Sample records for nanomaterial encapsulated multi-walled

  1. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    NASA Astrophysics Data System (ADS)

    Shi, Jin; Claussen, Jonathan C.; McLamore, Eric S.; Haque, Aeraj ul; Jaroch, David; Diggs, Alfred R.; Calvo-Marzal, Percy; Rickus, Jenna L.; Porterfield, D. Marshall

    2011-09-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM - 1 cm - 2), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H2O2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  2. Assembly of ordered carbon shells on semiconducting nanomaterials

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2010-05-11

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  3. Assembly of ordered carbon shells on semiconducting nanomaterials

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2012-10-02

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  4. Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Chunnian; Zhao Naiqin; Shi Chunsheng

    2008-08-04

    Three types of carbon nanomaterials, including bamboo-shaped carbon nanotubes with Ni encapsulated and hollow and Ni catalytic particles filled carbon nanocages, have been prepared by methane catalytic decomposition at a relatively low temperature. Transmission electron microscopy observations showed that fascinating fullerene-like Ni-C (graphitic) core-shell nanostructures predominated. Detailed examination of high-resolution transmission electron microscopy showed that the walls of bamboo-shaped carbon nanotubes with quasi-cone catalytic particles encapsulated consisted of oblique graphene planes with respect to the tube axis. The Ni particles encapsulated in the carbon nanocages were larger than that encapsulated in carbon nanotubes, but the diameters of the cores ofmore » hollow carbon nanocages were less than that of Ni particles encapsulated in carbon nanotubes, suggesting that the sizes of catalyst particles played an important role during carbon nanomaterial growth. The magnetic properties of the carbon nanomaterials were measured, which showed relatively large coercive force (H{sub c} = 138.4 O{sub e}) and good ferromagnetism (M{sub r}/M{sub s} = 0.325)« less

  5. The effects of multi-walled carbon nanotubes on soil microbial community functional and structural diversity

    USDA-ARS?s Scientific Manuscript database

    Applications of nanomaterials, including carbon nanotubes (CNTs), are increasing; however, their impact on the environment is still not well understood. A semi-arid soil was treated with multi-walled carbon nanotubes (MWCNTs) at four different concentrations (10-10000 mgMWCNTs kg-1soil), and incubat...

  6. Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.

    PubMed

    Salahinejad, Maryam

    2015-01-01

    Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.

  7. Reproductive toxicity of carbon nanomaterials: a review

    NASA Astrophysics Data System (ADS)

    Vasyukova, I.; Gusev, A.; Tkachev, A.

    2015-11-01

    In the current review, we assembled the experimental evidences of an association between carbon nanomaterials including carbon black, graphite nanoplatelets, graphene, single- and multi-walled carbon nanotubes, and fullerene exposure and adverse reproductive and developmental effects, in vitro and in vivo studies. It is shown that carbon nanomaterials reveal toxic effect on reproductive system and offspring development of the animals of various system groups to a certain degree depending on carbon crystal structure. Although this paper provides initial information about the potential male and female reproductive toxicity of carbon nanomaterials, further studies, using characterized nanoparticles, relevant routes of administration, and doses closely reflecting all the expected levels of exposure are needed.

  8. Nanomaterials and preservation mechanisms of architecture monuments

    NASA Astrophysics Data System (ADS)

    Ion, Rodica-Mariana; Radu, Adrian; Teodorescu, Sofia; Fierǎscu, Irina; Fierǎscu, Radu-Claudiu; Ştirbescu, Raluca-Maria; Dulamǎ, Ioana Daniela; Şuicǎ-Bunghez, Ioana-Raluca; Bucuricǎ, Ioan Alin; Ion, Mihaela-Lucia

    2016-12-01

    Knowledge of the chemical composition of the building materials of the monuments may help us to preserve and protect them from the pollution of our cities. The aim of this work is to characterize the materials of the walls from ancient buildings, the decay products that could be appear due to the action of pollution and a new method based on nanomaterials (hydroxyapatite -HAp) for a conservative preservation of the treated walls. Some analytical techniques have been used, as follow: X-ray fluorescence energy dispersive (EDXRF) (for the relative abundance of major, minor and trace elements), FTIR and Raman spectroscopy (for stratigraphic study of cross-sections of multi-layered materials found in wall paintings), Optical microscopy (OM), (for morphology of the wall samples). The nanomaterial suspension HAp applied on the sample surface by spraying, decreased the capillary water uptake, do not modify significantly the color of the samples and induced a reduced mass loss for the treated samples.

  9. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil

    PubMed Central

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation. PMID:28496464

  10. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil.

    PubMed

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation.

  11. Decontamination of Surfaces Exposed to Carbonbased Nanotubes and Nanomaterials

    NASA Astrophysics Data System (ADS)

    Karimi, Zahra

    Contamination of surfaces by nanomaterials can happen due to accidental spillage and release or gradual accumulation during processing or handling. Considering the increasingly wide use of nanomaterials in industry and research labs and also taking into account the diversity of physical and chemical properties of different nanomaterials (such as solubility, aggregation/agglomeration, and surface reactivity), there is a pressing need to define reliable nanomaterial-specific decontamination guidelines. In this project, we propose and investigate a potential method for surface decontamination of carbon-based nanomaterials using solvent cleaning and wipes. The results show that the surfactant-assisted removal efficiencies of multi-walled carbon nanotubes, single walled carbon nantubes and single walled carbon nano-horns from silicon wafers through wiping is greater than 95%, 90% and 78%, respectively. The need for further studies to understand the mechanisms of nanomaterial removal from surfaces and development of standard techniques for surface decontamination of nanomaterials is highlighted. Another phase of experiments were performed to examine the efficiency of surfactants to remove multi-walled carbon nanotubes (MWCNTs) from silicon substrates with nano and microscaled features. In the first set of experiments, nanoscale features were induced on silicon wafers using SF6 and O2 plasma. Atomic force microscopy (AFM) was used to observe the surface topology and roughness. In the second set, well-defined microscale topological features were induced on silicon wafers using photo lithography and plasma etching. The etching time was varied to create semi-ellipsoidal pits with average diameter and height of ~ 7-9 microm, and ~ 1-3 microm, respectively. MWCNTs in the form of liquid solution were deposited on the surface of silicon wafers using the spin coating process. For the cleaning process, the contaminated surfaces were first sprayed with different types of surfactant

  12. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    EPA Pesticide Factsheets

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  13. Modification of conductive polyaniline with carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Sedaghat, Sajjad; Alavijeh, Mahdi Soleimani

    2014-08-01

    The synthesis of polyaniline/single-wall nanotube, polyaniline/multi-wall nanotube and polyaniline/single-wall nanotube/graphen nanosheets nanocomposites by in situ polymerization are reported in this study. The substrates were treated with a mixture of concentrated sulfuric acid and concentrated nitric acid before usage to functionalize with carboxylic and hydroxyl groups. Aniline monomers are adsorbed and polymerized on the surface of these fillers. Structural analysis using scanning electron microscopy showed that nanomaterials dispersed into polymer matrix and made tubular structures with diameters several tens to hundreds nanometers depending on the polyaniline content. These nanocomposites can be used for production of excellent electrode materials applications in high-performance supercapacitors.

  14. Conformally encapsulated multi-electrode arrays with seamless insulation

    DOEpatents

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  15. Single-walled carbon nanotube, multi-walled carbon nanotube and Fe2O3 nanoparticles induced mitochondria mediated apoptosis in melanoma cells.

    PubMed

    Naserzadeh, Parvaneh; Ansari Esfeh, Fatemeh; Kaviani, Mahboubeh; Ashtari, Khadijeh; Kheirbakhsh, Raheleh; Salimi, Ahmad; Pourahmad, Jalal

    2018-06-01

    Nanomaterials (NM) exhibit novel anticancer properties. The toxicity of three nanoparticles that are currently being produced in high tonnage including single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT) and Fe 2 O 3 nanoparticles, were compared with normal and melanoma cells. All tested nanoparticles induced selective toxicity and caspase 3 activation through mitochondria pathway in melanoma cells and mitochondria cause the generating of reactive oxygen species (ROS), mitochondrial membrane potential decline (MMP collapse), mitochondria swelling, and cytochrome c release. The pretreatment of butylated hydroxytoluene (BHT), a cell-permeable antioxidant and cyclosporine A (Cs. A), a mitochondrial permeability transition (MPT), pore sealing agent decreased cytotoxicity, caspase 3 activation, ROS generation, and mitochondrial damages induced by SWCNT, MWCNT, and IONPs. Our promising results provide a potential approach for the future therapeutic use of SWCNT, MWCNT, and IONPs in melanoma through mitochondrial targeting.

  16. High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique.

    PubMed

    Hayashi, Yasuhiko; Tokunaga, Tomoharu; Iijima, Toru; Iwata, Takuya; Kalita, Golap; Tanemura, Masaki; Sasaki, Katsuhiro; Kuroda, Kotaro

    2012-08-08

    Multi-segmented one-dimensional metal nanowires were encapsulated within carbon nanotubes (CNTs) through in-situ filling technique during plasma-enhanced chemical vapor deposition process. Transmission electron microscopy (TEM) and environmental TEM were employed to characterize the as-prepared sample at room temperature and high temperature. The selected area electron diffractions revealed that the Pd4Si nanowire and face-centered-cubic Co nanowire on top of the Pd nanowire were encapsulated within the bottom and tip parts of the multiwall CNT, respectively. Although the strain-induced deformation of graphite walls was observed, the solid-state phases of Pd4Si and Co-Pd remain even at above their expected melting temperatures and up to 1,550 ± 50°C. Finally, the encapsulated metals were melted and flowed out from the tip of the CNT after 2 h at the same temperature due to the increase of internal pressure of the CNT.

  17. Reinforcement mechanism of multi-anchor wall with double wall facing

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  18. Differential thermodynamic signature of carbon nanomaterials using amphiphilic micellar probe

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr

    2018-04-01

    The thermodynamic signature of single-wall carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and reduced graphene oxide (rG-O) using amphiphilic micellar probe has been explored. The study reveals an intricate correlation between nano-surface topology and calorimetric profile of SWCNTs, MWCNTs and rG-O. The critical micelle concentration (CMC) is found to be sensitive to the topological diversity of nanomaterials. The study explores a thermodynamic approach to characterize the nano-surface topology of SWCNTs, MWCNTs and graphene surface.

  19. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos.

    PubMed

    Liu, Xiao Tong; Mu, Xi Yan; Wu, Xiao Li; Meng, Li Xuan; Guan, Wen Bi; Ma, Yong Qiang; Sun, Hua; Wang, Cheng Ju; Li, Xue Feng

    2014-09-01

    This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations ls were evaluated. Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  20. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    PubMed Central

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in

  1. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    PubMed

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select

  2. Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent.

    PubMed

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport.

  3. Nanomaterial containing wall paints can increase radon concentration in houses located in radon prone areas.

    PubMed

    Haghani, M; Mortazavi, S M J; Faghihi, R; Mehdizadeh, S; Moradgholi, J; Darvish, L; Fathi-Pour, E; Ansari, L; Ghanbar-Pour, M R

    2013-09-01

    Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m-3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m(3) while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m(3). The difference between these means was statistically significant (P<0.001). To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes.

  4. Nanomaterial Containing Wall Paints Can Increase Radon Concentration in Houses Located in Radon Prone Areas

    PubMed Central

    Haghani, M.; Mortazavi, S. M. J.; Faghihi, R.; Mehdizadeh, S.; Moradgholi, J.; Darvish, L.; Fathi-Pour, E.; Ansari, L.; Ghanbar-pour, M. R.

    2013-01-01

    Background: Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m–3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. Objective: This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Methods: Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Results: Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m3 while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m3. The difference between these means was statistically significant (P<0.001). Conclusion: To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes. PMID:25505754

  5. CE and nanomaterials - Part II: Nanomaterials in CE.

    PubMed

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    The scope of this two-part review is to summarize publications dealing with CE and nanomaterials together. This topic can be viewed from two broad perspectives, and this article is trying to highlight these two approaches: (i) CE of nanomaterials, and (ii) nanomaterials in CE. The second part aims at summarization of publications dealing with application of nanomaterials for enhancement of CE performance either in terms of increasing the separation resolution or for improvement of the detection. To increase the resolution, nanomaterials are employed as either surface modification of the capillary wall forming open tubular column or as additives to the separation electrolyte resulting in a pseudostationary phase. Moreover, nanomaterials have proven to be very beneficial for increasing also the sensitivity of detection employed in CE or even they enable the detection (e.g., fluorescent tags of nonfluorescent molecules). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multi-metal oxide ceramic nanomaterial

    DOEpatents

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  7. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  8. Multi-criteria decision analysis and environmental risk assessment for nanomaterials

    NASA Astrophysics Data System (ADS)

    Linkov, Igor; Satterstrom, F. Kyle; Steevens, Jeffery; Ferguson, Elizabeth; Pleus, Richard C.

    2007-08-01

    Nanotechnology is a broad and complex discipline that holds great promise for innovations that can benefit mankind. Yet, one must not overlook the wide array of factors involved in managing nanomaterial development, ranging from the technical specifications of the material to possible adverse effects in humans. Other opportunities to evaluate benefits and risks are inherent in environmental health and safety (EHS) issues related to nanotechnology. However, there is currently no structured approach for making justifiable and transparent decisions with explicit trade-offs between the many factors that need to be taken into account. While many possible decision-making approaches exist, we believe that multi-criteria decision analysis (MCDA) is a powerful and scientifically sound decision analytical framework for nanomaterial risk assessment and management. This paper combines state-of-the-art research in MCDA methods applicable to nanotechnology with a hypothetical case study for nanomaterial management. The example shows how MCDA application can balance societal benefits against unintended side effects and risks, and how it can also bring together multiple lines of evidence to estimate the likely toxicity and risk of nanomaterials given limited information on physical and chemical properties. The essential contribution of MCDA is to link this performance information with decision criteria and weightings elicited from scientists and managers, allowing visualization and quantification of the trade-offs involved in the decision-making process.

  9. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    NASA Astrophysics Data System (ADS)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  10. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  11. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  12. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  13. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  14. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  15. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  16. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  17. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  18. [Influence of wall polymer and preparation process on the particle size and encapsulation of hemoglobin microcapsules].

    PubMed

    Qiu, Wei; Ma, Guang-Hui; Meng, Fan-Tao; Su, Zhi-Guo

    2004-03-01

    Methoxypoly (ethylene glycol)- block-poly (DL-lactide) (PELA) microcapsules containing bovine hemoglobin (BHb) were prepared by a W/O/W double emulsion-solvent diffusion process. The P50 and Hill coeffcient were 3466 Pa and 2.4 respectively, which were near to the natural bioactivity of bovine hemoglobin. The results suggested that polymer composition had significant influence on encapsulation efficiency and particle size of microcapsules. The encapsulation efficiency could reach 90% and the particle size 3 - 5 microm when the PELA copolymer containing MPEG 2000 block was used. The encapsulation efficiency and particle size increased with the concentration of PELA. Increasing the concentrations of NaCl in outer aqueous solution resulted in the increase of encapsulation efficiency and the decrease of particle size. As the concentration of stabilizer in outer aqueous solution increased in the range of 10 g/L to 20 g/L, the particle size reduced while encapsulation efficiency was increased, further increase of the stabilizer concentration would decrease encapsulation efficiency. Increasing of primary emulsion stirring rate was advantageous to the improvement of encapsulation efficiency though it had little influence on the particle size. The influence of re-emulsion stirring rate was complicated, which was not apparent in the case of large volume of re-emulsion solution. When the wall polymer and primary emulsion stirring rate were fixed, the encapsulation efficiency decreased as the particle size reduced.

  19. Air-tolerant Fabrication and Enhanced Thermoelectric Performance of n-Type Single-walled Carbon Nanotubes Encapsulating 1,1'-Bis(diphenylphosphino)ferrocene.

    PubMed

    Nonoguchi, Yoshiyuki; Iihara, Yu; Ohashi, Kenji; Murayama, Tomoko; Kawai, Tsuyoshi

    2016-09-06

    The thermally-triggered n-type doping of single-walled carbon nanotubes is demonstrated using 1,1'-bis(diphenylphosphino)ferrocene, a novel n-type dopant. Through a simple thermal vacuum process, the phosphine compounds are moderately encapsulated inside single-walled carbon nanotubes. The encapsulation into SWNTs is carefully characterized using Raman/X-ray spectroscopy and transmission electron microscopy. This easy-to-handle doping with air-stable precursors for n-type SWNTs enables the large-scale fabrication of thermoelectric materials showing an excellent power factor exceeding approximately 240 μW mK(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Functionalized multi-walled carbon...

  1. 40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Functionalized multi-walled carbon...

  2. Carbon-nanotube-based liquids: a new class of nanomaterials and their applications

    NASA Astrophysics Data System (ADS)

    Phan, Ngoc Minh; Thang Bui, Hung; Nguyen, Manh Hong; Khoi Phan, Hong

    2014-03-01

    Carbon-nanotube-based liquids—a new class of nanomaterials—have shown many interesting properties and distinctive features offering unprecedented potential for many applications. This paper summarizes the recent progress on the study of the preparation, characterization and properties of carbon-nanotube-based liquids including so-called nanofluids, nanolubricants and different kinds of nanosolutions containing multi-walled carbon nanotubes/single-walled carbon nanotubes/graphene. A broad range of current and future applications of these nanomaterials in the fields of energy saving, power electronic and optoelectronic devices, biotechnology and agriculture are presented. The paper also identifies challenges and opportunities for future research.

  3. Encapsulation system for the immunoisolation of living cells

    NASA Technical Reports Server (NTRS)

    Lacik, Igor (Inventor); Brissova, Marcela (Inventor); Wang, Taylor G. (Inventor); Anikumar, Amrutur V. (Inventor); Prokop, Ales (Inventor); Powers, Alvin C. (Inventor)

    1999-01-01

    The present invention is drawn to a composition of matter comprising high viscosity sodium alginate, cellulose sulfate and a multi-component polycation. Additionally, the present invention provides methods for making capsules, measuring capsule permeability to immunologically-relevant proteins and treating disease in an animal using encapsulated cells. Over one thousand combinations of polyanions and polycations were examined as polymer candidates suitable for encapsulation of living cells and thirty-three pairs were effective. The combination of sodium alginate, cellulose sulfate, poly(methylene-co-guanidine) hydrochloride, calcium chloride, and sodium chloride produced the most desirable results. Pancreatic islets encapsulated in this multicomponent capsule demonstrated glucose-stimulated insulin secretion in vitro and reversed diabetes without stimulating immune reaction in mice. The capsule formulation and system of the present invention allows independent adjustments of capsule size, wall thickness, mechanical strength and permeability, and offers distinct advantages for immunoisolating cells.

  4. A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yang, Junnian; Wang, Dayong

    2016-03-01

    The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeqTM 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms.

  5. 76 FR 26186 - Multi-Walled Carbon Nanotubes; Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... 2070-AB27 Multi-Walled Carbon Nanotubes; Significant New Use Rule AGENCY: Environmental Protection... as multi-walled carbon nanotubes (MWCNT) which was the subject of premanufacture notice (PMN) P-08... (due to confidentiality claims) as multi-walled carbon nanotubes (PMN P-08-199). This action requires...

  6. Classifying Nanomaterial Risks Using Multi-Criteria Decision Analysis

    NASA Astrophysics Data System (ADS)

    Linkov, I.; Steevens, J.; Chappell, M.; Tervonen, T.; Figueira, J. R.; Merad, M.

    There is rapidly growing interest by regulatory agencies and stakeholders in the potential toxicity and other risks associated with nanomaterials throughout the different stages of the product life cycle (e.g., development, production, use and disposal). Risk assessment methods and tools developed and applied to chemical and biological material may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material because of the variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as promote the safe use/handling of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. The stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different risk categories based on our current knowledge of nanomaterial's physico-chemical characteristics, variation in produced material, and best professional judgement. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.1,2

  7. Simulating Exposure Concentrations of Engineered Nanomaterials in Surface Water Systems: Release of WASP8

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Bouchard, D.; Zepp, R. G.; Henderson, W. M.; Han, Y.; Hsieh, H. S.; Avant, B. K.; Acrey, B.; Spear, J.

    2017-12-01

    The unique properties of engineered nanomaterials led to their increased production and potential release into the environment. Currently available environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials' environmental behavior. This is due to an incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. The well-known Water Quality Analysis Simulation Program (WASP) was updated to incorporate nanomaterial-specific processes, specifically hetero-aggregation with particulate matter. In parallel with this effort, laboratory studies were used to quantify parameter values parameters necessary for governing processes in surface waters. This presentation will discuss the recent developments in the new architecture for WASP8 and the newly constructed Advanced Toxicant Module. The module includes advanced algorithms for increased numbers of state variables: chemicals, solids, dissolved organic matter, pathogens, temperature, and salinity. This presentation will focus specifically on the incorporation of nanomaterials, with the applications of the fate and transport of hypothetical releases of Multi-Walled Carbon Nanotubes (MWCNT) and Graphene Oxide (GO) into the headwaters of a southeastern US coastal plains river. While this presentation focuses on nanomaterials, the advanced toxicant module can also simulate metals and organic contaminants.

  8. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon.

    PubMed

    Jiang, Luhua; Liu, Yunguo; Liu, Shaobo; Zeng, Guangming; Hu, Xinjiang; Hu, Xi; Guo, Zhi; Tan, Xiaofei; Wang, Lele; Wu, Zhibin

    2017-06-06

    Adsorption of two estrogen contaminants (17β-estradiol and 17α-ethynyl estradiol) by graphene nanomaterials was investigated and compared to those of a multi-walled carbon nanotube (MWCNT), a single-walled carbon nanotube (SWCNT), two biochars, a powdered activated carbon (PAC), and a granular activate carbon (GAC) in ultrapure water and in the competition of natural organic matter (NOM). Graphene nanomaterials showed comparable or better adsorption ability than carbon nanotubes (CNTs), biochars (BCs), and activated carbon (ACs) under NOM preloading. The competition of NOM decreased the estrogen adsorption by all adsorbents. However, the impact of NOM on the estrogen adsorption was smaller on graphenes than CNTs, BCs, and ACs. Moreover, the hydrophobicity of estrogens also affected the uptake of estrogens. These results suggested that graphene nanomaterials could be used to removal estrogen contaminants from water as an alternative adsorbent. Nevertheless, if transferred to the environment, they would also adsorb estrogen contaminants, leading to great environmental hazards.

  9. Modelling of particle-laden flow inside nanomaterials.

    PubMed

    Chan, Yue; Wylie, Jonathan J; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  10. Modelling of particle-laden flow inside nanomaterials

    NASA Astrophysics Data System (ADS)

    Chan, Yue; Wylie, Jonathan J.; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  11. Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution

    DOE PAGES

    Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; ...

    2015-05-15

    The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less

  12. Electrostatic stabilization of multi-walled carbon nanotubes dispersed in nonaqueous media.

    PubMed

    Damasceno, João Paulo V; Zarbin, Aldo J G

    2018-06-04

    Dispersing carbon nanotubes is an easy and low-cost way to manipulate these solids and allows the preparation of more complex materials or devices, so it is fundamental for further uses that these dispersions have controlled properties and high colloidal stability. In this work we report the spontaneous electrical charge build-up in pristine multi-walled carbon nanotubes dispersed in common organic solvents such as chloroform and tetrahydrofuran and the achievement of dispersions stable for long periods without adding passivant agents or functional groups on nanotubes surface. Results from electrokinetics, homo- and heterocoagulation provided macroscopic evidences that carbon nanotubes acquire electric charges after dispersion in some organic liquids and we confirmed this process by measuring in situ Raman spectra of the nanotubes dispersions with higher surface electric potentials. We also show that the signal of electric potential of the dispersions can be predicted by the acid-base behaviour of the dispersing medium, corroborating previously reports for other dispersions of carbon nanomaterials. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. The role of plant cell wall encapsulation and porosity in regulating lipolysis during the digestion of almond seeds.

    PubMed

    Grundy, Myriam M L; Carrière, Frédéric; Mackie, Alan R; Gray, David A; Butterworth, Peter J; Ellis, Peter R

    2016-01-01

    Previous studies have provided evidence that the physical encapsulation of intracellular nutrients by cell walls of plant foods (i.e. dietary fibre) plays a predominant role in influencing macronutrient bioaccessibility (release) from plant foods during human digestion. One unexplored aspect of this is the extent to which digestive enzymes can pass through the cell-wall barrier and hydrolyse the intracellular lipid in almond seeds. The purpose of the present study was to assess the role played by cell walls in influencing the bioaccessibility and digestibility of almond lipid using a range of techniques. Digestibility experiments were performed on raw and roasted almond cells as well as isolated almond oil bodies using in vitro gastric and duodenal digestion models. Residual triacylglycerols and lipolysis products were extracted after 1 h of incubation and analysed by thin layer chromatography. The lipolysis kinetics of almond cells and oil bodies were also investigated using the pH-stat technique. Finally, the potential penetration of pancreatic lipase through the cell wall matrix was investigated using confocal microscopy. Differences in the rates and extent of lipolysis were clearly seen between almond cells and oil bodies, and these differences were observed regardless of the lipase(s) used. These results also showed that almond cell walls that are completely intact limit lipid digestibility, due to an encapsulation mechanism that hinders the diffusion of lipase into the intracellular environment and lipolysis products out of the cells.

  14. A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans

    PubMed Central

    Zhao, Yunli; Yang, Junnian; Wang, Dayong

    2016-01-01

    The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeqTM 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms. PMID:26984256

  15. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  16. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles

    PubMed Central

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 μg/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria. PMID:25336943

  17. Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.

    2015-01-01

    In the present work, a detailed Raman spectroscopy investigation on the single-walled carbon nanotubes (SWCNTs) filled with praseodymium chloride, terbium chloride and thulium chloride was performed. The salts were incorporated inside the SWCNTs by a capillary filling method using melts, and the high-resolution transmission electron microscopy data proved the high filling degree of the nanotube channels. A thorough analysis of the radial breathing mode and G-band of the Raman spectra of the pristine and filled SWCNTs showed that the encapsulated salts cause acceptor doping of the host nanotubes, and the doping efficiency depends on the compound. The incorporated thulium chloride has the strongest doping effect on the SWCNTs, whereas praseodymium chloride has the weakest effect. It was found that the encapsulated salts modify more significantly the electronic structure of metallic nanotubes than semiconducting SWCNTs.

  18. Photostability effect of silica nanoparticles encapsulated fluorescence dye

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-12-01

    Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.

  19. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids.

    PubMed

    Desmecht, Antonin; Steenhaut, Timothy; Pennetreau, Florence; Hermans, Sophie; Riant, Olivier

    2018-06-20

    Polyamidoamine (PAMAM) dendrimers were covalently immobilized on multi-walled carbon nanotubes (MWNT) via two 'grafting to' strategies. We demonstrate the existence of non-covalent interactions between the two components but outline the superiority of our two grafting approaches, namely xanthate and click chemistry. MWNT surfaces were functionalized with activated ester and propargylic moieties prior to their reaction with PAMAM or azido-PAMAM dendrimers, respectively. The grafting of PAMAM generations 0 to 3 was evaluated with X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The versatility of our hybrids was demonstrated by post-functionalization sequences involving copper alkyne-azide cycloaddition (CuAAC). We synthesized homogeneous supported iridium complexes at the extremities of the dendrimers. In addition, our materials were used as template for the encapsulation of Pd nanoparticles (NP), validating our nanocomposites for catalytic applications. The palladium-based catalyst was active for carbonylative coupling during 5 consecutive runs without loss of activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells

    NASA Astrophysics Data System (ADS)

    Xu, Haifei; Bai, Juan; Meng, Jie; Hao, Wei; Xu, Haiyan; Cao, Ji-Min

    2009-07-01

    The advancement in nanotechnology has produced technological and conceptual breakthroughs but the effects nanomaterials have on organisms at the cellular level are poorly understood. Here we report that carboxyl-terminated multi-walled carbon nanotubes (MWCNTs) act as antagonists of three types of potassium channels as assessed by whole-cell patch clamp electrophysiology on undifferentiated pheochromocytoma (PC12) cells. Our results showed that carboxyl-terminated MWCNTs suppress the current densities of Ito, IK and IK1 in a time-dependent and irreversible manner. The suppressions were most distinct 24 h after incubation with MWCNTs. However, MWCNTs did not significantly change the expression levels of reactive oxygen species (ROS) or intracellular free calcium and also did not alter the mitochondrial membrane potential (ΔΨm) in PC12 cells. These results suggest that oxidative stress was not involved in the MWCNTs suppression of Ito, IK and IK1 current densities. Nonetheless, the suppression of potassium currents by MWCNTs will impact on electrical signaling of excitable cells such as neurons and muscles.

  1. Functionalization of multi-walled carbon nanotubes with thermo-responsive azide-terminated poly(N-isopropylacrylamide) via click reactions.

    PubMed

    Su, Xin; Shuai, Ya; Guo, Zanru; Feng, Yujun

    2013-04-18

    Covalently functionalized multi-walled carbon nanotubes (MWNTs) were prepared by grafting well-defined thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) via click reactions. First, azide-terminated poly(N-isopropylacrylamide) (N3-PNIPAM) was synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization, and then the N₃-PNIPAM moiety was connected onto MWNTs by click chemistry. The products were characterized by means of FT-IR, TGA and TEM. The results show that the modification of MWNTs is very successful and MWNTs functionalized by N₃-PNIPAM (MWNTs-PNIPAM) have good solubility and stability in water. TEM images show the functionalized MWNTs are dispersed individually, indicating that the bundles of original MWNTs are separated into individual tubes by surface modification with polymer chains. These MWNTs modified with PNIPAM represent a potential nano-material for preparation of hydrophilic composite materials.

  2. Multi-Wall Carbon Nanotubes for Flow-Induced Voltage Generation (Preprint)

    DTIC Science & Technology

    2006-08-01

    flow sensors with a large dynamic range. The present work investigates voltage generation properties of multi-walled carbon nanotubes ( MWCNT ) as a...wall carbon nanotubes, has been generated from our perpendicularly-aligned MWCNT in an aqueous solution of 1 M NaCl at a relatively low flow velocity of...generation properties of multi-walled carbon nanotubes ( MWCNT ) as a function of the relative orientation of the nanotube array with respect to the flow

  3. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence

  4. Green chemistry of carbon nanomaterials.

    PubMed

    Basiuk, Elena V; Basiuk, Vladimir A

    2014-01-01

    The global trend of looking for more ecologically friendly, "green" techniques manifested itself in the chemistry of carbon nanomaterials. The main principles of green chemistry emphasize how important it is to avoid the use, or at least to reduce the consumption, of organic solvents for a chemical process. And it is precisely this aspect that was systematically addressed and emphasized by our research group since the very beginning of our work on the chemistry of carbon nanomaterials in early 2000s. The present review focuses on the results obtained to date on solvent-free techniques for (mainly covalent) functionalization of fullerene C60, single-walled and multi-walled carbon nanotubes (SWNTs and MWNTs, respectively), as well as nanodiamonds (NDs). We designed a series of simple and fast functionalization protocols based on thermally activated reactions with chemical compounds stable and volatile at 150-200 degrees C under reduced pressure, when not only the reactions take place at a high rate, but also excess reagents are spontaneously removed from the functionalized material, thus making its purification unnecessary. The main two classes of reagents are organic amines and thiols, including bifunctional ones, which can be used in conjunction with different forms of nanocarbons. The resulting chemical processes comprise nucleophilic addition of amines and thiols to fullerene C60 and to defect sites of pristine MWNTs, as well as direct amidation of carboxylic groups of oxidized nanotubes (mainly SWNTs) and ND. In the case of bifunctional amines and thiols, reactions of the second functional group can give rise to cross-linking effects, or be employed for further derivatization steps.

  5. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    PubMed

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  6. Nanomaterials for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  7. Synthesis and Application of Graphene Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei

    Graphene, a two-dimensional sp2-bonded carbon material, has recently attracted major attention due to its excellent electrical, optical and mechanical properties. Depending on different applications, graphene and its derived hybrid nanomaterials can be synthesized by either bottom-up chemical vapor deposition (CVD) methods for electronics, or various top-down chemical reaction methods for energy generation and storage devices. My thesis begins with the investigation of CVD synthesis of graphene thin films in Chapter 1, including the direct growth of bilayer graphene on insulating substrates and synthesis of "rebar graphene": a hybrid structure with graphene and carbon or boron nitride nanotubes. Chapter 2 discusses the synthesis of nanoribbon-shaped materials and their applications, including splitting of vertically aligned multi-walled carbon nanotube carpets for supercapacitors, synthesis of dispersable ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in magnetic field, graphene nanoribbon/SnO 2 nanocomposite for lithium ion batteries, and enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Next, Chapter 3 discusses graphene coated iron oxide nanomaterials and their use in energy storage applications. Finally, Chapter 4 introduces the development, characterization, and fabrication of laser induced graphene and its application as supercapacitors.

  8. Size response of an SMPS-APS system to commercial multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Bok; Lee, Jun-Hyun; Bae, Gwi-Nam

    2010-02-01

    Carbon nanotubes (CNTs) are representative-engineered nanomaterials with unique properties. The safe production of CNTs urgently requires reliable tools to assess inhalation exposure. In this study, on-line aerosol instruments were employed to detect the release of multi-walled CNTs (MWCNTs) in workplace environments. The size responses of aerosol instruments consisting of both a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) were examined using five types of commercial MWCNTs. A MWCNT solution and powder were aerosolized using atomizing and shaking methods, respectively. Regardless of the phase and purity, the aerosolized MWCNTs showed consistent size distributions with both SMPS and APS. The SMPS and APS measurements revealed a dominant broad peak at approximately 200-400 nm and a distinct narrow peak at approximately 2 μm, respectively. Comparing with field application of the two aerosol instruments, the APS response could be a fingerprint of the MWCNTs in a real workplace environment. A modification of the atomizing method is recommended for the long-term inhalation toxicity studies.

  9. The effects of hydrogen proportion on the synthesis of carbon nanomaterials with gaseous detonation (deflagration) method

    NASA Astrophysics Data System (ADS)

    Zhao, Tiejun; Li, Xiaojie; Lee, John H. S.; Yan, Honghao

    2018-02-01

    Using ferrocene, H2 and O2, Carbon nanomaterials were prepared with gaseous detonation (deflagration) method. The effects of H2 on the phase and morphology of carbon nanomaterials were studied by various proportions of H2 in the reaction. The prepared samples were characterized by x-ray diffractometer, transmission electron microscope and Raman spectrometer. The results show that hydrogen proportion has a great influence on the phase and morphology of carbon nanomaterials. The high hydrogen proportion leads to much unreacted hydrogen, which could protect the iron atom from oxidation of carbon and dilute the reactants contributing to uniform particle size. In addition, the graphitization degree of multi-walled carbon nanotubes, observed in samples with high H2 proportion, is high enough to see the lattice fringes, but the degree of graphitization of whole sample is lower than which fabricated with low H2 proportion, and it may result from the low energy generation.

  10. Encapsulation and Polymerization of White Phosphorus Inside Single-Wall Carbon Nanotubes.

    PubMed

    Hart, Martin; White, Edward R; Chen, Ji; McGilvery, Catriona M; Pickard, Chris J; Michaelides, Angelos; Sella, Andrea; Shaffer, Milo S P; Salzmann, Christoph G

    2017-07-03

    Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  12. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids

    PubMed Central

    Allouche, Joachim; Chanéac, Corinne; Brayner, Roberta; Boissière, Michel; Coradin, Thibaud

    2014-01-01

    The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms. PMID:28344239

  13. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids.

    PubMed

    Allouche, Joachim; Chanéac, Corinne; Brayner, Roberta; Boissière, Michel; Coradin, Thibaud

    2014-07-31

    The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms.

  14. Demonstration of a modelling-based multi-criteria decision analysis procedure for prioritisation of occupational risks from manufactured nanomaterials.

    PubMed

    Hristozov, Danail; Zabeo, Alex; Alstrup Jensen, Keld; Gottardo, Stefania; Isigonis, Panagiotis; Maccalman, Laura; Critto, Andrea; Marcomini, Antonio

    2016-11-01

    Several tools to facilitate the risk assessment and management of manufactured nanomaterials (MN) have been developed. Most of them require input data on physicochemical properties, toxicity and scenario-specific exposure information. However, such data are yet not readily available, and tools that can handle data gaps in a structured way to ensure transparent risk analysis for industrial and regulatory decision making are needed. This paper proposes such a quantitative risk prioritisation tool, based on a multi-criteria decision analysis algorithm, which combines advanced exposure and dose-response modelling to calculate margins of exposure (MoE) for a number of MN in order to rank their occupational risks. We demonstrated the tool in a number of workplace exposure scenarios (ES) involving the production and handling of nanoscale titanium dioxide, zinc oxide (ZnO), silver and multi-walled carbon nanotubes. The results of this application demonstrated that bag/bin filling, manual un/loading and dumping of large amounts of dry powders led to high emissions, which resulted in high risk associated with these ES. The ZnO MN revealed considerable hazard potential in vivo, which significantly influenced the risk prioritisation results. In order to study how variations in the input data affect our results, we performed probabilistic Monte Carlo sensitivity/uncertainty analysis, which demonstrated that the performance of the proposed model is stable against changes in the exposure and hazard input variables.

  15. Surface Curvature Relation to Protein Adsorption for Carbon-based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Gu, Zonglin; Yang, Zaixing; Chong, Yu; Ge, Cuicui; Weber, Jeffrey K.; Bell, David R.; Zhou, Ruhong

    2015-06-01

    The adsorption of proteins onto carbon-based nanomaterials (CBNs) is dictated by hydrophobic and π-π interactions between aliphatic and aromatic residues and the conjugated CBN surface. Accordingly, protein adsorption is highly sensitive to topological constraints imposed by CBN surface structure; in particular, adsorption capacity is thought to increase as the incident surface curvature decreases. In this work, we couple Molecular Dynamics (MD) simulations with fluorescence spectroscopy experiments to characterize this curvature dependence in detail for the model protein bovine serum albumin (BSA). By studying BSA adsorption onto carbon nanotubes of increasing radius (featuring descending local curvatures) and a flat graphene sheet, we confirm that adsorption capacity is indeed enhanced on flatter surfaces. Naïve fluorescence experiments featuring multi-walled carbon nanotubes (MWCNTs), however, conform to an opposing trend. To reconcile these observations, we conduct additional MD simulations with MWCNTs that match those prepared in experiments; such simulations indicate that increased mass to surface area ratios in multi-walled systems explain the observed discrepancies. In reduction, our work substantiates the inverse relationship between protein adsorption capacity and surface curvature and further demonstrates the need for subtle consideration in experimental and simulation design.

  16. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  17. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  18. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards.

    PubMed

    Alhans, Ruby; Singh, Anukriti; Singhal, Chaitali; Narang, Jagriti; Wadhwa, Shikha; Mathur, Ashish

    2018-09-01

    In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes. Copyright © 2018. Published by Elsevier B.V.

  19. Preparation of micelle supported magnetic hydroxylated multi-walled carbon nanotubes based DSPE for determination of PAHs

    NASA Astrophysics Data System (ADS)

    Wang, Mingyu; Zhang, Shaojun; Zhang, Xiao; Li, Deyu

    2017-06-01

    A micelle supported Fe3O4 magnetic nanoparticles decorated hydroxylated multi-walled carbon nanotubes material was synthesized. The material was facilely synthesized between carbon nanotubes and Fe2+. The synthesized nanomaterial served as an excellent support for micelles, exhibiting high loading capacity and selectivity. The prepared material used in dispersive solid-phase extraction (DSPE) for investigation of gaseous phase polycyclic aromatic hydrocarbons (PAHs) emitted from marine diesel engine for the first time. The application showed good response (R2 > 0.9981) in the range of 0.02 - 1.0 μg/L, satisfactory reproducibility (variation less than ± 10%) and high precision. Limits of detection of sixteen PAHs ranged from 0.009 to 0.018 μg/L (S/N=3). The spiked recovery of proposed method (72.65-96.54 %) was 1.01 - 2.32 times higher than that of the conventional method. The enrichment factors reached to 39.65-121.32 that exhibited good enrichment ability.

  20. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    PubMed

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  1. Fabrication and Cytocompatibility of In Situ Crosslinked Carbon Nanomaterial Films

    PubMed Central

    Patel, Sunny C.; Lalwani, Gaurav; Grover, Kartikey; Qin, Yi-Xian; Sitharaman, Balaji

    2015-01-01

    Assembly of carbon nanomaterials into two-dimensional (2D) coatings and films that harness their unique physiochemical properties may lead to high impact energy capture/storage, sensors, and biomedical applications. For potential biomedical applications, the suitability of current techniques such as chemical vapor deposition, spray and dip coating, and vacuum filtration, employed to fabricate macroscopic 2D all carbon coatings or films still requires thorough examination. Each of these methods presents challenges with regards to scalability, suitability for a large variety of substrates, mechanical stability of coatings or films, or biocompatibility. Herein we report a coating process that allow for rapid, in situ chemical crosslinking of multi-walled carbon nanotubes (MWCNTs) into macroscopic all carbon coatings. The resultant coatings were found to be continuous, electrically conductive, significantly more robust, and cytocompatible to human adipose derived stem cells. The results lay groundwork for 3D layer-on-layer nanomaterial assemblies (including various forms of graphene) and also opens avenues to further explore the potential of MWCNT films as a novel class of nano-fibrous mats for tissue engineering and regenerative medicine. PMID:26018775

  2. Improving the fracture toughness and the strength of epoxy using nanomaterials--a review of the current status.

    PubMed

    Domun, N; Hadavinia, H; Zhang, T; Sainsbury, T; Liaghat, G H; Vahid, S

    2015-06-21

    The incorporation of nanomaterials in the polymer matrix is considered to be a highly effective technique to improve the mechanical properties of resins. In this paper the effects of the addition of different nanoparticles such as single-walled CNT (SWCNT), double-walled CNT (DWCNT), multi-walled CNT (MWCNT), graphene, nanoclay and nanosilica on fracture toughness, strength and stiffness of the epoxy matrix have been reviewed. The Young's modulus (E), ultimate tensile strength (UTS), mode I (GIC) and mode II (GIIC) fracture toughness of the various nanocomposites at different nanoparticle loadings are compared. The review shows that, depending on the type of nanoparticles, the integration of the nanoparticles has a substantial effect on mode I and mode II fracture toughness, strength and stiffness. The critical factors such as maintaining a homogeneous dispersion and good adhesion between the matrix and the nanoparticles are highlighted. The effect of surface functionalization, its relevancy and toughening mechanism are also scrutinized and discussed. A large variety of data comprised of the mechanical properties of nanomaterial toughened composites reported to date has thus been compiled to facilitate the evolution of this emerging field, and the results are presented in maps showing the effect of nanoparticle loading on mode I fracture toughness, stiffness and strength.

