Sample records for nanomaterial physicochemical properties

  1. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    PubMed

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  2. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives

    NASA Astrophysics Data System (ADS)

    Navya, P. N.; Daima, Hemant Kumar

    2016-02-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  3. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.

    PubMed

    Rasmussen, Kirsten; Rauscher, Hubert; Mech, Agnieszka; Riego Sintes, Juan; Gilliland, Douglas; González, Mar; Kearns, Peter; Moss, Kenneth; Visser, Maaike; Groenewold, Monique; Bleeker, Eric A J

    2018-02-01

    Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial

    NASA Astrophysics Data System (ADS)

    Salieri, Beatrice; Pasteris, Andrea; Netkueakul, Woranan; Hischier, Roland

    2017-03-01

    Currently, a noncomprehensive understanding of the physicochemical properties of carbon-based nanomaterial (CBNs), which may affect toxic effects, is still observable. In this study, an exploratory systematic investigation into the key physicochemical properties of multiwall carbon nanotube (MWCNT), single-wall carbon nanotube (SWCNT), and C60-fullerene on their ecotoxicity has been undertaken. We undertook an extensive survey of the literature pertaining to the ecotoxicity of organism representative of the trophic level of algae, crustaceans, and fish. Based on this, a set of data reporting both the physicochemical properties of carbon-based nanomaterial and the observed toxic effect has been established. The relationship between physicochemical properties and observed toxic effect was investigated based on various statistical approaches. Specifically, analysis of variance by one-way ANOVA was used to assess the effect of categorical properties (use of a dispersant or treatments in the test medium, type of carbon-based nanomaterial, i.e., SWCNT, MWCNT, C60-fullerene, functionalization), while multiple regression analysis was used to assess the effect of quantitative properties (i.e., diameter length of nanotubes, secondary size) on the toxicity values. The here described investigations revealed significant relationships among the physicochemical properties and observed toxic effects. The research was mainly affected by the low availability of data and also by the low variability of the studies collected. Overall, our results demonstrate that the here proposed and applied approach could have a major role in identifying the physicochemical properties of relevance for the toxicity of nanomaterial. However, the future success of the approach would require that the ENMs and the experimental conditions used in the toxicity studies are fully characterized.

  5. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation

    NASA Astrophysics Data System (ADS)

    Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.

    2017-03-01

    The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcɛRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.

  6. Techniques for physicochemical characterization of nanomaterials

    PubMed Central

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  7. Role of nanomaterial physicochemical properties on fate and toxicity in bacteria and plants

    NASA Astrophysics Data System (ADS)

    Slomberg, Danielle

    Nanomaterials, defined as those having at least one dimension <100 nm, are ubiquitous in nature. However, engineered nanomaterials have gained increasing attention for use in drug-delivery applications and consumer goods. Examination of nanomaterial toxicity, both beneficial (e.g., drug delivery to bacterial pathogens) and detrimental (e.g., death of terrestrial plants), thus warranted. Herein, I present the evaluation of nitric oxide-releasing nanomaterial toxicity to bacteria and silica particle toxicity to plants as a function of nanomaterial physicochemical properties. Nanomaterial toxicity toward planktonic (i.e., free-floating) Pseudomonas aeruginosa and Staphylococcus aureus bacteria was evaluated as a function of scaffold size, shape, and exterior functionality using nitric oxide-releasing (NO) silica particles, dendrimers, and chitosan oligosaccharides. Improved bactericidal efficacy was observed for silica particles with decreased size and increased aspect ratio (i.e., rod-like) due to improved particle-cell interactions. Likewise, better nanomaterial-bacteria association and biocidal action was noted for more hydrophobic NO-releasing dendrimers and chitosan oligosaccharides. Planktonic bacterial killing was not dependent on chitosan molecular weight due to rapid association between the cationic scaffolds and negatively-charged bacterial cell membranes. Given the importance of nanomaterial physicochemical properties in planktonic bacterial killing, the NO-releasing scaffolds were also evaluated against clinically-relevant bacterial biofilms. Similar to planktonic studies, smaller particle sizes proved more efficient in delivering NO throughout the biofilm. Particles with rod-like shape also eradicated biofilms more effectively. The role of NO-releasing dendrimer and chitosan oligosaccharide hydrophobicity was prominent in scaffold diffusion through the biofilm and subsequent NO delivery, with hydrophobic functionalities generally exhibiting better

  8. Engineered Nanomaterials: Their Physicochemical Characteristics and How to Measure Them.

    PubMed

    Atluri, Rambabu; Jensen, Keld Alstrup

    2017-01-01

    Numerous types of engineered nanomaterials (ENMs) are commercially available and developments move towards producing more advanced nanomaterials with tailored properties. Such advanced nanomaterials may include chemically doped or modified derivatives with specific surface chemistries; also called higher generation or multiconstituent nanomaterials. To fully enjoy the benefits of nanomaterials, appropriate characterisation of ENMs is necessary for many aspects of their production, use, testing and reporting to regulatory bodies. This chapter introduces both structural and textural properties of nanomaterials with a focus on demonstrating the information that can be achieved by analysis of primary physicochemical characteristics and how such information is critical to understand or assess the possible toxicity of engineered nanomaterials. Many of characterization methods are very specific to obtain particular characteristics and therefore the most widely used techniques are explained and demonstrated.

  9. Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.

    PubMed

    Salahinejad, Maryam

    2015-01-01

    Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.

  10. Effects of the physicochemical properties of gold nanostructures on cellular internalization

    PubMed Central

    Zhang, Jinchao; Wang, Paul C.; Liang, Xing-Jie

    2015-01-01

    Unique physicochemical properties of Au nanomaterials make them potential star materials in biomedical applications. However, we still know a little about the basic problem of what really matters in fabrication of Au nanomaterials which can get into biological systems, especially cells, with high efficiency. An understanding of how the physicochemical properties of Au nanomaterials affect their cell internalization is of significant interest. Studies devoted to clarify the functions of various properties of Au nanostructures such as size, shape and kinds of surface characteristics in cell internalization are under way. These fundamental investigations will give us a foundation for constructing Au nanomaterial-based biomedical devices in the future. In this review, we present the current advances and rationales in study of the relationship between the physicochemical properties of Au nanomaterials and cell uptake. We also provide a perspective on the Au nanomaterial-cell interaction research. PMID:26813673

  11. NANOSILVER MOVEMENT THROUGH BIOLOGICAL BARRIERS RELATES TO PHYSICOCHEMICAL PROPERTIES

    EPA Science Inventory

    Linking the physicochemical (PC) properties of engineered nanomaterials (NM) to their biological activity is critical for identifying their (toxic) mode of action, and developing appropriate and effective risk assessment guidelines. Particle surface charge (zeta potential), surfa...

  12. Safety and toxicity of nanomaterials for ocular drug delivery applications.

    PubMed

    Mehra, Neelesh K; Cai, Defu; Kuo, Lih; Hein, Travis; Palakurthi, Srinath

    2016-09-01

    Multifunctional nanomaterials are rapidly emerging for ophthalmic delivery of therapeutics to facilitate safe and effective targeting with improved patient compliance. Because of their extremely high area to volume ratio, nanomaterials often have physicochemical properties that are different from those of their larger counterparts. There exists a complex relationship between the physicochemical properties (composition, size, shape, charge, roughness, and porosity) of the nanomaterials and their interaction with the biological system. The eye is a very sensitive accessible organ and is subjected to intended and unintended exposure to nanomaterials. Currently, various ophthalmic formulations are available in the market, while some are underway in preclinical and clinical phases. However, the data on safety, efficacy, and toxicology of these advanced nanomaterials for ocular drug delivery are sparse. Focus of the present review is to provide a comprehensive report on the safety, biocompatibility and toxicities of nanomaterials in the eye.

  13. Classifying Nanomaterial Risks Using Multi-Criteria Decision Analysis

    NASA Astrophysics Data System (ADS)

    Linkov, I.; Steevens, J.; Chappell, M.; Tervonen, T.; Figueira, J. R.; Merad, M.

    There is rapidly growing interest by regulatory agencies and stakeholders in the potential toxicity and other risks associated with nanomaterials throughout the different stages of the product life cycle (e.g., development, production, use and disposal). Risk assessment methods and tools developed and applied to chemical and biological material may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material because of the variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as promote the safe use/handling of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. The stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different risk categories based on our current knowledge of nanomaterial's physico-chemical characteristics, variation in produced material, and best professional judgement. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.1,2

  14. Applications of nanomaterials as vaccine adjuvants

    PubMed Central

    Zhu, Motao; Wang, Rongfu; Nie, Guangjun

    2014-01-01

    Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials’ physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants. PMID:25483497

  15. ASSESSING THE EFFECTS OF PULMONARY EXPOSURE TO NANOMATERIALS

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing a wide diversity of nano-scale (<100 nm) materials displaying unique physicochemical properties for a variety of applications. Nanomaterials may also display unique toxicological properties and routes of exp...

  16. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays

    PubMed Central

    2011-01-01

    Background Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines. Results Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured. Conclusion In vitro toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and in vitro assays measuring different cytotoxicity endpoints. PMID:21345205

  17. Structural properties of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta

    2018-04-01

    The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in

  18. Nanomaterials for In Vivo Imaging.

    PubMed

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.

  19. Accelerating the Translation of Nanomaterials in Biomedicine

    PubMed Central

    Mitragotri, Samir; Anderson, Daniel G.; Chen, Xiaoyuan; Chow, Edward K.; Ho, Dean; Kabanov, Alexander V.; Karp, Jeffrey M.; Kataoka, Kazunori; Mirkin, Chad A.; Petrosko, Sarah Hurst; Shi, Jinjun; Stevens, Molly M.; Sun, Shouheng; Teoh, Sweehin; Venkatraman, Subbu S.; Xia, Younan; Wang, Shutao; Gu, Zhen; Xu, Chenjie

    2017-01-01

    Due to their size and tailorable physicochemical properties, nanomaterials are an emerging class of structures utilized in biomedical applications. There are now many prominent examples of nanomaterials being used to improve human health, in areas ranging from imaging and diagnostics to therapeutics and regenerative medicine. An overview of these examples reveals several common areas of synergy and future challenges. This Nano Focus discusses the current status and future potential of promising nanomaterials and their translation from the laboratory to the clinic, by highlighting a handful of successful examples. PMID:26115196

  20. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials

    PubMed Central

    Oomen, Agnes G.; Bleeker, Eric A. J.; Bos, Peter M. J.; van Broekhuizen, Fleur; Gottardo, Stefania; Groenewold, Monique; Hristozov, Danail; Hund-Rinke, Kerstin; Irfan, Muhammad-Adeel; Marcomini, Antonio; Peijnenburg, Willie J. G. M.; Rasmussen, Kirsten; Sánchez Jiménez, Araceli; Scott-Fordsmand, Janeck J.; van Tongeren, Martie; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-01-01

    Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments. PMID:26516872

  1. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials.

    PubMed

    Oomen, Agnes G; Bleeker, Eric A J; Bos, Peter M J; van Broekhuizen, Fleur; Gottardo, Stefania; Groenewold, Monique; Hristozov, Danail; Hund-Rinke, Kerstin; Irfan, Muhammad-Adeel; Marcomini, Antonio; Peijnenburg, Willie J G M; Rasmussen, Kirsten; Jiménez, Araceli Sánchez; Scott-Fordsmand, Janeck J; van Tongeren, Martie; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-10-26

    Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments.

  2. Antimicrobial and biocompatible properties of nanomaterials.

    PubMed

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  3. Strain-controlled electrocatalysis on multimetallic nanomaterials

    NASA Astrophysics Data System (ADS)

    Luo, Mingchuan; Guo, Shaojun

    2017-11-01

    Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain-adsorption-reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.

  4. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    PubMed

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  5. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    NASA Astrophysics Data System (ADS)

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal

    2017-03-01

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  6. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules.

    PubMed

    Chen, Ran; Riviere, Jim E

    2017-01-01

    Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  7. Perylene and Perylene-Derivative Nano-Cocrystals: Preparation and Physicochemical Property

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Konta, Sayaka; Oliveira, Daniel; Sugai, Kenji; Onodera, Tsunenobu; Masuhara, Akito; Kasai, Hitoshi; Oikawa, Hidetoshi; Nakanishi, Hachiro

    2012-12-01

    Organic nano-cocrystals of functional dyes of perylene and a perylene derivative were successfully prepared by the reprecipitation method. The particle sizes, optical properties, and powder X-ray diffraction patterns of nano-cocrystals were evaluated. Typically, the size with size distribution of nano-cocrystals was 55±15 nm when the molar ratio of perylene to the perylene derivative was 50:50. The particular intermolecular electronic interaction between perylene and the perylene derivative in the nano-cocrystal state was observed by absorption and fluorescence spectra measurements. The powder X-ray diffraction pattern analysis confirmed that the structure of nano-cocrystals was different from those prepared from perylene and the perylene derivative. The nano-cocrystal having unique physicochemical properties will be potentially classified as a new type of functional nanomaterial.

  8. Heterofunctional nanomaterials: fabrication, properties and applications in nanobiotechnology.

    PubMed

    Kumart, S Anil; Khan, M I

    2010-07-01

    Nanotechnology and nanoengineering includes a novel class of materials that are gaining significant recognition to pursuit technological/biological advances in diverse fields including, biology, medicine, electronics, engineering etc. due to their unique size- and shape-dependent intrinsic physicochemical, optoelectronic and biological properties. Characteristics such as high surface to volume ratios and quantum confinement results in materials that are qualitatively different from their bulk counterparts. These properties not only make them suitable for numerous applications in existing and emerging technologies, but also have outstanding role in many fields that provide inspiration for their fabrication. In Today's trend nanotechnology is spreading vigorously where researchers all over the world are focusing towards their synthesis and applications. Therefore, this review is helpful for the researchers in the field of nanobiotechnology/nanomedicine, providing a brief overview of nanotechnology, covering nanomaterial synthesis methods (with emphasis on environmentally benign greener approaches), their properties, and applications; such as drug delivery, bio-labeling, nanotoxicity etc. The influence of synthesis methods and surface coatings/stabilizing agents and their subsequent applications is discussed, and a broad outline on the biomedical applications into which they have been implemented is also presented.

  9. Nanomaterials in the environment

    NASA Astrophysics Data System (ADS)

    Mrowiec, Bozena

    2017-11-01

    This paper considers engineered nanomaterials, deliberately engineered and manufactured to have certain properties and have at least one primary dimension of less than 100 nm. Materials produced with the aid of nanotechnologies are used in many areas of everyday life. Researches with nanomaterials have shown that the physiochemical characteristic of particles can influence their effects in biological systems. The field of nanotechnology has created risk for environment and human health. The toxicity of nanoparticles may be affected by different physicochemical properties, including size, shape, chemistry, surface properties, agglomeration, solubility, and charge, as well as effects from attached functional groups and crystalline structure. The greater surface-area-to-mass ratio of nanoparticles makes them generally more reactive than their macro-sized counterparts. Exposure to nanomaterials can occur at different life-cycle stages of the materials and/or products. The knowledge gaps limiting the understanding of the human and environment hazard and risk of nanotechnology should be explained by the scientific investigations for help to protect human and environmental health and to ensure the benefits of the nanotechnology products without excessive risk of this new technology. In this review are presented the proposal measurement methods for NMs characteristic.

  10. Experimental investigation of interactions between proteins and carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Sengupta, Bishwambhar

    The global market for nanomaterials based products is forecasted to reach $1 trillion per annum per annum for 2015. Engineered nanomaterials (ENMs) exhibit unique physicochemical properties with potential to impact diverse aspects of society through applications in electronics, renewable energy, and medicine. While the research and proposed applications of ENMs continue to grow rapidly, the health and safety of ENMs still remains a major concern to the public as well as to policy makers and funding agencies. It is now widely accepted that focused efforts are needed for identifying the list of physicochemical descriptors of ENM before they can be evaluated for nanotoxicity and biological response. This task is surprisingly challenging, as many physicochemical properties of ENMs are closely inter related and cannot be varied independently (e.g. increasing the size of an ENM can introduce additional defects). For example, varying toxic response may ensue due to different methods of nanomaterial preparation, dissimilar impurities and defects. Furthermore, the inadvertent coating of proteins on ENM surface in any biological milieu results in the formation of the so-called "protein/bio-corona" which can in turn alter the fate of ENMs and their biological response. Carbon nanomaterials (CNMs) such as carbon nanotubes, graphene, and graphene oxide are widely used ENMs. It is now known that defects in CNMs play an important role not only in materials properties but also in the determination of how materials interact at the nano-bio interface. In this regard, this work investigates the influence of defect-induced hydrophilicity on the bio-corona formation using micro Raman, photoluminescence, infrared spectroscopy, electrochemistry, and molecular dynamics simulations. Our results show that the interaction of proteins (albumin and fibrinogen) with CNMs is strongly influenced by charge transfer between them, inducing protein unfolding which enhances conformational entropy and

  11. Plasmonics of 2D Nanomaterials: Properties and Applications

    PubMed Central

    Li, Yu; Li, Ziwei; Chi, Cheng; Shan, Hangyong; Zheng, Liheng

    2017-01-01

    Plasmonics has developed for decades in the field of condensed matter physics and optics. Based on the classical Maxwell theory, collective excitations exhibit profound light‐matter interaction properties beyond classical physics in lots of material systems. With the development of nanofabrication and characterization technology, ultra‐thin two‐dimensional (2D) nanomaterials attract tremendous interest and show exceptional plasmonic properties. Here, we elaborate the advanced optical properties of 2D materials especially graphene and monolayer molybdenum disulfide (MoS2), review the plasmonic properties of graphene, and discuss the coupling effect in hybrid 2D nanomaterials. Then, the plasmonic tuning methods of 2D nanomaterials are presented from theoretical models to experimental investigations. Furthermore, we reveal the potential applications in photocatalysis, photovoltaics and photodetections, based on the development of 2D nanomaterials, we make a prospect for the future theoretical physics and practical applications. PMID:28852608

  12. Physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Wang, Sunan; Zhu, Fan

    2016-02-10

    Physicochemical properties of quinoa starches isolated from 26 commercial samples from a wide range of collection were studied. Swelling power (SP), water solubility index (WSI), amylose leaching (AML), enzyme susceptibility, pasting, thermal and textural properties were analyzed. Apparent amylose contents (AAM) ranged from 7.7 to 25.7%. Great variations in the diverse physicochemical properties were observed. Correlation analysis showed that AAM was the most significant factor related to AML, WSI, and pasting parameters. Correlations among diverse physicochemical parameters were analyzed. Principal component analysis using twenty three variables were used to visualize the difference among samples. Six principal components were extracted which could explain 88.8% of the total difference. The wide variations in physicochemical properties could contribute to innovative utilization of quinoa starch for food and non-food applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    PubMed

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. HEALTH RISK ASSESSMENT OF ENGINEERED-MANUFACTURED NANOMATERIALS: RESEARCH CHALLENGES AND PRELIMINARY FINDINGS

    EPA Science Inventory

    Nanotechnology continues to produce a diversity of engineered nanomaterials (NMs), displaying novel physicochemical properties with applications in commercial, consumer, electronic, biomedical, energy, and environmental sectors. Nanotechnology has been referred to as the next in...

  15. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective.

    PubMed

    Duke, Katherine S; Bonner, James C

    2018-05-01

    Carbon nanotubes (CNTs) are engineered nanomaterials (ENMs) with numerous beneficial applications. However, they could pose a risk to human health from occupational or consumer exposures. Rodent models demonstrate that exposure to CNTs via inhalation, instillation, or aspiration results in pulmonary fibrosis. The severity of the fibrogenic response is determined by various physicochemical properties of the nanomaterial such as residual metal catalyst content, rigidity, length, aggregation status, or surface charge. CNTs are also increasingly functionalized post-synthesis with organic or inorganic agents to modify or enhance surface properties. The mechanisms of CNT-induced fibrosis involve oxidative stress, innate immune responses of macrophages, cytokine and growth factor production, epithelial cell injury and death, expansion of the pulmonary myofibroblast population, and consequent extracellular matrix accumulation. A comprehensive understanding of how physicochemical properties affect the fibrogenic potential of various types of CNTs should be considered in combination with genetic variability and gain or loss of function of specific genes encoding secreted cytokines, enzymes, or intracellular cell signaling molecules. Here, we cover the current state of the literature on mechanisms of CNT-exposed pulmonary fibrosis in rodent models with a focus on physicochemical characteristics as principal drivers of the mechanisms leading to pulmonary fibrosis. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials. © 2017 Wiley Periodicals, Inc.

  16. Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials

    PubMed Central

    Liang, Xing-Jie; Chen, Chunying; Zhao, Yuliang; Jia, Lee; Wang, Paul C.

    2009-01-01

    Engineered nanomaterials are at the leading edge of the rapidly developing nanosciences and are founding an important class of new materials with specific physicochemical properties different from bulk materials with the same compositions. The potential for nanomaterials is rapidly expanding with novel applications constantly being explored in different areas. The unique size-dependent properties of nanomaterials make them very attractive for pharmaceutical applications. Investigations of physical, chemical and biological properties of engineered nanomaterials have yielded valuable information. Cytotoxic effects of certain engineered nanomaterials towards malignant cells form the basis for one aspect of nanomedicine. It is inferred that size, three dimensional shape, hydrophobicity and electronic configurations make them an appealing subject in medicinal chemistry. Their unique structure coupled with immense scope for derivatization forms a base for exciting developments in therapeutics. This review article addresses the fate of absorption, distribution, metabolism and excretion (ADME) of engineered nanoparticles in vitro and in vivo. It updates the distinctive methodology used for studying the biopharmaceutics of nanoparticles. This review addresses the future potential and safety concerns and genotoxicity of nanoparticle formulations in general. It particularly emphasizes the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations. This paper illustrates the potential of nanomedicine by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes. Future direction is discussed as well. PMID:18855608

  17. Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward.

    PubMed

    Lai, David Y

    2012-01-01

    A challenge-facing hazard identification and safety evaluation of engineered nanomaterials being introduced to market is the diversity and complexity of the types of materials with varying physicochemical properties, many of which can affect their toxicity by different mechanisms. In general, in vitro test systems have limited usefulness for hazard identification of nanoparticles due to various issues. Meanwhile, conducting chronic toxicity/carcinogenicity studies in rodents for every new nanomaterial introduced into the commerce is impractical if not impossible. New toxicity testing systems which rely on predictive, high-throughput technologies may be the ultimate goal of evaluating the potential hazard of nanomaterials. However, at present, this approach alone is unlikely to succeed in evaluating the toxicity of the wide array of nanomaterials and requires validation from in vivo studies. This article proposes a paradigm for toxicity testing and elucidation of the molecular mechanisms of reference materials for specific nanomaterial classes/subclasses using short-term in vivo animal studies in conjunction with high-throughput screenings and mechanism-based short-term in vitro assays. The hazard potential of a particular nanomaterial can be evaluated by conducting only in vitro high-throughput assays and mechanistic studies and comparing the data with those of the reference materials in the specific class/subclass-an approach in line with the vision for 'Toxicity Testing in the 21st Century' of chemicals. With well-designed experiments, testing nanomaterials of varying/selected physicochemical parameters may be able to identify the physicochemical parameters contributing to toxicity. The data so derived could be used for the development of computer model systems to predict the hazard potential of specific nanoparticles based on property-activity relationships. Copyright © 2011 John Wiley & Sons, Inc.

  18. NANOMATERIAL HEALTH EFFECTS RESEARCH CONTRIBUTES TO RISK MANAGEMENT STRATEGIES THROUGH THE RISK ASSESSMENT PARADIGM

    EPA Science Inventory

    Nanotechnology continues to produce a diversity of engineered nanomaterials displaying novel physicochemical properties with applications in commercial, consumer, electronic, biomedical, energy, and environmental sectors. Nanotechnology has been referred to as the next industrial...

  19. Role of Physicochemical Properties in Nanoparticle Toxicity

    PubMed Central

    Shin, Seung Won; Song, In Hyun; Um, Soong Ho

    2015-01-01

    With the recent rapid growth of technological comprehension in nanoscience, researchers have aimed to adapt this knowledge to various research fields within engineering and applied science. Dramatic advances in nanomaterials marked a new epoch in biomedical engineering with the expectation that they would have huge contributions to healthcare. However, several questions regarding their safety and toxicity have arisen due to numerous novel properties. Here, recent studies of nanomaterial toxicology will be reviewed from several physiochemical perspectives. A variety of physiochemical properties such as size distribution, electrostatics, surface area, general morphology and aggregation may significantly affect physiological interactions between nanomaterials and target biological areas. Accordingly, it is very important to finely tune these properties in order to safely fulfill a bio-user’s purpose. PMID:28347068

  20. Selenium nanomaterials: applications in electronics, catalysis and sensors.

    PubMed

    Chaudhary, Savita; Mehta, S K

    2014-02-01

    This review provides insights into the synthesis, functionalization, and applications of selenium nanoparticles in electronics, optics, catalysis and sensors. The variation of physicochemical properties such as particle size, surface area, and shape of the selenium nanoparticles and the effect of experimental conditions has also been discussed. An overview has also been provided on the fundamental electrical and optical properties of selenium nanomaterials as well as their utilization in different research fields. The work presents an insight on selenium nanoparticles with interesting properties and their future applications.

  1. Nanomaterial synthesis and characterization for toxicological studies: TiO2 case study

    USGS Publications Warehouse

    Valsami-Jones, E.; Berhanu, D.; Dybowska, A.; Misra, S.; Boccaccini, A.R.; Tetley, T.D.; Luoma, S.N.; Plant, J.A.

    2008-01-01

    In recent years it has become apparent that the novel properties of nanomaterials may predispose them to a hitherto unknown potential for toxicity. A number of recent toxicological studies of nanomaterials exist, but these appear to be fragmented and often contradictory. Such discrepancies may be, at least in part, due to poor description of the nanomaterial or incomplete characterization, including failure to recognise impurities, surface modifications or other important physicochemical aspects of the nanomaterial. Here we make a case for the importance of good quality, well-characterized nanomaterials for future toxicological studies, combined with reliable synthesis protocols, and we present our efforts to generate such materials. The model system for which we present results is TiO2 nanoparticles, currently used in a variety of commercial products. ?? 2008 The Mineralogical Society.

  2. [PHYSIOLOGY AND PHARMACOLOGICAL PROPERTIES OF NANOMATERIALS].

    PubMed

    Chekman, I S

    2015-01-01

    Literature data and results of our department studies on theoretical and practical basics of nanoscience were summarized in the article. Much attention is paid to research in the field of physical, chemical, biological, medical, physiological, pharmacological, and toxicological properties of nanomaterials with the aim of their wider implementation into practice lately. The discovery of new quantum/wave properties of nanoparticles is of particular importance. The author of the article advances an idea: wave properties of nanomaterials play greater role with a decrease in particle size. The preponderance of wave properties compared with corpuscular ones in nanostructures determines a great change in their physical. chemical properties and an increase in physical, mechanical biological, physiological, pharmacological, and toxicologica activity. The idea advanced in the article hasn't been verified by theoretical or experimental studies for now. Joined efforts of scientists of different scientific fields are needed. A confirmation of hypothesis by specific findings will be of great importance for physiology, medicine, pharmacology and promote an implementation of new efficacious preparations into clinical practice. New fundamental discoveries could be made only by multidisciplinary approach.

  3. Environmental and biological applications and implications of soft and condensed nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Pengyu

    Recent innovations and growth of nanotechnology have spurred exciting technological and commercial developments of nanomaterails. Their appealing physical and physicochemical properties offer great opportunities in biological and environmental applications, while in the meantime may compromise human health and environmental sustainability through either unintentional exposure or intentional discharge. Accordingly, this dissertation exploits the physicochemical behavior of soft dendritic polymers for environmental remediation and condensed nano ZnO tetrapods for biological sensing (Chapter two-four), and further delineate the environmental implications of such nanomaterials using algae- the major constituent of the aquatic food chain-as a model system (Chapter five). This dissertation is presented as follows. Chapter one presents a general review of the characteristic properties, applications, forces dictating nanomaterials, and their biological and environmental implications of the most produced and studied soft and condensed nanomaterials. In addition, dendritic polymers and ZnO nanomaterials are thoroughly reviewed separately. Chapter two investigates the physicochemical properties of poly(amidoamine)-tris(hydroxymethyl)amidomethane- dendrimer for its potential applications in water purification. The binding mechanisms and capacities of this dendrimer in hosting major environmental pollutants including cationic copper, anionic nitrate, and polyaromatic phenanthrene are discussed. Chapter three exploits a promising use of dendrimers for removal of potentially harmful discharged nanoparticles (NPs). Specifically, fullerenols are used as a model nanomaterial, and their interactions with two different generations of dendrimers are studied using spectrophotometry and thermodynamics methods. Chapter four elucidates two novel optical schemes for sensing environmental pollutants and biological compounds using dendrimer-gold nanowire complex and gold-coated ZnO tetrapods

  4. Physicochemical Property Guidelines for Modern Agrochemicals.

    PubMed

    Zhang, Yu; Lorsbach, Beth; Castetter, Scott; Lambert, William T; Kister, Jeremy; Wang, Nick X; Klittich, Carla; Roth, Joshua; Sparks, Thomas C; Loso, Mike R

    2018-04-17

    The relentless need for the discovery and development of new agrochemicals continues due to driving forces such as loss of existing products through the development of resistance, the necessity for products with more favorable environmental and toxicological profiles, shifting pest spectra, and the changing agricultural needs and practices of the farming community. These new challenges underscore the demand for novel, high quality starting points to accelerate the discovery of new agrochemicals that address market challenges. This article discusses the efforts to identify the optimum ranges of physicochemical properties of agrochemicals through analysis of modern commercial products. Specifically, we reviewed literature studies examining physicochemical property effects and analyzed the properties typical of successful fungicides, herbicides, and insecticides (chewing and sap-feeding pests). From the analysis, a new set of physicochemical property guidelines for each discipline, as well as building block class, are proposed. These new guidelines should significantly aid in the discovery of next generation agrochemicals. This article is protected by copyright. All rights reserved.

  5. Application of Bayesian networks for hazard ranking of nanomaterials to support human health risk assessment.

    PubMed

    Marvin, Hans J P; Bouzembrak, Yamine; Janssen, Esmée M; van der Zande, Meike; Murphy, Finbarr; Sheehan, Barry; Mullins, Martin; Bouwmeester, Hans

    2017-02-01

    In this study, a Bayesian Network (BN) was developed for the prediction of the hazard potential and biological effects with the focus on metal- and metal-oxide nanomaterials to support human health risk assessment. The developed BN captures the (inter) relationships between the exposure route, the nanomaterials physicochemical properties and the ultimate biological effects in a holistic manner and was based on international expert consultation and the scientific literature (e.g., in vitro/in vivo data). The BN was validated with independent data extracted from published studies and the accuracy of the prediction of the nanomaterials hazard potential was 72% and for the biological effect 71%, respectively. The application of the BN is shown with scenario studies for TiO 2 , SiO 2 , Ag, CeO 2 , ZnO nanomaterials. It is demonstrated that the BN may be used by different stakeholders at several stages in the risk assessment to predict certain properties of a nanomaterials of which little information is available or to prioritize nanomaterials for further screening.

  6. Potential Developmental and Early Life Health Effects of Nanomaterials: Data Gaps and Research Needs for Risk Assessment

    EPA Science Inventory

    Although research examining the toxicology of nanomaterials has been ongoing for many years, early studies largely focus on respiratory effects, and are limited by lack of appropriate dose metrics and a limited understanding of the role of the physicochemical properties of nanoma...

  7. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications.

