. In one of the best studied temperate estuaries, the Delaware Estuary (USA), we investigated the variability of dissolved organic matter (DOM) over five sampling cruises along the salinity gradient in August and November of 3 consecutive years. Dissolved organic carbon (DOC) concentrations were more variable in the upper reaches of the estuary (245±49 µmol L-1) than at the mouth of the estuary (129±14 µmol L-1). Bulk DOC decreased conservatively along the transect in November but was non-conservative with increased DOC concentrations mid-estuary in August. Detailed analysis of the solid-phase extractable DOM pool via ultrahigh resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) revealed compositional differences at the molecular level that were not reflected in changes in concentration. Besides the mixing of terrestrial and marine endmember signatures, river discharge levels and biological activity were found to impact DOM molecular composition. DOM composition changed less between August and November than along the salinity gradient. Relative contributions of presumed photolabile DOM compounds did not reveal non-conservative behavior indicative of photochemical processing; suggesting that on the timescales of estuarine mixing photochemical removal of molecules plays a minor role in the turbid Delaware Bay. Overall, a large portion of molecular formulae overlapped between sampling campaigns and persisted during estuarine passage. Extending the analysis to the structural level via the fragmentation of molecular masses in the FT-ICR-MS cell, we found that the relative abundance of isomers along the salinity gradient did not change, indicating a high structural similarity of aquatic DOM independent of the origin. These results point towards a recalcitrant character of the DOM supplied by the Delaware

  12. FTIR, FT-Raman, FT-NMR and quantum chemical investigations of 3-acetylcoumarin

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Sakiladevi, S.; Marchewka, M. K.; Mohan, S.

    2013-05-01

    3-Acetylcoumarin (3AC) was synthesised by a Knoevenagel reaction. Conformational analysis using the B3LYP method was also carried out to determine the most stable conformation of the compound. FTIR and FT-Raman spectra of 3AC have been recorded in the range 4000-400 and 4000-100 cm-1, respectively. 1H and 13C NMR spectra have also been recorded. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the experimental FTIR and FT-Raman data and quantum mechanical studies. The experimental vibrational frequencies were compared with the wavenumbers obtained theoretically from the DFT-B3LYP/B3PW91 gradient calculations employing the standard 6-31G**, high level 6-311++G** and cc-pVTZ basis sets for optimised geometry of the compound. The frontier molecular orbital energies of the compound are determined by DFT method.

  13. MS Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assessmore » current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.« less

  14. Automated saliva processing for LC-MS/MS: Improving laboratory efficiency in cortisol and cortisone testing.

    PubMed

    Antonelli, Giorgia; Padoan, Andrea; Artusi, Carlo; Marinova, Mariela; Zaninotto, Martina; Plebani, Mario

    2016-04-01

    The aim of this study was to implement in our routine practice an automated saliva preparation protocol for quantification of cortisol (F) and cortisone (E) by LC-MS/MS using a liquid handling platform, maintaining the previously defined reference intervals with the manual preparation. Addition of internal standard solution to saliva samples and calibrators and SPE on μ-elution 96-well plate were performed by liquid handling platform. After extraction, the eluates were submitted to LC-MS/MS analysis. The manual steps within the entire process were to transfer saliva samples in suitable tubes, to put the cap mat and transfer of the collection plate to the LC auto sampler. Transference of the reference intervals from the manual to the automated procedure was established by Passing Bablok regression on 120 saliva samples analyzed simultaneously with the two procedures. Calibration curves were linear throughout the selected ranges. The imprecision ranged from 2 to 10%, with recoveries from 95 to 116%. Passing Bablok regression demonstrated no significant bias. The liquid handling platform translates the manual steps into automated operations allowing for saving hands-on time, while maintaining assay reproducibility and ensuring reliability of results, making it implementable in our routine with the previous established reference intervals. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip.

    PubMed

    Yin, Hongfeng; Killeen, Kevin; Brennen, Reid; Sobek, Dan; Werlich, Mark; van de Goor, Tom

    2005-01-15

    Current nano-LC/MS systems require the use of an enrichment column, a separation column, a nanospray tip, and the fittings needed to connect these parts together. In this paper, we present a microfabricated approach to nano-LC, which integrates these components on a single LC chip, eliminating the need for conventional LC connections. The chip was fabricated by laminating polyimide films with laser-ablated channels, ports, and frit structures. The enrichment and separation columns were packed using conventional reversed-phase chromatography particles. A face-seal rotary valve provided a means for switching between sample loading and separation configurations with minimum dead and delay volumes while allowing high-pressure operation. The LC chip and valve assembly were mounted within a custom electrospray source on an ion-trap mass spectrometer. The overall system performance was demonstrated through reversed-phase gradient separations of tryptic protein digests at flow rates between 100 and 400 nL/min. Microfluidic integration of the nano-LC components enabled separations with subfemtomole detection sensitivity, minimal carryover, and robust and stable electrospray throughout the LC solvent gradient.

  16. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering.

    PubMed

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Dörmann, Peter; Coupland, George

    2014-04-04

    Arabidopsis FT protein is a component of florigen, which transmits photoperiodic flowering signals from leaf companion cells to the shoot apex. Here, we show that FT specifically binds phosphatidylcholine (PC) in vitro. A transgenic approach to increase PC levels in vivo in the shoot meristem accelerates flowering whereas reduced PC levels delay flowering, demonstrating that PC levels are correlated with flowering time. The early flowering is related to FT activity, because expression of FT-effector genes is increased in these plants. Simultaneous increase of FT and PC in the shoot apical meristem further stimulates flowering, whereas a loss of FT function leads to an attenuation of the effect of increased PC. Specific molecular species of PC oscillate diurnally, and night-dominant species are not the preferred ligands of FT. Elevating night-dominant species during the day delays flowering. We suggest that FT binds to diurnally changing molecular species of PC to promote flowering.

  17. STS-37 MS Jerome Apt during water egress exercise in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Jerome Apt, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is suspended above pool via a parachute harness during water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Apt simulates emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.

  18. FT-IR and DFT study of lemon peel

    NASA Astrophysics Data System (ADS)

    Berezin, K. V.; Likhter, A. M.; Shagautdinova, I. T.; Chernavina, M. L.; Novoselova, A. V.

    2017-03-01

    Experimental FT-IR spectra of lemon peel are registered in the 650 - 3800 cm-1 range. The influence of peel artificial and natural dehydration on its vibrational spectrum is studied. The colored outer surface of lemon peel is proved not to have a significant impact on FT-IR spectrum. It is determined that only dehydration processes affect the FT-IR vibrational spectrum of the peel when a lemon is stored for 28 days under natural laboratory conditions. Polymer molecule models for dietary fibers, such as cellulose, hemicellulose, pectin, lignin, as well as hesperidin - flavonoid glycoside, and free moisture cluster are developed within the framework of DFT/B3LYP/6-31G(d) theoretical method. By implementing supramolecular approach, modeling of the vibrational FT-IR spectrum of lemon peel is carried out and its detailed theoretical interpretation is presented.

  19. Metabolic Fingerprint of PS3-Induced Resistance of Grapevine Leaves against Plasmopara viticola Revealed Differences in Elicitor-Triggered Defenses

    PubMed Central

    Adrian, Marielle; Lucio, Marianna; Roullier-Gall, Chloé; Héloir, Marie-Claire; Trouvelot, Sophie; Daire, Xavier; Kanawati, Basem; Lemaître-Guillier, Christelle; Poinssot, Benoît; Gougeon, Régis; Schmitt-Kopplin, Philippe

    2017-01-01

    Induction of plant resistance against pathogens by defense elicitors constitutes an attractive strategy to reduce the use of fungicides in crop protection. However, all elicitors do not systematically confer protection against pathogens. Elicitor-induced resistance (IR) thus merits to be further characterized in order to understand what makes an elicitor efficient. In this study, the oligosaccharidic defense elicitors H13 and PS3, respectively, ineffective and effective to trigger resistance of grapevine leaves against downy mildew, were used to compare their effect on the global leaf metabolism. Ultra high resolution mass spectrometry (FT-ICR-MS) analysis allowed us to obtain and compare the specific metabolic fingerprint induced by each elicitor and to characterize the associated metabolic pathways. Moreover, erythritol phosphate was identified as a putative marker of elicitor-IR. PMID:28261225

  20. FT3/FT4 ratio predicts non-alcoholic fatty liver disease independent of metabolic parameters in patients with euthyroidism and hypothyroidism

    PubMed Central

    Gökmen, Fatma Yahyaoğlu; Ahbab, Süleyman; Ataoğlu, Hayriye Esra; Türker, Betül Çavuşoğlu; Çetin, Faik; Türker, Fatih; Mamaç, Rabia Yahyaoğlu; Yenigün, Mustafa

    2016-01-01

    OBJECTIVE: This study was performed to evaluate the effects of metabolic parameters and thyroid dysfunction on the development of non-alcoholic fatty liver disease (NAFLD). METHODS: The current study evaluated a total of 115 patients, 75 female and 40 male. Physical examination and anthropometric measurements were applied to all participants. Hypothyroidism was considered at a thyroid stimulating hormone level ≥ 4.1 mIU/L. Patients with euthyroidism and patients with hypothyroidism were compared. Abdominal ultrasonography was used to diagnose non-alcoholic fatty liver disease. The participants were further compared with regard to the presence of non-alcoholic fatty liver disease. Logistic regression modeling was performed to identify the relationship between non-alcoholic fatty liver disease and independent variables, such as metabolic parameters and insulin resistance. RESULTS: Non-alcoholic fatty liver disease was identified in 69 patients. The mean waist circumference, body mass index, fasting plasma insulin, HOMA-IR (p<0.001) and FT3/FT4 ratio (p=0.01) values were significantly higher in the patients with NAFLD compared to those without it. Multivariate regression analysis revealed that FT3/FT4 ratio, waist circumference and insulin resistance were independent risk factors for non-alcoholic fatty liver disease. CONCLUSION: Insulin resistance, enlarged waist circumference, elevated body mass index, higher FT3/FT4 ratio and hypertriglyceridemia are independent risk factors for NADLF, whereas hypothyroidism is not directly related to the condition. PMID:27166773

  1. FTIR, FT-Raman, FT-NMR and quantum chemical investigations of 3-acetylcoumarin.

    PubMed

    Arjunan, V; Sakiladevi, S; Marchewka, M K; Mohan, S

    2013-05-15

    3-Acetylcoumarin (3AC) was synthesised by a Knoevenagel reaction. Conformational analysis using the B3LYP method was also carried out to determine the most stable conformation of the compound. FTIR and FT-Raman spectra of 3AC have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. (1)H and (13)C NMR spectra have also been recorded. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the experimental FTIR and FT-Raman data and quantum mechanical studies. The experimental vibrational frequencies were compared with the wavenumbers obtained theoretically from the DFT-B3LYP/B3PW91 gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets for optimised geometry of the compound. The frontier molecular orbital energies of the compound are determined by DFT method. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis.

    PubMed

    Martin, Roland; Sospedra, Mireia; Rosito, Maria; Engelhardt, Britta

    2016-09-01

    Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults. When MS is not treated, it leads to irreversible and severe disability. The etiology of MS and its pathogenesis are not fully understood. The recent discovery that MS-associated genetic variants code for molecules related to the function of specific immune cell subsets is consistent with the concept of MS as a prototypic, T-cell-mediated autoimmune disease targeting the CNS. While the therapeutic efficacy of the currently available immunomodulatory therapies further strengthen this concept, differences observed in responses to MS treatment as well as additional clinical and imaging observations have also shown that the autoimmune pathogenesis underlying MS is much more complex than previously thought. There is therefore an unmet need for continued detailed phenotypic and functional analysis of disease-relevant adaptive immune cells and tissues directly derived from MS patients to unravel the immune etiology of MS in its entire complexity. In this review, we will discuss the currently available MS treatment options and approved drugs, including how they have contributed to the understanding of the immune pathology of this autoimmune disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Extending the Boundaries of Isotope Ratio MS - Latest Technological Improvements

    NASA Astrophysics Data System (ADS)

    Hilkert, A.

    2016-12-01

    Isotope ratio mass spectrometry has a long history, which started with the analysis of the isotopes of CO2. Over several decades a broad range of IRMS techniques has been derived like multi-collector high resolution ICP-MS, TIMS, noble gas static MS and gas IRMS. These different flavors of IRMS are now building a technology tool box, which allows to derive new applications build on new capabilities by combination of specific features of these sister technologies. In the 90's inductive coupled plasma ionization was added for the high precision analysis of rare elements. In 2000 extended multicollection opened the way into clumped isotopes. In 2008 the concept of a high resolution gas source IRMS was layed out to revolutionize stable gas IRMS recently followed by the combination of this static multicollection mode with fast mass scans of the single collector double focusing high resolution GCMS. Recently new technologies were created, like the mid infrared analyzers (IRIS) based on difference frequency generation lasers, the combination of a collision cell with HR MC ICPMS as well as the use of a high resolution electrostatic ion trap for extended stable isotope analysis on individual compounds. All these building blocks for IRMS address selected requirements of sample preparation, sample introduction, referencing, ionization, mass separation, ion detection or signal amplification. Along these lines new technological improvements and applications will be shown and discussed.

  4. FT-Raman spectral analysis of human urinary stones.

    PubMed

    Selvaraju, R; Raja, A; Thiruppathi, G

    2012-12-01

    FT-Raman spectroscopy is the most useful tool for the purpose of bio-medical diagnostics. In the present study, FT-Raman spectral method is used to investigate the chemical composition of urinary calculi. Urinary calculi multi-components such as calcium oxalate, hydroxyl apatite, struvite and uric acid are studied. FT-Raman spectrum has been recorded in the range of 3500-400 cm(-1). Chemical compounds are identified by Raman spectroscopic technique. The quantitative estimations of calcium oxalate monohydrate (COM) 1463 cm(-1), calcium oxalate dehydrate (COD) 1478 cm(-1), hydroxyl apatite 959 cm(-1), struvite 575 cm(-1), uric acid 1283 cm(-1) and oxammite (ammonium oxalate monohydrate) 2129 cm(-1) are calculated using particular peaks of FT-Raman spectrum. The quantitative estimation of human urinary stones suitable for the single calibration curve was performed. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The EIPeptiDi tool: enhancing peptide discovery in ICAT-based LC MS/MS experiments.

    PubMed

    Cannataro, Mario; Cuda, Giovanni; Gaspari, Marco; Greco, Sergio; Tradigo, Giuseppe; Veltri, Pierangelo

    2007-07-15

    Isotope-coded affinity tags (ICAT) is a method for quantitative proteomics based on differential isotopic labeling, sample digestion and mass spectrometry (MS). The method allows the identification and relative quantification of proteins present in two samples and consists of the following phases. First, cysteine residues are either labeled using the ICAT Light or ICAT Heavy reagent (having identical chemical properties but different masses). Then, after whole sample digestion, the labeled peptides are captured selectively using the biotin tag contained in both ICAT reagents. Finally, the simplified peptide mixture is analyzed by nanoscale liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, the ICAT LC-MS/MS method still suffers from insufficient sample-to-sample reproducibility on peptide identification. In particular, the number and the type of peptides identified in different experiments can vary considerably and, thus, the statistical (comparative) analysis of sample sets is very challenging. Low information overlap at the peptide and, consequently, at the protein level, is very detrimental in situations where the number of samples to be analyzed is high. We designed a method for improving the data processing and peptide identification in sample sets subjected to ICAT labeling and LC-MS/MS analysis, based on cross validating MS/MS results. Such a method has been implemented in a tool, called EIPeptiDi, which boosts the ICAT data analysis software improving peptide identification throughout the input data set. Heavy/Light (H/L) pairs quantified but not identified by the MS/MS routine, are assigned to peptide sequences identified in other samples, by using similarity criteria based on chromatographic retention time and Heavy/Light mass attributes. EIPeptiDi significantly improves the number of identified peptides per sample, proving that the proposed method has a considerable impact on the protein identification process and, consequently, on

  6. STS-39 MS Hieb prepares for emergency egress exercises in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-39 Mission Specialist (MS) Richard J. Hieb, wearing launch and entry suit (LES), parachute pack, and communications carrier assembly (CCA), listens to instructions prior to emergency egress bailout exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25 ft deep pool will simulate the ocean. Crewmembers will practice procedures necessary in the event of an emergency onboard the Space Shuttle requiring a water landing.

  7. STS-37 MS Linda M. Godwin during water egress exercise in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Linda M. Godwin, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is suspended above pool via a parachute harness during water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Godwin simulates emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.

  8. FY17 Accomplishments - Testing Facilities and Capabilities at SWiFT, SNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Jonathan Charles

    The Scaled Wind Farm Technologies (SWiFT) facility operated by Sandia National Laboratories (SNL) has, in support of the Atmosphere to electrons (A2e) research program, acquired measurements of wind turbine wake dynamics under various atmospheric conditions and while interacting with a downstream wind turbine. SNL researchers, in collaboration with National Renewable Energy Laboratory (NREL) researchers, installed a customized LIDAR system created by the Technical University of Denmark (DTU) in one of the SWiFT wind turbines (Figure 1) and operated that turbine with intentional yaw-versus-winddirection misalignment to study the behavior of the turbine wake under numerous combinations of atmospheric conditions and turbinemore » yaw offsets. The DTU-customized LIDAR provided detailed measurements of the wake’s shape and location at many distances downwind of the turbine (Figure 2). These measurements will benefit wind energy researchers looking to understand wind turbine wake behavior and improve modeling and simulation of wake dynamics, including the “wake steering” affect that is observed when turbine yaw offset is controlled. During the test campaign, two SWiFT wind turbines were operated at the same time to observe the influence of the turbines on each other as the wake of the upwind turbine was observed sweeping over and interacting with the downwind turbine.« less

  9. Near Zero Energy Housing at Ft. Campbell: Energy Modeling Results

    DTIC Science & Technology

    2007-05-01

    Excellence Baseline Ft. Campbell Single Family Home 2 Story 2,100 ft2 living space 325 ft2 garage 2 x 4 metal frame R-13 batt in wall Asphalt shingle ...Model south facing windows with overhangs to take advantage of solar gain in winter, and shading summer sun Construction cost estimates for

  10. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus.

    PubMed

    Klocko, Amy L; Ma, Cathleen; Robertson, Sarah; Esfandiari, Elahe; Nilsson, Ove; Strauss, Steven H

    2016-02-01

    Eucalyptus trees are among the most important species for industrial forestry worldwide. However, as with most forest trees, flowering does not begin for one to several years after planting which can limit the rate of conventional and molecular breeding. To speed flowering, we transformed a Eucalyptus grandis × urophylla hybrid (SP7) with a variety of constructs that enable overexpression of FLOWERING LOCUS T (FT). We found that FT expression led to very early flowering, with events showing floral buds within 1-5 months of transplanting to the glasshouse. The most rapid flowering was observed when the cauliflower mosaic virus 35S promoter was used to drive the Arabidopsis thaliana FT gene (AtFT). Early flowering was also observed with AtFT overexpression from a 409S ubiquitin promoter and under heat induction conditions with Populus trichocarpa FT1 (PtFT1) under control of a heat-shock promoter. Early flowering trees grew robustly, but exhibited a highly branched phenotype compared to the strong apical dominance of nonflowering transgenic and control trees. AtFT-induced flowers were morphologically normal and produced viable pollen grains and viable self- and cross-pollinated seeds. Many self-seedlings inherited AtFT and flowered early. FT overexpression-induced flowering in Eucalyptus may be a valuable means for accelerating breeding and genetic studies as the transgene can be easily segregated away in progeny, restoring normal growth and form. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy.

    PubMed

    Oliveira, Flavia C C; Brandão, Christian R R; Ramalho, Hugo F; da Costa, Leonardo A F; Suarez, Paulo A Z; Rubim, Joel C

    2007-03-28

    In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.

  12. STS-32 MS Dunbar wearing LES prepares for WETF water egress training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES), orange parachute harness and life vest, is briefed on emergency egress procedures in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress. The crewmembers will simulate parachuting into water by using the WETF's nearby 25 ft deep pool.

  13. An improved method for fast and selective separation of carotenoids by LC-MS.

    PubMed

    Abate-Pella, Daniel; Freund, Dana M; Slovin, Janet P; Hegeman, Adrian D; Cohen, Jerry D

    2017-11-01

    Carotenoids are a large class of compounds that are biosynthesized by condensation of isoprene units in plants, fungi, bacteria, and some animals. They are characteristically highly conjugated through double bonds, which lead to many isomers as well susceptibility to oxidation and other chemical modifications. Carotenoids are important because of their potent antioxidant activity and are the pigments responsible for color in a wide variety of foods. Human consumption is correlated to many health benefits including prevention of cancer, cardiovascular disease, and age-related disease. Extreme hydrophobicity, poor stability, and low concentration in biological samples make these compounds difficult to analyze and difficult to develop analytical methods for aimed towards identification and quantification. Examples in the literature frequently report the use of exotic stationary phases, solvents, and additives, such as ethyl acetate, dichloromethane, and methyl tert-butyl ether that are incompatible with liquid chromatography mass spectrometry (LC-MS). In order to address these issues, we implemented the use of LC-MS friendly conditions using a low-hydrophobicity cyano-propyl column (Agilent Zorbax SB-CN). We successfully differentiated between isomeric carotenoids by optimizing two gradient methods and using a mixture of 11 standards and LC-MS in positive ionization mode. Three complex biological samples from strawberry leaf, chicken feed supplement, and the photosynthetic bacterium Chloroflexus aurantiacus were analyzed and several carotenoids were resolved in these diverse backgrounds. Our results show this methodology is a significant improvement over other alternatives for analyzing carotenoids because of its ease of use, rapid analysis time, high selectivity, and, most importantly, its compatibility with typical LC-MS conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coupling FT Raman and FT SERS microscopy with TLC plates for in situ identification of chemical compounds

    NASA Astrophysics Data System (ADS)

    Caudin, J. P.; Beljebbar, A.; Sockalingum, G. D.; Angiboust, J. F.; Manfait, M.

    1995-11-01

    Direct analysis of sub-femtogram quantities of chemical compounds on thin layer chromatography plates has been made possible by associating Fourier transform Raman microspectroscopy with SERS spectroscopy. The interfacing elements of the FT Raman microscope system are discussed and optimised such that a lateral resolution on the micron scale is achieved in the sample plane. Micro-FT SERS results obtained from a model biological molecule indicate preservation of molecular conformation upon adsorption at the SERS active surface. With NIR radiation it is thus possible to analyse plates with or without fluorescence indicators.

  15. Adaptation of a 15-ft-dia ribbon parachute and a 73-ft cross main recovery parachute for cargo delivery from high altitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pepper, W.B.; Lucero, H.; Klimas, P.C.

    1984-01-01

    An existing parachute system has been adapted for delivery of a resupply container at high altitudes from aircraft. The parachute system consists of a 15-ft diameter ribbon parachute reefed for 10 seconds and a 73-ft diameter cross parachute reefed for 10 seconds. A solid state recorder in the 2341 1b drop test vehicle was used to obtain deceleration history with time. Two drop tests using the Navy A7 aircraft were conducted at Stallion Site, White Sands Missile Range, New Mexico. Drop release conditions were 250 KCAS at 20,000 ft above sea level from the first test and 230 KCAS atmore » 22,000 ft msl for the second. A new load transfer bridle was designed and tested to release the first stage parachute and replace a costly mechanical load plate.« less

  16. Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications.

    PubMed

    Zhu, Rui; Song, Ehwang; Hussein, Ahmed; Kobeissy, Firas H; Mechref, Yehia

    2017-01-01

    Proteins and glycoproteins play important biological roles in central nervous systems (CNS). Qualitative and quantitative evaluation of proteins and glycoproteins expression in CNS is critical to reveal the inherent biomolecular mechanism of CNS diseases. This chapter describes proteomic and glycoproteomic approaches based on liquid chromatography/tandem mass spectrometry (LC-MS or LC-MS/MS) for the qualitative and quantitative assessment of proteins and glycoproteins expressed in CNS. Proteins and glycoproteins, extracted by a mass spectrometry friendly surfactant from CNS samples, were subjected to enzymatic (tryptic) digestion and three down-stream analyses: (1) a nano LC system coupled with a high-resolution MS instrument to achieve qualitative proteomic profile, (2) a nano LC system combined with a triple quadrupole MS to quantify identified proteins, and (3) glycoprotein enrichment prior to LC-MS/MS analysis. Enrichment techniques can be applied to improve coverage of low abundant glycopeptides/glycoproteins. An example described in this chapter is hydrophilic interaction liquid chromatographic (HILIC) enrichment to capture glycopeptides, allowing efficient removal of peptides. The combination of three LC-MS/MS-based approaches is capable of the investigation of large-scale proteins and glycoproteins from CNS with an in-depth coverage, thus offering a full view of proteins and glycoproteins changes in CNS.

  17. Methods for the analysis of organophosphorus flame retardants-Comparison of GC-EI-MS, GC-NCI-MS, LC-ESI-MS/MS, and LC-APCI-MS/MS.