  3. Encapsulation and delivery of food ingredients using starch based systems.

    PubMed

    Zhu, Fan

    2017-08-15

    Functional ingredients can be encapsulated by various wall materials for controlled release in food and digestion systems. Starch, as one of the most abundant natural carbohydrate polymers, is non-allergenic, GRAS, and cheap. There has been increasing interest of using starch in native and modified forms to encapsulate food ingredients such as flavours, lipids, polyphenols, carotenoids, vitamins, enzymes, and probiotics. Starches from various botanical sources in granular or amorphous forms are modified by chemical, physical, and/or enzymatic means to obtain the desired properties for targeted encapsulation. Other wall materials are also employed in combination with starch to facilitate some types of encapsulation. Various methods of crafting the starch-based encapsulation such as electrospinning, spray drying, antisolvent, amylose inclusion complexation, and nano-emulsification are introduced in this mini-review. The physicochemical and structural properties of the particles are described. The encapsulation systems can positively influence the controlled release of food ingredients in food and nutritional applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  5. Carbon and fullerene nanomaterials in plant system

    PubMed Central

    2014-01-01

    Both the functionalized and non functionalized carbon nanomaterials influence fruit and crop production in edible plants and vegetables. The fullerene, C60 and carbon nanotubes have been shown to increase the water retaining capacity, biomass and fruit yield in plants up to ~118% which is a remarkable achievement of nanotechnology in recent years. The fullerene treated bitter melon seeds also increase the phytomedicine contents such as cucurbitacin-B (74%), lycopene (82%), charantin (20%) and insulin (91%). Since as little as 50 μg mL−1 of carbon nanotubes increase the tomato production by about 200%, they may be exploited to enhance the agriculture production in future. It has been observed that, in certain cases, non functionalized multi-wall carbon nanotubes are toxic to both plants and animals but the toxicity can be drastically reduced if they are functionalized. PMID:24766786

  6. Carbon and fullerene nanomaterials in plant system.

    PubMed

    Husen, Azamal; Siddiqi, Khwaja Salahuddin

    2014-04-25

    Both the functionalized and non functionalized carbon nanomaterials influence fruit and crop production in edible plants and vegetables. The fullerene, C60 and carbon nanotubes have been shown to increase the water retaining capacity, biomass and fruit yield in plants up to ~118% which is a remarkable achievement of nanotechnology in recent years. The fullerene treated bitter melon seeds also increase the phytomedicine contents such as cucurbitacin-B (74%), lycopene (82%), charantin (20%) and insulin (91%). Since as little as 50 μg mL-1 of carbon nanotubes increase the tomato production by about 200%, they may be exploited to enhance the agriculture production in future. It has been observed that, in certain cases, non functionalized multi-wall carbon nanotubes are toxic to both plants and animals but the toxicity can be drastically reduced if they are functionalized.

  7. Pressure sensor based on pristine multi-walled carbon nanotubes forest

    NASA Astrophysics Data System (ADS)

    Yasar, M.; Mohamed, N. M.; Hamid, N. H.; Shuaib, M.

    2016-11-01

    In the course of the most recent decade, carbon nanotubes (CNTs) have been developed as alternate material for many sensing applications because of their interesting properties. Their outstanding electromechanical properties make them suitable for pressure/strain sensing application. Other than in view of their structure and number of walls (i.e. Single-Walled CNTs and MultiWalled CNTs), carbon nanotubes can likewise be classified based on their orientation and combined arrangement. One such classification is vertically aligned Multi-Walled Carbon Nanotubes (VA-MWCNTs), regularly termed as CNTs arrays, foam or forest which is macro scale form of CNTs. Elastic behavior alongside exceptional electromechanical (high gauge factor) make it suitable for pressure sensing applications. This paper presents pressure sensor based on such carbon nanotubes forest in pristine form which enables it to perform over wider temperature range as compared to pressure sensors based on conventional materials such as Silicon.

  8. Development of DBD plasma actuators: The double encapsulated electrode

    NASA Astrophysics Data System (ADS)

    Erfani, Rasool; Zare-Behtash, Hossein; Hale, Craig; Kontis, Konstantinos

    2015-04-01

    Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric.

  9. Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis

    NASA Astrophysics Data System (ADS)

    Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya

    2018-03-01

    In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.

  10. Iron-filled multi-walled carbon nanotubes for terahertz applications: effects of interfacial polarization, screening and anisotropy.

    PubMed

    Sedelnikova, O V; Korovin, E Yu; Dorozhkin, K V; Kanygin, M A; Arkhipov, V E; Shubin, Yu V; Zhuravlev, V A; Suslyaev, V I; Bulusheva, L G; Okotrub, A V

    2018-04-27

    Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.

  11. Iron-filled multi-walled carbon nanotubes for terahertz applications: effects of interfacial polarization, screening and anisotropy

    NASA Astrophysics Data System (ADS)

    Sedelnikova, O. V.; Korovin, E. Yu; Dorozhkin, K. V.; Kanygin, M. A.; Arkhipov, V. E.; Shubin, Yu V.; Zhuravlev, V. A.; Suslyaev, V. I.; Bulusheva, L. G.; Okotrub, A. V.

    2018-04-01

    Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.

  12. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    PubMed Central

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  13. Bioactive compounds and encapsulation of Yanang (Tiliacora triandra) leaves.

    PubMed

    Singthong, Jittra; Oonsivilai, Ratchadaporn; Oonmetta-Aree, Jirawan; Ningsanond, Suwayd

    2014-01-01

    Yanang (Tiliacora triandra) has been known as vegetable and herbal in northeast Thailand and Lao People's Democratic Republic. Extracts from Yanang leaves contain high amounts of polyphenol constituents possessing antioxidant activity. This work investigated bioactive compounds of Yanang extracts prepared by infusion with water, ethanol and acetone. Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability of bioactive compounds was evaluated using phenolic compounds, total antioxidant, carotenoids and chlorophyll. The study of the bioactivity of Yanang extracts found that extraction with water was the appropriate application. The study of Yanang encapsulation demonstrated that gum Arabic, as coating agents, protected bioactive compounds of Yanang. Optimized condition for the encapsulation was at the ratio of core to wall {1:4}, in gum Arabic concentration 10% (w/v), and inlet temperature at 160▯C. The results show that the bioactive compounds were mainly affected by the ratio of core to wall material. Besides, moisture content and particle size of encapsulation depend on inlet temperature of spray drying, and gum Arabic concentration, respectively. This optimization reveals that the encapsulation process did not lose the bioactive compounds. Yanang extract with water was the main phenolic compound and showed high antioxidant activities. This study demonstrates the potentials of using spray drying process and optimization for the encapsulation of herbal products.

  14. 75 FR 44198 - Proposed Significant New Use Rule for Multi-walled Carbon Nanotubes; Reopening of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Proposed Significant New Use Rule for Multi-walled Carbon Nanotubes; Reopening of Comment Period AGENCY... (SNUR) for the chemical substance identified generically as multi-walled carbon nanotubes (P-08-199). In... identified generically as multi-walled carbon nanotubes as identified in Premanufacture Notice (PMN) P-08-199...

  15. Biomedical Platforms Based on Composite Nanomaterials and Cellular Toxicity

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano; Bergamaschi, A.; Bottini, M.; Magrini, A.; Mustelin, T.

    2007-03-01

    Carbon nanotubes possess unique chemical, physical, optical, and magnetic properties, which make them suitable for many uses in industrial products and in the field of nanotechnology, including nanomedicine. We describe fluorescent nanocomposites for use in biosensors or nanoelectronics. Then we describe recent results on the issue of cytotoxicity of carbon nanotubes obtained in our labs. Silica nanoparticles have been widely used for biosensing and catalytic applications due to their large surface area-to-volume ratio, straightforward manufacture, and the compatibility of silica chemistry with covalent coupling of biomolecules. Carbon nanotubes-composite materials, such as those based on Carbon nanotubes bound to nanoparticles, are suitable, in order to tailor Carbon nanotubes properties for specific applications. We present a tunable synthesis of Multi Wall Carbon nanotubes-Silica nanoparticles. The control of the nanotube morphology and the bead size, coupled with the versatility of silica chemistry, makes these structures an excellent platform for the development of biosensors (optical, magnetic and catalytic applications). We describe the construction and characterization of supramolecular nanostructures consisting of ruthenium-complex luminophores, directly grafted onto short oxidized single-walled carbon nanotubes or physically entrapped in silica nanobeads, which had been covalently linked to short oxidized single-walled carbon nanotubes or hydrophobically adsorbed onto full-length multi-walled carbon nanotubes. These structures have been evaluated as potential electron-acceptor complexes for use in the fabrication of photovoltaic devices, and for their properties as fluorescent nanocomposites for use in biosensors or nanoelectronics. Finally, we compare the toxicity of pristine and oxidized Multi Walled Carbon nanotubes on human T cells - which would be among the first exposed cell types upon intravenous administration of Carbon nanotubes in therapeutic

  16. Interaction of engineered nanomaterials with hydrophobic organic pollutants

    NASA Astrophysics Data System (ADS)

    Sahle-Demessie, E.; Han, Changseok; Zhao, Amy; Hahn, Bill; Grecsek, Heidi

    2016-07-01

    As nanomaterials become an increasing part of everyday consumer products, it is imperative to monitor their potential release during production, use and disposal, and to assess their impact on the health of humans and the ecosystem. This necessitates research to better understand how the properties of engineered nanomaterials (ENMs) lead to their accumulation and redistribution in the environment, and to assess whether they could become novel pollutants or if they can affect the mobility and bioavailability of other toxins. This study focuses on understanding the influence of nanostructured-TiO2 and the interaction of multi-walled carbon nanotubes with organic pollutants in water. We studied the adsorption and water phase dispersion of model pollutants with relatively small water solubility (i.e., two- and three-ring polyaromatic hydrocarbons and insecticides) with respect to ENMs. The sorption of pollutants was measured based on water phase analysis, and by separating suspended particles from the water phase and analyzing dried samples using integrated thermal-chromatographic-mass spectroscopic (TGA/GC/MS) techniques. Solid phase analysis using a combination of TGA/GC/MS is a novel technique that can provide real-time quantitative analysis and which helps to understand the interaction of hydrophobic organic pollutants and ENMs. The adsorption of these contaminants to nanomaterials increased the concentration of the contaminants in the aqueous phase as compared to the ‘real’ partitioning due to the octanol-water partitioning. The study showed that ENMs can significantly influence the adsorption and dispersion of hydrophobic/low water soluble contaminants. The type of ENM, the exposure to light, and the water pH have a significant influence on the partitioning of pollutants.

  17. Asbestos: The Case for Encapsulation.

    ERIC Educational Resources Information Center

    Russek, William F.

    1980-01-01

    Encapsulation has proven to be the safest, surest, and most permanent method of treating sprayed asbestos on ceilings and walls. Federal aid is available to help pay for inspection of school buildings for asbestos and for asbestos removal. (Author/MLF)

  18. Nanomaterials in cancer-therapy drug delivery system.

    PubMed

    Zhang, Gen; Zeng, Xin; Li, Ping

    2013-05-01

    Nanomaterials can enhance the delivery and treatment efficiency of anti-cancer drugs, and the mechanisms of the tumor-reducing activity of nanomaterials with cancer drug have been investigated. The task for drug to reach pathological areas has facilitated rapid advances in nanomedicine. Herein, we summarize promising findings with respect to cancer therapeutics based on nano-drug delivery vectors. Relatively high toxicity of uncoated nanoparticles restricts the use of these materials in humans. In order to reduce toxicity, many approaches have focused on the encapsulation of nanoparticles with biocompatible materials. Efficient delivery systems have been developed that utilized nanoparticles loaded with high dose of cancer drug in the presence of bilayer molecules. Well-established nanotechnologies have been designed for drug delivery with specific bonding. Surface-modified nanoparticles as vehicles for drug delivery system that contains multiple nano-components, each specially designed to achieve aimed task for the emerging application delivery of therapeutics. Drug-coated polymer nanoparticles could efficiently increase the intracellular accumulation of anti-cancer drugs. This review also introduces the nanomaterials with drug on the induction of apoptosis in cancer cells in vitro and in vivo. Direct interactions between the particles and cellular molecules to cause adverse biological responses are also discussed.

  19. Multi-walled boron nitride nanotubes as self-excited launchers.

    PubMed

    Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui

    2017-07-27

    A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.

  20. Smart nanomaterials for biomedics.

    PubMed

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  1. Encapsulation of high temperature thermoelectric modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam

    A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectricmore » elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.« less

  2. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    PubMed

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  3. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  4. The impact of multi-walled carbon nanotubes (MWCNTs) on macrophages: contribution of MWCNT characteristics.

    PubMed

    Li, Yinghe; Cao, Jimin

    2018-05-22

    Multi-walled carbon nanotubes (MWCNTs) have wide application prospects but also exhibit notable biotoxicity that is tightly associated with macrophages. Macrophages simultaneously act as initiators and defenders in MWCNT-induced organ lesions, and targeting macrophages with MWCNTs may be a potential immunotherapy and oncotherapy approach. This review focuses on the impacts of MWCNTs on macrophages and further discusses the influence of MWCNT characteristics on their bioactivity. Based on existing studies, MWCNTs stimulate macrophage migration, induce secretion of various cytokines and activate inflammatory pathways in macrophages, especially NLRP3-mediated IL-1β production. This inflammatory state, together with the oxidative stress and cell membrane lesions induced by MWCNTs, contributes to decreased phagocytic ability and cell viability, which finally results in cell apoptosis and necrosis. A series of intracellular and systemic components, such as toll-like receptor, high-mobility group box 1, Rho-associated kinases, scavenger receptor and complement components, may be involved in the above-mentioned cell-MWCNT interactions. The characteristics of MWCNTs can influence their bioactivity in macrophages both mechanically and chemically. The size (length and/or diameter), functionalization, purification and even the experimental method can affect the influence of MWCNTs on macrophages, and a better understanding of these MWCNT characteristics may benefit utilization of this nanomaterial in associated nanomedical applications.

  5. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  6. Biological and ecological responses to carbon-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Ratnikova, Tatsiana A.

    This dissertation examines the biological and ecological responses to carbon nanoparticles, a major class of nanomaterials which have been mass produced and extensively studied for their rich physical properties and commercial values. Chapter I of this dissertation offers a comprehensive review on the structures, properties, applications, and implications of carbon nanomaterials, especially related to the perspectives of biological and ecosystems. Given that there are many types of carbon nanomaterials available, this chapter is focused on three major types of carbon-based nanomaterials only, namely, fullerenes, single walled and multi-walled carbon nanotubes. On the whole organism level, specifically, Chapter II presents a first study on the fate of fullerenes and multiwalled carbon nanotubes in rice plants, which was facilitated by the self assembly of these nanomaterials with NOM. The aspects of fullerene uptake, translocation, biodistribution, and generational transfer in the plants were examined and quantified using bright field and electron microscopy, FT-Raman, and FTIR spectroscopy. The uptake and transport of fullerene in the plant vascular system were attributed to water transpiration, convection, capillary force, and the fullerene concentration gradient from the roots to the leaves of the plants. On the cellular level, Chapter III documents the differential uptake of hydrophilic C60(OH)20 vs. amphiphilic C70-NOM complex in Allium cepa plant cells and HT-29 colon carcinoma cells. This study was conducted using a plant cell viability assay, and complemented by bright field, fluorescence and electron microscopy imaging. In particular, C60(OH)20 and C70-NOM showed contrasting uptake in both the plant and mammalian cells, due to their significant differences in physicochemistry and the presence of an extra hydrophobic plant cell wall in the plant cells. Consequently, C60(OH)20 was found to induce toxicity in Allium cepa cells but not in HT-29 cells, while C70

  7. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites.

    PubMed

    Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi

    2015-02-01

    In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.

    PubMed

    Sun, Gengzhi; Zhang, Xiao; Lin, Rongzhou; Yang, Jian; Zhang, Hua; Chen, Peng

    2015-04-07

    One of challenges existing in fiber-based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two-dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2 ) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy-related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well-aligned multi-walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2 -rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid-state, flexible, asymmetric supercapacitors. This fiber-based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  10. Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Al-Masoodi, A. H. H.; Ahmed, M. H. M.; Arof, H.; Harun, S. W.

    2018-03-01

    We demonstrate a passively multi-wavelength Q-switched Ytterbium-doped fiber laser (YDFL) based on a multi-wall carbon nanotubes embedded in polyethylene oxide film as saturable absorber. The YDFL generates a stable multi-wavelength with spacing of 1.9 nm as the 980 nm pump power is fixed within 62. 4 mW and 78.0 mW. The repetition rate of the laser is tunable from 10.41 to 29.04 kHz by increasing the pump power from the threshold power of 62.4 mW to 78 mW. At 78 mW pump power, the maximum pulse energy of 38 nJ and the shortest pulse width of 8.87 µs are obtained.

  11. Multi-walled carbon nanotubes: biodegradation by gastric agents in vitro and effect on murine intestinal system

    NASA Astrophysics Data System (ADS)

    Masyutin, A.; Erokhina, M.; Sychevskaya, K.; Gusev, A.; Vasyukova, I.; Smirnova, E.; Onishchenko, G.

    2015-11-01

    One of the main questions limiting application of fibrous carbon nanomaterials (CNM) in medicine and food industry concerns presumptive degradation of CNM in living organisms. In this study, we have investigated biodegradation of multi-walled carbon nanotubes (MWCNTs) by gastric agents in vitro and influence of ingested MWCNTs on murine intestine. Using scanning, conventional transmission and analytical electron microscopy, we demonstrated that industrial MWCNTs treated in vitro by 0.1 M hydrochloric acid (pH=1) and gastric juice (pH=2-3) isolated from murine stomach, are subjected to incomplete degradation. After 30 days of oral administration to experimental mice, we did find MWCNTs in the cells of small intestine, and it may indicate that agglomerates of MWCNTs do not penetrate into colon epithelia and do not accumulate in enterocytes. However, we observed local areas of necrotic damages of intestinal villi. It seems likely, therefore, that MWCNTs end up leaving gastrointestinal tract by excretion with the feces. Our results suggest that MWCNTs do not undergo complete degradation in gastrointestinal tract of mice, and passing through non-degraded particles may negatively affect intestinal system.

  12. Measuring Nanomaterial Release from Carbon Nanotube Composites: Review of the State of the Science

    NASA Astrophysics Data System (ADS)

    Harper, Stacey; Wohlleben, Wendel; Doa, Maria; Nowack, Bernd; Clancy, Shaun; Canady, Richard; Maynard, Andrew

    2015-05-01

    Hazard studies of “as-produced” nanomaterials are increasingly available, yet a critical gap exists in exposure science that may impede safe development of nanomaterials. The gap is that we do not understand what is actually released because nanomaterials can change when released in ways that are not understood. We also generally do not have methods capable of quantitatively measuring what is released to support dose assessment. This review presents a case study of multi-walled carbon nanotubes (MWCNTs) for the measurement challenge to bridge this gap. As the use and value of MWCNTs increases, methods to measure what is released in ways relevant to risk evaluation are critically needed if products containing these materials are to be economically, environmentally, and socially sustainable. This review draws on the input of over 50 experts engaged in a program of workshops and technical report writing to address the release of MWCNTs from nanocomposite materials across their life cycle. The expert analyses reveals that new and sophisticated methods are required to measure and assess MWCNT exposures for realistic exposure scenarios. Furthermore, method requirements vary with the materials and conditions of release across life cycle stages of products. While review shows that the likelihood of significant release of MWCNTs appears to be low for many stages of composite life cycle, measurement methods are needed so that exposures from MWCNT-composites are understood and managed. In addition, there is an immediate need to refocus attention from study of “as-produced” nanomaterials to coordinated research on actual release scenarios.

  13. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration

    NASA Astrophysics Data System (ADS)

    Lee, Se-Jun; Zhu, Wei; Nowicki, Margaret; Lee, Grace; Nyoung Heo, Dong; Kim, Junghoon; Zuo, Yi Y.; Zhang, Lijie Grace

    2018-02-01

    Objective. Nanomaterials, such as carbon nanotubes (CNTs), have been introduced to modify the surface properties of scaffolds, thus enhancing the interaction between the neural cells and biomaterials. In addition to superior electrical conductivity, CNTs can provide nanoscale structures similar to those present in the natural neural environment. The primary objective of this study is to investigate the proliferative capability and differential potential of neural stem cells (NSCs) seeded on a CNT incorporated scaffold. Approach. Amine functionalized multi-walled carbon nanotubes (MWCNTs) were incorporated with a PEGDA polymer to provide enhanced electrical properties as well as nanofeatures on the surface of the scaffold. A stereolithography 3D printer was employed to fabricate a well-dispersed MWCNT-hydrogel composite neural scaffold with a tunable porous structure. 3D printing allows easy fabrication of complex 3D scaffolds with extremely intricate microarchitectures and controlled porosity. Main results. Our results showed that MWCNT-incorporated scaffolds promoted neural stem cell proliferation and early neuronal differentiation when compared to those scaffolds without the MWCNTs. Furthermore, biphasic pulse stimulation with 500 µA current promoted neuronal maturity quantified through protein expression analysis by quantitative polymerase chain reaction. Significance. Results of this study demonstrated that an electroconductive MWCNT scaffold, coupled with electrical stimulation, may have a synergistic effect on promoting neurite outgrowth for therapeutic application in nerve regeneration.

  14. Electro-Responsive Behaviour Multi-Wall Nanotubes/Gelatin Composites and Cross-Linked Gelatin Electrospun Mats

    DTIC Science & Technology

    2008-02-11

    sample , could explain large swelling in blend samples which might enhance ions diffusion and lead to an increase of bending. 21 References [1...1 Final Report on Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats...12-10-2007 4. TITLE AND SUBTITLE Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats

  15. 40 CFR 721.10703 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10703 Multi-walled carbon nanotubes (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as...

  16. 40 CFR 721.10671 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10671 Multi-walled carbon nanotubes (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as...

  17. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  18. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  19. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    NASA Astrophysics Data System (ADS)

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam

    2015-02-01

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2-12 μg/m3. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10-420 nm were 10,000-40,000 particles/cm3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1-10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.

  20. Photosensitive function of encapsulated dye in carbon nanotubes.

    PubMed

    Yanagi, Kazuhiro; Iakoubovskii, Konstantin; Matsui, Hiroyuki; Matsuzaki, Hiroyuki; Okamoto, Hiroshi; Miyata, Yasumitsu; Maniwa, Yutaka; Kazaoui, Said; Minami, Nobutsugu; Kataura, Hiromichi

    2007-04-25

    Single-wall carbon nanotubes (SWCNTs) exhibit resonant absorption localized in specific spectral regions. To expand the light spectrum that can be utilized by SWCNTs, we have encapsulated squarylium dye into SWCNTs and clarified its microscopic structure and photosensitizing function. X-ray diffraction and polarization-resolved optical absorption measurements revealed that the encapsulated dye molecules are located at an off center position inside the tubes and aligned to the nanotube axis. Efficient energy transfer from the encapsulated dye to SWCNTs was clearly observed in the photoluminescence spectra. Enhancement of transient absorption saturation in the S1 state of the semiconducting SWCNTs was detected after the photoexcitation of the encapsulated dye, which indicates that ultrafast (<190 fs) energy transfer occurred from the dye to the SWCNTs.

  1. Ice Nucleation Properties of Oxidized Carbon Nanomaterials

    PubMed Central

    2015-01-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  2. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    PubMed Central

    Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268

  3. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  4. Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid nanomaterial for application in catalysis.

    PubMed

    Wee, Lik H; Bajpe, Sneha R; Janssens, Nikki; Hermans, Ive; Houthoofd, Kristof; Kirschhock, Christine E A; Martens, Johan A

    2010-11-21

    Nanomaterial of Cu(3)(BTC)(2) (BTC = benzene tricarboxylic acid) incorporating Keggin heteropolyacid conveniently prepared at room temperature and recovered by freeze drying outperforms ultrastable Y zeolite in acid catalysed esterification reaction.

  5. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    EPA Science Inventory

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  6. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.

    PubMed

    Secor, Ethan B; Hersam, Mark C

    2015-02-19

    Carbon and post-carbon nanomaterials present desirable electrical, optical, chemical, and mechanical attributes for printed electronics, offering low-cost, large-area functionality on flexible substrates. In this Perspective, recent developments in carbon nanomaterial inks are highlighted. Monodisperse semiconducting single-walled carbon nanotubes compatible with inkjet and aerosol jet printing are ideal channels for thin-film transistors, while inkjet, gravure, and screen-printable graphene-based inks are better-suited for electrodes and interconnects. Despite the high performance achieved in prototype devices, additional effort is required to address materials integration issues encountered in more complex systems. In this regard, post-carbon nanomaterial inks (e.g., electrically insulating boron nitride and optically active transition-metal dichalcogenides) present promising opportunities. Finally, emerging work to extend these nanomaterial inks to three-dimensional printing provides a path toward nonplanar devices. Overall, the superlative properties of these materials, coupled with versatile assembly by printing techniques, offer a powerful platform for next-generation printed electronics.

  7. Predicting multi-wall structural response to hypervelocity impact using the hull code

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.

  8. Predicted phototoxicities of carbon nano-material by quantum mechanical calculations

    EPA Science Inventory

    The purpose of this research is to develop a predictive model for the phototoxicity potential of carbon nanomaterials (fullerenols and single-walled carbon nanotubes). This model is based on the quantum mechanical (ab initio) calculations on these carbon-based materials and compa...

  9. Multi-walled carbon nanotubes (NM401) induce ROS-mediated HPRT mutations in Chinese hamster lung fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio, Laura; El Yamani, Naouale; Kazimirova, Alena

    Although there is an important set of data showing potential genotoxic effects of nanomaterials (NMs) at the DNA (comet assay) and chromosome (micronucleus test) levels, few studies have been conducted to analyze their potential mutagenic effects at gene level. We have determined the ability of multi-walled carbon nanotubes (MWCNT, NM401), to induce mutations in the HPRT gene in Chinese hamster lung (V79) fibroblasts. NM401, characterized in the EU NanoGenotox project, were further studied within the EU Framework Programme Seven (FP7) project NANoREG. From the proliferation assay data we selected a dose-range of 0.12 to 12 µg/cm{sup 2} At these rangemore » we have been able to observe significant cellular uptake of MWCNT by using transmission electron microscopy (TEM), as well as a concentration-dependent induction of intracellular reactive oxygen species. In addition, a clear concentration-dependent increase in the induction of HPRT mutations was also observed. Data support a potential genotoxic/ carcinogenic risk associated with MWCNT exposure. - Highlights: • MWCNT were tested in V79 cells. • Cellular uptake of MWCNT was detected using TEM. • Intracellular ROS induction was observed after MWCNT exposure. • MWCNT induced a concentration-dependent increase of HPRT mutations.« less

  10. Layer-by-layer-based silica encapsulation of individual yeast with thickness control.

    PubMed

    Lee, Hojae; Hong, Daewha; Choi, Ji Yu; Kim, Ji Yup; Lee, Sang Hee; Kim, Ho Min; Yang, Sung Ho; Choi, Insung S

    2015-01-01

    In the area of cell-surface engineering with nanomaterials, the metabolic and functional activities of the encapsulated cells are manipulated and controlled by various parameters of the artificial shells that encase the cells, such as stiffness and elasticity, thickness, and porosity. The mechanical durability and physicochemical stability of inorganic shells prove superior to layer-by-layer-based organic shells with regard to cytoprotection, but it has been difficult to vary the parameters of inorganic shells including their thickness. In this work, we combine the layer-by-layer technique with a process of bioinspired silicification to control the thickness of the silica shells that encapsulate yeast Saccharomyces cerevisiae cells individually, and investigate the thickness-dependent microbial growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanomaterials in Food - Current and Future Applications and Regulatory Aspects

    NASA Astrophysics Data System (ADS)

    Aschberger, K.; Gottardo, S.; Amenta, V.; Arena, M.; Botelho Moniz, F.; Bouwmeester, H.; Brandhoff, P.; Mech, A.; Quiros Pesudo, L.; Rauscher, H.; Schoonjans, R.; Vittoria Vettori, M.; Peters, R.

    2015-05-01

    Nanotechnology can contribute to the development of innovative applications in the agriculture, food and feed sector by e.g. enabling improved delivery of nutrients or increased efficacy of agrichemicals. It is expected that applications will increase in the near future and may therefore become a relevant source of human exposure to nanomaterials (NM). To gain more up-to date information, RIKILT and the Joint Research Centre (JRC) were commissioned by the European Food Safety Authority (EFSA) to prepare an inventory of currently used and reasonably foreseen applications of NM in agriculture and food/feed production and carried out a review of regulatory aspects concerning NM in both EU and non-EU countries. An analysis of the information records in the inventory shows that nano-encapsulates, silver and titanium dioxide are the most frequent type of NM listed and that food additives and food contact materials are the most frequent types of application. A comparison between marketed applications and those in development indicates a trend from inorganic materials (e.g. silver) towards organic materials (nano-encapsulates, nanocomposites). Applications in novel food, feed additives, biocides and pesticides are currently mostly at a developmental stage. The review of EU and non-EU legislation shows that currently a few EU legal acts incorporate a definition of a nanomaterial and specific provisions for NM, whereas in many non-EU countries a broader approach is applied, which mainly builds on guidance for industry.

  12. A scale-entropy diffusion equation to describe the multi-scale features of turbulent flames near a wall

    NASA Astrophysics Data System (ADS)

    Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.

    2008-12-01

    Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.

  13. Silicon carbide at nanoscale: Finite single-walled to "infinite" multi-walled tubes

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil

    A systematic ab initio study of silicon carbide (SiC) nanostructures, especially finite single-walled, infinite double- and multi-walled nanotubes and nanocones is presented. Electronic and structural properties of all these nanostructures have been calculated using hybrid density functionals (B3LYP and PBE0) as implemented in the GAUSSIAN 03/09 suite of software. The unusual dependence of band gap of silicon carbide nanotubes (SiCNT) has been explained as a direct consequence of curvature effect on the ionicity of the bonds. The study of fullerene hemisphere capped, finite SiC nanotubes indicates that the carbon-capped SiC nanotubes are energetically more preferred than silicon-capped finite or hydrogen terminated infinite nanotubes. Capping a nanotube by fullerene hemisphere reduces its band gap. SiC nanocones have also been investigated as possible cap structures of nanotubes. Electronic properties of the nanocones are found to be strongly dependent upon their tip and edge structures, with possible interesting applications in surface science. Three types of double-walled SiCNTs (n, n)@(m, m) (3 ≤ n ≤ 6 ; 7 ≤ m ≤ 12) have been studied using the finite cluster approximation. The stabilities of these nanotubes are of the same order as those of the single-walled SiC nanotubes and it should be experimentally possible to synthesize both single-walled and double-walled SiC nanotubes. The binding energy per atom or the cohesive energy of the double-walled nanotubes depends not only on the number of atoms but also on the coupling of the constituent single-walled nanotubes and their types. A study of binding energies, Mulliken charges, density of states and HOMO-LUMO gaps has been performed for all nanotubes from (n, n)@(n+3,n+3) to (n, n)@(n+6, n+6) (n=3-6). Evolution of band gaps of the SiCNTs with increase in the number of walls has also been investigated. The nature of interaction between transition metal atoms and silicon carbide nanotubes with different

  14. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity

    NASA Astrophysics Data System (ADS)

    Ahmadi Nadooshan, Afshin; Hemmat Esfe, Mohammad; Afrand, Masoud

    2017-08-01

    In the present paper, the dynamic viscosity of 10W40 lubricant containing hybrid nano-materials has been examined. Hybrid nano-materials were composed of 90% of silica (SiO2) with 20-30 nm mean particle size and 10% of multi-walled carbon nanotubes (MWCNTs) with inner diameter of 2-6 nm and outer diameter of 5-20 nm. Nano-lubricant samples were prepared by two-step method with solid volume fractions of 0.05%, 0.1%, 0.25%, 0.5%, 0.75% and 1%. Dynamic viscosity of the samples was measured at temperatures between 5 and 55 °C and at shear rates of 666.5 s-1 up to 11,997 s-1. Experimental results indicated that the nano-lubricant had non-Newtonian behavior at all temperatures, while 10w40 oil was non-Newtonian only at high temperatures. With the use of the curve fitting technique of experimental data, power law and consistency indexes were obtained; furthermore, these coefficients were assessed by shear stress and viscosity diagram.

  15. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer.

    PubMed

    Ji, Jian; Liu, Minfeng; Meng, Yue; Liu, Runqi; Yan, Yan; Dong, Jianyu; Guo, Zhaoze; Ye, Changsheng

    2016-07-07

    BACKGROUND The lymphatic system plays a significant role in the defense of a subject against breast cancer and is one of the major pathways for the metastasis of breast cancer. To improve the prognosis, many means, including surgery, radiotherapy, and chemotherapy, have been used. However, the combination of all these modalities has limited efficacy. Lymph nodes, therefore, have become an exceptionally potential target organ in cancer chemotherapy. MATERIAL AND METHODS A lymph node metastatic model of breast cancer was established in BALB/c mice. Magnetic multi-walled carbon nanotube carrier with good adsorption and lymph node-targeting capacity was prepared and conjugated with doxorubicin to make the magnetic multi-walled carbon nanotube-doxorubicin suspension. Dispersions of doxorubicin, magnetic multi-walled carbon nanotube-doxorubicin, and magnetic multi-walled carbon nanotube were injected into lymph node metastatic mice to compare their inhibitory effects on tumor cells in vivo. Inhibition of these dispersions on EMT-6 breast cancer cells was detected via MTT assay in vitro. RESULTS Although no significant difference was found between the effects of doxorubicin and magnetic multi-walled carbon nanotube-doxorubicin with the same concentration of doxorubicin on EMT-6 breast cancer cells in vitro, in terms of sizes of metastatic lymph nodes and xenograft tumors, apoptosis in metastatic lymph nodes, and adverse reactions, the magnetic multi-walled carbon nanotube-doxorubicin group differed significantly from the other groups. CONCLUSIONS The magnetic multi-walled carbon nanotube-doxorubicin clearly played an inhibitory role in lymph node metastases to EMT-6 breast cancer cells.

  16. Study of the nanomaterials and their antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Ramadi, Muntaha

    In the last decade, the world faced huge problems associated with the spread of antimicrobial resistant infections that are essentially untreatable such as methicillin resistant Staphylococcus aureus (MRSA) infection. These infections have begun to occur in both hospital and community environments. Developing new antimicrobial surface coatings can hold a great promise to minimize and control various problems that associated with the spreading of infections and biofilms formation, these coatings can be used in medicine where medical devices associated with severe infections, in construction industry and the in food packaging industry. It has been established that single-walled CNTs exhibit a strong antimicrobial activity and can pierce bacterial cell walls. Recently, nanomaterial structures that made from pure carbon such as CNTs have been seen as promising candidates for many potential applications in Biotechnology and bioscience due to the combination of their extraordinary properties that arise from surface area, light weight, strength, flexibility, unique electrical conductivity and many more novel physical and chemical properties at nanoscale level. CNTs have been used widely in biomedical field including drug delivery, gene therapy and creating new biomedical devices with novel properties. Researchers have now made a first step to add carbon nanotubes to antimicrobial agents list. There are two types of CNTs have been used in biomedical research. The first one is a single-walled carbon nanotube (SWNT) and the second is a multi-walled carbon nanotube (MWNT). Recent in vitro studies suggest that carbon nanotubes have antimicrobial activity and coating CNTs with nickel nanoparticle could enhance the antimicrobial activity of cabon nanotubes. In order to test this hypothesis, nickel nanoparticles were deposited on carbon nanotubes (CNTs) by electrochemical deposition. The carbon nanotubes used in this study were XD-CNTs, SWNTs and Ni-coated CNTs. The structure and

  17. Multi-walled carbon nanotube (MWCNT) synthesis, preparation, labeling, and functionalization.

    PubMed

    Kateb, Babak; Yamamoto, Vicky; Alizadeh, Darya; Zhang, Leying; Manohara, Harish M; Bronikowski, Michael J; Badie, Behnam

    2010-01-01

    Nanomedicine is a growing field with a great potential for introducing new generation of targeted and personalized drug. Amongst new generation of nano-vectors are carbon nanotubes (CNTs), which can be produced as single or multi-walled. Multi-walled carbon nanotubes (MWCNTs) can be fabricated as biocompatible nanostructures (cylindrical bulky tubes). These structures are currently under investigation for their application in nanomedicine as viable and safe nanovectors for gene and drug delivery. In this chapter, we will provide you with the necessary information to understand the synthesis of MWCNTs, functionalization, PKH26 labeling, RNAi, and DNA loading for in vitro experimentation and in vivo implantation of labeled MWCNT in mice as well as materials used in this experimentation. We used this technique to manipulate microglia as part of a novel application for the brain cancer immunotherapy. Our published data show this is a promising technique for labeling, and gene and drug delivery into microglia.

  18. Multidimensional nanomaterials for the control of stem cell fate

    NASA Astrophysics Data System (ADS)

    Chueng, Sy-Tsong Dean; Yang, Letao; Zhang, Yixiao; Lee, Ki-Bum

    2016-09-01

    Current stem cell therapy suffers low efficiency in giving rise to differentiated cell lineages, which can replace the original damaged cells. Nanomaterials, on the other hand, provide unique physical size, surface chemistry, conductivity, and topographical microenvironment to regulate stem cell differentiation through multidimensional approaches to facilitate gene delivery, cell-cell, and cell-ECM interactions. In this review, nanomaterials are demonstrated to work both alone and synergistically to guide selective stem cell differentiation. From three different nanotechnology families, three approaches are shown: (1) soluble microenvironmental factors; (2) insoluble physical microenvironment; and (3) nano-topographical features. As regenerative medicine is heavily invested in effective stem cell therapy, this review is inspired to generate discussions in the potential clinical applications of multi-dimensional nanomaterials.

  19. Purifying Nanomaterials

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  20. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  1. Deformation and Failure of a Multi-Wall Carbon Nanotube Yarn Composite

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2008-01-01

    Forests of multi-walled carbon nanotubes can be twisted and manipulated into continuous fibers or yarns that exhibit many of the characteristics of traditional textiles. Macro-scale analysis and test may provide strength and stiffness predictions for a composite composed of a polymer matrix and low-volume fraction yarns. However, due to the nano-scale of the carbon nanotubes, it is desirable to use atomistic calculations to consider tube-tube interactions and the influence of simulated twist on the effective friction coefficient. This paper reports laboratory test data on the mechanical response of a multi-walled, carbon nanotube yarn/polymer composite from both dynamic and quasi-static tensile tests. Macroscale and nano-scale analysis methods are explored and used to define some of the key structure-property relationships. The measured influence of hot-wet aging on the tensile properties is also reported.

  2. Fabrication of Fe3O4 Nanoparticle-coalesced Hydroxylated Multi-walled Carbon Nanotubes for the Analysis of Strychnine in Human Serum.

    PubMed

    Feng, Zufei; Xu, Yuehong; Wei, Shuguang; Zhang, Bao; Guan, Fanglin; Li, Shengbin

    2015-01-01

    A magnetic carbon nanomaterial for Fe3O4-modified hydroxylated multi-walled carbon nanotubes (Fe3O4-MWCNTs-OH) was prepared by the aggregating effect of Fe3O4 nanoparticles on MWCNTs-OH, and this material was combined with high-performance liquid chromatography (HPLC)/photodiode array detector (PAD) to determine strychnine in human serum samples. Some important parameters that could influence the extraction efficiency of strychnine were optimized, including the extraction time, amounts of Fe3O4-MWCNTs-OH, pH of sample solution, desorption solvent and desorption time. Under optimal conditions, the recoveries of spiked serum samples were between 98.3 and 102.7%, and the relative standard deviations (RSDs) ranged from 0.9 to 5.3%. The correlation coefficient was 0.9997. The LODs and LOQs of strychnine were 6.2 and 20.5 ng mL(-1), at signal-to-noise ratios of 3 and 10, respectively. These experimental results showed that the proposed method is feasible for the analysis of strychnine in serum samples.

  3. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation

    NASA Astrophysics Data System (ADS)

    Graham, Elizabeth G.; MacNeill, Christopher M.; Levi-Polyachenko, Nicole H.

    2013-05-01

    Peritoneal metastases of colorectal cancer are a significant challenge in the field of medicine today due to poor results of systemic chemotherapy caused by the poor diffusion of drugs across the blood-peritoneal barrier. Multi-walled carbon nanotubes (MWNTs) are a biocompatible nanomaterial that strongly absorb near-infrared light to locally heat the surrounding area. Colorectal cancer is known to overexpress folate receptor; therefore, folic acid (FA) was covalently attached to MWNTs to target colorectal cancer cells. Results from real-time polymerase chain reaction found differing expression of folate receptor-α in two colorectal cancer cell lines, RKO and HCT116, as well as a healthy epithelial cell line, HEPM. A spectrophotometric method was developed to quantify the mass of MWNTs bound to cells, and it was determined that FA-targeted MWNTs resulted in a 400-500 % greater affinity for colorectal cancer cells than untargeted MWNTs. The non-cancerous cell line, HEPM, had higher non-specific MWNT interaction and similar MWNT-FA affinity. Stimulated by 1,064 nm light, FA-functionalized MWNTs caused a 50-60 % decrease in colorectal cancer cell viability compared to a 4-10 % decrease caused by untargeted MWNTs. Our results indicate that FA-targeted MWNTs may increase the therapeutic index of MWNT-induced photothermal therapy.