    PubMed

    Li, Xuanhua; Zhu, Jinmeng; Wei, Bingqing

    2016-06-07

    Hybrid nanostructures composed of graphene or other two-dimensional (2D) nanomaterials and plasmonic metal components have been extensively studied. The unusual properties of 2D materials are associated with their atomically thin thickness and 2D morphology, and many impressive structures enable the metal nanomaterials to establish various interesting hybrid nanostructures with outstanding plasmonic properties. In addition, the hybrid nanostructures display unique optical characteristics that are derived from the close conjunction of plasmonic optical effects and the unique physicochemical properties of 2D materials. More importantly, the hybrid nanostructures show several plasmonic electrical effects including an improved photogeneration rate, efficient carrier transfer, and a plasmon-induced "hot carrier", playing a significant role in enhancing device performance. They have been widely studied for plasmon-enhanced optical signals, photocatalysis, photodetectors (PDs), and solar cells. In this review, the developments in the field of metal/2D hybrid nanostructures are comprehensively described. Preparation of hybrid nanostructures is first presented according to the 2D material type, as well as the metal nanomaterial morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then described. Lastly, possible future research in this promising field is discussed.

  8. Biomedical Applications of Nanomaterials as Therapeutics.

    PubMed

    Ng, Cheng-Teng; Baeg, Gyeong-Hun; Yu, Liya E; Ong, Choon-Nam; Bay, Boon-Huat

    2018-01-01

    As nanomaterials possess attractive physicochemical properties, immense research efforts have been channeled towards their development for biological and biomedical applications. In particular, zinc nanomaterials (nZnOs) have shown great potential for use in in the medical and pharmaceutical fields, and as tools for novel antimicrobial treatment, thereby capitalizing on their unique antimicrobial effects. We conducted a literature search using databases to retrieve the relevant articles related to the synthesis, properties and current applications of nZnOs in the diagnosis and treatment of diseases. A total of 86 publications were selected for inclusion in this review. Besides studies on the properties and the methodology for the synthesis of nZnOs, many studies have focused on the application of nZnOs as delivery agents, biosensors and antimicrobial agents, as well as in bioimaging. This review gives an overview of the current development of nZnOs for their potential use as theranostic agents. However, more comprehensive studies are needed to better assess the valuable contributions and the safety of nZnOs in nanomedicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    PubMed Central

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  10. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations.

    PubMed

    Patzke, Greta R; Zhou, Ying; Kontic, Roman; Conrad, Franziska

    2011-01-24

    Oxide nanomaterials are indispensable for nanotechnological innovations, because they combine an infinite variety of structural motifs and properties with manifold morphological features. Given that new oxide materials are almost reported on a daily basis, considerable synthetic and technological work remains to be done to fully exploit this ever increasing family of compounds for innovative nano-applications. This calls for reliable and scalable preparative approaches to oxide nanomaterials and their development remains a challenge for many complex nanostructured oxides. Oxide nanomaterials with special physicochemical features and unusual morphologies are still difficult to access by classic synthetic pathways. The limitless options for creating nano-oxide building blocks open up new technological perspectives with the potential to revolutionize areas ranging from data processing to biocatalysis. Oxide nanotechnology of the 21st century thus needs a strong interplay of preparative creativity, analytical skills, and new ideas for synergistic implementations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanomaterial-microbe cross-talk: physicochemical principles and (patho)biological consequences.

    PubMed

    Westmeier, D; Hahlbrock, A; Reinhardt, C; Fröhlich-Nowoisky, J; Wessler, S; Vallet, C; Pöschl, U; Knauer, S K; Stauber, R H

    2018-05-17

    The applications of nanoparticles (NPs) are increasing exponentially in consumer products, biotechnology and biomedicine, and humans, as well as the environment, are increasingly being exposed to NPs. Analogously, various (pathogenic) microorganisms are present at all the major exposure and entry sites for NPs in the human body as well as in environmental habitats. However, the field has just started to explore the complex interplay between NPs and microbes and the (patho)biological consequences. Based on recent insights, herein, we critically reviewed the available knowledge about the interaction of NPs with microbes and the analytical investigations including the latest intravital imaging tools. We have commented on how the NPs' characteristics influence complex formation with microorganisms, presented the underlying physicochemical forces, and provided examples of how this knowledge can be used to rationally control the NP-microbe interaction. We concluded by discussing the role of the biomolecule corona in NP-microbe crosstalk and speculated the impact of NP-microbe complex formation on the (patho)biological outcome and fate of microbial pathogens. The presented insights will not only support the field in engineering NPs with improved anti-microbial activity but also stimulate research on the biomedical and toxicological relevance of nanomaterial-microbiome complex formation for the anthropocene in general.

  12. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis

    NASA Astrophysics Data System (ADS)

    Li, Jie; Yu, Ying; Zhang, Lizhi

    2014-07-01

    In recent years, layered bismuth oxyhalide nanomaterials have received more and more interest as promising photocatalysts because their unique layered structures endow them with fascinating physicochemical properties; thus, they have great potential photocatalytic applications for environment remediation and energy harvesting. In this article, we explore the synthesis strategies and growth mechanisms of layered bismuth oxyhalide nanomaterials, and propose design principles of tailoring a layered configuration to control the nanoarchitectures for high efficient photocatalysis. Subsequently, we focus on their layered structure dependent properties, including pH-related crystal facet exposure and phase transformation, facet-dependent photoactivity and molecular oxygen activation pathways, so as to clarify the origin of the layered structure dependent photoreactivity. Furthermore, we summarize various strategies for modulating the composition and arrangement of layered structures to enhance the photoactivity of nanostructured bismuth oxyhalides via internal electric field tuning, dehalogenation effect, surface functionalization, doping, plasmon modification, and heterojunction construction, which may offer efficient guidance for the design and construction of high-performance bismuth oxyhalide-based photocatalysis systems. Finally, we highlight some crucial issues in engineering the layered-structure mediated properties of bismuth oxyhalide photocatalysts and provide tentative suggestions for future research on increasing their photocatalytic performance.

  13. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.

    PubMed

    Rajesh, A; Mangamma, G; Sairam, T N; Subramanian, S; Kalavathi, S; Kamruddin, M; Dash, S

    2017-07-01

    Graphene oxide (GO) based nanocomposites have gained considerable attention in the field of material science due to their excellent physicochemical and biological properties. Incorporation of nanomaterials into GO sheets prevents the formation of π-π stacking bond thereby giving rise to composites that show the improved properties compared to their individual counterparts. In this work, reduced graphene oxide (rGO) - hydroxyapatite (HAP) nanocomposites were synthesized by ultrasonic method. Increasing the c/a ratio of HAP in the diffraction pattern of rGO/HAP nanocomposites indicates the c-axis oriented grown HAP nanorods interacting with rGO layers. Shift in wavenumber (15cm -1 ) and increase of full width at half maximum (45cm -1 ) of G band in Raman spectra of the rGO/HAP nanocomposites are observed and attributed to the tensile strain induced due to the intercalated HAP nanorods between the rGO layers. Atomic force microscopy (AFM) and phase imaging studies revealed the intercalation of HAP nanorod with diameter 30nm and length 110-120nm in rGO sheets was clearly perceived along with improved elasticity compared to pristine HAP. 13 C-NMR results proved the synergistic interaction between both components in rGO/HAP nanocomposite. The novel properties observed and the microscopic mechanism responsible for this are a result of the structural modification in rGO layers brought about by the intercalation of HAP nanorods. Copyright © 2017. Published by Elsevier B.V.

  14. Tissue deposition and toxicological effects of commercially significant rare earth oxide nanomaterials: Material and physical properties.

    PubMed

    Das, Soumen; Reed McDonagh, Philip; Selvan Sakthivel, Tamil; Barkam, Swetha; Killion, Kelsey; Ortiz, Julian; Saraf, Shashank; Kumar, Amit; Gupta, Ankur; Zweit, Jamal; Seal, Sudipta

    2017-03-01

    Rare earth oxide (REO) materials are found naturally in earth's crust and at the nanoscale these REO nanoparticles exhibit unique thermal, electrical, and physicochemical properties. REO nanoparticles are widely used in different industrial sectors for ceramics, glass polishing, metallurgy, lasers, and magnets. Recently, some of these REO nanoparticles have been identified for their potential application in medicine, including therapy, imaging, and diagnostics. Concurrent research into the REO nanomaterials' toxicities has also raised concern for their environmental impacts. The correlation of REO nanoparticles mediated toxicity with their physiochemical properties can help to design nanoparticles with minimal effect on the environment and living organisms. In vitro assay revealed toxicity toward Human squamous epithelial cell line (CCL30) and Human umbilical vascular endothelial cells (HUVEC) at a concentration of 100 µM and higher. In vivo results showed, with the exception of CeO 2 and Gd 2 O 3 , most of the naoparticles did not clear or had minimum clearance (10-20%) from the system. Elevated levels of alanine transferase were seen for animals given each different nanoparticle, however the increases were not significant for CeO 2 and Dy 2 O 3 . Nephrotoxicity was only seen in case of Dy 2 O 3 and Gd 2 O 3 . Lastly, histological examination revealed presence of swollen hepatocytes which further confirms toxicity of the commercial REO nanomaterials. The in vivo toxicity is mainly due to excessive tissue deposition (70-90%) due to the commercial REO nanoparticles' poor physical properties (shape, stability, and extent of agglomeration). Therefore, optimization of nanoparticles physical properties is very important. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 904-917, 2017. © 2016 Wiley Periodicals, Inc.

  15. Abrasion properties of self-suspended hairy titanium dioxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao-xia; Liu, Si; Yan, Chao; Wang, Xiao-jing; Wang, Lei; Yu, Ya-ming; Li, Shi-yun

    2017-11-01

    Considering the excellent solubility of pyrrolidone ring organic compounds, the synthesized N-(trimethoxysilyl) propyl- N-methyl-2-pyrrolidone chlorides was tethered onto titanium dioxide (TiO2) nanoparticles to improve dispersion of TiO2, and then polyethylene oxide (PEO) oligomer through ion exchange embraced the tethered TiO2 to obtain a novel self-suspended hairy TiO2 nanomaterials without any solvent. A variety of techniques were carried out to illustrate the structure and properties of the self-suspended hairy TiO2 nanomaterials. It was found that TiO2 nanoparticles embody monodispersity in the hybrid system though the "false reunion" phenomenon occurring due to nonpermanent weak physical cross-linking. Remarkably, self-suspended hairy TiO2 nanomaterials exhibit lower viscosity, facilitating maneuverable and outstanding antifriction and wear resistance properties, due to the synergistic lubricating effect between spontaneously forming lubricating film and nano-lubrication of TiO2 cores, overcoming the deficiency of both solid and liquid lubricants. This make them promising candidates for the micro-electromechanic/nano-electromechanic systems (MEMS/NEMS).

  16. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  17. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westmeier, Dana; Stauber, Roland H.; Docter, Dominic, E-mail: docter@uni-mainz.de

    Besides the wide use of engineered nanomaterials (ENM) in technical products, their application spectrum in biotechnology and biomedicine is steadily increasing. In complex physiological environments the physico-chemical properties and the behavior of nanoparticles (NPs) are challenging to characterize. Biomolecules rapidly adsorb to the nanomaterial, leading to the formation of the protein/biomolecule corona, which critically affects the nanomaterials' (patho)biological and technical identities. This formation can trigger an immune response and affect nanoparticles' toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the (protein)corona-nanoparticle interaction and discuss how the corona modulates both cytotoxicity and the immunemore » response as well as to improve the efficacy of targeted delivery of nanocarriers. - Highlights: • “Nanotoxicology” has emerged an autonomous field with an explosive growth. • Nanomaterials adsorb (bio)molecules forming the so-called (bio)molecule corona. • (Fine-)tune of the corona composition could enable new possibilities in nanomedicine.« less

  18. Facile synthesis of gold nanomaterials with unusual crystal structures.

    PubMed

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  19. A brief review of the occurrence, use, and safety of food-related nanomaterials.

    PubMed

    Magnuson, Bernadene A; Jonaitis, Tomas S; Card, Jeffrey W

    2011-08-01

    Nanotechnology and nanomaterials have tremendous potential to enhance the food supply through novel applications, including nutrient and bioactive absorption and delivery systems; ingredient functionality; improved colors and flavors; microbial, allergen, and contaminant detection and control; and food packaging properties and performance. To determine the current state of knowledge regarding the safety of these potential uses of nanomaterials, an appraisal of the published literature on the safety of food-related nanomaterials was undertaken. A method of assessment of reliability of toxicology studies was developed to conduct this appraisal. The review of the toxicology literature on oral exposure to food-related nanomaterials found that the number of studies is limited. Exposure to nanomaterials in the human food chain may occur not only through intentional uses in food manufacturing, but also via uses in agricultural production and carry over from use in other industries. Although a number of analytical methods are useful in physicochemical characterization of manufactured nanomaterials, new methods may be needed to more fully detect and characterize nanomaterials incorporated into foods and in other media. There is a need for additional toxicology studies of sufficient quality and duration on different types of nanomaterials to further our understanding of the characteristics of nanomaterials that affect safety of oral exposure resulting from use in various food applications. © 2011 Institute of Food Technologists®

  20. The Developmental Toxicity of Complex Silica-Embedded Nickel Nanoparticles Is Determined by Their Physicochemical Properties

    PubMed Central

    Mahoney, Sharlee; Najera, Michelle; Bai, Qing; Burton, Edward A.; Veser, Götz

    2016-01-01

    Complex engineered nanomaterials (CENs) are a rapidly developing class of structurally and compositionally complex materials that are expected to dominate the next generation of functional nanomaterials. The development of methods enabling rapid assessment of the toxicity risk associated with this type of nanomaterial is therefore critically important. We evaluated the toxicity of three differently structured nickel-silica nanomaterials as prototypical CENs: simple, surface-deposited Ni-SiO2 and hollow and non-hollow core-shell Ni@SiO2 materials (i.e., ~1–2 nm Ni nanoparticles embedded into porous silica shells with and without a central cavity, respectively). Zebrafish embryos were exposed to these CENs, and morphological (survival and malformations) and physiological (larval motility) endpoints were coupled with thorough characterization of physiochemical characteristics (including agglomeration, settling and nickel ion dissolution) to determine how toxicity differed between these CENs and equivalent quantities of Ni2+ salt (based on total Ni). Exposure to Ni2+ ions strongly compromised zebrafish larva viability, and surviving larvae showed severe malformations. In contrast, exposure to the equivalent amount of Ni CEN did not result in these abnormalities. Interestingly, exposure to Ni-SiO2 and hollow Ni@SiO2 provoked abnormalities of zebrafish larval motor function, indicating developmental toxicity, while non-hollow Ni@SiO2 showed no toxicity. Correlating these observations with physicochemical characterization of the CENs suggests that the toxicity of the Ni-SiO2 and hollow Ni@SiO2 material may result partly from an increased effective exposure at the bottom of the well due to rapid settling. Overall, our data suggest that embedding nickel NPs in a porous silica matrix may be a straightforward way to mitigate their toxicity without compromising their functional properties. At the same time, our results also indicate that it is critical to consider

  1. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.

    PubMed

    Biju, Vasudevanpillai

    2014-02-07

    As prepared nanomaterials of metals, semiconductors, polymers and carbon often need surface modifications such as ligand exchange, and chemical and bioconjugate reactions for various biosensor, bioanalytical, bioimaging, drug delivery and therapeutic applications. Such surface modifications help us to control the physico-chemical, toxicological and pharmacological properties of nanomaterials. Furthermore, introduction of various reactive functional groups on the surface of nanomaterials allows us to conjugate a spectrum of contrast agents, antibodies, peptides, ligands, drugs and genes, and construct multifunctional and hybrid nanomaterials for the targeted imaging and treatment of cancers. This tutorial review is intended to provide an introduction to newcomers about how chemical and bioconjugate reactions transform the surface of nanomaterials such as silica nanoparticles, gold nanoparticles, gold quantum clusters, semiconductor quantum dots, carbon nanotubes, fullerene and graphene, and accordingly formulate them for applications such as biosensing, bioimaging, drug and gene delivery, chemotherapy, photodynamic therapy and photothermal therapy. Nonetheless, controversial reports and our growing concerns about toxicity and pharmacokinetics of nanomaterials suggest the need for not only rigorous in vivo experiments in animal models but also novel nanomaterials for practical applications in the clinical settings. Further reading of original and review articles cited herein is necessary to buildup in-depth knowledge about the chemistry, bioconjugate chemistry and biological applications of individual nanomaterials.

  2. Nanomaterials for Sensor Applications

    DOE PAGES

    Márquez, Francisco; Morant, Carmen

    2015-01-15

    A large part of the advances in nanotechnology have been directed towards the development of highspeed electronics, more efficient catalysts, and sensors. This latter group of applications has great relevance and unprecedented development potential for the coming years. Some of the main objectives for the development of sensors have focused on making more sensitive, effective and specific sensing devices. The improvement of these systems and the increase of specificity are clearly associated with a decrease in size of the components, which can lead to obtaining more rapid action, almost in real time. Nanomaterials currently used in sensor development include amore » long list of nanostructured systems, as for example: Metal nanotubes, nanowires, nanofibers, nanocomposites, nanorods, nanoparticles, nanostructured polymers, and different allotropes of carbon as carbon nanotubes, graphene or fullerenes, among others [1]. These nanomaterials are characterized by having unique physicochemical properties, including high electrical and thermal conductivity, extremely high surface area/volume ratio, high mechanical strength and even excellent catalytic properties [1] [2]. These materials, may exhibit relevant physicochemical behavior, such as quantization or electronic confinement effects, which can be used in the development of all kinds of sensors [2]. So far, sensors have been developed for determination and quantification of gases, radiation, biomolecules, microorganisms, etc. [2] [3]. The sensors developed so far usually use the system lock and key, wherein the selective receptor (lock) is selectively anchored to the analyte of interest (or key). This system has great limitations when analyzing the analyte in the presence of other analytes, which can alter the sensitivity or specificity of the measure, as occurs in sensors used in biomedical applications [3] [4]. One possible solution is based on the development of sensor arrays, consisting of a combination of

  3. Smart nanomaterials for biomedics.

    PubMed

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  4. Intracellular signal modulation by nanomaterials.

    PubMed

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  5. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy

    Treesearch

    Ryan Wagner; Robert J. Moon; Arvind Raman

    2016-01-01

    Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...

  6. Synthesis and physicochemical characterizations and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Bhumika K.; Patel, Kinjal; Roy, Debesh R.

    2018-05-01

    Nanoparticles exhibit very interesting and useful physicochemical properties when they interact with substrates and goes through some physicochemical and/or biological processes. ZnO is known to be a highly demanding nanomaterial due to its discreet properties, shapes and sizes. A detail experimental study on the synthesis, characterization and antibacterial activity of ZnO nanoparticles (NPs) is performed. ZnO NPs are synthesized using chemical precipitation method. The understanding of crystal structure, morphology and elemental compositions are explained using Powder X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) respectively. Fourier transform infrared spectroscopy (FTIR) is performed to achieve the information on the presence of various functional groups. The antibacterial activity of these ZnO NPs is investigated in terms of Zone of Inhibition (ZOI) against Escherichia coli (Gram negative) microorganisms.

  7. Fundamental Properties of One-Dimensional Zinc Oxide Nanomaterials and Implementations in Various Detection Modes of Enhanced Biosensing

    PubMed Central

    Hahm, Jong-in

    2016-01-01

    Recent bioapplications of one-dimensional (1D) zinc oxide (ZnO) nanomaterials, despite the short development period, have shown promising signs as new sensors and assay platforms offering exquisite biomolecular sensitivity and selectivity. The incorporation of 1D ZnO nanomaterials has proven beneficial to various modes of biodetection owing to their inherent properties. The more widely explored electrochemical and electrical approaches tend to capitalize on the reduced physical dimensionality, yielding a high surface-to-volume ratio, as well as on the electrical properties of ZnO. The newer development of the use of 1D ZnO nanomaterials in fluorescence-based biodetection exploits the innate optical property of their high anisotropy. This review considers stimulating research advances made to identify and understand fundamental properties of 1D ZnO nanomaterials, and examines various biosensing modes utilizing them, while focusing on the unique optical properties of individual and ensembles of 1D ZnO nanomaterials specifically pertaining to their bio-optical applications in simple and complex fluorescence assays. PMID:27215822

  8. Physicochemical properties of betaine monohydrate-carboxylic acid mixtures

    NASA Astrophysics Data System (ADS)

    Zahrina, I.; Nasikin, M.; Mulia, K.

    2018-05-01

    Green solvents are widely used to minimize environmental problems associated with the use of volatile organic solvents in many industries. DES are new green solvents in recent. The physicochemical properties of DES can be varied by properly combining of salts with different hydrogen bond donors. The objective of this work is to investigate the effect of varying molar ratios on the physicochemical properties of betaine monohydrate-carboxylic acid (i.e,. propionic or acetic acid) mixtures. Properties of mixtures were measured at 40°C. The viscosity, polarity scale (ENR), density, pH, and water content tend to decrease with the decrease in a molar ratio of betaine monohydrate to acid. Conversely, the ionic conductivity was increased. The physicochemical properties of these mixtures depend on the hydrogen bonding interactions between betaine, water and acid molecules. Betaine monohydratecarboxylic acid mixtures have wide range of polarity, low viscosity, high ionic conductivity, and density higher than 1 g·cm-3 that make them fit for numerous various applications. Additionally, due to these mixtures have acidic pH, it should be properly selected of metal type to minimize corrosion problems in industrial application.

  9. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilinskaya, Anna N.; Dobrovolskaia, Marina A., E-ma

    Nanoparticle immunogenicity and antigenicity have been under investigation for many years. During the past decade, significant progress has been made in understanding what makes a nanoparticle immunogenic, how immune cells respond to nanoparticles, what consequences of nanoparticle-specific antibody formation exist and how they challenge the application of nanoparticles for drug delivery. Moreover, it has been recognized that accidental contamination of therapeutic protein formulations with nanosized particulate materials may contribute to the immunogenicity of this type of biotechnology products. While the immunological properties of engineered nanomaterials and their application as vaccine carriers and adjuvants have been given substantial consideration in themore » current literature, little attention has been paid to nanoparticle immuno- and antigenicity. To fill in this gap, we herein provide an overview of this subject to highlight the current state of the field, review past and present research, and discuss future research directions. - Highlights: • Most engineered nanomaterials are not immunogenic per se. • Generation of nanoparticle-specific antibody can be T-cell dependent or independent. • Antibodies can be generated to particle core, terminal groups or surface coatings. • Engineered and accidental nanomaterials have distinct contribution to immunogenicity. • Tunable physicochemical properties make each nanoparticle unique.« less

  10. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health

    NASA Astrophysics Data System (ADS)

    Dasari Shareena, Thabitha P.; McShan, Danielle; Dasmahapatra, Asok K.; Tchounwou, Paul B.

    2018-07-01

    Graphene-based nanomaterials (GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing: (1) the history, synthesis, structural properties and recent developments of GBNs for biomedical applications; (2) GBNs uses as therapeutics, drug/gene delivery and antibacterial materials; (3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and (4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs.[Figure not available: see fulltext.

  11. Influence of succinylation on physicochemical property of yak casein micelles.

    PubMed

    Yang, Min; Yang, Jitao; Zhang, Yuan; Zhang, Weibing

    2016-01-01

    Succinylation is a chemical-modification method that affects the physicochemical characteristics and functional properties of proteins. This study assessed the influence of succinylation on the physicochemical properties of yak casein micelles. The results revealed that surface hydrophobicity indices decreased with succinylation. Additionally, denaturation temperature and denaturation enthalpy decreased with increasing succinylation level, except at 82%. The buffering properties of yak casein micelles were affected by succinylation. It was found that chemical modification contributed to a slight shift of the buffering peak towards a lower pH value and a markedly increase of the maximum buffering values of yak casein micelles at pH 4.5-6.0 and pH < 3. Succinylation increased yak casein micellar hydration and whiteness values. The findings obtained from this study will provide the basic information on the physicochemical properties of native and succinylated yak casein micelles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-05-15

    Structure-function relationships of starch components remain a subject of research interest. Quinoa starch has very small granules (∼2μm) with unique properties. In this study, nine quinoa starches varied greatly in composition, structure, and physicochemical properties were selected for the analysis of structure-function relationships. Pearson correlation analysis revealed that the properties related to gelatinization such as swelling power, water solubility index, crystallinity, pasting, and thermal properties are much affected by the amylopectin chain profile and amylose content. The parameters of gel texture and amylose leaching are much related to amylopectin internal structure. Other properties such as enzyme susceptibility and particle size distribution are also strongly correlated with starch composition and amylopectin structure. Interesting findings indicate the importance of amylopectin internal structure and individual unit chain profile in determining the physicochemical properties of starch. This work highlights some relationships among composition, amylopectin structure and physicochemical properties of quinoa starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cheminformatics Applications and Physicochemical Property ...

    EPA Pesticide Factsheets

    The registration of new chemicals under the Toxic Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transport and transformation of organic chemicals in natural ecosystems. The purpose of this presentation is to demonstrate how cheminformatics, using chemical terms language in combination with the output of physicochemical property calculators, can be employed to encode this knowledge and make it available to the appropriate decision makers. The encoded process science is realized through the execution of reaction libraries in simulators such as EPA’s Chemical Transformation Simulator (CTS). In support of the CTS, reaction libraries have, or are currently being developed for a number of transformation processes including hydrolysis, abiotic reduction, photolysis and disinfection by-product formation. Examples of how the process science in the peer-reviewed literature is being encoded will be presented. The purpose of this presentation is to demonstrate how cheminformatics, using chemical terms language in combination with the output of physicochemical property calculators, can be employed to encode this knowledge and make it available to the appropriate decision makers.

  14. Impacts of doping on thermal and thermoelectric properties of nanomaterials.

    PubMed

    Zhang, Gang; Li, Baowen

    2010-07-01

    Thermal transport in nanoscale structures has attracted an increasing interest in the last two decades. On the one hand, the low dimensional nanostructured materials are platforms for testing novel phonon transport theories. On the other hand, nanomaterials are promising candidates for nanoscale on-chip coolers. This review is focused on the thermal conductance, thermoelectric property, and impacts of doping on these properties.

  15. What is the role of curvature on the properties of nanomaterials for biomedical applications?

    PubMed Central

    Solveyra, Estefania Gonzalez

    2015-01-01

    The use of nanomaterials for drug delivery and theranostics applications is a promising paradigm in nanomedicine, as it brings together the best features of nanotechnolgy, molecular biology and medicine. To fully exploit the synergistic potential of such interdisciplinary strategy, a comprehensive description of the interactions at the interface between nanomaterials and biological systems is not only crucial, but also mandatory. Routine strategies to engineer nanomaterial-based drugs comprise modifying their surface with biocompatible and targeting ligands, in many cases resorting to modular approaches that assume additive behavior. However, emergent behavior can be observed when combining confinement and curvature. The final properties of functionalized nanomaterials become dependent not only on the properties of their constituents but also on the geometry of the nano-bio interface, and on the local molecular environment. Modularity no longer holds, and the coupling between interactions, chemical equilibrium and molecular organization has to be directly addressed in order to design smart nanomaterials with controlled spatial functionalization envisioning optimized biomedical applications. Nanoparticle’s curvature becomes an integral part of the design strategy, enabling to control and engineer the chemical and surface properties with molecular precision. Understanding how NP size, morphology, and surface chemistry are interrelated will put us one step closer to engineering nanobiomaterials capable of mimicking biological structures and their behaviors, paving the way into applications and the possibility to elucidate the use of curvature by biological systems. PMID:26310432

  16. Antibacterial properties and toxicity from metallic nanomaterials

    PubMed Central

    Vimbela, Gina V; Ngo, Sang M; Fraze, Carolyn; Yang, Lei; Stout, David A

    2017-01-01

    The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. PMID:28579779

  17. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments

    PubMed Central

    Goode, Angela E.; Skepper, Jeremy N.; Thorley, Andrew J.; Seiffert, Joanna M.; Chung, K. Fan; Tetley, Teresa D.; Shaffer, Milo S. P.; Ryan, Mary P.

    2015-01-01

    Electron microscopy has been applied widely to study the interaction of nanomaterials with proteins, cells and tissues at nanometre scale. Biological material is most commonly embedded in thermoset resins to make it compatible with the high vacuum in the electron microscope. Room temperature sample preparation protocols developed over decades provide contrast by staining cell organelles, and aim to preserve the native cell structure. However, the effect of these complex protocols on the nanomaterials in the system is seldom considered. Any artefacts generated during sample preparation may ultimately interfere with the accurate prediction of the stability and reactivity of the nanomaterials. As a case study, we review steps in the room temperature preparation of cells exposed to silver nanomaterials (AgNMs) for transmission electron microscopy imaging and analysis. In particular, embedding and staining protocols, which can alter the physicochemical properties of AgNMs and introduce artefacts thereby leading to a misinterpretation of silver bioreactivity, are scrutinised. Recommendations are given for the application of cryogenic sample preparation protocols, which simultaneously fix both particles and diffusible ions. By being aware of the advantages and limitations of different sample preparation methods, compromises or selection of different correlative techniques can be made to draw more accurate conclusions about the data. PMID:25606708

  18. Rapid experimental measurements of physicochemical properties to inform models and testing.

    PubMed

    Nicolas, Chantel I; Mansouri, Kamel; Phillips, Katherine A; Grulke, Christopher M; Richard, Ann M; Williams, Antony J; Rabinowitz, James; Isaacs, Kristin K; Yau, Alice; Wambaugh, John F

    2018-05-02

    The structures and physicochemical properties of chemicals are important for determining their potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to prioritize the risk for thousands of environmental chemicals, but experimental values are often lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we generated new data for 200 structurally diverse compounds, which were rigorously selected from the USEPA ToxCast chemical library, and whose structures are available within the Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study evaluated rapid experimental methods to determine five physicochemical properties, including the log of the octanol:water partition coefficient (known as log(K ow ) or logP), vapor pressure, water solubility, Henry's law constant, and the acid dissociation constant (pKa). For most compounds, experiments were successful for at least one property; log(K ow ) yielded the largest return (176 values). It was determined that 77 ToxPrint structural features were enriched in chemicals with at least one measurement failure, indicating which features may have played a role in rapid method failures. To gauge consistency with traditional measurement methods, the new measurements were compared with previous measurements (where available). Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their predictive ability and chemical coverage or applicability domain of new experimental measurements. The ability to have accurate measurements of these properties will facilitate better exposure predictions in two ways: 1) direct input of these experimental measurements into exposure models; and 2) construction of QSPRs with a wider applicability domain, as their predicted physicochemical values can be used to parameterize exposure

  19. What is the role of curvature on the properties of nanomaterials for biomedical applications?

    PubMed

    Gonzalez Solveyra, Estefania; Szleifer, Igal

    2016-05-01

    The use of nanomaterials for drug delivery and theranostics applications is a promising paradigm in nanomedicine, as it brings together the best features of nanotechnolgy, molecular biology, and medicine. To fully exploit the synergistic potential of such interdisciplinary strategy, a comprehensive description of the interactions at the interface between nanomaterials and biological systems is not only crucial, but also mandatory. Routine strategies to engineer nanomaterial-based drugs comprise modifying their surface with biocompatible and targeting ligands, in many cases resorting to modular approaches that assume additive behavior. However, emergent behavior can be observed when combining confinement and curvature. The final properties of functionalized nanomaterials become dependent not only on the properties of their constituents but also on the geometry of the nano-bio interface, and on the local molecular environment. Modularity no longer holds, and the coupling between interactions, chemical equilibrium, and molecular organization has to be directly addressed in order to design smart nanomaterials with controlled spatial functionalization envisioning optimized biomedical applications. Nanoparticle's curvature becomes an integral part of the design strategy, enabling to control and engineer the chemical and surface properties with molecular precision. Understanding how nanoparticle size, morphology, and surface chemistry are interrelated will put us one step closer to engineering nanobiomaterials capable of mimicking biological structures and their behaviors, paving the way into applications and the possibility to elucidate the use of curvature by biological systems. WIREs Nanomed Nanobiotechnol 2016, 8:334-354. doi: 10.1002/wnan.1365 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  20. Recent progress in boron nanomaterials

    PubMed Central

    Kondo, Takahiro

    2017-01-01

    Abstract Various types of zero, one, and two-dimensional boron nanomaterials such as nanoclusters, nanowires, nanotubes, nanobelts, nanoribbons, nanosheets, and monolayer crystalline sheets named borophene have been experimentally synthesized and identified in the last 20 years. Owing to their low dimensionality, boron nanomaterials have different bonding configurations from those of three-dimensional bulk boron crystals composed of icosahedra or icosahedral fragments. The resulting intriguing physical and chemical properties of boron nanomaterials are fascinating from the viewpoint of material science. Moreover, the wide variety of boron nanomaterials themselves could be the building blocks for combining with other existing nanomaterials, molecules, atoms, and/or ions to design and create materials with new functionalities and properties. Here, the progress of the boron nanomaterials is reviewed and perspectives and future directions are described. PMID:29152014

  1. Physicochemical comparison of commercially available metal oxide nanoparticles: implications for engineered nanoparticle toxicology and risk assessment

    EPA Science Inventory

    Accurate and affordable physicochemical characterization of commercial engineered nanomaterials is required for toxicology studies to ultimately determine nanomaterial: hazard identification; dose to response metric(s); and mechanism(s) of injury. A minimal physical and chemica...