    PubMed

    Tokumura, Masahiro; Miyake, Yuichi; Wang, Qi; Nakayama, Hayato; Amagai, Takashi; Ogo, Sayaka; Kume, Kazunari; Kobayashi, Takeshi; Takasu, Shinji; Ogawa, Kumiko

    2018-04-16

    Organophosphorus flame retardants (PFRs) are extensively used as alternatives to banned polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). In this study, we analyzed 14 PFRs by means of four mass-spectrometry-based methods: gas chromatography combined with electron-impact mass spectrometry (GC-EI-MS) or negative-chemical-ionization mass spectrometry (GC-NCI-MS) and liquid chromatography combined with tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS) or atmospheric pressure chemical ionization (LC-APCI-MS/MS). The limits of quantification (LOQs) for LC-ESI-MS/MS and LC-APCI-MS/MS (0.81-970 pg) were 1-2 orders of magnitude lower than the LOQs for GC-EI-MS and GC-NCI-MS (2.3-3900 pg). LC-APCI-MS/MS showed the lowest LOQs (mean = 41 pg; median = 3.4 pg) for all but two of the PFRs targeted in this study. For LC-APCI-MS/MS, the lowest LOQ was observed for tributyl phosphate (TBP) (0.81 pg), and the highest was observed for tris(butoxyethyl) phosphate (TBOEP) (36 pg). The results of this study indicate that LC-APCI-MS/MS is the optimum analytical method for the target PFRs, at least in terms of LOQ.

  18. Top-Down Analysis of Highly Post-Translationally Modified Peptides by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guerrero, Andres; Lerno, Larry; Barile, Daniela; Lebrilla, Carlito B.

    2015-03-01

    Bovine κ-caseinoglycomacropeptide (GMP) is a highly modified peptide from κ-casein produced during the cheese making process. The chemical nature of GMP makes analysis by traditional proteomic approaches difficult, as the peptide bears a strong net negative charge and a variety of post-translational modifications. In this work, we describe the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) for the top-down analysis of GMP. The method allows the simultaneous detection of different GMP forms that result from the combination of amino acid genetic variations and post-translational modifications, specifically phosphorylation and O-glycosylation. The different GMP forms were identified by high resolution mass spectrometry in both negative and positive mode and confirmation was achieved by tandem MS. The results showed the predominance of two genetic variants of GMP that occur as either mono- or bi-phosphorylated species. Additionally, these four forms can be modified with up to two O-glycans generally sialylated. The results demonstrate the presence of glycosylated, bi-phosphorylated forms of GMP never described before.

  19. Rotating samples in FT-RAMAN spectrometers

    NASA Astrophysics Data System (ADS)

    De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.

    1997-11-01

    It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.

  20. STS-37 Mission Specialist (MS) Godwin floating in life raft in JSC WETF pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Linda M. Godwin, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a one-person life raft during a training session in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. She was simulating steps involved in emergency egress from a Space Shuttle. The WETF's 25-ft deep pool served as a simulated ocean into which a parachute landing might be made.

  1. Analysis of human plasma metabolites across different liquid chromatography/mass spectrometry platforms: Cross-platform transferable chemical signatures.

    PubMed

    Telu, Kelly H; Yan, Xinjian; Wallace, William E; Stein, Stephen E; Simón-Manso, Yamil

    2016-03-15

    The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different liquid chromatography/mass spectrometry (LC/MS) platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC/MS platforms using reversed-phase chromatography and different chromatographic scales (conventional HPLC, UHPLC and nanoLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (relative standard deviation (RSD) <2%); however, substantial differences were found in the LC/MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. FT-Raman, FT-IR spectroscopic and DFT studies of hexaphenoxycyclotriphosphazene

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Padie, C.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2016-07-01

    The FTIR and FT Raman measurements of zero Gc0‧ -H and first Gc1‧ -H generations of phosphorus dendrimer built from cyclotriphosphazene core with phenoxy and deuterophenoxy terminal groups have been performed. In order to evaluate how much the frequencies, shift when changing the electronics of the system the FTIR and FT Raman spectra of phosphorus‒containing dendron with five terminal oxybenzaldehyde and one ester function Gci‧ have been also studied. Structural optimization and normal mode analysis were obtained for Gc0‧ -H and Gc0‧ -D by the density functional theory (DFT). It is discovered that dendrimer molecule exists in a stable conformation with six phenoxy terminal groups spaced above and below the flat cyclotriphosphazene core. Optimized geometric bond length and angles obtained by DFT show good agreement with a previously-published X-ray study. The phenoxy terminal groups are characterized by the well-defined line at 993 cm-1 in the experimental Raman spectrum of Gc0‧ -H and by line at 960 cm-1 in the Raman spectrum of Gc0‧ -D. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimers. The frequencies and relative intensity of the bands at 1589, 1487 cm-1 in the IR spectra show marked difference in dependence of the substituents on the aromatic ring.

  3. Characterisation of 1,3-diammonium propylselenate monohydrate by XRD, FT-IR, FT-Raman, DSC and DFT studies

    NASA Astrophysics Data System (ADS)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.; Atalay, Yusuf

    2016-03-01

    The crystals of 1,3-diammonium propylselenate monohydrate (DAPS) were prepared and characterised X-ray diffraction (XRD), FT-IR, FT-Raman spectroscopy, and DFT/B3LYP methods. It comprises protonated propyl ammonium moieties (diammonium propyl cations), selenate anions and water molecule which are held together by a number of hydrogen bonds and form infinite chains. The XRD data confirm the transfer of two protons from selenic acid to 1,3-diaminopropane molecule. The DAPS complex is stabilised by the presence of O-H···O and N-H···O hydrogen bonds and the electrostatic interactions as well. The N···O and O···O bond distances are 2.82-2.91 and 2.77 Å, respectively. The FT-IR and FT-Raman spectra of 1,3-diammonium propyl selenate monohydrate are recorded and the complete vibrational assignments have been discussed. The geometry is optimised by B3LYP method using 6-311G, 6-311+G and 6-311+G* basis sets and the energy, structural parameters, vibrational frequencies, IR and Raman intensities are determined. Differential scanning colorimetry (DSC) data were also presented to analyse the possibility of the phase transition. Complete natural bonding orbital (NBO) analysis is carried out to analyse the intramolecular electronic interactions and their stabilisation energies. The electrostatic potential of the complex lies in the range +1.902e × 10-2 to -1.902e × 10-2. The limits of total electron density of the complex is +8.43e × 10-2 to -8.43e × 10-2.

  4. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (< 200 ppb) allowed assigning the elemental composition (C, H, O, N, S…) to each of the obtained mass peaks and thus already a description of the mixture in terms of molecular composition. This possibility is used by the authors together with a high resolution separation method of charged compounds: capillary electrophoresis. A CE-ESI-MS method using an ammonium acetate based background electrolyte (pH 4.7) was developed for the determination of isomeric benzoic acids in

  5. Mapping Discrimination Experienced by Indonesian Trans* FtM Persons.

    PubMed

    Gordon, Danny; Pratama, Mario Prajna

    2017-01-01

    This work sought to document how Indonesian trans* FtM persons experienced discrimination across the interlinked domains of social networks, religious and educational institutions, employment and the workplace, and health care institutions. Objectives were (1) to map the discrimination experienced by trans* FtM individuals in Indonesia, and (2) to establish the specific priorities of the Indonesian trans* FtM community. In-depth interviews, focus groups, and participant observation was used involving 14 respondents. Findings revealed that respondents experienced othering through rejection, misidentification, harassment, "correction," and bureaucratic discrimination across the five preestablished domains. Health care and a lack of information emerged as areas of particular concern for respondents. This work calls for health care that is sensitive to the needs of trans* FtM people coupled with high-quality information to alleviate the cycles through which discrimination is sustained.

  6. Performance Evaluation of an Improved GC-MS Method to Quantify Methylmercury in Fish.

    PubMed

    Watanabe, Takahiro; Kikuchi, Hiroyuki; Matsuda, Rieko; Hayashi, Tomoko; Akaki, Koichi; Teshima, Reiko

    2015-01-01

    Here, we set out to improve our previously developed methylmercury analytical method, involving phenyl derivatization and gas chromatography-mass spectrometry (GC-MS). In the improved method, phenylation of methylmercury with sodium tetraphenylborate was carried out in a toluene/water two-phase system, instead of in water alone. The modification enabled derivatization at optimum pH, and the formation of by-products was dramatically reduced. In addition, adsorption of methyl phenyl mercury in the GC system was suppressed by co-injection of PEG200, enabling continuous analysis without loss of sensitivity. The performance of the improved analytical method was independently evaluated by three analysts using certified reference materials and methylmercury-spiked fresh fish samples. The present analytical method was validated as suitable for determination of compliance with the provisional regulation value for methylmercury in fish, set in the Food Sanitation haw.

  7. SFC-MS/MS as an orthogonal technique for improved screening of polar analytes in anti-doping control.

    PubMed

    Parr, Maria Kristina; Wuest, Bernhard; Naegele, Edgar; Joseph, Jan F; Wenzel, Maxi; Schmidt, Alexander H; Stanic, Mijo; de la Torre, Xavier; Botrè, Francesco

    2016-09-01

    HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.

  8. MS2PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation.

    PubMed

    Degroeve, Sven; Maddelein, Davy; Martens, Lennart

    2015-07-01

    We present an MS(2) peak intensity prediction server that computes MS(2) charge 2+ and 3+ spectra from peptide sequences for the most common fragment ions. The server integrates the Unimod public domain post-translational modification database for modified peptides. The prediction model is an improvement of the previously published MS(2)PIP model for Orbitrap-LTQ CID spectra. Predicted MS(2) spectra can be downloaded as a spectrum file and can be visualized in the browser for comparisons with observations. In addition, we added prediction models for HCD fragmentation (Q-Exactive Orbitrap) and show that these models compute accurate intensity predictions on par with CID performance. We also show that training prediction models for CID and HCD separately improves the accuracy for each fragmentation method. The MS(2)PIP prediction server is accessible from http://iomics.ugent.be/ms2pip. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. STS-37 Mission Specialist (MS) Jerome Apt floats in raft in JSC's WETF pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Jerome Apt, wearing launch and entry suit (LES) and launch and entry helmet (LEH), propels his one-person life raft by splashing water during emergency egress exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Apt, floating in the life raft, was simulating the steps involved in emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.

  10. Quantification of mevalonate-5-phosphate using UPLC-MS/MS for determination of mevalonate kinase activity.

    PubMed

    Reitzle, Lukas; Maier, Barbara; Stojanov, Silvia; Teupser, Daniel; Muntau, Ania C; Vogeser, Michael; Gersting, Søren W

    2015-08-01

    Mevalonate kinase deficiency, a rare autosomal recessive autoinflammatory disease, is caused by mutations in the MVK gene encoding mevalonate kinase (MK). MK catalyzes the phosphorylation of mevalonic acid to mevalonate-5-phosphate (MVAP) in the pathway of isoprenoid and sterol synthesis. The disease phenotype correlates with residual activity ranging from <0.5% for mevalonic aciduria to 1-7% for the milder hyperimmunoglobulinemia D and periodic fever syndrome (HIDS). Hence, assessment of loss-of-function requires high accuracy measurements. We describe a method using isotope dilution UPLC-MS/MS for precise and sensitive determination of MK activity. Wild-type MK and the variant V261A, which is associated with HIDS, were recombinantly expressed in Escherichia coli. Enzyme activity was determined by formation of MVAP over time quantified by isotope dilution UPLC-MS/MS. The method was validated according to the FDA Guidance for Bioanalytical Method Validation. Sensitivity for detection of MAVP by UPLC-MS/MS was improved by derivatization with butanol-HCl (LLOQ, 5.0 fmol) and the method was linear from 0.5 to 250 μmol/L (R(2) > 0.99) with a precision of ≥ 89% and an accuracy of ± 2.7%. The imprecision of the activity assay, including the enzymatic reaction and the UPLC-MS/MS quantification, was 8.3%. The variant V261A showed a significantly decreased activity of 53.1%. Accurate determination of MK activity was enabled by sensitive and reproducible detection of MVAP using UPLC-MS/MS. The novel method may improve molecular characterization of MVK mutations, provide robust genotype-phenotype correlations, and accelerate compound screening for drug candidates restoring variant MK activity. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy.

    PubMed

    Anjos, Ofélia; Santos, António J A; Paixão, Vasco; Estevinho, Letícia M

    2018-02-01

    This study aimed to evaluate the potential of FT-Raman spectroscopy in the prediction of the chemical composition of Lavandula spp. monofloral honey. Partial Least Squares (PLS) regression models were performed for the quantitative estimation and the results were correlated with those obtained using reference methods. Good calibration models were obtained for electrical conductivity, ash, total acidity, pH, reducing sugars, hydroxymethylfurfural (HMF), proline, diastase index, apparent sucrose, total flavonoids content and total phenol content. On the other hand, the model was less accurate for pH determination. The calibration models had high r 2 (ranging between 92.8% and 99.9%), high residual prediction deviation - RPD (ranging between 4.2 and 26.8) and low root mean square errors. These results confirm the hypothesis that FT-Raman is a useful technique for the quality control and chemical properties' evaluation of Lavandula spp honey. Its application may allow improving the efficiency, speed and cost of the current laboratory analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    DOE PAGES

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; ...

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less

  13. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations

    NASA Astrophysics Data System (ADS)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-01

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).

  14. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations.

    PubMed

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-15

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Functional Characterization of Phalaenopsis aphrodite Flowering Genes PaFT1 and PaFD

    PubMed Central

    Jang, Seonghoe; Choi, Sang-Chul; Li, Hsing-Yi; An, Gynheung; Schmelzer, Elmon

    2015-01-01

    We show that the key flowering regulators encoded by Phalaenopsis aphrodite FLOWERING LOCUS T1 (PaFT1) and PaFD share high sequence homologies to these from long-day flowering Arabidopsis and short-day flowering rice. Interestingly, PaFT1 is specifically up-regulated during flowering inductive cooling treatment but is not subjected to control by photoperiod in P. aphrodite. Phloem or shoot apex-specific expression of PaFT1 restores the late flowering of Arabidopsis ft mutants. Moreover, PaFT1 can suppress the delayed flowering caused by SHORT VEGATATIVE PHASE (SVP) overexpression as well as an active FRIGIDA (FRI) allele, indicating the functional conservation of flowering regulatory circuit in different plant species. PaFT1 promoter:GUS in Arabidopsis showed similar staining pattern to that of Arabidopsis FT in the leaves and guard cells but different in the shoot apex. A genomic clone or heat shock-inducible expression of PaFT1 is sufficient to the partial complementation of the ft mutants. Remarkably, ectopic PaFT1 expression also triggers precocious heading in rice. To further demonstrate the functional conservation of the flowering regulators, we show that PaFD, a bZIP transcription factor involved in flowering promotion, interacts with PaFT1, and PaFD partially complemented Arabidopsis fd mutants. Transgenic rice expressing PaFD also flowered early with increased expression of rice homologues of APETALA1 (AP1). Consistently, PaFT1 knock-down Phalaenopsis plants generated by virus-induced gene silencing exhibit delayed spiking. These studies suggest functional conservation of FT and FD genes, which may have evolved and integrated into distinct regulatory circuits in monopodial orchids, Arabidopsis and rice that promote flowering under their own inductive conditions. PMID:26317412

  16. An integrated strategy to improve data acquisition and metabolite identification by time-staggered ion lists in UHPLC/Q-TOF MS-based metabolomics.

    PubMed

    Wang, Yang; Feng, Ruibing; He, Chengwei; Su, Huanxing; Ma, Huan; Wan, Jian-Bo

    2018-08-05

    The narrow linear range and the limited scan time of the given ion make the quantification of the features challenging in liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics with the full-scan mode. And metabolite identification is another bottleneck of untargeted analysis owing to the difficulty of acquiring MS/MS information of most metabolites detected. In this study, an integrated workflow was proposed using the newly established multiple ion monitoring mode with time-staggered ion lists (tsMIM) and target-directed data-dependent acquisition with time-staggered ion lists (tsDDA) to improve data acquisition and metabolite identification in UHPLC/Q-TOF MS-based untargeted metabolomics. Compared to the conventional untargeted metabolomics, the proprosed workflow exhibited the better repeatability before and after data normalization. After selecting features with the significant change by statistical analysis, MS/MS information of all these features can be obtained by tsDDA analysis to facilitate metabolite identification. Using time-staggered ion lists, the workflow is more sensitive in data acquisition, especially for the low-abundant features. Moreover, the metabolites with low abundance tend to be wrongly integrated and triggered by full scan-based untargeted analysis with MS E acquisition mode, which can be greatly improved by the proposed workflow. The integrated workflow was also successfully applied to discover serum biosignatures for the genetic modification of fat-1 in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Improving Student Understanding of Qualitative and Quantitative Analysis via GC/MS Using a Rapid SPME-Based Method for Determination of Trihalomethanes in Drinking Water

    ERIC Educational Resources Information Center

    Huang, Shu Rong; Palmer, Peter T.

    2017-01-01

    This paper describes a method for determination of trihalomethanes (THMs) in drinking water via solid-phase microextraction (SPME) GC/MS as a means to develop and improve student understanding of the use of GC/MS for qualitative and quantitative analysis. In the classroom, students are introduced to SPME, GC/MS instrumentation, and the use of MS…

  18. FT-Raman Spectroscopy: A Catalyst for the Raman Explosion?

    ERIC Educational Resources Information Center

    Chase, Bruce

    2007-01-01

    The limitations of Fourier transform (FT) Raman spectroscopy, which is used to detect and analyze the scattered radiation, are discussed. FT-Raman has served to revitalize a field that was lagging and the presence of Raman instrumentation as a routine analytical tool is established for the foreseeable future.

  19. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.

    2016-05-01

    Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.

  20. Corticosteroid-induced mandibular growth retardation and palatal malformation in the ICR mouse fetus.

    PubMed Central

    Silbermann, M; Levitan, S

    1979-01-01

    Pregnant ICR mice were treated with triamcinolone hexacetonide at various stages of gestation. The mandibular ramus and its condylar cartilage were studied histologically in both viable and non-viable offspring. In addition, measurements were made of the overall height of the posterior vertical dimension of the mandible and of condylar height and width. Significant changes were noted in these parameters. Concomitantly, marked changes were observed in the various zones of the condylar cartilage. A very high incidence of cleft palate was noted in newborn and stillborn mice previously treated with triamcinolone. A possible correlation between mandibular growth retardation and palatal clefting is discussed. Images Fig. 4 Fig. 5 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 PMID:489465

  1. ROMANCE: A new software tool to improve data robustness and feature identification in CE-MS metabolomics.

    PubMed

    González-Ruiz, Víctor; Gagnebin, Yoric; Drouin, Nicolas; Codesido, Santiago; Rudaz, Serge; Schappler, Julie

    2018-05-01

    The use of capillary electrophoresis coupled to mass spectrometry (CE-MS) in metabolomics remains an oddity compared to the widely adopted use of liquid chromatography. This technique is traditionally regarded as lacking the reproducibility to adequately identify metabolites by their migration times. The major reason is the variability of the velocity of the background electrolyte, mainly coming from shifts in the magnitude of the electroosmotic flow and from the suction caused by electrospray interfaces. The use of the effective electrophoretic mobility is one solution to overcome this issue as it is a characteristic feature of each compound. To date, such an approach has not been applied to metabolomics due to the complexity and size of CE-MS data obtained in such studies. In this paper, ROMANCE (RObust Metabolomic Analysis with Normalized CE) is introduced as a new software for CE-MS-based metabolomics. It allows the automated conversion of batches of CE-MS files with minimal user intervention. ROMANCE converts the x-axis of each MS file from the time into the effective mobility scale and the resulting files are already pseudo-aligned, present normalized peak areas and improved reproducibility, and can eventually follow existing metabolomic workflows. The software was developed in Scala, so it is multi-platform and computationally-efficient. It is available for download under a CC license. In this work, the versatility of ROMANCE was demonstrated by using data obtained in the same and in different laboratories, as well as its application to the analysis of human plasma samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cueing listeners to attend to a target talker progressively improves word report as the duration of the cue-target interval lengthens to 2,000 ms.

    PubMed

    Holmes, Emma; Kitterick, Padraig T; Summerfield, A Quentin

    2018-04-25

    Endogenous attention is typically studied by presenting instructive cues in advance of a target stimulus array. For endogenous visual attention, task performance improves as the duration of the cue-target interval increases up to 800 ms. Less is known about how endogenous auditory attention unfolds over time or the mechanisms by which an instructive cue presented in advance of an auditory array improves performance. The current experiment used five cue-target intervals (0, 250, 500, 1,000, and 2,000 ms) to compare four hypotheses for how preparatory attention develops over time in a multi-talker listening task. Young adults were cued to attend to a target talker who spoke in a mixture of three talkers. Visual cues indicated the target talker's spatial location or their gender. Participants directed attention to location and gender simultaneously ("objects") at all cue-target intervals. Participants were consistently faster and more accurate at reporting words spoken by the target talker when the cue-target interval was 2,000 ms than 0 ms. In addition, the latency of correct responses progressively shortened as the duration of the cue-target interval increased from 0 to 2,000 ms. These findings suggest that the mechanisms involved in preparatory auditory attention develop gradually over time, taking at least 2,000 ms to reach optimal configuration, yet providing cumulative improvements in speech intelligibility as the duration of the cue-target interval increases from 0 to 2,000 ms. These results demonstrate an improvement in performance for cue-target intervals longer than those that have been reported previously in the visual or auditory modalities.

  3. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.; Manoharan, S.

    2012-09-01

    The FT-Raman and FT-Infrared spectra of solid Apigenin sample were measured in order to elucidate the spectroscopic properties of title molecule in the spectral range of 3500-50 cm-1 and 4000-400 cm-1, respectively. The recorded FT-IR and FT-Raman spectral measurements favor the calculated (by B3LYP/6-31G(d,p) method) structural parameters which are further supported by spectral simulation. Additional support is given by the collected 1H and 13C NMR spectra recorded with the sample dissolved in DMSO. The predicted chemical shifts at the B3LYP/6-31G(d) level obtained using the Gauge-Invariant Atomic Orbitals (GIAO) method with and without inclusion of solvent using the Polarizable Continuum Model (PCM). By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The UV-visible absorption spectra of the compound that dissolved in Ethanol, Methanol and DMSO were recorded in the range of 800-200 nm. The formation of hydrogen bond and the most possible interaction are explained using natural bond orbital (NBO) analysis. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and atomic charges of the title compound were investigated using theoretical calculations. The results are discussed herein and compared with similar molecules whenever appropriate.

  4. 1. Zinc Plant, looking north, down Government Gulch. 610 ft. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Zinc Plant, looking north, down Government Gulch. 610 ft. tall stack replaced original 200 ft. radial brick stack formerly at rear of Cottrell treater. - Sullivan Electrolytic Zinc Plant, Government Gulch, Kellogg, Shoshone County, ID

  5. Nano-liquid chromatography applied to enantiomers separation.

    PubMed

    Fanali, Salvatore

    2017-02-24

    This paper presents the state of the art concerning the separation of chiral compounds by means of nano-liquid chromatography (nano-LC). The enantiomers' separation and determination are a subject of fundamental importance in various application fields such as pharmaceutical industry, biomedicine, food, agrochemical etc. Nano-LC is a miniaturized chromatographic technique offering some advantages over conventional ones such as low consumption of mobile phase, sample volume and amount of chiral stationary phase, reduced costs etc. This is reported in the first part of the paper illustrating the features of the nano-LC. In addition, chiral resolution methods are briefly illustrated. Some chiral selectors, used in high-performance liquid chromatography have also been applied in nano-LC including cyclodextrins, glycopeptide antibiotics, modified polysaccharides etc. This is discussed in the second part of the review. Finally some examples of the applications available in literature are reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Testing Viable f(T) Models with Current Observations

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Yu, Hongwei; Wu, Puxun

    2018-03-01

    We perform observational tests on the f(T) gravity with the BAO data (including the BOSS DR 12 galaxy sample, the DR12 Lyα-Forests measurement, the new eBOSS DR14 quasar sample, the 6dFGS, and the SDSS), the CMB distance priors from the Planck 2015, the SNIa data from the joint light-curve analysis, the latest H(z) data, and the local value of the Hubble constant. Six different f(T) models are investigated. Furthermore, the ΛCDM is also considered. All models are compared by using the Akaike information criteria (AIC) and the Bayesian information criteria (BIC). Our results show that the ΛCDM remains to be the most favored model by current observations. However, there are also the Hubble constant tension between the Planck measurements and the local Universe observations and the tension between the CMB data and the H(z) data in the ΛCDM. For f(T) models considered in this paper, half, which can reduce to the ΛCDM, have values of {{χ }2}\\min smaller than that of the ΛCDM and can relieve the tensions existing in the ΛCDM. However, they are punished slightly by the BIC due to one extra parameter. Two of six f(T) models, in which the crossing of the phantom divide line can be realized for the equation of state of the effective dark energy and this crossing is shown in this paper to be favored by current observations, are punished by the information criteria. In addition, we find that the logarithmic f(T) model is excluded by cosmological observations.

  7. STS-45 MS Foale dons EMU with technicians' help in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) C. Michael Foale stands on a platform as technicians help him don his extravehicular mobility unit (EMU). The technicians are preparing to connect the EMU upper and lower torsos at the waist ring. When fully suited, Foale will be lowered into a nearby 25 ft deep pool for an underwater simulation of contingency extravehicular activity (EVA) procedures. The pool is located in JSC's Weightless Environment Training Facility (WETF) Bldg 29.

  8. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  9. Improved quantification of important beer quality parameters based on nonlinear calibration methods applied to FT-MIR spectra.

    PubMed

    Cernuda, Carlos; Lughofer, Edwin; Klein, Helmut; Forster, Clemens; Pawliczek, Marcin; Brandstetter, Markus

    2017-01-01

    During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e., samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with nonlinear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods, like partial least squares (PLS), for important quality parameters Speers et al. (J I Brewing. 2003;109(3):229-235), Zhang et al. (J I Brewing. 2012;118(4):361-367) such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation, or foam stability. The calibration models are established with enhanced nonlinear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (-PLSSVR and ν-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to

  10. Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry.