  4. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.

    2013-01-01

    Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.

  5. Detection of Multi-walled Carbon Nanotubes and Carbon Nanodiscs on Workplace Surfaces at a Small-Scale Producer.

    PubMed

    Hedmer, Maria; Ludvigsson, Linus; Isaxon, Christina; Nilsson, Patrik T; Skaug, Vidar; Bohgard, Mats; Pagels, Joakim H; Messing, Maria E; Tinnerberg, Håkan

    2015-08-01

    The industrial use of novel-manufactured nanomaterials such as carbon nanotubes and carbon nanodiscs is increasing globally. Occupational exposure can occur during production, downstream use, and disposal. The health effects of many nanomaterials are not yet fully characterized and to handle nano-objects, their aggregates and agglomerates >100nm (NOAA), a high degree of control measures and personal protective equipment are required. The emission of airborne NOAA during production and handling can contaminate workplace surfaces with dust, which can be resuspended resulting in secondary inhalation exposures and dermal exposures. This study surveys the presence of carbon-based nanomaterials, such as multi-walled carbon nanotubes (MWCNTs) and carbon nanodiscs, as surface contamination at a small-scale producer using a novel tape sampling method. Eighteen different surfaces at a small-scale producer were sampled with an adhesive tape sampling method. The surfaces selected were associated with the production and handling of MWCNT powder in the near-field zone. Surfaces in the far-field zone were also sampled. In addition, tape stripping of the skin was performed on one worker. The tape samples were analysed with scanning electron microscopy to detect the carbon-based NOAA. Air sampling with a personal impactor was also performed on a worker who was producing MWCNTs the same day as the tape samples were collected. MWCNTs were detected in 50% of the collected tape samples and carbon nanodiscs in 17%. MWCNTs and carbon nanodiscs were identified in all parts of the workplace, thus, increasing the risk for secondary inhalation and dermal exposure of the workers. Both airborne MWCNTs and carbon nanodiscs were detected in the personal impactor samples. The tape-strip samples from the worker showed no presence of carbon-containing nanoparticles. Tape sampling is a functional method for detecting surface contamination of carbon-based NOAA and for exposure control during

  6. Advanced nanomaterials

    NASA Astrophysics Data System (ADS)

    Titus, Elby; Ventura, João; Pedro Araújo, João; Campos Gil, João

    2017-12-01

    Nanomaterials provide a remarkably novel outlook to the design and fabrication of materials. The know-how of designing, modelling and fabrication of nanomaterials demands sophisticated experimental and analytical techniques. The major impact of nanomaterials will be in the fields of electronics, energy and medicine. Nanoelectronics hold the promise of improving the quality of life of electronic devices through superior performance, weight reduction and lower power consumption. New energy production systems based on hydrogen, solar and nuclear sources have also benefited immensely from nanomaterials. In modern medicine, nanomaterials research will have great impact on public health care due to better diagnostic methods and design of novel drugs.

  7. A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall.

    PubMed

    Witthoft, Alexandra; Yazdani, Alireza; Peng, Zhangli; Bellini, Chiara; Humphrey, Jay D; Karniadakis, George Em

    2016-01-01

    Blood vessels have unique properties that allow them to function together within a complex, self-regulating network. The contractile capacity of the wall combined with complex mechanical properties of the extracellular matrix enables vessels to adapt to changes in haemodynamic loading. Homogenized phenomenological and multi-constituent, structurally motivated continuum models have successfully captured these mechanical properties, but truly describing intricate microstructural details of the arterial wall may require a discrete framework. Such an approach would facilitate modelling interactions between or the separation of layers of the wall and would offer the advantage of seamless integration with discrete models of complex blood flow. We present a discrete particle model of a multi-constituent, nonlinearly elastic, anisotropic arterial wall, which we develop using the dissipative particle dynamics method. Mimicking basic features of the microstructure of the arterial wall, the model comprises an elastin matrix having isotropic nonlinear elastic properties plus anisotropic fibre reinforcement that represents the stiffer collagen fibres of the wall. These collagen fibres are distributed evenly and are oriented in four directions, symmetric to the vessel axis. Experimental results from biaxial mechanical tests of an artery are used for model validation, and a delamination test is simulated to demonstrate the new capabilities of the model. © 2016 The Author(s).

  8. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    PubMed

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Functionalization and Characterization of Nanomaterial Gated Field-Effect Transistor-Based Biosensors and the Design of a Multi-Analyte Implantable Biosensing Platform

    NASA Astrophysics Data System (ADS)

    Croce, Robert A., Jr.

    Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled

  10. Decoration of multi-walled carbon nanotubes with metal nanoparticles in supercritical carbon dioxide medium as a novel approach for the modification of screen-printed electrodes.

    PubMed

    Moreno, Virginia; Llorent-Martínez, Eulogio J; Zougagh, Mohammed; Ríos, Angel

    2016-12-01

    A supercritical carbon dioxide medium was used for the decoration of functionalized multi-walled carbon nanotubes (MWCNTs) with metallic nanoparticles. This procedure allowed the rapid and simple decoration of carbon nanotubes with the selected metallic nanoparticles. The prepared nanomaterials were used to modify screen-printed electrodes, improving their electrochemical properties and allowing to obtain a wide range of working electrodes based on carbon nanotubes. These electrodes were applied to the amperometric determination of vitamin B6 in food and pharmaceutical samples as an example of the analytical potentiality of the electrodes thus prepared. Using Ru-nanoparticles-MWCNTs as the working electrode, a linear dynamic range between 2.6×10 -6 and 2×10 -4 molL -1 and a limit of detection of 0.8×10 -6 molL -1 were obtained. These parameters represented a minimum 3-fold increase in sensitivity compared to the use of bare MWCNTs or other carbon-based working electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Spontaneous encapsulation behavior of ionic liquid into carbon nanotube

    NASA Astrophysics Data System (ADS)

    Jiang, Yanyan; Zhang, Kun; Li, Hui; He, Yezeng; Song, Xigui

    2012-10-01

    Molecular dynamics simulations and density functional theory have been performed to investigate the spontaneous encapsulation of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) into single-walled carbon nanotubes (SWCNTs). This phenomenon can be attributed to the van der Waals attractive force, hydrogen bonds and especially the π-π stacking effect. The [Bmim][Cl] molecules enter SWCNTs with larger diameters more rapidly, showing an interesting dependence on tube size. A high temperature is not beneficial to, and may even disrupt, the encapsulation of the [Bmim][Cl] molecules. It is also worth noting that the graphene nanoribbon entering the SWCNT would have an extremely different effect on this encapsulation process from when they wrap around the outer surface. Furthermore, the [Bmim][Cl] molecules can assist water transport in the SWCNT by expelling water molecules from the SWCNT. The proposed discoveries eventually provide a powerful way to fabricate nanoscale materials and devices and tune their properties.Molecular dynamics simulations and density functional theory have been performed to investigate the spontaneous encapsulation of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) into single-walled carbon nanotubes (SWCNTs). This phenomenon can be attributed to the van der Waals attractive force, hydrogen bonds and especially the π-π stacking effect. The [Bmim][Cl] molecules enter SWCNTs with larger diameters more rapidly, showing an interesting dependence on tube size. A high temperature is not beneficial to, and may even disrupt, the encapsulation of the [Bmim][Cl] molecules. It is also worth noting that the graphene nanoribbon entering the SWCNT would have an extremely different effect on this encapsulation process from when they wrap around the outer surface. Furthermore, the [Bmim][Cl] molecules can assist water transport in the SWCNT by expelling water molecules from the SWCNT. The proposed discoveries eventually provide a powerful way to fabricate

  12. High-Performance CCSDS Encapsulation Service Implementation in FPGA

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Encapsulation Service is a convergence layer between lower-layer space data link framing protocols, such as CCSDS Advanced Orbiting System (AOS), and higher-layer networking protocols, such as CFDP (CCSDS File Delivery Protocol) and Internet Protocol Extension (IPE). CCSDS Encapsulation Service is considered part of the data link layer. The CCSDS AOS implementation is described in the preceding article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS Encapsulation Service needs to be optimized to both reduce energy consumption and operate at a high rate. CCSDS Encapsulation Service has been implemented as an intellectual property core so that the aforementioned problems are solved by way of operating the CCSDS Encapsulation Service inside an FPGA. The CCSDS En capsula tion Service in FPGA implementation consists of both packetizing and de-packetizing features

  13. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.

    PubMed

    Polk, William W; Sharma, Monita; Sayes, Christie M; Hotchkiss, Jon A; Clippinger, Amy J

    2016-04-23

    Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans.

  14. Cooperative inter- and intra-layer lattice dynamics of photoexcited multi-walled carbon nanotubes studied by ultrafast electron diffraction.

    PubMed

    Sun, Shuaishuai; Li, Zhongwen; Li, Zi-An; Xiao, Ruijuan; Zhang, Ming; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2018-04-26

    Optical tuning and probing ultrafast structural response of nanomaterials driven by electronic excitation constitute a challenging but promising approach for understanding microscopic mechanisms and applications in microelectromechanical systems and optoelectrical devices. Here we use pulsed electron diffraction in a transmission electron microscope to investigate laser-induced tubular lattice dynamics of multi-walled carbon nanotubes (MWCNTs) with varying laser fluence and initial specimen temperature. Our photoexcitation experiments demonstrate cooperative and inverse collective atomic motions in intralayer and interlayer directions, whose strengths and rates depend on pump fluence. The electron-driven and thermally driven structural responses with opposite amplitudes cause a crossover between intralayer and interlayer directions. Our ab initio calculations support these findings and reveal that electrons excited from π to π* orbitals in a carbon tube weaken the intralayer bonds while strengthening the interlayer bonds along the radial direction. Moreover, by probing the structural dynamics of MWCNTs at initial temperatures of 300 and 100 K, we uncover the concomitance of thermal and nonthermal dynamical processes and their mutual influence in MWCNTs. Our results illustrate the nature of electron-driven nonthermal process and electron-phonon thermalization in the MWCNTs, and bear implications for the intricate energy conversion and transfer in materials at the nanoscale.

  15. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    NASA Astrophysics Data System (ADS)

    Hossain, Shaolie S.; Hossainy, Syed F. A.; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas J. R.

    2012-02-01

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A three-dimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate.

  16. Confined-Volume Effect on the Thermal Properties of Encapsulated Phase Change Materials for Thermal Energy Storage.

    PubMed

    De Castro, Paula F; Ahmed, Adham; Shchukin, Dmitry G

    2016-03-18

    We have encapsulated the heat exchange material, n-docosane, into polyurethane capsules of different sizes. Decreasing the size of the capsules leads to changes of the crystallinity of phase-change material as well as melting/crystallization temperature. The novelty of the paper includes 1) protection of the nanostructured energy-enriched materials against environment during storage and controlled release of the encapsulated energy on demand and 2) study of the structure and surface-to-volume properties of the energy-enriched materials dispersed in capsules of different sizes. The stability of energy nanomaterials, influence of capsule diameter on their energy capacity, homogeneity and operation lifetime are investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of biocompatible and safe polyethersulfone hemodialysis membrane incorporated with functionalized multi-walled carbon nanotubes.

    PubMed

    Abidin, Muhammad Nidzhom Zainol; Goh, Pei Sean; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Hasbullah, Hasrinah; Said, Noresah; Kadir, Siti Hamimah Sheikh Abdul; Kamal, Fatmawati; Abdullah, Mohd Sohaimi; Ng, Be Cheer

    2017-08-01

    A novel approach in the design of a safe, high performance hemodialysis membrane is of great demand. Despite many advantages, the employment of prodigious nanomaterials in hemodialysis membrane is often restricted by their potential threat to health. Hence, this work focusses on designing a biocompatible polyethersulfone (PES) hemodialysis membrane embedded with poly (citric acid)-grafted-multi walled carbon nanotubes (PCA-g-MWCNTs). Two important elements which could assure the safety of the nanocomposite membrane, i.e. (i) dispersion stability and (ii) leaching of MWCNTs were observed. The results showed the improved dispersion stability of MWCNTs in water and organic solvent due to the enriched ratio of oxygen-rich groups which subsequently enhanced membrane separation features. It was revealed that only 0.17% of MWCNTs was leached out during the membrane fabrication process (phase inversion) while no leaching was detected during permeation. In terms of biocompatibility, PES/PCA-g-MWCNT nanocomposite membrane exhibited lesser C3 and C5 activation (189.13 and 5.29ng/mL) and proteins adsorption (bovine serum albumin=4.5μg/cm 2 , fibrinogen=15.95μg/cm 2 ) as compared to the neat PES membrane, while keeping a normal blood coagulation time. Hence, the PES/PCA-g-MWCNT nanocomposite membrane is proven to have the prospect of becoming a safe and high performance hemodialysis membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Design and characterization of nanomaterial-biomolecule conjugates

    NASA Astrophysics Data System (ADS)

    Yim, Tae-Jin

    In the field of nanobiotechnology, nanoscale dimensions result in physical properties that differ from more conventional bulk material state. The integration of nanomaterials with biomolecules has begun to be used for unique physical properties, and for biological specific recognition, thereby leading to novel nanomaterial-biomolecule conjugates. The direction of this dissertation is to develop biocatalytic nanomaterial-biomolecule conjugates and to characterize them. For this, biological catalysts are employed to combine with nanomaterials. Two large parts include functional ization of nanomaterials with biomolecules and assembly of nanomaterials using a biological catalyst. First part of this thesis work is the exploration of the biocatalytic properties of nanomaterial-biomolecule conjugates. Si nanocolumns have higher surface area which leads more amount of biocatalytis immobilization than flat Si wafer with the same projected area. The enhanced activity of soybean peroxidase (SBP) immobilized onto Si nanocolumns as novel nanostructured supports is focused. Next, the catalytic activity of immobilized DNAzyme onto multiwalled carbon nanotubes (MWNTs) is compared to that in solution phase, and multiple turnovers are examined. The relationship between hybridization efficiency and activity is investigated as a function of surface density of DNAzyme on MWNTs. Then, cellular delivery of silica nanoparticle-protein conjugates is visually confirmed and therefore the intracellular function of a protein delivered by silica nanoparticle-protein conjugates is proved. For one example of the intracellular function, stable SBP immobilized onto silica nanoparticles to activate a prodrug is demonstrated. Second part of this thesis work is the formation of nanostructured materials through the enzymatic assembly of single-walled carbon nanotubes (SWNTs). Enzymatic polymerization of a phenol compound is applied to the bridging of two or more SWNTs functionalized with phenol

  19. Understanding the biological and environmental implications of nanomaterials

    NASA Astrophysics Data System (ADS)

    Lin, Sijie

    The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is

  20. Comparative study of encapsulated blebs following Ahmed glaucoma valve implantation and trabeculectomy with mitomycin-C.

    PubMed

    Bae, Kunho; Suh, Wool; Kee, Changwon

    2012-08-01

    To compare the histopathologic and morphologic findings of encapsulated blebs following Ahmed glaucoma valve implantation and primary standard trabeculectomy with mitomycin-C. We reviewed the records of patients with otherwise uncontrollable glaucoma who had undergone Ahmed glaucoma valve implantation or trabeculectomy with mitomycin-C. Five eyes that underwent Ahmed valve implantation and three eyes that underwent trabeculectomy needed surgical revision of the initial surgery due to encapsulated bleb development with total loss of function. The surgically removed encapsulated blebs were analyzed macroscopically and microscopically. Removal of the encapsulated bleb was performed at a mean follow-up time of 26.6 ± 19.4 weeks in the Ahmed valve implantation group and 12.0 ± 11.4 weeks in the trabeculectomy group. The fibrotic wall of the encapsulated blebs had an overall thickness of 2.48 ± 0.42 mm in the Ahmed valve implantation group and 1.62 ± 0.37 mm in the trabeculectomy group. Macroscopically, the coconut flesh-like smooth surface was split into two layers, and the wall of the capsule was thicker in the Ahmed valve implantation group than in the trabeculectomy group. Histopathologically, the fibrotic capsule was composed of an inner fibrodegenerative layer and an outer fibrovascular layer, and there were no histopathological differences between the two groups. The fibrotic capsule wall was thicker in the Ahmed valve group, but there were no differences in histological findings between the two groups.

  1. Single Walled Carbon Nanotube Based Air Pocket Encapsulated Ultraviolet Sensor.

    PubMed

    Kim, Sun Jin; Han, Jin-Woo; Kim, Beomseok; Meyyappan, M

    2017-11-22

    Carbon nanotube (CNT) is a promising candidate as a sensor material for the sensitive detection of gases/vapors, biomarkers, and even some radiation, as all these external variables affect the resistance and other properties of nanotubes, which forms the basis for sensing. Ultraviolet (UV) radiation does not impact the nanotube properties given the substantial mismatch of bandgaps and therefore, CNTs have never been considered for UV sensing, unlike the popular ZnO and other oxide nanwires. It is well-known that UV assists the adsorption/desorption characteristics of oxygen on carbon nanotubes, which changes the nanotube resistance. Here, we demonstrate a novel sensor structure encapsulated with an air pocket, where the confined air is responsible for the UV sensing mechanism and assures sensor stability and repeatability over time. In addition to the protection from any contamination, the air pocket encapsulated sensor offers negligible baseline drift and fast recovery compared to previously reported sensors. The air pocket isolated from the outside environment can act as a stationary oxygen reservoir, resulting in consistent sensor characteristics. Furthermore, this sensor can be used even in liquid environments.

  2. Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance

    NASA Astrophysics Data System (ADS)

    Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi

    2016-11-01

    Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.

  3. Antimicrobial Properties of 2D MnO2 and MoS2 Nanomaterials Vertically Aligned on Graphene Materials and Ti3C2 MXene.

    PubMed

    Alimohammadi, Farbod; Sharifian Gh, Mohammad; Attanayake, Nuwan H; Thenuwara, Akila C; Gogotsi, Yury; Anasori, Babak; Strongin, Daniel R

    2018-06-07

    Two-dimensional (2D) nanomaterials have attracted considerable attention in biomedical and environmental applications due to their antimicrobial activity. In the interest of investigating the primary antimicrobial mode-of-action of 2D nanomaterials, we studied the antimicrobial properties of MnO 2 and MoS 2 , toward Gram-positive and Gram-negative bacteria. Bacillus subtilis and Escherichia coli bacteria were treated individually with 100 μg/mL of randomly oriented and vertically aligned nanomaterials for ∼3 h in the dark. The vertically aligned 2D MnO 2 and MoS 2 were grown on 2D sheets of graphene oxide, reduced graphene oxide, and Ti 3 C 2 MXene. Measurements to determine the viability of bacteria in the presence of the 2D nanomaterials performed by using two complementary techniques, flow cytometry, and fluorescence imaging showed that, while MnO 2 and MoS 2 nanosheets show different antibacterial activities, in both cases, Gram-positive bacteria show a higher loss in membrane integrity. Scanning electron microscopy images suggest that the 2D nanomaterials, which have a detrimental effect on bacteria viability, compromise the cell wall, leading to significant morphological changes. We propose that the peptidoglycan mesh (PM) in the bacterial wall is likely the primary target of the 2D nanomaterials. Vertically aligned 2D MnO 2 nanosheets showed the highest antimicrobial activity, suggesting that the edges of the nanosheets were likely compromising the cell walls upon contact.

  4. Extraction of ochratoxin A in red wine with dopamine-coated magnetic multi-walled carbon nanotubes.

    PubMed

    Wan, Hong; Zhang, Bo; Bai, Xiao-Lin; Zhao, Yan; Xiao, Meng-Wei; Liao, Xun

    2017-10-01

    A new, rapid, green, and cost-effective magnetic solid-phase extraction of ochratoxin A from red wine samples was developed using polydopamine-coated magnetic multi-walled carbon nanotubes as the absorbent. The polydopamine-coated magnetic multi-walled carbon nanotubes were fabricated with magnetic multi-walled carbon nanotubes and dopamine by an in situ oxidative self-polymerization approach. Transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy and vibrating sample magnetometry were used to characterize the absorbents. Ochratoxin A was quantified with high-performance liquid chromatography coupled with fluorescence detection, with excitation and emission wavelengths of 338 and 455 nm, respectively. The conditions affecting the magnetic solid-phase extraction procedure, such as pH, extraction solution, extraction time, absorbent amount, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under the optimized conditions, the extraction recovery was 91.8-104.5% for ochratoxin A. A linear calibration curve was obtained in the range of 0.1-2.0 ng/mL. The limit of detection was 0.07 ng/mL, and the limit of quantitation was 0.21 ng/mL. The recoveries of ochratoxin A for spiked red wine sample ranged from 95.65 to 100.65% with relative standard deviation less than 8%. The polydopamine-coated magnetic multi-walled carbon nanotubes showed a high affinity toward ochratoxin A, allowing selective extraction and quantification of ochratoxin A from complex sample matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Ken-ichiro; Koike, Eiko; Yanagisawa, Rie

    The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology,more » levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.« less

  6. Impairment of Coronary Arteriolar Endothelium-Dependent Dilation after Multi-Walled Carbon Nanotube Inhalation: A Time-Course Study

    PubMed Central

    Stapleton, Phoebe A.; Minarchick, Valerie C.; Cumpston, Amy M.; McKinney, Walter; Chen, Bean T.; Sager, Tina M.; Frazer, David G.; Mercer, Robert R.; Scabilloni, James; Andrew, Michael E.; Castranova, Vincent; Nurkiewicz, Timothy R.

    2012-01-01

    Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24–168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed. PMID:23203034

  7. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst.

    PubMed

    Tripathi, Pranav K; Durbach, Shane; Coville, Neil J

    2017-09-22

    The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.

  8. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst

    PubMed Central

    Durbach, Shane

    2017-01-01

    The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst. PMID:28937596

  9. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.

    PubMed

    Arifin, Dian R; Palmer, Andre F

    2003-01-01

    In this study, we investigated the size distribution, encapsulation efficiency, and oxygen affinity of liposome-encapsulated tetrameric hemoglobin (LEHb) dispersions and correlated the data with the variation in extruder membrane pore size, ionic strength of the extrusion buffer, and hemoglobin (Hb) concentration. Asymmetric flow field-flow fractionation (AFFF) in series with multi-angle static light scattering (MASLS) was used to study the LEHb size distribution. We also introduced a novel method to measure the encapsulation efficiency using a differential interferometric refractive index (DIR) detector coupled to the AFFF-MASLS system. This technique was nondestructive toward the sample and easy to implement. LEHbs were prepared by extrusion using a lipid combination of dimyristoyl-phosphatidylcholine, cholesterol, and dimyristoyl-phosphatidylglycerol in a 10:9:1 molar ratio. Five initial Hb concentrations (50, 100, 150, 200, and 300 mg Hb per mL of buffer) extruded through five different membrane pore diameters (400, 200, 100, 80, and 50 nm) were studied. Phosphate buffered saline (PBS) and phosphate buffer (PB) both at pH 7.3 were used as extrusion buffers. Despite the variation, extrusion through 400-nm pore diameter membranes produced LEHbs smaller than the pore size, extrusion through 200-nm membranes produced LEHbs with diameters close to the pore diameter, and extrusion through 100-, 80-, and 50-nm membranes produced LEHbs larger than the pore sizes. We found that the choice of extrusion buffer had the greatest effect on the LEHb size distribution compared to either Hb concentration or extruder membrane pore size. Extrusion in PBS produced larger LEHbs and more monodisperse LEHb dispersions. However, LEHbs extruded in PB generally had higher Hb encapsulation efficiencies and lower methemoglobin (metHb) levels. The choice of extrusion buffer also affected how the encapsulation efficiency correlated with Hb concentration, extruder pore size, and the met

  10. Electronic structure of multi-walled carbon fullerenes

    NASA Astrophysics Data System (ADS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V.; Kidd, Tim E.; Stollenwerk, Andrew J.

    2017-02-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures.

  11. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.

    PubMed

    Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A

    2013-06-25

    Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.

  12. The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.

    PubMed

    Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I

    2008-07-01

    Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.

  13. Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Li, Fangfang; Lu, Junzhe; Zhu, Hengjiang; Lin, Xiang

    2018-06-01

    A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT), including single-walled carbon nanotubes (SWCNTs) double-walled carbon nanotubes (DWCNTs) and triple-walled CNTs (TWCNTs). The analysis of geometrical structure shows that carbon atoms' hybridization in novel carbon tubular clusters (CTCs) and the corresponding carbon nanotubes (CNTs) are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS) indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties.

  14. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    USDA-ARS?s Scientific Manuscript database

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment...

  15. 40 CFR 721.10275 - Multi-walled carbon nanotubes (generic) (P-09-0417).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10275 Multi-walled carbon nanotubes (generic) (P-09-0417). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  16. 40 CFR 721.10276 - Multi-walled carbon nanotubes (generic) (P-10-39).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10276 Multi-walled carbon nanotubes (generic) (P-10-39). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  17. 40 CFR 721.10274 - Multi-walled carbon nanotubes (generic) (P-09-188).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10274 Multi-walled carbon nanotubes (generic) (P-09-188). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  18. 40 CFR 721.10274 - Multi-walled carbon nanotubes (generic) (P-09-188).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10274 Multi-walled carbon nanotubes (generic) (P-09-188). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  19. 40 CFR 721.10279 - Multi-walled carbon nanotubes (generic) (P-10-246).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10279 Multi-walled carbon nanotubes (generic) (P-10-246). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  20. 40 CFR 721.10275 - Multi-walled carbon nanotubes (generic) (P-09-0417).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10275 Multi-walled carbon nanotubes (generic) (P-09-0417). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  1. 40 CFR 721.10276 - Multi-walled carbon nanotubes (generic) (P-10-39).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10276 Multi-walled carbon nanotubes (generic) (P-10-39). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  2. Novel star-like surfactant as dispersant for multi-walled carbon nanotubes in aqueous suspensions at high concentration

    NASA Astrophysics Data System (ADS)

    Qiao, Min; Ran, Qianping; Wu, Shishan

    2018-03-01

    A kind of novel surfactant with star-like molecular structure and terminated sulfonate was synthesized, and it was used as the dispersant for multi-walled carbon nanotubes (CNTs) in aqueous suspensions compared with a traditional single-chained surfactant. The star-like surfactant showed good dispersing ability for multi-walled CNTs in aqueous suspensions. Surface tension analysis, total organic carbon analysis, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering and transmission electron microscopy were performed to research the effect of star-like surfactant on the dispersion of multi-walled CNTs in aqueous suspensions. With the assistance of star-like surfactant, the CNTs could disperse well in aqueous suspension at high concentration of 50 g/L for more than 30 days, while the CNTs precipitated completely in aqueous suspension after 1 day without any dispersant or after 10 days with sodium 4-dodecylbenzenesulfonic acid as dispersant.

  3. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm.

    PubMed

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M; Mutter, George L; Ozkan, Mihrimah; Ozkan, Cengiz S; Demirci, Utkan

    2016-08-19

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  4. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-08-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  5. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode.

    PubMed

    Motoc, Sorina; Remes, Adriana; Pop, Aniela; Manea, Florica; Schoonman, Joop

    2013-04-01

    This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.

  6. Electronic platform for real-time multi-parametric analysis of cellular behavior post-exposure to single-walled carbon nanotubes

    PubMed Central

    Eldawud, Reem; Wagner, Alixandra; Dong, Chenbo; Rojansakul, Yon; Dinu, Cerasela Zoica

    2016-01-01

    Single-walled carbon nanotubes (SWCNTs) implementation in a variety of biomedical applications from bioimaging, to controlled drug delivery and cellular-directed alignment for muscle myofiber fabrication, has raised awareness of their potential toxicity. Nanotubes structural aspects which resemble asbestos, as well as their ability to induce cyto and genotoxicity upon interaction with biological systems by generating reactive oxygen species or inducing membrane damage, just to name a few, have led to focused efforts aimed to assess associated risks prior their user implementation. In this study, we employed a non-invasive and real-time electric cell impedance sensing (ECIS) platform to monitor behavior of lung epithelial cells upon exposure to a library of SWCNTs with user-defined physicochemical properties. Using the natural sensitivity of the cells, we evaluated SWCNT-induced cellular changes in relation to cell attachment, cell–cell interactions and cell viability respectively. Our methods have the potential to lead to the development of standardized assays for risk assessment of other nanomaterials as well as risk differentiation based on the nanomaterials surface chemistry, purity and agglomeration state. PMID:25913448

  7. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.

  8. Failure mechanism of shear-wall dominant multi-story buildings

    USGS Publications Warehouse

    Yuksel, S.B.; Kalkan, E.

    2008-01-01

    The recent trend in the building industry of Turkey as well as in many European countries is towards utilizing the tunnel form (shear-wall dominant) construction system for development of multi-story residential units. The tunnel form buildings diverge from other conventional reinforced concrete (RC) buildings due to the lack of beams and columns in their structural integrity. The vertical load-carrying members of these buildings are the structural-walls only, and the floor system is a flat plate. Besides the constructive advantages, tunnel form buildings provide superior seismic performance compared to conventional RC frame and dual systems as observed during the recent devastating earthquakes in Turkey (1999 Mw 7.4 Kocaeli, Mw 7.2 Duzce, and 2004 Mw 6.5 Bingol). With its proven earthquake performance, the tunnel form system is becoming the primary construction technique in many seismically active regions. In this study, a series of nonlinear analyses were conducted using finite element (FE) models to augment our understanding on their failure mechanism under lateral forces. In order to represent the nonlinear behavior adequately, The FE models were verified with the results of experimental studies performed on three dimensional (3D) scaled tunnel form building specimens. The results of this study indicate that the structural walls of tunnel form buildings may exhibit brittle flexural failure under lateral loading, if they are not properly reinforced. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in the outermost shear-walls.

  9. Nano spray drying for encapsulation of pharmaceuticals.

    PubMed

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. High-Rate Assembly of Nanomaterials on Insulating Surfaces Using Electro-Fluidic Directed Assembly.

    PubMed

    Yilmaz, Cihan; Sirman, Asli; Halder, Aditi; Busnaina, Ahmed

    2017-08-22

    Conductive or semiconducting nanomaterials-based applications such as electronics and sensors often require direct placement of such nanomaterials on insulating surfaces. Most fluidic-based directed assembly techniques on insulating surfaces utilize capillary force and evaporation but are diffusion limited and slow. Electrophoretic-based assembly, on the other hand, is fast but can only be utilized for assembly on a conductive surface. Here, we present a directed assembly technique that enables rapid assembly of nanomaterials on insulating surfaces. The approach leverages and combines fluidic and electrophoretic assembly by applying the electric field through an insulating surface via a conductive film underneath. The approach (called electro-fluidic) yields an assembly process that is 2 orders of magnitude faster compared to fluidic assembly. By understanding the forces on the assembly process, we have demonstrated the controlled assembly of various types of nanomaterials that are conducting, semiconducting, and insulating including nanoparticles and single-walled carbon nanotubes on insulating rigid and flexible substrates. The presented approach shows great promise for making practical devices in miniaturized sensors and flexible electronics.

  11. Electrochemical sensor for sensitive detection of paracetamol based on novel multi-walled carbon nanotubes-derived organic-inorganic material.

    PubMed

    Hui, Junmin; Li, Wenjuan; Guo, Yanlei; Yang, Zhu; Wang, Yingxiong; Yu, Chao

    2014-03-01

    A new electrochemical sensor based on a novel organic-inorganic material (PNFCTs) was proposed for detection of paracetamol in this paper. First, PNFCTs were prepared with multi-walled carbon nanotubes (MWNTs) and a derivative of 3,4,9,10-perylenetetracarboxylic dianhydride (PTC-NH2) via cross-linking method. Then, PNFCTs were coated onto the surface of the glassy carbon electrode (GCE) to form porous organic conducting polymer films (PNFCTs/GCE), which could not only increase the loading of paracetamol efficiently but also provide an interface with exceptional electrical conductivity for paracetamol. Finally, gold nanoparticles (GNPs) were attached to the electrode surface through electrodepositing method, which obtained GNPs/PNFCTs/GCE electrode. The electrochemical behavior of paracetamol on GNPs/PNFCTs/GCE was explored by cyclic voltammetrys (CVs) and differential pulse voltammograms (DPVs). The results showed that the GNPs/PNFCTs/GCE exhibited excellent electrocatalytic activity to paracetamol, which should be attributed to remarkable properties of the new composite nanomaterials with porous nanostructure and exceptional electrical conductivity. The wide liner range and detection limit were 0.3-575 and 0.1 μM, respectively. Finally, it was successfully used to detect paracetamol in dilution human serum and commercial tablets. The sensor shows great promise for simple, sensitive, and selective detection paracetamol and provides a promising approach in paracetamol clinical research and overdose diagnostic applications.

  12. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  13. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  14. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials.

    PubMed

    Ballesteros, Lina F; Ramirez, Monica J; Orrego, Carlos E; Teixeira, José A; Mussatto, Solange I

    2017-12-15

    Freeze-drying and spray-drying techniques were evaluated for encapsulation of phenolic compounds (PC) extracted from spent coffee grounds. Additionally, the use of maltodextrin, gum arabic and a mixture of these components (ratio 1:1) as wall material to retain the PC and preserve their antioxidant activity was also assessed. The contents of PC and flavonoids (FLA), as well as the antioxidant activity of the encapsulated samples were determined in order to verify the efficiency of each studied condition. Additional analyses for characterization of the samples were also performed. Both the technique and the coating material greatly influenced the encapsulation of antioxidant PC. The best results were achieved when PC were encapsulated by freeze-drying using maltodextrin as wall material. Under these conditions, the amount of PC and FLA retained in the encapsulated sample corresponded to 62% and 73%, respectively, and 73-86% of the antioxidant activity present in the original extract was preserved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Optimisation of stability and charge transferability of ferrocene-encapsulated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prajongtat, Pongthep; Sriyab, Suwannee; Zentgraf, Thomas; Hannongbua, Supa

    2018-01-01

    Ferrocene-encapsulated carbon nanotubes (Fc@CNTs) became promising nanocomposite materials for a wide range of applications due to their superior catalytic, mechanical and electronic properties. To open up new windows of applications, the highly stable and charge transferable encapsulation complexes are required. In this work, we designed the new encapsulation complexes formed from ferrocene derivatives (FcR, where R = -CHO, -CH2OH, -CON3 and -PCl2) and single-walled carbon nanotubes (SWCNTs). The influence of diameter and chirality of the nanotubes on the stability, charge transferability and electronic properties of such complexes has been investigated using density functional theory. The calculations suggest that the encapsulation stability and charge transferability of the encapsulation complexes depend on the size and chirality of the nanotubes. FcR@SWCNTs are more stable than Fc@SWCNTs at the optimum tube diameter. The greatest charge transfer was observed for FcCH2OH@SWCNTs and Fc@SWCNTs since the Fe d levels of FcCH2OH and Fc are nearly equal and close to the Fermi energy level of the nanotubes. The obtained results pave the way to the design of new encapsulated ferrocene derivatives which can give rise to higher stability and charge transferability of the encapsulation complexes.

  16. Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Pal, Anoop K.; Isaacs, Jacqueline A.; Bello, Dhimiter; Carrier, Rebecca L.

    2014-09-01

    Oxidative stress in the lung epithelial A549 cells and macrophages J774A.1 due to contact with commercially important nanomaterials [i.e., nano-silver (nAg), nano-alumina (nAl2O3), single-wall carbon nanotubes (CNT), and nano-titanium oxide anatase (nTiO2)] was evaluated. Nanomaterial-induced intracellular oxidative stress was analyzed by both H2DCFDA fluorescein probe and GSH depletion, extracellular oxidative stress was assessed by H2HFF fluorescein probes, and the secretion of chemokine IL-8 by A549 cells due to elevation of cellular oxidative stress was also monitored, in order to provide a comprehensive in vitro study on nanomaterial-induced oxidative stress in lung. In addition, results from this study were also compared with an acellular "ferric reducing ability of serum" (FRAS) assay and a prokaryotic cell-based assay in evaluating oxidative damage caused by the same set of nanomaterials, for comparison purposes. In general, it was found that nanomaterial-induced oxidative stress is highly cell-type dependent. In A549 lung epithelial cells, nAg appeared to induce highest level of oxidative stress and cell death followed by CNT, nTiO2, and nAl2O3. Different biological oxidative damage (BOD) assays' (i.e., H2DCFA, GSH, and IL-8 release) results generally agreed with each other, and the same trends of nanomaterial-induced BOD were also observed in acellular FRAS and prokaryotic E. coli K12-based assay. In macrophage J774A.1 cells, nAl2O3 and nTiO2 appeared to induce highest levels of oxidative stress. These results suggest that epithelial and macrophage cell models may provide complimentary information when conducting cell-based assays to evaluate nanomaterial-induced oxidative damage in lung.

  17. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    PubMed

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

  18. A novel system for water soluble protein encapsulation with high efficiency: "micelles enhanced" polyelectrolyte capsules.

    PubMed

    Li, Xiaodong; Li, Xiaohui; Zhang, Jianxiang; Zhao, Shifang; Shen, Jiacong

    2008-06-01

    Novel "micelles enhanced" polyelectrolyte (PE) capsules based on functional templates of hybrid calcium carbonate were fabricated. Evidences suggested that the structure of capsule wall was different from that of conventional PE capsules, and the wall permeability of these PE capsules changed significantly. Lysozyme, a positively charged protein in neutral solution, was studied as a model protein to be encapsulated into the "micelles enhanced" PE capsules. Confocal laser scanning microscope was used to observe the entrapping process in real time, while UV-Vis spectroscope and scanning force microscope measurements suggested the high efficiency of encapsulation. In addition, the fluorescence recovery after photobleaching technique was employed to determine the existence form of deposited molecules. Further studies showed even negatively charged water-soluble peptides or proteins can be encapsulated into these hybrid capsules by modulating the pH value in bulk solution under its isoelectronic point as well. Copyright 2007 Wiley Periodicals, Inc.

  19. Applications of multi-walled carbon nanotube in electronic packaging

    PubMed Central

    2012-01-01

    Thermal management of integrated circuit chip is an increasing important challenge faced today. Heat dissipation of the chip is generally achieved through the die attach material and solders. With the temperature gradients in these materials, high thermo-mechanical stress will be developed in them, and thus they must also be mechanically strong so as to provide a good mechanical support to the chip. The use of multi-walled carbon nanotube to enhance the thermal conductivity, and the mechanical strength of die attach epoxy and Pb-free solder is demonstrated in this work. PMID:22405035

  20. Influence of multi-walled carbon nanotubes on the cognitive abilities of Wistar rats

    PubMed Central

    Sayapina, Nina V.; Sergievich, Alexander A.; Kuznetsov, Vladimir L.; Chaika, Vladimir V.; Lisitskaya, Irina G.; Khoroshikh, Pavel P.; Batalova, Tatyana A.; Tsarouhas, Kostas; Spandidos, Demetrios; Tsatsakis, Aristidis M.; Fenga, Concettina; Golokhvast, Kirill S.

    2016-01-01

    Studies of the neurobehavioral effects of carbon nanomaterials, particularly those of multi-walled carbon nanotubes (MWCNTs), have concentrated on cognitive effects, but data are scarce. The aim of this study was to assess the influence of MWCNTs on a number of higher nervous system functions of Wistar rats. For a period of 10 days, two experimental groups were fed with MWCNTs of different diameters (MWCNT-1 group, 8–10 nm; MWCNT-2 group, 18–20 nm) once a day at a dosage of 500 mg/kg. In the open-field test, reductions of integral indications of researching activity were observed for the two MWCNT-treated groups, with a parallel significant (P<0.01) increase in stress levels for these groups compared with the untreated control group. In the elevated plus-maze test, integral indices of researching activity in the MWCNT-1 and MWCNT-2 groups reduced by day 10 by 51 and 62%, respectively, while rat stress levels remained relatively unchanged. In the universal problem solving box test, reductions in motivation and energy indices of researching activity were observed in the two experimental groups. Searching activity in the MWCNT-1 group by day 3 was reduced by 50% (P<0.01) and in the MWCNT-2 group the relevant reduction reached 11.2%. By day 10, the reduction compared with controls, was 64% (P<0.01) and 58% (P<0.01) for the MWCNT-1 and MWCNT-2 groups, respectively. In conclusion, a series of specific tests demonstrated that MWCNT-treated rats experienced a significant reduction of some of their cognitive abilities, a disturbing and worrying finding, taking into consideration the continuing and accelerating use of carbon nanotubes in medicine and science. PMID:27588053

  1. Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes.

    PubMed

    Jia, Nengqin; Lian, Qiong; Tian, Zhong; Duan, Xin; Yin, Min; Jing, Lihong; Chen, Shouhui; Shen, Hebai; Gao, Mingyuan

    2010-01-29

    Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.

  2. Phase-Imaging with a Sharpened Multi-Walled Carbon Nanotube AFM Tip: Investigation of Low-k Dielectric Polymer Hybrids

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Stevens, Ramsey M.; Meyyappan, M.; Volksen, Willi; Miller, Robert D.

    2005-01-01

    Phase shift tapping mode scanning force microscopy (TMSFM) has evolved into a very powerful technique for the nanoscale surface characterization of compositional variations in heterogeneous samples. Phase shift signal measures the difference between the phase angle of the excitation signal and the phase angle of the cantilever response. The signal correlates to the tip-sample inelastic interactions, identifying the different chemical and/or physical property of surfaces. In general, the resolution and quality of scanning probe microscopic images are highly dependent on the size of the scanning probe tip. In improving AFM tip technology, we recently developed a technique for sharpening the tip of a multi-walled carbon nanotube (CNT) AFM tip, reducing the radius of curvature of the CNT tip to less than 5 nm while still maintaining the inherent stability of multi-walled CNT tips. Herein we report the use of sharpened (CNT) AFM tips for phase-imaging of polymer hybrids, a precursor for generating nanoporous low-k dielectrics for on-chip interconnect applications. Using sharpened CNT tips, we obtained phase-contrast images having domains less than 10 nm. In contrast, conventional Si tips and unsharpened CNT tips (radius greater than 15 nm) were not able to resolve the nanoscale domains in the polymer hybrid films. C1early, the size of the CNT tip contributes significantly to the resolution of phase-contrast imaging. In addition, a study on the nonlinear tapping dynamics of the multi-walled CNT tip indicates that the multi-walled CNT tip is immune to conventional imaging instabilities related to the coexistence of attractive and repulsive tapping regimes. This factor may also contribute to the phase-contrast image quality of multi-walled CNT AFM tips. This presentation will also offer data in support of the stability of the CNT tip for phase shift TMSFM.