  2. Effects of losartan treatment on the physicochemical properties of diabetic rat bone.

    PubMed

    Donmez, Baris Ozgur; Unal, Mustafa; Ozdemir, Semir; Ozturk, Nihal; Oguz, Nurettin; Akkus, Ozan

    2017-03-01

    Inhibitors of the renin-angiotensin system used to treat several diseases have also been shown to be effective on bone tissue, suggesting that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce fracture risk. The present study investigated the effects of losartan on the physicochemical and biomechanical properties of diabetic rat bone. Losartan (5 mg/kg/day) was administered via oral gavage for 12 weeks. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Whole femurs were tested under tension to evaluate the biomechanical properties of bone. The physicochemical properties of bone were analyzed by Fourier transform infrared spectroscopy. Although losartan did not recover decreases in the BMD of diabetic bone, it recovered the physicochemical (mineral and collagen matrix) properties of diabetic rat bone. Furthermore, losartan also recovered ultimate tensile strength of diabetic rat femurs. Losartan, an angiotensin II type 1 receptor blocker, has a therapeutic effect on the physicochemical properties of diabetic bone resulting in improvement of bone strength at the material level. Therefore, specific inhibition of this pathway at the receptor level shows potential as a therapeutic target for diabetic patients suffering from bone diseases such as osteopenia.

  3. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    PubMed

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Physicochemical properties of kiwifruit starch.

    PubMed

    Li, Dongxing; Zhu, Fan

    2017-04-01

    Three varieties of golden kiwifruit (Actinidia chinensis) (Gold3, Gold9 and Hort16A) were collected at the commercial harvesting time, and physicochemical properties of starches from core and outer pericarp were studied. Starch contents (dry weight basis) in outer pericarp and core tissues ranged from 38.6 to 51.8% and 34.6 to 40.7%, respectively. All the kiwifruit starches showed B-type polymorph. Compared to the outer pericarp starches, amylose content and enzyme susceptibility of core starches were higher, and the degree of crystallinity, granule size and gelatinization parameters of core starches were somewhat lower. This suggests different biosynthetic properties between these two starches. The enthalpy changes of gelatinization of outer pericarp starches were high (∼21J/g). Rheological properties of outer pericarp starches were compared with normal maize and potato starches showed high yield stress of flow properties. This study revealed the unique properties of kiwifruit starch among various types of starches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Does gamma irradiation affect physicochemical properties of honey?

    PubMed

    Hussein, S Z; Yusoff, K M; Makpol, S; Mohd Yusof, Y A

    2014-01-01

    Honey is a supersaturated solution of sugars, enriched with proteins, minerals, vitamins, organic acids and polyphenols. Gamma irradiation is a physical technique of food preservation which protects the honey from insects' and microbial contamination during storage. We investigated the effect of gamma irradiation on physicochemical properties in two types of Malaysian honey, Gelam and Nenas. Both honeys were irradiated at the dose 25 kGy in a cobalt-60 irradiator. The physicochemical properties pH, moisture, acidity, color, and sugar content as well as vitamins C and E, hydroxymethylfurfural (HMF) and mineral contents, for the irradiated and non-irradiated honeys were assessed. The results revealed that pH, acidity, minerals and sugar contents in both types of honey were not affected significantly by gamma irradiation, while moisture, vitamin E contents and HMF level decreased significantly with gamma irradiation. However, significant increased in color intensity and vitamin C were observed after gamma irradiation for both types of honey. In summary, gamma irradiation treatment of honey (in the dose mentioned above) did not cause significant changes in the physicochemical and mineral contents, except for significant alterations in color intensity, moisture, vitamins (C and E), and HMF contents.

  6. The Role of the Food Matrix and Gastrointestinal Tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps.

    PubMed

    McClements, David Julian; DeLoid, Glen; Pyrgiotakis, Georgios; Shatkin, Jo Anne; Xiao, Hang; Demokritou, Philip

    2016-07-01

    Many foods contain appreciable levels of engineered nanomaterials (ENMs) (diameter < 100 nm) that may be either intentionally or unintentionally added. These ENMs vary considerably in their compositions, dimensions, morphologies, physicochemical properties, and biological responses. From a toxicological point of view, it is often convenient to classify ingested ENMs (iENMs) as being either inorganic (such as TiO 2 , SiO 2 , Fe 2 O 3 , or Ag) or organic (such as lipid, protein, or carbohydrate), since the former tend to be indigestible and the latter are generally digestible. At present there is a relatively poor understanding of how different types of iENMs behave within the human gastrointestinal tract (GIT), and how the food matrix and biopolymers transform their physico-chemical properties and influence their gastrointestinal fate. This lack of knowledge confounds an understanding of their potential harmful effects on human health. The purpose of this article is to review our current understanding of the GIT fate of iENMs, and to highlight gaps where further research is urgently needed in assessing potential risks and toxicological implications of iENMs. In particular, a strong emphasis is given to the development of standardized screening methods that can be used to rapidly and accurately assess the toxicological properties of iENMs.

  7. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Peyvandi, Amirpasha

    Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods

  8. Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties

    USDA-ARS?s Scientific Manuscript database

    This book summarizes the science and technology of new generation high energy and insensitive explosives. The objective is to provide the professionals with comprehensive information on synthesis, physicochemical, and detonation properties of the explosives. Potential technologies applicable for tre...

  9. Cellulose nanomaterials in water treatment technologies.

    PubMed

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  10. Comparative Study of the Electrochemical, Biomedical, and Thermal Properties of Natural and Synthetic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Ghaemi, Ferial; Abdullah, Luqman Chuah; Kargarzadeh, Hanieh; Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Abbasian, Maryam

    2018-04-01

    In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3-21.1 m2/g and significant thermal stability (480 °C-600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.

  11. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    NASA Technical Reports Server (NTRS)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  12. Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis

    PubMed Central

    Kailasa, Suresh Kumar; Cheng, Kuang-Hung; Wu, Hui-Fen

    2013-01-01

    Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis. PMID:28788422

  13. Colloidal nanomaterial-based immunoassay.

    PubMed

    Teste, Bruno; Descroix, Stephanie

    2012-06-01

    Nanomaterials have been widely developed for their use in nanomedicine, especially for immunoassay-based diagnosis. In this review we focus on the use of nanomaterials as a nanoplatform for colloidal immunoassays. While conventional heterogeneous immunoassays suffer from mass transfer limitations and consequently long assay time, colloidal immunosupports allow target capture in the entire volume, thus speeding up reaction kinetics and shortening assay time. Owing to their wide range of chemical and physical properties, nanomaterials are an interesting candidate for immunoassay development. The most popular colloidal nanomaterials for colloidal immunoassays will be discussed, as well as their influence on immune reactions. Recent advances in nanomaterial applications for different formats of immunoassays will be reported, such as nanomaterial-based indirect immunoassays, optical-based agglutination immunoassays, resonance energy transfer-based immunoassays and magnetic relaxation-based immunoassays. Finally, the future of using nanomaterials for homogeneous immunoassays dedicated to clinical diagnosis will be discussed.

  14. Pharmaceutical Cocrystals and Their Physicochemical Properties

    PubMed Central

    2009-01-01

    Over the last 20 years, the number of publications outlining the advances in design strategies, growing techniques, and characterization of cocrystals has continued to increase significantly within the crystal engineering field. However, only within the last decade have cocrystals found their place in pharmaceuticals, primarily due to their ability to alter physicochemical properties without compromising the structural integrity of the active pharmaceutical ingredient (API) and thus, possibly, the bioactivity. This review article will highlight and discuss the advances made over the last 10 years pertaining to physical and chemical property improvements through pharmaceutical cocrystalline materials and, hopefully, draw closer the fields of crystal engineering and pharmaceutical sciences. PMID:19503732

  15. Inorganic Nanomaterials as Carriers for Drug Delivery.

    PubMed

    Chen, Shizhu; Hao, Xiaohong; Liang, Xingjie; Zhang, Qun; Zhang, Cuimiao; Zhou, Guoqiang; Shen, Shigang; Jia, Guang; Zhang, Jinchao

    2016-01-01

    For safe and effective therapy, drugs must be delivered efficiently and with minimal systemic side effects. Nanostructured drug carriers enable the delivery of small-molecule drugs as well as nucleic acids and proteins. Inorganic nanomaterials are ideal for drug delivery platforms due to their unique physicochemical properties, such as facile preparation, good storage stability and biocompatibility. Many inorganic nanostructure-based drug delivery platforms have been prepared. Although there are still many obstacles to overcome, significant advances have been made in recent years. This review focuses on the status and development of inorganic nanostructures, including silica, quantum dots, gold, carbon-based and magnetic iron oxide-based nanostructures, as carriers for chemical and biological drugs. We specifically highlight the extensive use of these inorganic drug carriers for cancer therapy. Finally, we discuss the most important areas in the field that urgently require further study.

  16. Preparation and Physicochemical Properties of Vinblastine Microparticles by Supercritical Antisolvent Process

    PubMed Central

    Zhang, Xiaonan; Zhao, Xiuhua; Zu, Yuangang; Chen, Xiaoqiang; Lu, Qi; Ma, Yuliang; Yang, Lei

    2012-01-01

    The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolvent process, were investigated. Particles with a mean particle size of 121 ± 5.3 nm were obtained under the optimized process conditions (precipitation temperature 60 °C, precipitation pressure 25 MPa, vinblastine concentration 2.50 mg/mL and vinblastine solution flow rate 6.7 mL/min). The vinblastine was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, mass spectrometry and dissolution test. It was concluded that physicochemical properties of crystalline vinblastine could be improved by physical modification, such as particle size reduction and generation of amorphous state using the supercritical antisolvent process. Furthermore, the supercritical antisolvent process was a powerful methodology for improving the physicochemical properties of vinblastine. PMID:23202916

  17. One-dimensional nanomaterials for energy storage

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  18. Fabrication of novel dental nanocomposites and investigation their physicochemical and biological properties

    NASA Astrophysics Data System (ADS)

    Jaymand, Mehdi; lotfi, Mehrdad; Abbasian, Mojtaba

    2018-03-01

    This article evaluates physicochemical, mechanical, and biological properties of a series of novel dental nanocomposites that fabricated from multifunctional methacrylate-based dental monomers, triethyleneglycol dimethacrylate (TEGDMA) monomer, and modified silica nanoparticles (SiO2 NPs). The antibacterial activities of the monomers were investigated against lactobacillus plantarum by standard agar disk diffusion method. The cytotoxicity characteristics of the monomers and fabricated nanocomposites were evaluated by MTT and trypan blue cell viability tests, respectively against NIH3T3 cell line. In addition, the mechanical properties, as well as physicochemical characteristics including water sorption, sol fraction, and double bond conversion were also investigated. According to the results, the formulated nanocomposites have potential to apply as dental nanocomposites mainly due to their acceptable physicochemical, mechanical and biological characteristics.

  19. Emergent Properties and Toxicological Considerations for Nanohybrid Materials in Aquatic Systems

    PubMed Central

    Saleh, Navid B.; Afrooz, A. R. M. Nabiul; Bisesi, Joseph H.; Aich, Nirupam; Plazas-Tuttle, Jaime; Sabo-Attwood, Tara

    2014-01-01

    Conjugation of multiple nanomaterials has become the focus of recent materials development. This new material class is commonly known as nanohybrids or “horizon nanomaterials”. Conjugation of metal/metal oxides with carbonaceous nanomaterials and overcoating or doping of one metal with another have been pursued to enhance material performance and/or incorporate multifunctionality into nano-enabled devices and processes. Nanohybrids are already at use in commercialized energy, electronics and medical products, which warrant immediate attention for their safety evaluation. These conjugated ensembles likely present a new set of physicochemical properties that are unique to their individual component attributes, hence increasing uncertainty in their risk evaluation. Established toxicological testing strategies and enumerated underlying mechanisms will thus need to be re-evaluated for the assessment of these horizon materials. This review will present a critical discussion on the altered physicochemical properties of nanohybrids and analyze the validity of existing nanotoxicology data against these unique properties. The article will also propose strategies to evaluate the conjugate materials’ safety to help undertake future toxicological research on the nanohybrid material class. PMID:28344229

  20. Applications of Nanomaterials in Food Packaging.

    PubMed

    Bumbudsanpharoke, Nattinee; Choi, Jungwook; Ko, Seonghyuk

    2015-09-01

    Nanomaterials have drawn great interest in recent years due to their extraordinary properties that make them advantageous in food packaging applications. Specifically, nanoparticles can impart significant barrier properties, as well as mechanical, optical, catalytic, and antimicrobial properties into packaging. Silver nanoparticles (AgNPs) and nanoclay account for the majority of the nano-enabled food packaging on the market, while others, such as nano-zinc oxide (ZnO) and titanium, share less of the current market. In current food packaging, these nanomaterials are primarily used to impart antimicrobial function and to improve barrier properties, thereby extending the shelf life and freshness of packaged food. On the other hand, there is growing concern about the migration of nanomaterials from food contact materials to foodstuffs and its associated potential risks. Indeed, insufficient data about environmental and human safety assessments of migration and exposure of nanomaterials are hindering their market growth. To overcome this barrier, the public believes that legislation from government agencies is critical. This review provides an overview of the characteristics and functions of major nanomaterials that are commonly applied to food packaging, including available and near- future products. Migration research, safety issues, and public concerns are also discussed.

  1. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties

    PubMed Central

    Kocbach Bølling, Anette; Pagels, Joakim; Yttri, Karl Espen; Barregard, Lars; Sallsten, Gerd; Schwarze, Per E; Boman, Christoffer

    2009-01-01

    Background Residential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles. Outline The focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties. Conclusion Overall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles. PMID:19891791

  2. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    PubMed

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  3. Physico-chemical properties and extrusion behaviour of selected common bean varieties.

    PubMed

    Natabirwa, Hedwig; Muyonga, John H; Nakimbugwe, Dorothy; Lungaho, Mercy

    2018-03-01

    Extrusion processing offers the possibility of processing common beans industrially into highly nutritious and functional products. However, there is limited information on properties of extrudates from different bean varieties and their association with raw material characteristics and extrusion conditions. In this study, physico-chemical properties of raw and extruded Bishaz, K131, NABE19, Roba1 and RWR2245 common beans were determined. The relationships between bean characteristics and extrusion conditions on the extrudate properties were analysed. Extrudate physico-chemical and pasting properties varied significantly (P < 0.05) among bean varieties. Expansion ratio and water solubility decreased, while bulk density, water absorption, peak and breakdown viscosities increased as feed moisture increased. Protein exhibited significant positive correlation (P < 0.05) with water solubility index, and negative correlations (P < 0.05) with water absorption, bulk density and pasting viscosities. Iron and dietary fibre showed positive correlation while total ash exhibited negative correlation with peak viscosity, final viscosity and setback. Similar trends were observed in principal component analysis. Extrudate physico-chemical properties were found to be associated with beans protein, starch, iron, zinc and fibre contents. Therefore, bean chemical composition may serve as an indicator for beans extrusion behaviour and could be useful in selection of beans for extrusion. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy

    PubMed Central

    Oberdörster, Günter; Maynard, Andrew; Donaldson, Ken; Castranova, Vincent; Fitzpatrick, Julie; Ausman, Kevin; Carter, Janet; Karn, Barbara; Kreyling, Wolfgang; Lai, David; Olin, Stephen; Monteiro-Riviere, Nancy; Warheit, David; Yang, Hong

    2005-01-01

    The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability

  5. Nanomaterials for membrane fouling control: accomplishments and challenges.

    PubMed

    Yang, Qian; Mi, Baoxia

    2013-11-01

    We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. Nanomaterials derived from metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Dang, Song; Zhu, Qi-Long; Xu, Qiang

    2018-01-01

    The thermal transformation of metal-organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

  7. Effect of spatial restriction on the photoluminescent properties of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Vostrikova, A. M.; Nikolaeva, A. N.; Bakal, A. A.; Shpuntova, D. V.; Mordovina, E. A.; Sukhorukov, G. B.; Sapelkin, A. V.; Goryacheva, I. Yu.

    2018-04-01

    Photoluminescent (PL) properties of carbon-based nanomaterials obtained on the base of sodium dextran sulfate (DS) were compared. DS water solution, dry powder and co-precipitated inside pores of CaCO3 microparticles solution were thermally treated and clear difference between these materials was found. Effect of spatial restriction of CaCO3 pores showed itself in the identity of PL properties for material, obtained by thermal and hydrothermal treatment; in the absence of CaCO3 microparticles the PL spectra were quite different.

  8. The effect of processing on the properties of CuInS2 nanomaterials synthesized by simple hot injection route

    NASA Astrophysics Data System (ADS)

    Chen, Qin-Miao; Zhou, Fang-Fang; Yuan, Hong-Chun; Chen, Jin; Ni, Yi; Zhu, Xi-Fang; Dou, Xiao-Ming

    2017-07-01

    Chalcopyrite and wurtzite CuInS2 (CIS) nanomaterials were synthesized from Cu2+, In3+, thiourea with or without triethanolamine (TEA) by simple hot injection method at low temperature. The effect of synthesis duration on the various properties of the synthesized CIS nanomaterials was studied. It shows that for chalcopyrite CIS, the optimal synthesis duration is 60 min and the synthesized nanomaterial is in spherical shape with diameter of about 90 nm. However, for the wurtzite CIS, the optimal synthesis duration should reach 150 min and the synthesized nanomaterial looks like nanoplate with thicknesses of ˜10 nm and diameters near 100 nm. The photovoltaic characteristics of two types of nanomaterials are quite different. This study may contribute to the synthesis of CIS nanomaterials at low temperatures.

  9. Physicochemical properties of quinoa flour as affected by starch interactions.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-04-15

    There has been growing interest in whole grain quinoa flour for new product development due to the unique nutritional benefits. The quality of quinoa flour is much determined by the properties of its major component starch as well as non-starch components. In this study, composition and physicochemical properties of whole grain flour from 7 quinoa samples have been analyzed. Flour properties have been correlated to the flour composition and the properties of isolated quinoa starches through chemometrics. Great variations in chemical composition, swelling power, water soluble index, enzyme susceptibility, pasting, gel texture, and thermal properties of the flour have been observed. Correlation analysis showed that thermal properties and enzyme susceptibility of quinoa flour are highly influenced by the starch. Interactions of starch with non-starch components, including lipids, protein, dietary fibre, phenolics, and minerals, greatly impacted the flour properties. For example, peak gelatinization temperature of the flour is positively correlated to that of the starch (r=0.948, p<0.01) and negatively correlated to the lipid content (r=-0.951, p<0.01). Understanding the roles of starch and other components in physicochemical properties of quinoa flour provides a basis for better utilization of this specialty crop. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Toxicity evaluations of various carbon nanomaterials.

    PubMed

    Uo, Motohiro; Akasaka, Tsukasa; Watari, Fumio; Sato, Yoshinori; Tohji, Kazuyuki

    2011-01-01

    After the discovery of fullerene and carbon nanotubes, various carbon nanomaterials were discovered or synthesized. The carbon nanomaterials have remarkable properties, different from bulk materials with the same chemical composition, and are therefore useful for industrial applications. However, the toxicity of nanomaterials may also differ from that of the bulk materials; this difference poses a concern. The physical similarity of nanomaterials to asbestos has led to evaluations for toxicity by many researchers using various methods. In this review, we compile and compare the toxicity evaluations of each carbon nanomaterial.

  11. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    NASA Astrophysics Data System (ADS)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO-NDs nanocomposites have been investigated. The ZnO-NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  12. Cellulose Nanomaterials in Water Treatment Technologies

    PubMed Central

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  13. Physicochemical Properties of Dietary Fibers from Artocarpus camansi Fruit

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Kusumaningsih, T.; Rumingtyas, Y. S.

    2017-04-01

    The objective of this work was to investigate the dietary fiber (DF) contents of Artocorpus camansi (breadnut) fruit and examine their physicochemical properties, such as water-holding capacity (WAC), oil-holding capacity (OHC) and water absorption capacity (WAC). This fruit flour contained of both water soluble fibers (SDF), such as pectin (1.95%) and gum (0.4%), and water insoluble fibers (IDF) (89.25%). The IDF content of this fruit was significantly high in respect to other DF sources. The WHC, OHC and WAC of IDF were 4.10, 2.60 and 4.0%, respectively. Moreover, the WHC, OHC and WHC of total dietary fibers (TDF) were 4.2, 4.3 and 4.6%, respectively. The results showed that the DF of fruit flour had good physicochemical properties. The findings suggested that there is a potential application of A. camansi of fruit as functional ingredients in the food industry.

  14. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    PubMed Central

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  15. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    PubMed

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  16. Impacts of Solar PV Arrays on Physicochemical Properties of Soil

    NASA Astrophysics Data System (ADS)

    Cagle, A.; Choi, C. S.; Macknick, J.; Ravi, S.; Bickhart, R.

    2017-12-01

    The deployment of renewable energy technologies, such as solar photovoltaics (PV), is rapidly escalating. While PV can provide clean, renewable energy, there is uncertainty regarding its potential positive and/or negative impacts on the local environment. Specifically, its effects on the physicochemical properties of the underlying soil have not been systematically quantified. This study facilitates the discussion on the effects of PV installations related to the following questions: i. How do soil moisture, infiltration rates, total organic carbon, and nitrogen contents vary spatially under a PV array? ii. How do these physicochemical properties compare to undisturbed and adjacent land covered in native vegetation? iii. Are these variations statistically significant to provide insight on whether PV installations have beneficial or detrimental impacts on soil? We address these questions through field measurements of soil moisture, infiltration, grain particle size distribution, total organic carbon, and nitrogen content at a 1-MW solar PV array located at the National Renewable Energy Laboratory in Golden, Colorado. We collect data via multiple transects underneath the PV array as as well as in an adjacent plot of undisturbed native vegetation. Measurements are taken at four positions under the solar panels; the east-facing edge, center area under the panel, west-facing edge, and interspace between panel rows to capture differences in sun exposure as well as precipitation runoff of panels. Measurements are collected before and after a precipitation event to capture differences in soil moisture and infiltration rates. Results of this work can provide insights for research fields associated with the co-location of agriculture and PV installations as well as the long term ecological impacts of solar energy development. Trends in physicochemical properties under and between solar panels can affect the viability of co-location of commercial crops in PV arrays, the

  17. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.

    2017-09-01

    Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  18. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  19. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  20. 2D nanomaterials assembled from sequence-defined molecules

    DOE PAGES

    Mu, Peng; Zhou, Guangwen; Chen, Chun-Long

    2017-10-21

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges andmore » opportunities in this new field.« less

  1. 2D nanomaterials assembled from sequence-defined molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Peng; Zhou, Guangwen; Chen, Chun-Long

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges andmore » opportunities in this new field.« less

  2. How should the completeness and quality of curated nanomaterial data be evaluated?

    NASA Astrophysics Data System (ADS)

    Marchese Robinson, Richard L.; Lynch, Iseult; Peijnenburg, Willie; Rumble, John; Klaessig, Fred; Marquardt, Clarissa; Rauscher, Hubert; Puzyn, Tomasz; Purian, Ronit; Åberg, Christoffer; Karcher, Sandra; Vriens, Hanne; Hoet, Peter; Hoover, Mark D.; Hendren, Christine Ogilvie; Harper, Stacey L.

    2016-05-01

    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated?Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict

  3. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    PubMed

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Analysis of Physicochemical Properties for Drugs of Natural Origin.

    PubMed

    Camp, David; Garavelas, Agatha; Campitelli, Marc

    2015-06-26

    The impact of time, therapy area, and route of administration on 13 physicochemical properties calculated for 664 drugs developed from a natural prototype was investigated. The mean values for the majority of properties sampled over five periods from pre-1900 to 2013 were found to change in a statistically significant manner. In contrast, lipophilicity and aromatic ring count remained relatively constant, suggesting that these parameters are the most important for successful prosecution of a natural product drug discovery program if the route of administration is not focused exclusively on oral availability. An examination by therapy area revealed that anti-infective agents had the most differences in physicochemical property profiles compared with other areas, particularly with respect to lipophilicity. However, when this group was removed, the variation between the mean values for lipophilicity and aromatic ring count across the remaining therapy areas was again found not to change in a meaningful manner, further highlighting the importance of these two parameters. The vast majority of drugs with a natural progenitor were formulated for either oral and/or injectable administration. Injectables were, on average, larger and more polar than drugs developed for oral, topical, and inhalation routes.

  5. Ice Nucleation Properties of Oxidized Carbon Nanomaterials

    PubMed Central

    2015-01-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  6. Physicochemical properties of collagen solutions cross-linked by glutaraldehyde.

    PubMed

    Tian, Zhenhua; Li, Conghu; Duan, Lian; Li, Guoying

    2014-06-01

    The physicochemical properties of collagen solutions (5 mg/ml) cross-linked by various amounts of glutaraldehyde (GTA) [GTA/collagen (w/w) = 0-0.5] under acidic condition (pH 4.00) were examined. Based on the results of the determination of residual amino group content, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, dynamic rheological measurements, differential scanning calorimetry and atomic force microscopy (AFM), it was proved that the collagen solutions possessed strikingly different physicochemical properties depending on the amount of GTA. At low GTA amounts [GTA/collagen (w/w) ≤ 0.1], the residual amino group contents of the cross-linked collagens decreased largely from 100% to 32.76%, accompanied by an increase in the molecular weight. Additionally, increases of the fiber diameter and the values of G', G″ and η* were measured, while the thermal denaturation temperature (Td) did not change visibly and the fluidity of collagen samples was still retained with increasing the GTA amount. When the ratio of GTA to collagen exceeded 0.1, although the residual amino group content only decreased by ~8.2%, the cross-linked collagen solution [GTA/collagen (w/w) = 0.3] displayed a clear loss of flow and a sudden rise (~2.0 °C) of the Td value compared to the uncross-linked collagen solution, probably illustrating that the collagen solution was converted into a gel with mature network structure-containing nuclei observed in AFM image. It was conjectured that the physicochemical properties of the collagen solutions might be in connection with the cross-linking between collagen molecules from the same aggregate or different aggregates.

  7. 2D nanomaterials assembled from sequence-defined molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Peng; Zhou, Guangwen; Chen, Chun-Long

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. In this mini-review, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. The challenges and opportunitiesmore » in this new field are also discussed.« less

  8. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    PubMed Central

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-01-01

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823

  9. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials.

    PubMed

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-08-18

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  10. Genotoxicity investigations on nanomaterials.

    PubMed

    Oesch, Franz; Landsiedel, Robert

    2012-07-01

    This review is based on the lecture presented at the April 2010 nanomaterials safety assessment Postsatellite to the 2009 EUROTOX Meeting and summarizes genotoxicity investigations on nanomaterials published in the open scientific literature (up to 2008). Special attention is paid to the relationship between particle size and positive versus negative outcome, as well as the dependence of the outcome on the test used. Salient conclusions and outstanding recommendations emerging from the information summarized in this review are as follows: recognize that nanomaterials are not all the same; therefore know and document what nanomaterial has been tested and in what form; take nanomaterials specific properties into account; in order to make your results comparable with those of others and on other nanomaterials: use or at least include in your studies standardized methods; use in vivo studies to put in vitro results into perspective; take uptake and distribution of the nanomaterial into account; and in order to become able to make extrapolations to risk for human: learn about the mechanism of nanomaterials genotoxic effects. Past experience with standard non-nanosubstances already had shown that mechanisms of genotoxic effects can be complex and their elucidation can be demanding, while there often is an immediate need to assess the genotoxic hazard. Thus, a practical and pragmatic approach to genotoxicity investigations of novel nanomaterials is the use of a battery of standard genotoxicity testing methods covering a wide range of mechanisms. Application of these standard methods to nanomaterials demands, however, adaptations, and the interpretation of results from the genotoxicity testing of nanomaterials needs additional considerations exceeding those used for standard size materials.

  11. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge

    PubMed Central

    Miller, Mark R.; Clift, Martin J.D.; Elder, Alison; Mills, Nicholas L.; Møller, Peter; Schins, Roel P.F.; Vogel, Ulla; Kreyling, Wolfgang G.; Alstrup Jensen, Keld; Kuhlbusch, Thomas A.J.; Schwarze, Per E.; Hoet, Peter; Pietroiusti, Antonio; De Vizcaya-Ruiz, Andrea; Baeza-Squiban, Armelle; Teixeira, João Paulo; Tran, C. Lang; Cassee, Flemming R.

    2017-01-01

    Background: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. Objectives: NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. Methods: A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. Discussion: Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. Conclusion: There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424 PMID:29017987

  12. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge.

    PubMed

    Stone, Vicki; Miller, Mark R; Clift, Martin J D; Elder, Alison; Mills, Nicholas L; Møller, Peter; Schins, Roel P F; Vogel, Ulla; Kreyling, Wolfgang G; Alstrup Jensen, Keld; Kuhlbusch, Thomas A J; Schwarze, Per E; Hoet, Peter; Pietroiusti, Antonio; De Vizcaya-Ruiz, Andrea; Baeza-Squiban, Armelle; Teixeira, João Paulo; Tran, C Lang; Cassee, Flemming R

    2017-10-10

    A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424.