    PubMed

    Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael

    2017-05-16

    Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.

  11. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution.

    PubMed

    Yamashiro, Sawako; Watanabe, Naoki

    2017-07-06

    Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy.

  12. Generalized second law of thermodynamics in f(T) gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karami, K.; Abdolmaleki, A., E-mail: KKarami@uok.ac.ir, E-mail: AAbdolmaleki@uok.ac.ir

    2012-04-01

    We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics in the framework of f(T) modified teleparallel gravity. We consider a spatially flat FRW universe containing only the pressureless matter. The boundary of the universe is assumed to be enclosed by the Hubble horizon. For two viable f(T) models containing f(T) = T+μ{sub 1}((−T)){sup n} and f(T) = T−μ{sub 2}T(1−e{sup βT{sub 0}/T}), we first calculate the effective equation of state and deceleration parameters. Then, (we investigate the null and strong energy conditions and conclude that a sudden future singularity appears in both models. Furthermore, using a cosmographicmore » analysis we check the viability of two models. Finally, we examine the validity of the GSL and find that for both models it) is satisfied from the early times to the present epoch. But in the future, the GSL is violated for the special ranges of the torsion scalar T.« less

  13. FT. Sam 91 Whiskey Combat Medic Medical Simulation Training Quantitative Integration Enhancement Program

    DTIC Science & Technology

    2011-07-01

    joined the project team in the statistical and research coordination role. Dr. Collin is an employee at the University of Pittsburgh. A successful...3. Submit to Ft. Detrick Completed Milestone: Statistical analysis planning 1. Review planned data metrics and data gathering tools...approach to performance assessment for continuous quality improvement.  Analyzing data with modern statistical techniques to determine the

  14. A 928 sq m (10000 sq ft) solar array

    NASA Technical Reports Server (NTRS)

    Lindberg, D. E.

    1972-01-01

    As the power requirements for space vehicles increases, the area of solar arrays that convert solar energy to usable electrical power increases. The requirements for a 928 sq m (10,000 sq ft) array, its design, and a full-scale demonstration of one quadrant (232 sq m (2500 sq ft)) deployed in a one-g field are described.

  15. Effect of Infection Duration on Habitat Selection and Morphology of Adult Echinostoma caproni (Digenea: Echinostomatidae) in ICR Mice.

    PubMed

    Platt, Thomas R; Zelmer, Derek A

    2016-02-01

    The course of infection of Echinostoma caproni was followed in female ICR mice, a permissive laboratory host, from infection to natural termination. Twenty-one mice were infected with 20 metacercariae via oral intubation and housed 3 per cage. Three mice from a randomly selected cage were necropsied at 1 mo intervals. A second group of 15 mice was infected approximately 1 yr later to replace mice negative at necropsy in the first group. Mice in the second group were examined weekly for the presence of eggs in the feces. Mice negative for eggs on consecutive days were killed and necropsied. The location of individual worms and worm clusters were located in 20 segments of the small intestine. Adult worms were killed and fixed in hot formalin, stained, and prepared as whole mounts. Standard measurements were taken using a compound microscope fitted with an ocular micrometer. The infection spontaneously resolved in 10 mice from 7 to 32 wk PI, indicating the host response is highly variable and extending the maximum recorded length of E. caproni infections in ICR mice to 31 wk. A moribund worm was found in the feces of an animal that continued to pass eggs for an additional 2 mo indicating individual variation in worm responses. Worms located preferentially in the ileum (segments 11-13) during the first 3 mo of the infection but shifted to the jejunum (segments 8-9) during weeks 4-6. Morphologically, worms of different ages clustered together in multivariate space, with substantial overlap between the 3- and 4-mo-old infrapopulations and between the 5- and 6-mo-old infrapopulations. Muscular structures increased in size throughout the experiment, while the gonads increased in size for the first 3 mo and then declined during the last 3 mo. The relationship between E. caproni and ICR mice is more nuanced than previously reported. The reduction in gonad size and the shift from the ileum to the jejunum in the last 3 mo likely are related. These changes might be attributable

  16. A new perspective on the apparent solubility of dissolved black carbon

    NASA Astrophysics Data System (ADS)

    Wagner, Sasha; Ding, Yan; Jaffé, Rudolf

    2017-09-01

    Black carbon (BC), pyrogenic organic matter generated from the incomplete combustion of biomass, is ubiquitous in the environment. The molecular structures which comprise the BC pool of compounds are defined by their condensed aromatic core structures polysubstituted with O-containing functionalities (e.g., carboxyl groups). Despite the apparent hydrophobicity of BC molecules, a considerable portion of BC is translocated from terrestrial to aquatic systems in the form of dissolved BC (DBC). However, the specific biogeochemical mechanisms which control the transfer of BC from the land to the water remain elusive. In the current study, the apparent solubility of DBC was inferred from octanol-water partition coefficients (Kow) modeled for proposed DBC structures with varying degrees of polycondensation and polar functionality. Modeled Kow values indicated that DBC molecules with small aromatic ring systems and high degrees of hydrophilic functionality may be truly solubilized in the aqueous phase. However, large and highly condensed DBC structures yielded high Kow values, which suggested that a considerable portion of the DBC pool which has been quantified in aquatic environments is not truly dissolved. We hypothesized that other DOM components may act as mediators in the solubilization of condensed aromatic molecules and serve to increase the solubility of DBC via hydrophobic, intermolecular associations. This hypothesis was tested through controlled leaching experiments to determine whether the mobilization of DBC from particulate soils and chars became enhanced in the presence of DOM. However, we observed that characteristics inherent to each sample type had a greater influence than added DOM on the apparent solubility of DBC. In addition, the direct comparison of molecular marker (benzenepolycarboxylic acids) and ultrahigh resolution mass spectral data (FT-ICR/MS) on leachates obtained from the same set of soils and char did not show a clear overlap in DBC

  17. Understanding DOC Mobilization Dynamics Through High Frequency Measurements in a Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Werner, B.; Musolff, A.; Lechtenfeld, O.; de Rooij, G. H.; Fleckenstein, J. H.

    2017-12-01

    Increasing dissolved organic carbon (DOC) exports from headwater catchments impact the quality of downstream waters and pose challenges to water supply. The importance of riparian zones for DOC export from catchments in humid, temperate climates has generally been acknowledged, but the hydrological controls and biogeochemical factors that govern mobilization of DOC from riparian zones remain elusive. By analyzing high-frequency time series of UV-VIS based water quality we therefore aim at a better understanding on temporal dynamics of DOC mobilization and exports. In a first step a one year high frequency (15 minutes) data set from a headwater catchment in the Harz Mountains (Germany) was systematically analyzed for event-based patterns in DOC concentrations. Here, a simplistic linear model was generated to explain DOC concentration level and variability in the stream. Furthermore, spectral (e.g. slopes and SUVA254) and molecular (FT-ICR-MS) characterization of DOC was used to fingerprint in-stream DOC during events. Continuous DOC concentrations were best predicted (R², NSE = 0.53) by instantaneous discharge (Q) and antecede wetness conditions of the last 30 days (AWC30 = Precip.30/PET30) as well as mean air temperature (Tmean30) and mean discharge (Qmean30) of the preceding 30 days. Analyses of 36 events revealed seasonal trends for the slope, intercept and R² of linear log(DOC)-log(Q) regressions that can be best explained by the mean air temperature of the preceding 15 days. Continuously available optical DOC quality parameters SUVA254 and spectral slope (275 nm - 295 nm) systematically changed with shifts in discharge and in DOC concentration. This is underlined by selected FT-ICR-MS measurements indicating higher DOC aromaticity and oxygen content at high flow conditions. The change of DOC quality parameters during events indicate a shift in the activated source zones: DOC with a different quality was mobilized during high flow conditions when higher

  18. Development and comparison of HPLC-MS/MS and UPLC-MS/MS methods for determining eight coccidiostats in beef.

    PubMed

    Zhao, Xia; Wang, Bo; Xie, Kaizhou; Liu, Jianyu; Zhang, Yangyang; Wang, Yajuan; Guo, Yawen; Zhang, Genxi; Dai, Guojun; Wang, Jinyu

    2018-06-15

    A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method and an ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determining eight coccidiostat (halofuginone, lasalocid, maduramicin, monensin, narasin, nigericin, robenidine and salinomycin) residues in beef were developed and compared. Samples were extracted with a mixture of acetic acid, acetonitrile and ethyl acetate and were then purified on a C 18 solid-phase extraction (SPE) column. The purified samples were analyzed by HPLC-MS/MS and UPLC-MS/MS, using 0.1% formic acid-water solution (A) and pure methanol (B) as the mobile phase. The samples were fractionated on a C 18 column using different gradient elution procedures, followed by qualitative analysis using a mass spectrometer operated in multiple reaction monitoring (MRM) mode with positive electrospray ionization; the external standard method was used for quantitation. At spiked levels that ranged from the limit of quantification (LOQ) to 100 μg/kg, the average recoveries were 71.96%-100.32% and 71.24%-89.24%, with relative standard deviations (RSDs) of 2.65%-12.38% and 2.98%-14.86% for UPLC-MS/MS and HPLC-MS/MS, respectively. The limits of detection (LODs) and LOQs of the eight coccidiostats were 0.14-0.32 μg/kg and 0.43-1.21 μg/kg, respectively, for UPLC-MS/MS analysis and 0.16-0.58 μg/kg and 0.53-1.92 μg/kg, respectively, for HPLC-MS/MS analysis. Both methods had good accuracy and precision, but UPLC-MS/MS had higher sensitivity than HPLC-MS/MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. MS-Electronic Nose Performance Improvement Using GC Retention Times And 2-Way And 3-Way Data Processing Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burian, Cosmin; Llobet, Eduard; Vilanova, Xavier

    We have designed a challenging experimental sample set in the form of 20 solutions with a high degree of similarity in order to study whether the addition of chromatographic separation information improves the performance of regular MS based electronic noses. In order to make an initial study of the approach, two different chromatographic methods were used. By processing the data of these experiments with 2 and 3-way algorithms, we have shown that the addition of chromatographic separation information improves the results compared to the 2-way analysis of mass spectra or total ion chromatogram treated separately. Our findings show that whenmore » the chromatographic peaks are resolved (longer measurement times), 2-way methods work better than 3-way methods, whereas in the case of a more challenging measurement (more coeluted chromatograms, much faster GC-MS measurements) 3-way methods work better.« less

  20. STS-32 MS Dunbar wearing LES floats in life raft during water egress training

    NASA Image and Video Library

    1989-11-15

    STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES) and lauch and entry helmet (LEH), in a single-occupant (one man) lift raft enlists the aid of two SCUBA-equipped divers as she floats in 25 ft deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress.

  1. STS-32 MS Dunbar wearing LES floats in life raft during water egress training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES) and lauch and entry helmet (LEH), in a single-occupant (one man) lift raft enlists the aid of two SCUBA-equipped divers as she floats in 25 ft deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress.

  2. New Agegraphic Pilgrim Dark Energy in f(T, TG) Gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Debnath, Ujjal

    2015-08-01

    In this work, we briefly discuss a novel class of modified gravity like f(T, TG) gravity. In this background, we assume the new agegraphic version of pilgrim dark energy and reconstruct f(T, TG) models for two specific values of s. We also discuss the equation of state parameter, squared speed of sound and wDE-w‧DE plane for these reconstructed f(T, TG) models. The equation of state parameter provides phantom-like behavior of the universe. The wDE-w‧DE plane also corresponds to ΛCDM limit, thawing and freezing regions for both models.

  3. Implementation of BT, SP, LU, and FT of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Schultz, Matthew; Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of Java features make it an attractive but a debatable choice for High Performance Computing. We have implemented benchmarks working on single structured grid BT,SP,LU and FT in Java. The performance and scalability of the Java code shows that a significant improvement in Java compiler technology and in Java thread implementation are necessary for Java to compete with Fortran in HPC applications.

  4. LC-MS/MS signal suppression effects in the analysis of pesticides in complex environmental matrices.

    PubMed

    Choi, B K; Hercules, D M; Gusev, A I

    2001-02-01

    The application of LC separation and mobile phase additives in addressing LC-MS/MS matrix signal suppression effects for the analysis of pesticides in a complex environmental matrix was investigated. It was shown that signal suppression is most significant for analytes eluting early in the LC-MS analysis. Introduction of different buffers (e.g. ammonium formate, ammonium hydroxide, formic acid) into the LC mobile phase was effective in improving signal correlation between the matrix and standard samples. The signal improvement is dependent on buffer concentration as well as LC separation of the matrix components. The application of LC separation alone was not effective in addressing suppression effects when characterizing complex matrix samples. Overloading of the LC column by matrix components was found to significantly contribute to analyte-matrix co-elution and suppression of signal. This signal suppression effect can be efficiently compensated by 2D LC (LC-LC) separation techniques. The effectiveness of buffers and LC separation in improving signal correlation between standard and matrix samples is discussed.

  5. Reprint of "pFind-Alioth: A novel unrestricted database search algorithm to improve the interpretation of high-resolution MS/MS data".

    PubMed

    Chi, Hao; He, Kun; Yang, Bing; Chen, Zhen; Sun, Rui-Xiang; Fan, Sheng-Bo; Zhang, Kun; Liu, Chao; Yuan, Zuo-Fei; Wang, Quan-Hui; Liu, Si-Qi; Dong, Meng-Qiu; He, Si-Min

    2015-11-03

    Database search is the dominant approach in high-throughput proteomic analysis. However, the interpretation rate of MS/MS spectra is very low in such a restricted mode, which is mainly due to unexpected modifications and irregular digestion types. In this study, we developed a new algorithm called Alioth, to be integrated into the search engine of pFind, for fast and accurate unrestricted database search on high-resolution MS/MS data. An ion index is constructed for both peptide precursors and fragment ions, by which arbitrary digestions and a single site of any modifications and mutations can be searched efficiently. A new re-ranking algorithm is used to distinguish the correct peptide-spectrum matches from random ones. The algorithm is tested on several HCD datasets and the interpretation rate of MS/MS spectra using Alioth is as high as 60%-80%. Peptides from semi- and non-specific digestions, as well as those with unexpected modifications or mutations, can be effectively identified using Alioth and confidently validated using other search engines. The average processing speed of Alioth is 5-10 times faster than some other unrestricted search engines and is comparable to or even faster than the restricted search algorithms tested.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Pentalum SpiDAR Deployment at SWiFT FY17.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westergaard, Carsten; Pol, Suhas; Pereira, Tassia

    2016-12-01

    The Texas Tech University ( TTU ) research group is actively studying the wake development of wind turbines, as part of developing innovative wake control strategies to improve the performance of wind farms. Recently, the team received a set of five new gro und lidars to perform field measurements at the Sandia National Laboratories SWiFT site. This document describes tests details including configurations, timeframe, hardware, and the required collaboration from the Sandia team. This test plan will facili tate the coordination between both TTU and the Sandia team in terms of site accessibility, staff training, and data sharing to meetmore » the specific objectives of the tests.« less

  7. A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry

    PubMed Central

    Benkali, K; Marquet, P; Rérolle, JP; Le Meur, Y; Gastinel, LN

    2008-01-01

    Background LC-MALDI-TOF/TOF analysis is a potent tool in biomarkers discovery characterized by its high sensitivity and high throughput capacity. However, methods based on MALDI-TOF/TOF for biomarkers discovery still need optimization, in particular to reduce analysis time and to evaluate their reproducibility for peak intensities measurement. The aims of this methodological study were: (i) to optimize and critically evaluate each step of urine biomarker discovery method based on Nano-LC coupled off-line to MALDI-TOF/TOF, taking full advantage of the dual decoupling between Nano-LC, MS and MS/MS to reduce the overall analysis time; (ii) to evaluate the quantitative performance and reproducibility of nano-LC-MALDI analysis in biomarker discovery; and (iii) to evaluate the robustness of biomarkers selection. Results A pool of urine sample spiked at increasing concentrations with a mixture of standard peptides was used as a specimen for biological samples with or without biomarkers. Extraction and nano-LC-MS variabilities were estimated by analyzing in triplicates and hexaplicates, respectively. The stability of chromatographic fractions immobilised with MALDI matrix on MALDI plates was evaluated by successive MS acquisitions after different storage times at different temperatures. Low coefficient of variation (CV%: 10–22%) and high correlation (R2 > 0.96) values were obtained for the quantification of the spiked peptides, allowing quantification of these peptides in the low fentomole range, correct group discrimination and selection of "specific" markers using principal component analysis. Excellent peptide integrity and stable signal intensity were found when MALDI plates were stored for periods of up to 2 months at +4°C. This allowed storage of MALDI plates between LC separation and MS acquisition (first decoupling), and between MS and MSMS acquisitions while the selection of inter-group discriminative ions is done (second decoupling). Finally the recording of

  8. Determination of Structural and Vibrational Properties of 5-QUINOLINECARBOXALDEHYDE Using Experimental Ft-Ir Ft-Raman Techniques and Theoretical HF and DFT Methods

    NASA Astrophysics Data System (ADS)

    Kumru, Mustafa; Kocademir, Mustafa; Bardakci, Tayyibe

    2013-06-01

    Quinoline derivatives have been used in several pharmaceuticals. They have vital roles in regulating the functions of DNA and cancerous cells. It's necessary to determine the structures and spectroscopic properties of quinoline derivates. In this study, the FT-IR (including mid and far regions) and FT-Raman spectra of 5-quinolinecarboxaldehyde have been investigated. Hartree-Fock (HF) and density functional B3LYP calculations have also been employed with the 6-311++G(d,p) basis set for investigating the structural and spectroscopic properties of the cis and trans conformers of 5-quinolinecarboxaldehyde. Experimental and theoretical results have been compared and the results are in good agreement with each other. Keywords: 5-quinolinecarboxaldehyde; Vibrational Spectroscopy; FT-IR spectra; FT-Raman spectra; Vibrational Modes; HF; DFT [1] V. Kucuk, A. Altun, M. Kumru, Spectrochim. Acta Part A 85(2012)92-98 [2] M. Kumru, V. Kucuk, T. Bardakci, Spectrochim. Acta Part A 90(2012)28-34 [3] M. Kumru, V. Kucuk, M. Kocademir, Spectrochim. Acta Part A, 96 (2012) 242-251 We thank the Turkish Scientific and Technical Research Council (TUBITAK) for their financial support through National Postdoctoral Research Scholarship Programme and Scientific Research Fund of Fatih University under the project number P50011001 G (1457).

  9. Effect-directed analysis: Current status and future challenges

    NASA Astrophysics Data System (ADS)

    Hong, Seongjin; Giesy, John P.; Lee, Jung-Suk; Lee, Jong-Hyeon; Khim, Jong Seong

    2016-09-01

    Effect-directed analysis (EDA) has become useful for identification of toxicant(s) that occur in mixtures in the environment, especially those that are causative agents of specific adverse effects. Here, we summarize and review EDA methodology including preparation of samples, biological analyses, fractionations, and instrumental analyses, highlighting key scientific advancements. A total of 63 documents since 1999 (Scopus search) including 46 research articles, 13 review papers, and 4 project descriptions, have been collected and reviewed in this study. At the early stage (1999-2010), most studies that applied EDA focused on organic extracts of freshwater and coastal contaminated sediments and wastewater. Toxic effects were often measured using cell-based bioassays ( in vitro) and the causative chemicals were identified by use of low resolution gas chromatography with mass selective detector (GCMSD). More recently (2010-present), EDA has been extended to various matrices such as biota, soil, crude oil, and suspended solids and techniques have been improved to include determination of bioavailability in vivo. In particular, methods for non-target screenings of organic chemicals in environmental samples using cutting-edge instrumentation such as time of flight-mass spectrometry (ToF-MS), Fourier transform-ion cyclotron resonance (FT-ICR), and Orbitrap mass spectrometer have been developed. This overview provides descriptions of recent improvements of EDA and suggests future research directions based on current understandings and limitations.

  10. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    PubMed

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Overexpression of PaFT gene in the wild orchid Phalaenopsis amabilis (L.) Blume

    NASA Astrophysics Data System (ADS)

    Semiarti, Endang; Mercuriani, Ixora S.; Rizal, Rinaldi; Slamet, Agus; Utami, Bekti S.; Bestari, Ida A.; Aziz-Purwantoro, Moeljopawiro, S.; Jang, Soenghoe; Machida, Y.; Machida, C.

    2015-09-01

    To shorten vegetative stage and induce transition from vegetative to reproductive stage in orchids, we overexpressed Phalaenopsis amabilis Flowering LocusT (PaFT) gene under the control of Ubiquitin promoter into protocorm of Indonesian Wild Orchid Phalaenopsis amabilis (L.) Blume. The dynamic expression of vegetative gene Phalaenopsis Homeobox1 (POH1) and flowering time gene PaFT has been analyzed. Accumulation of mRNA was detected in shoot and leaves of both transgenic and non transgenic plants by using Reverse transcriptase-PCR (RT-PCR) with specific gene primers for POH1 and PaFT in 24 months old plants. To analyze the POH1 and PaFT genes, three pairs of degenerate primers PaFT degF1R1, F2R2 and F3R3 that amplified 531 bp PaFT cDNA were used. We detected 700 bp PaFTcDNA from leaves and shoots of transgenic plants, but not in NT plants. POH1 mRNA was detected in plants. PaFT protein consists of Phospatidyl Ethanolamine-Binding Protein (PEBP) in interval base 73-483 and CETS family protein at base 7-519, which are important motif for transmembrane protein. We inserted Ubipro::PaFT/pGAS101 into P. amabilis protocorm using Agrobacterium. Analysis of transgenic plants showed that PaFTmRNA was accumulated in leaves of 12 months after sowing, although it is not detected in non transgeic plants. Compare to the wild type (NT plants), ectopic expression of PaFT shows alter phenotype as follows: 31% normal, 19% with short-wavy leaves, 5% form rosette leaves and 45% produced multishoots. Analysis of protein profiles of trasgenic plants showed that a putative PaFT protein (MW 19,7 kDa) was produced in 1eaves and shoots.This means that at 12 months, POH1 gene expression gradually decreased/negatively regulated, the expression of PaFT gene was activated, although there is no flower initiation yet. Some environmental factors might play a role to induce inflorescens. This experiment is in progress.

  12. Improvement of Nicotinic Acid and Nicotinamide Analysis in Meats and Meat Products by HPLC and LC-MS/MS with Solid-Phase Extraction.

    PubMed

    Hiki, Asako; Yamajima, Yukiko; Uematsu, Yoko

    2016-01-01

    A method for nicotinic acid (NA) and nicotinamide (NAA) analysis in meats was developed. NA and NAA were extracted from meats or meat products with metaphosphate aqueous solution. The extract was cleaned up with an Oasis MCX cartridge. The cartridge was washed with 2% acetic acid (v/v) and acetic acid-methanol solution. NA and NAA were eluted with ammonia-methanol solution. NA and NAA in the eluate were chromatographed on a Scherzo SM-C18 (3.0×150 mm, 3.0 μm) column with 20 mmol/L ammonium acetate containing 0.1% acetic acid-acetonitrile (97 : 3) as a mobile phase and were monitored at 261 nm. Quantification was performed by LC and LC-MS/MS. Calibration curves showed high linearity (correlation coefficient>0.998) between 1-25 μg/mL for LC and LC-MS/MS. Recoveries were 84-108% (CV≦5.8%) by HPLC and 79-105% (CV≦9.0%) by LC-MS/MS. The limit of quantitation for NA was 0.005-0.01 g/kg and that for NAA was 0.01-0.02 g/kg.

  13. Post-acquisition data mining techniques for LC-MS/MS-acquired data in drug metabolite identification.

    PubMed

    Dhurjad, Pooja Sukhdev; Marothu, Vamsi Krishna; Rathod, Rajeshwari

    2017-08-01

    Metabolite identification is a crucial part of the drug discovery process. LC-MS/MS-based metabolite identification has gained widespread use, but the data acquired by the LC-MS/MS instrument is complex, and thus the interpretation of data becomes troublesome. Fortunately, advancements in data mining techniques have simplified the process of data interpretation with improved mass accuracy and provide a potentially selective, sensitive, accurate and comprehensive way for metabolite identification. In this review, we have discussed the targeted (extracted ion chromatogram, mass defect filter, product ion filter, neutral loss filter and isotope pattern filter) and untargeted (control sample comparison, background subtraction and metabolomic approaches) post-acquisition data mining techniques, which facilitate the drug metabolite identification. We have also discussed the importance of integrated data mining strategy.

  14. Completely automated open-path FT-IR spectrometry.

    PubMed

    Griffiths, Peter R; Shao, Limin; Leytem, April B

    2009-01-01

    Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.

  15. [THE USE OF THE MODEL MOUSE ICR--VARIOLA VIRUS FOR EVALUATION OF ANTIVIRAL DRUG EFFICACY].