  3. Heat transfer characteristics of building walls using phase change material

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  4. Molecular toxicity of nanomaterials.

    PubMed

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  5. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes.

    PubMed

    Levi-Polyachenko, Nicole; Young, Christie; MacNeill, Christopher; Braden, Amy; Argenta, Louis; Reid, Sean

    2014-11-01

    The aim of this study was to demonstrate that multi-wall carbon nanotubes can be functionalised with antibodies to group A streptoccocus (GAS) for targeted photothermal ablation of planktonic and biofilm residing bacteria. Antibodies for GAS were covalently attached to carboxylated multi-wall carbon nanotubes and incubated with either planktonic or biofilm GAS. Bacterium was then exposed to 1.3 W/cm(2) of 800 nm light for 10-120 s, and then serially diluted onto agar plates from which the number of colony forming units was determined. Photothermal ablation of GAS on the surface of full thickness ex vivo porcine skin and histological sectioning were done to examine damage in adjacent tissue. Approximately 14% of the GAS antibody-functionalised nanotubes attached to the bacterium, and this amount was found to be capable of inducing photothermal ablation of GAS upon exposure to 1.3 W/cm(2) of 800 nm light. Cell viability was not decreased upon exposure to nanotubes or infrared light alone. Compared to carboxylated multi-wall carbon nanotubes, antibody-labelled nanotubes enhanced killing in both planktonic and biofilm GAS in conjunction with infrared light. Analysis of GAS photothermally ablated in direct contact with ex vivo porcine skin shows that heat sufficient for killing GAS remains localised and does not cause collateral damage in tissue adjacent to the treated area. The results of this study support the premise that carbon nanotubes may be effectively utilised as highly localised photothermal agents with the potential for translation into the clinical treatment of bacterial infections of soft tissue.

  6. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  7. Relative risk analysis of several manufactured nanomaterials: an insurance industry context.

    PubMed

    Robichaud, Christine Ogilvie; Tanzil, Dicksen; Weilenmann, Ulrich; Wiesner, Mark R

    2005-11-15

    A relative risk assessment is presented for the industrial fabrication of several nanomaterials. The production processes for five nanomaterials were selected for this analysis, based on their current or near-term potential for large-scale production and commercialization: single-walled carbon nanotubes, bucky balls (C60), one variety of quantum dots, alumoxane nanoparticles, and nano-titanium dioxide. The assessment focused on the activities surrounding the fabrication of nanomaterials, exclusive of any impacts or risks with the nanomaterials themselves. A representative synthesis method was selected for each nanomaterial based on its potential for scaleup. A list of input materials, output materials, and waste streams for each step of fabrication was developed and entered into a database that included key process characteristics such as temperature and pressure. The physical-chemical properties and quantities of the inventoried materials were used to assess relative risk based on factors such as volatility, carcinogenicity, flammability, toxicity, and persistence. These factors were first used to qualitatively rank risk, then combined using an actuarial protocol developed by the insurance industry for the purpose of calculating insurance premiums for chemical manufacturers. This protocol ranks three categories of risk relative to a 100 point scale (where 100 represents maximum risk): incident risk, normal operations risk, and latent contamination risk. Results from this analysis determined that relative environmental risk from manufacturing each of these five materials was comparatively low in relation to other common industrial manufacturing processes.

  8. Price tag in nanomaterials?

    NASA Astrophysics Data System (ADS)

    Gkika, D. A.; Vordos, N.; Nolan, J. W.; Mitropoulos, A. C.; Vansant, E. F.; Cool, P.; Braet, J.

    2017-05-01

    With the evolution of the field of nanomaterials in the past number of years, it has become apparent that it will be key to future technological developments. However, while there are unlimited research undertakings on nanomaterials, limited research results on nanomaterial costs exist; all in spite of the generous funding that nanotechnology projects have received. There has recently been an exponential increase in the number of studies concerning health-related nanomaterials, considering the various medical applications of nanomaterials that drive medical innovation. This work aims to analyze the effect of the cost factor on acceptability of health-related nanomaterials independently or in relation to material toxicity. It appears that, from the materials studied, those used for cancer treatment applications are more expensive than the ones for drug delivery. The ability to evaluate cost implications improves the ability to undertake research mapping and develop opinions on nanomaterials that can drive innovation.

  9. Colloidal nanomaterial-based immunoassay.

    PubMed

    Teste, Bruno; Descroix, Stephanie

    2012-06-01

    Nanomaterials have been widely developed for their use in nanomedicine, especially for immunoassay-based diagnosis. In this review we focus on the use of nanomaterials as a nanoplatform for colloidal immunoassays. While conventional heterogeneous immunoassays suffer from mass transfer limitations and consequently long assay time, colloidal immunosupports allow target capture in the entire volume, thus speeding up reaction kinetics and shortening assay time. Owing to their wide range of chemical and physical properties, nanomaterials are an interesting candidate for immunoassay development. The most popular colloidal nanomaterials for colloidal immunoassays will be discussed, as well as their influence on immune reactions. Recent advances in nanomaterial applications for different formats of immunoassays will be reported, such as nanomaterial-based indirect immunoassays, optical-based agglutination immunoassays, resonance energy transfer-based immunoassays and magnetic relaxation-based immunoassays. Finally, the future of using nanomaterials for homogeneous immunoassays dedicated to clinical diagnosis will be discussed.

  10. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage.

    PubMed

    Zhang, Qiang; Huang, Jia-Qi; Qian, Wei-Zhong; Zhang, Ying-Ying; Wei, Fei

    2013-04-22

    The innovation on the low dimensional nanomaterials brings the rapid growth of nano community. Developing the controllable production and commercial applications of nanomaterials for sustainable society is highly concerned. Herein, carbon nanotubes (CNTs) with sp(2) carbon bonding, excellent mechanical, electrical, thermal, as well as transport properties are selected as model nanomaterials to demonstrate the road of nanomaterials towards industry. The engineering principles of the mass production and recent progress in the area of CNT purification and dispersion are described, as well as its bulk application for nanocomposites and energy storage. The environmental, health, and safety considerations of CNTs, and recent progress in CNT commercialization are also included. With the effort from the CNT industry during the past 10 years, the price of multi-walled CNTs have decreased from 45 000 to 100 $ kg(-1) and the productivity increased to several hundred tons per year for commercial applications in Li ion battery and nanocomposites. When the prices of CNTs decrease to 10 $ kg(-1) , their applications as composites and conductive fillers at a million ton scale can be anticipated, replacing conventional carbon black fillers. Compared with traditional bulk chemicals, the controllable synthesis and applications of CNTs on a million ton scale are still far from being achieved due to the challenges in production, purification, dispersion, and commercial application. The basic knowledge of growth mechanisms, efficient and controllable routes for CNT production, the environmental and safety issues, and the commercialization models are still inadequate. The gap between the basic scientific research and industrial development should be bridged by multidisciplinary research for the rapid growth of CNT nano-industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Genotoxicity investigations on nanomaterials.

    PubMed

    Oesch, Franz; Landsiedel, Robert

    2012-07-01

    This review is based on the lecture presented at the April 2010 nanomaterials safety assessment Postsatellite to the 2009 EUROTOX Meeting and summarizes genotoxicity investigations on nanomaterials published in the open scientific literature (up to 2008). Special attention is paid to the relationship between particle size and positive versus negative outcome, as well as the dependence of the outcome on the test used. Salient conclusions and outstanding recommendations emerging from the information summarized in this review are as follows: recognize that nanomaterials are not all the same; therefore know and document what nanomaterial has been tested and in what form; take nanomaterials specific properties into account; in order to make your results comparable with those of others and on other nanomaterials: use or at least include in your studies standardized methods; use in vivo studies to put in vitro results into perspective; take uptake and distribution of the nanomaterial into account; and in order to become able to make extrapolations to risk for human: learn about the mechanism of nanomaterials genotoxic effects. Past experience with standard non-nanosubstances already had shown that mechanisms of genotoxic effects can be complex and their elucidation can be demanding, while there often is an immediate need to assess the genotoxic hazard. Thus, a practical and pragmatic approach to genotoxicity investigations of novel nanomaterials is the use of a battery of standard genotoxicity testing methods covering a wide range of mechanisms. Application of these standard methods to nanomaterials demands, however, adaptations, and the interpretation of results from the genotoxicity testing of nanomaterials needs additional considerations exceeding those used for standard size materials.

  12. Multi-functional carbon nanomaterials: Tailoring morphology for multidisciplinary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dervishi, Enkeleda

    2015-05-14

    Carbon based nanomaterials are being developed to have many new properties and applications. Graphene, is a mono-layer 2D atomic thick structure formed from hexagons of carbon atoms bound together by sp^2hybrid bonds. A carbon nanotube (CNT) can be viewed as a sheet of graphene rolled up into a cylinder, usually 1-2 nanometers in diameter and a few microns thick. A few applications of graphene and carbon nanotubes include the development of Nanoelectronics, nanocomposite materials, Hydrogen storage and Li⁺ battery, etc.

  13. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.

    PubMed

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-04-26

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa −1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments.

  14. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.

    PubMed

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Maruyama, Kayo; Usui, Yuki; Aoki, Kaoru; Takanashi, Seiji; Kobayashi, Shinsuke; Nomura, Hiroki; Okamoto, Masanori; Shimizu, Masayuki; Kato, Hiroyuki

    2013-09-01

    We examined the cytotoxicity of multi-walled carbon nanotubes (MWCNTs) and the resulting cytokine secretion in BEAS-2B cells or normal human bronchial epithelial cells (HBEpCs) in two types of culture media (Ham's F12 containing 10% FBS [Ham's F12] and serum-free growth medium [SFGM]). Cellular uptake of MWCNT was observed by fluorescent microscopy and analyzed using flow cytometry. Moreover, we evaluated whether MWCNT uptake was suppressed by 2 types of endocytosis inhibitors. We found that BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM showed similar biological responses, but BEAS-2B cells cultured in SFGM did not internalize MWCNTs, and the 50% inhibitory concentration value, i.e., the cytotoxicity, was increased by more than 10-fold. MWCNT uptake was suppressed by a clathrin-mediated endocytosis inhibitor and a caveolae-mediated endocytosis inhibitor in BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM. In conclusion, we suggest that BEAS-2B cells cultured in a medium containing serum should be used for the safety evaluation of nanomaterials as a model of normal human bronchial epithelial cells. However, the culture medium composition may affect the proteins that are expressed on the cytoplasmic membrane, which may influence the biological response to MWCNTs. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Correlative Light-Electron Microscopy of Lipid-Encapsulated Fluorescent Nanodiamonds for Nanometric Localization of Cell Surface Antigens.

    PubMed

    Hsieh, Feng-Jen; Chen, Yen-Wei; Huang, Yao-Kuan; Lee, Hsien-Ming; Lin, Chun-Hung; Chang, Huan-Cheng

    2018-02-06

    Containing an ensemble of nitrogen-vacancy centers in crystal matrices, fluorescent nanodiamonds (FNDs) are a new type of photostable markers that have found wide applications in light microscopy. The nanomaterial also has a dense carbon core, making it visible to electron microscopy. Here, we show that FNDs encapsulated in biotinylated lipids (bLs) are useful for subdiffraction imaging of antigens on cell surface with correlative light-electron microscopy (CLEM). The lipid encapsulation enables not only good dispersion of the particles in biological buffers but also high specific labeling of live cells. By employing the bL-encapsulated FNDs to target CD44 on HeLa cell surface through biotin-mediated immunostaining, we obtained the spatial distribution of these antigens by CLEM with a localization accuracy of ∼50 nm in routine operations. A comparative study with dual-color imaging, in which CD44 was labeled with FND and MICA/MICB was labeled with Alexa Fluor 488, demonstrated the superior performance of FNDs as fluorescent fiducial markers for CLEM of cell surface antigens.

  16. A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization.

    PubMed

    Cao, Jianglin; Wang, Ying; Chen, Chunyang; Yu, Fei; Ma, Jie

    2018-05-15

    Capacitive deionization (CDI) is a technology used to remove salt from brackish water, and it is an energy-saving, low-cost method compared with other methods, such as reverse osmosis, multi-stage ash distillation and electrodialysis. In this paper, three-dimensional (3D) graphene hydrogels modified with single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) were synthesized by a one-step water bath method to increase the conductivity of materials and reduce the aggregation of the graphene sheets. The CDI performance differences between the two materials were compared and discussed. The results suggested that SWCNTs/rGO had a higher electrosorption capacity (48.73 mg/g) than MWCNTs/rGO, and this was attributed to its high specific surface area (308.37 m 2 /g), specific capacity (36.35 F/g), and smaller charge transfer resistance compared with those of the MWCNTs/rGO electrode. The results indicate SWCNTs/rGO is a promising and suitable material for CDI technology and we provide basic guidance for further CNTs/graphene composite research. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A study on polypropylene encapsulation and solidification of textile sludge.

    PubMed

    Kumari, V Krishna; Kanmani, S

    2011-10-01

    The textile sludge is an inevitable solid waste from the textile wastewater process and is categorised under toxic substances by statutory authorities. In this study, an attempt has been made to encapsulate and solidify heavy metals and dyes present in textile sludge using polypropylene and Portland cement. Sludge samples (2 Nos.) were characterized for pH (8.5, 9.5), moisture content (1.5%, 1.96%) and chlorides (245mg/L, 425.4mg/L). Sludge samples were encapsulated into polypropylene with calcium carbonate (additive) and solidified with cement at four different proportions (20, 30, 40, 50%) of sludge. Encapsulated and solidified cubes were made and then tested for compressive strength. Maximum compressive strength of cubes (size, 7.06cm) containing sludge (50%) for encapsulation (16.72 N/mm2) and solidification (18.84 N/mm2) was more than that of standard M15 mortar cubes. The leachability of copper, nickel and chromium has been effectively reduced from 0.58 mg/L, 0.53 mg/L and 0.07 mg/L to 0.28mg/L, 0.26mg/L and BDL respectively in encapsulated products and to 0.24mg/L, BDL and BDL respectively in solidified products. This study has shown that the solidification process is slightly more effective than encapsulation process. Both the products were recommended for use in the construction of non-load bearing walls.

  18. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets.

    PubMed

    Kim, Jeongho; Yu, Il Je

    2016-01-01

    A national survey on workplace environment nanomaterial handling and manufacturing was conducted in 2014. Workplaces relevant to nanomaterials were in the order of TiO2 (91), SiO2 (88), carbon black (84), Ag (35), Al2O3 (35), ZnO (34), Pb (33), and CeO2 (31). The survey results indicated that the number of workplaces handling or manufacturing nanomaterials was 340 (0.27% of total 126,846) workplaces. The number of nanomaterials used and products was 546 (1.60 per company) and 583 (1.71 per company), respectively. For most workplaces, the results on exposure to hazardous particulate materials, including nanomaterials, were below current OELs, yet a few workplaces were above the action level. As regards the health status of workers, 9 workers were diagnosed with a suspected respiratory occupational disease, where 7 were recommended for regular follow-up health monitoring. 125 safety data sheets (SDSs) were collected from the nanomaterial-relevant workplaces and evaluated for their completeness and reliability. Only 4 CNT SDSs (3.2%) included the term nanomaterial, while most nanomaterial SDSs were not regularly updated and lacked hazard information. When taken together, the current analysis provides valuable national-level information on the exposure and health status of workers that can guide the next policy steps for nanomaterial management in the workplace.

  19. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets

    PubMed Central

    2016-01-01

    A national survey on workplace environment nanomaterial handling and manufacturing was conducted in 2014. Workplaces relevant to nanomaterials were in the order of TiO2 (91), SiO2 (88), carbon black (84), Ag (35), Al2O3 (35), ZnO (34), Pb (33), and CeO2 (31). The survey results indicated that the number of workplaces handling or manufacturing nanomaterials was 340 (0.27% of total 126,846) workplaces. The number of nanomaterials used and products was 546 (1.60 per company) and 583 (1.71 per company), respectively. For most workplaces, the results on exposure to hazardous particulate materials, including nanomaterials, were below current OELs, yet a few workplaces were above the action level. As regards the health status of workers, 9 workers were diagnosed with a suspected respiratory occupational disease, where 7 were recommended for regular follow-up health monitoring. 125 safety data sheets (SDSs) were collected from the nanomaterial-relevant workplaces and evaluated for their completeness and reliability. Only 4 CNT SDSs (3.2%) included the term nanomaterial, while most nanomaterial SDSs were not regularly updated and lacked hazard information. When taken together, the current analysis provides valuable national-level information on the exposure and health status of workers that can guide the next policy steps for nanomaterial management in the workplace. PMID:27556041

  20. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  1. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.

    PubMed

    Mihalchik, Amy L; Ding, Weiqiang; Porter, Dale W; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D; Stefaniak, Aleksandr B; Snyder-Talkington, Brandi N; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-07-03

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1.2μg/ml) or MWCNT-7 (0.12μg/ml) increased cellular proliferation, while the highest dose of 120μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6h and were internalized by 24h. ROS were elevated at 6 and 24h in ND-MWCNT exposed cells, but only at 6h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. Published by Elsevier Ireland Ltd.

  2. Stellate macroporous silica nanospheres in bio-macromolecules encapsulation and delivery

    NASA Astrophysics Data System (ADS)

    Chi, Hao-Hsin

    This project focused on using mesoporous silica as a solid support to encapsulate enzymes for operating a highly economic, and recyclable biomass processing system. The main objective is to turn non-food biomass sources into food products. Enzymes are macromolecules with the structural backbone of proteins or ribonucleic acid sequences (RNAs) which work as catalysts in living organisms. Enzymes have the advantage of being the least contaminating catalyst due to normal catalyst might generate toxic by-product, and preferable to organic and inorganic catalysts, especially when used for product related to human used, which require biocompatibility of final product. However, there are several disadvantages in enzyme utilization. Their fabrication is time-consuming and requires elaborated molecular biology processes. Most of the enzymes need well-defined reaction conditions to be functional and operate at high yield. Unfortunately, although they are reusable as normal catalysts, it proves difficult to extract or reuse the enzymes from a reaction. Also, enzyme molecules are easily degradable and demand proper storage. To overcome some of the disadvantages, especially regarding stability to degradation, recovery, and reusability, immobilization of enzyme on solid support has become a thriving methodology. In recent years, mesoporous silica nanomaterials(MSN) have been at the forefront of enzyme immobilization given their extensive surface area, which provides capability to increase enzyme loading and for their demonstrate ability to protect enzyme from degradation, thus enabling high recyclability. Mesoporous silica is biocompatible and has already been used for several applications included. Catalysis, drug delivery, and Bio-imaging. Previously published research utilized mesoporous silica to deliver drugs, DNAs, RNAs or encapsulate single enzyme. The objective of this research is completed to develop a new porous silica platform that is unique in its porosity structure

  3. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells.

    PubMed

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-09-01

    Breast cancer presents greatest challenge in health care in today's world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube's D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 min of photothermal therapy treatment by 1.5 W/cm(2) power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly.

  4. Multi-walled Carbon Nanotubes Reduce Toxicity of Diphenhydramine to Ceriodaphnia dubia in Water and Sediment Exposures.

    PubMed

    Myer, Mark H; Black, Marsha C

    2017-09-01

    Multi-walled carbon nanotubes are adsorptive materials that have potential for remediation of organic contaminants in water. Sediment elutriate exposures were undertaken with Ceriodaphnia dubia to compare the toxic effects of diphenhydramine in the presence and absence of sediment and multi-walled carbon nanotubes. In both sediment and solution-only treatments, addition of 0.318 mg/g of carbon nanotubes significantly decreased 48-h mortality relative to control, with a 78.7%-90.1% reduction in treatments with nanotube-amended sediment and 40.7%-53.3% reduction in nanotube-amended water exposures. The greatest degree of relative mortality reduction occurred in sediments containing higher levels of natural organic matter, indicating a potential additive effect.

  5. Intracellular signal modulation by nanomaterials.

    PubMed

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  6. Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study

    NASA Astrophysics Data System (ADS)

    Manaf, M. A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A. N.

    2018-05-01

    The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using Arabic gum and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph obtained with R2 of 0.9523 was used for the accurate determination of encapsulation efficiency and release study. The release kinetic was analysed based on Fick"s law of diffusion for polymeric system and linear graph of Log fraction release over Log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The produced capsules for both coacervation processes were discussed based on the capsules morphology and release kinetic mechanisms.

  7. Synthetic approaches to construct viral capsid-like spherical nanomaterials.

    PubMed

    Matsuura, Kazunori

    2018-06-06

    This feature article describes recent progress in synthetic strategies to construct viral capsid-like spherical nanomaterials using the self-assembly of peptides and/or proteins. By mimicking the self-assembly of spherical viral capsids and clathrin, trigonal peptide conjugates bearing β-sheet-forming peptides, glutathiones, or coiled-coil-forming peptides were developed to construct viral capsid-like particles. β-Annulus peptides from tomato bushy stunt virus self-assembled into viral capsid-like nanocapsules with a size of 30-50 nm, which could encapsulate various guest molecules and be decorated with different molecules on their surface. Rationally designed fusion proteins bearing symmetric assembling units afforded precise viral capsid-like polyhedral assemblies. These synthetic approaches to construct artificial viruses could become useful guidelines to develop novel drug carriers, vaccine platforms, nanotemplates and nanoreactors.

  8. Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial

    NASA Astrophysics Data System (ADS)

    Salieri, Beatrice; Pasteris, Andrea; Netkueakul, Woranan; Hischier, Roland

    2017-03-01

    Currently, a noncomprehensive understanding of the physicochemical properties of carbon-based nanomaterial (CBNs), which may affect toxic effects, is still observable. In this study, an exploratory systematic investigation into the key physicochemical properties of multiwall carbon nanotube (MWCNT), single-wall carbon nanotube (SWCNT), and C60-fullerene on their ecotoxicity has been undertaken. We undertook an extensive survey of the literature pertaining to the ecotoxicity of organism representative of the trophic level of algae, crustaceans, and fish. Based on this, a set of data reporting both the physicochemical properties of carbon-based nanomaterial and the observed toxic effect has been established. The relationship between physicochemical properties and observed toxic effect was investigated based on various statistical approaches. Specifically, analysis of variance by one-way ANOVA was used to assess the effect of categorical properties (use of a dispersant or treatments in the test medium, type of carbon-based nanomaterial, i.e., SWCNT, MWCNT, C60-fullerene, functionalization), while multiple regression analysis was used to assess the effect of quantitative properties (i.e., diameter length of nanotubes, secondary size) on the toxicity values. The here described investigations revealed significant relationships among the physicochemical properties and observed toxic effects. The research was mainly affected by the low availability of data and also by the low variability of the studies collected. Overall, our results demonstrate that the here proposed and applied approach could have a major role in identifying the physicochemical properties of relevance for the toxicity of nanomaterial. However, the future success of the approach would require that the ENMs and the experimental conditions used in the toxicity studies are fully characterized.

  9. Enhancement of the conductivity of nanomaterial layers by laser irradiation

    NASA Astrophysics Data System (ADS)

    Ichkitidze, Levan P.; Glukhova, Olga E.; Savostyanov, Georgy V.; Gerasimenko, Alexander Yu.; Podgaetsky, Vitaly M.; Selishchev, Sergey V.; Zhurbina, Natalia N.

    2017-07-01

    The conductivity of layers (thickness 0.5 ÷ 50 μm) of composite nanomaterials consisting of bovine serum albumin (BSA) with single-walled carbon nanotubes (SWCNTs) has been studied. The aqueous dispersion of BSA / SWCNT was deposited on different substrates using the silk screening method. Conductivity was increased (30 ÷ 700) % by laser irradiation of the layers when they were in the liquid state. The investigated layers are promising for use in medical practice.

  10. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  11. Doxycycline-Encapsulated Nanotube-Modified Dentin Adhesives

    PubMed Central

    Feitosa, S.A.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.L.; Platt, J.A.; Windsor, L.J.; Bottino, M.C.

    2014-01-01

    This article presents details of fabrication, biological activity (i.e., anti–matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)–encapsulated halloysite nanotube (HNT)–modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives—but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels—we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of

  12. Atomic Layer Deposition on Gram Quantities of Multi-Walled Carbon Nanotubes

    DTIC Science & Technology

    2009-06-03

    the amount of reactant that is lost to the vacuum pump . Recent work has demonstrated the feasibility of ALD on gram quantities of nanopowders in a...and left to outgas under vacuum for 24 h. Vacuum was obtained using a dual-stage rotary vane pump . Pressure was monitored with a Baratron capacitance...Atomic layer deposition on gram quantities of multi-walled carbon nanotubes This article has been downloaded from IOPscience. Please scroll down to

  13. Thermophilic Ferritin 24mer Assembly and Nanoparticle Encapsulation Modulated by Interdimer Electrostatic Repulsion.

    PubMed

    Pulsipher, Katherine W; Villegas, Jose A; Roose, Benjamin W; Hicks, Tacey L; Yoon, Jennifer; Saven, Jeffery G; Dmochowski, Ivan J

    2017-07-18

    Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a stable dimer of four-helix bundle proteins at a low ionic strength, and the protein forms a hollow assembly of 24 protomers at a high ionic strength (∼800 mM NaCl). This assembly process can also be initiated by highly charged gold nanoparticles (AuNPs) in solution, leading to encapsulation. These data suggest that salt solutions or charged AuNPs can shield unfavorable electrostatic interactions at AfFtn dimer-dimer interfaces, but specific "hot-spot" residues controlling assembly have not been identified. To investigate this further, we computationally designed three AfFtn mutants (E65R, D138K, and A127R) that introduce a single positive charge at sites along the dimer-dimer interface. These proteins exhibited different assembly kinetics and thermodynamics, which were ranked in order of increasing 24mer propensity: A127R < wild type < D138K ≪ E65R. E65R assembled into the 24mer across a wide range of ionic strengths (0-800 mM NaCl), and the dissociation temperature for the 24mer was 98 °C. X-ray crystal structure analysis of the E65R mutant identified a more compact, closed-pore cage geometry. A127R and D138K mutants exhibited wild-type ability to encapsulate and stabilize 5 nm AuNPs, whereas E65R did not encapsulate AuNPs at the same high yields. This work illustrates designed protein cages with distinct assembly and encapsulation properties.

  14. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring

    PubMed Central

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-01-01

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa−1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments. PMID:29701643

  15. Magnetic Nanomaterials for Hyperthermia-based Therapy and Controlled Drug Delivery

    PubMed Central

    Kumar, Challa S. S. R.; Mohammad, Faruq

    2011-01-01

    Previous attempts to review the literature on magnetic nanomaterials for hyperthermia-based therapy focused primarily on magnetic fluid hyperthermia (MFH) using mono metallic/metal oxide nanoparticles. The term “Hyperthermia” in the literature was also confined only to include use of heat for therapeutic applications. Recently, there have been a number of publications demonstrating magnetic nanoparticle-based hyperthermia to generate local heat resulting in the release of drugs either bound to the magnetic nanoparticle or encapsulated within polymeric matrices. In this review article, we present a case for broadening the meaning of the term “hyperthermia” by including thermotherapy as well as magnetically modulated controlled drug delivery. We provide a classification for controlled drug delivery using hyperthermia: Hyperthermia-based controlled Drug delivery through Bond Breaking (DBB) and Hyperthermia-based controlled Drug delivery through Enhanced Permeability (DEP). The review also covers, for the first time, core-shell type magnetic nanomaterials, especially nanoshells prepared using layer-by-layer self-assembly, for the application of hyperthermia-based therapy and controlled drug delivery. The highlight of the review article is to portray potential opportunities in the combination of hyperthermia-based therapy and controlled drug release paradigms for successful application in personalized medicine. PMID:21447363

  16. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    PubMed

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  17. Multi-Reservoir Phospholipid Shell Encapsulating Protamine Nanocapsules for Co-Delivery of Letrozole and Celecoxib in Breast Cancer Therapy.

    PubMed

    Elzoghby, Ahmed O; Mostafa, Shaimaa K; Helmy, Maged W; ElDemellawy, Maha A; Sheweita, Salah A

    2017-09-01

    In the current work, we propose a combined delivery nanoplatform for letrozole (LTZ) and celecoxib (CXB). Multi-reservoir nanocarriers were developed by enveloping protamine nanocapsules (PRM-NCs) within drug-phospholipid complex bilayer. Encapsulation of NCs within phospholipid bilayer was confirmed by both size increase from 109.7 to 179.8 nm and reduction of surface charge from +19.0 to +7.78 mV. The multi-compartmental core-shell structure enabled biphasic CXB release with initial fast release induced by complexation with phospholipid shell followed by prolonged release from oily core. Moreover, phospholipid coating provided protection for cationic PRM-NCs against interaction with RBCs and serum proteins enabling their systemic administration. Pharmacokinetic analysis demonstrated prolonged circulation and delayed clearance of both drugs after intravenous administration into rats. The superior anti-tumor efficacy of multi-reservoir NCs was manifested as powerful cytotoxicity against MCF-7 breast cancer cells and marked reduction in the mammary tumor volume in Ehrlich ascites bearing mice compared with free LTZ-CXB combination. Moreover, the NCs induced apoptotic caspase activation and marked inhibition of aromatase expression and angiogenic marker, VEGF as well as inhibition of both NFκB and TNFα. Multi-reservoir phospholipid shell coating PRM-NCs could serve as a promising nanocarrier for parenteral combined delivery of LTZ and CXB.

  18. Impaired Clearance And Enhanced Pulmonary Inflammatory/Fibrotic Response To Carbon Nanotubes In Myeloperoxidase-Deficient Mice

    DTIC Science & Technology

    2012-03-30

    utilized SWCNT, it is highly likely that multi-walled carbon nanotubes, fullerenes , graphene and other carbonaceous particles may also undergo MPO...screening and analysis system to distinguish between the organic tissue and the inorganic SWCNT (under bright field imaging settings). Optically...Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene . Environ Sci Technol 39: 1378–1383. 7. Kisin ER, Murray

  19. Natural History of Gas Configurations and Encapsulation in Necrotic Collections During Necrotizing Pancreatitis.

    PubMed

    van Grinsven, Janneke; van Brunschot, Sandra; van Baal, Mark C; Besselink, Marc G; Fockens, Paul; van Goor, Harry; van Santvoort, Hjalmar C; Bollen, Thomas L

    2018-05-11

    Decision-making on invasive intervention in patients with clinical signs of infected necrotizing pancreatitis is often related to the presence of gas configurations and the degree of encapsulation in necrotic collections on imaging. Data on the natural history of gas configurations and encapsulation in necrotizing pancreatitis are, however, lacking. A post hoc analysis was performed of a previously described prospective cohort in 21 Dutch hospitals (2004-2008). All computed tomography scans (CTs) performed during hospitalization for necrotizing pancreatitis were categorized per week (1 to 8, and thereafter) and re-assessed by an abdominal radiologist. A total of 639 patients with necrotizing pancreatitis were included, with median four (IQR 2-7) CTs per patient. The incidence of first onset of gas configurations varied per week without a linear correlation: 2-3-13-11-10-19-12-21-12%, respectively. Overall, gas configurations were found in 113/639 (18%) patients and in 113/202 (56%) patients with infected necrosis. The incidence of walled-off necrosis increased per week: 0-3-12-39-62-76-93-97-100% for weeks 1-8 and thereafter respectively. Clinically relevant walled-off necrosis (largely or fully encapsulated necrotic collections) was seen in 162/379 (43%) patients within the first 3 weeks. Gas configurations occur in every phase of the disease and develop in half of the patients with infected necrotizing pancreatitis. Opposed to traditional views, clinically relevant walled-off necrosis occurs frequently within the first 3 weeks.

  20. Superior piezoelectric composite films: taking advantage of carbon nanomaterials.

    PubMed

    Saber, Nasser; Araby, Sherif; Meng, Qingshi; Hsu, Hung-Yao; Yan, Cheng; Azari, Sara; Lee, Sang-Heon; Xu, Yanan; Ma, Jun; Yu, Sirong

    2014-01-31

    Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs' high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.

  1. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    EPA Science Inventory

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  2. Stabilization of fullerene-like boron cages by transition metal encapsulation

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Wang, Yanchao; Zhang, Lijun; Lin, Haiqing; Zhao, Jijun; Ma, Yanming

    2015-06-01

    The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters. Recently, the breakthroughs represented by Nat. Chem., 2014, 6, 727 established that the transition from planar/quasi-planar to cage-like Bn clusters occurs around n = ~38-40, paving the way for understanding the intriguing chemistry of B-fullerene. We herein demonstrate that the transition demarcation, n, can be significantly reduced with the help of transition metal encapsulation. We explore via extensive first-principles swarm-intelligence based structure searches the free energy landscapes of B24 clusters doped by a series of transition metals and find that the low-lying energy regime is generally dominated by cage-like isomers. This is in sharp contrast to that of bare B24 clusters, where the quasi-planar and rather irregular polyhedrons are prevalent. Most strikingly, a highly symmetric B cage with D3h symmetry is discovered in the case of Mo or W encapsulation. The endohedral D3h cages exhibit robust thermodynamic, dynamic and chemical stabilities, which can be rationalized in terms of their unique electronic structure of an 18-electron closed-shell configuration. Our results indicate that transition metal encapsulation is a feasible route for stabilizing medium-sized B cages, offering a useful roadmap for the discovery of more B fullerene analogues as building blocks of nanomaterials.The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters

  3. Microgel-Encapsulated Methylene Blue for the Treatment of Breast Cancer Cells by Photodynamic Therapy

    PubMed Central

    Khanal, Anil; Bui, Minh-Phuong Ngoc

    2014-01-01

    Purpose Photodynamic therapy (PDT) is gaining increasing recognition for breast cancer treatment because it offers local selectivity and reduced toxic side effects compared to radiotherapy and chemotherapy. In PDT, photosensitizer drugs are loaded in different nanomaterials and used in combination with light exposure. However, the most representative issue with PDT is the difficulty of nanomaterials to encapsulate anticancer drugs at high doses, which results in low efficacy of the PDT treatment. Here, we proposed the development of the poly(N-isopropylacrylamide) (PNIPAM) microgel for the encapsulation of methylene blue, an anticancer drug, for its use as breast cancer treatment in MCF-7 cell line. Methods We developed biocompatible microgels based on nonfunctionalized PNIPAM and its corresponding anionically functionalized PNIPAM and polyacrylic acid (PNIPAM-co-PAA) microgel. Methylene blue was used as the photosensitizer drug because of its ability to generate toxic reactive oxygen species upon exposure to light at 664 nm. Core PNIPAM and core/shell PNIPAM-co-PAA microgels were synthesized and characterized using ultraviolet-visible spectroscopy and dynamic light scattering. The effect of methylene blue was evaluated using the MCF-7 cell line. Results Loading of methylene blue in core PNIPAM microgel was higher than that in the core/shell PNIPAM-co-PAA microgel, indicating that electrostatic interactions did not play an important role in loading a cationic drug. This behavior is probably due to the skin layer inhibiting the high uptake of drugs in the PNIPAM-co-PAA microgel. Core PNIPAM microgel effectively retained the cationic drug (i.e., methylene blue) for several hours compared to core/shell PNIPAM-co-PAA and enhanced its photodynamic efficacy in vitro more than that of free methylene blue. Conclusion Our results showed that the employment of core PNIPAM and core/shell PNIPAM-co-PAA microgels enhanced the encapsulation of methylene blue. Core PNIPAM

  4. Microgel-encapsulated methylene blue for the treatment of breast cancer cells by photodynamic therapy.

    PubMed

    Khanal, Anil; Bui, Minh-Phuong Ngoc; Seo, Seong S

    2014-03-01

    Photodynamic therapy (PDT) is gaining increasing recognition for breast cancer treatment because it offers local selectivity and reduced toxic side effects compared to radiotherapy and chemotherapy. In PDT, photosensitizer drugs are loaded in different nanomaterials and used in combination with light exposure. However, the most representative issue with PDT is the difficulty of nanomaterials to encapsulate anticancer drugs at high doses, which results in low efficacy of the PDT treatment. Here, we proposed the development of the poly(N-isopropylacrylamide) (PNIPAM) microgel for the encapsulation of methylene blue, an anticancer drug, for its use as breast cancer treatment in MCF-7 cell line. We developed biocompatible microgels based on nonfunctionalized PNIPAM and its corresponding anionically functionalized PNIPAM and polyacrylic acid (PNIPAM-co-PAA) microgel. Methylene blue was used as the photosensitizer drug because of its ability to generate toxic reactive oxygen species upon exposure to light at 664 nm. Core PNIPAM and core/shell PNIPAM-co-PAA microgels were synthesized and characterized using ultraviolet-visible spectroscopy and dynamic light scattering. The effect of methylene blue was evaluated using the MCF-7 cell line. Loading of methylene blue in core PNIPAM microgel was higher than that in the core/shell PNIPAM-co-PAA microgel, indicating that electrostatic interactions did not play an important role in loading a cationic drug. This behavior is probably due to the skin layer inhibiting the high uptake of drugs in the PNIPAM-co-PAA microgel. Core PNIPAM microgel effectively retained the cationic drug (i.e., methylene blue) for several hours compared to core/shell PNIPAM-co-PAA and enhanced its photodynamic efficacy in vitro more than that of free methylene blue. Our results showed that the employment of core PNIPAM and core/shell PNIPAM-co-PAA microgels enhanced the encapsulation of methylene blue. Core PNIPAM microgel released the drug more slowly

  5. Electrical conductivity of multi-walled carbon nanotubes-SU8 epoxy composites

    NASA Astrophysics Data System (ADS)

    Grimaldi, Claudio; Mionić, Marijana; Gaal, Richard; Forró, László; Magrez, Arnaud

    2013-06-01

    We have characterized the electrical conductivity of the composite which consists of multi-walled carbon nanotubes dispersed in SU8 epoxy resin. Depending on the processing conditions of the epoxy (ranging from non-polymerized to cross-linked), we obtained tunneling and percolating-like regimes of the electrical conductivity of the composites. We interpret the observed qualitative change of the conductivity behavior in terms of reduced separation between the nanotubes induced by polymerization of the epoxy matrix.

  6. Three-Dimensional Printing of Nanomaterial Scaffolds for Complex Tissue Regeneration

    PubMed Central

    O'Brien, Christopher M.; Holmes, Benjamin; Faucett, Scott

    2015-01-01

    Three-dimensional (3D) printing has recently expanded in popularity, and become the cutting edge of tissue engineering research. A growing emphasis from clinicians on patient-specific care, coupled with an increasing knowledge of cellular and biomaterial interaction, has led researchers to explore new methods that enable the greatest possible control over the arrangement of cells and bioactive nanomaterials in defined scaffold geometries. In this light, the cutting edge technology of 3D printing also enables researchers to more effectively compose multi-material and cell-laden scaffolds with less effort. In this review, we explore the current state of 3D printing with a focus on printing of nanomaterials and their effect on various complex tissue regeneration applications. PMID:25084122

  7. Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhuang, Ziheng; Li, Min; Liu, Hui; Luo, Libo; Gu, Weidong; Wu, Qiuli; Wang, Dayong

    2016-08-01

    Caenorhabditis elegans is an important non-mammalian alternative assay model for toxicological study. Previous study has indicated that exposure to multi-walled carbon nanotubes (MWCNTs) dysregulated the transcriptional expression of mir-259. In this study, we examined the molecular basis for mir-259 in regulating MWCNTs toxicity in nematodes. Mutation of mir-259 induced a susceptible property to MWCNTs toxicity, and MWCNTs exposure induced a significant increase in mir-259::GFP in pharyngeal/intestinal valve and reproductive tract, implying that mir-259 might mediate a protection mechanisms for nematodes against MWCNTs toxicity. RSKS-1, a putative ribosomal protein S6 kinase, acted as the target for mir-259 in regulating MWCNTs toxicity, and mutation of rsks-1 suppressed the susceptible property of mir-259 mutant to MWCNTs toxicity. Moreover, mir-259 functioned in pharynx-intestinal valve and RSKS-1 functioned in pharynx to regulate MWCNTs toxicity. Furthermore, RSKS-1 regulated MWCNTs toxicity by suppressing the function of AAK-2-DAF-16 signaling cascade. Our results will strengthen our understanding the microRNAs mediated protection mechanisms for animals against the toxicity from certain nanomaterials.

  8. ECOTOXICOLOGY OF NANOMATERIALS

    EPA Science Inventory

    An overview of issues associated with potential ecological toxicity of nanomaterials with research needs outlined, current literature reviewed and discussion of nanomaterial toxicity relative to concerns that EPA and state risk assessors might have.