  13. Exploring and validating physicochemical properties of mangiferin through GastroPlus® software

    PubMed Central

    Khurana, Rajneet Kaur; Kaur, Ranjot; Kaur, Manninder; Kaur, Rajpreet; Kaur, Jasleen; Kaur, Harpreet; Singh, Bhupinder

    2017-01-01

    Aim: Mangiferin (Mgf), a promising therapeutic polyphenol, exhibits poor oral bioavailability. Hence, apt delivery systems are required to facilitate its gastrointestinal absorption. The requisite details on its physicochemical properties have not yet been well documented in literature. Accordingly, in order to have explicit insight into its physicochemical characteristics, the present work was undertaken using GastroPlus™ software. Results: Aqueous solubility (0.38 mg/ml), log P (-0.65), Peff (0.16 × 10-4 cm/s) and ability to act as P-gp substrate were defined. Potency to act as a P-gp substrate was verified through Caco-2 cells, while Peff was estimated through single pass intestinal perfusion studies. Characterization of Mgf through transmission electron microscopy, differential scanning calorimetry, infrared spectroscopy and powder x-ray diffraction has also been reported. Conclusion: The values of physicochemical properties for Mgf reported in the current manuscript would certainly enable the researchers to develop newer delivery systems for Mgf. PMID:28344830

  14. NaKnowBaseTM: The EPA Nanomaterials Research ...

    EPA Pesticide Factsheets

    The ability to predict the environmental and health implications of engineered nanomaterials is an important research priority due to the exponential rate at which nanotechnology is being incorporated into consumer, industrial and biomedical applications. To address this need and develop predictive capability, we have created the NaKnowbaseTM, which provides a platform for the curation and dissemination of EPA nanomaterials data to support functional assay development, hazard risk models and informatic analyses. To date, we have combined relevant physicochemical parameters from other organizations (e.g., OECD, NIST), with those requested for nanomaterial data submitted to EPA under the Toxic Substances Control Act (TSCA). Physiochemical characterization data were collated from >400 unique nanomaterials including metals, metal oxides, carbon-based and hybrid materials evaluated or synthesized by EPA researchers. We constructed parameter requirements and table structures for encoding research metadata, including experimental factors and measured response variables. As a proof of concept, we illustrate how SQL-based queries facilitate a range of interrogations including, for example, relationships between nanoparticle characteristics and environmental or toxicological endpoints. The views expressed in this poster are those of the authors and may not reflect U.S. EPA policy. The purpose of this submission for clearance is an abstract for submission to a scientific

  15. A Study of Physicochemical Properties of Subcutaneous Fat of the Abdomen and its Implication in Abdominal Obesity

    PubMed Central

    Kumar, Pramod; Kodavoor, Srinivas Aithal; Kotian, Sushma Rama; Yathdaka, Sudhakar Narahari; Nayak, Dayanand; Souza, Anne D; Souza, Antony Sylvan D

    2016-01-01

    Introduction The lower abdominal obesity is more resistant to absorption as compared to that of upper abdomen. Differences in the physicochemical properties of the subcutaneous fat of the upper and lower abdomen may be responsible for this variation. There is paucity of the scientific literature on the physicochemical properties of the subcutaneous fat of abdomen. Aim The present study was undertaken to create a database of physicochemical properties of abdominal subcutaneous fat. Materials and Methods The samples of subcutaneous fat from upper and lower abdomen were collected from 40 fresh autopsied bodies (males 33, females 7). The samples were prepared for physicochemical analysis using organic and inorganic solvents. Various physicochemical properties of the fat samples analysed were surface tension, viscosity, specific gravity, specific conductivity, iodine value and thermal properties. Data was analysed by paired and independent sample t-tests. Results There was a statistically significant difference in all the physicochemical parameters between males and females except surface tension (organic) and surface tension (inorganic) of upper abdominal fat, and surface tension (organic) of lower abdominal fat. In males, viscosity of upper abdominal fat was more compared to that of lower abdomen (both organic and inorganic) unlike the specific conductivity that was higher for the lower abdominal fat as compared to that of the upper abdomen. In females there were statistically significant higher values of surface tension (inorganic) and specific gravity (organic) of the upper abdomen fat as compared to that of lower abdomen. The initial and final weight loss of the lower abdominal fat as indicated by Thermo Gravimetric Analysis was significantly more in males than in female Conclusion The difference in the physicochemical properties of subcutaneous fat between upper and lower abdomen and between males and females could be responsible for the variant behaviour of

  16. A Study of Physicochemical Properties of Subcutaneous Fat of the Abdomen and its Implication in Abdominal Obesity.

    PubMed

    Pandey, Arvind Kumar; Kumar, Pramod; Kodavoor, Srinivas Aithal; Kotian, Sushma Rama; Yathdaka, Sudhakar Narahari; Nayak, Dayanand; Souza, Anne D; Souza, Antony Sylvan D

    2016-05-01

    The lower abdominal obesity is more resistant to absorption as compared to that of upper abdomen. Differences in the physicochemical properties of the subcutaneous fat of the upper and lower abdomen may be responsible for this variation. There is paucity of the scientific literature on the physicochemical properties of the subcutaneous fat of abdomen. The present study was undertaken to create a database of physicochemical properties of abdominal subcutaneous fat. The samples of subcutaneous fat from upper and lower abdomen were collected from 40 fresh autopsied bodies (males 33, females 7). The samples were prepared for physicochemical analysis using organic and inorganic solvents. Various physicochemical properties of the fat samples analysed were surface tension, viscosity, specific gravity, specific conductivity, iodine value and thermal properties. Data was analysed by paired and independent sample t-tests. There was a statistically significant difference in all the physicochemical parameters between males and females except surface tension (organic) and surface tension (inorganic) of upper abdominal fat, and surface tension (organic) of lower abdominal fat. In males, viscosity of upper abdominal fat was more compared to that of lower abdomen (both organic and inorganic) unlike the specific conductivity that was higher for the lower abdominal fat as compared to that of the upper abdomen. In females there were statistically significant higher values of surface tension (inorganic) and specific gravity (organic) of the upper abdomen fat as compared to that of lower abdomen. The initial and final weight loss of the lower abdominal fat as indicated by Thermo Gravimetric Analysis was significantly more in males than in female. The difference in the physicochemical properties of subcutaneous fat between upper and lower abdomen and between males and females could be responsible for the variant behaviour of subcutaneous abdominal fat towards resorption.

  17. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review.

    PubMed

    Khan, Avik; Wen, Yangbing; Huq, Tanzina; Ni, Yonghao

    2018-01-10

    Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.

  18. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braakhuis, Hedwig M., E-mail: hedwig.braakhuis@rivm.nl; Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht; Oomen, Agnes G.

    are discussed. • Grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. • To link physicochemical characteristics of nanomaterials to an effect, information on their biokinetic behaviour is needed. • To be of most value, grouping should combine information on intrinsic characteristics, life-cycle, biokinetics and effects.« less

  19. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    PubMed

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Physicochemical properties of an insensitive munitions compound, N-methyl-4-nitroaniline (MNA).

    PubMed

    Boddu, Veera M; Abburi, Krishnaiah; Maloney, Stephen W; Damavarapu, Reddy

    2008-06-30

    Accurate information on physicochemical properties of an organic contaminant is essential for predicting its environmental impact and fate. These properties also provide invaluable information for the overall understanding of environmental distribution, biotransformation, and potential treatment processes. In this study the aqueous solubility (Sw), octanol-water partition coefficient (Kow), and Henry's law constant (K(H)) were determined for an insensitive munitions (IM) compound, N-methyl-4-nitroaniline (MNA), at 298.15, 308.15, and 318.15 K. Effect of ionic strength on solubility, using electrolytes such as NaCl and CaCl2, was also studied. The data on the physicochemical parameters were correlated using the standard Van't Hoff equation. All three properties exhibited a linear relationship with reciprocal temperature. The enthalpy and entropy of phase transfer were derived from the experimental data.

  1. Comparative evaluation of physicochemical properties of jatropha curcas seed oil for coolant-lubricant application

    NASA Astrophysics Data System (ADS)

    Murad, Muhamad Nasir; Sharif, Safian; Rahim, Erween Abd.; Abdullah, Rozaini

    2017-09-01

    Increased attention to environmental issues due to industrial activities has forced the authorities raise awareness and implement regulations to reduce the use of mineral oil. Some vegetable oils unexplored or less explored, particularly the non-edible oils such as Jatropha curcas oil (JCO) and others. Physicochemical properties of JCO is compared with others edible oils, synthetic ester and fatty alcohol to obtain a viable alternative in metal cutting fluids. The oil was found to show the suitability of properties for coolant-lubricant applications in term of its physicochemical properties and better in flash point and viscosity value.

  2. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    PubMed Central

    Cohignac, Vanessa; Landry, Marion Julie; Boczkowski, Jorge; Lanone, Sophie

    2014-01-01

    The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity. PMID:28344236

  3. Chemical Sensing Applications of ZnO Nanomaterials

    PubMed Central

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  4. Engineered Nanomaterials, Sexy New Technology and Potential Hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, R A

    Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lungmore » deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls.« less

  5. Physicochemical properties of extrudates from white yam and bambara nut blends

    NASA Astrophysics Data System (ADS)

    Oluwole, O. B.; Olapade, A. A.; Awonorin, S. O.; Henshaw, F. O.

    2013-01-01

    This study was conducted to investigate effects of extrusion conditions on physicochemical properties of blend of yam and bambara nut flours. A blend of white yam grit (750 μm) and Bambara nut flour (500 μm) in a ratio of 4:1, respectively was extrusion cooked at varying screw speeds 50-70 r.p.m., feed moisture 12.5-17.5% (dry basis) and barrel temperatures 130-150°C. The extrusion variables employed included barrel temperature, screw speed, and feed moisture content, while the physicochemical properties of the extrudates investigated were the expansion ratio, bulk density, and trypsin inhibition activity. The results revealed that all the extrusion variables had significant effects (p<0.05) on the product properties considered in this study. The expansion ratio values ranged 1.55-2.06, bulk density values ranged 0.76-0.94 g cm-3, while trypsin inhibition activities were 1.01-8.08 mg 100 g-1 sample.

  6. Nanomaterials for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  7. Physicochemical properties and combustion behavior of duckweed during wet torrefaction.

    PubMed

    Zhang, Shuping; Chen, Tao; Li, Wan; Dong, Qing; Xiong, Yuanquan

    2016-10-01

    Wet torrefaction of duckweed was carried out in the temperature range of 130-250°C to evaluate the effects on physicochemical properties and combustion behavior. The physicochemical properties of duckweed samples were investigated by ultimate analysis, proximate analysis, FTIR, XRD and SEM techniques. It was found that wet torrefaction improved the fuel characteristics of duckweed samples resulting from the increase in fixed carbon content, HHVs and the decrease in nitrogen and sulfur content and atomic ratios of O/C and H/C. It can be seen from the results of FTIR, XRD and SEM analyses that the dehydration, decarboxylation, solid-solid conversion, and condensation polymerization reactions were underwent during wet torrefaction. In addition, the results of thermogravimetric analysis (TGA) in air indicated that wet torrefaction resulted in significant changes on combustion behavior and combustion kinetics parameters. Duckweed samples after wet torrefaction behaved more char-like and gave better combustion characteristics than raw sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  9. Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: A Review of the Effects of Synthesis Parameters and Magnetic Properties

    PubMed Central

    Qi, Xiaosi; Qin, Chuan; Zhong, Wei; Au, Chaktong; Ye, Xiaojuan; Du, Youwei

    2010-01-01

    The large-scale production of carbon nanomaterials by catalytic chemical vapor deposition is reviewed in context with their microwave absorbing ability. Factors that influence the growth as well as the magnetic properties of the carbon nanomaterials are discussed. PMID:28883324

  10. Effect of acidity on the physicochemical properties of α- and β-chitin nanofibers.

    PubMed

    Suenaga, Shin; Totani, Kazuhide; Nomura, Yoshihiro; Yamashita, Kazuhiko; Shimada, Iori; Fukunaga, Hiroshi; Takahashi, Nobuhide; Osada, Mitsumasa

    2017-09-01

    We have investigated whether acidity can be used to control the physicochemical properties of chitin nanofibers (ChNFs). In this study, we define acidity as the molar ratio of dissociated protons from the acid to the amino groups in the raw chitin powder. The effect of acidity on the physicochemical properties of α- and β-ChNFs was compared. The transmittance and viscosity of the β-ChNFs drastically and continuously increased with increasing acidity, while those of the α-ChNFs were not affected by acidity. These differences are because of the higher ability for cationization based on the more flexible crystal structure of β-chitin than α-chitin. In addition, the effect of the acid species on the transmittance of β-ChNFs was investigated. The transmittance of β-ChNFs can be expressed by the acidity regardless of the acid species, such as hydrochloric acid, phosphoric acid, and acetic acid. These results indicate that the acidity defined in this work is an effective parameter to define and control the physicochemical properties of ChNFs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Principal Physicochemical Methods Used to Characterize Dendrimer Molecule Complexes Used as Genetic Therapy Agents, Nanovaccines or Drug Carriers.

    PubMed

    Alberto, Rodríguez Fonseca Rolando; Joao, Rodrigues; de Los Angeles, Muñoz-Fernández María; Alberto, Martínez Muñoz; Manuel Jonathan, Fragoso Vázquez; José, Correa Basurto

    2017-08-30

    Nanomedicine is the application of nanotechnology to medicine. This field is related to the study of nanodevices and nanomaterials applied to various medical uses, such as in improving the pharmacological properties of different molecules. Dendrimers are synthetic nanoparticles whose physicochemical properties vary according to their chemical structure. These molecules have been extensively investigated as drug nanocarriers to improve drug solubility and as sustained-release systems. New therapies such as gene therapy and the development of nanovaccines can be improved by the use of dendrimers. The biophysical and physicochemical characterization of nucleic acid/peptide-dendrimer complexes is crucial to identify their functional properties prior to biological evaluation. In that sense, it is necessary to first identify whether the peptide-dendrimer or nucleic aciddendrimer complexes can be formed and whether the complex can dissociate under the appropriate conditions at the target cells. In addition, biophysical and physicochemical characterization is required to determine how long the complexes remain stable, what proportion of peptide or nucleic acid is required to form the complex or saturate the dendrimer, and the size of the complex formed. In this review, we present the latest information on characterization systems for dendrimer-nucleic acid, dendrimer-peptide and dendrimer-drug complexes with several biotechnological and pharmacological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Conductive nanomaterials for printed electronics.

    PubMed

    Kamyshny, Alexander; Magdassi, Shlomo

    2014-09-10

    This is a review on recent developments in the field of conductive nanomaterials and their application in printed electronics, with particular emphasis on inkjet printing of ink formulations based on metal nanoparticles, carbon nanotubes, and graphene sheets. The review describes the basic properties of conductive nanomaterials suitable for printed electronics (metal nanoparticles, carbon nanotubes, and graphene), their stabilization in dispersions, formulations of conductive inks, and obtaining conductive patterns by using various sintering methods. Applications of conductive nanomaterials for electronic devices (transparent electrodes, metallization of solar cells, RFID antennas, TFTs, and light emitting devices) are also briefly reviewed.

  13. Effects of spent mushroom compost application on the physicochemical properties of a degraded soil

    NASA Astrophysics Data System (ADS)

    Gümüş, İlknur; Şeker, Cevdet

    2017-11-01

    Under field and laboratory conditions, the application of organic amendments has generally shown an improvement in soil physicochemical properties. Here, spent mushroom compost (SMC) is proposed as a suitable organic amendment for soil structure restoration. Our study assessed the impact of SMC on the physicochemical properties of a weak-structured and physically degraded soil. The approach involved the establishment of a pot experiment with SMC applications into soil (control, 0.5, 1, 2, 4 and 8 %). Soils were incubated at field capacity (-33 kPa) for 21, 42, and 62 days under laboratory conditions. SMC applications into the soil significantly increased the aggregate stability (AS) and decreased the modulus of rupture. The application of SMC at rates of 1, 2, 4, and 8 % significantly increased the total nitrogen and soil organic carbon contents of the degraded soil at all incubation periods (p < 0.05). The results obtained in this study indicate that the application of SMC can improve soil physicochemical properties, which may benefit farmers, land managers, and mushroom growers.

  14. [International trend of guidance for nanomaterial risk assessment].

    PubMed

    Hirose, Akihiko

    2013-01-01

    In the past few years, several kinds of opinions or recommendations on the nanomaterial safety assessment have been published from international or national bodies. Among the reports, the first practical guidance of risk assessment from the regulatory body was published from the European Food Safety Authorities in May 2011, which included the determination of exposure scenario and toxicity testing strategy. In October 2011, European Commission (EC) adopted the definition of "nanomaterial" for regulation. And more recently, Scientific Committee on Consumer Safety of EC released guidance for assessment of nanomaterials in cosmetics in June 2012. A series of activities in EU marks an important step towards realistic safety assessment of nanomaterials. On the other hand, the US FDA announced a draft guidance for industry in June 2011, and then published draft guidance documents for both "Cosmetic Products" and "Food Ingredients and Food Contact Substances" in April 2012. These draft documents do not restrictedly define the physical properties of nanomaterials, but when manufacturing changes alter the dimensions, properties, or effects of an FDA-regulated product, the products are treated as new products. Such international movements indicate that most of nanomaterials with any new properties would be assessed or regulated as new products by most of national authorities in near future, although the approaches are still case by case basis. We will introduce such current international activities and consideration points for regulatory risk assessment.

  15. Graphene-based nanomaterials for nanobiotechnology and biomedical applications.

    PubMed

    Krishna, K Vijaya; Ménard-Moyon, Cécilia; Verma, Sandeep; Bianco, Alberto

    2013-10-01

    Graphene family nanomaterials are currently being extensively explored for applications in the field of nanotechnology. The unique intrinsic properties treasured in their simple molecular design and their ability to work in coherence with other existing nanomaterials make graphene family nanomaterials the most promising candidates for different types of applications. This review highlights the scope and utility of these multifaceted nanomaterials in nanobiotechnology and biomedicine. In a tandem approach, this review presents the smooth inclusion of these nanomaterials into existing designs for creating efficient working models at the nanoscale level as well as discussing their broad future possibilities.

  16. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process.

    PubMed

    Yang, Lei; Sun, Zhen; Zu, Yuangang; Zhao, Chunjian; Sun, Xiaowei; Zhang, Zhonghua; Zhang, Lin

    2012-05-01

    The objective of the study was to prepare ursolic acid (UA) nanoparticles using the supercritical anti-solvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during SAS process, were investigated. Particles with mean particle size ranging from 139.2±19.7 to 1039.8±65.2nm were obtained by varying the process parameters. The UA was characterised by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, specific surface area, dissolution test and bioavailability test. It was concluded that physicochemical properties and bioavailability of crystalline UA could be improved by physical modification, such as particle size reduction and generation of amorphous state using SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of UA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. CELLULAR UPTAKE AND TOXICITY OF DENDRITIC NANOMATERIALS: AN INTEGRATED PHYSICOCHEMICAL AND TOXICOGENOMICS STUDY

    EPA Science Inventory

    The successful completion of this project is expected to provide industry with critical data and predictive tools needed to assess the health and environmental impact of dendritic nanomaterials such as EDA core PAMAM dendrimers.

  18. Nanomaterial Based Sensors for NASA Missions

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    Nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and metal nanowires have shown interesting electronic properties and therefore have been pursued for a variety of space applications requiring ultrasensitive and light-weight sensor and electronic devices. We have been pursuing development of chemical and biosensors using carbon nanotubes and carbon nanofibers for the last several years and this talk will present the benefits of nanomaterials these applications. More recently, printing approaches to manufacturing these devices have been explored as a strategy that is compatible to a microgravity environment. Nanomaterials are either grown in house or purchased and processed as electrical inks. Chemical modification or coatings are added to the nanomaterials to tailor the nanomaterial to the exact application. The development of printed chemical sensors and biosensors will be discussed for applications ranging from crew life support to exploration missions.

  19. Strain-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Martín-Sánchez, Javier; Trotta, Rinaldo; Mariscal, Antonio; Serna, Rosalía; Piredda, Giovanni; Stroj, Sandra; Edlinger, Johannes; Schimpf, Christian; Aberl, Johannes; Lettner, Thomas; Wildmann, Johannes; Huang, Huiying; Yuan, Xueyong; Ziss, Dorian; Stangl, Julian; Rastelli, Armando

    2018-01-01

    The tailoring of the physical properties of semiconductor nanomaterials by strain has been gaining increasing attention over the last years for a wide range of applications such as electronics, optoelectronics and photonics. The ability to introduce deliberate strain fields with controlled magnitude and in a reversible manner is essential for fundamental studies of novel materials and may lead to the realization of advanced multi-functional devices. A prominent approach consists in the integration of active nanomaterials, in thin epitaxial films or embedded within carrier nanomembranes, onto Pb(Mg1/3Nb2/3)O3-PbTiO3-based piezoelectric actuators, which convert electrical signals into mechanical deformation (strain). In this review, we mainly focus on recent advances in strain-tunable properties of self-assembled InAs quantum dots (QDs) embedded in semiconductor nanomembranes and photonic structures. Additionally, recent works on other nanomaterials like rare-earth and metal-ion doped thin films, graphene and MoS2 or WSe2 semiconductor two-dimensional materials are also reviewed. For the sake of completeness, a comprehensive comparison between different procedures employed throughout the literature to fabricate such hybrid piezoelectric-semiconductor devices is presented. It is shown that unprocessed piezoelectric substrates (monolithic actuators) allow to obtain a certain degree of control over the nanomaterials’ emission properties such as their emission energy, fine-structure-splitting in self-assembled InAs QDs and semiconductor 2D materials, upconversion phenomena in BaTiO3 thin films or piezotronic effects in ZnS:Mn films and InAs QDs. Very recently, a novel class of micro-machined piezoelectric actuators have been demonstrated for a full control of in-plane stress fields in nanomembranes, which enables producing energy-tunable sources of polarization-entangled photons in arbitrary QDs. Future research directions and prospects are discussed.

  20. Current Trends in Nanomaterial-Based Amperometric Biosensors

    PubMed Central

    Hayat, Akhtar; Catanante, Gaëlle; Marty, Jean Louis

    2014-01-01

    The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors. PMID:25494347

  1. Simulating the fate and transport of nanomaterials in surface waters

    EPA Science Inventory

    The unique properties of nanomaterials have resulted in their increased production. However, it is unclear how nanomaterials will move and react once released to the environment One approach for addressing possible exposure of nanomaterials in surface waters is by using numerical...

  2. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    PubMed Central

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der

  3. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics.

    PubMed

    Yang, Chunpeng; Gao, Xinyu; Gong, Rui

    2017-01-01

    Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo . However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa , which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo .

  4. Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation.

    PubMed

    Jintapattanakit, Anchalee; Mao, Shirui; Kissel, Thomas; Junyaprasert, Varaporn Buraphacheep

    2008-10-01

    The aim of this research was to investigate the effect of degrees of quaternization (DQ) and dimethylation (DD) on physicochemical properties and cytotoxicity of N-trimethyl chitosan (TMC). TMC was synthesized by reductive methylation of chitosan in the presence of a strong base at elevated temperature and polymer characteristics were investigated. The number of methylation process and duration of reaction were demonstrated to affect the DQ and DD. An increased number of reaction steps increased DQ and decreased DD, while an extended duration of reaction increased both DQ and DD. The molecular weight of TMC was in the range of 60-550kDa. From the Mark-Houwink equation, it was found that TMC in 2% acetic acid/0.2M sodium acetate behaved as a spherical structure, approximating a random coil. The highest solubility was found with TMC of an intermediate DQ (40%) regardless of DD and molecular weight. The effect of DD on the physicochemical properties and cytotoxicity was obviously observed when proportion of DD to DQ was higher than 1. TMC with relatively high DD showed reduction in both solubility and mucoadhesion and hence decreased cytotoxicity. However, the influence of DD was insignificant when DQ of TMC was higher than 40% at which physicochemical properties and cytotoxicity were mainly dependent upon DQ.

  5. Physicochemical properties of black pepper (Piper nigrum) starch.

    PubMed

    Zhu, Fan; Mojel, Reuben; Li, Guantian

    2018-02-01

    Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Composition, structure, physicochemical properties, and modifications of cassava starch.

    PubMed

    Zhu, Fan

    2015-05-20

    Cassava is highly tolerant to harsh climatic conditions and has great productivity on marginal lands. The supply of cassava starch, the major component of the root, is thus sustainable and cheap. This review summarizes the current knowledge of the composition, physical and chemical structures, physicochemical properties, nutritional quality, and modifications of cassava starch. Research opportunities to better understand this starch are provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Marine Phages As Tracers: Effects of Size, Morphology, and Physico-Chemical Surface Properties on Transport in a Porous Medium.

    PubMed

    Ghanem, Nawras; Kiesel, Bärbel; Kallies, René; Harms, Hauke; Chatzinotas, Antonis; Wick, Lukas Y

    2016-12-06

    Although several studies examined the transport of viruses in terrestrial systems only few studies exist on the use of marine phages (i.e., nonterrestrial viruses infecting marine host bacteria) as sensitively detectable microbial tracers for subsurface colloid transport and water flow. Here, we systematically quantified and compared for the first time the effects of size, morphology and physicochemical surface properties of six marine phages and two coliphages (MS2, T4) on transport in sand-filled percolated columns. Phage-sand interactions were described by colloidal filtration theory and the extended Derjaguin-Landau-Verwey-Overbeek approach (XDLVO), respectively. The phages belonged to different families and comprised four phages never used in transport studies (i.e., PSA-HM1, PSA-HP1, PSA-HS2, and H3/49). Phage transport was influenced by size, morphology and hydrophobicity in an approximate order of size > hydrophobicity ≥ morphology. Two phages PSA-HP1, PSA-HS2 (Podoviridae and Siphoviridae) exhibited similar mass recovery as commonly used coliphage MS2 and were 7-fold better transported than known marine phage vB_PSPS-H40/1. Differing properties of the marine phages may be used to trace transport of indigenous viruses, natural colloids or anthropogenic nanomaterials and, hence, contribute to better risk analysis. Our results underpin the potential role of marine phages as microbial tracer for transport of colloidal particles and water flow.

  8. Fractionation, physicochemical property and immunological activity of polysaccharides from Cassia obtusifolia.

    PubMed

    Feng, Lei; Yin, Junyi; Nie, Shaoping; Wan, Yiqun; Xie, Mingyong

    2016-10-01

    The seeds of Cassia obtusifolia are widely used as a drink in Asia and an additive in food industry. Considerable amounts of water-soluble polysaccharides were found in the whole seeds, while conflicting results on structure characteristics have been reported, and few studies have been reported on physicochemical properties and immunomodulatory activities. In the present study, gradient ethanol precipitation was applied to fractionate the water-soluble polysaccharide (CP), and two sub-fractions CP-30 (30% ethanol precipitate) and CP-40 (40% ethanol precipitate) were obtained. Different rheological properties for CP-30 and CP-40 were found, indicating the differences in structure characteristics between CP-30 and CP-40. Chemical properties, including molecular weight, monosaccharide composition, and glycosidic linkage were investigated. Compared with CP-30, CP-40 had lower molecular weight and higher content of xylose. The immunomodulatory effects of CP, CP-30 and CP-40 were assessed. All of them were found to possess significant immunomodulation activities, while varied effects of them on macrophage functions were observed. The aim of the present study was to develop a simple and efficient method to purify cassia polysaccharides, and investigate their physicochemical properties and biological activities, which was meaningful for their potential use in food industry and folk medicine. Copyright © 2016. Published by Elsevier B.V.

  9. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers

    PubMed Central

    Ronkainen, Niina J.; Okon, Stanley L.

    2014-01-01

    Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon. PMID:28788700

  10. Electrodics: mesoscale physicochemical interactions in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mukherjee, Partha P.; Chen, Chien-Fan

    2014-06-01

    Recent years have witnessed an explosion of interest and research endeavor in lithium-ion batteries to enable vehicle electrification. In particular, a critical imperative is to accelerate innovation for improved performance, life and safety of lithium-ion batteries for electric drive vehicles. Lithium ion batteries are complex, dynamical systems which include a multitude of coupled physicochemical processes encompassing electronic/ionic/diffusive transport in solid/electrolyte phases, electrochemical and phase change reactions and diffusion induced stress generation in multi-scale porous electrode microstructures. While innovations in nanomaterials and nanostructures have spurred the recent advancements, fundamental understanding of the electrode processing - microstructure - performance interplay is of paramount importance. In this presentation, mesoscale physicochemical interactions in lithium-ion battery electrodes will be elucidated.

  11. The influence of convection drying on the physicochemical properties of yacón (Smallanthus sonchifolius)

    NASA Astrophysics Data System (ADS)

    Salinas, Juan Gabriel; Alvarado, Juan Antonio; Bergenståhl, Björn; Tornberg, Eva

    2018-04-01

    Yacón root is a natural source of fructans, which has many potential benefits. Convective drying has been applied to increase the shelf life of yacón roots. However, this processing may lead to detrimental effects on the physicochemical functionality. The drying was investigated using different conditions (drying temperatures of 45 °C, 50 °C and 55 °C at a drying air velocity of 2 m/s and 60 °C at a drying air velocity of 2 m/s, 3 m/s and 4 m/s). The dried samples were compared to the original yacón with regard to their physicochemical properties. From all the properties that were studied, the color of the dried material and the elastic modulus of the reconstituted yacón were the most important properties being minimized respectively. The results of this investigation indicate that the best drying conditions, where the physicochemical properties of the samples are kept closest to the original material, are obtained either by using temperatures of 55 °C and 2 m/s or using higher temperatures but increasing the air velocity.

  12. Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles.

    PubMed

    Ghasemy, Somaye; García-Pindado, Júlia; Aboutalebi, Fatemeh; Dormiani, Kianoush; Teixidó, Meritxell; Malakoutikhah, Morteza

    2018-05-01

    N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe) 4 -CONH 2 , was more lipophilic than its non-methylated analog Ac-(Phe) 4 -CONH 2 . In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe) 4 -CONH 2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood-brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications

    PubMed Central

    Zainal, Zulkarnain; Yusof, Nor Azah

    2018-01-01

    Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures. PMID:29438327

  14. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    PubMed

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  15. Effect of physicochemical action on the aggregative properties of detonation-synthesized nanodiamonds

    NASA Astrophysics Data System (ADS)

    Fan, Z. W.; Ilnitska, H.; Lysakovskyi, V.; Ivakhnenko, S.; Kovalenko, T.

    2018-01-01

    The results of researches of physicochemical action on aggregate properties of nanodiamond are presented. The kinetics of aggregation of nanodiamond powder was studied as a function of time, temperature, and pH of the solution. The effect of the sp2-sp3 hybridization ratio of carbon in nanodiamond powders on their aggregation was studied. It is shown that the presence of non-diamond carbon in detonation synthesis nanodiamond powders leads to the increase of the mean diameters of particles, i.e., their agglomeration. The theoretical justification of the aggregation mechanism is proposed. It is shown that it is possible to control aggregative properties of nanodiamond powders by physicochemical influences, e.g., gas-phase thermal treatment to reduce the size of agglomerates and to create a well-developed reconstructed surface of diamond particles with a low content of functional groups on their surface.

  16. How should the completeness and quality of curated nanomaterial data be evaluated?†

    PubMed Central

    Marchese Robinson, Richard L.; Lynch, Iseult; Peijnenburg, Willie; Rumble, John; Klaessig, Fred; Marquardt, Clarissa; Rauscher, Hubert; Puzyn, Tomasz; Purian, Ronit; Åberg, Christoffer; Karcher, Sandra; Vriens, Hanne; Hoet, Peter; Hoover, Mark D.; Hendren, Christine Ogilvie; Harper, Stacey L.

    2016-01-01

    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials’ behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated? PMID:27143028

  17. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing.

    PubMed

    Jariwala, Deep; Sangwan, Vinod K; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2013-04-07

    In the last three decades, zero-dimensional, one-dimensional, and two-dimensional carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and graphene, respectively) have attracted significant attention from the scientific community due to their unique electronic, optical, thermal, mechanical, and chemical properties. While early work showed that these properties could enable high performance in selected applications, issues surrounding structural inhomogeneity and imprecise assembly have impeded robust and reliable implementation of carbon nanomaterials in widespread technologies. However, with recent advances in synthesis, sorting, and assembly techniques, carbon nanomaterials are experiencing renewed interest as the basis of numerous scalable technologies. Here, we present an extensive review of carbon nanomaterials in electronic, optoelectronic, photovoltaic, and sensing devices with a particular focus on the latest examples based on the highest purity samples. Specific attention is devoted to each class of carbon nanomaterial, thereby allowing comparative analysis of the suitability of fullerenes, carbon nanotubes, and graphene for each application area. In this manner, this article will provide guidance to future application developers and also articulate the remaining research challenges confronting this field.