    PubMed

    Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Shishkina, L N; Zamedyanskaya, A S; Nesterov, A E; Glotov, A G; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N

    2016-01-01

    Mice of the ICR outbred population were infected intranasally (i/n) with the variola virus (VARV, strain Ind-3a). Clinical signs of the disease did not appear even at the maximum possible dose of the virus 5.2 lg PFU/head (plaque-forming units per head). In this case, 50% infective dose (ID50) of VARV estimated by the presence or absence of the virus in the lungs three days after infection (p.i.) was equal to 2.7 ± 0.4 lg PFU/head. Taking into account the 10% application of the virus in the lungs during the intranasal infection of the mice, it was adequate to 1.7 lg PFU/lungs. This indicates a high infectivity of the VARV for mice comparable to its infectivity for humans. After the i/n infection of mice with the VARV at a dose 30 ID50/ head the highest concentration of the virus detected in the lungs (4.9 ± 0.0 lg PFU/ml of homogenate) and in nasal cavity tissues (4.8 ± 0.0 lg PFU/ml) were observed. The pathomorphological changes in the respiratory organs of the mice infected with the VARV appeared at 3-5 days p.i., and the VARV reproduction noted in the epithelial cells and macrophages were noticed. When the preparations ST-246 and NIOCH-14 were administered orally at a dose of 60 μg/g of mouse weight up to one day before infection, after 2 hours, 1 and 2 days p.i., the VARV reproduction in the lungs after 3 days p.i. decreased by an order of magnitude. Thus, outbred ICR mice infected with the VARV can be used as a laboratory model of the smallpox when evaluating the therapeutic and prophylactic efficacy of the antismallpox drugs.

  16. Promoting effects of bile acid to intestinal tumorigenesis in gnotobiotic ICR mice.

    PubMed

    Iwasaki, I; Iwase, H; Yumoto, N; Ide, G

    1985-11-01

    Gnotobiotes were produced by administrating Lactobacillus plantarum IAM 1041 in ICR strain male germfree mice which were fed by ordinary or high fat diet. Both groups were orally administered 0.3 mg/10 g of body weight (B.W.) of methylazoxymethanol (MAM) acetate. The oral administration of 0.3 mg/10 g/B.W. once a week for 11 consecutive weeks caused a total of 68 adenomatous polyps in the large intestine (an average of 11.4/mouse) of gnotobiotic high fat diet mice and a total of 32 adenomatous polyps (an average of 5.3/mouse) of the ordinary diet mice. There were no malignancies in either of the groups. Bile acids in the feces showed higher values in the high fat diet group than in the ordinary group. Bile acids are a factor which promotes the appearance of intestinal tumors. It was also assumed that the L. plantarum promoted the activation of beta-glucuronidase and alcohol dehydrogenase in the liver and intestine.

  17. Advanced algorithms for the identification of mixtures using condensed-phase FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Andersson, Greger; Levy, Dustin; Tomczyk, Carol; Zou, Peng; Zuidema, Eric

    2011-06-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. Advances in instrument portability have made possible the use of FT-IR spectroscopy in emergency response and military field applications. The samples collected in those harsh environments are rarely pure and typically contain multiple chemical species in water, sand, or inorganic matrices. In such critical applications, it is also desired that in addition to broad chemical identification, the user is warned immediately if the sample contains a threat or target class material (i.e. biological, narcotic, explosive). The next generation HazMatID 360 combines the ruggedized design and functionality of the current HazMatID with advanced mixture analysis algorithms. The advanced FT-IR instrument allows effective chemical assessment of samples that may contain one or more interfering materials like water or dirt. The algorithm was the result of years of cumulative experience based on thousands of real-life spectra sent to our ReachBack spectral analysis service by customers in the field. The HazMatID 360 combines mixture analysis with threat detection and chemical hazard classification capabilities to provide, in record time, crucial information to the user. This paper will provide an overview of the software and algorithm enhancements, in addition to examples of improved performance in mixture identification.

  18. Kinetics and Product Branching Fractions of Reactions between a Cation and a Radical: Ar+ + CH3 and O2+ + CH3 (Postprint)

    DTIC Science & Technology

    2015-01-13

    Gross group using a Chen nozzle coupled to a Fourier transform ion cyclotron reso- nance (FT-ICR) mass spectrometer for reactions of the benzyl radical...reactions: A Fourier transform ion cyclotron resonance study of allyl radical reacting with aromatic radical cations. Int. J. Mass Spectrom. 2009, 287, 8

  19. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall.

    PubMed

    Chylińska, Monika; Szymańska-Chargot, Monika; Zdunek, Artur

    2016-12-10

    The purpose of this work was to reveal the structural changes of cell wall polysaccharides' fractions during tomato fruit development by analysis of spectral data. Mature green and red ripe tomato fruit were taken into consideration. The FT-IR spectra of water soluble pectin (WSP), imidazole soluble pectin (ISP) and diluted alkali soluble pectin (DASP) contained bands typical for pectins. Whereas for KOH fraction spectra bands typical for hemicelluloses were present. The FT-IR spectra showed the drop down of esterification degree of WSP and ISP polysaccharides during maturation. The changes in polysaccharides structure revealed by spectra were the most visible in the case of pectic polysaccharides. The WSP and DASP fraction pectins molecules length were shortened during tomato maturation and ripening. Whereas the ISP fraction spectra analysis showed that this fraction contained rhamnogalacturonan I, but also for red ripe was rich in pectic galactan comparing with ISP fraction from mature green. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Developments in ICP-MS: electrochemically modulated liquid chromatography for the clean-up of ICP-MS blanks and reduction of matrix effects by flow injection ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Cory Thomas

    2008-01-01

    The focus of this dissertation is the development of techniques with which to enhance the existing abilities of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful technique for trace metal analysis in samples of many types, but like any technique it has certain strengths and weaknesses. Attempts are made to improve upon those strengths and to overcome certain weaknesses.

  1. The Possibility of Using the ICR Mouse as an Animal Model to Assess Antimonkeypox Drug Efficacy.

    PubMed

    Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Pyankov, O V; Bodnev, S A; Galahova, D O; Zamedyanskaya, A S; Titova, K A; Glotov, A G; Taranov, O S; Omigov, V V; Shishkina, L N; Agafonov, A P; Sergeev, A N

    2016-10-01

    As a result of the conducted experimental studies on intranasal challenge of ICR mice, rabbits and miniature pigs (even in the maximum variant) with the doses of 4.0-5.5 lg PFU of monkeypox virus (MPXV), some clinical signs such as purulent conjunctivitis, blepharitis and ruffled fur were found only in mice. The 50% infective dose (C ID50 ) of MPXV for these animals estimated by the presence of external clinical signs was 4.8 lg PFU, and L ID50 estimated by the virus presence in the lungs of mice 7 days post-infection taking into account its 10% application in the animal respiratory tract was 1.4 lg PFU. When studying the dynamics of MPXV propagation in mice challenged intranasally with 25 L ID50 of MPXV, the maximum pathogen accumulation was revealed in nasal cavity, lungs and brain: 5.7 ± 0.1, 5.5 ± 0.1 and 5.3 ± 0.3 lg PFU/ml, respectively. The pathomorphological examination of these animals revealed the presence and replication of the pathogen in the traditional primary target cells for MPXV (mononuclear phagocyte system cells and respiratory tract epitheliocytes) as well as in some other types of cells (endothelial cells, reticular cells, connective tissue cells). Our use of these animals to assess the antiviral efficacy of some drugs demonstrated the agreement of the results (a significant positive effect of NIOCH-14 and ST-246) with those described in scientific literature, which opens up the prospects of using ICR mice as animal models for monkeypox to develop preventive antismallpox drugs. © 2015 Blackwell Verlag GmbH.

  2. Unassigned MS/MS Spectra: Who Am I?

    PubMed

    Pathan, Mohashin; Samuel, Monisha; Keerthikumar, Shivakumar; Mathivanan, Suresh

    2017-01-01

    Recent advances in high resolution tandem mass spectrometry (MS) has resulted in the accumulation of high quality data. Paralleled with these advances in instrumentation, bioinformatics software have been developed to analyze such quality datasets. In spite of these advances, data analysis in mass spectrometry still remains critical for protein identification. In addition, the complexity of the generated MS/MS spectra, unpredictable nature of peptide fragmentation, sequence annotation errors, and posttranslational modifications has impeded the protein identification process. In a typical MS data analysis, about 60 % of the MS/MS spectra remains unassigned. While some of these could attribute to the low quality of the MS/MS spectra, a proportion can be classified as high quality. Further analysis may reveal how much of the unassigned MS spectra attribute to search space, sequence annotation errors, mutations, and/or posttranslational modifications. In this chapter, the tools used to identify proteins and ways to assign unassigned tandem MS spectra are discussed.

  3. STS-52 MS Veach and Payload Specialist MacLean during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach (left) and Canadian Payload Specialist Steven G. MacLean listen to a briefing during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Veach and MacLean are fully outfitted in launch and entry suits (LESs), launch and entry helmets (LEHs), parachutes, and water survival equipment including a life jacket. The WETF's 25-ft deep pool will simulate the ocean as the crewmember's prepare for the event of a water landing. MacLean represents the Canadian Space Agency (CSA).

  4. Analysis of anabolic steroids in human hair using LC-MS/MS.

    PubMed

    Deshmukh, Nawed; Hussain, Iltaf; Barker, James; Petroczi, Andrea; Naughton, Declan P

    2010-10-01

    New highly sensitive, specific, reliable, reproducible and robust LC-MS/MS methods were developed to detect the anabolic steroids, nandrolone and stanozolol, in human hair for the first time. Hair samples from 180 participants (108 males, 72 females, 62% athletes) were screened using ELISA which revealed 16 athletes as positive for stanozolol and 3 for nandrolone. Positive samples were confirmed on LC-MS/MS in selective reaction monitoring (SRM) mode. The assays for stanozolol and nandrolone showed good linearity in the range 1-400pg/mg and 5-400pg/mg, respectively. The methods were validated for LLOD, interday precision, intraday precision, specificity, extraction recovery and accuracy. The assays were capable of detecting 0.5pg stanozolol and 3.0pg nandrolone per mg of hair, when approximately 20mg of hair were processed. Analysis using LC-MS/MS confirmed 11 athletes' positive for stanozolol (5.0pg/mg to 86.3pg/mg) and 1 for nandrolone (14.0pg/mg) thus avoiding false results from ELISA screening. The results obtained demonstrate the application of these hair analysis methods to detect both steroids at low concentrations, hence reducing the amount of hair required significantly. The new methods complement urinalysis or blood testing and facilitate improved doping testing regimes. Hair analysis benefits from non-invasiveness, negligible risk of infection and facile sample storage and collection, whilst reducing risks of tampering and cross-contamination. Owing to the wide detection window, this approach may also offer an alternative approach for out-of-competition testing.

  5. Poplar FT2 Shortens the Juvenile Phase and Promotes Seasonal Flowering[W

    PubMed Central

    Hsu, Chuan-Yu; Liu, Yunxia; Luthe, Dawn S.; Yuceer, Cetin

    2006-01-01

    Many woody perennials, such as poplar (Populus deltoides), are not able to form flower buds during the first several years of their life cycle. They must undergo a transition from the juvenile phase to the reproductive phase to be competent to produce flower buds. After this transition, trees begin to form flower buds in the spring of each growing season. The genetic factors that control flower initiation, ending the juvenile phase, are unknown in poplar. The factors that regulate seasonal flower bud formation are also unknown. Here, we report that poplar FLOWERING LOCUS T2 (FT2), a relative of the Arabidopsis thaliana flowering-time gene FT, controls first-time and seasonal flowering in poplar. The FT2 transcript is rare during the juvenile phase of poplar. When juvenile poplar is transformed with FT2 and transcript levels are increased, flowering is induced within 1 year. During the transition between vegetative and reproductive growth in mature trees, FT2 transcripts are abundant during reproductive growth under long days. Subsequently, floral meristems emerge on flanks of the axillary inflorescence shoots. These findings suggest that FT2 is part of the flower initiation pathway in poplar and plays an additional role in regulating seasonal flower initiation that is integrated with the poplar perennial growth habit. PMID:16844908

  6. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    PubMed

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis, thermodynamic functions of N-acetyl-l-phenylalanine.

    PubMed

    Raja, B; Balachandran, V; Revathi, B

    2015-03-05

    The FT-IR and FT-Raman spectra of N-acetyl-l-phenylalanine were recorded and analyzed. Natural bond orbital analysis has been carried out for various intramolecular interactions that are responsible for the stabilization of the molecule. HOMO-LUMO energy gap has been computed with the help of density functional theory. The statistical thermodynamic functions (heat capacity, entropy, vibrational partition function and Gibbs energy) were obtained for the range of temperature 100-1000K. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the experimental and theoretical spectra values provides important information about the ability of the computational method to describe the vibrational modes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Variations of DOM quality in inflows of a drinking water reservoir: linking of van Krevelen diagrams with EEMF spectra by rank correlation.

    PubMed

    Herzsprung, Peter; von Tümpling, Wolf; Hertkorn, Norbert; Harir, Mourad; Büttner, Olaf; Bravidor, Jenny; Friese, Kurt; Schmitt-Kopplin, Philippe

    2012-05-15

    Elevated concentrations of dissolved organic matter (DOM) such as humic substances in raw water pose significant challenges during the processing of the commercial drinking water supplies. This is a relevant issue in Saxony, Central East Germany, and many other regions worldwide, where drinking water is produced from raw waters with noticeable presence of chromophoric DOM (CDOM), which is assumed to originate from forested watersheds in spring regions of the catchment area. For improved comprehension of DOM molecular composition, the seasonal and spatial variations of humic-like fluorescence and elemental formulas in the catchment area of the Muldenberg reservoir were recorded by excitation emission matrix fluorescence (EEMF) and ultrahigh-resolution mass spectrometry (FT-ICR-MS). The Spearman rank correlation was applied to link the EEMF intensities with exact molecular formulas and their corresponding relative mass peak abundances. Thereby, humic-like fluorescence could be allocated to the pool of oxygen-rich and relatively unsaturated components with stoichiometries similar to those of tannic acids, which are suspected to have a comparatively high disinfection byproduct formation potential associated with the chlorination of raw water. Analogous relationships were established for UV absorption at 254 nm (UV(254)) and dissolved organic carbon (DOC) and compared to the EEMF correlation.

  9. Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section.

    PubMed

    Dvorski, Sabine E-M; Gonsior, Michael; Hertkorn, Norbert; Uhl, Jenny; Müller, Hubert; Griebler, Christian; Schmitt-Kopplin, Philippe

    2016-06-07

    At numerous groundwater sites worldwide, natural dissolved organic matter (DOM) is quantitatively complemented with petroleum hydrocarbons. To date, research has been focused almost exclusively on the contaminants, but detailed insights of the interaction of contaminant biodegradation, dominant redox processes, and interactions with natural DOM are missing. This study linked on-site high resolution spatial sampling of groundwater with high resolution molecular characterization of DOM and its relation to groundwater geochemistry across a petroleum hydrocarbon plume cross-section. Electrospray- and atmospheric pressure photoionization (ESI, APPI) ultrahigh resolution mass spectrometry (FT-ICR-MS) revealed a strong interaction between DOM and reactive sulfur species linked to microbial sulfate reduction, i.e., the key redox process involved in contaminant biodegradation. Excitation emission matrix (EEM) fluorescence spectroscopy in combination with Parallel Factor Analysis (PARAFAC) modeling attributed DOM samples to specific contamination traits. Nuclear magnetic resonance (NMR) spectroscopy evaluated the aromatic compounds and their degradation products in samples influenced by the petroleum contamination and its biodegradation. Our orthogonal high resolution analytical approach enabled a comprehensive molecular level understanding of the DOM with respect to in situ petroleum hydrocarbon biodegradation and microbial sulfate reduction. The role of natural DOM as potential cosubstrate and detoxification reactant may improve future bioremediation strategies.

  10. First Signal on the Cryogenic Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Lin, Cheng; Mathur, Raman; Aizikov, Kostantin; O'Connor, Peter B.

    2009-01-01

    The construction and achievement of the first signal on a cryogenic Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) are reported here, demonstrating proof-of-concept of this new instrument design. Building the FTICR cell into the cold bore of a superconducting magnet provided advantages over conventional warm bore design. At 4.2 K, the vacuum system cryopumps itself, thus removing the requirement for a large bore to achieve the desired pumping speed for maintaining base pressure. Furthermore, because the bore diameter has been reduced, the amount of magnet wire needed to achieve high field and homogeneity was also reduced, greatly decreasing the cost/Tesla of the magnet. The current instrument implements an actively shielded 14-Tesla magnet of vertical design with an external matrix assisted laser desorption/ionization (MALDI) source. The first signal was obtained by detecting the laser desorbed/ionized (LDI) C60+• ions, with the magnet at 7 Tesla, unshimmed, and the preamplifier mounted outside of the vacuum chamber at room temperature. A subsequent experiment done with the magnet at 14 Tesla and properly shimmed produced a C60 spectrum showing ∼350,000 resolving power at m/z ∼720. Increased magnetic field strength improves many FTMS performance parameters simultaneously, particularly mass resolving power and accuracy. PMID:17931882

  11. Cosmological viability conditions for f(T) dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch,more » then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.« less

  12. Conducting non-commercial international clinical trials: the ICR-CTSU experience.

    PubMed

    Fox, Lisa; Toms, Christy; Kernaghan, Sarah; Snowdon, Claire; Bliss, Judith M

    2017-09-26

    Academic clinical trials play a fundamental role in the development of new treatments, the repurposing of existing treatments and in addressing areas of unmet clinical need. With cancer treatments increasingly targeted at molecular subtypes, and with priority placed on developing new treatments for rare tumour types, the need for international trial participation to access sufficient patient numbers for successful trial conduct is growing. However, lack of harmonisation of international legal, ethical and financial systems can make this challenging and the cost and effort of conducting trials internationally can be considered prohibitive, particularly where the sample size is comparatively small. The Institute of Cancer Research - Clinical Trials and Statistics Unit (ICR-CTSU) is a UK-based academic clinical trials unit that specialises in the design, conduct and analysis of clinical trials of cancer treatments with an expanding portfolio of trials in molecular subtypes of breast and urological cancers and in other rare cancer types. Implementing appropriate mechanisms to enable international participation has therefore been imperative. In this article, we explain how we have approached the challenges involved and describe examples of successful international trial conduct, achieved through robust collaborations with academic and industry partners. Conducting academic trials internationally is challenging but can and should be achieved through appropriate governance mechanisms and strong collaborations.

  13. Chemical derivatization for enhancing sensitivity during LC/ESI-MS/MS quantification of steroids in biological samples: a review.

    PubMed

    Higashi, Tatsuya; Ogawa, Shoujiro

    2016-09-01

    Sensitive and specific methods for the detection, characterization and quantification of endogenous steroids in body fluids or tissues are necessary for the diagnosis, pathological analysis and treatment of many diseases. Recently, liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been widely used for these purposes due to its specificity and versatility. However, the ESI efficiency and fragmentation behavior of some steroids are poor, which lead to a low sensitivity. Chemical derivatization is one of the most effective methods to improve the detection characteristics of steroids in ESI-MS/MS. Based on this background, this article reviews the recent advances in chemical derivatization for the trace quantification of steroids in biological samples by LC/ESI-MS/MS. The derivatization in ESI-MS/MS is based on tagging a proton-affinitive or permanently charged moiety on the target steroid. Introduction/formation of a fragmentable moiety suitable for the selected reaction monitoring by the derivatization also enhances the sensitivity. The stable isotope-coded derivatization procedures for the steroid analysis are also described. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Analysis of multiple vitamin D metabolites by ultra-performance supercritical fluid chromatography-tandem mass spectrometry (UPSFC-MS/MS).

    PubMed

    Jenkinson, Carl; Taylor, Angela; Storbeck, Karl-Heinz; Hewison, Martin

    2018-06-15

    In recent years, increased interest in the human health benefits of vitamin D has led to demand for improved analysis of patient vitamin D 'status'. Studies to date have focused primarily on a single vitamin D metabolite, 25-hydroxyvitamin D, despite the existence of a broad range of vitamin D metabolites, referred to as the vitamin D metabolome. This study reports on the development of a rapid UPSFC-MS/MS method for the analysis of nine vitamin D metabolites in human serum. Optimum separation was obtained with a Lux-Cellulose chiral column. We observed an orthogonal elution order when compared with ultra-high performance liquid chromatography (UHPLC). The order of elution was reversed based on hydroxyl- group number, however elution order did not differ between isomeric changes in hydroxyl- group position or epimers. Although UPSFC yielded superior resolution and selectivity over previously developed UHPLC-MS/MS methods, improvements in sensitivity could not be achieved owing to the lower injection volume required for UPSFC relative to UHPLC. Method validation was performed on the developed UPSFC-MS/MS method and found to be within acceptable limits. Applying the method to the analysis of human serum samples showed a significant correlation with serum concentrations of metabolites measured by UHPLC-MS/MS (25OHD3 r = 0.997, P=<0.001, and 3-epi-25OHD3 r = 0.996, P ≤0.001). These data indicate that UPSFC provides an efficient analytical platform for rapid analysis of multiple vitamin D metabolites from serum. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  15. Determination of a selection of synthetic cannabinoids and metabolites in urine by UHPSFC-MS/MS and by UHPLC-MS/MS.

    PubMed

    Berg, Thomas; Kaur, Lakhwinder; Risnes, Anna; Havig, Stine Marie; Karinen, Ritva

    2016-07-01

    Two different analytical techniques, ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) and reversed phase ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), were used for the determination of two synthetic cannabinoids and eleven metabolites in urine; AM-2201 N-4-OH-pentyl, AM-2233, JWH-018 N-5-OH-pentyl, JWH-018 N-pentanoic acid, JWH-073 N-4-OH-butyl, JWH-073 N-butanoic acid, JWH-122 N-5-OH-pentyl, MAM-2201, MAM-2201 N-4-OH-pentyl, RCS-4 N-5-OH-pentyl, UR-144 degradant N-pentanoic acid, UR-144 N-4-OH-pentyl, and UR-144 N-pentanoic acid. Sample preparation included a liquid-liquid extraction after deconjugation with ß-glucuronidase. The UHPSFC-MS/MS method used an Acquity UPC(2 TM) BEH column with a mobile phase consisting of CO2 and 0.3% ammonia in methanol, while the UHPLC-MS/MS method used an Acquity UPLC® BEH C18 column with a mobile phase consisting of 5 mM ammonium formate (pH 10.2) and methanol. MS/MS detection was performed with positive electrospray ionization and two multiple reaction monitoring transitions. Deuterated internal standards were used for six of the compounds. Limits of quantification (LOQs) were between 0.04 and 0.4 µg/L. Between-day relative standard deviations at concentrations ≥ LOQ were ≤20%, with biases within ±19%. Recoveries ranged from 40 to 90%. Corrected matrix effects were within 100 ± 10%, except for MAM-2201 with UHPSFC-MS/MS, and for UR-144 N-pentanoic acid and MAM-2201 N-4-OH-pentyl with UHPLC-MS/MS. Elution order obtained by UHPSFC-MS/MS was almost opposite to that obtained by UHPLC-MS/MS, making this instrument setup an interesting combination for screening and confirmation analyses in forensic cases. The UHPLC-MS/MS method has, since August 2014, been successfully used for confirmation of synthetic cannabinoids in urine samples revealing a positive immunoassay screening result. Copyright © 2015

  16. Improved Quantification of Free and Ester-Bound Gallic Acid in Foods and Beverages by UHPLC-MS/MS.

    PubMed

    Newsome, Andrew G; Li, Yongchao; van Breemen, Richard B

    2016-02-17

    Hydrolyzable tannins are measured routinely during the characterization of food and beverage samples. Most methods for the determination of hydrolyzable tannins use hydrolysis or methanolysis to convert complex tannins to small molecules (gallic acid, methyl gallate, and ellagic acid) for quantification by HPLC-UV. Often unrecognized, analytical limitations and variability inherent in these approaches for the measurement of hydrolyzable tannins include the variable mass fraction (0-0.90) that is released as analyte, contributions of sources other than tannins to hydrolyzable gallate (can exceed >10 wt %/wt), the measurement of both free and total analyte, and lack of controls to account for degradation. An accurate, specific, sensitive, and higher-throughput approach for the determination of hydrolyzable gallate based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) that overcomes these limitations was developed.

  17. The Use of Ammonium Formate as a Mobile-Phase Modifier for LC-MS/MS Analysis of Tryptic Digests

    PubMed Central

    Johnson, Darryl; Boyes, Barry; Orlando, Ron

    2013-01-01

    A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage. PMID:24294112

  18. The use of ammonium formate as a mobile-phase modifier for LC-MS/MS analysis of tryptic digests.

    PubMed

    Johnson, Darryl; Boyes, Barry; Orlando, Ron

    2013-12-01

    A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage.

  19. Tissue distribution, excretion, and the metabolic pathway of 2,2',4,4',5-penta-chlorinated diphenylsulfide (CDPS-99) in ICR mice.

    PubMed

    Zeng, Xiaolan; Zhang, Xuesheng; Qin, Li; Wang, Zunyao

    2015-09-15

    The tissue distribution, excretion, and metabolic pathway of 2,2',4,4',5-penta-chlorinated diphenylsulfide (CDPS-99) in ICR mice were investigated after oral perfusion at 10mg/kg body weight (b.w.). Biological samples were extracted and separated and, for the first time, were determined by a novel, sensitive, and specific GC-MS method under the full scan and selected ion monitoring (SIM) modes. The results showed that the concentrations of CDPS-99 in the liver, kidneys, and serum reached a maximum after a one-day exposure and that the CDPS-99 concentration in the liver was the highest (3.43μg/g). The increase in the concentration of CDPS-99 in muscle, skin, and adipose tissue was slower, and the concentrations of CDPS-99 achieved their highest levels after 3 days of exposure. It was observed that the CDPS-99 concentration in adipose tissue was still very high (0.71μg/g) after 21 days of exposure, which suggested that CDPS-99 was able to accumulate in adipose tissue. In addition, mouse feces accounted for approximately 75% of the total gavage dose, indicating that CDPS-99 was mainly excreted via mouse feces. Metabolism analysis demonstrated that there were three possible metabolic pathways of CDPS-99 in mice: dechlorination reactions with the formation of tetra-CDPS and hydroxylation and oxidation reactions with the formation of OH-CDPS-99 and chlorinated diphenylsulfone. The present study will help to develop a better understanding of mammalian metabolism of CDPS-99. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. f(T) gravity and energy distribution in Landau-Lifshitz prescription

    NASA Astrophysics Data System (ADS)

    Ganiou, M. G.; Houndjo, M. J. S.; Tossa, J.