  9. Micro-Encapsulation of non-aqueous solvents for energy-efficient carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolaroff, Joshua K; Ye, Congwang; Oakdale, James

    Here, we demonstrate micro-encapsulation of several promising designer solvents: an IL, PCIL, and CO2BOL. We develop custom polymers that cure by UV light in the presence of each solvent while maintaining high CO2 permeability. We use several new process strategies to accommodate the viscosity and phase changes. We then measure and compare the CO2 absorption rate and capacity as well as the multi-cycle performance of the encapsulated solvents. These results are compared with previous work on encapsulated sodium carbonate solution. The prospects for designer solvents to reduce the cost of post-combustion capture and the implications for process design with encapsulatedmore » solvents are discussed.« less

  10. Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Beverly D.; Palafox-Hernandez, J. Pablo; Li, Yue

    Materials-binding peptides represent a unique avenue towards controlling the shape and size of nanoparticles (NPs) grown under aqueous conditions. Here, employing a bionanocombinatorics approach, two such materials-binding peptides were linked at either end of a photoswitchable spacer, forming a multi-domain materials-binding molecule to control the in situ synthesis and organization of Ag and Au NPs under ambient conditions. These multi-domain molecules retained the peptides’ ability to nucleate, grow, and stabilize Ag and Au NPs in aqueous media. Disordered co-assemblies of the two nanomaterials were observed by TEM imaging of dried samples after sequential growth of the two metals, and showedmore » a clustering behavior that was not observed without both metals and the linker molecules. While TEM evidence indicated the formation of AuNP/AgNP assemblies upon drying, SAXS analysis indicated that no extended assemblies existed in solution, suggesting that sample drying plays an important role in facilitating NP clustering. Molecular simulations and experimental data revealed tunable materials-binding based upon the isomerization state of the photoswitchable unit and metal employed. This work is a first step in generating externally actuated biomolecules with specific material-binding properties that could be used as the building blocks to achieve multi-material switchable NP assemblies.« less

  11. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    PubMed Central

    2012-01-01

    The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP) onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs) increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K. PMID:23369489

  12. Gold Nano Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells

    PubMed Central

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-01-01

    Breast cancer presents greatest challenge in health care in today’s world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube’s D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 minutes of photothermal therapy treatment by 1.5 W/cm2 power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly. PMID:21842867

  13. Dynamics of encapsulated microbubbles for contrast ultrasound imaging and drug delivery: from pressure dependent subharmonic to collapsing jet and acoustic streaming

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik

    2016-11-01

    Intravenously injected microbubbles used as ultrasound contrast enhancing agents are encapsulated by a nanometer-thick layer of lipids, proteins or polymers to stabilize them against premature dissolution. Over the years, we have developed interfacial rheological models for the encapsulation and used them to characterize several contrast agents by acoustic means. We will present an overview of our research emphasizing recent efforts in two directions. The first is on using subharmonic signals from the contrast microbubbles for non-invasive pressure estimation. Experimental measurement and modeling show that the subharmonic signal can both increase or decrease with pressure depending on frequency. Secondly, we will discuss boundary element (BEM) simulation of the collapse of an encapsulated microbubbles forming a jet near a blood vessel wall. Different rheology models of the encapsulation have been rigorously implemented in the BEM formulation. We will discuss the resulting stresses and the acoustic streaming near the wall leading to sonoporation and other bioeffects. Partially supported by Natinal Science Foundation.

  14. Nanomaterials in preventive dentistry

    NASA Astrophysics Data System (ADS)

    Hannig, Matthias; Hannig, Christian

    2010-08-01

    The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

  15. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    NASA Astrophysics Data System (ADS)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  16. Recent progress in boron nanomaterials

    PubMed Central

    Kondo, Takahiro

    2017-01-01

    Abstract Various types of zero, one, and two-dimensional boron nanomaterials such as nanoclusters, nanowires, nanotubes, nanobelts, nanoribbons, nanosheets, and monolayer crystalline sheets named borophene have been experimentally synthesized and identified in the last 20 years. Owing to their low dimensionality, boron nanomaterials have different bonding configurations from those of three-dimensional bulk boron crystals composed of icosahedra or icosahedral fragments. The resulting intriguing physical and chemical properties of boron nanomaterials are fascinating from the viewpoint of material science. Moreover, the wide variety of boron nanomaterials themselves could be the building blocks for combining with other existing nanomaterials, molecules, atoms, and/or ions to design and create materials with new functionalities and properties. Here, the progress of the boron nanomaterials is reviewed and perspectives and future directions are described. PMID:29152014

  17. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    PubMed

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    NASA Astrophysics Data System (ADS)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of

  19. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes.

    PubMed

    Holmes, Benjamin; Castro, Nathan J; Li, Jian; Keidar, Michael; Zhang, Lijie Grace

    2013-09-13

    Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young's modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.

  20. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin; Castro, Nathan J.; Li, Jian; Keidar, Michael; Zhang, Lijie Grace

    2013-09-01

    Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young’s modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.

  1. Adsorption of DDT and PCB by Nanomaterials from Residual Soil.

    PubMed

    Taha, Mohd Raihan; Mobasser, Shariat

    2015-01-01

    This paper presents the findings of a study on adsorption of dichlorodiphenythreechloroethen (DDT) and polychlorinated biphenyls (PCBs) on three nanomaterials including Multi walled Carbon Nanotube (MWNT), nano-clay and nano-alumina. DDT and PCBs are of significant concern due their high toxicity and long environmental half-lives. Experiments were conducted using batch adsorption procedures at different DDT and PCBs concentrations, from 10 to 60 mg/L. The amounts of MWNT, nano-clay and Nano-alumina used were 0.25%, 0.50%, 0.75%, 1%, 2% and 10%. The adsorption of PCBs solution onto the MWNT, nano-clay and nano-alumina was characterized by an initial rapid adsorption which eventually became constant within 22, 20, and 17 hours, respectively. The adsorption of DDT solution onto the MWNT, nano-clay and nano-alumina was also characterized by an initial rapid adsorption which gradually became constant within 22, 22 and 16 hours, respectively. Results of this study indicated that MWNT was a better adsorbent material compared to nano-clay and nano-alumina for both contaminants in this study. While at 10% of MWNT 88.9% and 77% of DDT and PCB were removed by MWNT, respectively. The effect of pH and temperature were also investigated.

  2. Adsorption of DDT and PCB by Nanomaterials from Residual Soil

    PubMed Central

    Taha, Mohd Raihan; Mobasser, Shariat

    2015-01-01

    This paper presents the findings of a study on adsorption of dichlorodiphenythreechloroethen (DDT) and polychlorinated biphenyls (PCBs) on three nanomaterials including Multi walled Carbon Nanotube (MWNT), nano-clay and nano-alumina. DDT and PCBs are of significant concern due their high toxicity and long environmental half-lives. Experiments were conducted using batch adsorption procedures at different DDT and PCBs concentrations, from 10 to 60 mg/L. The amounts of MWNT, nano-clay and Nano-alumina used were 0.25%, 0.50%, 0.75%, 1%, 2% and 10%. The adsorption of PCBs solution onto the MWNT, nano-clay and nano-alumina was characterized by an initial rapid adsorption which eventually became constant within 22, 20, and 17 hours, respectively. The adsorption of DDT solution onto the MWNT, nano-clay and nano-alumina was also characterized by an initial rapid adsorption which gradually became constant within 22, 22 and 16 hours, respectively. Results of this study indicated that MWNT was a better adsorbent material compared to nano-clay and nano-alumina for both contaminants in this study. While at 10% of MWNT 88.9% and 77% of DDT and PCB were removed by MWNT, respectively. The effect of pH and temperature were also investigated. PMID:26659225

  3. Electrical transport via variable range hopping in an individual multi-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Husain Khan, Zishan; Husain, M.; Perng, T. P.; Salah, Numan; Habib, Sami

    2008-11-01

    E-beam lithography is used to make four leads on an individual multi-wall carbon nanotube for carrying out electrical transport measurements. Temperature dependence of conductance of an individual multi-wall carbon nanotube (MWNT) is studied over a temperature range of (297 4.8 K). The results indicate that the conduction is governed by variable range hopping (VRH) for the entire temperature range (297 4.8 K). This VRH mechanism changes from three dimensions (3D) to two dimensions (2D) as we go down to 70 K. Three-dimensional variable range hopping (3D VRH) is responsible for conduction in the temperature range (297 70 K), which changes to two-dimensional VRH for much lower temperatures (70 4.8 K). For 3D VRH, various Mott parameters such as density of states, hopping distance and hopping energy have been calculated. The 2D VRH mechanism has been applied for the temperature range (70 4.8 K) and, with the help of this model, the parameters such as localization length and hopping distance are calculated. All these parameters give interesting information about this complex structure, which may be useful for many applications.

  4. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions.

    PubMed

    Hatami, Mehrnaz

    2017-08-01

    The rapid increase in the production and application of various types of nanomaterials increases the possibility of their presence in total environment, which subsequently raises concerns about their potential threats to the first trophic level of organisms, specifically under varying environmental constraints. In this work, seeds of Cucurbita pepo L. were cultured in MS basal medium exposed to multi-walled carbon nanotubes (MWCNTs) at different concentrations (0, 125, 250, 500 and 1000μgmL -1 ) under two levels of water potential, well-watered (0MPa) and water stress (-1.5MPa) induced by polyethylene glycol (PEG 6000) for 14 days. Seeds exposed to MWCNTs showed reduction in germination percentage, root and shoot length, biomass accumulation and vigor index in a dose-dependent manner. However, seedlings germinated in MWCNTs-fortified media had significantly lower germination and growth attributes than those of control under water stress conditions. This happened due to increased oxidative injury indices including hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) contents, as well as electrolyte leakage index (ELI) of tissues. The impaired morpho-physiological and biochemical processes of seedlings exposed to different concentrations of MWCNTs under both PEG-induced stress and non-stress growing conditions were consequence of changes in the activation of various cellular antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (POD). Taken together, our findings reveal that MWCNTs played negative role on seed germination and subsequent growth of C. pepo L. seedlings under both levels of water potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Th(IV) Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene

    PubMed Central

    Wang, Jing; Liu, Peng; Li, Zhan; Qi, Wei; Lu, Yan; Wu, Wangsuo

    2013-01-01

    The adsorption of Th(IV) onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs) in the absence and presence of hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) has been investigated. C60(OH)n, C60(C(COOH)2)n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV) was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV) adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV) adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV) on the same oMWCNTs free of C60(OH)n or C60(C(COOH)2)n, the study of a ternary system showed the inhibition effect of C60(OH)n at high concentration on the adsorption of Th(IV) in a pH range from neutral to slightly alkaline; whereas the promotion effect of C60(C(COOH)2)n, even at its low concentration, on Th(IV) adsorption was observed in acid medium. PMID:28788324

  6. Th(IV) Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene.

    PubMed

    Wang, Jing; Liu, Peng; Li, Zhan; Qi, Wei; Lu, Yan; Wu, Wangsuo

    2013-09-17

    The adsorption of Th(IV) onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs) in the absence and presence of hydroxylated fullerene (C 60 (OH) n ) and carboxylated fullerene (C 60 (C(COOH)₂) n ) has been investigated. C 60 (OH) n , C 60 (C(COOH)₂) n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV) was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV) adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV) adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV) on the same oMWCNTs free of C 60 (OH) n or C 60 (C(COOH)₂) n , the study of a ternary system showed the inhibition effect of C 60 (OH) n at high concentration on the adsorption of Th(IV) in a pH range from neutral to slightly alkaline; whereas the promotion effect of C 60 (C(COOH)₂) n , even at its low concentration, on Th(IV) adsorption was observed in acid medium.

  7. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  8. High-oil-load encapsulation of medium-chain triglycerides and D-limonene mixture in modified starch by spray drying.

    PubMed

    Paramita, Vita; Furuta, Takeshi; Yoshii, Hidefumi

    2012-02-01

    Oil mixtures of medium-chain triglycerides (MCT) and D-limonene in mixing ratios from 10 to 100 wt% were encapsulated in modified starch (wall material) by spray drying to produce oil-rich powders. The oil load (mass ratio of oil mixture to wall material) of the infeed emulsion markedly influenced the properties of the infeed liquid and the characteristics of the resulting powder. The viscosity of the infeed liquid and the particle size of the powder exponentially decreased with increasing oil load, while the emulsion droplet size in the infeed liquid increased. In addition, retention of D-limonene during spray drying also decreased markedly with increasing oil load. Irrespective of the different oil loads and concentrations of the wall material, D-limonene retention was well correlated with the emulsion droplet diameter of the infeed liquid. The encapsulation efficiency of the oil mixture exhibited a maximum value (almost 100%) at an oil load between 0.5 and 1.0, before decreasing at higher oil loads. At an oil load of 2.0, the encapsulation efficiency of D-limonene was reduced to almost zero, while around 40% of the initial MCT was encapsulated in the powder. The increase in oil load also led to increased amounts of surface oil of MCT and D-limonene in the resulting powder due to the increasing emulsion droplet diameter of the infeed liquids. This study proposes the microencapsulation of medium-chain triglycerides under high-oil-load conditions by spray drying. The powders prepared by this process provide significant benefits in terms of rapid energy conversion after consumption without accumulation in the body. Important quality factors of the powder products such as the encapsulation efficiency and the amount of surface oil were examined to understand the optimum process conditions for spray drying. © 2012 Institute of Food Technologists®

  9. Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes.

    PubMed

    Chen, Qinglin; Wang, Hui; Yang, Baoshan; He, Fei; Han, Xuemei; Song, Ziheng

    2015-02-01

    The impacts of carbon nanotubes (CNTs) including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) on soil microbial biomass and microbial community composition (especially on ammonium oxidizing microorganisms) have been evaluated. The first exposure of CNTs lowered the microbial biomass immediately, but the values recovered to the level of the control at the end of the experiment despite the repeated addition of CNTs. The abundance and diversity of ammonium-oxidizing archaea (AOA) were higher than that of ammonium-oxidizing bacteria (AOB) under the exposure of CNTs. The addition of CNTs decreased Shannon-Wiener diversity index of AOB and AOA. Two-way ANOVA analysis showed that CNTs had significant effects on the abundance and diversity of AOB and AOA. Dominant terminal restriction fragments (TRFs) of AOB exhibited a positive relationship with NH4(+), while AOA was on the contrary. It implied that AOB prefer for high-NH4(+) soils whereas AOA is favored in low NH4(+) soils in the CNT-contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  11. Assessment of bronchial wall thickness and lumen diameter in human adults using multi-detector computed tomography: comparison with theoretical models

    PubMed Central

    Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F

    2007-01-01

    A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291

  12. Management of nanomaterials safety in research environment.

    PubMed

    Groso, Amela; Petri-Fink, Alke; Magrez, Arnaud; Riediker, Michael; Meyer, Thierry

    2010-12-10

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3--highest hazard to Nano1--lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  13. Management of nanomaterials safety in research environment

    PubMed Central

    2010-01-01

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  14. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses

    PubMed Central

    2014-01-01

    Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels. PMID:24479647

  15. Measurement of the elastic modulus of a multi-wall boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Chopra, Nasreen G.; Zettl, A.

    1998-02-01

    We have experimentally determined the elastic properties of an individual multi-wall boron nitride (BN) nanotube. From the thermal vibration amplitude of a cantilevered BN nanotube observed in a transmission electron microscope, we find the axial Young's modulus to be 1.22 ± 0.24 TPa, a value consistent with theoretical estimates. The observed Young's modulus exceeds that of all other known insulating fibers. Our elasticity results confirm that BN nanotubes are highly crystalline with very few defects.

  16. Continuous approximation for interaction energy of adamantane encapsulated inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Baowan, Duangkamon; Hill, James M.; Bacsa, Wolfgang

    2018-02-01

    The interaction energy for two adjacent adamantane molecules and that of adamantane molecules encapsulated inside carbon nanotubes are investigated considering only dipole-dipole induced interaction. The Lennard-Jones potential and the continuous approximation are utilised to derive analytical expressions for these interaction energies. The equilibrium distance 3.281 Å between two adamantane molecules is determined. The smallest carbon nanotube radius b0 that can encapsulate the adamantane molecule and the radius of the tube bmax that gives the maximum suction energy, linearly depend on the adamantane radius, are calculated. For larger diameter tubes, the off axis position has been calculated, and equilibrium distance between molecule and tube wall is found to be close to the interlayer spacing in graphene.

  17. Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor

    DOE PAGES

    Yue, Yanfeng; Guo, Bingkun; Qiao, Zhenan; ...

    2014-07-24

    Nanocomposite of multi-walled carbon nanotube@zeolite imidazolate frameworks (MWNT@ZIF) was prepared through a nanotube-facilitated growth based on a nanosized ZnO precursor. The electrically conductive nanocomposite displays a capacity of 380 mAh/g at 0.1 °C in Li–sulfur battery, transforming electrically inactive ZIF into the active one for battery applications.

  18. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.).

    PubMed

    Joshi, Anjali; Kaur, Simranjeet; Dharamvir, Keya; Nayyar, Harsh; Verma, Gaurav

    2018-06-01

    Reports of multi-walled carbon nanotubes (MWCNTs) incorporated into plants have indicated better yield and productivity, yet the phenomena need in-depth understanding especially when agricultural crops are tested. We primed wheat seeds with MWCNTs to understand the effects on germination, growth, anatomy, physiology and yield. This study, carried out in field conditions, is a step forward over the previous reports. Early germination, excessive root hair, denser stomata and larger root length result in faster growth and higher yield of wheat plants. Denser root hair facilitated the uptake of both water and essential minerals such as phosphorus (P) and potassium (K), which boosted the crop yield by significantly improving grain yield per plant from 1.53 to 2.5 g, a 63% increase. Increase in cell elongation by 80% was recorded, while xylem and phloem sizes dilated to almost 83% and 85% of control, thus enhancing their capacity to conduct water and nutrients. Augmented growth of MWCNT-primed wheat, enhancement in grain number, biomass, stomatal density, xylem-phloem size, epidermal cells, and water uptake is observed while finding no DNA damage. This opens up an entirely new aspect to using cost-effective nanomaterials (the MWCNTs were produced in-house) for enhancing the performance of crop plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices

    NASA Astrophysics Data System (ADS)

    Moreira, João Vitor Silva; Corat, Evaldo José; May, Paul William; Cardoso, Lays Dias Ribeiro; Lelis, Pedro Almeida; Zanin, Hudson

    2016-11-01

    We report on the synthesis and electrochemical properties of multi-walled carbon nanotubes (MWCNTs) for supercapacitor devices. Freestanding vertically-aligned MWCNTs and MWCNT powder were grown concomitantly in a one-step chemical vapour deposition process. Samples were characterized by scanning and transmission electron microscopies and Fourier transform infrared and Raman spectroscopies. At similar film thicknesses and surface areas, the freestanding MWCNT electrodes showed higher electrochemical capacitance and gravimetric specific energy and power than the randomly-packed nanoparticle-based electrodes. This suggests that more ordered electrode film architectures facilitate faster electron and ion transport during the charge-discharge processes. Energy storage and supply or supercapacitor devices made from these materials could bridge the gap between rechargeable batteries and conventional high-power electrostatic capacitors.

  20. Thermal ablation therapeutics based on CNx multi-walled nanotubes

    PubMed Central

    Torti, Suzy V; Byrne, Fiona; Whelan, Orla; Levi, Nicole; Ucer, Burak; Schmid, Michael; Torti, Frank M; Akman, Steven; Liu, Jiwen; Ajayan, Pulickel M; Nalamasu, Omkaram; Carroll, David L

    2007-01-01

    We demonstrate that nitrogen doped, multi-walled carbon nanotubes (CNx-MWNT) result in photo-ablative destruction of kidney cancer cells when excited by near infrared (NIR) irradiation. Further, we show that effective heat transduction and cellular cytotoxicity depends on nanotube length: effective NIR coupling occurs at nanotube lengths that exceed half the wavelength of the stimulating radiation, as predicted in classical antenna theory. We also demonstrate that this radiation heats the nanotubes through induction processes, resulting in significant heat transfer to surrounding media and cell killing at extraordinarily small radiation doses. This cell death was attributed directly to photothermal effect generated within the culture, since neither the infrared irradiation itself nor the CNx-MWNT were toxic to the cells. PMID:18203437

  1. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    PubMed

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cellulose nanomaterials in water treatment technologies.

    PubMed

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  3. Toxicity evaluations of various carbon nanomaterials.

    PubMed

    Uo, Motohiro; Akasaka, Tsukasa; Watari, Fumio; Sato, Yoshinori; Tohji, Kazuyuki

    2011-01-01

    After the discovery of fullerene and carbon nanotubes, various carbon nanomaterials were discovered or synthesized. The carbon nanomaterials have remarkable properties, different from bulk materials with the same chemical composition, and are therefore useful for industrial applications. However, the toxicity of nanomaterials may also differ from that of the bulk materials; this difference poses a concern. The physical similarity of nanomaterials to asbestos has led to evaluations for toxicity by many researchers using various methods. In this review, we compile and compare the toxicity evaluations of each carbon nanomaterial.

  4. Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes.

    PubMed

    Labib, Sarah; Williams, Andrew; Yauk, Carole L; Nikota, Jake K; Wallin, Håkan; Vogel, Ulla; Halappanavar, Sabina

    2016-03-15

    A diverse class of engineered nanomaterials (ENMs) exhibiting a wide array of physical-chemical properties that are associated with toxicological effects in experimental animals is in commercial use. However, an integrated framework for human health risk assessment (HHRA) of ENMs has yet to be established. Rodent 2-year cancer bioassays, clinical chemistry, and histopathological endpoints are still considered the 'gold standard' for detecting substance-induced toxicity in animal models. However, the use of data derived from alternative toxicological tools, such as genome-wide expression profiling and in vitro high-throughput assays, are gaining acceptance by the regulatory community for hazard identification and for understanding the underlying mode-of-action. Here, we conducted a case study to evaluate the application of global gene expression data in deriving pathway-based points of departure (PODs) for multi-walled carbon nanotube (MWCNT)-induced lung fibrosis, a non-cancer endpoint of regulatory importance. Gene expression profiles from the lungs of mice exposed to three individual MWCNTs with different physical-chemical properties were used within the framework of an adverse outcome pathway (AOP) for lung fibrosis to identify key biological events linking MWCNT exposure to lung fibrosis. Significantly perturbed pathways were categorized along the key events described in the AOP. Benchmark doses (BMDs) were calculated for each perturbed pathway and were used to derive transcriptional BMDs for each MWCNT. Similar biological pathways were perturbed by the different MWCNT types across the doses and post-exposure time points studied. The pathway BMD values showed a time-dependent trend, with lower BMDs for pathways perturbed at the earlier post-exposure time points (24 h, 3d). The transcriptional BMDs were compared to the apical BMDs derived by the National Institute for Occupational Safety and Health (NIOSH) using alveolar septal thickness and fibrotic lesions

  5. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

    NASA Astrophysics Data System (ADS)

    Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S.

    2013-04-01

    The incorporation of small amounts of nanoadditives in polymeric compounds can introduce new mechanical, physical, electrical, magnetic, thermal and/or optical properties. The properties of these advanced materials have enabled new applications in several industrial sectors (electronics, automotive, textile...). In particular, for the nanomaterials (NM) described in this work, multi-walled carbon nanotubes (MWCNT) and silicon dioxide nanoparticles (SiO2 NP), the following properties have been described: MWCNT act as nucleating agents in thermoplastics, and change viscosity, affecting dispersion, orientation, and therefore mechanical, thermal, and electrical properties; and SiO2 NP act as flame retardant and display improved electrical and mechanical properties. The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, we generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The generated NC were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) with Energy-dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and differential scanning calorimetry (DSC) before and after the aging process, to monitor the compatibility of the NM with the matrix: dispersion within the matrix, migration during aging, and modification of the polymer properties. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, independently of their compatibility with the matrix, SiO2 NP were aggregated at the end of the accelerated aging process. In addition

  6. Terahertz science and technology of carbon nanomaterials.

    PubMed

    Hartmann, R R; Kono, J; Portnoi, M E

    2014-08-15

    The diverse applications of terahertz (THz) radiation and its importance to fundamental science makes finding ways to generate, manipulate and detect THz radiation one of the key areas of modern applied physics. One approach is to utilize carbon nanomaterials, in particular, single-wall carbon nanotubes and graphene. Their novel optical and electronic properties offer much promise to the field of THz science and technology. This article describes the past, current, and future of THz science and technology of carbon nanotubes and graphene. We will review fundamental studies such as THz dynamic conductivity, THz nonlinearities and ultrafast carrier dynamics as well as THz applications such as THz sources, detectors, modulators, antennas and polarizers.

  7. Organic-inorganic interface-induced multi-fluorescence of MgO nanocrystal clusters and their applications in cellular imaging.

    PubMed

    Xie, Shuifen; Bao, Shixiong; Ouyang, Junjie; Zhou, Xi; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2014-04-25

    Surface functionalization of inorganic nanomaterials through chemical binding of organic ligands on the surface unsaturated atoms, forming unique organic-inorganic interfaces, is a powerful approach for creating special functions for inorganic nanomaterials. Herein, we report the synthesis of hierarchical MgO nanocrystal clusters (NCs) with an organic-inorganic interface induced multi-fluorescence and their application as new alternative labels for cellular imaging. The synthetic method was established by a dissolution and regrowth process with the assistance of carboxylic acid, in which the as-prepared MgO NCs were modified with carboxylic groups at the coordinatively unsaturated atoms of the surface. By introducing acetic acid to partially replace oleic acid in the reaction, the optical absorption of the produced MgO NCs was progressively engineered from the UV to the visible region. Importantly, with wider and continuous absorption profile, those MgO NCs presented bright and tunable multicolor emissions from blue-violet to green and yellow, with the highest absolute quantum yield up to (33±1) %. The overlap for the energy levels of the inorganic-organic interface and low-coordinated states stimulated a unique fluorescence resonance energy transfer phenomenon. Considering the potential application in cellular imaging, such multi-fluorescent MgO NCs were further encapsulated with a silica shell to improve the water solubility and stability. As expected, the as-formed MgO@SiO2 NCs possessed great biocompatibility and high performance in cellular imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The effect of ultrasonic processing of multi-wall carbon nanotubes on properties of elastomeric compositions on the basis of synthetic isoprene rubber

    NASA Astrophysics Data System (ADS)

    Mitryaeva, N. S.; Myshlyavtsev, A. V.; Akimenko, S. S.

    2017-08-01

    The paper studies the effect of ultrasonic processing on the vulcanizing, physical, mechanical and electrophysical properties of elastomeric compositions based on synthetic isoprene rubber. Microscopic studies of multi-wall carbon nanotubes samples before and after ultrasonic processing are carried out. Due to the research, the applied ultrasonic processing method provides splitting of bundles formed from multi-wall carbon nanotubes. This results in elastomeric material with increased strength and high electrical conductivity with a low concentration of nanofiller.

  9. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  10. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules.

    PubMed

    Chen, Ran; Riviere, Jim E

    2017-01-01

    Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  11. Application of Polypyrrole Multi-Walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique

    PubMed Central

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  12. Stabilization of fullerene-like boron cages by transition metal encapsulation.

    PubMed

    Lv, Jian; Wang, Yanchao; Zhang, Lijun; Lin, Haiqing; Zhao, Jijun; Ma, Yanming

    2015-06-21

    The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters. Recently, the breakthroughs represented by Nat. Chem., 2014, 6, 727 established that the transition from planar/quasi-planar to cage-like Bn clusters occurs around n = ∼38-40, paving the way for understanding the intriguing chemistry of B-fullerene. We herein demonstrate that the transition demarcation, n, can be significantly reduced with the help of transition metal encapsulation. We explore via extensive first-principles swarm-intelligence based structure searches the free energy landscapes of B24 clusters doped by a series of transition metals and find that the low-lying energy regime is generally dominated by cage-like isomers. This is in sharp contrast to that of bare B24 clusters, where the quasi-planar and rather irregular polyhedrons are prevalent. Most strikingly, a highly symmetric B cage with D3h symmetry is discovered in the case of Mo or W encapsulation. The endohedral D3h cages exhibit robust thermodynamic, dynamic and chemical stabilities, which can be rationalized in terms of their unique electronic structure of an 18-electron closed-shell configuration. Our results indicate that transition metal encapsulation is a feasible route for stabilizing medium-sized B cages, offering a useful roadmap for the discovery of more B fullerene analogues as building blocks of nanomaterials.

  13. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with

  14. 75 FR 56880 - Multi-Walled Carbon Nanotubes and Single-Walled Carbon Nanotubes; Significant New Use Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... with this standard by using a well-designed filtration system. Manufacturers and engineers cannot...) Embryos. Environmental Toxicology and Chemistry. 26:708-716. 5. EPA. (2010) Material Characterization of...) Ecotoxicity and Analysis of Nanomaterials in the Aquatic Environment. Analytical and Bioanalytical Chemistry...

  15. Electronic excitation induced modifications in elongated iron nanoparticle encapsulated multiwalled carbon nanotubes under ion irradiation

    NASA Astrophysics Data System (ADS)

    Saikiran, V.; Bazylewski, P.; Sameera, I.; Bhatia, Ravi; Pathak, A. P.; Prasad, V.; Chang, G. S.

    2018-05-01

    Multi-wall carbon nanotubes (MWCNT) filled with Fe nanorods were shown to have contracted and deformed under heavy ion irradiation. In this study, 120 MeV Ag and 80 MeV Ni ion irradiation was performed to study the deformation and defects induced in iron filled MWCNT under heavy ion irradiation. The structural modifications induced due to electronic excitation by ion irradiation were investigated employing high-resolution transmission electron microscopy, micro-Raman scattering experiments, and synchrotron-based X-ray absorption and emission spectroscopy. We understand that the ion irradiation causes modifications in the Fe nanorods which result in compressions and expansions of the nanotubes, and in turn leads to the buckling of MWCNT. The G band of the Raman spectra shifts slightly towards higher wavenumber and the shoulder G‧ band enhances with the increase of ion irradiation fluence, where the buckling wavelength depends on the radius 'r' of the nanotubes as exp[(r)0.5]. The intensity ratio of the D to G Raman modes initially decreases at the lowest fluence, and then it increases with the increase in ion fluence. The electron diffraction pattern and the high resolution images clearly show the presence of ion induced defects on the walls of the tube and encapsulated iron nanorods.

  16. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  17. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Peyvandi, Amirpasha

    Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods

  18. Nanomaterials and Global Sustainability.

    PubMed

    Hamers, Robert J

    2017-03-21

    Nanomaterials provide tremendous opportunities to advance human welfare in many areas including energy storage, catalysis, photovoltaic energy conversion, environmental remediation, and agriculture. As nanomaterials become incorporated into commercial processes and consumer products in increasing amounts, it will be essential to develop an understanding of how these materials interact with the environment. The broad spectrum and complexity of nanomaterials drive a need for molecular-level design rules. Ultimately a grand challenge is to use the power of chemistry to ensure that nanoenabled technologies can come to fruition in an environmentally benign manner.

  19. Nanomaterials and Retinal Toxicity

    EPA Science Inventory

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  20. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution

    NASA Astrophysics Data System (ADS)

    Ruan, Zhongyuan; Tian, Yaxi; Ruan, Jifu; Cui, Guijia; Iqbal, Kanwal; Iqbal, Anam; Ye, Herui; Yang, Zhangzhong; Yan, Shiqiang

    2017-08-01

    A novel composite material, hydroxyapatite (HA)-multi-walled carbon nanotubes (MWCNTs), was prepared using a simple in-situ sol-gel method, and was used for the first time to remove fluoride from water. The novel HA-MWCNTs were characterized using TEM, FT-IR, BET and XRD analysis. The TEM and SAED results revealed that the MWCNTs were uniformly encapsulated by hydroxyapatite nanoparticles. The synthesized HA-MWCNTs had a high specific surface area (180.504 m2 g-1), with an average pore width (14.607 nm) and pore volume (0.774 cm3 g-1), which produced a defluoridation capacity (DC) of 30.22 mgF- g-1. This value was greater than unmodified hydroxyapatite (HA), which exhibited a larger specific surface area (172.233 m2 g-1) and an excellent DC of 17.80 mgF- g-1. A number of pertinent parameters that could affect the defluoridation performance of the HA/MWCNTs including weight ratios of the two key materials, solution pH and competing anions were carefully and comprehensively examined. It was found that the adsorption results followed the Langmuir and Freundlich isotherm model, and the sorption kinetics of the F- appeared to exhibit a pseudo second order. Moreover, the adsorption reaction was spontaneous and endothermic and appeared to exhibit a higher initial adsorption rate. This reaction appeared to occur result from both anion exchange and electrostatic interactions. When the HA-MWCNTs (MH6) were at an adsorbent dose of 2.0 g L-1, they were able to decrease the fluoride concentration of actual nuclear industry wastewater from 8.79 mg L-1 to about 0.25 mg L-1 (97.15% removal efficiency). The experimental results of this study showed that the HA-MWCNTs composites have application potential for the removal of fluoride ions from wastewater.

  1. Pathophysiologic mechanisms of biomedical nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future.more » We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.« less

  2. 40 CFR 721.10266 - Multi-walled carbon nanotubes (generic) (P-08-733 and P-08-734).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10266 Multi-walled carbon nanotubes (generic) (P-08-733 and P-08-734). (a) Chemical substances and significant new uses subject to reporting. (1) The...

  3. 40 CFR 721.10266 - Multi-walled carbon nanotubes (generic) (P-08-733 and P-08-734).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10266 Multi-walled carbon nanotubes (generic) (P-08-733 and P-08-734). (a) Chemical substances and significant new uses subject to reporting. (1) The...

  4. Nanomaterials in Biomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Wahhab, Mosaad A.; Márquez, Francisco

    Nowadays, nanomaterials have become an emerging field that has shown great promise in the development of novel diagnostic, imaging and therapeutic agents for a variety of diseases, including cancer, due to their nanoscale size effects and increased surface area. In comparison to their larger counterparts, nanomaterials have unique physicochemical and biological properties including size, shape, chemical composition, surface structure and charge, aggregation and agglomeration, and solubility which can affect their interactions with biomolecules and cells. In addition, nanoparticles (NPs) with size-tunable light emission have demonstrated an impressive potential as high-efficiency delivery transporters for biomolecules into cells, being used to producemore » exceptional images of tumor sites. Moreover, NPs delivery system has been widely applied in pharmaceutical field to enhance absorption of bioactive compounds since they can interact with several phytochemicals by hydrogen bonds and hydrophobic interactions to encapsulate these phytochemicals in NPs and thus enhance aqueous solubility of the chemicals. Moreover, NPs also can prevent against oxidation/degradation of the phytochemicals encapsulated in the gastrointestinal tract and can be taken directly up by epithelial cells in the small intestine resulting in the increase of absorption and bioavailability of phytochemicals. In general, there are two specific fields of utilization of intrinsically active NPs as pharmacologic agents including oxidative-related pathologies and cancer. On the other hand, Redox active NPs have been shown to ameliorate many clinically relevant pathological disorders that implicate oxidative stress, reducing the oxidative burden and alleviating many important symptoms. In additionuch NPs act either in a catalytic way resembling the action of antioxidant enzymes such as catalase and superoxide dismutase, or as activating surfaces to facilitate reactions between the aqueous environment

  5. Nanomaterials in Biomedicine

    DOE PAGES

    Abdel-Wahhab, Mosaad A.; Márquez, Francisco

    2015-06-11

    Nowadays, nanomaterials have become an emerging field that has shown great promise in the development of novel diagnostic, imaging and therapeutic agents for a variety of diseases, including cancer, due to their nanoscale size effects and increased surface area. In comparison to their larger counterparts, nanomaterials have unique physicochemical and biological properties including size, shape, chemical composition, surface structure and charge, aggregation and agglomeration, and solubility which can affect their interactions with biomolecules and cells. In addition, nanoparticles (NPs) with size-tunable light emission have demonstrated an impressive potential as high-efficiency delivery transporters for biomolecules into cells, being used to producemore » exceptional images of tumor sites. Moreover, NPs delivery system has been widely applied in pharmaceutical field to enhance absorption of bioactive compounds since they can interact with several phytochemicals by hydrogen bonds and hydrophobic interactions to encapsulate these phytochemicals in NPs and thus enhance aqueous solubility of the chemicals. Moreover, NPs also can prevent against oxidation/degradation of the phytochemicals encapsulated in the gastrointestinal tract and can be taken directly up by epithelial cells in the small intestine resulting in the increase of absorption and bioavailability of phytochemicals. In general, there are two specific fields of utilization of intrinsically active NPs as pharmacologic agents including oxidative-related pathologies and cancer. On the other hand, Redox active NPs have been shown to ameliorate many clinically relevant pathological disorders that implicate oxidative stress, reducing the oxidative burden and alleviating many important symptoms. In additionuch NPs act either in a catalytic way resembling the action of antioxidant enzymes such as catalase and superoxide dismutase, or as activating surfaces to facilitate reactions between the aqueous environment

  6. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure ofmore » oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.« less

  7. ISA-TAB-Nano: a specification for sharing nanomaterial research data in spreadsheet-based format.

    PubMed

    Thomas, Dennis G; Gaheen, Sharon; Harper, Stacey L; Fritts, Martin; Klaessig, Fred; Hahn-Dantona, Elizabeth; Paik, David; Pan, Sue; Stafford, Grace A; Freund, Elaine T; Klemm, Juli D; Baker, Nathan A

    2013-01-14

    The high-throughput genomics communities have been successfully using standardized spreadsheet-based formats to capture and share data within labs and among public repositories. The nanomedicine community has yet to adopt similar standards to share the diverse and multi-dimensional types of data (including metadata) pertaining to the description and characterization of nanomaterials. Owing to the lack of standardization in representing and sharing nanomaterial data, most of the data currently shared via publications and data resources are incomplete, poorly-integrated, and not suitable for meaningful interpretation and re-use of the data. Specifically, in its current state, data cannot be effectively utilized for the development of predictive models that will inform the rational design of nanomaterials. We have developed a specification called ISA-TAB-Nano, which comprises four spreadsheet-based file formats for representing and integrating various types of nanomaterial data. Three file formats (Investigation, Study, and Assay files) have been adapted from the established ISA-TAB specification; while the Material file format was developed de novo to more readily describe the complexity of nanomaterials and associated small molecules. In this paper, we have discussed the main features of each file format and how to use them for sharing nanomaterial descriptions and assay metadata. The ISA-TAB-Nano file formats provide a general and flexible framework to record and integrate nanomaterial descriptions, assay data (metadata and endpoint measurements) and protocol information. Like ISA-TAB, ISA-TAB-Nano supports the use of ontology terms to promote standardized descriptions and to facilitate search and integration of the data. The ISA-TAB-Nano specification has been submitted as an ASTM work item to obtain community feedback and to provide a nanotechnology data-sharing standard for public development and adoption.

  8. ISA-TAB-Nano: A Specification for Sharing Nanomaterial Research Data in Spreadsheet-based Format

    PubMed Central

    2013-01-01

    Background and motivation The high-throughput genomics communities have been successfully using standardized spreadsheet-based formats to capture and share data within labs and among public repositories. The nanomedicine community has yet to adopt similar standards to share the diverse and multi-dimensional types of data (including metadata) pertaining to the description and characterization of nanomaterials. Owing to the lack of standardization in representing and sharing nanomaterial data, most of the data currently shared via publications and data resources are incomplete, poorly-integrated, and not suitable for meaningful interpretation and re-use of the data. Specifically, in its current state, data cannot be effectively utilized for the development of predictive models that will inform the rational design of nanomaterials. Results We have developed a specification called ISA-TAB-Nano, which comprises four spreadsheet-based file formats for representing and integrating various types of nanomaterial data. Three file formats (Investigation, Study, and Assay files) have been adapted from the established ISA-TAB specification; while the Material file format was developed de novo to more readily describe the complexity of nanomaterials and associated small molecules. In this paper, we have discussed the main features of each file format and how to use them for sharing nanomaterial descriptions and assay metadata. Conclusion The ISA-TAB-Nano file formats provide a general and flexible framework to record and integrate nanomaterial descriptions, assay data (metadata and endpoint measurements) and protocol information. Like ISA-TAB, ISA-TAB-Nano supports the use of ontology terms to promote standardized descriptions and to facilitate search and integration of the data. The ISA-TAB-Nano specification has been submitted as an ASTM work item to obtain community feedback and to provide a nanotechnology data-sharing standard for public development and adoption. PMID

  9. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.

    PubMed

    Krishna, Katla Sai; Li, Yuehao; Li, Shuning; Kumar, Challa S S R

    2013-11-01

    The past two decades have seen a dramatic raise in the number of investigations leading to the development of Lab-on-a-Chip (LOC) devices for synthesis of nanomaterials. A majority of these investigations were focused on inorganic nanomaterials comprising of metals, metal oxides, nanocomposites and quantum dots. Herein, we provide an analysis of these findings, especially, considering the more recent developments in this new decade. We made an attempt to bring out the differences between chip-based as well as tubular continuous flow systems. We also cover, for the first time, various opportunities the tools from the field of computational fluid dynamics provide in designing LOC systems for synthesis inorganic nanomaterials. Particularly, we provide unique examples to demonstrate that there is a need for concerted effort to utilize LOC devices not only for synthesis of inorganic nanomaterials but also for carrying out superior in vitro studies thereby, paving the way for faster clinical translation. Even though LOC devices with the possibility to carry out multi-step syntheses have been designed, surprisingly, such systems have not been utilized for carrying out simultaneous synthesis and bio-functionalization of nanomaterials. While traditionally, LOC devices are primarily based on microfluidic systems, in this review article, we make a case for utilizing millifluidic systems for more efficient synthesis, bio-functionalization and in vitro studies of inorganic nanomaterials tailor-made for biomedical applications. Finally, recent advances in the field clearly point out the possibility for pushing the boundaries of current medical practices towards personalized health care with a vision to develop automated LOC-based instrumentation for carrying out simultaneous synthesis, bio-functionalization and in vitro evaluation of inorganic nanomaterials for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  11. Antimicrobial and biocompatible properties of nanomaterials.

    PubMed

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  12. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  13. Phototoxicity of Selected Nanomaterials

    EPA Science Inventory

    Quantification of exposure to nanomaterials is critical for assessing their environmental hazard and risk. This is an immediate issue for nano-TiO2 because it is one of more common nanomaterials now in commerce, and is difficult to analyze using common acid-digestion techniques. ...

  14. V2O5 encapsulated MWCNTs in 2D surface architecture: Complete solid-state bendable highly stabilized energy efficient supercapacitor device

    NASA Astrophysics Data System (ADS)

    Pandit, Bidhan; Dubal, Deepak P.; Gómez-Romero, Pedro; Kale, Bharat B.; Sankapal, Babasaheb R.