  18. A study on the electrical, optical, and physicochemical properties of poly(MMA-co-MAA)/ poly(3,4-ethylenedioxythiophene) hybrid thin films.

    PubMed

    Han, Yong-Hyeon; Kim, Hyeong Eun; Hwangbo, Kyung-Hee; Yim, Jin-Heong; Cho, Kuk Young

    2013-08-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) has good properties as a conductive polymer such as high conductivity, optical transmittance, and chemical stability, while offering relatively weak physicochemical properties. The main purpose of this paper is to improve physicochemical properties such as solvent resistance and pencil hardness of PEDOT. Carboxyl groups in the poly(MMA-co-MAA) polymer chains can effectively crosslink each other in the presence of aziridine, resulting in physicochemically robust PEDOT/poly(MMA-co-MAA) hybrid conductive films. The electrical conductivity, optical properties, and physicochemical properties of the hybrid conductive film were compared by varying the solid content and poly(MMA-co-MAA) portion in the coating precursor solution. From the results, the transparency and surface resistance of the hybrid film show a tendency to decrease with increasing solid content in the coating precursor. Moreover, solvent resistance and hardness were dramatically enhanced by hybridization of PEDOT and crosslinked poly(MMA-co-MAA) due to curing reactions between carboxyl groups. The chemical composition of 30 wt-% of poly(MMA-co-MAA) (MMA:MAA mole ratio 9:1) and 3 wt-% - 5 wt-% of aziridine yields the best physicochemical properties of poly(MMA-co-MAA)/PEDOT hybrid thin films.

  19. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    PubMed

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and

  20. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.

    PubMed

    Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2016-03-30

    The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction.

  1. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics

    PubMed Central

    Yang, Chunpeng; Gao, Xinyu; Gong, Rui

    2018-01-01

    Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo. However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa, which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo. PMID:29375551

  2. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity.

    PubMed

    Moreno-Horn, Marcus; Gebel, Thomas

    2014-11-01

    Nanomaterials are usually defined by primary particle diameters ranging from 1 to 100 nm. The scope of this review is an evaluation of experimental animal studies dealing with the systemic levels and putative systemic effects induced by nanoparticles which can be characterized as being granular biodurable particles without known specific toxicity (GBP). Relevant examples of such materials comprise nanosized titanium dioxide (TiO2) and carbon black. The question was raised whether GBP nanomaterials systemically accumulate and may possess a relevant systemic toxicity. With few exceptions, the 56 publications reviewed were not performed using established standard protocols, for example, OECD guidelines but used non-standard study designs. The studies including kinetic investigations indicated that GBP nanomaterials were absorbed and systemically distributed to rather low portions only. There was no valid indication that GPB nanomaterials possess novel toxicological hazard properties. In addition, no convincing evidence for a relevant specific systemic toxicity of GBP nanomaterials could be identified. The minority of the papers reviewed (15/56) investigated both nanosized and microsized GBP materials in parallel. A relevant different translocation of GBP nanomaterials in contrast to GBP micromaterials was not observed in these studies. There was no evidence that GPB nanomaterials possess toxicological properties other than their micromaterial counterparts.

  3. Effect of white, red and black ginseng on physicochemical properties and ginsenosides.

    PubMed

    Jin, Yan; Kim, Yeon-Ju; Jeon, Ji-Na; Wang, Chao; Min, Jin-Woo; Noh, Hae-Yong; Yang, Deok-Chun

    2015-06-01

    A systematic comparison of the ginsenosides and physicochemical properties of white ginseng (WG), red ginseng (RG) and black ginseng (BG) was performed. The purpose of the present study was to identify the effects of the physicochemical properties by steaming process. During the steaming process, ginsenosides transform into specific ginsenosides by hydrolysis, dehydration and isomerization at C-3, C-6 or C-20. Steaming ginseng led to a significant increase in reducing sugar, acidic polysaccharide and phenolic compounds content. Antioxidative properties were investigated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, compared with BHA (Butylated hydroxyanisole). RG and BG exhibited higher antioxidant activity than WG. The maximum residue level for Benzo(a)pyrene was established to 5 μg/kg in food products. The levels of benzo(a)pyrene in WG and RG were not detected. Benzo(a)pyrene was detected in the BG, the content was 0.17 μg/kg. The scientific achievements of the present study could help consumers to choose different type of ginseng products available on the market.

  4. Carbon nanomaterials for non-volatile memories

    NASA Astrophysics Data System (ADS)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  5. The physicochemical properties of the low-temperature ionic liquid silver bromide-1-butyl-3-methylimidazolium bromide

    NASA Astrophysics Data System (ADS)

    Grishina, E. P.; Ramenskaya, L. M.; Pimenova, A. M.

    2009-11-01

    The physicochemical properties of the low-temperature ionic liquid based on 1-butyl-3-methylimidazolium bromide (BMImBr) and silver bromide were studied. Differential scanning calorimetry, Fourier transform IR spectroscopy, densimetry, viscometry, and conductometry measurements were performed to determine the dependences of the parameters under study on the concentration of AgBr. It was shown that the temperature and concentration behavior of the physicochemical properties of BMImBr-AgBr melts characterized the interaction between the system components with the formation of complex particles.

  6. Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yin; Chen, Shaohua, E-mail: chenshaohua72@hotmail.com, E-mail: shchen@LNM.imech.ac.cn

    2015-07-28

    A recently developed continuum theory considering surface effect in nanomaterials is adopted to investigate the resonant properties of nanowires with different boundary conditions in the present paper. The main feature of the adopted theory is that the surface effect in nanomaterials is characterized by the surface energy density of the corresponding bulk materials and the surface relaxation parameter in nanoscale. Based on a fixed-fixed beam model and a cantilever one, the governing equation of resonant frequency for corresponding nanowires is obtained. Numerical calculation of the fundamental resonant frequency is carried out, the result of which is well consistent with themore » existing numerical ones. Comparing to the result predicted by the conventionally structural dynamics, the resonant frequency of a fixed-fixed nanowire is improved, while that of a cantilever nanowire is weakened due to the surface effect. Both a decreasing characteristic size (height or diameter) and an increasing aspect ratio could further enhance the varying trend of resonant properties for both kinds of nanowires. The present result should be helpful for the design of nano-devices and nanostructures related to nanowires.« less

  7. Environmental Risk Assessment of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Bayramov, A. A.

    In this paper, various aspects of modern nanotechnologies and, as a result, risks of nanomaterials impact on an environment are considered. This very brief review of the First International Conference on Material and Information Sciences in High Technologies (2007, Baku, Azerbaijan) is given. The conference presented many reports that were devoted to nanotechnology in biology and business for the developing World, formation of charged nanoparticles for creation of functional nanostructures, nanoprocessing of carbon nanotubes, magnetic and optical properties of manganese-phosphorus nanowires, ultra-nanocrystalline diamond films, and nanophotonics communications in Azerbaijan. The mathematical methods of simulation of the group, individual and social risks are considered for the purpose of nanomaterials risk reduction and remediation. Lastly, we have conducted studies at a plant of polymeric materials (and nanomaterials), located near Baku. Assessments have been conducted on the individual risk of person affection and constructed the map of equal isolines and zones of individual risk for a plant of polymeric materials (and nanomaterials).

  8. Cyclodextrins improving the physicochemical and pharmacological properties of antidepressant drugs: a patent review.

    PubMed

    Diniz, Tâmara Coimbra; Pinto, Tiago Coimbra Costa; Menezes, Paula Dos Passos; Silva, Juliane Cabral; Teles, Roxana Braga de Andrade; Ximenes, Rosana Christine Cavalcanti; Guimarães, Adriana Gibara; Serafini, Mairim Russo; Araújo, Adriano Antunes de Souza; Quintans Júnior, Lucindo José; Almeida, Jackson Roberto Guedes da Silva

    2018-01-01

    Depression is a serious mood disorder and is one of the most common mental illnesses. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these drugs, which have a slow onset of action in addition to producing undesirable side effects. Some scientific evidence suggests that cyclodextrins (CDs) can improve the physicochemical and pharmacological profile of antidepressant drugs (ADDs). The purpose of this paper is to disclose current data technology prospects involving antidepressant drugs and cyclodextrins. Areas covered: We conducted a patent review to evaluate the antidepressive activity of the compounds complexed in CDs, and we analyzed whether these complexes improved their physicochemical properties and pharmacological action. The present review used 8 specialized patent databases for patent research, using the term 'cyclodextrin' combined with 'antidepressive agents' and its related terms. We found 608 patents. In the end, considering the inclusion criteria, 27 patents reporting the benefits of complexation of ADDs with CDs were included. Expert opinion: The use of CDs can be considered an important tool for the optimization of physicochemical and pharmacological properties of ADDs, such as stability, solubility and bioavailability.

  9. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    PubMed Central

    Dierking, Ingo

    2017-01-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025

  10. Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities.

    PubMed

    Chopra, Rakesh; de Kock, Carmen; Smith, Peter; Chibale, Kelly; Singh, Kamaljit

    2015-07-15

    The promise of hybrid antimalarial agents and the precedence set by the antimalarial drug ferroquine prompted us to design ferrocene-pyrimidine conjugates. Herein, we report the synthesis, electrochemistry and anti-plasmodial evaluation of ferrocenyl-pyrimidine conjugates against chloroquine susceptible NF54 strain of the malaria parasite Plasmodium falciparum. Also their physicochemical properties have been studied. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides.

    PubMed

    Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I

    2018-01-01

    Extracts rich in polysaccharides were obtained by alkali pretreatment (PA) or autohydrolysis (PB) of spent coffee grounds, and incorporated into a carboxymethyl cellulose (CMC)-based film aiming at the development of bio-based films with new functionalities. Different concentrations of PA or PB (up to 0.20% w/v) were added to the CMC-based film and the physicochemical properties of the final films were determined. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, as well as determinations of optical and mechanical properties, moisture content, solubility in water, water vapor permeability, contact angle and sorption isotherms were performed. The addition of PA or PB resulted in important changes in the properties of the CMC-based film, mainly in color and opacity. The polysaccharides incorporation significantly improved the light barrier of the film and provided an enhancement or at least a preservation in the physicochemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    PubMed Central

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  13. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems.

    PubMed

    He, Xiaojia; Aker, Winfred G; Leszczynski, Jerzy; Hwang, Huey-Min

    2014-03-01

    In this report, we critically reviewed selected intrinsic physicochemical properties of engineered nanomaterials (ENMs) and their role in the interaction of the ENMs with the immediate surroundings in representative aquatic environments. The behavior of ENMs with respect to dynamic microenvironments at the nano-bio-eco interface level, and the resulting impact on their toxicity, fate, and exposure potential are elaborated. Based on this literature review, we conclude that a holistic approach is urgently needed to fulfill our knowledge gap regarding the safety of discharged ENMs. This comparative approach affords the capability to recognize and understand the potential hazards of ENMs and their toxicity mechanisms, and ultimately to establish a quantitative and reliable system to predict such outcomes. Copyright © 2014. Published by Elsevier B.V.

  14. The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology

    NASA Astrophysics Data System (ADS)

    Li, Chaoxu; Mezzenga, Raffaele

    2013-06-01

    Recent advances in bio-nanotechnology have not only rapidly broadened the applications and scope of hybrid nanomaterials in biological fields, but also greatly enriched the examples of ordered materials based on supramolecular self-assembly. Among eminent examples of functional nanostructured materials of undisputed impact in nanotechnology and biological environments, carbon nanomaterials (such as fullerenes, carbon nanotubes and graphene) and amyloid fibrils have attracted great attention because of their unique architectures and exceptional physical properties. Nonetheless, combination of these two classes of nanomaterials into functional hybrids is far from trivial. For example, the presence of carbon nanomaterials can offer either an inhibitory effect or promotion of amyloid fibrillation, depending on the structural architectures of carbon nanomaterials and the starting amyloid proteins/peptides considered. To date, numerous studies have been devoted to evaluating both the biological toxicity of carbon nanomaterials and their use in developing therapies for amyloidosis. At the same time, hybridization of these two classes of nanomaterials offers new possibilities for combining some of their desirable properties into nanocomposites of possible use in electronics, actuators, sensing, biomedicine and structural materials. This review describes recent developments in the hybridization of carbon nanomaterials and amyloid fibrils and discusses the current state of the art on the application of carbon nanomaterial-amyloid fibril hybrids in bio-nanotechnology.

  15. Influence of pectinase treatment on the physicochemical properties of potato flours.

    PubMed

    Kim, Eun-Jung; Kim, Hyun-Seok

    2015-01-15

    Untreated and pectinase-treated potato flours from Atlantic and Superior cultivars were characterised to identify the effects of pectinase treatment on their physicochemical properties. Steam-cooked potato whole-tissues were treated with and without pectinase to prepare the dehydrated potato flours. Untreated and pectinase-treated potato flours were investigated with respect to morphology, chemical composition, starch leaching, swelling power, gelatinization, and pasting viscosity. Upon viewing with scanning electron microscopy and light microscopy, the pectinase-treated (relative to untreated) potato flours revealed that the retrograded starch materials were present in intact parenchyma cells, apparently exhibiting granular structures. Their protein and ash contents were reduced through pectinase treatment. While starch leachate contents were lower for the pectinase-treated potato flours, the opposite trend in swelling powers was observed. Pectinase-treated potato flours exhibited higher melting temperatures and pasting viscosities than untreated counterparts. Overall, the modification of potato flour morphology by pectinase treatment may result in alteration of physicochemical properties of potato flours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii.

    PubMed

    Chan, Pei Teng; Matanjun, Patricia

    2017-04-15

    A study on the proximate composition, minerals, vitamins, carotenoids, amino acids, fatty acids profiles and some physicochemical properties of freeze dried Gracilaria changii was conducted. It was discovered that this seaweed was high in dietary fibre (64.74±0.82%), low in fat (0.30±0.02%) and Na/K ratio (0.12±0.02). The total amino acid content was 91.90±7.70% mainly essential amino acids (55.87±2.15mgg -1 ) which were comparable to FAO/WHO requirements. The fatty acid profiles were dominated by the polyunsaturated fatty acids particularly docosahexaenoic (48.36±6.76%) which led to low ω6/ω3, atherogenic, and thrombogenic index. The physicochemical properties of this seaweed namely the water holding and the swelling capacity were comparable to some commercial fibre rich products. This study suggested that G. changii could be potentially used as ingredients to improve nutritive value and texture of functional foods for human consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    PubMed

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging.

    PubMed

    Wen, Jia; Xu, Yongqian; Li, Hongjuan; Lu, Aiping; Sun, Shiguo

    2015-07-21

    Carbon-based nanomaterials as important agents for biological applications have emerged in the past few years due to their unique optical, electronic, mechanical, and chemical properties. Many of these applications rely on successful surface modifications. This review article comprises two main parts. In the first part, we briefly review the properties and surface modifications of several classes of carbon nanomaterials, mainly carbon nanotubes (CNTs), graphene and its derivatives, carbon dots (CDs) and graphene quantum dots (GQDs), as well as some other forms of carbon-based nanomaterials such as fullerene, carbon nanohorns (CNHs) and carbon nanoonions (CNOs). In the second part, we focus on the biological applications of these carbon nanomaterials, in particular their applications for fluorescence biosensing as well as bioimaging.

  19. Characterization of rice physicochemical properties local rice germplasm from Tana Toraja regency of South Sulawesi

    NASA Astrophysics Data System (ADS)

    Masniawati, A.; Marwah Asrul, Nur Al; Johannes, E.; Asnady, M.

    2018-03-01

    The research about the characterization of physicochemical properties from local rice germplasm of Tana Toraja’s Regency, South Sulawesi aims to determine the physicochemical properties of rice as a parameter to indicate the quality of cooking. Local varieties categorized as germplasm that needs to be protected for future varietal improvement.In this research, the researchers used seven varieties of local rice. The parameters analyzed including physicochemical properties of amylose content, protein content, gel consistency, and gelatinization temperature. Percentage of amylose content ranged from 2 to 18 %. Pare Bumbungan and Pare Lalodo are categorized as waxy rice and Pare Ambo, Pare Bau, Pare Kobo, Pare Rogon and Pare Tallang are categorized as low amylose content. The percentage of protein content ranged from 7.3 to 9.5 %. Gelatinization temperature of rice showed high gelatinization temperature. Pare Bumbungan, Pare Kobo, Pare Lalodo, and Pare Rogon are categorized as soft gel consistency (˃50 mm). Pare Ambo, Pare Bau and Pare Tallang are categorized as medium gel consistency (36-50m). Pare Rogon and Pare Kobo are two kinds of rice varieties according to the quality of cooking criteria for consumers in Indonesia.

  20. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    PubMed Central

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  1. Self-Motion Depending on the Physicochemical Properties of Esters as the Driving Force

    ERIC Educational Resources Information Center

    Nakata, Satoshi; Matsuo, Kyoko; Kirisaka, Junko

    2007-01-01

    The self-motion of an ester boat is investigated depending on the physicochemical properties of the surface-active substance. The results show that the ester boat moves towards the higher surface tension generating as the driving force.

  2. Prescribed fires effects on physico-chemical properties and quantity of runoff and soil erosion in a Mediterranean forest

    NASA Astrophysics Data System (ADS)

    Esteban Lucas-Borja, Manuel; Plaza Alvaréz, Pedro Antonio; Sagra, Javier; Alfaro Sánchez, Raquel; Moya, Daniel; Ferrandiz Gotor, Pablo; De las Heras Ibañez, Jorge

    2017-04-01

    Wildfires have an important influence in forest ecosystems. Contrary to high severity fire, which may have negative impacts on the ecosystems, low severity induce small changes on soil properties. Thus and in order to reduce fire risk, low-severity prescribed fires have been widely used as a fuel reduction tool and silvicultural treatment in Mediterranean forest ecosystems. However, fire may alter microsite conditions and little is known about the impact of prescribed burning on the physico-chemical properties of runoff. In this study, we compared the effects of prescribed burning on physico-chemical properties and quantity of runoff and soil erosion during twelve months after a low severity prescribed fire applied in twelve 16 m2 plot (6 burned plots and 6 control plots used for comparison) set up in the Lezuza forest (Albacete, central-eastern Spain). Physico-chemical properties and quantity of runoff and soil losses were monitored after each rainfall event (five rainfall events in total). Also, different forest stand characteristics (slope, tree density, basal area and shrub/herbal cover) affecting each plot were measured. Results showed that forest stand characteristics were very similar in all used plots. Also, physico-chemical runoff properties were highly modified after the prescribed fire, increasing water pH, carbonates, bicarbonates, total dissolved solids and organic matter content dissolved in water. Electrical conductivity, calcium, sodium, chloride and magnesium were not affected by prescribed fire. Soil losses were highly related to precipitation intensity and tree interception. Tree intercepted the rainfall and significantly reduced soil losses and also runoff quantity. In conclusion and after the first six-month experiment, the influence of prescribed fires on physico-chemical runoff properties should be taken into account for developing proper prescribed burnings guidelines.

  3. Recent applications of nanomaterials in capillary electrophoresis.

    PubMed

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)-agar biodegradable films.

    PubMed

    Madera-Santana, T J; Freile-Pelegrín, Y; Azamar-Barrios, J A

    2014-08-01

    The effects of the addition of glycerol (GLY) on the physicochemical and morphological properties of poly(vinyl alcohol) (PVA)-agar films were reported. PVA-agar films were prepared by solution cast method, and the addition of GLY in PVA-agar films altered the optical properties, resulting in a decrease in opacity values and in the color difference (ΔE) of the films. Structural characterization using Fourier transformation infrared (FTIR) spectroscopy and X-ray diffraction (XRD) indicated that the presence of GLY altered the intensity of the bands (from 1200 to 800cm(-1)) and crystallinity. The characterization of the thermal properties indicated that an increase in the agar content produces a decrease in the melting temperature and augments the heat of fusion. Similar tendencies were observed in plasticized films, but at different magnification. The formulation that demonstrated the lowest mechanical properties contained 25wt.% agar, whereas the formulation that contained 75wt.% agar demonstrated a significant improvement. The water vapor transmission rate (WVTR) and surface morphology analysis demonstrated that the structure of PVA-agar films is reorganized upon GLY addition. The physicochemical properties of PVA-agar films using GLY as a plasticizer provide information for the application of this formulation as packaging material for specific food applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Conformational interpretation of vescalagin and castalagin physicochemical properties.

    PubMed

    Vivas, Nicolas; Laguerre, Michel; Pianet de Boissel, Isabelle; Vivas de Gaulejac, Nathalie; Nonier, Marie-Françoise

    2004-04-07

    Vescalagin and castalagin are two diastereoisomers. The variability of their principal physicochemical properties, compared with their small structural differences, suggests important conformational variations. This study shows, experimentally, that vescalagin has a greater effect on polarity, oxidizability in solution, and thermodegradability than castalagin. Conformational analysis by molecular mechanics demonstrated that vescalagin was more hydrophilic and was more reactive to electrophilic reagents than castalagin. Experimental results were thus explained and demonstrated the distinct behaviors of vescalagin and castalagin. These results were attributed to the C1 position of the two compounds because vescalin and castalin have comparable characteristics. Experimental data were confirmed and interpreted by molecular mechanics. This work represents one of the first attempts to correlate conformation and the properties of phenolic compounds. This step constitutes a predictive method for the pharmacology or chemistry of new compounds.

  6. Toward a systematic exploration of nano-bio interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue; Liu, Fang; Liu, Yin

    Many studies of nanomaterials make non-systematic alterations of nanoparticle physicochemical properties. Given the immense size of the property space for nanomaterials, such approaches are not very useful in elucidating fundamental relationships between inherent physicochemical properties of these materials and their interactions with, and effects on, biological systems. Data driven artificial intelligence methods such as machine learning algorithms have proven highly effective in generating models with good predictivity and some degree of interpretability. They can provide a viable method of reducing or eliminating animal testing. However, careful experimental design with the modelling of the results in mind is a proven andmore » efficient way of exploring large materials spaces. This approach, coupled with high speed automated experimental synthesis and characterization technologies now appearing, is the fastest route to developing models that regulatory bodies may find useful. We advocate greatly increased focus on systematic modification of physicochemical properties of nanoparticles combined with comprehensive biological evaluation and computational analysis. This is essential to obtain better mechanistic understanding of nano-bio interactions, and to derive quantitatively predictive and robust models for the properties of nanomaterials that have useful domains of applicability. - Highlights: • Nanomaterials studies make non-systematic alterations to nanoparticle properties. • Vast nanomaterials property spaces require systematic studies of nano-bio interactions. • Experimental design and modelling are efficient ways of exploring materials spaces. • We advocate systematic modification and computational analysis to probe nano-bio interactions.« less

  7. Impact of heating on sensory properties of French Protected Designation of Origin (PDO) blue cheeses. Relationships with physicochemical parameters.

    PubMed

    Bord, Cécile; Guerinon, Delphine; Lebecque, Annick

    2016-07-01

    The aim of this study was to measure the impact of heating on the sensory properties of blue-veined cheeses in order to characterise their sensory properties and to identify their specific sensory typology associated with physicochemical parameters. Sensory profiles were performed on a selection of Protected Designation of Origin (PDO) cheeses representing the four blue-veined cheese categories produced in the Massif Central (Fourme d'Ambert, Fourme de Montbrison, Bleu d'Auvergne and Bleu des Causses). At the same time, physicochemical parameters were measured in these cheeses. The relationship between these two sets of data was investigated. Four types of blue-veined cheeses displayed significantly different behaviour after heating and it is possible to discriminate these cheese categories through specific sensory attributes. Fourme d'Ambert and Bleu d'Auvergne exhibited useful culinary properties: they presented good meltability, stretchability and a weak oiling-off. However, basic tastes (salty, bitter and sour) are also sensory attributes which can distinguish heated blue cheeses. The relationship between the sensory and physicochemical data indicated a correlation suggesting that some of these sensory properties may be explained by certain physicochemical parameters of heated cheeses. © The Author(s) 2015.

  8. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen.

    PubMed

    Dong, Yingbo; Lin, Hai; He, Yinhai

    2017-03-01

    The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.

  9. The Application of Nanomaterials in Stem Cell Therapy for Some Neurological Diseases.

    PubMed

    Zhang, Guilong; Khan, Ahsan Ali; Wu, Hao; Chen, Lukui; Gu, Yuchun; Gu, Ning

    2018-02-08

    Stem cell therapy provides great promising therapeutic benefits for various neurological disorders. Cell transplantation has emerged as cell replacement application for nerve damage. Recently, nanomaterials obtain wide development in various industrial and medical fields, and nanoparticles have been applied in the neurological field for tracking and treating nervous system diseases. Combining stem cells with nanotechnology has raised more and more attentions; and it has demonstrated that the combination has huge effects on clinical diagnosis and therapeutics in multiple central nervous system diseases, meanwhile, improves prognosis. The aim of this review was to give a brief overview of the application of nanomaterials in stem cell therapy for neurological diseases. Nanoparticles not only promote stem cell proliferation and differentiation in vitro or in vivo, but also play dominant roles on stem cell imaging and tracking. Furthermore, via delivering genes or drugs, nanoparticles can participate in stem cell therapeutic applications for various neurological diseases, such as ischemic stroke, spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), Alzheimer's disease (AD) and gliomas. However, nanoparticles have potential cytotoxic effects on nerve cells, which are related to their physicochemical properties. Nano-stem cell-based therapy as a promising strategy has the ability to affect neuronal repair and regeneration in the central nervous system. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. An overview of nanomaterials applied for removing dyes from wastewater.

    PubMed

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  11. Recent advances in exploitation of nanomaterial for arsenic removal from water: a review

    NASA Astrophysics Data System (ADS)

    Wong, WeiWen; Wong, H. Y.; Badruzzaman, A. Borhan M.; Goh, H. H.; Zaman, Mukter

    2017-01-01

    Recently, increasing research efforts have been made to exploit the enormous potential of nanotechnology and nanomaterial in the application of arsenic removal from water. As a result, there are myriad of types of nanomaterials being developed and studied for their arsenic removal capabilities. Nevertheless, challenges such as having a complete understanding of the material properties and removal mechanism make it difficult for researchers to engineer nanomaterials that are best suited for specific water treatment applications. In this review paper, a comprehensive review will be conducted on several selected categories of nanomaterials that possess promising prospects in arsenic removal application. The synthesis process, material properties, as well as arsenic removal performance and removal mechanisms of each of these nanomaterials will be discussed in detail. Fe-based nanomaterials, particularly iron oxide nanoparticles, have displayed advantages in arsenic removal due to their super-paramagnetic property. On the other hand, TiO2-based nanomaterials are the best candidates as photocatalytic arsenic removal agents, having been reported to have more than 200-fold increase in adsorption capacity under UV light irradiation. Zr-based nanomaterials have among the largest BET active area for adsorption—up to 630 m2 g-1—and it has been reported that amorphous ZrO2 performs better than crystalline ZrO2 nanoparticles, having about 1.77 times higher As(III) adsorption capacity. Although Cu-based nanomaterials are relatively uncommon as nano-adsorbents for arsenic in water, recent studies have demonstrated their potential in arsenic removal. CuO nanoparticles synthesized by Martinson et al were reported to have adsorption capacities up to 22.6 mg g-1 and 26.9 mg g-1 for As(V) and As(III) respectively. Among the nanomaterials that have been reviewed in this study, Mg-based nanomaterials were reported to have the highest maximum adsorption capacities for As(V) and As

  12. Physicochemical properties and analysis of Malaysian palm fatty acid distilled

    NASA Astrophysics Data System (ADS)

    Jumaah, Majd Ahmed; Yusoff, Mohamad Firdaus Mohamad; Salimon, Jumat

    2018-04-01

    Palm fatty acid distillate (PFAD) is cheap and valuable byproduct of edible oil processing industries. This study was carried out to determine the physicochemical properties of Malaysian palm fatty acid distilled (PFAD). The physicochemical properties showed that the free fatty acid (FFA %), acid value, iodine value, saponification value, unsaponifiable matter, hydroxyl value, specific gravity at 28°C, moisture content, viscosity at 40°C and colour at 28°C values were 87.04± 0.1 %, 190.6± 1 mg/g, 53.3±0.2 mg/g, 210.37±0.8 mg/g, 1.5±0.1%, 47±0.2 mg/g, 0.87 g/ml, 0.63 %, 30 cSt and yellowish respectively. Gas chromatography (GC) was used to determine the fatty acid (FA) composition in PFAD. The fatty acids were found to be comprised mostly with 48.9 % palmitic acid (C16:0), 37.4 % oleic acid (C18:1), 9.7 % linoleic acid (C18:2), 2.7 % stearic acid (C18:0) and 1.1 % myristic acid (C14:0). The analysis of high performance liquid chromatography (HPLC) has resulted with 99.2 % of FFA, while diacylglycerol and monoacylglycerol were 0.69 and 0.062 % respectively.

  13. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    PubMed

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  14. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping).

    PubMed

    Arts, Josje H E; Hadi, Mackenzie; Irfan, Muhammad-Adeel; Keene, Athena M; Kreiling, Reinhard; Lyon, Delina; Maier, Monika; Michel, Karin; Petry, Thomas; Sauer, Ursula G; Warheit, David; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-03-15

    The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights

  15. Design and characterization of nanomaterial-biomolecule conjugates

    NASA Astrophysics Data System (ADS)

    Yim, Tae-Jin

    In the field of nanobiotechnology, nanoscale dimensions result in physical properties that differ from more conventional bulk material state. The integration of nanomaterials with biomolecules has begun to be used for unique physical properties, and for biological specific recognition, thereby leading to novel nanomaterial-biomolecule conjugates. The direction of this dissertation is to develop biocatalytic nanomaterial-biomolecule conjugates and to characterize them. For this, biological catalysts are employed to combine with nanomaterials. Two large parts include functional ization of nanomaterials with biomolecules and assembly of nanomaterials using a biological catalyst. First part of this thesis work is the exploration of the biocatalytic properties of nanomaterial-biomolecule conjugates. Si nanocolumns have higher surface area which leads more amount of biocatalytis immobilization than flat Si wafer with the same projected area. The enhanced activity of soybean peroxidase (SBP) immobilized onto Si nanocolumns as novel nanostructured supports is focused. Next, the catalytic activity of immobilized DNAzyme onto multiwalled carbon nanotubes (MWNTs) is compared to that in solution phase, and multiple turnovers are examined. The relationship between hybridization efficiency and activity is investigated as a function of surface density of DNAzyme on MWNTs. Then, cellular delivery of silica nanoparticle-protein conjugates is visually confirmed and therefore the intracellular function of a protein delivered by silica nanoparticle-protein conjugates is proved. For one example of the intracellular function, stable SBP immobilized onto silica nanoparticles to activate a prodrug is demonstrated. Second part of this thesis work is the formation of nanostructured materials through the enzymatic assembly of single-walled carbon nanotubes (SWNTs). Enzymatic polymerization of a phenol compound is applied to the bridging of two or more SWNTs functionalized with phenol

  16. Theoretical study on physicochemical properties of curcumin

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Ji, Hong-Fang

    2007-07-01

    Curcumin is a yellow-orange pigment, which has attracted considerable attention due to its wide spectrum of biological and pharmacological activities. In spite of much effort devoted on curcumin, there still exist some open questions concerning its fundamental physicochemical properties. The present study suggests that the DFT and TD-DFT calculations are useful to answer these questions. Firstly, the thermodynamic as well as spectral parameters support that curcumin exists predominantly in enol form in solution. Secondly, the calculated absorption spectra of curcumin anions provides direct evidence that the lowest p Ka of curcumin corresponds to the dissociation of enolic proton, which not only reconciles the controversy on this topic, but also has important implications on the proton-transfer/dissociation-associated radical-scavenging mechanisms of curcumin.