    We investigate in this paper the Landau-Lifshitz energy distribution in the framework of f(T) theory view as a modified version of Teleparallel theory. From some important Teleparallel theory results on the localization of energy, our investigations generalize the Landau-Lifshitz prescription from the computation of the energy-momentum complex to the framework of f(T) gravity as it is done in the modified versions of General Relativity. We compute the energy density in the first step for three plane-symmetric metrics in vacuum. We find for the second metric that the energy density vanishes independently of f(T) models. We find that the Teleparallel Landau-Lifshitz energy-momentum complex formulations for these metrics are different from those obtained in General Relativity for the same metrics. Second, the calculations are performed for the cosmic string spacetime metric. It results that the energy distribution depends on the mass M and the radius r of cosmic string and it is strongly affected by the parameter of the considered quadratic and cubic f(T) models. Our investigation with this metric induces interesting results susceptible to be tested with some astrophysics hypothesis.

  1. Improved simultaneous quantitation of candesartan and hydrochlorthiazide in human plasma by UPLC-MS/MS and its application in bioequivalence studies.

    PubMed

    Singh, Bhupinder; Lokhandae, Rama S; Dwivedi, Ashish; Sharma, Sandeep; Dubey, Naveen

    2014-04-01

    A validated ultra-performance liquid chromatography mass spectrometric method (UPLC-MS/MS) was used for the simultaneous quantitation of candesartan (CN) and hydrochlorothiazide (HCT) in human plasma. The analysis was performed on UPLC-MS/MS system using turbo ion spray interface. Negative ions were measured in multiple reaction monitoring (MRM) mode. The analytes were extracted using a liquid-liquid extraction (LLE) method by using 0.1 mL of plasma volume. The lower limit of quantitation for CN and HCT was 1.00 ng/mL whereas the upper limit of quantitation was 499.15 ng/mL and 601.61 ng/mL for CN and HCT respectively. CN d 4 and HCT- 13 Cd 2 were used as the internal standards for CN and HCT respectively. The chromatography was achieved within 2.0 min run time using a C18 Phenomenex, Gemini NX (100 mm×4.6 mm, 5 µm) column with organic mixture:buffer solution (80:20, v/v) at a flow rate of 0.800 mL/min. The method has been successfully applied to establish the bioequivalence of candesartan cilexetil (CNC) and HCT immediate release tablets with reference product in human subjects.

  2. Evaluation of arterial stiffness by finger-toe pulse wave velocity: optimization of signal processing and clinical validation.

    PubMed

    Obeid, Hasan; Khettab, Hakim; Marais, Louise; Hallab, Magid; Laurent, Stéphane; Boutouyrie, Pierre

    2017-08-01

    Carotid-femoral pulse wave velocity (PWV) (cf-PWV) is the gold standard for measuring aortic stiffness. Finger-toe PWV (ft-PWV) is a simpler noninvasive method for measuring arterial stiffness. Although the validity of the method has been previously assessed, its accuracy can be improved. ft-PWV is determined on the basis of a patented height chart for the distance and the pulse transit time (PTT) between the finger and the toe pulpar arteries signals (ft-PTT). The objective of the first study, performed in 66 patients, was to compare different algorithms (intersecting tangents, maximum of the second derivative, 10% threshold and cross-correlation) for determining the foot of the arterial pulse wave, thus the ft-PTT. The objective of the second study, performed in 101 patients, was to investigate different signal processing chains to improve the concordance of ft-PWV with the gold-standard cf-PWV. Finger-toe PWV (ft-PWV) was calculated using the four algorithms. The best correlations relating ft-PWV and cf-PWV, and relating ft-PTT and carotid-femoral PTT were obtained with the maximum of the second derivative algorithm [PWV: r = 0.56, P < 0.0001, root mean square error (RMSE) = 0.9 m/s; PTT: r = 0.61, P < 0.001, RMSE = 12 ms]. The three other algorithms showed lower correlations. The correlation between ft-PTT and carotid-femoral PTT further improved (r = 0.81, P < 0.0001, RMSE = 5.4 ms) when the maximum of the second derivative algorithm was combined with an optimized signal processing chain. Selecting the maximum of the second derivative algorithm for detecting the foot of the pressure waveform, and combining it with an optimized signal processing chain, improved the accuracy of ft-PWV measurement in the current population sample. Thus, it makes ft-PWV very promising for the simple noninvasive determination of aortic stiffness in clinical practice.

  3. Logamediate Inflation in f(T) Teleparallel Gravity

    NASA Astrophysics Data System (ADS)

    Rezazadeh, Kazem; Abdolmaleki, Asrin; Karami, Kayoomars

    2017-02-01

    We study logamediate inflation in the context of f(T) teleparallel gravity. f(T)-gravity is a generalization of the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. We consider an f(T)-gravity model which is sourced by a canonical scalar field. Assuming a power-law f(T) function in the action, we investigate an inflationary universe with a logamediate scale factor. Our results show that, although logamediate inflation is completely ruled out by observational data in the standard inflationary scenario based on Einstein gravity, it can be compatible with the 68% confidence limit joint region of Planck 2015 TT,TE,EE+lowP data in the framework of f(T)-gravity.

  4. Applications of FT-IR spectrophotometry in cancer diagnostics.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  5. Analysis of phytochemical variations in dioecious Tinospora cordifolia stems using HPLC/QTOF MS/MS and UPLC/QqQLIT -MS/MS.

    PubMed

    Bajpai, Vikas; Singh, Awantika; Chandra, Preeti; Negi, M P S; Kumar, Nikhil; Kumar, Brijesh

    2016-01-01

    The stem of dioecious Tinospora cordifolia (Menispermaceae) is a commonly used traditional Ayurvedic medicine in India having several therapeutic properties. To develop and validate LC-MS methods for the identification and simultaneous quantitation of various secondary metabolites and to study metabolomic variations in the stem of male and female plants. Ethanolic extract of stems were analysed by HPLC/ESI-QTOF-MS/MS for rapid screening of bioactive phytochemicals. High resolution MS and MS/MS in positive ESI mode were used for structural investigation of secondary metabolites. An UPLC/ESI-QqQ(LIT) -MS/MS method in MRM mode was developed and validated for the simultaneous quantitation of five bioactive alkaloids. Identification and characterisation of 36 metabolites including alkaloids, sesquiterpenes and phytoecdysteroids were performed using LC-MS and MS/MS techniques. The bioactive alkaloids such as jatrorrhizine, magnoflorine, isocorydine, palmatine and tetrahydropalmatine were successfully quantified in male and female plants. The mean abundances of magnoflorine jatrorrhizine, and oblongine were significantly (P < 0.05) higher in male plants while mean abundances of tetrahydropalmatine, norcoclaurine, and reticuline were significantly (P < 0.05) higher in female plants. Phytochemicals in the stem of male and female Tinospora cordifolia showed significant qualitative and quantitative variations. LC-MS and MS/MS methods can be used to differentiate between male and female plants based on their chemical profiles and quantities of the marker bioactive alkaloids. This chemical composition difference was also evident during vegetative stage when there were no male and female flowers. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Markham; Joseph Cosgrove; David Marran

    1999-05-31

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustionmore » flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.« less

  7. HvFT1 polymorphism and effect—survey of barley germplasm and expression analysis

    PubMed Central

    Loscos, Jorge; Igartua, Ernesto; Contreras-Moreira, Bruno; Gracia, M. Pilar; Casas, Ana M.

    2014-01-01

    Flowering time in plants is a tightly regulated process. In barley (Hordeum vulgare L.), HvFT1, ortholog of FLOWERING LOCUS T, is the main integrator of the photoperiod and vernalization signals leading to the transition from vegetative to reproductive state of the plant. This gene presents sequence polymorphisms affecting flowering time in the first intron and in the promoter. Recently, copy number variation (CNV) has been described for this gene. An allele with more than one copy was linked to higher gene expression, earlier flowering, and an overriding effect of the vernalization mechanism. This study aims at (1) surveying the distribution of HvFT1 polymorphisms across barley germplasm and (2) assessing gene expression and phenotypic effects of HvFT1 alleles. We analyzed HvFT1 CNV in 109 winter, spring, and facultative barley lines. There was more than one copy of the gene (2–5) only in spring or facultative barleys without a functional vernalization VrnH2 allele. CNV was investigated in several regions inside and around HvFT1. Two models of the gene were found: one with the same number of promoters and transcribed regions, and another with one promoter and variable number of transcribed regions. This last model was found in Nordic barleys only. Analysis of HvFT1 expression showed that association between known polymorphisms at the HvFT1 locus and the expression of the gene was highly dependent on the genetic background. Under long day conditions the earliest flowering lines carried a sensitive PpdH1 allele. Among spring cultivars with different number of copies, no clear relation was found between CNV, gene expression and flowering time. This was confirmed in a set of doubled haploid lines of a population segregating for HvFT1 CNV. Earlier flowering in the presence of several copies of HvFT1 was only seen in cultivar Tammi, which carries one promoter, suggesting a relation of gene structure with its regulation. HvCEN also affected to a large extent flowering

  8. Metabolomics reveals metabolic biomarkers of Crohn's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, J.K.; Willing, B.; Lucio, M.

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonicmore » acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.« less

  9. Unravelling Mechanistic Aspects of the Gas-Phase Ethanol Conversion: An Experimental and Computational Study on the Thermal Reactions of MO2 (+) (M=Mo, W) with Ethanol.

    PubMed

    González-Navarrete, Patricio; Schlangen, Maria; Wu, Xiao-Nan; Schwarz, Helmut

    2016-02-24

    The ion/molecule reactions of molybdenum and tungsten dioxide cations with ethanol have been studied by Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS) and density functional theory (DFT) calculations. Dehydration of ethanol has been found as the dominant reaction channel, while generation of the ethyl cation corresponds to a minor product. Cleary, the reactions are mainly governed by the Lewis acidity of the metal center. Computational results, together with isotopic labeling experiments, show that the dehydration of ethanol can proceed either through a conventional concerted [1,2]-elimination mechanism or a step-wise process; the latter occurs via a hydroxyethoxy intermediate. Formation of C2 H5 (+) takes place by transfer of OH(-) from ethanol to the metal center of MO2 (+) . The molybdenum and tungsten dioxide cations exhibit comparable reactivities toward ethanol, and this is reflected in similar reaction rate constants and branching ratios. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hidden Hydride Transfer as a Decisive Mechanistic Step in the Reactions of the Unligated Gold Carbide [AuC]+ with Methane under Ambient Conditions.

    PubMed

    Li, Jilai; Zhou, Shaodong; Schlangen, Maria; Weiske, Thomas; Schwarz, Helmut

    2016-10-10

    The reactivity of the cationic gold carbide [AuC] + (bearing an electrophilic carbon atom) towards methane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The product pairs generated, that is, Au + /C 2 H 4 , [Au(C 2 H 2 )] + /H 2 , and [C 2 H 3 ] + /AuH, point to the breaking and making of C-H, C-C, and H-H bonds under single-collision conditions. The mechanisms of these rather efficient reactions have been elucidated by high-level quantum-chemical calculations. As a major result, based on molecular orbital and NBO-based charge analysis, an unprecedented hydride transfer from methane to the carbon atom of [AuC] + has been identified as a key step. Also, the origin of this novel mechanistic scenario has been addressed. The mechanistic insights derived from this study may provide guidance for the rational design of carbon-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. FT-midIR determination of fatty acid profiles, including trans fatty acids, in bakery products after focused microwave-assisted Soxhlet extraction.

    PubMed

    Ruiz-Jiménez, J; Priego-Capote, F; Luque de Castro, M D

    2006-08-01

    A study of the feasibility of Fourier transform medium infrared spectroscopy (FT-midIR) for analytical determination of fatty acid profiles, including trans fatty acids, is presented. The training and validation sets-75% (102 samples) and 25% (36 samples) of the samples once the spectral outliers have been removed-to develop FT-midIR general equations, were built with samples from 140 commercial and home-made bakery products. The concentration of the analytes in the samples used for this study is within the typical range found in these kinds of products. Both sets were independent; thus, the validation set was only used for testing the equations. The criterion used for the selection of the validation set was samples with the highest number of neighbours and the most separation between them (H<0.6). Partial least squares regression and cross validation were used for multivariate calibration. The FT-midIR method does not require post-extraction manipulation and gives information about the fatty acid profile in two min. The 14:0, 16:0, 18:0, 18:1 and 18:2 fatty acids can be determined with excellent precision and other fatty acids with good precision according to the Shenk criteria, R (2)>/=0.90, SEP=1-1.5 SEL and R (2)=0.70-0.89, SEP=2-3 SEL, respectively. The results obtained with the proposed method were compared with those provided by the conventional method based on GC-MS. At 95% significance level, the differences between the values obtained for the different fatty acids were within the experimental error.

  12. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of organic 2,4,5-trichloroaniline.

    PubMed

    Govindarajan, M; Karabacak, M; Periandy, S; Tanuja, D

    2012-11-01

    In this work, the experimental and theoretical study on the molecular structure and vibrational spectra of 2,4,5-trichloroaniline (C(6)H(4)NCl(3), abbreviated as 2,4,5-TClA) were studied. The FT-IR and FT-Raman spectra were recorded. The molecular geometry and vibrational frequencies in the ground state were calculated by using the Hartree-Fock (HF) and density functional theory (DFT) methods (B3LYP) with 6-311++G(d,p) basis set. Comparison of the observed fundamental vibrational frequencies of 2,4,5-TClA with calculated results by HF and DFT indicates that B3LYP is superior to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 2,4,5-TClA molecule may have microscopic nonlinear optical (NLO) behavior with non-zero values. Mulliken atomic charges of 2,4,5-TClA was calculated and compared with aniline and chlorobenzene molecules. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, O. J.; Koch, B. P.; Kattner, G.

    2010-12-01

    Recent developments in analytical instrumentation enable to describe biogeochemical processes in oceanic waters on a molecular level. This is the prerequisite to integrate biological and geochemical parameters and to develop chemical cycles on a global perspective. The state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) applications for dissolved organic matter (DOM) focus mainly on carbon, hydrogen, oxygen and nitrogen isotopes. Implementation of sulfur and especially phosphorus in the molecular formula assignment has been questionable because of ambiguous calculated elemental formulas. On the other hand, many compounds bearing these elements are well known to occur in the dissolved state as part of the permanent recycling processes (e.g. phospholipids, phosphonates) but analytics of dissolved organic phosphorus (DOP) and sulfur (DOS) are often hampered by the large inorganic P and S pools. Even less is known about complexation characteristics of the DOM moieties. Although electrochemical methods provide some information about trace metal speciation, the high amount of organic molecules and its insufficient description as chemical functional classes prevent the assignment of trace metals to ligand classes. Nevertheless, it is undoubtful that a varying but extensive amount of transition metals is bond in form of organic complexes. Hyphenation of reversed phase high performance liquid chromatography (RP-HPLC) with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) is a valuable tool to study these metal-organic interactions in a qualitative and quantitative approach. We established a desolvation method that allows direct transfer of high organic solvent loads into the plasma. Thus, in combination with internal standardization and external calibration, the investigation of a broad polarity scale was possible. This approach overcomes previous restrictions to non-organic solvent separation techniques like size

  14. Now is the time to demand change to punishing FtP procedures.

    PubMed

    Mason, Sharon

    2016-05-25

    Having undergone Nursing and Midwifery Council fitness to practise (FtP) proceedings after raising and escalating concerns, I read with interest your article about nurses facing FtP hearings being 'pushed to breaking point' (analysis, May 11).

  15. Improving Ms Estimates by Calibrating Variable-Period Magnitude Scales at Regional Distances

    DTIC Science & Technology

    2008-09-01

    TF), or oblique - slip variations of normal and thrust faults using the Zoback (1992) classification scheme. For normal faults , 2008 Monitoring...between the observed and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with...between true and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with other

  16. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    PubMed

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Structure formation in f(T) gravity and a solution for H0 tension

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2018-05-01

    We investigate the evolution of scalar perturbations in f(T) teleparallel gravity and its effects on the cosmic microwave background (CMB) anisotropy. The f(T) gravity generalizes the teleparallel gravity which is formulated on the Weitzenböck spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. For the first time, we derive the observational constraints on the modified teleparallel gravity using the CMB temperature power spectrum from Planck's estimation, in addition to data from baryonic acoustic oscillations (BAO) and local Hubble constant measurements. We find that a small deviation of the f(T) gravity model from the ΛCDM cosmology is slightly favored. Besides that, the f(T) gravity model does not show tension on the Hubble constant that prevails in the ΛCDM cosmology. It is clear that f(T) gravity is also consistent with the CMB observations, and undoubtedly it can serve as a viable candidate amongst other modified gravity theories.

  18. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    PubMed

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Advanced sampling techniques for hand-held FT-IR instrumentation

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Frunzi, Michael; Weber, Chris; Levy, Dustin

    2013-05-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenging ConOps in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, extreme reliability, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the HazMatID™ Elite, a FT-IR instrument designed to balance the portability advantages of a handheld device with the performance challenges associated with miniaturization. In this paper, special focus will be given to the HazMatID Elite's sampling interfaces optimized to collect and interrogate different types of samples: accumulated material using the on-board ATR press, dispersed powders using the ClearSampler™ tool, and the touch-to-sample sensor for direct liquid sampling. The application of the novel sample swipe accessory (ClearSampler) to collect material from surfaces will be discussed in some detail. The accessory was tested and evaluated for the detection of explosive residues before and after detonation. Experimental results derived from these investigations will be described in an effort to outline the advantages of this technology over existing sampling methods.

  20. Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.

    PubMed

    Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E

    2016-01-19

    Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system.

  1. Experimental demonstration of the possible role of Acanthamoeba polyphaga in the infection and disease progression in Buruli Ulcer (BU) using ICR mice

    PubMed Central

    Azumah, Bright K.; Addo, Phyllis G.; Dodoo, Alfred; Awandare, Gordon; Mosi, Lydia; Boakye, Daniel A.

    2017-01-01

    The transmission of Buruli ulcer (BU), caused by Mycobacterium ulcerans (MU), remains puzzling although a number of hypothesis including through bites of infected aquatic insects have been proposed. We report the results of experiments using ICR mice that give credence to our hypothesis that Acanthamoeba species may play a role in BU transmission. We cocultured MU N2 and MU 1615 which expresses red fluorescent protein (RFP) and Acanthamoeba polyphaga (AP), and confirmed infected AP by Ziehl-Neelsen (ZN) staining. We tested for viability of MU inside AP and observed strong RFP signals inside both trophozoites and cysts after 3 and 42 days of coculturing respectively. ICR mice were topically treated, either on shaved intact or shaved pinpricked rumps, with one of the following; MU N2 only (2.25 x 106 colony forming units [CFU] / ml), MU N2:AP coculture (2.96 x 104 CFU: 1.6 x 106 cells/ml), AP only (1.6 x 106 cells/ml), PYG medium and sterile distilled water. Both MU N2 only and MU N2:AP elicited reddening on day (D) 31; edema on D 45 and D 44 respectively, and ulcers on D 49 at pinpricked sites only. To ascertain infectivity and pathogenicity of MU N2 only and MU N2:AP, and compare their virulence, the standard mouse footpad inoculation method was used. MU N2:AP elicited reddening in footpads by D 3 compared to D 14 with MU N2 only of the same dose of MU N2 (2.96 x 104 CFU). ZN-stained MU were observed in both thin sectioned and homogenized lesions, and aspirates from infected sites. Viable MU N2 were recovered from cultures of the homogenates and aspirates. This study demonstrates in ICR mice MU transmission via passive infection, and shows that punctures in the skin are prerequisite for infection, and that coculturing of MU with AP enhances pathogenesis. PMID:28329001

  2. The Histone Acetyltransferase Gcn5 Regulates ncRNA-ICR1 and FLO11 Expression during Pseudohyphal Development in Saccharomyces cerevisiae

    PubMed Central

    Wang, Long-Chi; Montalvo-Munoz, Fernando; Tsai, Yuan-Chan; Liang, Chung-Yi; Chang, Chun-Chuan; Lo, Wan-Sheng

    2015-01-01

    Filamentous growth is one of the key features of pathogenic fungi during the early infectious phase. The pseudohyphal development of yeast Saccharomyces cerevisiae shares similar characteristics with hyphae elongation in pathogenic fungi. The expression of FLO11 is essential for adhesive growth and filament formation in yeast and is governed by a multilayered transcriptional network. Here we discovered a role for the histone acetyltransferase general control nonderepressible 5 (Gcn5) in regulating FLO11-mediated pseudohyphal growth. The expression patterns of FLO11 were distinct in haploid and diploid yeast under amino acid starvation induced by 3-amino-1,2,4-triazole (3AT). In diploids, FLO11 expression was substantially induced at a very early stage of pseudohyphal development and decreased quickly, but in haploids, it was gradually induced. Furthermore, the transcription factor Gcn4 was recruited to the Sfl1-Flo8 toggle sites at the FLO11 promoter under 3AT treatment. Moreover, the histone acetylase activity of Gcn5 was required for FLO11 induction. Finally, Gcn5 functioned as a negative regulator of the noncoding RNA ICR1, which is known to suppress FLO11 expression. Gcn5 plays an important role in the regulatory network of FLO11 expression via Gcn4 by downregulating ICR1 expression, which derepresses FLO11 for promoting pseudohyphal development. PMID:25922832

  3. Urine Multi-drug Screening with GC-MS or LC-MS-MS Using SALLE-hybrid PPT/SPE.

    PubMed

    Lee, Junhui; Park, Jiwon; Go, Ahra; Moon, Heesung; Kim, Sujin; Jung, Sohee; Jeong, Wonjoon; Chung, Heesun

    2018-05-14

    To intoxicated patients in the emergency room, toxicological analysis can be considerably helpful for identifying the involved toxicants. In order to develop a urine multi-drug screening (UmDS) method, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS-MS) were used to determine targeted and unknown toxicants in urine. A GC-MS method in scan mode was validated for selectivity, limit of detection (LOD) and recovery. An LC-MS-MS multiple reaction monitoring (MRM) method was validated for lower LOD, recovery and matrix effect. The results of the screening analysis were compared with patient medical records to check the reliability of the screen. Urine samples collected from an emergency room were extracted through a combination of salting-out assisted liquid-liquid extraction (SALLE) and hybrid protein precipitation/solid phase extraction (hybrid PPT/SPE) plates and examined by GC-MS and LC-MS-MS. GC-MS analysis was performed as unknown drug screen and LC-MS-MS analysis was conducted as targeted drug screen. After analysis by GC-MS, a library search was conducted using an in-house library established with the automated mass spectral deconvolution and identification system (AMDISTM). LC-MS-MS used Cliquid®2.0 software for data processing and acquisition in MRM mode. An UmDS method by GC-MS and LC-MS-MS was developed by using a SALLE-hybrid PPT/SPE and in-house library. The results of UmDS by GC-MS and LC-MS-MS showed that toxicants could be identified from 185 emergency room patient samples containing unknown toxicants. Zolpidem, acetaminophen and citalopram were the most frequently encountered drugs in emergency room patients. The UmDS analysis developed in this study can be used effectively to detect toxic substances in a short time. Hence, it could be utilized in clinical and forensic toxicology practices.

  4. MS Based Metabonomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Want, Elizabeth J.; Metz, Thomas O.

    Metabonomics is the latest and least mature of the systems biology triad, which also includes genomics and proteomics, and has its origins in the early orthomolecular medicine work pioneered by Linus Pauling and Arthur Robinson. It was defined by Nicholson and colleagues in 1999 as the quantitative measurement of perturbations in the metabolite complement of an integrated biological system in response to internal or external stimuli, and is often used today to describe many non-global types of metabolite analyses. Applications of metabonomics are extensive and include toxicology, nutrition, pharmaceutical research and development, physiological monitoring and disease diagnosis. For example, bloodmore » samples from millions of neonates are tested routinely by mass spectrometry (MS) as a diagnostic tool for inborn errors of metabolism. The metabonome encompasses a wide range of structurally diverse metabolites; therefore, no single analytical platform will be sufficient. Specialized sample preparation and detection techniques are required, and advances in NMR and MS technologies have led to enhanced metabonome coverage, which in turn demands improved data analysis approaches. The role of MS in metabonomics is still evolving as instrumentation and software becomes more sophisticated and as researchers realize the strengths and limitations of current technology. MS offers a wide dynamic range, high sensitivity, and reproducible, quantitative analysis. These attributes are essential for addressing the challenges of metabonomics, as the range of metabolite concentrations easily exceeds nine orders of magnitude in biofluids, and the diversity of molecular species ranges from simple amino and organic acids to lipids and complex carbohydrates. Additional challenges arise in generating a comprehensive metabolite profile, downstream data processing and analysis, and structural characterization of important metabolites. A typical workflow of MS-based metabonomics is shown

  5. The effect of FT500 Plus(®) on ovarian stimulation in PCOS women.

    PubMed

    Alviggi, Carlo; Cariati, Federica; Conforti, Alessandro; De Rosa, Pasquale; Vallone, Roberta; Strina, Ida; Pivonello, Rosario; De Placido, Giuseppe

    2016-01-01

    Both oxidative stress and polycystic ovary syndrome have been involved in several aspects of female reproduction. In this retrospective observational study, the outcome of controlled ovarian stimulation and follicular microenvironment of twenty-five women affected by PCOS (Group A) have been explored, evaluating the effects of myo-inositol in association with antioxidant activities (FT500 Plus(®)). Twenty-five untreated-PCOS women (Group B) with similar characteristics served as control group. Although there was no difference in ovarian volume at time zero, this parameter was significantly smaller at the 5-month follow-up in the Group A (11.1±0.9 versus 13.5±1; P=0.0001). Group A showed a significant increase in the number of MII oocytes (6.3±2.5 versus 4.5±2; P=0.03) and glutathione peroxidase activity in follicular fluid (15.4±6.2 versus 11±2.2; P=0.04). FT500 Plus(®) may be considered in PCOS patient for improving oocyte quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    PubMed

    Walworth, Aaron E; Chai, Benli; Song, Guo-Qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these

  7. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance.