    2017-03-01

    A simple and scalable approach has been reported for V2O5 encapsulation over interconnected multi-walled carbon nanotubes (MWCNTs) network using chemical bath deposition method. Chemically synthesized V2O5/MWCNTs electrode exhibited excellent charge-discharge capability with extraordinary cycling retention of 93% over 4000 cycles in liquid-electrolyte. Electrochemical investigations have been performed to evaluate the origin of capacitive behavior from dual contribution of surface-controlled and diffusion-controlled charge components. Furthermore, a complete flexible solid-state, flexible symmetric supercapacitor (FSS-SSC) device was assembled with V2O5/MWCNTs electrodes which yield remarkable values of specific power and energy densities along with enhanced cyclic stability over liquid configuration. As a practical demonstration, the constructed device was used to lit the ‘VNIT’ acronym assembled using 21 LED’s.

  15. Virtual substrate method for nanomaterials characterization

    PubMed Central

    Da, Bo; Liu, Jiangwei; Yamamoto, Mahito; Ueda, Yoshihiro; Watanabe, Kazuyuki; Cuong, Nguyen Thanh; Li, Songlin; Tsukagoshi, Kazuhito; Yoshikawa, Hideki; Iwai, Hideo; Tanuma, Shigeo; Guo, Hongxuan; Gao, Zhaoshun; Sun, Xia; Ding, Zejun

    2017-01-01

    Characterization techniques available for bulk or thin-film solid-state materials have been extended to substrate-supported nanomaterials, but generally non-quantitatively. This is because the nanomaterial signals are inevitably buried in the signals from the underlying substrate in common reflection-configuration techniques. Here, we propose a virtual substrate method, inspired by the four-point probe technique for resistance measurement as well as the chop-nod method in infrared astronomy, to characterize nanomaterials without the influence of underlying substrate signals from four interrelated measurements. By implementing this method in secondary electron (SE) microscopy, a SE spectrum (white electrons) associated with the reflectivity difference between two different substrates can be tracked and controlled. The SE spectrum is used to quantitatively investigate the covering nanomaterial based on subtle changes in the transmission of the nanomaterial with high efficiency rivalling that of conventional core-level electrons. The virtual substrate method represents a benchmark for surface analysis to provide ‘free-standing' information about supported nanomaterials. PMID:28548114

  16. Single-stage multi-level construct design incorporating ribs and chest wall reconstruction after en bloc resection of spinal tumour.

    PubMed

    Xiao, Jianru; He, Shaohui; Jiao, Jian; Wan, Wei; Xu, Wei; Zhang, Dan; Liu, Weibo; Zhong, Nanzhe; Liu, Tielong; Wei, Haifeng; Yang, Xinghai

    2018-03-01

    Multi-level reconstruction incorporating the chest wall and ribs is technically demanding after multi-segmental total en bloc spondylectomy (TES) of thoracic spinal tumours. Few surgical techniques are reported for effective reconstruction. A novel and straightforward technical reconstruction through posterior-lateral approach was presented to solve the extensive chest wall defect and prevent occurrences of severe respiratory dysfunctions after performing TES. The preliminary outcomes of surgery were reviewed. Multi-level TES was performed for five patients with primary or recurrent thoracic spinal malignancies through posterior-lateral approach. The involved ribs and chest wall were removed to achieve tumour-free margin. Then titanium mesh with allograft bone and pedicle screw-rod system were adopted for the circumferential spinal reconstruction routinely. Titanium rods were modified accordingly to attach to the screw-rod system proximally, and the distal end of rods was dynamically inserted into the ribs. The mean surgery time was 6.7 hours (range 5-8), with the average blood loss of 3260 ml (range 2300-4500). No severe neurological complications were reported while three patients had complaints of slight numbness of chest skin (no. 1, 3, and 5). No severe respiratory complications occurred during peri-operative period. No implant failure and no local recurrence or distant metastases were observed with an average follow-up of 12.5 months. The single-stage reconstructions incorporating spine and chest wall are straightforward and easy to perform. The preliminary outcomes of co-reconstructions are promising and favourable. More studies and longer follow-up are required to validate this technique.

  17. Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin

    2018-07-01

    This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.

  18. Nanomaterials for In Vivo Imaging.

    PubMed

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.

  19. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils

    USDA-ARS?s Scientific Manuscript database

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...

  20. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution.

    PubMed

    He, Lin; Liu, Fei-Fei; Zhao, Mengyao; Qi, Zhen; Sun, Xuefei; Afzal, Muhammad Zaheer; Sun, Xiaomin; Li, Yanhui; Hao, Jingcheng; Wang, Shuguang

    2018-04-01

    Understanding the interactions between graphene nanomaterials (GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide (GO) and reduced graphene oxide (RGO) was examined with multi-walled carbon nanotubes (MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO>RGO>MWCNTs>graphite. Upon normalization by surface area, graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory (DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different pH indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface. Copyright © 2017. Published by Elsevier B.V.

  1. Comparative study of plant responses to carbon-based nanomaterials with different morphologies

    NASA Astrophysics Data System (ADS)

    Lahiani, Mohamed H.; Dervishi, Enkeleda; Ivanov, Ilia; Chen, Jihua; Khodakovskaya, Mariya

    2016-07-01

    The relationship between the morphology of carbon-based nanomaterials (CBNs) and the specific response of plants exposed to CBNs has not been studied systematically. Here, we prove that CBNs with different morphologies can activate cell growth, germination, and plant growth. A tobacco cell culture growth was found to increase by 22%-46% when CBNs such as helical multi-wall carbon nanotubes (MWCNTs), few-layered graphene, long MWCNTs, and short MWCNTs were added to the growth medium at a concentration of 50 μg ml-1. The germination of exposed tomato seeds, as well as the growth of exposed tomato seedlings, were significantly enhanced by the addition of all tested CBNs. The presence of CBNs inside exposed seeds was confirmed by transmission electron microscopy and Raman spectroscopy. The effects of helical MWCNTs on gene expression in tomato seeds and seedlings were investigated by microarray technology and real time-PCR. Helical MWCNTs affected a number of genes involved in cellular and metabolic processes and response to stress factors. It was shown that the expression of the tomato water channel gene in tomato seeds exposed to helical MWCNTs was upregulated. These established findings demonstrate that CBNs with different morphologies can cause the same biological effects and share similar mechanisms in planta.

  2. Re-design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels

    NASA Technical Reports Server (NTRS)

    Blair, W.; Meaney, J. E., Jr.; Rosenthal, H. A.

    1984-01-01

    The Titanium Multi-wall Thermal Protection System (TIPS) panel was re-designed to incorporate Ti-6-2-4-2 outer sheets for the hot surface, ninety degree side closures for ease of construction and through panel fastness for ease of panel removal. Thermal and structural tests were performed to verify the design. Twenty-five panels were fabricated and delivered to NASA for evaluation at Langley Research Center and Johnson Space Center.

  3. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Yuechao; Yang Dong; Qin Feng

    The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). Due to the strong interaction between Ni{sup 2+} and -COOH, PAA-g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated withmore » Ni nanoparticles (Ni-MWNTs) for alpha, beta-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC). - Abstract: Nickel nanoparticles decorated multi-walled carbon nanotubes (Ni-MWNTs) nanocomposites were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). These nanocomposites possessed excellent catalytic activity and selectivity for hydrogenation of citral.« less

  4. Controllable synthesis of single-walled carbon nanotube framework membranes and capsules.

    PubMed

    Song, Changsik; Kwon, Taeyun; Han, Jae-Hee; Shandell, Mia; Strano, Michael S

    2009-12-01

    Controlling the morphology of membrane components at the nanometer scale is central to many next-generation technologies in water purification, gas separation, fuel cell, and nanofiltration applications. Toward this end, we report the covalent assembly of single-walled carbon nanotubes (SWNTs) into three-dimensional framework materials with intertube pores controllable by adjusting the size of organic linker molecules. The frameworks are fashioned into multilayer membranes possessing linker spacings from 1.7 to 3.0 nm, and the resulting framework films were characterized, including transport properties. Nanoindentation measurements by atomic force microscopy show that the spring constant of the SWNT framework film (22.6 +/- 1.2 N/m) increased by a factor of 2 from the control value (10.4 +/- 0.1 N/m). The flux ratio comparison in a membrane-permeation experiment showed that larger spacer sizes resulted in larger pore structures. This synthetic method was equally efficient on silica microspheres, which could then be etched to create all-SWNT framework, hollow capsules approximately 5 mum in diameter. These hollow capsules are permeable to organic and inorganic reagents, allowing one to form inorganic nanoparticles, for example, that become entrapped within the capsule. The ability to encapsulate functional nanomaterials inside perm-selective SWNT cages and membranes may find applications in new adsorbents, novel catalysts, and drug delivery vehicles.

  5. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Pedro M.; Fadeel, Bengt, E-mail: Bengt.Fade

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems shouldmore » be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.« less

  6. Nano-material and method of fabrication

    DOEpatents

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  7. Nanomaterials for Engineering Stem Cell Responses.

    PubMed

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

    PubMed Central

    Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong

    2014-01-01

    Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction. PMID:24429673

  9. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    PubMed Central

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics. PMID:26404304

  10. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    PubMed

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nanomaterial-based x-ray sources

    NASA Astrophysics Data System (ADS)

    Cole, Matthew T.; Parmee, R. J.; Milne, William I.

    2016-02-01

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  12. Photoinduced toxicity of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Jones, Philip Scott

    Engineered nanomaterials including metal, metal oxide and carbon based nanomaterials are extensively used in a wide variety of applications to the extent that their presence in the environment is expected to increase dramatically over the next century. These nanomaterials may be photodegraded by solar radiation and thereby release metal ions into the environment that can produce cytotoxic and genotoxic effects. Photoinduced toxicity experiments are performed exposing human lung epithelial carcinoma cells [H1650] to engineered semiconductor nanoparticles such as CdSe quantum dots and ZnO nanoparticles after exposure to 3, 6, and 9 hours of solar simulated radiation. Cytotoxicity and genotoxicity of the metal ions are evaluated using ZnSO4 and CdCl2 solutions for the MTT assay and Comet assay respectively. The objective of the dissertation is to obtain quantitative information about the environmental transformation of engineered nanomaterials and their mechanism of toxicity. This information is critical for addressing the environmental health and safety risks of engineered nanomaterials to workers, consumers and the environment.

  13. One-dimensional nanomaterials for energy storage

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  14. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level

    NASA Astrophysics Data System (ADS)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki

    2017-10-01

    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  15. Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials.

    PubMed

    Chen, Daqin; Wang, Yuansheng

    2013-06-07

    Many technological nanomaterials are intentionally 'doped' by introducing appropriate amounts of foreign elements into hosts to impart electronic, magnetic and optical properties. In fact, impurity doping was recently found to have significant influence on nucleation and growth of many functional nanocrystals (NCs), and provide a fundamental approach to modify the crystallographic phase, size, morphology, and electronic configuration of nanomaterials. In this feature article, we provide an overview of the most recent progresses in doping-induced control of phase structures, sizes, shapes, as well as performances of functional nanomaterials for the first time. Two kinds of impurity doping strategies, including the homo-valence ion doping and hetero-valence ion doping, are discussed in detail. We lay emphases on impurity doping induced modifications of microstructures and optical properties of upconversion (UC) lanthanide (Ln(3+)) NCs, but do not limit to them. In addition, we also illustrate the control of Ln(3+) activator distribution in the core@shell architecture, which has recently provided scientists with new opportunities for designing and tuning the multi-color emissions of Ln(3+)-doped UC NCs. Finally, the challenges and future perspectives of this novel impurity doping strategy are pointed out.

  16. Vanishing Thermal Conductance of Carbon Nanotube upon Encapsulation by Zigzag Sulfur Chain.

    PubMed

    Koley, Sayantanu; Sen, Sabyasachi; Chakrabarti, Swapan

    2018-06-07

    We report an unprecedented enhancement of thermoelectric properties of a single-walled carbon nanotube upon encapsulation of a zigzag sulfur chain inside the nanocore. Our calculations on a 70 Å long [5, 5] carbon nanotube reveal that the encapsulation of zigzag sulfur chain will lead to a 10 7 % increase in the thermoelectric figure of merit and concomitant quenching of thermal conductance by 90%. We have noticed that finite transmission gradient at the Fermi level combined with destructive quantum interference at the sulfur sites and structural conformation-dependent scattering-induced damping of phonon transmission are attributed to the dramatic improvement of thermoelectric behavior of this material. This finding indeed will help circumvent the long-standing problem in the fabrication of carbon-nanotube-based ultrafast device.

  17. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  18. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies.

    PubMed

    Alves, Cátia G; Lima-Sousa, Rita; de Melo-Diogo, Duarte; Louro, Ricardo O; Correia, Ilídio J

    2018-05-05

    IR780, a molecule with a strong optical absorption and emission in the near infrared (NIR) region, is receiving an increasing attention from researchers working in the area of cancer treatment and imaging. Upon irradiation with NIR light, IR780 can produce reactive oxygen species as well as increase the body temperature, thus being a promising agent for application in cancer photodynamic and photothermal therapy. However, IR780's poor water solubility, fast clearance, acute toxicity and low tumor uptake may limit its use. To overcome such issues, several types of nanomaterials have been used to encapsulate and deliver IR780 to tumor cells. This mini-review is focused on the application of IR780 based nanostructures for cancer imaging, and photothermal, photodynamic and combinatorial therapies. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Ultrasound-aided formation of gold nanoparticles on multi-walled carbon nanotubes functionalized with mercaptobenzene moieties.

    PubMed

    Park, Gle; Lee, Kyung G; Lee, Seok Jae; Park, Tae Jung; Wi, Ringbok; Wang, Kye Won; Kim, Do Hyun

    2011-07-01

    A hybrid of multi-walled carbon nanotube (MWCNT) and gold nanoparticle (Au NP) was prepared under ultrasound irradiation. The approach starts with the functionalization of the walls of MWCNTs with mercaptobenzene moieties for the subsequent immobilization of Au NPs. From the Raman spectra, mercaptobenzene was proven to exist on the MWCNTs. Gold ions were added to the aqueous dispersion of functionalized MWCNTs (f-MWCNTs), and were reduced with the aid of ultrasound and ammonium hydroxide. The reduced gold nanoparticles were examined from the TEM images. Au NPs adhered specifically on the thiol groups of mercaptobenzene to be deposited uniformly on the outer walls of the f-MWCNTs. The application of ultrasound led to a high yield of MWCNT-Au nanocomposites and to the dense distribution of the Au NPs. Moreover, the synthesis reaction rate of the hybrid was considerably enhanced relative to synthesis with mechanical agitation. Through an adsorption test using gold-binding-peptide-(GBP)-modified biomolecules, the hybrid's potential for biological diagnosis was verified.

  20. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Kikuchi, Keiko; Kawasaki, Akira; Kwon, Hansang; Kim, Yangdo

    2012-08-01

    Multi-walled carbon nanotube (MWCNT) reinforced copper (Cu) matrix composites, which exhibit chromium (Cr) carbide nanostructures at the MWCNT/Cu interface, were prepared through a carbide formation using CuCr alloy powder. The fully densified and oriented MWCNTs dispersed throughout the composites were prepared using spark plasma sintering (SPS) followed by hot extrusion. The tensile strengths of the MWCNT/CuCr composites increased with increasing MWCNTs content, while the tensile strength of MWCNT/Cu composite decreased from that of monolithic Cu. The enhanced tensile strength of the MWCNT/CuCr composites is a result of possible load-transfer mechanisms of the interfacial Cr carbide nanostructures. The multi-wall failure of MWCNTs observed in the fracture surface of the MWCNT/CuCr composites indicates an improvement in the load-bearing capacity of the MWCNTs. This result shows that the Cr carbide nanostructures effectively transferred the tensile load to the MWCNTs during fracture through carbide nanostructure formation in the MWCNT/Cu composite.

  1. Direct measurement of chiral structure and transport in single- and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Taoran; Lin, Letian; Qin, Lu-Chang; Washburn, Sean

    2016-11-01

    Electrical devices based on suspended multi-wall carbon nanotubes were constructed and studied. The chiral structure of each shell in a particular nanotube was determined using nanobeam electron diffraction in a transmission electron microscope. The transport properties of the carbon nanotube were also measured. The nanotube device length was short enough that the transport was nearly ballistic, and multiple subbands contributed to the conductance. Thermal excitation of carriers significantly affected nanotube resistance at room temperature.

  2. Nanomaterial Based Sensors for NASA Missions

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    Nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and metal nanowires have shown interesting electronic properties and therefore have been pursued for a variety of space applications requiring ultrasensitive and light-weight sensor and electronic devices. We have been pursuing development of chemical and biosensors using carbon nanotubes and carbon nanofibers for the last several years and this talk will present the benefits of nanomaterials these applications. More recently, printing approaches to manufacturing these devices have been explored as a strategy that is compatible to a microgravity environment. Nanomaterials are either grown in house or purchased and processed as electrical inks. Chemical modification or coatings are added to the nanomaterials to tailor the nanomaterial to the exact application. The development of printed chemical sensors and biosensors will be discussed for applications ranging from crew life support to exploration missions.

  3. ZnO Functionalization of Multi-walled Carbon Nanotubes for Methane Sensing at Single Parts Per Million Concentration Levels

    EPA Science Inventory

    This paper presents a novel atomic layer deposition (ALD) based ZnO functionalization of surface pre-treated multi-walled carbon nanotubes (MWCNTs) for highly sensitive methane chemoresistive sensors. The temperature optimization of the ALD process leads to enhanced ZnO nanopart...

  4. Surface functionalization of carbon nanotubes by direct encapsulation with varying dosages of amphiphilic block copolymers

    NASA Astrophysics Data System (ADS)

    Yao, Xueping; Li, Jie; Kong, Liang; Wang, Yong

    2015-08-01

    Encapsulation of carbon nanotubes (CNTs) by amphiphilic block copolymers is an efficient way to stabilize CNTs in solvents. However, the appropriate dosages of copolymers and the assembled structures are difficult to predict and control because of the insufficient understanding on the encapsulation process. We encapsulate multiwalled CNTs with polystyrene-block-poly (4-vinyl pyridine) (PS-b-P4VP) by directly mixing them in acetic acid under sonication. The copolymer forms a lamellar structure along the surface of CNTs with the PS blocks anchoring on the tube wall and the P4VP blocks exposed to the outside. The encapsulated CNTs achieve good dispersibility in polar solvents over long periods. To increase our understanding of the encapsulation process we investigate the assembled structures and stability of copolymer/CNTs mixtures with changing mass ratios. Stable dispersions are obtained at high mass ratios between the copolymer and CNTs, i.e. 2 or 3, with the presence of free spherical micelles. Transmission electron microscopy and thermal gravimetric analysis determine that the threshold for the complete coverage of CNTs by the copolymer occurs at the mass ratio of 1.5. The coated copolymer layer activates the surface of CNTs, enabling further functionalization of CNTs. For instance, atomic layer deposition of TiO2 produces conformal thin layers on the encapsulated CNTs while isolated TiO2 bumps are produced on the pristine, inert CNTs.

  5. Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomic force microcantilevers

    NASA Astrophysics Data System (ADS)

    Lee, S. I.; Howell, S. W.; Raman, A.; Reifenberger, R.; Nguyen, C. V.; Meyyappan, M.

    2004-05-01

    The nonlinear dynamics of an atomic force microcantilever (AFM) with an attached multi-walled carbon nanotube (MWCNT) tip is investigated experimentally and theoretically. We present the experimental nonlinear frequency response of a MWCNT tipped microcantilever in the tapping mode. Several unusual features in the response distinguish it from those traditionally observed for conventional tips. The MWCNT tipped AFM probe is apparently immune to conventional imaging instabilities related to the coexistence of attractive and repulsive tapping regimes. A theoretical interaction model for the system using an Euler elastica MWCNT model is developed and found to predict several unusual features of the measured nonlinear response.

  6. Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities.

    PubMed

    Lawrence, J R; Waiser, M J; Swerhone, G D W; Roy, J; Tumber, V; Paule, A; Hitchcock, A P; Dynes, J J; Korber, D R

    2016-05-01

    Commercial production of nanoparticles (NP) has created a need for research to support regulation of nanotechnology. In the current study, microbial biofilm communities were developed in rotating annular reactors during continuous exposure to 500 μg L(-1) of each nanomaterial and subjected to multimetric analyses. Scanning transmission X-ray spectromicroscopy (STXM) was used to detect and estimate the presence of the carbon nanomaterials in the biofilm communities. Microscopy observations indicated that the communities were visibly different in appearance with changes in abundance of filamentous cyanobacteria in particular. Microscale analyses indicated that fullerene (C60) did not significantly (p < 0.05) impact algal, cyanobacterial or bacterial biomass. In contrast, MWCNT exposure resulted in a significant decline in algal and bacteria biomass. Interestingly, the presence of SWCNT products increased algal biomass, significantly in the case of SWCNT-COOH (p < 0.05) but had no significant impact on cyanobacterial or bacterial biomass. Thymidine incorporation indicated that bacterial production was significantly reduced (p < 0.05) by all nanomaterials with the exception of fullerene. Biolog assessment of carbon utilization revealed few significant effects with the exception of the utilization of carboxylic acids. PCA and ANOSIM analyses of denaturing gradient gel electrophoresis (DGGE) results indicated that the bacterial communities exposed to fullerene were not different from the control, the MWCNT and SWNT-OH differed from the control but not each other, whereas the SWCNT and SWCNT-COOH both differed from all other treatments and were significantly different from the control (p < 0.05). Fluorescent lectin binding analyses also indicated significant (p < 0.05) changes in the nature and quantities of exopolymer consistent with changes in microbial community structure during exposure to all nanomaterials. Enumeration of protozoan grazers

  7. Cellulose Nanomaterials in Water Treatment Technologies

    PubMed Central

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  8. Nanomaterials for Cardiac Myocyte Tissue Engineering.

    PubMed

    Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A

    2016-07-19

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.

  9. Thermoelectric properties of higher manganese silicide/multi-walled carbon nanotube composites.

    PubMed

    Truong, D Y Nhi; Kleinke, Holger; Gascoin, Franck

    2014-10-28

    Composites made of Higher Manganese Silicide (HMS)-based compound MnSi1.75Ge0.02 and multi-walled carbon nanotubes (MWCNTs) were prepared by an easy and effective method including mechanical milling under mild conditions and reactive spark plasma sintering. SEM compositional mappings show a homogeneous dispersion of MWCNTs in the HMS matrix. Electronic and thermal transport properties were measured from room temperature to 875 K. While power factors are virtually unchanged by the addition of MWCNTs, the lattice thermal conductivity is significantly reduced by about 30%. As a consequence, the maximum figure of merit for the composites with 1 wt% MWCNTs is improved by about 20% compared to the MWCNT free HMS-based sample.

  10. Novel SERS materials for multiplex biomolecular detection via controlled nanoparticle linking and polymer encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, G B; Lee, S J; Laurence, T

    2008-07-21

    Over the past decade the emphasis on single-molecule sensitivity of surface-enhanced Raman spectroscopy (SERS) has brought to prominence the special role played by so-called SERS 'hot spots', oftentimes nanometer-scale junctions between nanostructures. In this report, optimally SERS enhancing silver clusters were synthesized using bifunctional linkers and polymer and/or protein encapsulation. The synthesis, which results in stable clusters even when stored for months or dried and re-dissolved, is scalable to large quantities. Using a sacrificial linker approach we also employ a permeable polymer/protein shell for general small molecule sensing. Finally, we utilize these nanomaterials by tagging specific epitopes on cancer cellsmore » and show that SERS signals from single clusters can be measured routinely.« less

  11. Effect of multi-layer thermal insulation thickness and location on the hypervelocity impact response of dual-wall structures

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    Traditional perforation-resistant wall design for long-duration spacecraft consists of a "bumper" that is placed a small distance away from the main "pressure wall" of a spacecraft compartment or module. This concept has been studied extensively as a means of reducing the perforation threat of hypervelocity projectiles such as meteoroids and orbital debris. If a dual-wall system is employed on an earth-orbiting spacecraft, then a blanket of multi-layer insulation (MLI) will typically be included within the dual-wall system for thermal protection purposes. This paper presents the results of an experimental study in which aluminum dual-wall structures were tested under a variety of high-speed impact conditions to study the effect of MLI thickness and location on perforation resistance. The results presented consist of test-by-test comparisons of the damage sustained by similar dual-wall systems with blanket MLI of various thicknesses and at various locations within the dual-wall systems under similar impact loading conditions. The analyses performed revealed that the placement of the MLI had a significant effect on the ballistic limit of the dual-wall structures considered while reducing the thickness of the MLI by as much as 1/3 did not.

  12. A novel multi-wall CNT synthesis technique using conventional CVD with controlled pressure

    NASA Astrophysics Data System (ADS)

    Kara, M. H. S.; Amir, M. H.; Teh, A. A.; Ahmad, R.; Mahmood, M. R.; Awang, Z.

    2012-09-01

    In this paper we have demonstrated successfully for the first time, a simple but efficient and reliable approach for the growth of multi walled carbon nanotubes (MWCNTs) with high degree of crystallinity, purity and density under a wide range of growth parameters. Multi-walled carbon nanotubes (MWCNTs) were synthesized at 800 - 950°C by thermal chemical vapor deposition (TCVD) method using a thin nickel film as catalyst and methane gas as carbon source. In this process, two substrates were placed in a long alumina boat inside a double-heater TCVD. One of the substrates was covered with a short upside down alumina boat. The prepared nanotubes were characterized by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) and it was found that, CNT growth on the covered substrate was improved in terms of quality and density compared to the other uncovered substrate. In addition, the nanotube diameter is reduced more than half. Results also revealed that the temperature gradient played a key factor for growth efficiency and purity of nanotubes. In addition, the diameter of CNT can be influenced by growth temperature too. The catalyst thickness and gas flow rate were found to influence the diameter and density of tubes, whereas the effect of synthesis time was on the CNT length. This growth technique is unique because of its simplicity, high efficiency and its ability to yield CNTs of high purity and density. This finding is supported by Raman spectrometry analysis.

  13. Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall

    NASA Astrophysics Data System (ADS)

    Garashchuk, Ivan R.; Sinelshchikov, Dmitry I.; Kudryashov, Nikolay A.

    2018-05-01

    Contrast agent microbubbles, which are encapsulated gas bubbles, are widely used to enhance ultrasound imaging. There are also several new promising applications of the contrast agents such as targeted drug delivery and noninvasive therapy. Here we study three models of the microbubble dynamics: a nonencapsulated bubble oscillating close to an elastic wall, a simple coated bubble and a coated bubble near an elastic wall.We demonstrate that complex dynamics can occur in these models. We are particularly interested in the multistability phenomenon of bubble dynamics. We show that coexisting attractors appear in all of these models, but for higher acoustic pressures for the models of an encapsulated bubble.We demonstrate how several tools can be used to localize the coexisting attractors. We provide some considerations why the multistability can be undesirable for applications.

  14. Influence of Multi-Walled Carbon Nanotubes on the Thermal and Mechanical Behavior of Carbon/Epoxy Composites (Preprint)

    DTIC Science & Technology

    2007-03-01

    Stephenson Chemical Company, Inc. Carbon Nanotechnologies , Inc. 3 produced the multi-walled carbon nanotubes used in this study. The tube diameters range...5125-5132. 11. Kim S. , Pechar T. W. and Marand E., Desalination , 192(2006): 330-339 12. Cai H., Yan F. Y., and Xue Q. J., Materials Science and

  15. [Nanomaterials in cosmetics--present situation and future].

    PubMed

    Masunaga, Takuji

    2014-01-01

    Cosmetics are consumer products intended to contribute to increasing quality of life and designed for long-term daily use. Due to such features of cosmetics, they are required to ensure quality and safety at a high level, as well as to perform well, in response to consumers' demands. Recently, the technology associated with nanomaterials has progressed rapidly and has been applied to various products, including cosmetics. For example, nano-sized titanium dioxide has been formulated in sunscreen products in pursuit of improving its performance. As some researchers and media have expressed concerns about the safety of nanomaterials, a vague feeling of anxiety has been raised in society. In response to this concern, the Japan Cosmetic Industry Association (JCIA) has begun original research related to the safety assurance of nanomaterials formulated in cosmetics, to allow consumers to use cosmetics without such concerns. This paper describes the activities of the JCIA regarding safety research on nanomaterials, including a survey of the actual usage of nanomaterials in cosmetics, analysis of the existence of nanomaterials on the skin, and assessment of skin carcinogenicity of nano-sized titanium dioxide. It also describes the international status of safety assurance and regulation regarding nanomaterials in cosmetics.

  16. Highly Conductive Flexible Multi-Walled Carbon Nanotube Sheet Films for Transparent Touch Screen

    NASA Astrophysics Data System (ADS)

    Jung, Daewoong; Lee, Kyung Hwan; Kim, Donghyun; Burk, Dorothea; Overzet, Lawrence J.; Lee, Gil Sik

    2013-03-01

    Highly conductive and transparent thin films were prepared using highly purified multi-walled carbon nanotube (MWCNT) sheets. The electrical properties of the MWCNT sheet were remarkably improved by an acid treatment, resulting in densely packed MWCNTs. The morphology of the sheets reveals that continuous electrical pathways were formed by the acid treatment, greatly improving the sheet resistance all the while maintaining an excellent optical transmittance. These results encourage the use of these MWCNT sheets with low sheet resistance (450 Ω/sq) and high optical transmittance (90%) as a potential candidate for flexible display applications.

  17. An evaluation of the impact of multi-walled carbon nanotubes on soil microbial community structure and functional diversity

    USDA-ARS?s Scientific Manuscript database

    Increasing application of carbon nanotubes (CNTs) triggers the need for an assessment of their effects on organisms in the environment. Soil microbial communities play a significant role in soil organic matter dynamics and nutrient cycling. This study evaluated the impacts of multi-walled carbon nan...

  18. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  19. Technological process for cell disruption, extraction and encapsulation of astaxanthin from Haematococcus pluvialis.

    PubMed

    Machado, Francisco R S; Trevisol, Thalles C; Boschetto, Daiane L; Burkert, Janaína F M; Ferreira, Sandra R S; Oliveira, J Vladimir; Burkert, Carlos André V

    2016-01-20

    In this work, the effectiveness of different enzymatic techniques for cell wall disruption of Haematococcus pluvialis for the extraction of carotenoids and subsequent encapsulation of extracts in the co-polymer poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) using the Solution Enhanced Dispersion by Supercritical fluids (SEDS) technique was investigated. Glucanex(®) performed best compared with Lyticase(®) and Driselase(®). The conditions for enzymatic lysis using this enzyme preparation were established as a pH of 4.5, a temperature of 55 °C, an initial activity of β-1,3-glucanase of 0.6 U mL(-1) and a reaction time of 30 min. Enzymatic lysis assisted by ultrasound without biomass freezing was shown to be a promising and simple one-step technique for cell wall disruption, reaching 83.90% extractability. In the co-precipitation experiments, the highest encapsulation efficiency (51.21%) was obtained when using a higher biomass to dichloromethane ratio (10 mg mL(-1)) at the carotenoid extraction step and a lower pressure of precipitation (80 bar). In these conditions, spherical particles in the micrometer range (0.228 μm) were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Mao, Xun; Gurung, Anant

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  1. Multi-Walled Carbon Nanotubes Augment Allergic Airway Eosinophilic Inflammation by Promoting Cysteinyl Leukotriene Production.

    PubMed

    Carvalho, Sophia; Ferrini, Maria; Herritt, Lou; Holian, Andrij; Jaffar, Zeina; Roberts, Kevan

    2018-01-01

    Multi-walled carbon nanotubes (MWCNT) have been reported to promote lung inflammation and fibrosis. The commercial demand for nanoparticle-based materials has expanded rapidly and as demand for nanomaterials grows, so does the urgency of establishing an appreciation of the degree of health risk associated with their increased production and exposure. In this study, we examined whether MWCNT inhalation elicited pulmonary eosinophilic inflammation and influenced the development of allergic airway inflammatory responses. Our data revealed that instillation of FA21 MWCNT into the airways of mice resulted in a rapid increase, within 24 h, in the number of eosinophils present in the lungs. The inflammatory response elicited was also associated with an increase in the level of cysteinyl leukotrienes (cysLTs) present in the bronchoalveolar lavage fluid. CysLTs were implicated in the airway inflammatory response since pharmacological inhibition of their biosynthesis using the 5-lipoxygenase inhibitor Zileuton resulted in a marked reduction in the severity of inflammation observed. Moreover, FA21 MWCNT entering the airways of mice suffering from house dust mite (HDM)-elicited allergic lung inflammation markedly exacerbated the intensity of the airway inflammation. This response was characterized by a pulmonary eosinophilia, lymphocyte infiltration, and raised cysLT levels. The severity of pulmonary inflammation caused by either inhalation of MWCNT alone or in conjunction with HDM allergen correlated with the level of nickel present in the material, since preparations that contained higher levels of nickel (FA21, 5.54% Ni by weight) were extremely effective at eliciting or exacerbating inflammatory or allergic responses while preparations containing lower amounts of nickel (FA04, 2.54% Ni by weight) failed to initiate or exacerbate pulmonary inflammation. In summary, instillation of high nickel MWCNT into the lungs promoted eosinophilic inflammation and caused an intense

  2. Toxicity of nanomaterials

    PubMed Central

    Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie; Forrest, M. Laird; Stroeve, Pieter

    2015-01-01

    Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There are few studies of the long-term consequences of nanoparticles on human health, but governmental agencies, including the United States National Institute for Occupational Safety and Health and Japan’s Ministry of Health, have recently raised the question of whether seemingly innocuous materials such as carbon-based nanotubes should be treated with the same caution afforded known carcinogens such as asbestos. Since nanomaterials are increasing a part of everyday consumer products, manufacturing processes, and medical products, it is imperative that both workers and end-users be protected from inhalation of potentially toxic NPs. It also suggests that NPs may need to be sequestered into products so that the NPs are not released into the atmosphere during the product’s life or during recycling. Further, non-inhalation routes of NP absorption, including dermal and medical injectables, must be studied in order to understand possible toxic effects. Fewer studies to date have addressed whether the body can eventually eliminate nanomaterials to prevent particle build-up in tissues or organs. This critical review discusses the biophysicochemical properties of various nanomaterials with emphasis on currently available toxicology data and methodologies for evaluating nanoparticle toxicity. PMID:22170510

  3. Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules.

    PubMed

    Zhang, Xueru; Chabot, Denise; Sultan, Yasir; Monreal, Carlos; DeRosa, Maria C

    2013-06-26

    Polyelectrolyte microcapsules have great potential for serving as carriers for the delivery of their contents when triggered by an external stimulus. Aptamers are synthetic ssDNA or RNA that can bind to specific targets with high affinity and selectivity. Aptamers may retain these superior molecular recognition properties after encapsulation within polymer microcapsules. In this work, stable polyelectrolyte microcapsules with encapsulated aptamers were obtained by the layer-by-layer (LbL) method. Polyelectrolyte films were deposited onto a CaCO3 template that had been predoped with polystyrene sulfonate (PSS) and aptamer sequences (SA) that have an affinity for the dye sulforhodamine B (SRB). The PSS and aptamers are thought to serve as an internal scaffold supporting the microcapsule walls. These microcapsules would present target-molecule-triggered rupture properties. Microcapsule collapse was triggered by the binding of SRB to the encapsulated aptamer. The specificity of microcapsule collapse was investigated using a similar dye, tetramethylrosamine (TMR), which does not have affinity for SA. A high concentration of TMR did not lead to the collapse of the microcapsules. The effect of target binding on the microcapsules was confirmed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These microcapsules may have potential applications in targeted delivery systems for the controlled release of drugs, pesticides, or other payloads.

  4. Molecular Dynamics Simulation of a Multi-Walled Carbon Nanotube Based Gear

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We used molecular dynamics to investigate the properties of a multi-walled carbon nanotube based gear. Previous work computationally suggested that molecular gears fashioned from (14,0) single-walled carbon nanotubes operate well at 50-100 gigahertz. The gears were formed from nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. The gear in this study was based on the smallest multi-walled nanotube supported by some experimental evidence. Each gear was a (52,0) nanotube surrounding a (37,10) nanotube with approximate 20.4 and 16,8 A radii respectively. These sizes were chosen to be consistent with inter-tube spacing observed by and were slightly larger than graphite inter-layer spacings. The benzyne teeth were attached via 2+4 cycloaddition to exterior of the (52,0) tube. 2+4 bonds were used rather than the 2+2 bonds observed by Hoke since 2+4 bonds are preferred by naphthalene and quantum calculations by Jaffe suggest that 2+4 bonds are preferred on carbon nanotubes of sufficient diameter. One gear was 'powered' by forcing the atoms near the end of the outside buckytube to rotate to simulate a motor. A second gear was allowed to rotate by keeping the atoms near the end of its outside buckytube on a cylinder. The ends of both gears were constrained to stay in an approximately constant position relative to each other, simulating a casing, to insure that the gear teeth meshed. The stiff meshing aromatic gear teeth transferred angular momentum from the powered gear to the driven gear. The simulation was performed in a vacuum and with a software thermostat. Preliminary results suggest that the powered gear had trouble turning the driven gear without slip. The larger radius and greater mass of these gears relative to the (14,0) gears previously studied requires a

  5. Conductive nanomaterials for printed electronics.

    PubMed

    Kamyshny, Alexander; Magdassi, Shlomo

    2014-09-10

    This is a review on recent developments in the field of conductive nanomaterials and their application in printed electronics, with particular emphasis on inkjet printing of ink formulations based on metal nanoparticles, carbon nanotubes, and graphene sheets. The review describes the basic properties of conductive nanomaterials suitable for printed electronics (metal nanoparticles, carbon nanotubes, and graphene), their stabilization in dispersions, formulations of conductive inks, and obtaining conductive patterns by using various sintering methods. Applications of conductive nanomaterials for electronic devices (transparent electrodes, metallization of solar cells, RFID antennas, TFTs, and light emitting devices) are also briefly reviewed.

  6. Biotechnological synthesis of functional nanomaterials.

    PubMed

    Lloyd, Jonathan R; Byrne, James M; Coker, Victoria S

    2011-08-01

    Biological systems, especially those using microorganisms, have the potential to offer cheap, scalable and highly tunable green synthetic routes for the production of the latest generation of nanomaterials. Recent advances in the biotechnological synthesis of functional nano-scale materials are described. These nanomaterials range from catalysts to novel inorganic antimicrobials, nanomagnets, remediation agents and quantum dots for electronic and optical devices. Where possible, the roles of key biological macromolecules in controlling production of the nanomaterials are highlighted, and also technological limitations that must be addressed for widespread implementation are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Appearance of radial breathing modes in Raman spectra of multi-walled carbon nanotubes upon laser illumination

    NASA Astrophysics Data System (ADS)

    Rai, Padmnabh; Mohapatra, Dipti R.; Hazra, K. S.; Misra, D. S.; Ghatak, Jay; Satyam, P. V.

    2008-03-01

    The Raman spectra of the multi-walled carbon nanotubes are studied with the laser power of 5-20 mW. We observe the Raman bands at ˜1352, 1581, 1607, and 2700 cm -1 with 5 mW laser power. As the laser power is increased to 10, 15 and 20 mW, the radial breathing modes (RBMs) of the single wall carbon nanotubes (SWNTs) appear in the range 200-610 cm -1. The diameter corresponding to the highest RBM is ˜0.37 nm, the lowest reported so far. The RBMs are attributed to the local synthesis of the SWNTs at the top surface of the samples at higher laser power.

  8. Control of tunnel barriers in multi-wall carbon nanotubes using focused ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Tomizawa, H.; Suzuki, K.; Yamaguchi, T.; Akita, S.; Ishibashi, K.

    2017-04-01

    We have formed tunnel barriers in individual multi-wall carbon nanotubes using the Ga focused ion beam irradiation. The barrier height was estimated by the temperature dependence of the current (Arrhenius plot) and the current-voltage curves (Fowler-Nordheim plot). It is shown that the barrier height has a strong correlation with the barrier resistance that is controlled by the dose. Possible origins for the variation in observed barrier characteristics are discussed. Finally, the single electron transistor with two barriers is demonstrated.

  9. Environmental Risk Assessment of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Bayramov, A. A.

    In this paper, various aspects of modern nanotechnologies and, as a result, risks of nanomaterials impact on an environment are considered. This very brief review of the First International Conference on Material and Information Sciences in High Technologies (2007, Baku, Azerbaijan) is given. The conference presented many reports that were devoted to nanotechnology in biology and business for the developing World, formation of charged nanoparticles for creation of functional nanostructures, nanoprocessing of carbon nanotubes, magnetic and optical properties of manganese-phosphorus nanowires, ultra-nanocrystalline diamond films, and nanophotonics communications in Azerbaijan. The mathematical methods of simulation of the group, individual and social risks are considered for the purpose of nanomaterials risk reduction and remediation. Lastly, we have conducted studies at a plant of polymeric materials (and nanomaterials), located near Baku. Assessments have been conducted on the individual risk of person affection and constructed the map of equal isolines and zones of individual risk for a plant of polymeric materials (and nanomaterials).

  10. Module encapsulation technology

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1986-01-01

    The identification and development techniques for low-cost module encapsulation materials were reviewed. Test results were displayed for a variety of materials. The improved prospects for modeling encapsulation systems for life prediction were reported.

  11. Glassy carbon/multi walled carbon nanotube/cadmium sulphide photoanode for light energy storage in vanadium photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Peimanifard, Zahra; Rashid-Nadimi, Sahar

    2015-12-01

    The aim of this study is utilizing the artificial photosynthesis, which is an attractive and challenging theme in the photoelectrocatalytic water splitting, to charge the vanadium redox flow battery (VRFB). In this work multi walled carbon nanotube/cadmium sulphide hybrid is employed as a photoanode material to oxidize VO2+ toVO2+ for charging the positive vanadium redox flow battery's half-cell. Characterization studies are also described using the scanning electron microscopic-energy-dispersive X-ray spectroscopy (SEM-EDS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and UV-Visible methods. The phtoelectrochemical performance is characterized by cyclic voltammetry and chronoamperometry. Applied bias photon-to-current efficiency (ABPE) is achieved for both two and three-electrode configurations. The glassy carbon/multi walled carbon nanotube/cadmium sulphide yields high maximum ABPE of 2.6% and 2.12% in three and two-electrode setups, respectively. These results provide a useful guideline in designing photoelectrochemical cells for charging the vanadium redox flow batteries by sunlight as a low cost, free and abundant energy source, which does not rely on an external power input.