  17. Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol.

    PubMed

    Kaialy, Waseem; Khan, Usman; Mawlud, Shadan

    2016-08-20

    Mannitol is a pharmaceutical excipient that is receiving increased popularity in solid dosage forms. The aim of this study was to provide comparative evaluation on the effect of mannitol concentration on the physicochemical, mechanical, and pharmaceutical properties of lyophilised mannitol. The results showed that the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol powders are strong functions of mannitol concentration. By decreasing mannitol concentration, the true density, bulk density, cohesivity, flowability, netcharge-to-mass ratio, and relative degree of crystallinity of LM were decreased, whereas the breakability, size distribution, and size homogeneity of lyophilised mannitol particles were increased. The mechanical properties of lyophilised mannitol tablets improved with decreasing mannitol concentration. The use of lyophilised mannitol has profoundly improved the dissolution rate of indomethacin from tablets in comparison to commercial mannitol. This improvement exhibited an increasing trend with decreasing mannitol concentration. In conclusion, mannitols lyophilised from lower concentrations are more desirable in tableting than mannitols from higher concentrations due to their better mechanical and dissolution properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Physicochemical properties of surimi gels fortified with dietary fiber.

    PubMed

    Debusca, Alicia; Tahergorabi, Reza; Beamer, Sarah K; Matak, Kristen E; Jaczynski, Jacek

    2014-04-01

    Although dietary fiber provides health benefits, most Western populations have insufficient intake. Surimi seafood is not currently fortified with dietary fiber, nor have the effects of fiber fortification on physicochemical properties of surimi been thoroughly studied. In the present study, Alaska pollock surimi was fortified with 0-8 g/100 g of long-chain powdered cellulose as a source of dietary fiber. The protein/water concentrations in surimi were kept constant by adding an inert filler, silicon dioxide in inverse concentrations to the fiber fortification. Fiber-fortified surimi gels were set at 90 °C. The objectives were to determine (1) textural and colour properties; (2) heat-induced gelation (dynamic rheology); and (3) protein endothermic transitions (differential scanning calorimetry) of surimi formulated with constant protein/water, but variable fiber content. Fiber fortification up to 6 g/100 g improved (P<0.05) texture and colour although some decline occurred with 8 g/100g of fiber. Dynamic rheology correlated with texture and showed large increase in gel elasticity, indicating enhanced thermal gelation of surimi. Differential scanning calorimetry showed that fiber fortification did not interfere with thermal transitions of surimi myosin and actin. Long-chain fiber probably traps water physically, which is stabilized by chemical bonding with protein within surimi gel matrix. Based on the present study, it is suggested that the fiber-protein interaction is mediated by water and is physicochemical in nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.

    PubMed

    Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua

    2014-04-09

    Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of physicochemical properties of rice flour on oil uptake of tempura frying batter.

    PubMed

    Nakamura, Sumiko; Ohtsubo, Ken'ichi

    2010-01-01

    The physicochemical properties of rice flour and wheat flour influenced the oil uptake of tempura frying batter. Rice flour was better than wheat flour in the overall quality and crispness of the fried tempura batter. Rice flour resisted oil absorption more than wheat flour, and a higher level of apparent starch amylose and higher consistency/breakdown ratio of the pasting properties led to a lower oil uptake of the batter. Super hard EM10 rice showed the highest apparent amylose content and higher consistency/breakdown ratio than the other flour samples, the batter from EM10 revealing the lowest oil content after frying among all the batters examined. The apparent amylose content, consistency/breakdown ratio and oil absorption index are proposed as useful guides for oil absorption when frying from among the physicochemical properties that influence the oil content of fried batter. Our proposal for the "oil absorption index" could be a simple, although not perfect method for estimating the oil content of batter flour.

  1. Carbon nanomaterials for advanced energy conversion and storage.

    PubMed

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Purifying Nanomaterials

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  3. Effect of cream fermentation on microbiological, physicochemical and rheological properties of L. helveticus-butter.

    PubMed

    Ewe, Joo-Ann; Loo, Su-Yi

    2016-06-15

    The primary objective of this study was to evaluate the physicochemical and rheological properties of butter produced by Lactobacillus helveticus fermented cream. The incorporation of putative probiotic - the L. helveticus, to ferment cream prior to butter production was anticipated to alter the nutritional composition of butter. Changes in crude macronutrients and the resultant modification relating to textural properties of butter induced upon metabolic activities of L. helveticus in cream were focused in this research. Fermented butter (LH-butter) was produced by churning the cream that was fermented by lactobacilli at 37 °C for 24 h. Physicochemical analysis, proximate analysis and rheology properties of LH-butter were compared with butter produced using unfermented cream (control). LH-butter showed a significantly (P<0.05) higher fat content and acid value; lower moisture and ash; and was softer than the control. Cream fermentation modified nutritional and textural properties of butter in which LH-butter contained higher health beneficial unsaturated fatty acids than the control and thus rendered the product softer. Its enrichment with probiotics could thus further enhance its functional property. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Nanomaterials for Electrochemical Immunosensing

    PubMed Central

    Pan, Mingfei; Gu, Ying; Yun, Yaguang; Li, Min; Jin, Xincui; Wang, Shuo

    2017-01-01

    Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors. PMID:28475158

  5. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules.

    PubMed

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Probst, Laurent; Desobry, Stéphane

    2016-05-01

    To enhance physicochemical properties of alginate aqueous-core capsules, conventional strategies were focused in literature on designing composite and coated capsules. In the present study, own effect of liquid-core composition on mechanical and release properties was investigated. Capsules were prepared by dripping a CaCl2 solution into an alginate gelling solution. Viscosity of CaCl2 solution was adjusted by adding cationic, anionic and non-ionic naturally derived polymers, respectively chitosan, xanthan gum and guar gum. In parallel, uniform alginate hydrogels were prepared by different methods (pouring, in situ forming and mixing). Mechanical stability of capsules and plane hydrogels were respectively evaluated by compression experiments and small amplitude oscillatory shear rheology and then correlated. Capsules permeability was evaluated by monitoring diffusion of encapsulated cochineal dye, riboflavin and BSA. The core-shell interactions were investigated by ATR-FTIR. Results showed that inner polymer had an impact on membrane stability and could act as an internal coating or provide mechanical reinforcement. Mechanical properties of alginate capsules were in a good agreement with rheological behavior of plane hydrogels. Release behavior of the entrapped molecules changed considerably. This study demonstrated the importance of aqueous-core composition, and gave new insights for possible adjusting of microcapsules physicochemical properties by modulating core-shell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Predictive Models of Nanotoxicity: Relationship of Physicochemical Properties to Particle Movement Through Biological Barriers

    EPA Science Inventory

    Understanding the linkage between the physicochemical (PC) properties of nanoparticles (NP) and their activation of biological systems is poorly understood, yet fundamental to predicting nanotoxicity, idenitifying mode of actions and developing appropriate and effective regul...

  7. Toxicity of nanomaterials

    PubMed Central

    Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie; Forrest, M. Laird; Stroeve, Pieter

    2015-01-01

    Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There are few studies of the long-term consequences of nanoparticles on human health, but governmental agencies, including the United States National Institute for Occupational Safety and Health and Japan’s Ministry of Health, have recently raised the question of whether seemingly innocuous materials such as carbon-based nanotubes should be treated with the same caution afforded known carcinogens such as asbestos. Since nanomaterials are increasing a part of everyday consumer products, manufacturing processes, and medical products, it is imperative that both workers and end-users be protected from inhalation of potentially toxic NPs. It also suggests that NPs may need to be sequestered into products so that the NPs are not released into the atmosphere during the product’s life or during recycling. Further, non-inhalation routes of NP absorption, including dermal and medical injectables, must be studied in order to understand possible toxic effects. Fewer studies to date have addressed whether the body can eventually eliminate nanomaterials to prevent particle build-up in tissues or organs. This critical review discusses the biophysicochemical properties of various nanomaterials with emphasis on currently available toxicology data and methodologies for evaluating nanoparticle toxicity. PMID:22170510

  8. Effects of salting treatment on the physicochemical properties, textural properties, and microstructures of duck eggs.

    PubMed

    Xu, Lilan; Zhao, Yan; Xu, Mingsheng; Yao, Yao; Nie, Xuliang; Du, Huaying; Tu, Yong-Gang

    2017-01-01

    In order to illuminate the forming process of salted egg, the effects of the brine solution with different salt concentrations on the physicochemical properties, textural properties, and microstructures of duck eggs were evaluated using conventional physicochemical property determination methods. The results showed that the moisture contents of both the raw and cooked egg whites and egg yolks, the springiness of the raw egg yolks and cooked egg whites exhibited a decreasing trend with the increase in the salting time and salt concentration. The salt content, oil exudation and the hardness of the raw egg yolks showed a constantly increasing trend. Viscosity of the raw egg whites showed an overall trend in which it first deceased and then increased and decreased again, which was similar to the trend of the hardness of the cooked egg whites and egg yolks. As the salting proceeded, the pH value of the raw and cooked egg whites declined remarkably and then declined slowly, whereas the pH of the raw and cooked egg yolks did not show any noticeable changes. The effect of salting on the pH value varied significantly with the salt concentration in the brine solution. Scanning electron microscopy (SEM) revealed that salted yolks consist of spherical granules and embedded flattened porosities. It was concluded that the treatment of salt induces solidification of yolk, accompanied with higher oil exudation and the development of a gritty texture. Different salt concentrations show certain differences.

  9. Effects of salting treatment on the physicochemical properties, textural properties, and microstructures of duck eggs

    PubMed Central

    Xu, Lilan; Zhao, Yan; Xu, Mingsheng; Yao, Yao; Nie, Xuliang; Du, Huaying

    2017-01-01

    In order to illuminate the forming process of salted egg, the effects of the brine solution with different salt concentrations on the physicochemical properties, textural properties, and microstructures of duck eggs were evaluated using conventional physicochemical property determination methods. The results showed that the moisture contents of both the raw and cooked egg whites and egg yolks, the springiness of the raw egg yolks and cooked egg whites exhibited a decreasing trend with the increase in the salting time and salt concentration. The salt content, oil exudation and the hardness of the raw egg yolks showed a constantly increasing trend. Viscosity of the raw egg whites showed an overall trend in which it first deceased and then increased and decreased again, which was similar to the trend of the hardness of the cooked egg whites and egg yolks. As the salting proceeded, the pH value of the raw and cooked egg whites declined remarkably and then declined slowly, whereas the pH of the raw and cooked egg yolks did not show any noticeable changes. The effect of salting on the pH value varied significantly with the salt concentration in the brine solution. Scanning electron microscopy (SEM) revealed that salted yolks consist of spherical granules and embedded flattened porosities. It was concluded that the treatment of salt induces solidification of yolk, accompanied with higher oil exudation and the development of a gritty texture. Different salt concentrations show certain differences. PMID:28797071

  10. Some Physicochemical Properties of Faience Masses with the Utilization of Perlite and Diatomite,

    DTIC Science & Technology

    Physicochemical properties of faience (15-35 percent perlite or 5 percent diatomite ) were studied. The addition of 35 percent perlite lowered the...The strength increased. The effect of diatomite was not as pronounced, but the addition of diatomite prevented the formation of cristobalite. In

  11. Physicochemical and Antioxidant Properties of Rice Bran Oils Produced from Colored Rice Using Different Extraction Methods.

    PubMed

    Mingyai, Sukanya; Kettawan, Aikkarach; Srikaeo, Khongsak; Singanusong, Riantong

    2017-06-01

    This study investigated the physicochemical and antioxidant properties of rice bran oil (RBO) produced from the bran of three rice varities; Khao Dawk Mali 105 (white rice), Red Jasmine rice (red rice) and Hom-nin rice (black rice) using three extraction methods including cold-press extraction (CPE), solvent extraction (SE) and supercritical CO 2 extraction (SC-CO 2 ). Yields, color, acid value (AV), free fatty acid (FFA), peroxide value (PV), iodine value (IV), total phenolic compound (TPC), γ-oryzanol, α-tocopherol and fatty acid profile were analyzed. It was found that the yields obtained from SE, SC-CO 2 and CPE extractions were 17.35-20.19%, 14.76-18.16% and 3.22-6.22%, respectively. The RBO from the bran of red and black rice samples exhibited high antioxidant activities. They also contained higher amount of γ-oryzanol and α-tocopherol than those of white rice sample. In terms of extraction methods, SC-CO 2 provided better qualities of RBO as evidenced by their physicochemical and antioxidant properties. This study found that RBO produced from the bran of black rice samples using SC-CO 2 extraction method showed the best physicochemical and antioxidant properties.

  12. Risk assessment strategies as nanomaterials transition into commercial applications

    NASA Astrophysics Data System (ADS)

    Olson, Mira S.; Gurian, Patrick L.

    2012-03-01

    Commercial applications of nanomaterials are rapidly emerging in the marketplace. The environmental and human health risks of many nanomaterials remain unknown, and prioritizing how to efficiently assess their risks is essential. As nanomaterials are incorporated into a broader range of commercial products, their potential for environmental release and human exposure not only increases, but also becomes more difficult to model accurately. Emphasis may first be placed on estimating potential environmental exposure based on pertinent physical properties of the nanomaterials. Given that the greatest potential for global environmental impacts results from nanomaterials that are both persistent and toxic, this paper advocates screening first for persistence since it is easier to assess than toxicity. For materials that show potential for persistence, a higher burden of proof of their non-toxicity is suggested before they enter the commercial marketplace whereas a lower burden of proof may be acceptable for nanomaterials that are less persistent.

  13. Potential space applications of nanomaterials and standartization issues

    NASA Astrophysics Data System (ADS)

    Voronina, Ekaterina; Novikov, Lev

    Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions as well as in the construction of inhabited bases on the Moon. Nanocomposites with nanoclays, carbon nanotubes and various nanoparticles as fillers are one of the most promising materials for space applications. They may be used as light-weighted and strong structural materials as well as functional and smart materials of general and specific applications, e.g. thermal stabilization, radiation shielding, electrostatic charge mitigation, protection of atomic oxygen influence and space debris impact, etc. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. In this presentation, a brief review of existing standards and standards under development in this field is given. Most such standards are related to nanoparticles and nanotube production and characterization, thus the next important step in this activity is the creation of standards on nanomaterial properties and their behavior in different environmental conditions, including extreme environments. The near-Earth’s space is described as an extreme environment for materials due to high vacuum, space radiation, hot and cold plasma, micrometeoroids and space debris, temperature differences, etc. Existing experimental and theoretical data demonstrate that nanomaterials response to various space environment effects may differ substantially from the one of conventional bulk spacecraft materials. Therefore, it is necessary to determine the space environment components, critical for

  14. Biological responses to engineered nanomaterials: Needs for the next decade

    DOE PAGES

    Murphy, Catherine J.; Vartanian, Ariane M.; Geiger, Franz M.; ...

    2015-06-09

    In this study, the interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterialmore » effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.« less

  15. Defining Occupational and Consumer Exposure Limits for Nanomaterials - First Experiences from REACH Registrations

    NASA Astrophysics Data System (ADS)

    Aschberger, K.; Klöslova, Z.; Falck, G.; Christensen, F. M.

    2013-04-01

    By 1 December 2010 substances manufactured or imported in the EU >= 1000 t (as well as certain other substances) had to be registered under the REACH Regulation 1907/2006. The Joint Research Centre (JRC) in close cooperation with the European Chemicals Agency (ECHA) carried out an analysis and assessment of what type of information on nanomaterials was provided in the received registrations. The aim of the assessment was to develop options for an adaptation of the REACH regulation to ensure proper information generation and reporting and an appropriate risk/safety assessment of nanomaterials (Nano Support project). It should be noted that this analysis and assessment was not a compliance check of the dossiers. From 26000 submitted registration dossiers covering 4700 substances finally 25 dossiers (19 substances) were identified to cover nanomaterials or nanoforms of a substance. It is possible that other dossiers are considered to cover nanomaterials or nanoforms by the registrants, however such dossiers could not be identified to address nanoforms given the information contained in those dossiers. The identified 25 dossiers were subject to a detailed analysis and assessment of information provided for all endpoints including substance identity, physico-chemical properties, human health, environmental fate & behaviour, ecotoxicity, PBT6 assessment, Classification and Labelling as well as the attached Chemical Safety Report documenting the Chemical Risk/Safety Assessment. In order to evaluate how the safety of workers and consumers was ensured, it was appropriate to check how the "Derived No (Minimum) Effect Levels" (DN(M)ELs) were established for substances, covering nanomaterials or nanoforms. DNELs were established mainly for long term inhalation exposure of workers. Half of the assessed dossiers included an oral long term DNEL for the general population. DNELs were usually not specific for nanosized forms and, in the few cases where they were calculated for

  16. Influence of homogenization treatment on physicochemical properties and enzymatic hydrolysis rate of pure cellulose fibers.

    PubMed

    Jacquet, N; Vanderghem, C; Danthine, S; Blecker, C; Paquot, M

    2013-02-01

    The aim of this study is to compare the effect of different homogenization treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. Results obtained show that homogenization treatments improve the enzymatic hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization treatment applied. Characterization of the samples showed also that homogenization had an impact on some physicochemical properties of the cellulose. For moderate treatment intensities (pressure below 500 b and degree of homogenization below 25), an increase of water retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. Result also showed that the overall crystallinity of the cellulose properties appeared not to be impacted by the homogenization treatment. For higher treatment intensities, homogenized cellulose samples developed a stable tridimentional network that contributes to decrease cellulase mobility and slowdown the hydrolysis process.

  17. Physicochemical properties of beta-glucan in differently processed oat foods influence glycemic response.

    PubMed

    Regand, Alejandra; Tosh, Susan M; Wolever, Thomas M S; Wood, Peter J

    2009-10-14

    To assess the effect of food processing on the capacity of oat beta-glucan to attenuate postprandial glycemia, isocaloric crisp bread, granola, porridge, and pasta containing 4 g of beta-glucan as well as control products with low beta-glucan content were prepared. The physicochemical properties (viscosity, peak molecular weight (M(p)), and concentration (C)) of beta-glucan in in-vitro-digestion extracts were evaluated, and fasting and postprandial blood glucose concentrations were measured in human subjects. Porridge and granola had the highest efficacy in attenuating the peak blood glucose response (PBGR) because of their high M(p) and viscosity. beta-Glucan depolymerization in bread and pasta reduced beta-glucan bioactivity. Pastas, known to have low glycemic responses, showed the lowest PBGR. The analyses of these products with previously reported data indicated that 73% of the bioactivity in reducing PBGR can be explained by M(p) x C. Characterizing the physicochemical properties of beta-glucan in bioactive foods aids functional food development.

  18. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping

    NASA Astrophysics Data System (ADS)

    Landsiedel, Robert; Ma-Hock, Lan; Wiench, Karin; Wohlleben, Wendel; Sauer, Ursula G.

    2017-05-01

    As presented at the 2016 TechConnect World Innovation Conference on 22-25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) `Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial's respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as `qualifiers' to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.

  19. Advanced nanomaterials

    NASA Astrophysics Data System (ADS)

    Titus, Elby; Ventura, João; Pedro Araújo, João; Campos Gil, João

    2017-12-01

    Nanomaterials provide a remarkably novel outlook to the design and fabrication of materials. The know-how of designing, modelling and fabrication of nanomaterials demands sophisticated experimental and analytical techniques. The major impact of nanomaterials will be in the fields of electronics, energy and medicine. Nanoelectronics hold the promise of improving the quality of life of electronic devices through superior performance, weight reduction and lower power consumption. New energy production systems based on hydrogen, solar and nuclear sources have also benefited immensely from nanomaterials. In modern medicine, nanomaterials research will have great impact on public health care due to better diagnostic methods and design of novel drugs.

  20. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    NASA Astrophysics Data System (ADS)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  1. Changes in some physicochemical properties and fatty acid composition of irradiated meatballs during storage.

    PubMed

    Gecgel, Umit

    2013-06-01

    Meatball samples were irradiated using a (60)Co irradiation source (with the dose of 1, 3, 5 and 7 kGy) and stored (1, 2 and 3 weeks at 4°C) to appraise some physicochemical properties and the fatty acid composition. The physicochemical results showed no significant differences in moisture, protein, fat and ash content of meatballs because of irradiation. However, total acidity, peroxide and thiobarbituric acid (TBA) values increased significantly as a result of irradiation doses and storage period. The fatty acid profile in meatball samples changed with irradiation. While saturated fatty acids (C16:0, C17:0, C18:0, and C20:0) increased with irradiation, monounsaturated (C14:1, C15:1, C18:1, and C20:1) and polyunsaturated (C18:2, C18:3, and C22:2) fatty acids decreased with irradiation. Trans fatty acids (C16:1trans, C18:1trans, C18:2trans, C18:3trans) increased with increasing irradiation doses. Meatball samples irradiated at 7 kGy had the highest total trans fatty acid content. This research shows that some physicochemical properties and fatty acid composition of meatballs can be changed by gamma irradiation.

  2. Two dimensional nanomaterials for flexible supercapacitors.

    PubMed

    Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi

    2014-05-21

    Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.

  3. Container effects on the physicochemical properties of parenteral lipid emulsions.

    PubMed

    Gonyon, Thomas; Carter, Phillip W; Dahlem, Olivier; Denet, Anne-Rose; Owen, Heather; Trouilly, Jean-Luc

    2008-01-01

    We evaluated the effects of glass and plastic containers on the physicochemical properties of parenteral nutrition lipid emulsions and total nutrient admixtures with an emphasis on globule size distribution and colloidal stability. A commercial lipid emulsion, 20% ClinOleic, was separated into glass (type II soda-lime-silica) and plastic (polypropylene multilayer) containers, sterilized, and then stored for 16 wk at 40 degrees C. Globule size distribution, pH, and zeta potential measurements were made every 4 wk. Admixtures derived from parent lipid emulsions were tested after admixing (t = 0), storage for 7 d at 5 degrees C plus 24 h at 25 degrees C (t = 7 + 1), and then after an additional 3 d at 25 degrees C (t = 7 + 4). The parent lipid emulsions in glass and plastic containers exhibited identical time-dependent behavior with respect to mean globule size, percentage of oil droplets >or=5 mum, pH, and zeta potential measurements. The percentages of oil droplets >or=5 mum of all test conditions remained well below the United States Pharmacopeia <729> limits of 0.05%. The total nutrient admixture time-dependent physicochemical characteristics were also found to be independent of the parent lipid emulsion container type. Plastic and glass containers were found to be suitable, safe, and indistinguishable with respect to physicochemical stability of a representative parenteral nutrition lipid emulsion and total nutrient admixtures derived from the parent lipid emulsion.

  4. Effect of dietary pomegranate seed oil on laying hen performance and physicochemical properties of eggs.

    PubMed

    Kostogrys, Renata B; Filipiak-Florkiewicz, Agnieszka; Dereń, Katarzyna; Drahun, Anna; Czyżyńska-Cichoń, Izabela; Cieślik, Ewa; Szymczyk, Beata; Franczyk-Żarów, Magdalena

    2017-04-15

    The objective of the study was to determine the effects of pomegranate seed oil, used as a source of punicic acid (CLnA) in the diets of laying hens, on the physicochemical properties of eggs. Forty Isa Brown laying hens (26weeks old) were equally subjected to 4 dietary treatments (n=10) and fed a commercial layer diet supplying 2.5% sunflower oil (control) or three levels (0.5, 1.0 and 1.5%) of punicic acid in the diets. After 12weeks of feeding the hens, eggs collection began. Sixty eggs - randomly selected from each group - were analysed for physicochemical properties. Eggs naturally enriched with CLnA preserve their composition and conventional properties in most of the analysed parameters (including chemical composition, physical as well as organoleptic properties). Dietary CLnA had positive impact on the colour of the eggs' yolk, whereas the hardness of hard-boiled egg yolks was not affected. Additionally, increasing dietary CLnA led to an increase not only the CLnA concentrations, but also CLA in egg-yolk lipids. Copyright © 2016. Published by Elsevier Ltd.

  5. Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy

    PubMed Central

    Farcal, Lucian; Torres Andón, Fernando; Di Cristo, Luisana; Rotoli, Bianca Maria; Bussolati, Ovidio; Bergamaschi, Enrico; Mech, Agnieszka; Hartmann, Nanna B.; Rasmussen, Kirsten; Riego-Sintes, Juan; Ponti, Jessica; Kinsner-Ovaskainen, Agnieszka; Rossi, François; Oomen, Agnes; Bos, Peter; Chen, Rui; Bai, Ru; Chen, Chunying; Rocks, Louise; Fulton, Norma; Ross, Bryony; Hutchison, Gary; Tran, Lang; Mues, Sarah; Ossig, Rainer; Schnekenburger, Jürgen; Campagnolo, Luisa; Vecchione, Lucia; Pietroiusti, Antonio; Fadeel, Bengt

    2015-01-01

    Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry – hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO – uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques – precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially ‘weak-embryotoxic’ and ZnO and SiO2 NMs as ‘non-embryotoxic’. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for

  6. Surface Characterization of Nanomaterials and Nanoparticles. Important needs and challenging opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.

    2013-08-27

    This review examines the characterization challenges inherently associated with understanding nanomaterials and how surface characterization methods can help meet those challenges. In parts of the research community, there is growing recognition that many studies and published reports on the properties and behaviors of nanomaterials have involved inadequate characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. As the importance of nanomaterials in fundamental research and technological applications increases, it is necessary for researchers to recognize the challenges associated with reproducible materials synthesis, maintaining desired materials properties during handling and processing, and themore » dynamic nature of nanomaterials, especially nanoparticles. Researchers also need to understand how characterization approaches (surface and otherwise) can be used to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. The types of information that can be provided by traditional surface sensitive analysis methods (including X-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy and secondary ion mass spectroscopy) and less common or evolving surface sensitive methods (e.g., nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) are discussed and various of their use in nanomaterial research are presented.« less

  7. Reference data set of volcanic ash physicochemical and optical properties

    NASA Astrophysics Data System (ADS)

    Vogel, A.; Diplas, S.; Durant, A. J.; Azar, A. S.; Sunding, M. F.; Rose, W. I.; Sytchkova, A.; Bonadonna, C.; Krüger, K.; Stohl, A.

    2017-09-01

    Uncertainty in the physicochemical and optical properties of volcanic ash particles creates errors in the detection and modeling of volcanic ash clouds and in quantification of their potential impacts. In this study, we provide a data set that describes the physicochemical and optical properties of a representative selection of volcanic ash samples from nine different volcanic eruptions covering a wide range of silica contents (50-80 wt % SiO2). We measured and calculated parameters describing the physical (size distribution, complex shape, and dense-rock equivalent mass density), chemical (bulk and surface composition), and optical (complex refractive index from ultraviolet to near-infrared wavelengths) properties of the volcanic ash and classified the samples according to their SiO2 and total alkali contents into the common igneous rock types basalt to rhyolite. We found that the mass density ranges between ρ = 2.49 and 2.98 g/cm3 for rhyolitic to basaltic ash types and that the particle shape varies with changing particle size (d < 100 μm). The complex refractive indices in the wavelength range between λ = 300 nm and 1500 nm depend systematically on the composition of the samples. The real part values vary from n = 1.38 to 1.66 depending on ash type and wavelength and the imaginary part values from k = 0.00027 to 0.00268. We place our results into the context of existing data and thus provide a comprehensive data set that can be used for future and historic eruptions, when only basic information about the magma type producing the ash is known.

  8. Impact of production practices on physicochemical properties of rice grain quality.

    PubMed

    Bryant, Rolfe J; Anders, Merle; McClung, Anna

    2012-02-01

    Rice growers are interested in new technologies that can reduce input costs while maintaining high field yields and grain quality. The bed-and-furrow (BF) water management system benefits farmers through decreased water usage, labor, and fuel as compared to standard flood management. Fertilizer inputs can be reduced by producing rice in rotation with soybeans, a nitrogen-fixing crop, and with the use of slow-release fertilizers that reduce nitrogen volatilization and run-off. However, the influence of these cultural management practices on rice physicochemical properties is unknown. Our objective was to evaluate the influence of nitrogen fertilizer source, water management system, and crop rotation on rice grain quality. Grain protein concentration was lower in a continuous rice production system than in a rice-soybean rotation. Neither amylose content nor gelatinization temperature was altered by fertilizer source, crop rotation, or water management. BF water management decreased peak and breakdown viscosities relative to a flooded system. Peak and final paste viscosities were decreased by all fertilizer sources, whereas, crop rotation had no influence on the Rapid Visco Analyser profile. Sustainable production systems that decrease water use and utilize crop rotations and slow-release fertilizers have no major impact on rice physicochemical properties. Published 2011 by John Wiley & Sons, Ltd.

  9. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials.

    PubMed

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2018-02-21

    The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.

  10. Use of an integrated approach to characterize the physicochemical properties of foundry green sands

    USDA-ARS?s Scientific Manuscript database

    A fresh green sand, spent green sand, and a weathered spent green sand from a landfill were analyzed using diffractometry, electron microscopy, granulometry, spectrometry, and thermogravimetry. Our objective was to understand how the physicochemical properties of the green sands change from their o...

  11. CE and nanomaterials - Part II: Nanomaterials in CE.

    PubMed

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    The scope of this two-part review is to summarize publications dealing with CE and nanomaterials together. This topic can be viewed from two broad perspectives, and this article is trying to highlight these two approaches: (i) CE of nanomaterials, and (ii) nanomaterials in CE. The second part aims at summarization of publications dealing with application of nanomaterials for enhancement of CE performance either in terms of increasing the separation resolution or for improvement of the detection. To increase the resolution, nanomaterials are employed as either surface modification of the capillary wall forming open tubular column or as additives to the separation electrolyte resulting in a pseudostationary phase. Moreover, nanomaterials have proven to be very beneficial for increasing also the sensitivity of detection employed in CE or even they enable the detection (e.g., fluorescent tags of nonfluorescent molecules). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Recent advances in aptasensors based on graphene and graphene-like nanomaterials.

    PubMed

    Ping, Jianfeng; Zhou, Yubin; Wu, Yuanyuan; Papper, Vladislav; Boujday, Souhir; Marks, Robert S; Steele, Terry W J

    2015-02-15

    Graphene and graphene-like two-dimensional nanomaterials have aroused tremendous research interest in recent years due to their unique electronic, optical, and mechanical properties associated with their planar structure. Aptamers have exhibited many advantages as molecular recognition elements for sensing devices compared to traditional antibodies. The marriage of two-dimensional nanomaterials and aptamers has emerged many ingenious aptasensing strategies for applications in the fields of clinical diagnosis and food safety. This review highlights current advances in the development and application of two-dimensional nanomaterials-based aptasensors with the focus on two main signal-transducing mechanisms, i.e. electrochemical and optical. A special attention is paid to graphene, a one-atom thick layer of graphite with exceptional properties, representing a fastgrowing field of research. In view of the unique properties of two-dimensional nanostructures and their inherent advantages of synthetic aptamers, we expect that high-performance two-dimensional nanomaterials-based aptasensing devices will find extensive applications in environmental monitoring, biomedical diagnostics, and food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-03-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  14. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-05-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  15. Gold Nanomaterials in Consumer Cosmetics Nanoproducts: Analyses, Characterization, and Dermal Safety Assessment.