    PubMed

    Sun, Hongbo; Jia, Zhen; Cao, Dong; Jiang, Bingjun; Wu, Cunxiang; Hou, Wensheng; Liu, Yike; Fei, Zhihong; Zhao, Dazhong; Han, Tianfu

    2011-01-01

    Flowering reversion can be induced in soybean (Glycine max L. Merr.), a typical short-day (SD) dicot, by switching from SD to long-day (LD) photoperiods. This process may involve florigen, putatively encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana. However, little is known about the potential function of soybean FT homologs in flowering reversion. A photoperiod-responsive FT homologue GmFT (renamed as GmFT2a hereafter) was cloned from the photoperiod-sensitive cultivar Zigongdongdou. GmFT2a gene expression under different photoperiods was analyzed by real-time quantitative PCR. In situ hybridization showed direct evidence for its expression during flowering-related processes. GmFT2a was shown to promote flowering using transgenic studies in Arabidopsis and soybean. The effects of photoperiod and temperature on GmFT2a expression were also analyzed in two cultivars with different photoperiod-sensitivities. GmFT2a expression is regulated by photoperiod. Analyses of GmFT2a transcripts revealed a strong correlation between GmFT2a expression and flowering maintenance. GmFT2a transcripts were observed continuously within the vascular tissue up to the shoot apex during flowering. By contrast, transcripts decreased to undetectable levels during flowering reversion. In grafting experiments, the early-flowering, photoperiod-insensitive stock Heihe27 promotes the appearance of GmFT2a transcripts in the shoot apex of scion Zigongdongdou under noninductive LD conditions. The photothermal effects of GmFT2a expression diversity in cultivars with different photoperiod-sensitivities and a hypothesis is proposed. GmFT2a expression is associated with flowering induction and maintenance. Therefore, GmFT2a is a potential target gene for soybean breeding, with the aim of increasing geographic adaptation of this crop.

  8. Improving and Measuring Inpatient Documentation of Medical Care within the MS-DRG System: Education, Monitoring, and Normalized Case Mix Index

    PubMed Central

    Rosenbaum, Benjamin P.; Lorenz, Robert R.; Luther, Ralph B.; Knowles-Ward, Lisa; Kelly, Dianne L.; Weil, Robert J.

    2014-01-01

    Documentation of the care delivered to hospitalized patients is a ubiquitous and important aspect of medical care. The majority of references to documentation and coding are based on the Centers for Medicare and Medicaid Services (CMS) Medicare Severity Diagnosis Related Group (MS-DRG) inpatient prospective payment system (IPPS). We educated the members of a clinical care team in a single department (neurosurgery) at our hospital. We measured subsequent documentation improvements in a simple, meaningful, and reproducible fashion. We created a new metric to measure documentation, termed the “normalized case mix index,” that allows comparison of hospitalizations across multiple unrelated MS-DRG groups. Compared to one year earlier, the traditional case mix index, normalized case mix index, severity of illness, and risk of mortality increased one year after the educational intervention. We encourage other organizations to implement and systematically monitor documentation improvement efforts when attempting to determine the accuracy and quality of documentation achieved. PMID:25214820

  9. Improving and measuring inpatient documentation of medical care within the MS-DRG system: education, monitoring, and normalized case mix index.

    PubMed

    Rosenbaum, Benjamin P; Lorenz, Robert R; Luther, Ralph B; Knowles-Ward, Lisa; Kelly, Dianne L; Weil, Robert J

    2014-01-01

    Documentation of the care delivered to hospitalized patients is a ubiquitous and important aspect of medical care. The majority of references to documentation and coding are based on the Centers for Medicare and Medicaid Services (CMS) Medicare Severity Diagnosis Related Group (MS-DRG) inpatient prospective payment system (IPPS). We educated the members of a clinical care team in a single department (neurosurgery) at our hospital. We measured subsequent documentation improvements in a simple, meaningful, and reproducible fashion. We created a new metric to measure documentation, termed the "normalized case mix index," that allows comparison of hospitalizations across multiple unrelated MS-DRG groups. Compared to one year earlier, the traditional case mix index, normalized case mix index, severity of illness, and risk of mortality increased one year after the educational intervention. We encourage other organizations to implement and systematically monitor documentation improvement efforts when attempting to determine the accuracy and quality of documentation achieved.

  10. mzDB: A File Format Using Multiple Indexing Strategies for the Efficient Analysis of Large LC-MS/MS and SWATH-MS Data Sets*

    PubMed Central

    Bouyssié, David; Dubois, Marc; Nasso, Sara; Gonzalez de Peredo, Anne; Burlet-Schiltz, Odile; Aebersold, Ruedi; Monsarrat, Bernard

    2015-01-01

    The analysis and management of MS data, especially those generated by data independent MS acquisition, exemplified by SWATH-MS, pose significant challenges for proteomics bioinformatics. The large size and vast amount of information inherent to these data sets need to be properly structured to enable an efficient and straightforward extraction of the signals used to identify specific target peptides. Standard XML based formats are not well suited to large MS data files, for example, those generated by SWATH-MS, and compromise high-throughput data processing and storing. We developed mzDB, an efficient file format for large MS data sets. It relies on the SQLite software library and consists of a standardized and portable server-less single-file database. An optimized 3D indexing approach is adopted, where the LC-MS coordinates (retention time and m/z), along with the precursor m/z for SWATH-MS data, are used to query the database for data extraction. In comparison with XML formats, mzDB saves ∼25% of storage space and improves access times by a factor of twofold up to even 2000-fold, depending on the particular data access. Similarly, mzDB shows also slightly to significantly lower access times in comparison with other formats like mz5. Both C++ and Java implementations, converting raw or XML formats to mzDB and providing access methods, will be released under permissive license. mzDB can be easily accessed by the SQLite C library and its drivers for all major languages, and browsed with existing dedicated GUIs. The mzDB described here can boost existing mass spectrometry data analysis pipelines, offering unprecedented performance in terms of efficiency, portability, compactness, and flexibility. PMID:25505153

  11. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi.

    PubMed

    Normand, Anne-Cécile; Cassagne, Carole; Ranque, Stéphane; L'ollivier, Coralie; Fourquet, Patrick; Roesems, Sam; Hendrickx, Marijke; Piarroux, Renaud

    2013-04-08

    The poor reproducibility of matrix-assisted desorption/ionization time-of-flight (MALDI-TOF) spectra limits the effectiveness of the MALDI-TOF MS-based identification of filamentous fungi with highly heterogeneous phenotypes in routine clinical laboratories. This study aimed to enhance the MALDI-TOF MS-based identification of filamentous fungi by assessing several architectures of reference spectrum libraries. We established reference spectrum libraries that included 30 filamentous fungus species with various architectures characterized by distinct combinations of the following: i) technical replicates, i.e., the number of analyzed deposits for each culture used to build a reference meta-spectrum (RMS); ii) biological replicates, i.e., the number of RMS derived from the distinct subculture of each strain; and iii) the number of distinct strains of a given species. We then compared the effectiveness of each library in the identification of 200 prospectively collected clinical isolates, including 38 species in 28 genera.Identification effectiveness was improved by increasing the number of both RMS per strain (p<10-4) and strains for a given species (p<10-4) in a multivariate analysis. Addressing the heterogeneity of MALDI-TOF spectra derived from filamentous fungi by increasing the number of RMS obtained from distinct subcultures of strains included in the reference spectra library markedly improved the effectiveness of the MALDI-TOF MS-based identification of clinical filamentous fungi.

  12. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi

    PubMed Central

    2013-01-01

    Background The poor reproducibility of matrix-assisted desorption/ionization time-of-flight (MALDI-TOF) spectra limits the effectiveness of the MALDI-TOF MS-based identification of filamentous fungi with highly heterogeneous phenotypes in routine clinical laboratories. This study aimed to enhance the MALDI-TOF MS-based identification of filamentous fungi by assessing several architectures of reference spectrum libraries. Results We established reference spectrum libraries that included 30 filamentous fungus species with various architectures characterized by distinct combinations of the following: i) technical replicates, i.e., the number of analyzed deposits for each culture used to build a reference meta-spectrum (RMS); ii) biological replicates, i.e., the number of RMS derived from the distinct subculture of each strain; and iii) the number of distinct strains of a given species. We then compared the effectiveness of each library in the identification of 200 prospectively collected clinical isolates, including 38 species in 28 genera. Identification effectiveness was improved by increasing the number of both RMS per strain (p<10-4) and strains for a given species (p<10-4) in a multivariate analysis. Conclusion Addressing the heterogeneity of MALDI-TOF spectra derived from filamentous fungi by increasing the number of RMS obtained from distinct subcultures of strains included in the reference spectra library markedly improved the effectiveness of the MALDI-TOF MS-based identification of clinical filamentous fungi. PMID:23565856

  13. Determination of N-nitrosodimethylamine in drinking water by UPLC-MS/MS.

    PubMed

    Wang, Wanfeng; Hu, Jianying; Yu, Jianwei; Yang, Min

    2010-01-01

    The method for detecting N-nitrosodimethylamine (NDMA) in drinking water using ultra performance liquid chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS) was improved by optimizing the clean-up procedure to remove the matrix interference in pretreatment process, and was then applied to a survey of NDMA in both raw and finished water samples from five water treatment plants in South China. The NDMA concentrations ranged from 4.7 to 15.1 ng/L in raw water samples, and from 4.68 to 46.9 ng/L in finished water. The NDMA concentration in raw water was found to be related with nitrite concentration, and during the treatment, the NDMA concentration increased following ozonation but decreased after subsequent activated carbon treatment.

  14. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  15. LC-MS and MS/MS in the analysis of recombinant proteins

    NASA Astrophysics Data System (ADS)

    Coulot, M.; Domon, B.; Grossenbacher, H.; Guenat, C.; Maerki, W.; Müller, D. R.; Richter, W. J.

    1993-03-01

    Applicability and performance of electrospray ionization mass spectrometry (ESIMS) is demonstrated for protein analysis. ESIMS is applied in conjunction with on-line HPLC (LC-ESlMS) and direct tandem mass spectrometry (positive and negative ion mode ESlMS/MS) to the structural characterization of a recombinant protein (r-hirudin variant 1) and a congener phosphorylated at threonine 45 (RP-1).

  16. Acid-base properties, FT-IR, FT-Raman spectroscopy and computational study of 1-(pyrid-4-yl)piperazine.

    PubMed

    Mary, Y Sheena; Panicker, C Yohannan; Varghese, Hema Tresa; Van Alsenoy, Christian; Procházková, Markéta; Sevčík, Richard; Pazdera, Pavel

    2014-01-01

    We report the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy for 1-(pyrid-4-yl)piperazine (PyPi). Single crystals of PyPi suitable for X-ray structural analysis were obtained. The acid-base properties are also reported. PyPi supported on a weak acid cation-exchanger in the single protonated form and this system can be used efficiently as the solid supported analogue of 4-N,N-dimethyl-aminopyridine. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule and with the molecular electrostatic potential map was applied for the reactivity assessment of PyPi molecule toward proton, electrophiles and nucleopholes as well. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of PyPi is 17.46 times that of urea. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  18. High-throughput quantitation of amino acids in rat and mouse biological matrices using stable isotope labeling and UPLC-MS/MS analysis.

    PubMed

    Takach, Edward; O'Shea, Thomas; Liu, Hanlan

    2014-08-01

    Quantifying amino acids in biological matrices is typically performed using liquid chromatography (LC) coupled with fluorescent detection (FLD), requiring both derivatization and complete baseline separation of all amino acids. Due to its high specificity and sensitivity, the use of UPLC-MS/MS eliminates the derivatization step and allows for overlapping amino acid retention times thereby shortening the analysis time. Furthermore, combining UPLC-MS/MS with stable isotope labeling (e.g., isobaric tag for relative and absolute quantitation, i.e., iTRAQ) of amino acids enables quantitation while maintaining sensitivity, selectivity and speed of analysis. In this study, we report combining UPLC-MS/MS analysis with iTRAQ labeling of amino acids resulting in the elution and quantitation of 44 amino acids within 5 min demonstrating the speed and convenience of this assay over established approaches. This chromatographic analysis time represented a 5-fold improvement over the conventional HPLC-MS/MS method developed in our laboratory. In addition, the UPLC-MS/MS method demonstrated improvements in both specificity and sensitivity without loss of precision. In comparing UPLC-MS/MS and HPLC-MS/MS results of 32 detected amino acids, only 2 amino acids exhibited imprecision (RSD) >15% using UPLC-MS/MS, while 9 amino acids exhibited RSD >15% using HPLC-MS/MS. Evaluating intra- and inter-assay precision over 3 days, the quantitation range for 32 detected amino acids in rat plasma was 0.90-497 μM, with overall mean intra-day precision of less than 15% and mean inter-day precision of 12%. This UPLC-MS/MS assay was successfully implemented for the quantitative analysis of amino acids in rat and mouse plasma, along with mouse urine and tissue samples, resulting in the following concentration ranges: 0.98-431 μM in mouse plasma for 32 detected amino acids; 0.62-443 μM in rat plasma for 32 detected amino acids; 0.44-8590μM in mouse liver for 33 detected amino acids; 0.61-1241

  19. General Unknown Screening by Ion Trap LC/MS/MS

    DTIC Science & Technology

    2010-04-01

    Subtitle 5 . Report Date April 2010 General Unknown Screening by Ion Trap LC/MS/MS 6 . Performing Organization Code 7. Author(s) 8... 5 Table 1: Analytical Data for Each of the...359 Compounds in the LC/MS/MS Library . . . . . . . . . . . 6 1 General Unknown ScreeninG by ion Trap lc/MS/MS INTrOduCTION The Federal Aviation

  20. Agrobacterium-mediated transient MaFT expression in mulberry (Morus alba L.) leaves.

    PubMed

    Wu, Su-Li; Yang, Xiao-Bing; Liu, Li-Qun; Jiang, Tao; Wu, Hai; Su, Chao; Qian, Yong-Hua; Jiao, Feng

    2015-01-01

    To optimize Agrobacterium-mediated transient transformation assay in mulberry (Morus alba L.), various infiltration methods, Agrobacterium tumefaciens (A. tumefaciens) strains, and bacterial concentrations were tested in mulberry seedlings. Compared with LBA4404, GV3101 harboring pBE2133 plasmids presented stronger GUS signals at 3 days post infiltration using syringe. Recombinant plasmids pBE2133:GFP and pBE2133:GFP:MaFT were successfully constructed. Transient expression of MaFT:GFP protein was found in leaves, petiole (cross section), and shoot apical meristem (SAM) of mulberry according to the GFP signal. Moreover, MaFT:GFP mRNA was also detected in leaves and SAM via RT-PCR and qRT-PCR. An efficient transient transformation system could be achieved in mulberry seedlings by syringe using A. tumefaciens GV3101 at the OD600 of 0.5. The movement of MaFT expression from leaves to SAM might trigger the precocious flowering of mulberry.

  1. Dementia in MS complicated by coexistent Alzheimer disease

    PubMed Central

    Flanagan, Eoin P.; Knopman, David S.

    2014-01-01

    Summary Distinguishing dementia due to multiple sclerosis (MS) from that of an accompanying neurodegenerative dementia coexisting with MS has been difficult. The recent introduction of Alzheimer disease (AD) biomarkers of amyloid-β and neuronal degeneration has improved diagnosis of AD premortem. We describe 3 patients with MS with coexisting AD, 1 diagnosed at autopsy before AD biomarkers were available and 2 diagnosed premortem by decreased CSF amyloid-β1-42/tau index, MRI, and 18F-flourodeoxyglucose-PET patterns. AD biomarkers may be of diagnostic value in selected patients with severe dementia and MS. PMID:25110620

  2. Characterization of self assembly layers of octadecanephosphonic acid by polarisation modulation FT-IRRA spectroscopy mapping

    NASA Astrophysics Data System (ADS)

    Steiner, G.; Sablinskas, V.; Savchuk, O.; Bariseviciute, R.; Jähne, E.; Adler, H. J.; Salzer, R.

    2003-12-01

    Self assembly layers were studied by a polarization modulation FT-spectroscopy mapping technique. The optical lay out is based on polarization modulation FT infrared reflection absorption spectroscopy (PM-FT-IRRAS). Here we report for the first time on a PM-FT-IRRAS mapping instrument. Octadecanephosphonic acid adsorbed on a patterned aluminum/gold surface was investigated. The nature of chemical bonding at particular surface areas was evaluated by principal component analysis. The most prominent features of the PM-FT-IRRA spectra are the P-O and PO stretching vibrations. It is shown that octadecanephosphonic acid is adsorbed both on Al 2O 3 and on Au. Moreover, PM-FT-IRRAS maps reveal areas of non-equivalent structural features. Lateral dimensions of these areas are in the micrometer range. Such non-equivalencies may control the inhibition potential of SAMs on ignoble metals, hence become crucial to the quality of products as biosensors or microelectronic components.

  3. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    PubMed

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Sulfonium Ion Derivatization, Isobaric Stable Isotope Labeling and Data Dependent CID- and ETD-MS/MS for Enhanced Phosphopeptide Quantitation, Identification and Phosphorylation Site Characterization

    PubMed Central

    Lu, Yali; Zhou, Xiao; Stemmer, Paul M.; Reid, Gavin E.

    2014-01-01

    An amine specific peptide derivatization strategy involving the use of novel isobaric stable isotope encoded ‘fixed charge’ sulfonium ion reagents, coupled with an analysis strategy employing capillary HPLC, ESI-MS, and automated data dependent ion trap CID-MS/MS, -MS3, and/or ETD-MS/MS, has been developed for the improved quantitative analysis of protein phosphorylation, and for identification and characterization of their site(s) of modification. Derivatization of 50 synthetic phosphopeptides with S,S′-dimethylthiobutanoylhydroxysuccinimide ester iodide (DMBNHS), followed by analysis using capillary HPLC-ESI-MS, yielded an average 2.5-fold increase in ionization efficiencies and a significant increase in the presence and/or abundance of higher charge state precursor ions compared to the non-derivatized phosphopeptides. Notably, 44% of the phosphopeptides (22 of 50) in their underivatized states yielded precursor ions whose maximum charge states corresponded to +2, while only 8% (4 of 50) remained at this maximum charge state following DMBNHS derivatization. Quantitative analysis was achieved by measuring the abundances of the diagnostic product ions corresponding to the neutral losses of ‘light’ (S(CH3)2) and ‘heavy’ (S(CD3)2) dimethylsulfide exclusively formed upon CID-MS/MS of isobaric stable isotope labeled forms of the DMBNHS derivatized phosphopeptides. Under these conditions, the phosphate group stayed intact. Access for a greater number of peptides to provide enhanced phosphopeptide sequence identification and phosphorylation site characterization was achieved via automated data-dependent CID-MS3 or ETD-MS/MS analysis due to the formation of the higher charge state precursor ions. Importantly, improved sequence coverage was observed using ETD-MS/MS following introduction of the sulfonium ion fixed charge, but with no detrimental effects on ETD fragmentation efficiency. PMID:21952753

  5. Characterization of non-polar aromatic hydrocarbons in crude oil using atmospheric pressure laser ionization and Fourier transform ion cyclotron resonance mass spectrometry (APLI FT-ICR MS).

    PubMed

    Schrader, Wolfgang; Panda, Saroj K; Brockmann, Klaus J; Benter, Thorsten

    2008-07-01

    We report on the successful application of the recently introduced atmospheric pressure laser ionization (APLI) method as a novel tool for the analysis of crude oil and its components. Using Fourier transform ion cyclotron resonance mass spectrometry, unambiguous determination of key compounds in this complex matrix with unprecedented sensitivity is presented.

  6. Direct and rapid determination of cotton maturity by FT-Mid-IR technique

    USDA-ARS?s Scientific Manuscript database

    FT-mid-IR (FT-MIR) spectra of seed and lint cottons were collected to explore the potential for the discrimination of immature cottons from mature ones and also for the determination of actual cotton maturity. Spectral features of immature and mature cottons revealed large differences in the 1200-90...

  7. Ft. Mojave Smoke Shop Minor NSR Permit Application

    EPA Pesticide Factsheets

    Tribal Minor New Source Review (NSR) Permit application submitted by Environmental Technology Inc. for soil & groundwater remediation at the Ft. Mojave Smoke Shop, 8501 S. Highway 95 Mojave Valley, AZ 86440.

  8. FT 3 Flight Test Cards for Export

    NASA Technical Reports Server (NTRS)

    Marston, Michael L.

    2015-01-01

    These flight test cards will be made available to stakeholders who participated in FT3. NASA entered into the relationship with our stakeholders, including the FAA, to develop requirements that will lead to routine flights of unmanned aircraft systems flying in the national airspace system.

  9. The potential of combining ion trap/MS/MS and TOF/MS for identification of emerging contaminants

    USGS Publications Warehouse

    Ferrer, I.; Furlong, E.T.; Heine, C.E.; Thurman, E.M.

    2002-01-01

    The use of a method combining ion trap tandem mass spectrometry (MS/MS) and time of flight mass spectrometry (TOF/MS) for identification of emerging contaminates was discussed. The two tools together complemented each other in sensitivity, fragmentation and accurate mass determination. Liquid chromatography/electrospray ionization/ion-trap tandem mass spectrometry (LC/ESI/MS/MS), in positive ion mode of operation, was used to separate and identify specific compounds. Diagnostic fragment ions were obtained for a polyethyleneglycol(PEG) homolog by ion trap MS/MS, and fragments were measured by TOF/MS. It was observed that the combined method gave an exact mass measurement that differed from the calculated mass.

  10. Increased extrusion and ICRS grades at 2-year follow-up following transtibial medial meniscal root repair evaluated by MRI.

    PubMed

    Kaplan, Daniel J; Alaia, Erin F; Dold, Andrew P; Meislin, Robert J; Strauss, Eric J; Jazrawi, Laith M; Alaia, Michael J

    2017-11-02

    The purpose of the current study was to evaluate the short-term results of meniscal root repair surgery, assessing clinical and radiographic outcomes, utilizing MRI to assess root healing and extent of post-operative extrusion. This was a single-center, retrospective study evaluating patients who had undergone a medial meniscus posterior root repair using a transtibial pullout technique with two locking cinch sutures. Demographic data were collected from patient charts. Clinical outcomes were assessed with pre- and post-operative IKDC and Lysholm scores. Pre-op scores were taken at the patients' initial clinical visit, mean 1.55 months prior to surgery (± 1.8 months, min 0.3, max 7.3). Radiographic outcomes were assessed with MRI evaluation of root healing, meniscal extrusion, and cartilage degeneration using ICRS criteria. Tunnel placement was evaluated and compared to the anatomic footprint. Eighteen patients (47.2 years ± 11.9) were evaluated at mean follow-up of 24.9 months (± 7.2, min 18.4, max 35.6). The IKDC score significantly increased from 45.9 (± 12.6) pre-operatively to 76.8 (± 14.7) post-operatively (p < 0.001). Lysholm scores also increased from 50.9 (± 7.11) to 87.1 (± 9.8) (p < 0.001). Mean tunnel placement was 5.3 mm (± 3.5, range 0-11.8) away from the anatomic footprint. Mean extrusion increased from 4.74 mm (± 1.7) pre-operatively to 5.98 (± 2.8) post-operatively (p < 0.02). No patients with > 3 mm of extrusion on pre-operative MRI had < 3 mm of extrusion on post-operative MRI. Both medial femoral condyle and medial tibial plateau ICRS grades worsened significantly (p < 0.02 and p < 0.01, respectively). On MRI, one root appeared completely healed, 16 partially healed, and one not healed. Patients treated with the transtibial suture pull-out technique with two locking cinch sutures had improved clinical outcomes, but only partial healing in the majority of cases, increased extrusion

  11. Ranking Fragment Ions Based on Outlier Detection for Improved Label-Free Quantification in Data-Independent Acquisition LC-MS/MS

    PubMed Central

    Bilbao, Aivett; Zhang, Ying; Varesio, Emmanuel; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard

    2016-01-01

    Data-independent acquisition LC-MS/MS techniques complement supervised methods for peptide quantification. However, due to the wide precursor isolation windows, these techniques are prone to interference at the fragment ion level, which in turn is detrimental for accurate quantification. The “non-outlier fragment ion” (NOFI) ranking algorithm has been developed to assign low priority to fragment ions affected by interference. By using the optimal subset of high priority fragment ions these interfered fragment ions are effectively excluded from quantification. NOFI represents each fragment ion as a vector of four dimensions related to chromatographic and MS fragmentation attributes and applies multivariate outlier detection techniques. Benchmarking conducted on a well-defined quantitative dataset (i.e. the SWATH Gold Standard), indicates that NOFI on average is able to accurately quantify 11-25% more peptides than the commonly used Top-N library intensity ranking method. The sum of the area of the Top3-5 NOFIs produces similar coefficients of variation as compared to the library intensity method but with more accurate quantification results. On a biologically relevant human dendritic cell digest dataset, NOFI properly assigns low priority ranks to 85% of annotated interferences, resulting in sensitivity values between 0.92 and 0.80 against 0.76 for the Spectronaut interference detection algorithm. PMID:26412574

  12. Quantum mechanical, spectroscopic study (FT-IR and FT - Raman), NBO analysis, HOMO-LUMO, first order hyperpolarizability and docking studies of a non-steroidal anti-inflammatory compound

    NASA Astrophysics Data System (ADS)

    Sakthivel, S.; Alagesan, T.; Muthu, S.; Abraham, Christina Susan; Geetha, E.