  12. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    PubMed

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based

  13. Graphene-based nanomaterials for nanobiotechnology and biomedical applications.

    PubMed

    Krishna, K Vijaya; Ménard-Moyon, Cécilia; Verma, Sandeep; Bianco, Alberto

    2013-10-01

    Graphene family nanomaterials are currently being extensively explored for applications in the field of nanotechnology. The unique intrinsic properties treasured in their simple molecular design and their ability to work in coherence with other existing nanomaterials make graphene family nanomaterials the most promising candidates for different types of applications. This review highlights the scope and utility of these multifaceted nanomaterials in nanobiotechnology and biomedicine. In a tandem approach, this review presents the smooth inclusion of these nanomaterials into existing designs for creating efficient working models at the nanoscale level as well as discussing their broad future possibilities.

  14. Studies on Multi Wall Carbon Nanotubes Reinforced Poly (trimethylene Terephthalate) Nanocomposite

    NASA Astrophysics Data System (ADS)

    Gupta, Anju; Manocha, L. M.; Choudhory, V.

    2008-08-01

    Poly (trimethylene terephthalate) (PTT) nanocomposites with multi walled carbon nanotubes (MWCNTs) have been prepared by a simple melt compounding using DMS microcompounder. The non-isothermal melt crystallization behavior of PTT in the presence of varying amounts of MWCNTs was investigated using DSC technique. An increase in crystallization temperature was observed upon incorporation of 0.1% MWCNTs thus indicating that CNTs act as nucleating agents. Percentage crystallinity as determined by WAXD also showed an increase upon incorporation of small amounts (0.5% w/w) of CNTs. The electrical conductivity of nanocomposites increased upon incorporation of MWCNTs and percolation was obtained at a loading in the range of 1-2% (w/w). Morphological characterization by SEM showed a uniform distribution of MWCNTs in PTT matrix.

  15. Antibacterial properties and toxicity from metallic nanomaterials

    PubMed Central

    Vimbela, Gina V; Ngo, Sang M; Fraze, Carolyn; Yang, Lei; Stout, David A

    2017-01-01

    The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. PMID:28579779

  16. Applicability of rat precision-cut lung slices in evaluating nanomaterial cytotoxicity, apoptosis, oxidative stress, and inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauer, Ursula G.; Vogel, Sandra; Product Stewardship Water Solutions, BASF SE, Ludwigshafen

    2014-04-01

    The applicability of rat precision-cut lung slices (PCLuS) in detecting nanomaterial (NM) toxicity to the respiratory tract was investigated evaluating sixteen OECD reference NMs (TiO{sub 2}, ZnO, CeO{sub 2}, SiO{sub 2}, Ag, multi-walled carbon nanotubes (MWCNTs)). Upon 24-hour test substance exposure, the PCLuS system was able to detect early events of NM toxicity: total protein, reduction in mitochondrial activity, caspase-3/-7 activation, glutathione depletion/increase, cytokine induction, and histopathological evaluation. Ion shedding NMS (ZnO and Ag) induced severe tissue destruction detected by the loss of total protein. Two anatase TiO{sub 2} NMs, CeO{sub 2} NMs, and two MWCNT caused significant (determined bymore » trend analysis) cytotoxicity in the WST-1 assay. At non-cytotoxic concentrations, different TiO{sub 2} NMs and one MWCNT increased GSH levels, presumably a defense response to reactive oxygen species, and these substances further induced a variety of cytokines. One of the SiO{sub 2} NMs increased caspase-3/-7 activities at non-cytotoxic levels, and one rutile TiO{sub 2} only induced cytokines. Investigating these effects is, however, not sufficient to predict apical effects found in vivo. Reproducibility of test substance measurements was not fully satisfactory, especially in the GSH and cytokine assays. Effects were frequently observed in negative controls pointing to tissue slice vulnerability even though prepared and handled with utmost care. Comparisons of the effects observed in the PCLuS to in vivo effects reveal some concordances for the metal oxide NMs, but less so for the MWCNT. The highest effective dosages, however, exceeded those reported for rat short-term inhalation studies. To become applicable for NM testing, the PCLuS system requires test protocol optimization. - Highlights: • 16 OECD reference nanomaterials were tested in rat precision-cut lung slices. • Nanomaterial cytotoxicity, apoptose, oxidative stress, and

  17. The applicability of chemical alternatives assessment for engineered nanomaterials.

    PubMed

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly; Tickner, Joel; Ellenbecker, Michael; Baun, Anders

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case for alternatives assessment approaches, because they can be considered both emerging "chemicals" of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging, and critical elements in chemical hazard and exposure assessment may have to be fundamentally altered to sufficiently address nanomaterials. The aim of this paper is to assess the overall applicability of alternatives assessment methods for nanomaterials and to outline recommendations to enhance their use in this context. The present paper focuses on the adaptability of existing hazard and exposure assessment approaches to engineered nanomaterials as well as strategies to design inherently safer nanomaterials. We argue that alternatives assessment for nanomaterials is complicated by the sheer number of nanomaterials possible. As a result, the inclusion of new data tools that can efficiently and effectively evaluate nanomaterials as substitutes is needed to strengthen the alternatives assessment process. However, we conclude that with additional tools to enhance traditional hazard and exposure assessment modules of alternatives assessment, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. Integr Environ Assess Manag 2017;13:177-187. © 2016 SETAC. © 2016 SETAC.

  18. Comparative study of plant responses to carbon-based nanomaterials with different morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahiani, Mohamed H.; Dervishi, Enkeleda; Ivanov, Ilia

    The relationship between the morphology of carbon-based nanomaterials (CBNs) and the specific response of plants exposed to CBNs has not been studied systematically. Here, we prove that CBNs with different morphologies can activate cell growth, germination, and plant growth. A tobacco cell culture growth was found to increase by 22%–46% when CBNs such as helical multi-wall carbon nanotubes (MWCNTs), few-layered graphene, long MWCNTs, and short MWCNTs were added to the growth medium at a concentration of 50 μg ml –1. The germination of exposed tomato seeds, as well as the growth of exposed tomato seedlings, were significantly enhanced by themore » addition of all tested CBNs. The presence of CBNs inside exposed seeds was confirmed by transmission electron microscopy and Raman spectroscopy. The effects of helical MWCNTs on gene expression in tomato seeds and seedlings were investigated by microarray technology and real time-PCR. Helical MWCNTs affected a number of genes involved in cellular and metabolic processes and response to stress factors. It was shown that the expression of the tomato water channel gene in tomato seeds exposed to helical MWCNTs was upregulated. Furthermore, these established findings demonstrate that CBNs with different morphologies can cause the same biological effects and share similar mechanisms in planta.« less

  19. Environmental, health, and safety effects of engineered nanomaterials: challenges and research needs

    NASA Astrophysics Data System (ADS)

    Fairbrother, Howard

    2010-04-01

    The number of technologies and consumer products that incorporate engineered nanomaterials (ENMs) has grown rapidly. Indeed, ENMs such as carbon nanotubes and nano-silver, are revolutionizing many commercial technologies and have already been incorporated into more than 800 commercial products, including polymer composites, cell phone batteries, sporting equipment and cosmetics. The global market for ENMs has grown steadily from 7.5 billion in 2003 to 12.7 billion in 2008. Over the next five years, their market value is expected to exceed $27 billion. This surge in demand has been responsible for a corresponding increase in the annual production rates of ENMs. For example, Bayer anticipates that single and multi-walled carbon nanotubes (SWNT and MWNT) production rates will reach 3,000 tons/yr by 2012. Inevitably, some of these synthetic materials will enter the environment either from incidental release during manufacture and transport, or following use and disposal. Consequently, intense scientific research is now being directed towards understanding the environmental, health and safety (EHS) risks posed by ENMs. I will highlight some of the key research challenges and needs in this area, include (i) developing structure-property relationships that will enable physicochemical properties of ENMs to be correlated with environmentally relevant behavior (e.g. colloidal properties, toxicity), (ii) determining the behavior of nanoproducts, and (iii) developing analytical techniques capable of detecting and quantifying the concentration of ENMs in the environment.

  20. Comparative study of plant responses to carbon-based nanomaterials with different morphologies

    DOE PAGES

    Lahiani, Mohamed H.; Dervishi, Enkeleda; Ivanov, Ilia; ...

    2016-05-19

    The relationship between the morphology of carbon-based nanomaterials (CBNs) and the specific response of plants exposed to CBNs has not been studied systematically. Here, we prove that CBNs with different morphologies can activate cell growth, germination, and plant growth. A tobacco cell culture growth was found to increase by 22%–46% when CBNs such as helical multi-wall carbon nanotubes (MWCNTs), few-layered graphene, long MWCNTs, and short MWCNTs were added to the growth medium at a concentration of 50 μg ml –1. The germination of exposed tomato seeds, as well as the growth of exposed tomato seedlings, were significantly enhanced by themore » addition of all tested CBNs. The presence of CBNs inside exposed seeds was confirmed by transmission electron microscopy and Raman spectroscopy. The effects of helical MWCNTs on gene expression in tomato seeds and seedlings were investigated by microarray technology and real time-PCR. Helical MWCNTs affected a number of genes involved in cellular and metabolic processes and response to stress factors. It was shown that the expression of the tomato water channel gene in tomato seeds exposed to helical MWCNTs was upregulated. Furthermore, these established findings demonstrate that CBNs with different morphologies can cause the same biological effects and share similar mechanisms in planta.« less

  1. Impact of cell wall encapsulation of almonds on in vitro duodenal lipolysis.

    PubMed

    Grundy, Myriam M L; Wilde, Peter J; Butterworth, Peter J; Gray, Robert; Ellis, Peter R

    2015-10-15

    Although almonds have a high lipid content, their consumption is associated with reduced risk of cardiovascular disease. One explanation for this paradox could be limited bioaccessibility of almond lipids due to the cell wall matrix acting as a physical barrier to digestion in the upper gastrointestinal tract. We aimed to measure the rate and extent of lipolysis in an in vitro duodenum digestion model, using raw and roasted almond materials with potentially different degrees of bioaccessibility. The results revealed that a decrease in particle size led to an increased rate and extent of lipolysis. Particle size had a crucial impact on lipid bioaccessibility, since it is an indicator of the proportion of ruptured cells in the almond tissue. Separated almond cells with intact cell walls showed the lowest levels of digestibility. This study underlines the importance of the cell wall for modulating lipid uptake and hence the positive health benefits underlying almond consumption. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Nanomaterials for Electrochemical Immunosensing

    PubMed Central

    Pan, Mingfei; Gu, Ying; Yun, Yaguang; Li, Min; Jin, Xincui; Wang, Shuo

    2017-01-01

    Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors. PMID:28475158

  3. Structural Characterization of the Novel and Thermal Stable Hydrogenases from the Purple Sulfur Bacteria Thiocapsa Roseopersicina and Lamprobacter Modestohalophilus

    DTIC Science & Technology

    2011-08-01

    production activity achieved for hydrogenase encapsulated in sol–gel material doped with carbon nanotubes . J. Mater. Chem., 20, 1065 (2010). Abstract...Doping hydrogenase-containing sol-gel materials with multi-walled carbon nanotubes , polyethylene glycol and methyl viologen results in a greater than...homogeneous T. roseopersicina hydrogenase and of multi-walled carbon nanotubes in silica gel was studied. It is shown that in such material between the

  4. Initial Studies of the Bidirectional Reflectance Distribution Function of Multi-Walled Carbon Nanotube Structures for Stray Light Control Applications

    NASA Technical Reports Server (NTRS)

    Butler, J. J.; Tveekrem, J. L.; Quijada, M. A.; Getty, S. A.; Hagopian, J. G.; Georglev, G. T.

    2010-01-01

    The presentation examines the application of low reflectance surfaces in optical instruments, multi-walled carbon nanotubes (MWCNTs), research objects, MWCNT samples, measurement of 8 deg. directional/hemispherical reflectance, measurement of bidirectional reflectance distribution function (BRDF), and what is current the "blackest ever black".

  5. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    PubMed

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  6. Engineered Nanomaterials Elicit Cellular Stress Responses

    EPA Science Inventory

    Engineered nanomaterials are being developed continuously and incorporated into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on toxicity endpoints without further investigating potential mechanisms or pathway...

  7. Selective encapsulation by Janus particles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-01

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  8. Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    da Silva Malheiros, Patrícia; Sant'Anna, Voltaire; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; Brandelli, Adriano

    2011-08-01

    Antimicrobial peptide P34, a substance showing antibacterial activity against pathogenic and food spoilage bacteria, was encapsulated in liposomes prepared from partially purified soybean phosphatidylcholine, and their physicochemical characteristics were evaluated. The antimicrobial activity was estimated by agar diffusion assay using Listeria monocytogenes ATCC 7644 as indicator strain. A concentration of 3,200 AU/mL of P34 was encapsulated in nanovesicles and stocked at 4 °C. No significant difference ( p > 0.05) in the biological activity of free and encapsulated P34 was observed through 24 days. Size and PDI of liposomes, investigated by light scattering analysis, were on average 150 nm and 0.22 respectively. Zeta potential was -27.42 mV. There was no significant change ( p > 0.05) in the physicochemical properties of liposomes during the time of evaluation. The liposomes presented closed spherical morphology as visualized by transmission electron microscopy (TEM). The mode of action of liposome-encapsulated P34 under L. monocytogenes cells was investigated by TEM. Liposomes appeared to adhere but not fuse with the bacterial cell wall, suggesting that the antimicrobial is released from nanovesicles to act against the microorganism. The effect of free and encapsulated P34 was tested against L. monocytogenes, showing that free bacteriocin inhibited the pathogen more quickly than the encapsulated P34. Liposomes prepared with low-cost lipid showed high encapsulation efficiency for a new antimicrobial peptide and were stable during storage. The mode of action against the pathogen L. monocytogenes was characterized.

  9. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    PubMed

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  10. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-06-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  11. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-01-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  12. Conductive multi-walled boron nitride nanotubes by catalytic etching using cobalt oxide.

    PubMed

    Kim, Do-Hyun; Jang, Ho-Kyun; Kim, Min-Seok; Kim, Sung-Dae; Lee, Dong-Jin; Kim, Gyu Tae

    2017-01-04

    Boron nitride nanotubes (BNNTs) are ceramic compounds which are hardly oxidized below 1000 °C due to their superior thermal stability. Also, they are electrically almost insulators with a large band gap of 5 eV. Thus, it is a challenging task to etch BNNTs at low temperature and to convert their electrical properties to a conductive behavior. In this study, we demonstrate that BNNTs can be easily etched at low temperature by catalytic oxidation, resulting in an electrically conductive behavior. For this, multi-walled BNNTs (MWBNNTs) impregnated with Co precursor (Co(NO 3 ) 2 ·6H 2 O) were simply heated at 350 °C under air atmosphere. As a result, diverse shapes of etched structures such as pits and thinned walls were created on the surface of MWBNNTs without losing the tubular structure. The original crystallinity was still kept in the etched MWBNNTs in spite of oxidation. In the electrical measurement, MWBNNTs with a large band gap were converted to electrical conductors after etching by catalytic oxidation. Theoretical calculations indicated that a new energy state in the gap and a Fermi level shift contributed to MWBNNTs being conductive.

  13. Adhesion of single- and multi-walled carbon nanotubes to silicon substrate: atomistic simulations and continuum analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Xuebo; Wang, Youshan

    2017-10-01

    The radial deformation of carbon nanotubes (CNTs) adhering to a substrate may prominently affect their mechanical and physical properties. In this study, both classical atomistic simulations and continuum analysis are carried out, to investigate the lateral adhesion of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) to a silicon substrate. A linear elastic model for analyzing the adhesion of 2D shells to a rigid semi-infinite substrate is constructed in the framework of continuum mechanics. Good agreement is achieved between the cross-section profiles of adhesive CNTs obtained by the continuum model and by the atomistic simulation approach. It is found that the adhesion of a CNT to the silicon substrate is significantly influenced by its initial diameter and the number of walls. CNTs with radius larger than a certain critical radius are deformed radially on the silicon substrate with flat contact regions. With increasing number of walls, the extent of radial deformation of a MWCNT on the substrate decreases dramatically, and the flat contact area reduces—and eventually vanishes—due to increasing equivalent bending stiffness. It is analytically predicted that large-diameter MWCNTs with a large number of walls are likely to ‘stand’ on the silicon substrate. The present work can be useful for understanding the radial deformation of CNTs adhering to a solid planar substrate.

  14. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Satbir; Gupta, Bipin Kumar

    2016-07-01

    Counterfeiting of valuable documents, currency and branded products is a challenging problem that has serious economic, security and health ramifications for governments, businesses and consumers all over the world. It is estimated that counterfeiting represents a multi-billion dollar underground economy with counterfeit products being produced on a large scale every year. Counterfeiting is an increasingly high-tech crime and calls for high-tech solutions to prevent and deter the acts of counterfeiting. The present review briefly outlines and addresses the key challenges in this area, including the above mentioned concerns for anti-counterfeiting applications. This article describes a unique combination of all possible kinds of security ink formulations based on lanthanide doped luminescent nanomaterials, quantum dots (semiconductor and carbon based), metal organic frameworks as well as plasmonic nanomaterials for their possible use in anti-counterfeiting applications. Moreover, in this review, we have briefly discussed and described the historical background of luminescent nanomaterials, basic concepts and detailed synthesis methods along with their characterization. Furthermore, we have also discussed the methods adopted for the fabrication and design of luminescent security inks, various security printing techniques and their anti-counterfeiting applications.

  15. Aptamer-conjugated nanomaterials and their applications

    PubMed Central

    Yang, Liu; Ye, Mao; Yang, Ronghua; Fu, Ting; Chen, Yan; Wang, Kemin

    2011-01-01

    The combination of aptamers with novel nanomaterials, including nanomaterial-based aptamer bioconjugates. has attracted considerable interest and has led to a wide variety of applications. In this review, we discuss how a variety of nanomaterials, including gold, silica and magnetic nanoparticles, as well as carbon nanotubes, hydrogels, liposomes and micelles, have been used to functionalize aptamers for a variety of applications. These aptamer functionalized materials have led to advances in amplified biosensing, cancer cell-specific recognition, high-efficiency separation, and targeted drug delivery. PMID:22016112

  16. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    PubMed

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Selective encapsulation by Janus particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less

  18. Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials.

    PubMed

    Choi, Yoojin; Park, Tae Jung; Lee, Doh C; Lee, Sang Yup

    2018-06-05

    Nanomaterials (NMs) are mostly synthesized by chemical and physical methods, but biological synthesis is also receiving great attention. However, the mechanisms for biological producibility of NMs, crystalline versus amorphous, are not yet understood. Here we report biosynthesis of 60 different NMs by employing a recombinant Escherichia coli strain coexpressing metallothionein, a metal-binding protein, and phytochelatin synthase that synthesizes a metal-binding peptide phytochelatin. Both an in vivo method employing live cells and an in vitro method employing the cell extract are used to synthesize NMs. The periodic table is scanned to select 35 suitable elements, followed by biosynthesis of their NMs. Nine crystalline single-elements of Mn 3 O 4 , Fe 3 O 4 , Cu 2 O, Mo, Ag, In(OH) 3 , SnO 2 , Te, and Au are synthesized, while the other 16 elements result in biosynthesis of amorphous NMs or no NM synthesis. Producibility and crystallinity of the NMs are analyzed using a Pourbaix diagram that predicts the stable chemical species of each element for NM biosynthesis by varying reduction potential and pH. Based on the analyses, the initial pH of reactions is changed from 6.5 to 7.5, resulting in biosynthesis of various crystalline NMs of those previously amorphous or not-synthesized ones. This strategy is extended to biosynthesize multi-element NMs including CoFe 2 O 4 , NiFe 2 O 4 , ZnMn 2 O 4 , ZnFe 2 O 4 , Ag 2 S, Ag 2 TeO 3 , Ag 2 WO 4 , Hg 3 TeO 6 , PbMoO 4, PbWO 4 , and Pb 5 (VO 4 ) 3 OH NMs. The strategy described here allows biosynthesis of NMs with various properties, providing a platform for manufacturing various NMs in an environmentally friendly manner.

  19. Nanomaterials as stationary phases and supports in liquid chromatography.

    PubMed

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multi-ligand nanoparticles for targeted drug delivery to the injured vascular wall

    NASA Astrophysics Data System (ADS)

    Kona, Soujanya

    Pathological conditions like coronary artery disease, acute myocardial infarction, stroke, and peripheral artery diseases as well as cardiovascular interventions used in the treatment of coronary artery diseases such as angioplasty and stenting damage/injure the blood vessel wall, leading to inflamed or activated endothelial cells that have been implicated in events leading to thrombosis, inflammation, and restenosis. Oral administration of anti-coagulant and anti-inflammatory drugs causes systemic toxicity, bleeding, patient incompliance, and inadequate amounts of drugs at the injured area. Though drug-eluting stents have shown therapeutic benefits, complications such as in-stent restenosis and late thrombosis still remain and are a cause for concern. Rapid growth in the field of nanotechnology and nanoscience in recent years has paved the way for new targeted and controlled drug delivery strategies. In this perspective, the development of biodegradable nanoparticles for targeted intracellular drug delivery to the inflamed endothelial cells may offer an improved avenue for treatment of cardiovascular diseases. The major objective of this research was to develop "novel multi-ligand nanoparticles," as drug carriers that can efficiently target and deliver therapeutic agents to the injured/inflamed vascular cells under dynamic flow conditions. Our approach mimics the natural binding ability of platelets to injured/activated endothelial cells through glycoprotein Ib (GPIb) bound to P-selectin expressed on inflamed endothelial cells and to the subendothelium through GPIb binding to von Willebrand factor (vWF) deposited onto the injured vascular wall. Our design also exploits the natural cell membrane translocation ability of the internalizing cell peptide - trans-activating transcriptor (TAT) to enhance the nanoparticle uptake by the targeted cells. Our hypothesis is that these multi-ligand nanoparticles would show an increased accumulation at the injury site since GPIb

  1. Techniques for Investigating Molecular Toxicology of Nanomaterials.

    PubMed

    Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong

    2016-06-01

    Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods.

  2. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    PubMed

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  3. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    PubMed

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  5. Applications of Nanomaterials in Food Packaging.

    PubMed

    Bumbudsanpharoke, Nattinee; Choi, Jungwook; Ko, Seonghyuk

    2015-09-01

    Nanomaterials have drawn great interest in recent years due to their extraordinary properties that make them advantageous in food packaging applications. Specifically, nanoparticles can impart significant barrier properties, as well as mechanical, optical, catalytic, and antimicrobial properties into packaging. Silver nanoparticles (AgNPs) and nanoclay account for the majority of the nano-enabled food packaging on the market, while others, such as nano-zinc oxide (ZnO) and titanium, share less of the current market. In current food packaging, these nanomaterials are primarily used to impart antimicrobial function and to improve barrier properties, thereby extending the shelf life and freshness of packaged food. On the other hand, there is growing concern about the migration of nanomaterials from food contact materials to foodstuffs and its associated potential risks. Indeed, insufficient data about environmental and human safety assessments of migration and exposure of nanomaterials are hindering their market growth. To overcome this barrier, the public believes that legislation from government agencies is critical. This review provides an overview of the characteristics and functions of major nanomaterials that are commonly applied to food packaging, including available and near- future products. Migration research, safety issues, and public concerns are also discussed.

  6. 2D nanomaterials assembled from sequence-defined molecules

    DOE PAGES

    Mu, Peng; Zhou, Guangwen; Chen, Chun-Long

    2017-10-21

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges andmore » opportunities in this new field.« less

  7. 2D nanomaterials assembled from sequence-defined molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Peng; Zhou, Guangwen; Chen, Chun-Long

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges andmore » opportunities in this new field.« less

  8. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    PubMed

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Techniques for physicochemical characterization of nanomaterials

    PubMed Central

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  10. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiyuan; Yang, Zhanhong; Hu, Youwang; Li, Jianping; Fan, Xinming

    2013-07-01

    In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.

  11. Nanomaterials for membrane fouling control: accomplishments and challenges.

    PubMed

    Yang, Qian; Mi, Baoxia

    2013-11-01

    We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  12. Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.

    PubMed

    Cui, Peng; Wang, Xinnan; Tangpong, X W

    2012-11-01

    In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.

  13. ParaCEST agents encapsulated in Reverse nano-Assembled Capsules (RACs): How slow molecular tumbling can quench CEST

    NASA Astrophysics Data System (ADS)

    Farashishiko, Annah; Slack, Jacqueline R.; Botta, Mauro; Woods, Mark

    2018-04-01

    Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the series the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. A significant proportion of the quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  14. Whole abdominal wall segmentation using augmented active shape models (AASM) with multi-atlas label fusion and level set

    NASA Astrophysics Data System (ADS)

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-03-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes.

  15. GaS multi-walled nanotubes from the lamellar precursor

    NASA Astrophysics Data System (ADS)

    Hu, P. A.; Liu, Y. Q.; Fu, L.; Cao, L. C.; Zhu, D. B.

    2005-04-01

    Inorganic fullerene-like (IF) nanotubes constructed from layered metal chalcogenides are of particular significance because of their excellent physical properties and potential application in wide fields. But very few previous studies were focused on the IF nanotubes of layered III-VI semiconductor. Therefore we investigate the preparation, structure and photoluminescence (PL) properties of GaS nanotube (an important III-VI semiconductor IF nanotube). A simple method is introduced to prepare GaS multi-walled nanotubes for the first time by annealing the natural lamellar precursor in Ar. The reaction temperature is crucial for the formation of nanotube. A suitable temperature range is 500-850 °C. Bulk quantities of GaS nanotubes with diameters of 30-150 nm and lengths up to ten micrometers were produced. Some of these nanotubes show corrugated and interlinked structure and form many segments, demonstrating a bamboo-like structure. As compared to bulk materials, the obvious distinction of the products in PL spectra at liquid nitrogen temperature of 77 K was due to the structure variety.

  16. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  17. 2D nanomaterials assembled from sequence-defined molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Peng; Zhou, Guangwen; Chen, Chun-Long

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. In this mini-review, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. The challenges and opportunitiesmore » in this new field are also discussed.« less

  18. Reinforcement of cement-based matrices with graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  19. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  20. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  1. Cellular Encapsulation Enhances Cardiac Repair

    PubMed Central

    Levit, Rebecca D.; Landázuri, Natalia; Phelps, Edward A.; Brown, Milton E.; García, Andrés J.; Davis, Michael E.; Joseph, Giji; Long, Robert; Safley, Susan A.; Suever, Jonathan D.; Lyle, Alicia N.; Weber, Collin J.; Taylor, W. Robert

    2013-01-01

    Background Stem cells for cardiac repair have shown promise in preclinical trials, but lower than expected retention, viability, and efficacy. Encapsulation is one potential strategy to increase viable cell retention while facilitating paracrine effects. Methods and Results Human mesenchymal stem cells (hMSC) were encapsulated in alginate and attached to the heart with a hydrogel patch in a rat myocardial infarction (MI) model. Cells were tracked using bioluminescence (BLI) and cardiac function measured by transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR). Microvasculature was quantified using von Willebrand factor staining and scar measured by Masson's Trichrome. Post‐MI ejection fraction by CMR was greatly improved in encapsulated hMSC‐treated animals (MI: 34±3%, MI+Gel: 35±3%, MI+Gel+hMSC: 39±2%, MI+Gel+encapsulated hMSC: 56±1%; n=4 per group; P<0.01). Data represent mean±SEM. By TTE, encapsulated hMSC‐treated animals had improved fractional shortening. Longitudinal BLI showed greatest hMSC retention when the cells were encapsulated (P<0.05). Scar size at 28 days was significantly reduced in encapsulated hMSC‐treated animals (MI: 12±1%, n=8; MI+Gel: 14±2%, n=7; MI+Gel+hMSC: 14±1%, n=7; MI+Gel+encapsulated hMSC: 7±1%, n=6; P<0.05). There was a large increase in microvascular density in the peri‐infarct area (MI: 121±10, n=7; MI+Gel: 153±26, n=5; MI+Gel+hMSC: 198±18, n=7; MI+Gel+encapsulated hMSC: 828±56 vessels/mm2, n=6; P<0.01). Conclusions Alginate encapsulation improved retention of hMSCs and facilitated paracrine effects such as increased peri‐infarct microvasculature and decreased scar. Encapsulation of MSCs improved cardiac function post‐MI and represents a new, translatable strategy for optimization of regenerative therapies for cardiovascular diseases. PMID:24113327

  2. Engineered nanomaterials for solar energy conversion.

    PubMed

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  3. The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.K.M. Mahmudul; Oh, Geum Seok; Kim, Taeoh

    Highlights: • We study the microwave effect on the multi-walled carbon nanotubes (MWCNTs). • We examine the non uniform heating effect on the physical structure of MWCNTs. • We examine the purification of MWCNTs by microwave. • We analyze the thermal characteristics of microwave treated MWCNTs. - Abstract: This paper reports the effect of microwave on the physical properties of multi-walled carbon nanotubes (MWCNTs) where different power levels of microwave were applied on MWCNTs in order to apprehend the effect of microwave on MWCNTs distinctly. A low energy ball milling in aqueous circumstance was also applied on both MWCNTs andmore » microwave treated MWCNTs. Temperature profile, morphological analysis by field emission scanning electron microscopy (FESEM), defect analysis by Raman spectroscopy, thermal conductivity, thermal diffusivity as well as heat transfer coefficient enhancement ratio were studied which expose some strong witnesses of the effect of microwave on the both purification and dispersion properties of MWCNTs in base fluid distilled water. The highest thermal conductivity enhancement (6.06% at 40 °C) of MWCNTs based nanofluid is achieved by five minutes microwave treatment as well as wet grinding at 500 rpm for two hours.« less

  4. Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size

    USDA-ARS?s Scientific Manuscript database

    Water-saturated column experiments were conducted to investigate the effect of input concentration (Co) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L/1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostat...

  5. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  6. Biological interactions of carbon-based nanomaterials: From coronation to degradation.

    PubMed

    Bhattacharya, Kunal; Mukherjee, Sourav P; Gallud, Audrey; Burkert, Seth C; Bistarelli, Silvia; Bellucci, Stefano; Bottini, Massimo; Star, Alexander; Fadeel, Bengt

    2016-02-01

    Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulents

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technical activities were directed toward the assessment of encapsulation processes for use with ethylene/vinyl acetate copolymer as the pottant. Potentially successful formulations were prepared by compounding the raw polymer with ultraviolet absorbers and crosslinking agents to give stabilized and curable compositions. The compounded resin was then converted to a more useful form with an extruder to give pottant in sheets that could be more easily used in lamination. After experimenting with various techniques, the vacuum-bag process was found to be an excellent encapsulation method. Miniature single-celled and multi-celled solar modules of both substrate and superstrate designs were prepared by this technique. The resulting modules were of good appearance, were bubble-free, and successfully passed the thermal cycle test.

  8. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braakhuis, Hedwig M., E-mail: hedwig.braakhuis@rivm.nl; Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht; Oomen, Agnes G.

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, wemore » discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation

  9. Bifunctional catalyst of graphite-encapsulated iron compound nanoparticle for magnetic carbon nanotubes growth by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Saraswati, Teguh Endah; Prasiwi, Oktaviana Dewi Indah; Masykur, Abu; Anwar, Miftahul

    2017-01-01

    The carbon nanotube has widely taken great attractive in carbon nanomaterial research and application. One of its preparation methods is catalytic chemical vapor deposition (CCVD) using catalyst i.e. iron, nickel, etc. Generally, except the catalyst, carbon source gasses as the precursor are still required. Here, we report the use of the bifunctional material of Fe3O4/C which has an incorporated core/shell structures of carbon-encapsulated iron compound nanoparticles. The bifunctional catalyst was prepared by submerged arc discharge that simply performed using carbon and carbon/iron oxide electrodes in ethanol 50%. The prepared material was then used as a catalyst in thermal chemical vapor deposition at 800°C flown with ethanol vapor as the primer carbon source in a low-pressure condition. This catalyst might play a dual role as a catalyst and secondary carbon source for growing carbon nanotubes at the time. The synthesized products were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The successful formation of carbon nanotubes was assigned by the shifted X-ray diffracted peak of carbon C(002), the iron oxides of Fe3O4 and γ-Fe2O3, and the other peaks which were highly considered to the other carbon allotropes with sp2 hybridization structures. The other assignment was studied by electron microscopy which successfully observed the presence of single-wall carbon nanotubes. In addition, the as-prepared carbon nanotubes have a magnetic property which was induced by the remaining of metal catalyst inside the CNT.

  10. Describing Nanomaterials: A Uniform Description System

    NASA Astrophysics Data System (ADS)

    Rumble, John; Freiman, Steve; Teague, Clayton

    2014-03-01

    Products involving nanomaterials are growing rapidly and nanoparticles also occur naturally. Materials, scientists, engineers, health officials, and regulators have realized they need a common description system. Led by CODATA and VAMAS, a Uniform Description System (UDS) for nanomaterials is being developed to meet the requirements of a broad range of scientific and technical disciplines and different user communities. The goal of the CODATA/VAMAS effort is the creation of a complete set of descriptors that can be used by all communities, e.g., materials, physics, chemistry, agricultural, medical, etc., interested in nanomaterials. The description system must be relevant to researchers, manufacturers of nanomaterials, materials selectors, and regulators. The purpose of the UDS for materials on the nanoscale is twofold: Uniqueness and Equivalency. The first step in the development of the UDS has been the creation of a Framework that will be used by the different communities to guide in the selection of descriptors relevant to their needs. This talk is a brief description of the draft of such a Framework, and how the framework will be translated into a robust description system with input from many scientific communities including physics. A contribution from the CODATA/VAMAS Working Group on the Description of Nanomaterials.

  11. Size effects of latex nanomaterials on lung inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 {mu}g/animal) with three sizes (25, 50, and 100 nm), LPS (75 {mu}g/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle,more » latex nanomaterials (100 {mu}g/animal), allergen (ovalbumin: OVA; 1 {mu}g/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation.« less

  12. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    PubMed

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Danying; Deng, Xiaoyong; Ji, Zongfei; Shen, Xizhong; Dong, Ling; Wu, Minghong; Gu, Taoying; Liu, Yuanfang

    2010-04-01

    The toxicity of polyethylene-glycol functionalized (PEGylated) multi-walled carbon nanotubes (MWCNTs) and non-PEGylated MWCNTs in vivo was evaluated and compared. Mice were exposed to MWCNTs by intravenous injection. The activity level of glutathione, superoxide dismutase and gene expression in liver, as well as some biochemical parameters and the tumor necrosis factor alpha level in blood were measured over 2 months. The pathological and electron micrographic observations of liver evidently indicate that the damage caused by non-PEGylated MWCNTs is slightly more severe than that of PEGylated MWCNTs, which means that PEGylation can partly, but not substantially, improve the in vivo biocompatibility of MWCNTs.

  14. Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel.

    PubMed

    De Nicola, Francesco; Castrucci, Paola; Scarselli, Manuela; Nanni, Francesca; Cacciotti, Ilaria; De Crescenzi, Maurizio

    2015-04-10

    We have taken advantage of the native surface roughness and the iron content of AISI 316 stainless steel to directly grow multi-walled carbon nanotube (MWCNT) random networks by chemical vapor deposition (CVD) at low-temperature (1000°C) without the addition of any external catalysts or time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on stainless steel sheets were obtained, exhibiting high contact angle values (154°C) and high adhesion force (high contact angle hysteresis). Furthermore, the investigation of MWCNT films with scanning electron microscopy (SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic MWCNTs. Owing to the Salvinia effect, the hydrophobic and hydrophilic composite surface of the MWCNT films supplies a stationary super-hydrophobic coating for conductive stainless steel. This biomimetical inspired surface not only may prevent corrosion and fouling, but also could provide low friction and drag reduction.

  15. The functionalization and characterization of multi-walled carbon nanotubes (MWCNTs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, Mohd Pauzi; Center of Water Analysis and Research; Zulkepli, Siti Aminah

    2015-09-25

    Functionalization is the process of introducing chemical functional groups on the surface of the material. In this study, a multi-walled carbon nanotube (MWCNTs) was functionalized by oxidation treatment using concentrated nitric acid. The functionalized and pristine MWCNTs were analyzed by using Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The XRD patterns exhibit the graphitic properties for all samples. Besides, the XRD results also demonstrate that the percent of crystallinity of MWCNTs increases as the duration of acid treatment increases. The percent of crystallinity increases from 66% to 80% when the pristine MWCNT treated for 12 hours with additionalmore » 12 hours reflux process with nitric acid. The IR spectrum for the 12 hours-treated MWCNTs shows the formation of carboxyl functional group. Additional 12 hours reflux process with nitric acid on the 12 hours-treated MWCNTs have shown the loss of existing carboxyl group and only hydroxyl group formed.« less

  16. Micro-emulsification/encapsulation of krill oil by complex coacervation with krill protein isolated using isoelectric solubilization/precipitation.

    PubMed

    Shi, Liu; Beamer, Sarah K; Yang, Hong; Jaczynski, Jacek

    2018-04-01

    This study determined feasibility of krill protein isolated with isoelectric solubilization/precipitation (ISP) as wall material to microencapsulate krill oil by freeze-drying. Effects of krill oil/krill protein ratio on properties of microcapsules were investigated. With increased ratio, crude protein of microcapsules decreased, while total lipid increased. Although microcapsule oil loading capacity increased, loading and encapsulation efficiencies decreased. Thin layer chromatography (TLC) confirmed abundance of phospholipids, which are amphiphilic; and thus, resulted in stable emulsion (emulsion stability index). Microcapsules contained ω-3 polyunsaturated fatty acids (PUFAs) at 43-60, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at 28-41 and 9-11 g/100g of total FAs, respectively. SDS-PAGE electrophoresis revealed proteolysis of ISP krill protein, probably causing reduced loading and encapsulation efficiencies. SEM showed that krill oil/krill protein ratio affected surface microstructure. ISP krill protein showed potential as a wall material to microencapsulate krill oil; and thus, expand application of krill oil/protein for human consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Recent applications of nanomaterials in capillary electrophoresis.

    PubMed

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Safety Aspects of Bio-Based Nanomaterials.

    PubMed

    Catalán, Julia; Norppa, Hannu

    2017-12-01

    Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  19. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  20. Facile synthesis of stable superhydrophobic nanocomposite based on multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mokarian, Zahra; Rasuli, Reza; Abedini, Yousefali

    2016-04-01

    A facile approach to fabricate a stable superhydrophobic composite comprising multi-walled carbon nanotubes and silicone rubber has been reported. Contact angle of de-ionized water droplets on the prepared surface was measured with the value of near 159°; while water droplets easily rolled off and bounced on it. Surface free energy of the superhydrophobic coating was examined by three methods about 26 mJ/m2. The prepared film shows good stability under high stress conditions such as ultraviolet exposure, heating, pencil hardness test, attacking with different pH value and ionic-strength solutions. In addition, remarkable stability of the coating was observed after soaking in condensed hydrochloric acid, 5 wt.% NaCl aqueous solution, boiling water and tape test.

  1. Engineered Nanomaterials: Their Physicochemical Characteristics and How to Measure Them.

    PubMed

    Atluri, Rambabu; Jensen, Keld Alstrup

    2017-01-01

    Numerous types of engineered nanomaterials (ENMs) are commercially available and developments move towards producing more advanced nanomaterials with tailored properties. Such advanced nanomaterials may include chemically doped or modified derivatives with specific surface chemistries; also called higher generation or multiconstituent nanomaterials. To fully enjoy the benefits of nanomaterials, appropriate characterisation of ENMs is necessary for many aspects of their production, use, testing and reporting to regulatory bodies. This chapter introduces both structural and textural properties of nanomaterials with a focus on demonstrating the information that can be achieved by analysis of primary physicochemical characteristics and how such information is critical to understand or assess the possible toxicity of engineered nanomaterials. Many of characterization methods are very specific to obtain particular characteristics and therefore the most widely used techniques are explained and demonstrated.