    PubMed

    Cao, Mingjing; Li, Jiayang; Tang, Jinglong; Chen, Chunying; Zhao, Yuliang

    2016-10-01

    Establishment of analytical methods of engineered nanomaterials in consumer products for their human and environmental risk assessment becomes urgent for both academic and industrial needs. Owing to the difficulties and challenges around nanomaterials in complex media, proper chemical separation and biological assays of nanomaterials from nanoproducts needs to be firstly developed. Herein, a facile and rapid method to separate and analyze gold nanomaterials in cosmetics is reported. Gold nanomaterials are successfully separated from different facial or eye creams and their physiochemical properties are analyzed by quantitative and qualitative state-of-the art techniques with high sensitivity or high spatial resolution. In turn, a protocol including quantification of gold by inductively coupled plasma mass spectrometry and thorough characterization of morphology, size distribution, and surface property by electron microscopes, atomic force microscope, and X-ray photoelectron spectroscope is developed. Subsequently, the preliminary toxicity assessment indicates that gold nanomaterials in cosmetic creams have no observable toxicity to human keratinocytes even after 24 h exposure up to a concentration of 200 μg mL -1 . The environmental scanning electron microscope reveals that gold nanomaterials are mostly attached on the cell membrane. Thus, the present study provides a full analysis protocol for toxicity assessment of gold nanomaterials in consumer products (cosmetic creams). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The nanomaterial toolkit for neuroengineering

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas

    2016-10-01

    There is a growing interest in developing effective tools to better probe the central nervous system (CNS), to understand how it works and to treat neural diseases, injuries and cancer. The intrinsic complexity of the CNS has made this a challenging task for decades. Yet, with the extraordinary recent advances in nanotechnology and nanoscience, there is a general consensus on the immense value and potential of nanoscale tools for engineering neural systems. In this review, an overview of specialized nanomaterials which have proven to be the most effective tools in neuroscience is provided. After a brief background on the prominent challenges in the field, a variety of organic and inorganic-based nanomaterials are described, with particular emphasis on the distinctive properties that make them versatile and highly suitable in the context of the CNS. Building on this robust nano-inspired foundation, the rational design and application of nanomaterials can enable the generation of new methodologies to greatly advance the neuroscience frontier.

  17. Nanomaterials as stationary phases and supports in liquid chromatography.

    PubMed

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cellulose-silica/gold nanomaterials for electronic applications.

    PubMed

    Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo

    2014-10-01

    Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.

  19. Physicochemical and Rheological Properties of a Dairy Dessert, Enriched with Chickpea Flour.

    PubMed

    Aguilar-Raymundo, Victoria Guadalupe; Vélez-Ruiz, Jorge Fernando

    2018-02-18

    Dairy desserts are complex mixtures and matrices including main components such as milk, sugar, starch, hydrocolloids, colorants and flavors, with a proteinaceous structure; they are widely consumed and present a semisolid consistency. In this work, the physicochemical and rheological properties of a dairy dessert with the addition of chickpea flour (raw and cooked, at four concentrations) were studied to determine the effect of the flour. The results indicated that luminosity (L*: 62.75-83.29), pH (6.35-7.11) and acidity (1.56-3.56) changed with the type of flour. The flow properties of the custards exhibited a non-Newtonian behavior that was well fitted by three flow models. The studied custard systems were stored for twelve days at 4 °C. The physicochemical and flow properties of the custards changed notably as a function of flour addition and storage time. From all samples, only four were analyzed with oscillatory tests, showing their mechanical spectra with elastic behavior. The dessert texture was also measured, founding that those formulated with Blanco Noroeste chickpea flour exhibited the highest values of hardness (0.356-0.391 Newton (N)) through the twelve days. It can be concluded that those custard systems with the highest content of flour presented a very good response as a potential new dairy product.

  20. Physicochemical and Rheological Properties of a Dairy Dessert, Enriched with Chickpea Flour

    PubMed Central

    Aguilar-Raymundo, Victoria Guadalupe; Vélez-Ruiz, Jorge Fernando

    2018-01-01

    Dairy desserts are complex mixtures and matrices including main components such as milk, sugar, starch, hydrocolloids, colorants and flavors, with a proteinaceous structure; they are widely consumed and present a semisolid consistency. In this work, the physicochemical and rheological properties of a dairy dessert with the addition of chickpea flour (raw and cooked, at four concentrations) were studied to determine the effect of the flour. The results indicated that luminosity (L*: 62.75–83.29), pH (6.35–7.11) and acidity (1.56–3.56) changed with the type of flour. The flow properties of the custards exhibited a non-Newtonian behavior that was well fitted by three flow models. The studied custard systems were stored for twelve days at 4 °C. The physicochemical and flow properties of the custards changed notably as a function of flour addition and storage time. From all samples, only four were analyzed with oscillatory tests, showing their mechanical spectra with elastic behavior. The dessert texture was also measured, founding that those formulated with Blanco Noroeste chickpea flour exhibited the highest values of hardness (0.356–0.391 N) through the twelve days. It can be concluded that those custard systems with the highest content of flour presented a very good response as a potential new dairy product. PMID:29463036

  1. Recent Advances in Ultrathin Two-Dimensional Nanomaterials.

    PubMed

    Tan, Chaoliang; Cao, Xiehong; Wu, Xue-Jun; He, Qiyuan; Yang, Jian; Zhang, Xiao; Chen, Junze; Zhao, Wei; Han, Shikui; Nam, Gwang-Hyeon; Sindoro, Melinda; Zhang, Hua

    2017-05-10

    Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors, solar cells, photocatalysis, and sensing platforms. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.

  2. Recent Development of Nanomaterial-Doped Conductive Polymers

    NASA Astrophysics Data System (ADS)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  3. Application of nanomaterials in solar thermal energy storage

    NASA Astrophysics Data System (ADS)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  4. Application of nanomaterials in solar thermal energy storage

    NASA Astrophysics Data System (ADS)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  5. Recent advances in nanomaterial-based biosensors for antibiotics detection.

    PubMed

    Lan, Lingyi; Yao, Yao; Ping, Jianfeng; Ying, Yibin

    2017-05-15

    Antibiotics are able to be accumulated in human body by food chain and may induce severe influence to human health and safety. Hence, the development of sensitive and simple methods for rapid evaluation of antibiotic levels is highly desirable. Nanomaterials with excellent electronic, optical, mechanical, and thermal properties have been recognized as one of the most promising materials for opening new gates in the development of next-generation biosensors. This review highlights the current advances in the nanomaterial-based biosensors for antibiotics detection. Different kinds of nanomaterials including carbon nanomaterials, metal nanomaterials, magnetic nanoparticles, up-conversion nanoparticles, and quantum dots have been applied to the construction of biosensors with two main signal-transducing mechanisms, i.e. optical and electrochemical. Furthermore, the current challenges and future prospects in this field are also included to provide an overview for future research directions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nanomaterials as analytical tools for genosensors.

    PubMed

    Abu-Salah, Khalid M; Alrokyan, Salman A; Khan, Muhammad Naziruddin; Ansari, Anees Ahmad

    2010-01-01

    Nanomaterials are being increasingly used for the development of electrochemical DNA biosensors, due to the unique electrocatalytic properties found in nanoscale materials. They offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronic devices exhibiting novel functions. In particular, nanomaterials such as noble metal nanoparticles (Au, Pt), carbon nanotubes (CNTs), magnetic nanoparticles, quantum dots and metal oxide nanoparticles have been actively investigated for their applications in DNA biosensors, which have become a new interdisciplinary frontier between biological detection and material science. In this article, we address some of the main advances in this field over the past few years, discussing the issues and challenges with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination.

  7. Nanomaterials as Analytical Tools for Genosensors

    PubMed Central

    Abu-Salah, Khalid M.; Alrokyan, Salman A.; Khan, Muhammad Naziruddin; Ansari, Anees Ahmad

    2010-01-01

    Nanomaterials are being increasingly used for the development of electrochemical DNA biosensors, due to the unique electrocatalytic properties found in nanoscale materials. They offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronic devices exhibiting novel functions. In particular, nanomaterials such as noble metal nanoparticles (Au, Pt), carbon nanotubes (CNTs), magnetic nanoparticles, quantum dots and metal oxide nanoparticles have been actively investigated for their applications in DNA biosensors, which have become a new interdisciplinary frontier between biological detection and material science. In this article, we address some of the main advances in this field over the past few years, discussing the issues and challenges with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination. PMID:22315580

  8. A Review of Carbon Nanomaterials' Synthesis via the Chemical Vapor Deposition (CVD) Method.

    PubMed

    Manawi, Yehia M; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A

    2018-05-17

    Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.

  9. Improvement of the physicochemical properties of Co-amorphous naproxen-indomethacin by naproxen-sodium.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2017-06-30

    Improvement of the physicochemical properties of amorphous active pharmaceutical ingredients (APIs) applying the concept of co-amorphisation is a promising alternative to the use of polymer glass solutions. In co-amorphous systems, the physical stability and the dissolution rate of the involved components may be improved in comparison to the respective single amorphous phases. However, for the co-amorphous naproxen-indomethacin model system it has been reported that recrystallization could not be prevented for more than 112days regardless of the applied preparation method and blend ratio In the present study, it was thus tested if the physicochemical properties of co-amorphous naproxen-indomethacin could be optimized by incorporation of the naproxen sodium into the system. Three different co-amorphous systems in nine different molar ratios were prepared by quench-cooling: naproxen-indomethacin (NI), naproxen-sodium-naproxen-indomethacin (NSNI) and naproxen-sodium-indomethacin (NSI). The samples were analyzed by XRPD, FTIR, DSC and by intrinsic dissolution experiments to investigate the influence of naproxen-sodium on the resulting physicochemical properties of the systems. With the three systems, fully amorphous samples with single glass transition temperatures could be prepared with naproxen molar fractions up to 0.7. The NSI and NSNI systems showed up to about 40°C higher Tgs than the NI system. Furthermore, no recrystallization occurred during 270d of storage with the NSI and NSNI samples that were initially amorphous. Moreover, with the NSI system, the intrinsic dissolution rate of naproxen and indomethacin was improved by a factor of 2 compared to the unmodified NI system. In conclusion, the physical stability as well as the dissolution rate was significantly improved if partial or full exchange of naproxen by its sodium salt was performed, which may present a general optimization method to improve co-amorphous systems. Copyright © 2017 Elsevier B.V. All

  10. Scientific and Regulatory Considerations for Generic Complex Drug Products Containing Nanomaterials.

    PubMed

    Zheng, Nan; Sun, Dajun D; Zou, Peng; Jiang, Wenlei

    2017-05-01

    In the past few decades, the development of medicine at the nanoscale has been applied to oral and parenteral dosage forms in a wide range of therapeutic areas to enhance drug delivery and reduce toxicity. An obvious response to these benefits is reflected in higher market shares of complex drug products containing nanomaterials than that of conventional formulations containing the same active ingredient. The surging market interest has encouraged the pharmaceutical industry to develop cost-effective generic versions of complex drug products based on nanotechnology when the associated patent and exclusivity on the reference products have expired. Due to their complex nature, nanotechnology-based drugs present unique challenges in determining equivalence standards between generic and innovator products. This manuscript attempts to provide the scientific rationales and regulatory considerations of key equivalence standards (e.g., in vivo studies and in vitro physicochemical characterization) for oral drugs containing nanomaterials, iron-carbohydrate complexes, liposomes, protein-bound drugs, nanotube-forming drugs, and nano emulsions. It also presents active research studies in bridging regulatory and scientific gaps for establishing equivalence of complex products containing nanomaterials. We hope that open communication among industry, academia, and regulatory agencies will accelerate the development and approval processes of generic complex products based on nanotechnology.

  11. Physicochemically Tunable Polyfunctionalized RNA Square Architecture with Fluorogenic and Ribozymatic Properties

    PubMed Central

    2015-01-01

    Recent advances in RNA nanotechnology allow the rational design of various nanoarchitectures. Previous methods utilized conserved angles from natural RNA motifs to form geometries with specific sizes. However, the feasibility of producing RNA architecture with variable sizes using native motifs featuring fixed sizes and angles is limited. It would be advantageous to display RNA nanoparticles of diverse shape and size derived from a given primary sequence. Here, we report an approach to construct RNA nanoparticles with tunable size and stability. Multifunctional RNA squares with a 90° angle were constructed by tuning the 60° angle of the three-way junction (3WJ) motif from the packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor. The physicochemical properties and size of the RNA square were also easily tuned by modulating the “core” strand and adjusting the length of the sides of the square via predictable design. Squares of 5, 10, and 20 nm were constructed, each showing diverse thermodynamic and chemical stabilities. Four “arms” extending from the corners of the square were used to incorporate siRNA, ribozyme, and fluorogenic RNA motifs. Unique intramolecular contact using the pre-existing intricacy of the 3WJ avoids relatively weaker intermolecular interactions via kissing loops or sticky ends. Utilizing the 3WJ motif, we have employed a modular design technique to construct variable-size RNA squares with controllable properties and functionalities for diverse and versatile applications with engineering, pharmaceutical, and medical potential. This technique for simple design to finely tune physicochemical properties adds a new angle to RNA nanotechnology. PMID:24971772

  12. Physicochemical properties of chitooligosaccharide prepared by using chitosanase from Stenotrophomonas maltophilia KPU 2123

    NASA Astrophysics Data System (ADS)

    Fawzya, Y. N.; Rahmawati, A.; Patantis, G.

    2018-03-01

    Study on the physicochemical properties of chitooligosaccharide (COS) prepared by hydrolysis of chitosan using chitosanase from Stenotrophomonas maltophilia KPU 2123 has been carried out. Hydrolysis process was conducted by reacting the soluble chitosan with 8 U·g-1 chitosan of chitosanase for 0; 8; 16 and 24 h incubation and stopped by addition of 0.25 M NaOH until reached pH 7. The COS was obtained as supernatant after being centrifugation. The liquid COS were then freeze-dried and analyzed their physicochemical properties, which comprised yield, viscosity, moisture and ash content, the degree of deacetylation (DD), as well as lead (Pb), arsenic (As) content and analyses of COS by Thin Layer Chromatography (TLC). The optimum hydrolysis time was found to be 16 h with the COS viscosity was 8.50 ± 0.87 cPs. The high COS yield was related to high ash content, i.e. 251.70 ± 77.97 % and 50.45 ± 3.19 % (db), respectively. There was lead (Pb) and arsenic (As) metals detected, i.e. 4.4 ppm and 0.1 ppm, respectively. However, they still met the requirement of Pb and As content in a commercial COS referred. Based on the COS properties, desalination process should be applied in the preparation of COS by enzymatic method.

  13. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China.

    PubMed

    Liu, Feng-Xia; Fu, Shu-Fang; Bi, Xiu-Fang; Chen, Fang; Liao, Xiao-Jun; Hu, Xiao-Song; Wu, Ji-Hong

    2013-05-01

    Four principal mango cultivars (Tainong No.1, Irwin, JinHwang and Keitt) grown in southern China were selected, and their physico-chemical and antioxidant properties were characterized and compared. Of all the four cultivars, Tainong No.1 had highest content of total phenols, ρ-coumaric acid, sinapic acid, quercetin, titratable acidity, citric acid, malic acid, fructose, higher antioxidant activities (DPPH, FRAP) and L(*), lower pH, PPO activity and individual weight. Keitt mangoes showed significantly (p<0.05) higher contents of β-carotene, ρ-hydroxybenzoic acid, sucrose, total sugar, total soluble solid, catechin, succinic acid and higher PPO activity. JinHwang mangoes exhibited significantly (p<0.05) higher individual weight and PPO activity, but had lower content of total phenols, β-carotene and lower antioxidant activity. Principal component analysis (PCA) allowed the four mango cultivars to be differentiated clearly based on all these physico-chemical and antioxidant properties determined in the study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure.

    PubMed

    Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min

    2016-11-01

    A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Recent advances in applications of nanomaterials for sample preparation.

    PubMed

    Xu, Linnan; Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A practical approach to determine dose metrics for nanomaterials.

    PubMed

    Delmaar, Christiaan J E; Peijnenburg, Willie J G M; Oomen, Agnes G; Chen, Jingwen; de Jong, Wim H; Sips, Adriënne J A M; Wang, Zhuang; Park, Margriet V D Z

    2015-05-01

    Traditionally, administered mass is used to describe doses of conventional chemical substances in toxicity studies. For deriving toxic doses of nanomaterials, mass and chemical composition alone may not adequately describe the dose, because particles with the same chemical composition can have completely different toxic mass doses depending on properties such as particle size. Other dose metrics such as particle number, volume, or surface area have been suggested, but consensus is lacking. The discussion regarding the most adequate dose metric for nanomaterials clearly needs a systematic, unbiased approach to determine the most appropriate dose metric for nanomaterials. In the present study, the authors propose such an approach and apply it to results from in vitro and in vivo experiments with silver and silica nanomaterials. The proposed approach is shown to provide a convenient tool to systematically investigate and interpret dose metrics of nanomaterials. Recommendations for study designs aimed at investigating dose metrics are provided. © 2015 SETAC.

  17. Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials

    NASA Astrophysics Data System (ADS)

    Abou, Seraphin Chally; Saad, Maarouf

    2013-09-01

    In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.

  18. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins.

    PubMed

    Amiri, Amir; Sharifian, Parisa; Soltanizadeh, Nafiseh

    2018-05-01

    The aim of this study was to evaluate the impact of duration (10, 20 and 30min) and power (100 and 300W) of high-intensity ultrasound (20kHz) on physicochemical properties of beef myofibrillar proteins in order to investigate novel process for modification of its functional characteristics. Results showed that augmentation of duration and power of ultrasound led to enhance pH. Also, the water holding capacity and gel strength were improved by increasing pH. The highest value in pH, reactive sulfhydryl content, water holding capacity and gel strength was obtained in sample subjected to 30min of ultrasound at 300W. The particle size distribution of the proteins was decreased after ultrasound treatment because of the cavitation force of ultrasound waves. In this circumstance, an improvement of emulsifying properties can be obtained. Ultrasonic waves had significant effects on the rheological properties of myofibrillar proteins. Treated samples were more elastic and stiffer than control, although the inverse trend was observed after 30min treatment at each power. Finally, a reducing trend in viscosity was observed by increasing time and power of sonication. Ultrasonic treatment could successfully improve functional properties with effect on physicochemical properties of myofibrillar proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Morphological transformations of BNCO nanomaterials: Role of intermediates

    NASA Astrophysics Data System (ADS)

    Wang, B. B.; Qu, X. L.; Zhu, M. K.; Levchenko, I.; Baranov, O.; Zhong, X. X.; Xu, S.; Ostrikov, K.

    2018-06-01

    Highly controllable structural transformation of various doped carbon and boron nitride nanomaterials have been achieved with the perspective of their application in microelectronics, optoelectronics, energy devices and catalytic reactions. Specifically, the syntheses of one-dimensional (1D) boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets on silicon coated with gold films in N2-H2 plasma was demonstrated. During the synthesis of nanomaterials, boron carbide was used as carbon and boron sources. The results of characterizations by scanning and transmission electron microscopes, as well as micro-Raman and X-ray photoelectron spectroscopes indicate that the formation of different nanomaterials relates to the growth temperature and quantity of boron carbide. Specifically, 1D tube-like carbon nanorods doped with boron and nitrogen are formed at ∼910 °C using a small quantity of boron carbide, while 2D vertical boron nitride nanosheets doped with carbon and oxygen are grown at ∼870 °C using a large quantity of boron carbide. These studies indicate that the behaviors of a reactive intermediate product B2O3 on surfaces of Au nanoparticles play an important role in the formation of different nanomaterials, i.e., whether the B2O3 molecules deposited on Au nanoparticles are desorbed mainly determines the formation of different nanomaterials. The formation of 2D vertical carbon and oxygen co-doped boron nitride nanosheets is related to the high growth rate of edges of nanosheets. Furthermore, the photoluminescence (PL) properties of 1D boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets were studied at room temperature. The PL results show that all the nanomaterials generate the ultraviolet, blue, green and red PL bands, but the 2D vertical carbon and oxygen co-doped boron nitride nanosheets emit more and stronger PL bands than

  20. A study of relations between physicochemical properties of crude oils and microbiological characteristics of reservoir microflora

    NASA Astrophysics Data System (ADS)

    Yashchenko, I. G.; Polishchuk, Yu. M.; Peremitina, T. O.

    2015-10-01

    The dependence of the population and activity of reservoir microflora upon the chemical composition and viscosity of crude oils has been investigated, since it allows the problem of improvement in the technologies and enhancement of oil recovery as applied to production of difficult types of oils with anomalous properties (viscous, heavy, waxy, high resin) to be solved. The effect of the chemical composition of the oil on the number, distribution, and activity of reservoir microflora has been studied using data on the microbiological properties of reservoir water of 16 different fields in oil and gas basins of Russia, Mongolia, China, and Vietnam. Information on the physicochemical properties of crude oils of these fields has been obtained from the database created at the Institute of Petroleum Chemistry, Siberian Branch on the physicochemical properties of oils throughout the world. It has been found that formation water in viscous oil reservoirs is char acterized by a large population of heterotrophic and sulfate reducing bacteria and the water of oil fields with a high paraffin content, by population of denitrifying bacteria.

  1. Significant Differences in Physicochemical Properties of Human Immunoglobulin Kappa and Lambda CDR3 Regions.

    PubMed

    Townsend, Catherine L; Laffy, Julie M J; Wu, Yu-Chang Bryan; Silva O'Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K

    2016-01-01

    Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response.

  2. Significant Differences in Physicochemical Properties of Human Immunoglobulin Kappa and Lambda CDR3 Regions

    PubMed Central

    Townsend, Catherine L.; Laffy, Julie M. J.; Wu, Yu-Chang Bryan; Silva O’Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K.

    2016-01-01

    Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response. PMID:27729912

  3. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective

    PubMed Central

    Baldrighi, Michele; Trusel, Massimo; Tonini, Raffaella; Giordani, Silvia

    2016-01-01

    Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues. PMID:27375413

  4. Occupational exposure limits for nanomaterials: state of the art

    NASA Astrophysics Data System (ADS)

    Schulte, P. A.; Murashov, V.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.

    2010-08-01

    Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose-response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose-response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

  5. Physicochemical and antioxidant properties of black garlic.

    PubMed

    Choi, Il Sook; Cha, Han Sam; Lee, Young Soon

    2014-10-20

    Black garlic (BG) is a processed garlic product prepared by heat treatment of whole garlic bulbs (Allium sativum L.) at high temperature under high humidity for several days, resulting in black cloves with a sweet taste. BG has recently been introduced to the Korean market as a product beneficial to health. To clarify how BG changes during the 35 day aging period, the physicochemical characteristics, antioxidant contents, and antioxidant activities were evaluated under controlled conditions of 70 °C and 90% relative humidity. Reducing sugar and total acidity of BG increased during the aging period, whereas pH decreased from pH 6.33 to 3.74. Lightness and yellowness values of BG radically decreased during the aging period, whereas redness values increased significantly. Antioxidant components, including the total polyphenol and total flavonoids contents of BG, increased significantly until the 21st day of aging (p < 0.05) and correspondingly, the antioxidant activities of BG, measured by DPPH, ABTS, FRAP, and reducing power assays, were highest on the 21st day of aging. These results indicate that BG can be considered to not only possess antioxidant properties during the aging period, but also to reach its optimal antioxidant properties at the 21st day of aging.

  6. Towards sensible toxicity testing for nanomaterials: proposal for the specification of test design

    NASA Astrophysics Data System (ADS)

    Potthoff, Annegret; Weil, Mirco; Meißner, Tobias; Kühnel, Dana

    2015-12-01

    During the last decade, nanomaterials (NM) were extensively tested for potential harmful effects towards humans and environmental organisms. However, a sound hazard assessment was so far hampered by uncertainties and a low comparability of test results. The reason for the low comparability is a high variation in the (1) type of NM tested with regard to raw material, size and shape and (2) procedures before and during the toxicity testing. This calls for tailored, nanomaterial-specific protocols. Here, a structured approach is proposed, intended to lead to test protocols not only tailored to specific types of nanomaterials, but also to respective test system for toxicity testing. There are existing standards on single procedures involving nanomaterials, however, not all relevant procedures are covered by standards. Hence, our approach offers a detailed way of weighting several plausible alternatives for e.g. sample preparation, in order to decide on the procedure most meaningful for a specific nanomaterial and toxicity test. A framework of several decision trees (DT) and flow charts to support testing of NM is proposed as a basis for further refinement and in-depth elaboration. DT and flow charts were drafted for (1) general procedure—physicochemical characterisation, (2) choice of test media, (3) decision on test scenario and application of NM to liquid media, (4) application of NM to the gas phase, (5) application of NM to soil and sediments, (6) dose metrics, (S1) definition of a nanomaterial, and (S2) dissolution. The applicability of the proposed approach was surveyed by using experimental data retrieved from studies on nanoscale CuO. This survey demonstrated the DT and flow charts to be a convenient tool to systematically decide upon test procedures and processes, and hence pose an important step towards harmonisation of NM testing.

  7. Towards sensible toxicity testing for nanomaterials: proposal for the specification of test design.

    PubMed

    Potthoff, Annegret; Weil, Mirco; Meißner, Tobias; Kühnel, Dana

    2015-12-01

    During the last decade, nanomaterials (NM) were extensively tested for potential harmful effects towards humans and environmental organisms. However, a sound hazard assessment was so far hampered by uncertainties and a low comparability of test results. The reason for the low comparability is a high variation in the (1) type of NM tested with regard to raw material, size and shape and (2) procedures before and during the toxicity testing. This calls for tailored, nanomaterial-specific protocols. Here, a structured approach is proposed, intended to lead to test protocols not only tailored to specific types of nanomaterials, but also to respective test system for toxicity testing. There are existing standards on single procedures involving nanomaterials, however, not all relevant procedures are covered by standards. Hence, our approach offers a detailed way of weighting several plausible alternatives for e.g. sample preparation, in order to decide on the procedure most meaningful for a specific nanomaterial and toxicity test. A framework of several decision trees (DT) and flow charts to support testing of NM is proposed as a basis for further refinement and in-depth elaboration. DT and flow charts were drafted for (1) general procedure-physicochemical characterisation, (2) choice of test media, (3) decision on test scenario and application of NM to liquid media, (4) application of NM to the gas phase, (5) application of NM to soil and sediments, (6) dose metrics, (S1) definition of a nanomaterial, and (S2) dissolution. The applicability of the proposed approach was surveyed by using experimental data retrieved from studies on nanoscale CuO. This survey demonstrated the DT and flow charts to be a convenient tool to systematically decide upon test procedures and processes, and hence pose an important step towards harmonisation of NM testing.

  8. Effects of different radio-opacifying agents on physicochemical and biological properties of a novel root-end filling material

    PubMed Central

    Lü, Xiao-Ying; Liu, Gen-Di

    2018-01-01

    Background/Purpose Radio-opacity is an essential attribute of ideal root-end filling materials because it is important for clinicians to observe root canal filling and to facilitate the follow-up instructions. The novel root-end filling material (NRFM) has good cytocompatibility and physicochemical properties but low intrinsic radio-opacity value. To improve its radio-opacity value, three novel radio-opaque root-end filling materials (NRRFMs) were developed by adding barium sulphate (NRFM-Ba), bismuth trioxide (NRFM-Bi) and zirconium dioxide (NRFM-Zr) to NRFM, respectively. The purpose of this study was to identify the suitable radio-opacifier for NRFM through evaluating their physicochemical and biological properties, in comparison with NRFM and glass ionomer cement (GIC). Methods NRRFMs were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrophotometry (FTIR). Physicochemical properties including setting time, compressive strength, porosity, pH variation, solubility, washout resistance, contact angle and radiopacity were investigated. Cytocompatibility of both freshly mixed and set NRRFMs was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Alkaline phosphatase (ALP) activity assay and alizarin red staining were used to investigate the osteogenic differentiation potential of NRFM-Zr. Data were analyzed using two-way ANOVA (pH variation, solubility and ALP activity) and one-way ANOVA (for the other variables). Results (1) NRRFMs were primarily composed of hydroxyapatite, calcium carboxylate salt and the corresponding radio-opacity agents (barium sulphate, bismuth trioxide or zirconium dioxide). (2) Besides similar physicochemical properties in terms of setting time, pH variation, solubility, washout resistance and contact angle to NRFM, NRFM-Bi and NRFM-Zr exhibited lower porosity and greater compressive strength after being set for 7 days and their radio-opacity were greater than the 3 mm

  9. Effects of different radio-opacifying agents on physicochemical and biological properties of a novel root-end filling material.

    PubMed

    Chen, Yao-Zhong; Lü, Xiao-Ying; Liu, Gen-Di

    2018-01-01

    Radio-opacity is an essential attribute of ideal root-end filling materials because it is important for clinicians to observe root canal filling and to facilitate the follow-up instructions. The novel root-end filling material (NRFM) has good cytocompatibility and physicochemical properties but low intrinsic radio-opacity value. To improve its radio-opacity value, three novel radio-opaque root-end filling materials (NRRFMs) were developed by adding barium sulphate (NRFM-Ba), bismuth trioxide (NRFM-Bi) and zirconium dioxide (NRFM-Zr) to NRFM, respectively. The purpose of this study was to identify the suitable radio-opacifier for NRFM through evaluating their physicochemical and biological properties, in comparison with NRFM and glass ionomer cement (GIC). NRRFMs were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrophotometry (FTIR). Physicochemical properties including setting time, compressive strength, porosity, pH variation, solubility, washout resistance, contact angle and radiopacity were investigated. Cytocompatibility of both freshly mixed and set NRRFMs was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Alkaline phosphatase (ALP) activity assay and alizarin red staining were used to investigate the osteogenic differentiation potential of NRFM-Zr. Data were analyzed using two-way ANOVA (pH variation, solubility and ALP activity) and one-way ANOVA (for the other variables). (1) NRRFMs were primarily composed of hydroxyapatite, calcium carboxylate salt and the corresponding radio-opacity agents (barium sulphate, bismuth trioxide or zirconium dioxide). (2) Besides similar physicochemical properties in terms of setting time, pH variation, solubility, washout resistance and contact angle to NRFM, NRFM-Bi and NRFM-Zr exhibited lower porosity and greater compressive strength after being set for 7 days and their radio-opacity were greater than the 3 mm aluminium thickness specified in ISO

  10. Evaluation of physicochemical properties and antioxidant activities of kombucha "Tea Fungus" during extended periods of fermentation.

    PubMed

    Amarasinghe, Hashani; Weerakkody, Nimsha S; Waisundara, Viduranga Y

    2018-05-01

    Kombucha fermentation is traditionally carried out by inoculating a previously grown tea fungal mat into a freshly prepared tea broth and incubating under aerobic conditions for 7-10 days. In this study, four kombucha beverages were prepared by placing the tea fungal mats in sugared Sri Lankan black tea at varying concentrations for a period of 8 weeks. The antioxidant activities, physicochemical, and qualitative properties were monitored prior to the commencement of the fermentation process, one day after the inoculation with the microorganisms and subsequently on a weekly basis. All samples displayed a statistically significant decrease ( p  <   .05) in the antioxidant activity at the end of 8 weeks, which was indicative of the decreasing functional properties of the beverage. The physicochemical properties indicated increased acidity and turbidity, which might decrease consumer appeal of the fermented beverage. Further studies are necessary to test the accumulation of organic acids, nucleic acids, and toxicity of kombucha on human organs following the extended period of fermentation.

  11. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion.