    2018-03-01

    Experimental and theoretical studies on the optimized geometrical structure, electronic and vibrational characteristics of (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid are presented employing B3LYP/6-311++G (d,p) basis set. Simulated FT-IR and FT-Raman spectra were in concurrence with the observed spectra attained in a spectral range of FT-IR (4000 - 400 cm-1) and FT-Raman (4000 - 100 cm-1). Quantum chemical calculations and the comprehensive vibrational assignments of wavenumbers of the optimized geometry using Potential Energy Distribution (PED) were calculated with scaled quantum mechanics. The infrared intensities and Raman intensities of (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid were reported. Frontier molecular orbital analysis and reactivity parameters were calculated. Molecular Electrostatic Potential (MEP), Natural Bond Orbital (NBO) analysis, Non Linear Optical (NLO) behavior and thermodynamic properties were studied. In addition, the Mulliken charge distribution and Fukui function were analyzed. Molecular docking was used to dock in the title molecule into the active site of the protein 5L9B which belongs to the class of proteins exhibiting the property as a HIF1A (Hypoxia-inducible factor 1-alpha) expression inhibitor and the minimum binding energy was detected to be -6.2 kcal/mol.

  13. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    PubMed

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.

  14. SWiFT site atmospheric characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Christopher Lee; Ennis, Brandon Lee

    2016-01-01

    Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with themore » average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.« less

  15. FT-IR SOLUTION SPECTRA OF PROPYL SULFIDE, PROPYL SULFOXIDE, AND PROPYL SULFONE

    EPA Science Inventory

    FT-IR spectra were obtained of 0.5% volumetric solutions of propyl sulfide, propyl sulfoxide, and propyl sulfone in hexane, CCl4, CS2, and CHCl3 to assist in the assignment of FT-IR-PAS spectra of propyl sulfoxide sorbed within the structure of several peats and onto cellulose. T...

  16. Ft1, a novel gene related to ubiquitin-conjugating enzymes, is deleted in the Fused toes mouse mutation.

    PubMed

    Lesche, R; Peetz, A; van der Hoeven, F; Rüther, U

    1997-12-01

    The dominant mouse mutation Fused toes is characterized by partial syndactyly of the limbs and thymic hyperplasia. Both morphological abnormalities were shown to be related to impaired regulation of programmed cell death. Ft/Ft embryos die in midgestation showing severe malformations of fore- and midbrain as well as randomized situs. In Ft mice a large chromosomal deletion (about 300 kb) occurred after insertional mutagenesis. In this report we describe the identification of the first gene that has been mutated by Fused toes. The expression of the novel gene Ft1 is reduced in Ft/+ mice and completely absent in Ft/Ft embryos. Analysis of the Ft1 cDNA revealed an open reading frame that could code for a 32-kDa protein with similarities to ubiquitin-conjugating enzymes. Ft1 transcripts with alternative 5' UTR sequences as well as differential usage of polyadenylation sites were found. Interestingly, the 3' parts of the longest Ft1 transcripts are identical to the reverse complement of the 3'-most sequences of the Rb-related p130 gene. Both genes are transcribed in opposite directions and overlap in their 3' UTRs. Despite the close linkage, p130 expression appeared not to be affected by the Ft mutation. In wild type mice, Ft1 expression levels were found to be high in brain, kidney, and testes and detectable in all other adult organs and throughout embryonic development. Finally, we show that Ft1 is conserved among mammals and identify the human homolog.

  17. Factors Associated with Neurologists' Provision of MS Patient Care

    PubMed Central

    Halpern, Michael T.; Teixeira-Poit, Stephanie M.; Kane, Heather; Frost, Corey; Keating, Michael; Olmsted, Murrey

    2014-01-01

    Neurologists are central to providing quality care for individuals with MS. However, neurologist shortages may restrict access to care for MS patients. To examine factors influencing neurologists' provision of MS care, we surveyed 1,700 US neurologists to assess demographic/practice characteristics, training, and attitudes toward MS care. The study population consisted of 573 respondents: 87 (15.2%) MS subspecialists and 486 (84.8%) “other neurologists,” including subspecialists in other neurology areas (i.e., non-MS) and general neurologists. MS subspecialists indicating they “enjoy interacting with MS patients” had a significantly greater rate of MS patients seen per week. In separate analyses of the “other neurologists” group, the rate of MS patients seen was lower among neurologists in university-based groups or those practicing in major cities; female neurologists; and neurologists who indicated lack of sufficient knowledge regarding MS patient care. Rates of MS patients seen were significantly greater for other neurologists who agreed that MS care involved “ability to improve patient outcomes and quality of life”; “dynamic area with evolving treatment options”; and “enjoy interacting with MS patients.” Understanding factors influencing MS patient care by neurologists and developing policies for appropriate access to care is critical for optimal outcomes among this population. PMID:24949203

  18. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  19. Thermodynamics and cosmological reconstruction in f(T , B) gravity

    NASA Astrophysics Data System (ADS)

    Bahamonde, Sebastian; Zubair, M.; Abbas, G.

    2018-03-01

    Recently, it was formulated a teleparallel theory called f(T , B) gravity which connects both f(T) and f(R) under suitable limits. In this theory, the function in the action is assumed to depend on the torsion scalar T and also on a boundary term related with the divergence of torsion, B = 2∇μTμ. In this work, we study different features of a flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in this theory. First, we show that the FLRW equations can be transformed to the form of Clausius relation TˆhSeff = - dE + WdV, where Tˆh is the horizon temperature and Seff is the entropy which contains contributions both from horizon entropy and an additional entropy term introduced due to the non-equilibrium. We also formulate the constraint for the validity of the generalised second law of thermodynamics (GSLT). Additionally, using a cosmological reconstruction technique, we show that both f(T , B) and - T + F(B) gravity can mimic power-law, de-Sitter and ΛCDM models. Finally, we formulate the perturbed evolution equations and analyse the stability of some important cosmological solutions.

  20. Electron paramagnetic resonance and FT-IR spectroscopic studies of glycine anhydride and betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Kartal, Zeki; Aydın, Murat

    2015-12-01

    Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).

  1. Rapid-rate nonsustained ventricular tachycardia found on implantable cardioverter-defibrillator interrogation: relationship to outcomes in the SCD-HeFT (Sudden Cardiac Death in Heart Failure Trial).

    PubMed

    Chen, Jay; Johnson, George; Hellkamp, Anne S; Anderson, Jill; Mark, Daniel B; Lee, Kerry L; Bardy, Gust H; Poole, Jeanne E

    2013-05-28

    The aim of this study was to examine rapid-rate nonsustained ventricular tachycardia (RR-NSVT) during routine implantable cardioverter-defibrillator (ICD) evaluation in patients with heart failure and its relationship to outcomes. The clinical implications of RR-NSVT identified during routine ICD interrogation are unclear. In this study, the occurrence of RR-NSVT and its association with ICD shocks and mortality in SCD-HeFT (Sudden Cardiac Death in Heart Failure Trial) were examined. The 811 patients who received ICDs in SCD-HeFT constituted the study population. The occurrence of RR-NSVT and its association with ICD shocks and mortality in SCD-HeFT were examined. RR-NSVT was documented on ICD interrogation in 186 of 811 patients (22.9%). The mean duration of RR-NSVT was 26.4 ± 9.1 beats (7.5 ± 2.6 s), with a mean cycle length of 259 ± 32 ms. Polymorphic RR-NSVT accounted for 56% of episodes. Compared with patients without RR-NSVT, those with RR-NSVT were less likely to be taking beta-blockers, statins, or aspirin at enrollment. After adjusting for other known predictors of mortality in SCD-HeFT, RR-NSVT was independently associated with appropriate ICD shocks (hazard ratio: 4.25; 95% confidence interval: 2.94 to 6.14; p < 0.0001), with all-cause mortality (hazard ratio: 2.40; 95% confidence interval: 1.62 to 3.54; p < 0.0001), and with a composite of all-cause mortality and appropriate ICD shocks (hazard ratio: 3.03; 95% confidence interval: 2.21 to 4.15; p < 0.0001). RR-NSVT identified on routine ICD interrogation should be considered an important clinical event. RR-NSVT during ICD interrogation is associated with appropriate ICD shocks and all-cause mortality. The clinical evaluation of patients with RR-NSVT should include intensification of medical therapy, particularly beta-blockers, or other appropriate clinical interventions. (Sudden Cardiac Death in Heart Failure Trial [SCD-HeFT]; NCT00000609). Copyright © 2013 American College of Cardiology Foundation

  2. The ICR96 exon CNV validation series: a resource for orthogonal assessment of exon CNV calling in NGS data.

    PubMed

    Mahamdallie, Shazia; Ruark, Elise; Yost, Shawn; Ramsay, Emma; Uddin, Imran; Wylie, Harriett; Elliott, Anna; Strydom, Ann; Renwick, Anthony; Seal, Sheila; Rahman, Nazneen

    2017-01-01

    Detection of deletions and duplications of whole exons (exon CNVs) is a key requirement of genetic testing. Accurate detection of this variant type has proved very challenging in targeted next-generation sequencing (NGS) data, particularly if only a single exon is involved. Many different NGS exon CNV calling methods have been developed over the last five years. Such methods are usually evaluated using simulated and/or in-house data due to a lack of publicly-available datasets with orthogonally generated results. This hinders tool comparisons, transparency and reproducibility. To provide a community resource for assessment of exon CNV calling methods in targeted NGS data, we here present the ICR96 exon CNV validation series. The dataset includes high-quality sequencing data from a targeted NGS assay (the TruSight Cancer Panel) together with Multiplex Ligation-dependent Probe Amplification (MLPA) results for 96 independent samples. 66 samples contain at least one validated exon CNV and 30 samples have validated negative results for exon CNVs in 26 genes. The dataset includes 46 exon CNVs in BRCA1 , BRCA2 , TP53 , MLH1 , MSH2 , MSH6 , PMS2 , EPCAM or PTEN , giving excellent representation of the cancer predisposition genes most frequently tested in clinical practice. Moreover, the validated exon CNVs include 25 single exon CNVs, the most difficult type of exon CNV to detect. The FASTQ files for the ICR96 exon CNV validation series can be accessed through the European-Genome phenome Archive (EGA) under the accession number EGAS00001002428.

  3. Differentiation of aflatoxigenic and non-aflatoxigenic strains of Aspergilli by FT-IR spectroscopy.

    PubMed

    Atkinson, Curtis; Pechanova, Olga; Sparks, Darrell L; Brown, Ashli; Rodriguez, Jose M

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) is a well-established and widely accepted methodology to identify and differentiate diverse microbial species. In this study, FT-IR was used to differentiate 20 strains of ubiquitous and agronomically important phytopathogens of Aspergillus flavus and Aspergillus parasiticus. By analyzing their spectral profiles via principal component and cluster analysis, differentiation was achieved between the aflatoxin-producing and nonproducing strains of both fungal species. This study thus indicates that FT-IR coupled to multivariate statistics can rapidly differentiate strains of Aspergilli based on their toxigenicity.

  4. Comprehensive Characterization of Swine Cardiac Troponin T Proteoforms by Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lin, Ziqing; Guo, Fang; Gregorich, Zachery R.; Sun, Ruixiang; Zhang, Han; Hu, Yang; Shanmuganayagam, Dhanansayan; Ge, Ying

    2018-04-01

    Cardiac troponin T (cTnT) regulates the Ca2+-mediated interaction between myosin thick filaments and actin thin filaments during cardiac contraction and relaxation. cTnT is released into the blood following injury, and increased serum levels of the protein are used clinically as a biomarker for myocardial infarction. Moreover, mutations in cTnT are causative in a number of familial cardiomyopathies. With the increasing use of large animal (swine) model to recapitulate human diseases, it is essential to characterize species-dependent protein sequence variants, alternative RNA splicing, and post-translational modifications (PTMs), but challenges remain due to the incomplete database and lack of validation of the predicted splicing isoforms. Herein, we integrated top-down mass spectrometry (MS) with online liquid chromatography (LC) and immunoaffinity purification to comprehensively characterize miniature swine cTnT proteoforms, including those arising from alternative RNA splicing and PTMs. A total of seven alternative splicing isoforms of cTnT were identified by LC/MS from swine left ventricular tissue, with each isoform containing un-phosphorylated and mono-phosphorylated proteoforms. The phosphorylation site was localized to Ser1 for the mono-phosphorylated proteoforms of cTnT1, 3, 4, and 6 by online MS/MS combining collisionally activated dissociation (CAD) and electron transfer dissociation (ETD). Offline MS/MS on Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer with CAD and electron capture dissociation (ECD) was then utilized to achieve deep sequencing of mono-phosphorylated cTnT1 (35.2 kDa) with a high sequence coverage of 87%. Taken together, this study demonstrated the unique advantage of top-down MS in the comprehensive characterization of protein alternative splicing isoforms together with PTMs. [Figure not available: see fulltext.

  5. Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats

    PubMed Central

    Neth, Katharina; Lucio, Marianna; Walker, Alesia; Zorn, Julia; Schmitt-Kopplin, Philippe; Michalke, Bernhard

    2015-01-01

    Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism. PMID:26383269

  6. Improved sensitivity by post-column chemical environment modification of CE-ESI-MS using a flow-through microvial interface.

    PubMed

    Risley, Jessica May; Chen, David Da Yong

    2017-06-01

    Post-column chemical environment modification can affect detection sensitivity and signal appearance when capillary electrophoresis is coupled through electrospray ionization to mass spectrometry (CE-ESI-MS). In this study, changes in the signal intensity and peak shape of N-Acetylneuraminic acid (Neu5Ac) were examined when the modifier solution used in a flow-through microvial interface for CE-ESI-MS was prepared using an acidic or basic background electrolyte (BGE) composition. The use of a basic modifier resulted in improved detection compared to the results obtained when an acidic modifier was used in negative ion mode. Increased sensitivity and more symmetrical peak shape were obtained. Using an acidic modifier, the LOD of Neu5Ac was 47.7 nM, whereas for a basic modifier, the LOD of Neu5Ac was 5.20 nM. The calculated asymmetry factor at 100 nM of Neu5Ac ranged from 0.71 to 1.5 when an acidic modifier was used, while the factor ranged from 1.0 to 1.1 when a basic modifier was used. Properly chosen post-column chemical modification can have a significant effect on the performance of the CE-MS system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Simultaneous determination of creatinine and creatine in human serum by double-spike isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; Añón Álvarez, M Elena; Rodríguez, Felix; Menéndez, Francisco V Álvarez; García Alonso, J Ignacio

    2015-04-07

    This work describes the first multiple spiking isotope dilution procedure for organic compounds using (13)C labeling. A double-spiking isotope dilution method capable of correcting and quantifying the creatine-creatinine interconversion occurring during the analytical determination of both compounds in human serum is presented. The determination of serum creatinine may be affected by the interconversion between creatine and creatinine during sample preparation or by inefficient chemical separation of those compounds by solid phase extraction (SPE). The methodology is based on the use differently labeled (13)C analogues ((13)C1-creatinine and (13)C2-creatine), the measurement of the isotopic distribution of creatine and creatinine by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the application of multiple linear regression. Five different lyophilized serum-based controls and two certified human serum reference materials (ERM-DA252a and ERM-DA253a) were analyzed to evaluate the accuracy and precision of the proposed double-spike LC-MS/MS method. The methodology was applied to study the creatine-creatinine interconversion during LC-MS/MS and gas chromatography-mass spectrometry (GC-MS) analyses and the separation efficiency of the SPE step required in the traditional gas chromatography-isotope dilution mass spectrometry (GC-IDMS) reference methods employed for the determination of serum creatinine. The analysis of real serum samples by GC-MS showed that creatine-creatinine separation by SPE can be a nonquantitative step that may induce creatinine overestimations up to 28% in samples containing high amounts of creatine. Also, a detectable conversion of creatine into creatinine was observed during sample preparation for LC-MS/MS. The developed double-spike LC-MS/MS improves the current state of the art for the determination of creatinine in human serum by isotope dilution mass spectrometry (IDMS), because corrections are made for all the possible errors

  8. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 μm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased

  9. A pilot study: subclinical hypothyroidism and free thyroid hormone measurement by immunoassay and mass spectrometry.

    PubMed

    Gounden, Verena; Jonklaas, Jacqueline; Soldin, Steven J

    2014-03-20

    The diagnosis of subclinical hypothyroidism is defined as the presence of an elevated thyroid stimulating hormone (TSH) with a normal free thyroxine (FT4) level. The commonly used direct analogue immunoassays for the measurement of FT4 have been shown to have poor performance at the upper and lower limits of the FT4 reference interval. The purpose of this pilot study was to investigate the percentage of individuals classified as having subclinical hypothyroidism with a standard immunoassay, that actually have low free thyroid hormone levels by mass spectrometry measurements. Outpatient samples with elevated TSH values and normal FT4 concentrations as per standard immunoassay methods were collected. FT4 and free triiodothyronine (FT3) analyses were performed on these samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty five percent (n=26) of patients (n=40) had (LC-MS/MS) FT4 or FT3 or both FT4 and FT3 values below mass spectrometry reference limits. Our findings indicate that the direct analogue immunoassay method for FT4 measurement results in a significant proportion of patients being misclassified as having subclinical hypothyroidism. Published by Elsevier B.V.

  10. Do TSH, FT3, and FT4 Impact BAT Visualization of Clinical FDG-PET/CT Images?

    PubMed

    Nishii, Ryuichi; Nagamachi, Shigeki; Mizutani, Youichi; Terada, Tamasa; Kiyohara, Syogo; Wakamatsu, Hideyuki; Fujita, Seigo; Higashi, Tatsuya; Yoshinaga, Keiichiro; Saga, Tsuneo; Hirai, Toshinori

    2018-01-01

    We retrospectively analyzed activated BAT visualization on FDG-PET/CT in patients with various conditions and TH levels to clarify the relationships between visualization of BAT on FDG-PET/CT and the effect of TH. Patients who underwent clinical FDG-PET/CT were reviewed and we categorized patients into 5 groups: (i) thyroid hormone withdrawal (THW) group; (ii) recombinant human thyrotropin (rhTSH) group; (iii) hypothyroidism group; (iv) hyperthyroidism group; and (v) BAT group. A total of sixty-two FDG-PET/CT imaging studies in fifty-nine patients were performed. To compare each group, gender; age; body weight; serum TSH, FT3, and FT4 levels; and outside temperature were evaluated. No significant visualization of BAT was noted in any of the images in the THW, rhTSH, hypothyroidism, and hyperthyroidism groups. All patients in the BAT group were in a euthyroid state. When the BAT-negative and BAT-positive patient groups were compared, it was noted that the minimum and maximum temperature on the day of the PET study and maximum temperature of the one day before the PET study were significantly lower in BAT-positive group than in all those of other groups. Elevated TSH condition before RIT, hyperthyroidism, or hypothyroidism did not significantly impact BAT visualization of clinical FDG-PET/CT images.

  11. FTIR, FT-Raman, FT-NMR, UV-visible and quantum chemical investigations of 2-amino-4-methylbenzothiazole.

    PubMed

    Arjunan, V; Sakiladevi, S; Rani, T; Mythili, C V; Mohan, S

    2012-03-01

    The FT-IR (4000-400 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectral measurements and complete assignments of the observed spectra of 2-amino-4-methylbenzothiazole (2A4MBT) have been proposed. Ab initio and DFT calculations have been performed and the structural parameters of the compound were determined from the optimised geometry with 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO, LUMO and band gap energies were measured by time-dependent DFT (TD-DFT) approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman activities chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule. The influences of methyl and amino groups on the skeletal modes and on the proton chemical shifts have been investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. In tube-solid phase microextraction-nano liquid chromatography: Application to the determination of intact and degraded polar triazines in waters and recovered struvite.

    PubMed

    Serra-Mora, P; Jornet-Martinez, N; Moliner-Martinez, Y; Campíns-Falcó, P

    2017-09-01

    In-tube solid-phase microextraction (IT-SPME) coupled to miniaturized liquid chromatography (LC) techniques are attractive mainly due to the column efficiency improvement, sensitivity enhancement and reduction of solvent consumption. In addition, the nanomaterials based sorbents can play a key role in the improvement of the extraction efficiency taking into account their interesting physical and chemical properties. Thus, in this work the performance of IT-SPME coupled to nano LC (NanoLC) has been compared with the performance of IT-SPME coupled to capillary LC (CapLC) with similar configurations for the determination of polar triazines including their degradation products. In both cases, a DAD detector was used. Different extractive phases such as TRB-5, TRB-5/c-SWNTs, TRB-5/c-MWNTs capillary columns have been tested. The dimensions of the capillary columns were 0.32mm id×40cm length and 0.1 or 0.075mm i.d.×15cm length for the couplings with CapLC and NanoLC, respectively. The processed volume was 4mL for CapLC and 0.5mL for NanoLC. The elution was carried out with ACN:H 2 O (30:70, v/v). IT-SPME-NanoLC has shown a higher performance than IT-SPME-CapLC for the target analytes demonstrating the enhancement of the extraction efficiency with the former configuration. A new phase TEOS-MTEOS-SiO 2 NPs has been also proposed for IT-SPME-NanoLC, which improves the retention of polar compounds. Compared with previously published works, improved LODs were achieved (0.025-0.5μgL -1 ). The practical application of the proposed procedure has been demonstrated for the analysis of water samples and recovered struvite samples from wastewater treatment plants. Therefore, the proposed procedure can be an alternative method for regulatory purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Neuropsychological Training of Attention Improves MS-Related Fatigue: Results of a Randomized, Placebo-Controlled, Double-Blind Pilot Study.

    PubMed

    Flachenecker, Peter; Meissner, Heike; Frey, Rebecca; Guldin, Wolfgang

    2017-01-01

    Attentional deficits may be pathophysiologically relevant in MS-associated fatigue. Thirty MS patients with fatigue and attentional deficits in neuropsychological testing participated in this randomized, placebo-controlled, double-blind trial. The intervention group (IG; n = 14) was treated with 10 h of computerized, specific neuropsychological training performing simple reaction time tasks, whereas the control group (CG; n = 16) also runs through computerized, but unspecific neuropsychological training using tasks without time components. The subjective feeling of fatigue was assessed with the Würzburg Fatigue Inventory for Multiple Sclerosis (WEIMuS) questionnaire, and testing of alertness was used as an objective measure at baseline and after the 2-week study period. Reaction times of alertness were significantly decreased in IG but not CG after 2 weeks. The subjective feeling of fatigue was ameliorated in both groups but more pronounced in IG. Effect sizes were below 0.7 for alertness and WEIMuS scores in CG but large and clinically meaningful in IG for both measures. Our pilot study suggests that neuropsychological training of attention may improve both measures of fatigue. The parallel improvement of attentional deficits and subjective fatigue after specific neuropsychological training support previous findings that fatigue may be at least partially caused by impaired intensity of attention. © 2017 S. Karger AG, Basel.

  14. Quantitative interference by cysteine and N-acetylcysteine metabolites during the LC-MS/MS bioanalysis of a small molecule.

    PubMed

    Barricklow, Jason; Ryder, Tim F; Furlong, Michael T

    2009-08-01

    During LC-MS/MS quantification of a small molecule in human urine samples from a clinical study, an unexpected peak was observed to nearly co-elute with the analyte of interest in many study samples. Improved chromatographic resolution revealed the presence of at least 3 non-analyte peaks, which were identified as cysteine metabolites and N-acetyl (mercapturic acid) derivatives thereof. These metabolites produced artifact responses in the parent compound MRM channel due to decomposition in the ionization source of the mass spectrometer. Quantitative comparison of the analyte concentrations in study samples using the original chromatographic method and the improved chromatographic separation method demonstrated that the original method substantially over-estimated the analyte concentration in many cases. The substitution of electrospray ionization (ESI) for atmospheric pressure chemical ionization (APCI) nearly eliminated the source instability of these metabolites, which would have mitigated their interference in the quantification of the analyte, even without chromatographic separation. These results 1) demonstrate the potential for thiol metabolite interferences during the quantification of small molecules in pharmacokinetic samples, and 2) underscore the need to carefully evaluate LC-MS/MS methods for molecules that can undergo metabolism to thiol adducts to ensure that they are not susceptible to such interferences during quantification.