  2. Salinity-dependent toxicity of water-dispersible, single-walled carbon nanotubes to Japanese medaka embryos.

    PubMed

    Kataoka, Chisato; Nakahara, Kousuke; Shimizu, Kaori; Kowase, Shinsuke; Nagasaka, Seiji; Ifuku, Shinsuke; Kashiwada, Shosaku

    2017-04-01

    To investigate the effects of salinity on the behavior and toxicity of functionalized single-walled carbon nanotubes (SWCNTs), which are chemical modified nanotube to increase dispersibility, medaka embryos were exposed to non-functionalized single-walled carbon nanotubes (N-SWCNTs), water-dispersible, cationic, plastic-polymer-coated, single-walled carbon nanotubes (W-SWCNTs), or hydrophobic polyethylene glycol-functionalized, single-walled carbon nanotubes (PEG-SWCNTs) at different salinities, from freshwater to seawater. As reference nanomaterials, we tested dispersible chitin nanofiber (CNF), chitosan-chitin nanofiber (CCNF) and chitin nanocrystal (CNC, i.e. shortened CNF). Under freshwater conditions, with exposure to 10 mg l -1  W-SWCNTs, the yolk sacks of 57.8% of embryos shrank, and the remaining embryos had a reduced heart rate, eye diameter and hatching rate. Larvae had severe defects of the spinal cord, membranous fin and tail formation. These toxic effects increased with increasing salinity. Survival rates declined with increasing salinity and reached 0.0% in seawater. In scanning electron microscope images, W-SWCNTs, CNF, CCNF and CNC were adsorbed densely over the egg chorion surface; however, because of chitin's biologically harmless properties, only W-SWCNTs had toxic effects on the medaka eggs. No toxicity was observed from N-SWCNT and PEG-SWCNT exposure. We demonstrated that water dispersibility, surface chemistry, biomedical properties and salinity were important factors in assessing the aquatic toxicity of nanomaterials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Predictive modeling of nanomaterial exposure effects in biological systems

    PubMed Central

    Liu, Xiong; Tang, Kaizhi; Harper, Stacey; Harper, Bryan; Steevens, Jeffery A; Xu, Roger

    2013-01-01

    Background Predictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential hazards resulting from the application of engineered nanomaterials. Methods We generated an experimental dataset on the toxic effects experienced by embryonic zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric (EZ Metric) was used as a screening-level measurement representative of adverse effects. Using the dataset, we developed a data mining approach to model the toxic endpoints and the overall biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can assist analysts in developing risk assessment models for nanomaterials. Results We found several important attributes that contribute to the 24 hours post-fertilization (hpf) mortality, such as dosage concentration, shell composition, and surface charge. These findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic endpoints such as mortality, delayed development, and morphological malformations. The results show that we can achieve high prediction accuracy for certain biological effects, such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also show that the weighting scheme for individual biological effects has a significant influence on modeling the overall impact of nanomaterials. Sample prediction models can be found at http://neiminer.i-a-i.com/nei_models. Conclusion The EZ Metric-based data mining approach has been shown to have predictive power. The results provide valuable insights into the modeling and understanding of nanomaterial exposure effects. PMID:24098077

  4. Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite

    NASA Astrophysics Data System (ADS)

    Bahgat, Mohamed; Farghali, Ahmed Ali; El Rouby, Waleed; Khedr, Mohamed; Mohassab-Ahmed, Mohassab Y.

    2013-06-01

    This research was carried out to evaluate the capability of multi-walled carbon nanotubes (CNTs) and NiFe2O4-decorated multi-walled carbon nanotubes (NiFe2O4-CNTs) toward waste water treatment relevant to organic dyes. CNTs were prepared via chemical vapor deposition method. NiFe2O4-CNTs were prepared by in-situ chemical precipitation of metal hydroxides followed by hydrothermal processing. The samples were characterized using XRD and TEM. The adsorption efficiency of CNTs and NiFe2O4-CNTs of methyl green dye at various temperatures was examined. The adsorbed amount increased with the CNTs and NiFe2O4-CNTs dosage. The linear correlation coefficients and standard deviations of Langmuir and Freundlich isotherms were determined. It was found that Langmuir isotherm fitted the experimental results well in both adsorption cases n of methyl green onto CNTs and NiFe2O4-CNTs. Kinetics analyses were conducted using pseudo first-order, second-order and the intraparticle diffusion models. The results showed that the adsorption kinetics was controlled by a pseudo second-order model for adsorption of methyl green onto CNTs and best controlled by pseudo first-order in case of NiFe2O4-CNTs. Changes in the free energy of adsorption (Δ G°), enthalpy (Δ H°), entropy (Δ S°), and the activation energy ( E a) were determined. The Δ H°, Δ G° and E a values indicated that the adsorption of methyl green onto MWCNTs and NiFe2O4-MWCNTs was physisorption.

  5. Influence of oxygen concentration, fuel composition, and strain rate on synthesis of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hou, Shuhn-Shyurng; Huang, Wei-Cheng

    2015-02-01

    This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).

  6. The electronic encapsulation of knowledge in hydraulics, hydrology and water resources

    NASA Astrophysics Data System (ADS)

    Abbott, Michael B.

    The rapidly developing practice of encapsulating knowledge in electronic media is shown to lead necessarily to the restructuring of the knowledge itself. The consequences of this for hydraulics, hydrology and more general water-resources management are investigated in particular relation to current process-simulation, real-time control and advice-serving systems. The generic properties of the electronic knowledge encapsulator are described, and attention is drawn to the manner in which knowledge 'goes into hiding' through encapsulation. This property is traced in the simple situations of pure mathesis and in the more complex situations of taxinomia using one example each from hydraulics and hydrology. The consequences for systems architectures are explained, pointing to the need for multi-agent architectures for ecological modelling and for more general hydroinformatics systems also. The relevance of these developments is indicated by reference to ongoing projects in which they are currently being realised. In conclusion, some more general epistemological aspects are considered within the same context. As this contribution is so much concerned with the processes of signification and communication, it has been partly shaped by the theory of semiotics, as popularised by Eco ( A Theory of Semiotics, Indiana University, Bloomington, 1977).

  7. ParaCEST Agents Encapsulated in Reverse Nano-Assembled Capsules (RACs): How Slow Molecular Tumbling Can Quench CEST Contrast.

    PubMed

    Farashishiko, Annah; Slack, Jacqueline R; Botta, Mauro; Woods, Mark

    2018-01-01

    Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM 3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid (PAA) after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride (PAH) followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. The quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  8. ParaCEST Agents Encapsulated in Reverse Nano-Assembled Capsules (RACs): How Slow Molecular Tumbling Can Quench CEST Contrast

    PubMed Central

    Farashishiko, Annah; Slack, Jacqueline R.; Botta, Mauro; Woods, Mark

    2018-01-01

    Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid (PAA) after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride (PAH) followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. The quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST. PMID:29682499

  9. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes.

    PubMed

    Jiang, Hao; Ma, Jan; Li, Chunzhong

    2012-08-08

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed.

  10. Nanomaterials and Retinal Toxicity | Science Inventory | US ...

    EPA Pesticide Factsheets

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature and then crossing the blood-retinal barrier; and through the choroidal blood supply, crossing the Bruch's membrane and the retinal pigment epithelium (RPE). The blood-retinal barrier is functionally similar to the blood-brain barrier, normally restricting transport of larger sized materials, but particles in the lower nanomaterial size range can be expected to transit. The blood flow to the retinal choroid is, on a tissue mass basis, one of the highest in the body raising the potential for rapid delivery of nanomaterials to the RPE. In vitro, RPE cells rapidly uptake nano particles, transport and agglomerate them in the perinuclear cytoplasm. In vivo studies have shown that the eye can uptake nanomaterials and retain them longer than many other tissues after cessation of exposure. Toxicity from nanomaterials to the neural retina or the RPE would be expected to follow common mechanisms identified for other tissues including generation of reactive oxygen species, alteration of cellular redox status, altered intracellular signaling, and release of toxic metal ions from soluble metallic particles. The retina and other ocular tissues, however, have potential for additional phototoxic mechanism

  11. Magnetic field control of 90°, 180°, and 360° domain wall resistance

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2012-10-01

    In the present work, we have compared the resistance of the 90°, 180°, and 360° domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Néel-type domain walls between two domains whose magnetization differs by angle of 90°, 180°, and 360° are considered. The results indicate that the resistance of the 360° DW is more considerable than that of the 90° and 180° DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.

  12. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes.

    PubMed

    Shahbazi, Mahdiyar; Rajabzadeh, Ghadir; Sotoodeh, Shahnaz

    2017-11-01

    Two types of multi-walled carbon nanotubes (CNT and CNT-OH) at different levels (0.1-0.9wt%) were introduced into starch matrix in order to modify its functional properties. The optimum concentration of each nanotube was selected based on the results of water solubility, water permeability and mechanical experiments. The physico-mechanical data showed that CNT up to 0.7wt% led to a notable increase in water resistance, water barrier property and tensile strength, whilst regarding CNT-OH, these improvements found at 0.9wt%. Therefore, effects of optimized level of each nanotube on the starch film were evaluated by XRD, surface hydrophobicity, wettability and surface energy tests. XRD revealed that the position of starch characteristic peak shifted to higher degree after nanotubes introducing. The hydrophobic character of the film was greatly increased with incorporation of nanoparticles, as evidenced by increased contact angle with greatest value regarding CNT-OH. Moreover, CNT-OH notably decreased the surface free energy of the starch film. Finally, the conformity of both nanocomposites with actual food regulations on biodegradable materials was tested by cytotoxicity assay to evaluate the possibility of application in food packaging sector. Both nanocomposite films had potential of cytotoxic effects, since they could increase cytoplasmic lactate dehydrogenase release from L-929 fibroblast cells in contact with their surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials.

    PubMed

    Dhara, Keerthy; Mahapatra, Debiprosad Roy

    2017-12-13

    An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.

  14. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  15. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    PubMed

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  16. The Effect of Multi Wall Carbon Nanotubes on Some Physical Properties of Epoxy Matrix

    NASA Astrophysics Data System (ADS)

    Al-Saadi, Tagreed M.; hammed Aleabi, Suad; Al-Obodi, Entisar E.; Abdul-Jabbar Abbas, Hadeel

    2018-05-01

    This research involves using epoxy resin as a matrix for making a composite material, while the multi wall carbon nanotubes (MWNCTs) is used as a reinforcing material with different fractions (0.0,0.02, 0.04, 0.06) of the matrix weight. The mechanical ( hardness ), electrical ( dielectric constant, dielectric loss factor, dielectric strength, electrical conductivity ), and thermal properties (thermal conductivity ) were studied. The results showed the increase of hardness, thermal conductivity, electrical conductivity and break down strength with the increase of MWCNT concentration, but the behavior of dielectric loss factor and dielectric constant is opposite that.

  17. Chemical alternatives assessment of different flame retardants - A case study including multi-walled carbon nanotubes as synergist.

    PubMed

    Aschberger, Karin; Campia, Ivana; Pesudo, Laia Quiros; Radovnikovic, Anita; Reina, Vittorio

    2017-04-01

    Flame retardants (FRs) are a diverse group of chemicals used as additives in a wide range of products to inhibit, suppress, or delay ignition and to prevent the spread of fire. Halogenated FRs (HFRs) are widely used because of their low impact on other material properties and the low loading levels necessary to meet the required flame retardancy. Health and environmental hazards associated with some halogenated FRs have driven research for identifying safer alternatives. A variety of halogen-free FRs are available on the market, including organic (phosphorus and nitrogen based chemicals) and inorganic (metals) materials. Multi-walled carbon nanotubes (MWCNT) have been demonstrated to act as an effective/synergistic co-additive in some FR applications and could thereby contribute to reducing the loading of FRs in products and improving their performance. As part of the FP7 project DEROCA we carried out a chemical alternatives assessment (CAA). This is a methodology for identifying, comparing and selecting safer alternatives to chemicals of concern based on criteria for categorising human and environmental toxicity as well as environmental fate. In the project we assessed the hazard data of different halogen-free FRs to be applied in 5 industrial and consumer products and here we present the results for MWCNT, aluminium diethylphosphinate, aluminium trihydroxide, N-alkoxy hindered amines and red phosphorus compared to the HFR decabromodiphenylether. We consulted the REACH guidance, the criteria of the U.S.-EPA Design for Environment (DfE) and the GreenScreen® Assessment to assess and compare intrinsic properties affecting the hazard potential. A comparison/ranking of exposure reference values such as Derived No Effect Levels (DNELs) showed that FRs of concern are not identified by a low DNEL. A comparison based on hazard designations according to the U.S.-EPA DfE and GreenScreen® for human health endpoints, aquatic toxicity and environmental fate showed that the

  18. Cellular Stress Responses Elicited by Engineered Nanomaterials

    EPA Science Inventory

    Engineered nanomaterials are being incorporated continuously into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigation of underlying pathwa...

  19. Risk assessment strategies as nanomaterials transition into commercial applications

    NASA Astrophysics Data System (ADS)

    Olson, Mira S.; Gurian, Patrick L.

    2012-03-01

    Commercial applications of nanomaterials are rapidly emerging in the marketplace. The environmental and human health risks of many nanomaterials remain unknown, and prioritizing how to efficiently assess their risks is essential. As nanomaterials are incorporated into a broader range of commercial products, their potential for environmental release and human exposure not only increases, but also becomes more difficult to model accurately. Emphasis may first be placed on estimating potential environmental exposure based on pertinent physical properties of the nanomaterials. Given that the greatest potential for global environmental impacts results from nanomaterials that are both persistent and toxic, this paper advocates screening first for persistence since it is easier to assess than toxicity. For materials that show potential for persistence, a higher burden of proof of their non-toxicity is suggested before they enter the commercial marketplace whereas a lower burden of proof may be acceptable for nanomaterials that are less persistent.

  20. Development of a new test system to determine penetration of multi-walled carbon nanotubes through filtering facepiece respirators

    PubMed Central

    Vo, Evanly; Zhuang, Ziqing

    2015-01-01

    Carbon nanotubes (CNTs) are currently used in numerous industrial and biomedical applications. Recent studies suggest that workers may be at risk of adverse health effects if they are exposed to CNTs. A National Institute for Occupational Safety and Health (NIOSH) survey of the carbonaceous nanomaterial industry found that 77% of the companies used respiratory protection. Elastomeric half-mask respirators and filtering facepiece respirators (FFRs) are commonly used. Although numerous respirator filtration studies have been done with surrogate engineered nanoparticles, such as sodium chloride, penetration data from engineered nanoparticles such as CNTs are lacking. The aims of this study were to develop a new CNT aerosol respirator testing system and to determine multi-walled CNT (MWCNT) penetration through FFRs. A custom-designed CNT aerosol respirator testing system (CNT-ARTS) was developed which was capable of producing a sufficient amount of airborne MWCNTs for testing of high efficiency FFRs. The size distribution of airborne MWCNTs was 20–10,000 nm, with 99% of the particles between 25 and 2840 nm. The count median diameter (CMD) was 209 nm with a geometric standard deviation (GSD) of 1.98. This particle size range is similar to those found in some work environments (particles ≤6000 nm). The penetration of MWCNTs through six tested FFR models at two constant flow rates of 30 and 85 LPM was determined. Penetration at 85 LPM (0.58–2.04% for N95, 0.15–0.32% for N99, and 0.007–0.009% for P100 FFRs) was greater compared with the values at 30 LPM (0.28–1.79% for N95, 0.10–0.24% for N99, and 0.005–0.006% for P100 FFRs). The most penetrating particle size through all six tested FFR models was found to be in the range of 25–130 nm and 35–200 nm for the 30-LPM and 85-LPM flow rates, respectively. PMID:26166842

  1. The potential of protein-nanomaterial interaction for advanced drug delivery.

    PubMed

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nanomaterial-Enabled Neural Stimulation

    PubMed Central

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  3. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  4. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  5. Exploring the possibilities and limitations of a nanomaterials genome.

    PubMed

    Qian, Chenxi; Siler, Todd; Ozin, Geoffrey A

    2015-01-07

    What are we going to do with the cornucopia of nanomaterials appearing in the open and patent literature, every day? Imagine the benefits of an intelligent and convenient means of categorizing, organizing, sifting, sorting, connecting, and utilizing this information in scientifically and technologically innovative ways by building a Nanomaterials Genome founded upon an all-purpose Periodic Table of Nanomaterials. In this Concept article, inspired by work on the Human Genome project, which began in 1989 together with motivation from the recent emergence of the Materials Genome project initiated in 2011 and the Nanoinformatics Roadmap 2020 instigated in 2010, we envision the development of a Nanomaterials Genome (NMG) database with the most advanced data-mining tools that leverage inference engines to help connect and interpret patterns of nanomaterials information. It will be equipped with state-of-the-art visualization techniques that rapidly organize and picture, categorize and interrelate the inherited behavior of complex nanomatter from the information programmed in its constituent nanomaterials building blocks. A Nanomaterials Genome Initiative (NMGI) of the type imagined herein has the potential to serve the global nanoscience community with an opportunity to speed up the development continuum of nanomaterials through the innovation process steps of discovery, structure determination and property optimization, functionality elucidation, system design and integration, certification and manufacturing to deployment in technologies that apply these versatile nanomaterials in environmentally responsible ways. The possibilities and limitations of this concept are critically evaluated in this article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Encapsulation of Beetroot Pomace Extract: RSM Optimization, Storage and Gastrointestinal Stability.

    PubMed

    Tumbas Šaponjac, Vesna; Čanadanović-Brunet, Jasna; Ćetković, Gordana; Jakišić, Mirjana; Djilas, Sonja; Vulić, Jelena; Stajčić, Slađana

    2016-04-30

    One of the great problems in food production are surplus by-products, usually utilized for feeding animals and for preparation of dietary fibre or biofuel. These products represent potential sources of bioactive antioxidants and colour-giving compounds which could be used in the pharmaceutical industry and as food additives. In the present study beetroot pomace extract was encapsulated in soy protein by a freeze drying method. Process parameters (core: wall ratio, extract concentration and mixing time) were optimized using response surface methodology (RSM) in order to obtain the optimum encapsulate (OE) with the highest polyphenol encapsulation efficiency (EE) and radical scavenging activity on DPPH radicals (SA). Using the calculated optimum conditions, the EE (86.14%) and SA (1668.37 μmol Trolox equivalents/100 g) of OE did not differ significantly (p < 0.05) from the predicted ones. The contents of total polyphenols (326.51 mg GAE/100 g), flavonoids (10.23 mg RE/100 g), and betalains (60.52 mg betanin/100 g and 61.33 mg vulgaxanthin-I/100 g), individual content of phenolic compounds and betalains by HPLC, and the ability to reduce Fe(3+) ions, i.e., reducing power (394.95 μmol Trolox equivalents/100 g) of OE were determined as well. During three months of storage at room temperature, polyphenol retention was much higher (76.67%) than for betalain pigments, betacyanins (17.77%) and betaxanthins (17.72%). In vitro digestion and release of phenolics from OE showed higher release rate in simulated intestinal fluid than in gastric fluid. These results suggest encapsulation as a contemporary method for valorisation of sensitive bioactive compounds from food industry by-products.

  7. Energy Device Applications of Synthesized 1D Polymer Nanomaterials.

    PubMed

    Huang, Long-Biao; Xu, Wei; Hao, Jianhua

    2017-11-01

    1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass.

    PubMed

    Jin, Lixia; Son, Yowhan; Yoon, Tae Kyung; Kang, Yu Jin; Kim, Woong; Chung, Haegeun

    2013-02-01

    Nanomaterials such as single-walled carbon nanotubes (SWCNTs) may enter the soil environment with unknown consequences resulting from the development of nanotechnology for a variety of applications. We determined the effects of SWCNTs on soil enzyme activity and microbial biomass through a 3-week incubation of urban soils treated with different concentrations of SWCNTs ranging from 0 to 1000 μg g(-1) soil. The activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase and microbial biomass were measured in soils treated with powder and suspended forms of SWCNTs. SWCNTs of concentrations at 300-1000 μg g(-1) soil significantly lowered activities of most enzymes and microbial biomass. It is noteworthy that the SWCNTs showed similar effects to that of multi-walled carbon nanotubes (MWCNTs), but at a concentration approximately 5 times lower; we suggest that this is mainly due to the higher surface area of SWCNTs than that of MWCNTs. Indeed, our results show that surface area of CNTs has significant negative relationship with relative enzyme activity and biomass, which suggests that greater microorganism-CNT interactions could increase the negative effect of CNTs on microorganisms. Current work may contribute to the preparation of a regulatory guideline for the release of CNTs to the soil environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method.

    PubMed

    Zardini, Hadi Zare; Amiri, Ahmad; Shanbedi, Mehdi; Maghrebi, Morteza; Baniadam, Majid

    2012-04-01

    Multi-walled carbon nanotubes (MWCNTs) were first functionalized by arginine and lysine under microwave radiation. Surface functionalization was confirmed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM). After the MWCNTs were functionalized by arginine and lysine, the antibacterial activity of all treated samples was increased significantly against all bacteria that were tested. Based on the observed minimum inhibitory concentration and radial diffusion assay, the sequence of antibacterial activity was MWCNTs-arginine>MWCNTs-lysine>pristine MWCNTs. The functionalized MWCNTs were especially effective against gram-negative bacteria (e.g., Escherichia coli and Salmonella typhimurium). Interestingly, the MWCNT samples were effective against the resistant strain Staphylococcos aureus. The enhanced antibacterial activity was attributed to electrostatic adsorption of bacteria membrane due to positive charges of the functional groups on MWCNTs surface. Since MWCNTs have lower cytotoxicity than single-walled carbon nanotubes, their functionalization with cationic amino acids could be a beneficial approach in the disinfection industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Sensitive electrochemical sensing platform for microRNAs detection based on shortened multi-walled carbon nanotubes with high-loaded thionin.

    PubMed

    Deng, Keqin; Liu, Xinyan; Li, Chunxiang; Huang, Haowen

    2018-05-31

    The loading capacity of thionin (Thi) on shortened multi-walled carbon nanotubes (S-MWCNTs) and acidified multi-walled carbon nanotubes (A-MWCNTs) was compared. Two DNA probe fragments were designed for hybridization with microRNA-21 (miR-21), the microRNAs (miRNAs) model analyte. DNA probe 1 (P1) was assembled on Au nanoparticles (AuNPs) modified electrode. MiR-21 was captured by the pre-immobilized P1. A signal nanoprobe was synthesized by loading large amount of Thi on S-MWCNTs with covalently bonded probe 2 (P2). Owing to the large effective surface area of MWCNTs, fast electron shuttle of MWCNTs, high-loaded Thi on S-MWCNTs, and the increased conductivity from AuNPs, after signal probe hybridized with miR-21, it gave rise to a magnified current response on electrode. The increased electrochemical current enabled us to quantitatively detect miR-21. Expensive bioreagents and labeled target/detection DNA or miRNAs were avoided in this strategy. The operation complexity and assay cost were also reduced. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-06-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species.

  12. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure

    PubMed Central

    Yoshioka, Yasuo; Kuroda, Etsushi; Hirai, Toshiro; Tsutsumi, Yasuo; Ishii, Ken J.

    2017-01-01

    Over the past decade, a vast array of nanomaterials has been created through the development of nanotechnology. With the increasing application of these nanomaterials in various fields, such as foods, cosmetics, and medicines, there has been concern about their safety, that is, nanotoxicity. Therefore, there is an urgent need to collect information about the biological effects of nanomaterials so that we can exploit their potential benefits and design safer nanomaterials, while avoiding nanotoxicity as a result of inhalation or skin exposure. In particular, the immunomodulating effect of nanomaterials is one of most interesting aspects of nanotoxicity. However, the immunomodulating effects of nanomaterials through skin exposure have not been adequately discussed compared with the effects of inhalation exposure, because skin penetration by nanomaterials is thought to be extremely low under normal conditions. On the other hand, the immunomodulatory effects of nanomaterials via skin may cause severe problems for people with impaired skin barrier function, because some nanomaterials could penetrate the deep layers of their allergic or damaged skin. In addition, some studies, including ours, have shown that nanomaterials could exhibit significant immunomodulating effects even if they do not penetrate the skin. In this review, we summarize our current knowledge of the allergic responses induced by nanomaterials upon skin exposure. First, we discuss nanomaterial penetration of the intact or impaired skin barrier. Next, we describe the immunomodulating effects of nanomaterials, focusing on the sensitization potential of nanomaterials and the effects of co-exposure of nanomaterials with substances such as chemical sensitizers or allergens, on the onset of allergy, following skin exposure. Finally, we discuss the potential mechanisms underlying the immunomodulating effects of nanomaterials by describing the involvement of the protein corona in the interaction of

  13. Construction of photo-driven bioanodes using thylakoid membranes and multi-walled carbon nanotubes.

    PubMed

    Takeuchi, Ryosuke; Suzuki, Arato; Sakai, Kento; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji

    2018-04-03

    A photo-driven bioanode was constructed using the thylakoid membrane from spinach, carbon nanotubes, and an artificial mediator. By considering a linear free-energy relationship in the electron transfer from the thylakoid membrane to the mediators, and the oxygen resistance of the reduced mediators, 1,2-naphthoquinone was selected as the most suitable mediator for the photo-driven bioanode. Water-dispersed multi-walled carbon nanotubes served as scaffolds to hold the thylakoid membrane on a porous electrode. The constructed photo-driven bioanode exhibited a photocurrent density of over 100μAcm -2 at a photon flux density of 1500μmolm -2 s -1 . Copyright © 2018. Published by Elsevier B.V.

  14. Nanomaterials for Defense Applications

    NASA Astrophysics Data System (ADS)

    Turaga, Uday; Singh, Vinitkumar; Lalagiri, Muralidhar; Kiekens, Paul; Ramkumar, Seshadri S.

    Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

  15. In Vitro Toxicity of Aluminum Nanoparticles in Rat Alveolar Macrophages

    DTIC Science & Technology

    2006-03-01

    example, carbon nanotubes can carry more current density than any metal, as high as 1000 times the current density of copper (Kuennen, 2004...applications in defense, aerospace and automotive industries. Composites such as carbon, boron and silicon carbide are used to reinforce aluminum...carbon nanomaterials such as single–walled nanotubes , multi-walled nanotubes and fullerene on AM. 2.5.1 Macrophage Role In Immunity These immune

  16. Accelerating the Translation of Nanomaterials in Biomedicine

    PubMed Central

    Mitragotri, Samir; Anderson, Daniel G.; Chen, Xiaoyuan; Chow, Edward K.; Ho, Dean; Kabanov, Alexander V.; Karp, Jeffrey M.; Kataoka, Kazunori; Mirkin, Chad A.; Petrosko, Sarah Hurst; Shi, Jinjun; Stevens, Molly M.; Sun, Shouheng; Teoh, Sweehin; Venkatraman, Subbu S.; Xia, Younan; Wang, Shutao; Gu, Zhen; Xu, Chenjie

    2017-01-01

    Due to their size and tailorable physicochemical properties, nanomaterials are an emerging class of structures utilized in biomedical applications. There are now many prominent examples of nanomaterials being used to improve human health, in areas ranging from imaging and diagnostics to therapeutics and regenerative medicine. An overview of these examples reveals several common areas of synergy and future challenges. This Nano Focus discusses the current status and future potential of promising nanomaterials and their translation from the laboratory to the clinic, by highlighting a handful of successful examples. PMID:26115196

  17. NANOMATERIALS, NANOTECHNOLOGY: APPLICATIONS, CONSUMER PRODUCTS, AND BENEFITS

    EPA Science Inventory

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environ...

  18. Nanomaterials and nanofabrication for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chao-Min; Chia-Wen Wu, Kevin

    2013-08-01

    Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery

  19. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    NASA Astrophysics Data System (ADS)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Jiang, L.; Silvain, J.-F.; Lu, Y. F.

    2015-10-01

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0-10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm2. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  20. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  1. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  2. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: the jack-of-all-trades in cancer nanotheranostics?

    PubMed

    Conde, João; Edelman, Elazer R; Artzi, Natalie

    2015-01-01

    microRNAs (miRNAs) show high potential for cancer treatment, however one of the most significant bottlenecks in enabling miRNA effect is the need for an efficient vehicle capable of selective targeting to tumor cells without disrupting normal cells. Even more challenging is the ability to detect and silence multiple targets simultaneously with high sensitivity while precluding resistance to the therapeutic agents. Focusing on the pervasive role of miRNAs, herein we review the multiple nanomaterial-based systems that encapsulate DNA/RNA for miRNA sensing and inhibition in cancer therapy. Understanding the potential of miRNA detection and silencing while overcoming existing limitations will be critical to the optimization and clinical utilization of this technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Biological responses to engineered nanomaterials: Needs for the next decade

    DOE PAGES

    Murphy, Catherine J.; Vartanian, Ariane M.; Geiger, Franz M.; ...

    2015-06-09

    In this study, the interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterialmore » effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.« less

  4. Flame Synthesis of Single- and Multi-Walled Carbon Nanotubes and Nanofibers

    NASA Technical Reports Server (NTRS)

    VanderWal, R. L.; Ticich, Thomas M.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly sought for a diverse range of applications that include nanoelectronics, battery electrode material, catalysis, hydrogen storage media and reinforcing agents in polymer composites. These latter applications will require vast quantities of nanotubes at competitive prices to be economically feasible. Moreover, reinforcing applications may not require ultrahigh purity nanotubes. Indeed, functionalization of nanotubes to facilitate interfacial bonding within composites will naturally introduce defects into the tube walls, lessening their tensile strength. Current methods of aerosol synthesis of carbon nanotubes include laser ablation of composite targets of carbon and catalyst metal within high temperature furnaces and decomposition of a organometallics in hydrocarbons mixtures within a tube furnace. Common to each approach is the generation of particles in the presence of the reactive hydrocarbon species at elevated temperatures. In the laser-ablation approach, the situation is even more dynamic in that particles and nanotubes are borne during the transient cooling phase of the laser-induced plasma for which the temperature far exceeds that of the surrounding hot gases within the furnace process tube. A shared limitation is that more efficient methods of nanoparticle synthesis are not readily incorporated into these approaches. In contrast, combustion can quite naturally create nanomaterials such as carbon black. Flame synthesis is well known for its commercial scalability and energy efficiency. However, flames do present a complex chemical environment with steep gradients in temperature and species concentrations. Moreover, reaction times are limited within buoyant driven flows to tens of milliseconds. Therein microgravity can greatly lessen temperature and spatial gradients while allowing independent control of flame residence times. In preparation for defining the microgravity experiments, the work presented here focuses

  5. PIONEER VENUS 2 MULTI PROBE IS ENCAPSULATED IN PROTECTIVE SHROUD

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Encapsulation of the Pioneer Venus Multiprobe in its protective nose fairing is closely monitored by technicians in Hangar AO. The 2,000-pound spacecraft is one of two being launched toward the planet Venus. The Multiprobe is scheduled for launch aboard an Atlas Centaur rocket on August 7. Flying a direct path to the cloud-shrouded planet, the Multiprobe will reach Venus five days after the arrival of its sister spacecraft, the Pioneer Venus Orbiter, which was launched May 20, 1978. Three weeks before the Multiprobe reaches Venus, its four heavily instrumented scientific probes (seen on top of the spacecraft's main body or ''bus'') will be released and will impact at various points on the planet's surface. Together, the two spacecraft will conduct a thorough scientific exploration of the planet Venus.

  6. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective

    PubMed Central

    Baldrighi, Michele; Trusel, Massimo; Tonini, Raffaella; Giordani, Silvia

    2016-01-01

    Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues. PMID:27375413

  7. Occupational exposure limits for nanomaterials: state of the art

    NASA Astrophysics Data System (ADS)

    Schulte, P. A.; Murashov, V.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.

    2010-08-01

    Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose-response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose-response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

  8. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity.

    PubMed

    Moreno-Horn, Marcus; Gebel, Thomas

    2014-11-01

    Nanomaterials are usually defined by primary particle diameters ranging from 1 to 100 nm. The scope of this review is an evaluation of experimental animal studies dealing with the systemic levels and putative systemic effects induced by nanoparticles which can be characterized as being granular biodurable particles without known specific toxicity (GBP). Relevant examples of such materials comprise nanosized titanium dioxide (TiO2) and carbon black. The question was raised whether GBP nanomaterials systemically accumulate and may possess a relevant systemic toxicity. With few exceptions, the 56 publications reviewed were not performed using established standard protocols, for example, OECD guidelines but used non-standard study designs. The studies including kinetic investigations indicated that GBP nanomaterials were absorbed and systemically distributed to rather low portions only. There was no valid indication that GPB nanomaterials possess novel toxicological hazard properties. In addition, no convincing evidence for a relevant specific systemic toxicity of GBP nanomaterials could be identified. The minority of the papers reviewed (15/56) investigated both nanosized and microsized GBP materials in parallel. A relevant different translocation of GBP nanomaterials in contrast to GBP micromaterials was not observed in these studies. There was no evidence that GPB nanomaterials possess toxicological properties other than their micromaterial counterparts.

  9. Functionalized multi-walled carbon nanotubes in an aldol reaction

    NASA Astrophysics Data System (ADS)

    Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.

    2015-01-01

    The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction

  10. Endotoxin Contamination in Nanomaterials Leads to the Misinterpretation of Immunosafety Results

    PubMed Central

    Li, Yang; Fujita, Mayumi; Boraschi, Diana

    2017-01-01

    Given the presence of engineered nanomaterials in consumers’ products and their application in nanomedicine, nanosafety assessment is becoming increasingly important. In particular, immunosafety aspects are being actively investigated. In nanomaterial immunosafety testing strategies, it is important to consider that nanomaterials and nanoparticles are very easy to become contaminated with endotoxin, which is a widespread contaminant coming from the Gram-negative bacterial cell membrane. Because of the potent inflammatory activity of endotoxin, contaminated nanomaterials can show inflammatory/toxic effects due to endotoxin, which may mask or misidentify the real biological effects (or lack thereof) of nanomaterials. Therefore, before running immunosafety assays, either in vitro or in vivo, the presence of endotoxin in nanomaterials must be evaluated. This calls for using appropriate assays with proper controls, because many nanomaterials interfere at various levels with the commercially available endotoxin detection methods. This also underlines the need to develop robust and bespoke strategies for endotoxin evaluation in nanomaterials. PMID:28533772

  11. Encapsulated Papillary Carcinoma in A Man with Gynecomastia: Ultrasonography, Mammography and Magnetic Resonance Imaging Features with Pathologic Correlation.

    PubMed

    Yılmaz, Ravza; Cömert, Rana Günöz; Aliyev, Samil; Toktaş, Yücel; Önder, Semen; Emirikçi, Selman; Özmen, Vahit

    2018-04-01

    Male breast cancer is an uncommon disease that constitutes 1% of all breast cancers and encapsulated papillary carcinoma (EPC) is a rare subtype of malignant male diseases. Gynecomastia is the most common disease of the male breast. We report a 63-year-old male patient with EPC accompanied by gynecomastia that was diagnosed and treated at our breast center. Mammography showed an oval-shaped dense mass with circumscribed margins on the ground of nodular gynecomastia. On ultrasonographic exam, we saw a well-circumscribed complex mass with a solid component which was vascular on Doppler ultrasonography. Magnetic resonance imaging revealed a complex cystic mass containing solid components. Dynamic images showed enhancement of the cystic mass wall and mural components. Tumor stage was evaluated as T2N0. The lesion's histologic examination and immunohistochemical analysis by showing no myoepithelial layer revealed an encapsulated papillary carcinoma. To our knowledge, this is the first case report which describes MR imaging findings of male breast encapsulated papillary cancer.

  12. Engineered Nanomaterials, Sexy New Technology and Potential Hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, R A

    Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lungmore » deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls.« less

  13. Graphene versus Multi-Walled Carbon Nanotubes for Electrochemical Glucose Biosensing

    PubMed Central

    Zheng, Dan; Vashist, Sandeep Kumar; Dykas, Michal Marcin; Saha, Surajit; Al-Rubeaan, Khalid; Lam, Edmond; Luong, John H.T.; Sheu, Fwu-Shan

    2013-01-01

    A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx), with graphene or multi-walled carbon nanotubes (MWCNTs). Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES) and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs). The EDC (1-ethyl-(3-dimethylaminopropyl) carbodiimide)-activated GOx was then bound covalently on the graphene- or MWCNT-modified GCE. Both the graphene- and MWCNT-based biosensors detected the entire pathophysiological range of blood glucose in humans, 1.4–27.9 mM. However, the direct electron transfer (DET) between GOx and the modified GCE’s surface was only observed for the MWCNT-based biosensor. The MWCNT-based glucose biosensor also provided over a four-fold higher current signal than its graphene counterpart. Several interfering substances, including drug metabolites, provoked negligible interference at pathological levels for both the MWCNT- and graphene-based biosensors. However, the former was more prone to interfering substances and drug metabolites at extremely pathological concentrations than its graphene counterpart. PMID:28809354

  14. Graphene versus Multi-Walled Carbon Nanotubes for Electrochemical Glucose Biosensing.

    PubMed

    Zheng, Dan; Vashist, Sandeep Kumar; Dykas, Michal Marcin; Saha, Surajit; Al-Rubeaan, Khalid; Lam, Edmond; Luong, John H T; Sheu, Fwu-Shan

    2013-03-14

    : A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx), with graphene or multi-walled carbon nanotubes (MWCNTs). Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES) and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs). The EDC (1-ethyl-(3-dimethylaminopropyl) carbodiimide)-activated GOx was then bound covalently on the graphene- or MWCNT-modified GCE. Both the graphene- and MWCNT-based biosensors detected the entire pathophysiological range of blood glucose in humans, 1.4-27.9 mM. However, the direct electron transfer (DET) between GOx and the modified GCE's surface was only observed for the MWCNT-based biosensor. The MWCNT-based glucose biosensor also provided over a four-fold higher current signal than its graphene counterpart. Several interfering substances, including drug metabolites, provoked negligible interference at pathological levels for both the MWCNT- and graphene-based biosensors. However, the former was more prone to interfering substances and drug metabolites at extremely pathological concentrations than its graphene counterpart.

  15. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery.

    PubMed

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Bharti, Shreekant; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2017-08-01

    The aim of this work was to formulate chitosan-folate conjugated multi-walled carbon nanotubes for the lung cancer targeted delivery of docetaxel. The chitosan-folate conjugate was synthesized and the conjugation was confirmed by Fourier transform infrared spectroscopy. The multi-walled carbon nanotubes were characterized for their particle size, polydispersity, zeta potential, surface morphology, drug encapsulation efficiency and in vitro release study. The in vitro cellular uptake, cytotoxicity, and cell cycle analysis of the docetaxel/coumarin-6 loaded multi-walled carbon nanotubes were carried out to compare the effectiveness of the formulations. The biocompatibility and safety of chitosan-folate conjugated multi-walled carbon nanotubes was analyzed by lung histopathology in comparison with marketed docetaxel formulation (Docel™) and acylated multi-walled carbon nanotubes. The cellular internalization study shown that the chitosan-folate conjugated multi-walled carbon nanotubes could be easily internalized into the lung cancer cells through a folate receptor-mediated endocytic pathway. The IC 50 values exhibited that chitosan-folate conjugated multi-walled carbon nanotubes could be 89-fold more effective than Docel™ in human lung cancer cells (A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis of camptothecin-loaded gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Xing, Zhimin; Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Zhao, Chunjian; Zhao, Xiuhua; Meng, Ronghua; Tan, Shengnan

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  17. Informing Selection of Nanomaterial Concentrations for ToxCast In Vitro Testing using the Multi-Path Particle Dosimetry Model

    EPA Science Inventory

    Currently, little justification is provided for nanomaterial testing concentrations in in vitro assays. The in vitro concentrations typically used may be higher than those experienced in exposed humans. Selection of concentration levels for hazard evaluation based on real-world ...

  18. Nanomaterials in the environment

    NASA Astrophysics Data System (ADS)

    Mrowiec, Bozena

    2017-11-01

    This paper considers engineered nanomaterials, deliberately engineered and manufactured to have certain properties and have at least one primary dimension of less than 100 nm. Materials produced with the aid of nanotechnologies are used in many areas of everyday life. Researches with nanomaterials have shown that the physiochemical characteristic of particles can influence their effects in biological systems. The field of nanotechnology has created risk for environment and human health. The toxicity of nanoparticles may be affected by different physicochemical properties, including size, shape, chemistry, surface properties, agglomeration, solubility, and charge, as well as effects from attached functional groups and crystalline structure. The greater surface-area-to-mass ratio of nanoparticles makes them generally more reactive than their macro-sized counterparts. Exposure to nanomaterials can occur at different life-cycle stages of the materials and/or products. The knowledge gaps limiting the understanding of the human and environment hazard and risk of nanotechnology should be explained by the scientific investigations for help to protect human and environmental health and to ensure the benefits of the nanotechnology products without excessive risk of this new technology. In this review are presented the proposal measurement methods for NMs characteristic.

  19. Nanomaterials in the field of design ergonomics: present status.

    PubMed

    Chowdhury, Anirban; Sanjog, J; Reddy, Swathi Matta; Karmakar, Sougata

    2012-01-01

    Application of nanotechnology and nanomaterials is not new in the field of design, but a recent trend of extensive use of nanomaterials in product and/or workplace design is drawing attention of design researchers all over the world. In the present paper, an attempt has been made to describe the diverse use of nanomaterials in product and workplace design with special emphasis on ergonomics (occupational health and safety; thermo-regulation and work efficiency, cognitive interface design; maintenance of workplace, etc.) to popularise the new discipline 'nanoergonomics' among designers, design users and design researchers. Nanoergonomics for sustainable product and workplace design by minimising occupational health risks has been felt by the authors to be an emerging research area in coming years. Use of nanomaterials in the field of design ergonomics is less explored till date. In the present review, an attempt has been made to extend general awareness among ergonomists/designers about applications of nanomaterials/nanotechnology in the field of design ergonomics and about health implications of nanomaterials during their use.

  20. Mechanism of hard-nanomaterial clearance by the liver.

    PubMed

    Tsoi, Kim M; MacParland, Sonya A; Ma, Xue-Zhong; Spetzler, Vinzent N; Echeverri, Juan; Ouyang, Ben; Fadel, Saleh M; Sykes, Edward A; Goldaracena, Nicolas; Kaths, Johann M; Conneely, John B; Alman, Benjamin A; Selzner, Markus; Ostrowski, Mario A; Adeyi, Oyedele A; Zilman, Anton; McGilvray, Ian D; Chan, Warren C W

    2016-11-01

    The liver and spleen are major biological barriers to translating nanomedicines because they sequester the majority of administered nanomaterials and prevent delivery to diseased tissue. Here we examined the blood clearance mechanism of administered hard nanomaterials in relation to blood flow dynamics, organ microarchitecture and cellular phenotype. We found that nanomaterial velocity reduces 1,000-fold as they enter and traverse the liver, leading to 7.5 times more nanomaterial interaction with hepatic cells relative to peripheral cells. In the liver, Kupffer cells (84.8 ± 6.4%), hepatic B cells (81.5 ± 9.3%) and liver sinusoidal endothelial cells (64.6 ± 13.7%) interacted with administered PEGylated quantum dots, but splenic macrophages took up less material (25.4 ± 10.1%) due to differences in phenotype. The uptake patterns were similar for two other nanomaterial types and five different surface chemistries. Potential new strategies to overcome off-target nanomaterial accumulation may involve manipulating intra-organ flow dynamics and modulating the cellular phenotype to alter hepatic cell interactions.