  15. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants

    PubMed Central

    Walworth, Aaron E.; Chai, Benli; Song, Guo-qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora (‘VcFT-Aurora’), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in ‘VcFT-Aurora’. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all

  16. Analysis of acrylamide by LC-MS/MS and GC-MS in processed Japanese foods.

    PubMed

    Ono, H; Chuda, Y; Ohnishi-Kameyama, M; Yada, H; Ishizaka, M; Kobayashi, H; Yoshida, M

    2003-03-01

    Acrylamide concentrations in processed foods (63 samples covering 31 product types) from Japan were analysed by LC-MS/MS and GC-MS methods. The limit of detection and limit of quantification of acrylamide were 0.2 ng x ml(-1) (6 fmol) and 0.8 ng x ml(-1) (22 fmol), respectively, by LC-MS/MS, and those of 2,3-dibromopropionamide derived from acrylamide were 12 ng x ml(-1) (52 fmol) and 40 ng x ml(-1) (170 fmol), respectively, by GC-MS. Repeatability given as RSD was <5 and <15% for the LC-MS/MS and GC-MS methods, respectively. High correlation (r(2) - 0.946) was observed between values obtained by the two methods. Most potato crisps and whole potato-based fried snacks showed acrylamide concentrations >1000 microg x kg(-1). The concentrations in non-whole potato-based snacks, rice crackers processed by grilling or frying, and candied sweet potatoes were lower compared with those in the potato crisps and the whole potato-based fried snacks. One of the whole potato-based fried snacks, however, showed low acrylamide concentration (<50 microg x kg(-1)) suggesting the formation of acrylamide is strongly influenced by processing conditions. Acrylamide concentrations in instant precooked noodles and won-tons were <100 microg x kg(-1) with only one exception. Roasted barley grains for 'Mugi-cha' tea contained 200-600 microg x kg(-1) acrylamide.

  17. What place for ▾ cannabis extract in MS?

    PubMed

    2012-12-01

    Multiple sclerosis (MS) is a neurological condition that is estimated to affect around 60,000 people in England and Wales, with a lifetime risk in the UK of 1 in 1,000.(1,2) Spasticity (an increase in muscle tone) is a common symptom of MS, resulting in muscle spasms, immobility, disturbed sleep and pain.(3,4) Complex drug combinations are sometimes necessary to manage symptoms of MS, but these are often only partially effective and associated with unacceptable side effects.(5) Cannabis extract containing delta9-tetrahydrocannabinol (dronabinol) and cannabidiol are the principal extracts from the cannabis plant present in a licensed preparation (▾Sativex - GW Pharma Ltd), the first cannabinoid preparation to be approved for medical use. Sativex has been licensed "for symptom improvement in adult patients with moderate to severe spasticity due to MS who have not responded adequately to other anti-spasticity medication and who demonstrate clinically significant improvement in spasticity related symptoms during an initial trial of therapy".(6) Here we review the evidence for cannabis extract and its place in the treatment of the condition.

  18. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.).

    PubMed

    Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan

    2017-01-01

    Lettuce ( Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce.

  19. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.)

    PubMed Central

    Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan

    2018-01-01

    Lettuce (Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce. PMID:29403510

  20. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.

    PubMed

    Patel, Dhavalkumar Narendrabhai; Li, Lin; Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong; Koh, Hwee-Ling

    2014-01-01

    The popularity of phosphodiesterase type 5 (PDE-5) enzyme inhibitors for the treatment of erectile dysfunction has led to the increase in prevalence of illicit sexual performance enhancement products. PDE-5 inhibitors, namely sildenafil, tadalafil and vardenafil, and their unapproved designer analogues are being increasingly used as adulterants in the herbal products and health supplements marketed for sexual performance enhancement. To date, more than 50 unapproved analogues of prescription PDE-5 inhibitors were found as adulterants in the literature. To avoid detection of such adulteration by standard screening protocols, the perpetrators of such illegal products are investing time and resources to synthesize exotic analogues and devise novel means for adulteration. A comprehensive review of conventional and advance analytical techniques to detect and characterize the adulterants is presented. The rapid identification and structural elucidation of unknown analogues as adulterants is greatly enhanced by the wide myriad of analytical techniques employed, including high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, vibrational spectroscopy, liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FT-ICR-MS), liquid chromatograph-hybrid triple quadrupole linear ion trap mass spectrometer with information dependent acquisition, ultra high performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS), ion mobility spectroscopy (IMS) and immunoassay methods. The many challenges in detecting and characterizing such adulterants, and the need for concerted effort to curb adulteration in order to safe guard public safety and interest are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Zn(II), Cd(II) and Hg(I) complexes of cinnamic acid: FT-IR, FT-Raman, 1H and 13C NMR studies

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The effect of zinc, cadmium(II) and mercury(I) ions on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies provide some knowledge on the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. In the series of Zn(II) → Cd(II) → Hg(I) cinnamates: (1) systematic shifts of several bands in the experimental and theoretical IR and Raman spectra and (2) regular chemical shifts for protons 1H and 13C nuclei were observed.

  2. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Islam, S. S.; Ahmad, Hilal; Prabaharan, A.

    2018-02-01

    Nitrosourea plays an important role in the treatment of cancer. N-ethyl-N-nitrosourea, also known as ENU, (chemical formula C3H7N3O2), is a highly potent mutagen. The chemical is an alkylating agent and acts by transferring the ethyl group of ENU to nucleobases (usually thymine) in nucleic acids. The molecular structure of N-ethyl-N-nitrosourea has been elucidated using experimental (FT-IR and FT-Raman) and theoretical (DFT) techniques. APT charges, Mulliken atomic charges, Natural bond orbital, Electrostatic potential, HOMO-LUMO and AIM analysis were performed to identify the reactive sites and charge transfer interactions. Furthermore, to evaluate the anticancer activity of ENU molecular docking studies were carried out against 2JIU protein.

  3. Comparison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters.

    PubMed

    Van De Steene, Jet C; Lambert, Willy E

    2008-05-01

    When developing an LC-MS/MS-method matrix effects are a major issue. The effect of co-eluting compounds arising from the matrix can result in signal enhancement or suppression. During method development much attention should be paid to diminishing matrix effects as much as possible. The present work evaluates matrix effects from aqueous environmental samples in the simultaneous analysis of a group of 9 specific pharmaceuticals with HPLC-ESI/MS/MS and UPLC-ESI/MS/MS: flubendazole, propiconazole, pipamperone, cinnarizine, ketoconazole, miconazole, rabeprazole, itraconazole and domperidone. When HPLC-MS/MS is used, matrix effects are substantial and can not be compensated for with analogue internal standards. For different surface water samples different matrix effects are found. For accurate quantification the standard addition approach is necessary. Due to the better resolution and more narrow peaks in UPLC, analytes will co-elute less with interferences during ionisation, so matrix effects could be lower, or even eliminated. If matrix effects are eliminated with this technique, the standard addition method for quantification can be omitted and the overall method will be simplified. Results show that matrix effects are almost eliminated if internal standards (structural analogues) are used. Instead of the time-consuming and labour-intensive standard addition method, with UPLC the internal standardization can be used for quantification and the overall method is substantially simplified.

  4. Improved tandem mass spectrometry (MS/MS) derivatized method for the detection of tyrosinemia type I, amino acids and acylcarnitine disorders using a single extraction process.

    PubMed

    Dhillon, Kuldeep S; Bhandal, Ajit S; Aznar, Constantino P; Lorey, Fred W; Neogi, Partha

    2011-05-12

    Succinylacetone (SUAC), a specific marker for tyrosinemia type I (Tyr I) cannot be detected by the routine LC-MS/MS screening of amino acids (AA) and acylcarnitines (AC) in newborns. The current derivatized methods require double extraction of newborn dried blood spots (DBS); one for AA and AC and the second for SUAC from the blood spot left after the first extraction. We have developed a method in which AA, AC and SUAC are extracted in a single extraction resulting in significant reduction in labor and assay time. The 3.2 mm DBS were extracted by incubating at 45 °C for 45 min with 100 μl of acetonitrile (ACN)-water-formic acid mixture containing hydrazine and stable-isotope labeled internal standards of AA, AC and SUAC. The extract was derivatized with n-butanolic-HCl and analyzed by LC-MS/MS. The average inter-assay CVs for, AA, AC and SUAC were 10.1, 10.8 and 7.1% respectively. The extraction of analytes with ACN-water mixture showed no significant difference in their recovery compared to commonly used solvent MeOH. The concentration of hydrazine had considerable impact on SUAC extraction. We developed a new MS/MS derivatized method to detect AA/AC/SUAC in a single extraction process for screening Tyr I along with disorders of AA and AC. Published by Elsevier B.V.

  5. An Improved In-house MALDI-TOF MS Protocol for Direct Cost-Effective Identification of Pathogens from Blood Cultures.

    PubMed

    Zhou, Menglan; Yang, Qiwen; Kudinha, Timothy; Sun, Liying; Zhang, Rui; Liu, Chang; Yu, Shuying; Xiao, Meng; Kong, Fanrong; Zhao, Yupei; Xu, Ying-Chun

    2017-01-01

    Background: Bloodstream infection is a major cause of morbidity and mortality in hospitalized patients worldwide. Delays in the identification of microorganisms often leads to a poor prognosis. The application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) directly to blood culture (BC) broth can potentially identify bloodstream infections earlier, and facilitate timely management. Methods: We developed an "in-house" (IH) protocol for direct MALDI-TOF MS based identification of organisms in positive BCs. The IH protocol was initially evaluated and improved with spiked BC samples, and its performance was compared with the commercial Sepsityper™ kit using both traditional and modified cut-off values. We then studied in parallel the performance of the IH protocol and the colony MS identifications in positive clinical BC samples using only modified cut-off values. All discrepancies were investigated by "gold standard" of gene sequencing. Results: In 54 spiked BC samples, the IH method showed comparable results with Sepsityper™ after applying modified cut-off values. Specifically, accurate species and genus level identification was achieved in 88.7 and 3.9% of all the clinical monomicrobial BCs (284/301, 94.4%), respectively. The IH protocol exhibited superior performance for Gram negative bacteria than for Gram positive bacteria (92.8 vs. 82.4%). For anaerobes and yeasts, accurate species identification was achieved in 80.0 and 90.0% of the cases, respectively. For polymicrobial cultures (17/301, 5.6%), MALDI-TOF MS correctly identified a single species present in all the polymicrobial BCs under the Standard mode, while using the MIXED method, two species were correctly identified in 52.9% of the samples. Comparisons based on BC bottle type, showed that the BACTEC™ Lytic/10 Anaerobic/F culture vials performed the best. Conclusion: Our study provides a novel and effective sample preparation method for MALDI-TOF MS

  6. Overlapping MALDI-Mass Spectrometry Imaging for In-Parallel MS and MS/MS Data Acquisition without Sacrificing Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Hansen, Rebecca L.; Lee, Young Jin

    2017-09-01

    Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.

  7. Microfluidic high performance liquid chromatography-chip hyphenation to inductively coupled plasma-mass spectrometry.

    PubMed

    Bishop, David P; Blanes, Lucas; Wilson, Alexander B; Wilbanks, Thor; Killeen, Kevin; Grimm, Rudolf; Wenzel, Ross; Major, Derek; Macka, Mirek; Clarke, David; Schmid, Robin; Cole, Nerida; Doble, Philip A

    2017-05-12

    The Agilent Chip Cube Interface is a microfluidic chip-based technology originally designed for nanospray molecular mass spectrometry in which the sample enrichment, nano-column, tubing, connectors and spray tip were integrated into a single biocompatible chip. Here we describe the hyphenation of the Chip Cube Interface to ICP-MS via modification of the standard HPLC chip design and a new total consumption nebuliser suitable for flow rates as low as 300nLmin -1 . The potential of the instrument to eliminate common nanoLC - ICP-MS shortcomings such as leaks, blockages and band-broadening was demonstrated via analysis of cyanocobalamin in equine plasma. The method was linear over three orders of magnitude with an r 2 of 0.9999, the peak area repeatability was 1.9% (n=7), and the detection limit was 14ngmL -1 . This novel configuration of the Chip Cube Interface coupled to ICP-MS is a suitable platform for the analysis of biomolecules associated with trace metals and speciation applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. LC-MS/MS imaging with thermal film-based laser microdissection.

    PubMed

    Oya, Michiko; Suzuki, Hiromi; Anas, Andrea Roxanne J; Oishi, Koichi; Ono, Kenji; Yamaguchi, Shun; Eguchi, Megumi; Sawada, Makoto

    2018-01-01

    Mass spectrometry (MS) imaging is a useful tool for direct and simultaneous visualization of specific molecules. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used to evaluate the abundance of molecules in tissues using sample homogenates. To date, however, LC-MS/MS has not been utilized as an imaging tool because spatial information is lost during sample preparation. Here we report a new approach for LC-MS/MS imaging using a thermal film-based laser microdissection (LMD) technique. To isolate tissue spots, our LMD system uses a 808-nm near infrared laser, the diameter of which can be freely changed from 2.7 to 500 μm; for imaging purposes in this study, the diameter was fixed at 40 μm, allowing acquisition of LC-MS/MS images at a 40-μm resolution. The isolated spots are arranged on a thermal film at 4.5-mm intervals, corresponding to the well spacing on a 384-well plate. Each tissue spot is handled on the film in such a manner as to maintain its spatial information, allowing it to be extracted separately in its individual well. Using analytical LC-MS/MS in combination with the spatial information of each sample, we can reconstruct LC-MS/MS images. With this imaging technique, we successfully obtained the distributions of pilocarpine, glutamate, γ-aminobutyric acid, acetylcholine, and choline in a cross-section of mouse hippocampus. The protocol we established in this study is applicable to revealing the neurochemistry of pilocarpine model of epilepsy. Our system has a wide range of uses in fields such as biology, pharmacology, pathology, and neuroscience. Graphical abstract Schematic Indication of LMD-LC-MS/MS imaging.

  9. Recommendations for Improving Identification and Quantification in Non-Targeted, GC-MS-Based Metabolomic Profiling of Human Plasma

    PubMed Central

    Wang, Hanghang; Muehlbauer, Michael J.; O’Neal, Sara K.; Newgard, Christopher B.; Hauser, Elizabeth R.; Shah, Svati H.

    2017-01-01

    The field of metabolomics as applied to human disease and health is rapidly expanding. In recent efforts of metabolomics research, greater emphasis has been placed on quality control and method validation. In this study, we report an experience with quality control and a practical application of method validation. Specifically, we sought to identify and modify steps in gas chromatography-mass spectrometry (GC-MS)-based, non-targeted metabolomic profiling of human plasma that could influence metabolite identification and quantification. Our experimental design included two studies: (1) a limiting-dilution study, which investigated the effects of dilution on analyte identification and quantification; and (2) a concentration-specific study, which compared the optimal plasma extract volume established in the first study with the volume used in the current institutional protocol. We confirmed that contaminants, concentration, repeatability and intermediate precision are major factors influencing metabolite identification and quantification. In addition, we established methods for improved metabolite identification and quantification, which were summarized to provide recommendations for experimental design of GC-MS-based non-targeted profiling of human plasma. PMID:28841195

  10. Hepatoprotective effects of litchi (Litchi chinensis) procyanidin A2 on carbon tetrachloride-induced liver injury in ICR mice

    PubMed Central

    Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun

    2017-01-01

    Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl4)-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H2O in CCl4-intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl4-intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl4-intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro. The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to

  11. Hepatoprotective effects of litchi (Litchi chinensis) procyanidin A2 on carbon tetrachloride-induced liver injury in ICR mice.

    PubMed

    Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun

    2017-06-01

    Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl 4 )-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H 2 O in CCl 4 -intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl 4 -intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl 4- intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro . The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic

  12. Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.

    PubMed

    Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin

    2011-01-15

    Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Circadian egg production by Echinostoma caproni (Digenea: Echinostomatidae) in ICR mice.

    PubMed

    Platt, Thomas R; Hussey, Gabrielle L; Zelmer, Derek A

    2013-04-01

    Circadian egg production by Echinostoma caproni was investigated in ICR mice. Four female mice were infected with 25 E. caproni metacercariae, maintained in individual cages on a 12:12 light:dark cycle, and provided food and water ad libitum. Twenty-eight, 51, and 58 days post-infection, mice were transferred to individual, wire-bottomed cages and feces were collected every 2 hr for 24 hr. The feces were weighed and processed immediately to estimate the number of eggs present. Fecal output and egg production were standardized to unit maxima for analysis. Standardized egg count and standardized fecal output followed distinctly circadian patterns and covaried. Egg production was highest from 2200 to 0200 hr and lowest from 1000 to 1800 hr. These correspond to the highest and lowest fecal production, and highest and lowest periods of host activity, respectively. Egg density (eggs/g of feces) covaried weakly with fecal output with an additional peak at 0800-1000 hr, suggesting E. caproni is responding to changes in host physiology in timing of the production and release of eggs into the intestine. The continuous production and release of eggs during the patent period, coupled with the circadian pattern of daily egg release by E. caproni , would result in the widest dispersal of eggs in the host environment and enhance transmission to the first intermediate host.

  14. FT4 Data Analysis Summary (SSI-ARC)

    NASA Technical Reports Server (NTRS)

    Isaacson, Douglas R.; Gong, Chester; Reardon, Scott Edward; Santiago, Confesor

    2016-01-01

    Standards for Unmanned Aircraft System (UAS) Detect-and-Avoid (DAA) systems are currently being developed under the auspices of the RTCA Special Committee 228 (SC-228). To support the development of these standards, a series of flight tests has been conducted at NASAs Armstrong Flight Research Center (NASA-AFRC). The fourth in this series of flight test activities (Flight Test 4, or simply FT4) was conducted during the Spring and Summer of 2016. FT4 supported the objectives of numerous organizations working toward UAS DAA Minimum Operational Performance Standards (MOPS) and UAS DAA Radar MOPS. The summary provided herein is limited to the objectives, analysis and conclusions of the NASA Ames Research Center (NASA-ARC) SSI team toward the refinement of UAS DAA MOPS. This document provides a high-level overview of FT4 and the SSI-ARC objectives, a summary of the data analysis methodology and recommendations for UAS DAA MOPS refinements based on the data analysis results. A total of 72 encounters were flown to support SSI-ARC objectives. Test results were generally consistent with acceptable UAS DAA system performance and will be considered in broader SC-228 requirements validation efforts. Observed alert lead times indicated acceptable UAS DAA alerting performance. Effective interoperability between the UAS DAA system and the Traffic Alert and Collision Avoidance System (TCAS) was observed with one notable exception: TCAS Resolutions Advisories (RA) were observed in the absence of any DAA alert on two occasions, indicating the need for alert parameter refinement. Findings further indicated the need for continued work in the areas of DAA Well Clear Recovery logic and alert stability for Mode-C-only intruders. Finally, results demonstrated a high level of compliance with a set of evaluation criteria designed to provide anecdotal evidence of acceptable UAS DAA system performance.

  15. UFLC-ESI-MS/MS analysis of multiple mycotoxins in medicinal and edible Areca catechu.

    PubMed

    Liu, Hongmei; Luo, Jiaoyang; Kong, Weijun; Liu, Qiutao; Hu, Yichen; Yang, Meihua

    2016-05-01

    A robust, sensitive and reliable ultra fast liquid chromatography combined with electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) was optimized and validated for simultaneous identification and quantification of eleven mycotoxins in medicinal and edible Areca catechu, based on one-step extraction without any further clean-up. Separation and quantification were performed in both positive and negative modes under multiple reaction monitoring (MRM) in a single run with zearalanone (ZAN) as internal standard. The chromatographic conditions and MS/MS parameters were carefully optimized. Matrix-matched calibration was recommended to reduce matrix effects and improve accuracy, showing good linearity within wide concentration ranges. Limits of quantification (LOQ) were lower than 50 μg kg(-1), while limits of detection (LOD) were in the range of 0.1-20 μg kg(-1). The accuracy of the developed method was validated for recoveries, ranging from 85% to 115% with relative standard deviation (RSD) ≤14.87% at low level, from 75% to 119% with RSD ≤ 14.43% at medium level and from 61% to 120% with RSD ≤ 13.18% at high level, respectively. Finally, the developed multi-mycotoxin method was applied for screening of these mycotoxins in 24 commercial samples. Only aflatoxin B2 and zearalenone were found in 2 samples. This is the first report on the application of UFLC-ESI(+/-)-MS/MS for multi-class mycotoxins in A. catechu. The developed method with many advantages of simple pretreatment, rapid determination and high sensitivity is a proposed candidate for large-scale detection and quantification of multiple mycotoxins in other complex matrixes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Antidepressants detection and quantification in whole blood samples by GC-MS/MS, for forensic purposes.

    PubMed

    Truta, Liliana; Castro, André L; Tarelho, Sónia; Costa, Pedro; Sales, M Goreti F; Teixeira, Helena M

    2016-09-05

    Depression is among the most prevalent psychiatric disorders of our society, leading to an increase in antidepressant drug consumption that needs to be accurately determined in whole blood samples in Forensic Toxicology Laboratories. For this purpose, this work presents a new gas chromatography tandem mass spectrometry (GC-MS/MS) method targeting the simultaneous and rapid determination of 14 common Antidepressants in whole blood: 13 Antidepressants (amitriptyline, citalopram, clomipramine, dothiepin, fluoxetine, imipramine, mianserin, mirtazapine, nortryptiline, paroxetine, sertraline, trimipramine and venlafaxine) and 1 Metabolite (N-desmethylclomipramine). Solid-phase extraction was used prior to chromatographic separation. Chromatographic and MS/MS parameters were selected to improve sensitivity, peak resolution and unequivocal identification of the eluted analyte. The detection was performed on a triple quadrupole tandem MS in selected ion monitoring (SIM) mode in tandem, using electronic impact ionization. Clomipramine-D3 and trimipramine-D3 were used as deutered internal standards. The validation parameters included linearity, limits of detection, lower limit of quantification, selectivity/specificity, extraction efficiency, carry-over, precision and robustness, and followed internationally accepted guidelines. Limits of quantification and detection were lower than therapeutic and sub-therapeutic concentration ranges. Overall, the method offered good selectivity, robustness and quick response (<16min) for typical concentration ranges, both for therapeutic and lethal levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus.

    PubMed

    Carlson Scholz, Jodi A; Garg, Rohit; Compton, Susan R; Allore, Heather G; Zeiss, Caroline J; Uchio, Edward M

    2011-10-01

    The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology.

  18. Do TSH, FT3, and FT4 Impact BAT Visualization of Clinical FDG-PET/CT Images?

    PubMed Central

    Nagamachi, Shigeki; Mizutani, Youichi; Terada, Tamasa; Kiyohara, Syogo; Wakamatsu, Hideyuki; Fujita, Seigo; Higashi, Tatsuya; Yoshinaga, Keiichiro; Saga, Tsuneo; Hirai, Toshinori

    2018-01-01

    Objective We retrospectively analyzed activated BAT visualization on FDG-PET/CT in patients with various conditions and TH levels to clarify the relationships between visualization of BAT on FDG-PET/CT and the effect of TH. Methods Patients who underwent clinical FDG-PET/CT were reviewed and we categorized patients into 5 groups: (i) thyroid hormone withdrawal (THW) group; (ii) recombinant human thyrotropin (rhTSH) group; (iii) hypothyroidism group; (iv) hyperthyroidism group; and (v) BAT group. A total of sixty-two FDG-PET/CT imaging studies in fifty-nine patients were performed. To compare each group, gender; age; body weight; serum TSH, FT3, and FT4 levels; and outside temperature were evaluated. Results No significant visualization of BAT was noted in any of the images in the THW, rhTSH, hypothyroidism, and hyperthyroidism groups. All patients in the BAT group were in a euthyroid state. When the BAT-negative and BAT-positive patient groups were compared, it was noted that the minimum and maximum temperature on the day of the PET study and maximum temperature of the one day before the PET study were significantly lower in BAT-positive group than in all those of other groups. Conclusions Elevated TSH condition before RIT, hyperthyroidism, or hypothyroidism did not significantly impact BAT visualization of clinical FDG-PET/CT images. PMID:29666563

  19. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  20. Expanding Lipidome Coverage Using LC-MS/MS Data-Dependent Acquisition with Automated Exclusion List Generation

    NASA Astrophysics Data System (ADS)

    Koelmel, Jeremy P.; Kroeger, Nicholas M.; Gill, Emily L.; Ulmer, Candice Z.; Bowden, John A.; Patterson, Rainey E.; Yost, Richard A.; Garrett, Timothy J.

    2017-05-01

    Untargeted omics analyses aim to comprehensively characterize biomolecules within a biological system. Changes in the presence or quantity of these biomolecules can indicate important biological perturbations, such as those caused by disease. With current technological advancements, the entire genome can now be sequenced; however, in the burgeoning fields of lipidomics, only a subset of lipids can be identified. The recent emergence of high resolution tandem mass spectrometry (HR-MS/MS), in combination with ultra-high performance liquid chromatography, has resulted in an increased coverage of the lipidome. Nevertheless, identifications from MS/MS are generally limited by the number of precursors that can be selected for fragmentation during chromatographic elution. Therefore, we developed the software IE-Omics to automate iterative exclusion (IE), where selected precursors using data-dependent topN analyses are excluded in sequential injections. In each sequential injection, unique precursors are fragmented until HR-MS/MS spectra of all ions above a user-defined intensity threshold are acquired. IE-Omics was applied to lipidomic analyses in Red Cross plasma and substantia nigra tissue. Coverage of the lipidome was drastically improved using IE. When applying IE-Omics to Red Cross plasma and substantia nigra lipid extracts in positive ion mode, 69% and 40% more molecular identifications were obtained, respectively. In addition, applying IE-Omics to a lipidomics workflow increased the coverage of trace species, including odd-chained and short-chained diacylglycerides and oxidized lipid species. By increasing the coverage of the lipidome, applying IE to a lipidomics workflow increases the probability of finding biomarkers and provides additional information for determining etiology of disease.