    PubMed

    Rashid, Rehmana; Kim, Dong Wuk; Din, Fakhar Ud; Mustapha, Omer; Yousaf, Abid Mehmood; Park, Jong Hyuck; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-10-05

    The purpose of this research was to evaluate the effect of the HPC (hydroxypropylcellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions. The binary solid dispersions were prepared with drug and various amounts of HPC. Likewise, ternary solid dispersions were prepared with different ratios of drug, HPC and Tween 80. Both types of solid dispersions were prepared using the solvent evaporation method. Their aqueous solubility, physicochemical properties, dissolution and oral bioavailability were investigated in comparison with the drug powder. All the solid dispersions significantly improved the drug solubility and dissolution. As the amount of HPC increased in the binary solid dispersions to 10-fold, the drug solubility and dissolution were increased accordingly. However, further increase in HPC did not result in significant differences among them. Similarly, up to 0.1-fold, Tween 80 increased the drug solubility in the ternary solid dispersions followed by no significant change. However, Tween 80 hardly affected the drug dissolution. The physicochemical analysis proved that the drug in binary and ternary solid dispersion was existed in the amorphous form. The particle-size measurements of these formulations were also not significantly different from each other, which showed that Tween 80 had no impact on physicochemical properties. The ezetimibe-loaded binary and ternary solid dispersions gave 1.6- and 1.8-fold increased oral bioavailability in rats, respectively, as compared to the drug powder; however, these values were not significantly different from each other. Thus, HPC greatly affected the solubility, dissolution and oral bioavailability of drug, but Tween 80 hardly did. Furthermore, this ezetimibe-loaded binary solid dispersion prepared only with HPC would be suggested as a potential formulation for oral administration of ezetimibe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Parameterizing water quality analysis and simulation program (WASP) for carbon-based nanomaterials

    EPA Science Inventory

    Carbon nanotubes (CNT) and graphenes are among the most popular carbon-based nanomaterials due to their unique electronic, mechanic and structural properties. Exposure modeling of these nanomaterials in the aquatic environment is necessary to predict the fate of these materials. ...

  13. Stabilizers influence drug–polymer interactions and physicochemical properties of disulfiram-loaded poly-lactide-co-glycolide nanoparticles

    PubMed Central

    Hoda, Muddasarul; Sufi, Shamim Akhtar; Cavuturu, Bindumadhuri; Rajagopalan, Rukkumani

    2018-01-01

    Aim: Stabilizers are known to be an integral component of polymeric nanostructures. Ideally, they manipulate physicochemical properties of nanoparticles. Based on this hypothesis, we demonstrated that disulfiram (drug) and Poly-lactide-co-glycolide (polymer) interactions and physicochemical properties of their nanoparticles formulations are significantly influenced by the choice of stabilizers. Methodology: Electron microscopy, differential scanning calorimetry, x-ray diffraction, Raman spectrum analysis, isothermal titration calorimetry and in silico docking studies were performed. Results & discussion: Polysorbate 80 imparted highest crystallinity while Triton-X 100 imparted highest rigidity, possibly influencing drug bioavailability, blood-retention time, cellular uptake and sustained drug release. All the molecular interactions were hydrophobic in nature and entropy driven. Therefore, polymeric nanoparticles may be critically manipulated to streamline the passive targeting of drug-loaded nanoparticles. PMID:29379637

  14. Effect of drying procedures on the physicochemical properties and antioxidant activities of polysaccharides from Crassostrea gigas

    PubMed Central

    Zheng, Yaxu; Qu, Min; Jin, Qiao; Tong, Changqing

    2017-01-01

    Crassostrea gigas polysaccharides (CGP) were obtained by different drying methods: freeze-drying (FD), spray-drying (SD) or rotary evaporation-drying (RED). The physicochemical properties of CGP were evaluated on the basis of polysaccharide content, protein content, color characteristics, FT-IR spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Antioxidant activities were researched three different free radicals, including DPPH free radicals, ABTS free radicals and reducing power. The results demonstrated that FDCGP, SDCGP and REDCGP have different physicochemical properties and antioxidant activities. Contrasted with FDCGP and REDCGP, SDCGP exhibited stronger antioxidant abilities. Therefore, considering the polysaccharides appearances and antioxidant activities, the spray drying method is a decent selection for the preparation of such polysaccharides, and it should be selected for application in the food industry. PMID:29176846

  15. Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties.

    PubMed

    Suzuki, Tasuma; Tanaka, Ryohei; Tahara, Marina; Isamu, Yuya; Niinae, Masakazu; Lin, Lin; Wang, Jingbo; Luh, Jeanne; Coronell, Orlando

    2016-09-01

    While it is known that the performance of reverse osmosis membranes is dependent on their physicochemical properties, the existing literature studying membranes used in treatment facilities generally focuses on foulant layers or performance changes due to fouling, not on the performance and physicochemical changes that occur to the membranes themselves. In this study, the performance and physicochemical properties of a polyamide reverse osmosis membrane used for three years in a seawater desalination plant were compared to those of a corresponding unused membrane. The relationship between performance changes during long-term use and changes in physicochemical properties was evaluated. The results showed that membrane performance deterioration (i.e., reduced water flux, reduced contaminant rejection, and increased fouling propensity) occurred as a result of membrane use in the desalination facility, and that the main physicochemical changes responsible for performance deterioration were reduction in PVA coating coverage and bromine uptake by polyamide. The latter was likely promoted by oxidant residual in the membrane feed water. Our findings indicate that the optimization of membrane materials and processes towards maximizing the stability of the PVA coating and ensuring complete removal of oxidants in feed waters would minimize membrane performance deterioration in water purification facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Physicochemical and sensory properties of fresh potato-based pasta (gnocchi).

    PubMed

    Alessandrini, Laura; Balestra, Federica; Romani, Santina; Rocculi, Pietro; Rosa, Marco Dalla

    2010-01-01

    This study dealt with the characterization and quality assessment of 3 kinds of potato-based pasta (gnocchi) made with steam-cooked, potato puree (water added to potato flakes), and reconstituted potatoes as main ingredients. The aim of the research was to evaluate the quality of the products in terms of physicochemical, textural, and sensory characteristics. Water content, water activity, color (L* and h°), and texture (texture profile analysis [TPA] and shearing test) were evaluated on both raw and cooked samples. In addition, on the recovered cooking water the loss of solid substances was determined and on the cooked gnocchi a sensory assessment was performed. Eight sensory attributes (yellowness, hardness, gumminess, adhesiveness, potato taste, sweet taste, flour taste, and sapidity) were investigated. Statistically significant differences among products were obtained, especially concerning textural properties. In fact, sample made with reconstituted potatoes and emulsifiers resulted the hardest (8.53 ± 1.22 N), the gummiest (2.90 ± 0.05 N), and the "chewiest" (2.90 ± 0.58 N) after cooking. Gnocchi made with potato puree or reconstituted potatoes significantly differed from the one produced with steam-cooked potatoes in terms of sensory properties (yellowness, hardness, flour taste, and sapidity). Pearson's correlation analysis between some textural instrumental and sensory parameters showed significant correlation coefficients (0.532 < r < 0.810). Score plot of principal component analysis (PCA) confirmed obtained results from physicochemical and sensory analyses, in terms of high discriminant capacity of colorimetric and textural characteristics. © 2010 Institute of Food Technologists®

  17. Environmental, health, and safety effects of engineered nanomaterials: challenges and research needs

    NASA Astrophysics Data System (ADS)

    Fairbrother, Howard

    2010-04-01

    The number of technologies and consumer products that incorporate engineered nanomaterials (ENMs) has grown rapidly. Indeed, ENMs such as carbon nanotubes and nano-silver, are revolutionizing many commercial technologies and have already been incorporated into more than 800 commercial products, including polymer composites, cell phone batteries, sporting equipment and cosmetics. The global market for ENMs has grown steadily from 7.5 billion in 2003 to 12.7 billion in 2008. Over the next five years, their market value is expected to exceed $27 billion. This surge in demand has been responsible for a corresponding increase in the annual production rates of ENMs. For example, Bayer anticipates that single and multi-walled carbon nanotubes (SWNT and MWNT) production rates will reach 3,000 tons/yr by 2012. Inevitably, some of these synthetic materials will enter the environment either from incidental release during manufacture and transport, or following use and disposal. Consequently, intense scientific research is now being directed towards understanding the environmental, health and safety (EHS) risks posed by ENMs. I will highlight some of the key research challenges and needs in this area, include (i) developing structure-property relationships that will enable physicochemical properties of ENMs to be correlated with environmentally relevant behavior (e.g. colloidal properties, toxicity), (ii) determining the behavior of nanoproducts, and (iii) developing analytical techniques capable of detecting and quantifying the concentration of ENMs in the environment.

  18. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    NASA Astrophysics Data System (ADS)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  19. Exploring the possibilities and limitations of a nanomaterials genome.

    PubMed

    Qian, Chenxi; Siler, Todd; Ozin, Geoffrey A

    2015-01-07

    What are we going to do with the cornucopia of nanomaterials appearing in the open and patent literature, every day? Imagine the benefits of an intelligent and convenient means of categorizing, organizing, sifting, sorting, connecting, and utilizing this information in scientifically and technologically innovative ways by building a Nanomaterials Genome founded upon an all-purpose Periodic Table of Nanomaterials. In this Concept article, inspired by work on the Human Genome project, which began in 1989 together with motivation from the recent emergence of the Materials Genome project initiated in 2011 and the Nanoinformatics Roadmap 2020 instigated in 2010, we envision the development of a Nanomaterials Genome (NMG) database with the most advanced data-mining tools that leverage inference engines to help connect and interpret patterns of nanomaterials information. It will be equipped with state-of-the-art visualization techniques that rapidly organize and picture, categorize and interrelate the inherited behavior of complex nanomatter from the information programmed in its constituent nanomaterials building blocks. A Nanomaterials Genome Initiative (NMGI) of the type imagined herein has the potential to serve the global nanoscience community with an opportunity to speed up the development continuum of nanomaterials through the innovation process steps of discovery, structure determination and property optimization, functionality elucidation, system design and integration, certification and manufacturing to deployment in technologies that apply these versatile nanomaterials in environmentally responsible ways. The possibilities and limitations of this concept are critically evaluated in this article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of nanomaterials in the bioanalytical detection of disease-related genes.

    PubMed

    Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-12-15

    In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.

  1. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    PubMed

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  2. Physicochemical properties and starch digestibility of Chinese noodles in relation to optimal cooking time.

    PubMed

    Ye, Xiaoting; Sui, Zhongquan

    2016-03-01

    Changes in the physicochemical properties and starch digestibility of white salted noodles (WSN) at different cooking stage were investigated. The noodles were dried in fresh air and then cooked for 2-12 min by boiling in distilled water to determine the properties of cooking quality, textural properties and optical characteristic. For starch digestibility, dry noodles were milled and sieved into various particle size classes ranging from 0.5 mm to 5.0 mm, and hydrolyzed by porcine pancreatic α-amylase. The optimal cooking time of WSN determined by squeezing between glasses was 6 min. The results showed that the kinetics of solvation of starch and protein molecules were responsible for changes of the physicochemical properties of WSN during cooking. The susceptibility of starch to α-amylase was influenced by the cooking time, particle size and enzyme treatment. The greater value of rapidly digestible starch (RDS) and lower value of slowly digestible starch (SDS) and resistant starch (RS) were reached at the optimal cooking stage ranging between 63.14-71.97%, 2.47-10.74% and 23.94-26.88%, respectively, indicating the susceptibility on hydrolysis by enzyme was important in defining the cooked stage. The study suggested that cooking quality and digestibility were not correlated but the texture greatly controls the digestibility of the noodles. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  4. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  5. RISK ASSESSMENT OF MANUFACTURED NANOMATERIAL: MORE THAN JUST SIZE

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing nano-scale materials with unique electrical, catalytic, thermal, mechanical, or imaging properties for a variety of applications. Nanomaterials may display unique toxicological properties and routes of expos...

  6. Surface engineering of graphene-based nanomaterials for biomedical applications.

    PubMed

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  7. Preparation and physicochemical properties of protein concentrate and isolate produced from Acacia tortilis (Forssk.) Hayne ssp. raddiana.

    PubMed

    Embaby, Hassan E; Swailam, Hesham M; Rayan, Ahmed M

    2018-02-01

    The composition and physicochemical properties of defatted acacia flour (DFAF), acacia protein concentrate (APC) and acacia protein isolate (API) were evaluated. The results indicated that API had lower, ash and fat content, than DFAF and APC. Also, significant difference in protein content was noticed among DFAF, APC and API (37.5, 63.7 and 91.8%, respectively). Acacia protein concentrate and isolates were good sources of essential amino acids except cystine and methionine. The physicochemical and functional properties of acacia protein improved with the processing of acacia into protein concentrate and protein isolate. The results of scanning electron micrographs showed that DFAF had a compact structure; protein concentrate were, flaky, and porous type, and protein isolate had intact flakes morphology.

  8. Understanding physicochemical properties changes from multi-scale structures of starch/CNT nanocomposite films.

    PubMed

    Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie

    2017-11-01

    From the view of multi-scale structures of hydroxypropyl starch (HPS)/carbon nanotube (CNT) nanocomposite films, the film physicochemical properties were affected by comprehensive factors including molecular interaction, short range molecular conformation, crystalline structure and aggregated structure. The less original HPS hydrogen bonding that was broken, less decreased order of HPS short range molecular conformation, lower film crystallinity and larger size of micro-ordered regions contributed to higher tensile strength and Young's modulus of the film with CNT content of 0.5% (g/g, CNT in HPS). The higher film overall crystallinity and larger size of micro-ordered regions of the film with CNT content of 0.05%-0.3% compared with those of control contributed to better film barrier property. The addition of CNT with the content of 0.05%-0.5% broke the original HPS hydrogen bonding and decreased the order of starch short range molecular conformation, which counteracted the positive effect of CNT on the thermal stability of the material, thus thermal degradation temperature of these nanocomposite films did not increase. But the sharp increase of film crystallinity increased film thermal degradation temperature. This study provided a better understanding of film physicochemical properties changes which guides to rational design of starch-based nanocomposite films for packaging and coating application. Copyright © 2017. Published by Elsevier B.V.

  9. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials

    PubMed Central

    Tan, Chaoliang; Zhang, Hua

    2015-01-01

    Non-layer structured nanomaterials with single- or few-layer thickness have two-dimensional sheet-like structures and possess intriguing properties. Recent years have seen major advances in development of a host of non-layer structured ultrathin two-dimensional nanomaterials such as noble metals, metal oxides and metal chalcogenides. The wet-chemical synthesis has emerged as the most promising route towards high-yield and mass production of such nanomaterials. These nanomaterials are now finding increasing applications in a wide range of areas including catalysis, energy production and storage, sensor and nanotherapy, to name but a few. PMID:26303763

  10. Creating new superconducting & semiconducting nanomaterials and investigating the effect of reduced dimensionality on their properties

    NASA Astrophysics Data System (ADS)

    Mishra, Sukhada

    The field of nanomaterials has continued to attract researchers to understand the fundamentals and to investigate potential applications in the fields of semiconductor physics, microfabrication, nanomedicine, surface sciences etc. One of the most critical aspects of the nanomaterials research is to establish synthetic protocols, which can address the underlying product requirements of reproducibility, homogenous morphology and controlled elemental composition. We have focused our research in exploring synthetic routes for the synthesis of superconducting and semiconducting nanomaterials and analyze their structure---property relationship through detailed characterizations. The first part of dissertation is focused on the synthesis of superconducting FeSe nanostructures using catalyst assisted chemical vapor deposition (CVD) technique. The effect of catalyst---FeSe interphase on the d spacing of the FeSe nanostructures has been analyzed, and the internal pressure effect on the Tc has been investigated further through in depth characterizations. The emphasis of second part is on the development of a simple yet versatile protocol for the synthesis of vertically aligned nanorod arrays on conducting substrate by combining electron beam lithography technique with electrochemical deposition. The technique has been utilized to fabricate photovoltaic CdTe nanorod arrays on conducting substrate and further extended to devise CdS---CdTe nanorod arrays to create radial and lateral p---n junction assembly. Using photo---electrochemical analysis, it was observed that, the nanorod arrays yielded higher photo---electrochemical current compared to the thin film counterpart. The third part of dissertation describes the CVD protocol to synthesize multifunctional, dumbbell shaped Au---CoSe nanoparticles, which possess potential applications in ' theronostic' biological examinations.

  11. Efficacy of Alkali-treated Sugarcane Fiber for Improving Physicochemical and Textural Properties of Meat Emulsions with Different Fat Levels

    PubMed Central

    Kim, Hyun-Wook; Setyabrata, Derico; Lee, Yong-Jae; Brad Kim, Yuan H.

    2018-01-01

    Abstract The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH2)) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content (p=0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively (p>0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%. PMID:29805281

  12. Efficacy of Alkali-treated Sugarcane Fiber for Improving Physicochemical and Textural Properties of Meat Emulsions with Different Fat Levels.

    PubMed

    Kim, Hyun-Wook; Setyabrata, Derico; Lee, Yong-Jae; Brad Kim, Yuan H

    2018-04-01

    The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH 2 )) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content ( p =0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively ( p >0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%.

  13. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    PubMed

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of ball milling time on thermoelectric properties of bismuth telluride nanomaterials

    NASA Astrophysics Data System (ADS)

    Khade, Poonam; Bagwaiya, Toshi; Bhattacharaya, Shovit; Singh, Ajay; Jha, Purushottam; Shelke, Vilas

    2018-04-01

    The effect of different milling time on thermoelectric properties of bismuth telluride (Bi2Te3) was investigated. The nanomaterial was prepared by varying the ball milling time and followed by hot press sintering. The crystal structure and phase formation were verified by X-ray diffraction and Raman Spectroscopy. The experimental results show that electrical conductivity increases whereas thermal conductivity decreases with increasing milling time. The negative sign of seebeck coefficient indicate the n-type nature with majority charge carriers of electrons. A maximum figure of merit about 0.55 is achieved for l5hr ball milled Bi2Te3 sample. The present study demonstrates the simple and cost-effective method for synthesis of Bi2Te3 thermoelectric material at large scale thermoelectric applications.

  15. Variations in Physicochemical Properties of a Traditional Mercury-Based Nanopowder Formulation: Need for Standard Manufacturing Practices

    PubMed Central

    Kamath, S. U.; Pemiah, B.; Rajan, K. S.; Krishnaswamy, S.; Sethuraman, S.; Krishnan, U. M.

    2014-01-01

    Rasasindura is a mercury-based nanopowder synthesized using natural products through mechanothermal processing. It has been used in the Ayurvedic system of medicine since time immemorial for various therapeutic purposes such as rejuvenation, treatment of syphilis and in genital disorders. Rasasindura is said to be composed of mercury, sulphur and organic moieties derived from the decoction of plant extracts used during its synthesis. There is little scientific understanding of the preparation process so far. Though metallic mercury is incorporated deliberately for therapeutic purposes, it certainly raises toxicity concerns. The lack of gold standards in manufacturing of such drugs leads to a variation in the chemical composition of the final product. The objective of the present study was to assess the physicochemical properties of Rasasindura samples of different batches purchased from different manufacturers and assess the extent of deviation and gauge its impact on human health. Modern characterization techniques were employed to analyze particle size and morphology, surface area, zeta potential, elemental composition, crystallinity, thermal stability and degradation. Average particle size of the samples observed through scanning electron microscope ranged from 5-100 nm. Mercury content was found to be between 84 and 89% from elemental analysis. Despite batch-to-batch and manufacturer-to-manufacturer variations in the physicochemical properties, all the samples contained mercury in the form of HgS. These differences in the physicochemical properties may ultimately impact its biological outcome. PMID:25593382

  16. Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.

    PubMed

    Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L

    2014-03-30

    The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.

  17. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.

  18. Computational and Statistical Analyses of Amino Acid Usage and Physico-Chemical Properties of the Twelve Late Embryogenesis Abundant Protein Classes

    PubMed Central

    Jaspard, Emmanuel; Macherel, David; Hunault, Gilles

    2012-01-01

    Late Embryogenesis Abundant Proteins (LEAPs) are ubiquitous proteins expected to play major roles in desiccation tolerance. Little is known about their structure - function relationships because of the scarcity of 3-D structures for LEAPs. The previous building of LEAPdb, a database dedicated to LEAPs from plants and other organisms, led to the classification of 710 LEAPs into 12 non-overlapping classes with distinct properties. Using this resource, numerous physico-chemical properties of LEAPs and amino acid usage by LEAPs have been computed and statistically analyzed, revealing distinctive features for each class. This unprecedented analysis allowed a rigorous characterization of the 12 LEAP classes, which differed also in multiple structural and physico-chemical features. Although most LEAPs can be predicted as intrinsically disordered proteins, the analysis indicates that LEAP class 7 (PF03168) and probably LEAP class 11 (PF04927) are natively folded proteins. This study thus provides a detailed description of the structural properties of this protein family opening the path toward further LEAP structure - function analysis. Finally, since each LEAP class can be clearly characterized by a unique set of physico-chemical properties, this will allow development of software to predict proteins as LEAPs. PMID:22615859

  19. Effect of egg albumen protein addition on physicochemical properties and nanostructure of gelatin from fish skin.

    PubMed

    Cai, Luyun; Feng, Jianhui; Peng, Xichun; Regenstein, Joe M; Li, Xiuxia; Li, Jianrong; Zhao, Wei

    2016-12-01

    The physicochemical properties and nanostructure of mixtures of egg albumen protein (EAP) and gelatin from under-utilised grass carp ( Ctenopharyngodon idella ) skins were studied. The gelatin with 1% EAP had an acceptable gel strength. The addition of 5% EAP significantly increased the melting and gelling temperatures of gelatin gels. Additionally, the colour turned white and the crystallinity was higher in gelatin gels with gradient concentrations of EAP (1, 3, and 5%). Gelatin with 5% EAP had the highest G' values while gelatin with 1% EAP had the lowest G' values. Atomic force microscopy showed the heterogeneous nanostructure of fish gelatin, and a simple coacervate with a homogeneous distribution was only observed with the addition of 1% EAP, indicating interaction between gelatin and EAP. These results showed that EAP effect fish gelatin's physicochemical and nanostructure properties and has potential applications in foods and pharmaceuticals.

  20. Comparative assessment of nanomaterial definitions and safety evaluation considerations.

    PubMed

    Boverhof, Darrell R; Bramante, Christina M; Butala, John H; Clancy, Shaun F; Lafranconi, Mark; West, Jay; Gordon, Steve C

    2015-10-01

    Nanomaterials continue to bring promising advances to science and technology. In concert have come calls for increased regulatory oversight to ensure their appropriate identification and evaluation, which has led to extensive discussions about nanomaterial definitions. Numerous nanomaterial definitions have been proposed by government, industry, and standards organizations. We conducted a comprehensive comparative assessment of existing nanomaterial definitions put forward by governments to highlight their similarities and differences. We found that the size limits used in different definitions were inconsistent, as were considerations of other elements, including agglomerates and aggregates, distributional thresholds, novel properties, and solubility. Other important differences included consideration of number size distributions versus weight distributions and natural versus intentionally-manufactured materials. Overall, the definitions we compared were not in alignment, which may lead to inconsistent identification and evaluation of nanomaterials and could have adverse impacts on commerce and public perceptions of nanotechnology. We recommend a set of considerations that future discussions of nanomaterial definitions should consider for describing materials and assessing their potential for health and environmental impacts using risk-based approaches within existing assessment frameworks. Our intent is to initiate a dialogue aimed at achieving greater clarity in identifying those nanomaterials that may require additional evaluation, not to propose a formal definition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Effect of Hydrothermal Treatment on the Physicochemical, Rheological, and Oil-Resistant Properties of Rice Flour

    USDA-ARS?s Scientific Manuscript database

    Rice flour was thermo-mechanically modified by steam jet-cooking and the physico-chemical and rheological properties of the resulting product were characterized. Then, its performance in frying batters was evaluated as an oil barrier. Compared to native rice flour, the steam jet-cooked rice flour ...

  2. Physicochemical properties of β-carotene emulsions stabilized by chlorogenic acid-lactoferrin-glucose/polydextrose conjugates.

    PubMed

    Liu, Fuguo; Wang, Di; Xu, Honggao; Sun, Cuixia; Gao, Yanxiang

    2016-04-01

    In this study, the influence of chlorogenic acid (CA)-lactoferrin (LF)-glucose (Glc) conjugate and CA-LF-polydextrose (PD) conjugate on the physicochemical characteristics of β-carotene emulsions was investigated. Novel emulsifiers were formed during Maillard reaction between CA-LF conjugate and Glc/PD. The physicochemical properties of β-carotene emulsions were characterized by droplet size, ζ-potential, rheological behavior, transmission changes during centrifugal sedimentation and β-carotene degradation. Results showed that the covalent attachment of Glc or PD to CA-LF conjugate effectively increased the hydrophilicity of the oil droplets surfaces and strengthened the steric repulsion between the oil droplets. Glucose was better than polydextrose for the conjugation with CA-LF conjugate to stabilize β-carotene emulsions. In comparison with LF and CA-LF-Glc/PD mixtures, CA-LF-Glc/PD ternary conjugates exhibited better emulsifying properties and improved physical stability of β-carotene emulsions during the freeze-thaw treatment. In addition, CA-LF-Glc/PD conjugates significantly enhanced chemical stability of β-carotene in the emulsions against ultraviolet light exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Natural Minerals Coated by Biopolymer Chitosan: Synthesis, Physicochemical, and Adsorption Properties

    NASA Astrophysics Data System (ADS)

    Budnyak, T. M.; Yanovska, E. S.; Kichkiruk, O. Yu.; Sternik, D.; Tertykh, V. A.

    2016-11-01

    Natural minerals are widely used in treatment technologies as mineral fertilizer, food additive in animal husbandry, and cosmetics because they combine valuable ion-exchanging and adsorption properties together with unique physicochemical and medical properties. Saponite (saponite clay) of the Ukrainian Podillya refers to the class of bentonites, a subclass of layered magnesium silicate montmorillonite. Clinoptilolits are aluminosilicates with carcase structure. In our work, we have coated biopolymer chitosan on the surfaces of natural minerals of Ukrainian origin — Podilsky saponite and Sokyrnitsky clinoptilolite. Chitosan mineral composites have been obtained by crosslinking of adsorbed biopolymer on saponite and clinoptilolite surface with glutaraldehyde. The obtained composites have been characterized by the physicochemical methods such as thermogravimetric/differential thermal analyses (DTA, DTG, TG), differential scanning calorimetry, mass analysis, nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between the silica and chitosan molecule. The adsorption of microquantities of cations Cu(II), Zn(II), Fe(III), Cd(II), and Pb(II) by the obtained composites and the initial natural minerals has been studied from aqueous solutions. The sorption capacities and kinetic adsorption characteristics of the adsorbents were estimated. It was found that the obtained results have shown that the ability of chitosan to coordinate heavy metal ions Zn(II), Cu(II), Cd(II), and Fe(III) is less or equal to the ability to retain ions of these metals in the pores of minerals without forming chemical bonds.

  4. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    PubMed

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials

    PubMed Central

    Zhang, Xiaoyan; Hou, Lili; Samorì, Paolo

    2016-01-01

    Multifunctional carbon-based nanomaterials offer routes towards the realization of smart and high-performing (opto)electronic (nano)devices, sensors and logic gates. Meanwhile photochromic molecules exhibit reversible transformation between two forms, induced by the absorption of electromagnetic radiation. By combining carbon-based nanomaterials with photochromic molecules, one can achieve reversible changes in geometrical structure, electronic properties and nanoscale mechanics triggering by light. This thus enables a reversible modulation of numerous physical and chemical properties of the carbon-based nanomaterials towards the fabrication of cognitive devices. This review examines the state of the art with respect to these responsive materials, and seeks to identify future directions for investigation. PMID:27067387

  6. Cellulose-Based Nanomaterials for Energy Applications.

    PubMed

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    PubMed

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application of dental nanomaterials: potential toxicity to the central nervous system

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1–100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood–brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems. PMID:25999717

  9. Application of dental nanomaterials: potential toxicity to the central nervous system.

    PubMed

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.

  10. Physicochemical properties of cookies enriched with xylooligosaccharides.

    PubMed

    Ayyappan, P; Abirami, A; Anbuvahini, N A; Tamil Kumaran, P S; Naresh, M; Malathi, D; Antony, Usha

    2016-07-01

    The growing commercial importance of xylooligosaccharides is based on their beneficial health properties, particularly their ability to stimulate the growth and activity of intestinal bacteria such as Bifidobacterium and Lactobacillus species. Xylooligosaccharides are less sweet, acid, and heat stable, with low recommended levels of intake compared to other oligosaccharides. In view of the consumer demand for foods with low sugar, low fat, and high fiber contents, they are suitable for incorporation into bakery products. In this study, we have developed wheat-based cookies incorporated with xylooligosaccharides at 5%, 10%, and 15% levels. The nutritive value and physicochemical properties of the cookies changed with xylooligosaccharides incorporation; both crude fiber and dietary fiber contents increased by 14% and 35%, respectively, in the enriched cookies. The moisture levels increased with increase in the percentage of xylooligosaccharides incorporated. Cookies with 5% xylooligosaccharides were found most acceptable, although the color was slightly darker compared to the control, while cookies with 10% and 15% xylooligosaccharides were softer and darker and therefore less acceptable. Enrichment with xylooligosaccharides at 5% provided a product stable for 21 days at room temperature (25 ± 2℃). The storage stability of cookies with higher levels of xylooligosaccharides was less than the 5% xylooligosaccharides cookies and control. The retention of the prebiotic xylooligosaccharides in the products was relatively high (74%). © The Author(s) 2015.

  11. Correlation between soil physicochemical properties and vegetation parameters in secondary tropical forest in Sabal, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Karyati, K.; Ipor, I. B.; Jusoh, I.; Wasli, M. E.

    2018-04-01

    The tree growth is influenced by soil morphological and physicochemical properties in the site. The purpose of this study was to describe correlation between soil properties under various stage secondary forests and vegetation parameters, such as floristic structure parameters and floristic diversity indices. The vegetation surveys were conducted in 5, 10, and 20 years old at secondary tropical forests in Sarawak, Malaysia. Nine sub plots sized 20 m × 20 m were established within each study site. The Pearson analysis showed that soil physicochemical properties were significantly correlated to floristic structure parameters and floristic diversity indices. The result of PCA clarified the correlation among most important soil properties, floristic structure parameters, and floristic diversity indices. The PC1 represented cation retention capacity and soil texture which were little affected by the fallow age and its also were correlated by floristic structure and diversity. The PC2 was linked to the levels of soil acidity. This property reflected the remnant effects of ash addition and fallow duration, and the significant correlation were showed among pH (H2O), floristic structure and diversity. The PC3 represented the soil compactness. The soil hardness could be influenced by fallow period and it was also correlated by floristic structure.

  12. Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications

    PubMed Central

    2015-01-01

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications. PMID:25117569

  13. Health implications of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Pietroiusti, Antonio

    2012-02-01

    With the development of nanotechnology, a growing number of people are expected to be exposed to its products, the engineered nanomaterials (ENMs). Some physico-chemical properties of ENMs, linked to their size in the nanoscale (1-100 nm), make them potentially more reactive, and therefore raise concern about possible adverse effects in humans. In this article, I discuss human diseases which may be predicted after exposure to ENMs, and how their pathogenetic mechanisms may be linked to exposure; in this regard, special emphasis has been given to the triad of oxidative stress/inflammation/genotoxicity and to the interaction of ENMs/proteins in different biological compartments. The analysis of possible adverse effects has been made on an organ-by-organ basis, starting from the skin, respiratory system and gastrointestinal tract. These sites are in fact not only those exposed to the highest amounts of ENMs, but are also the portals of entry to internal organs for possible systemic effects. Although the list and the relevance of possible human disorders linked to ENM exposure are at least as impressive as that of their direct or indirect beneficial effects for human health, we must be clear that ENM-linked diseases belong to the realm of possible risk (i.e. cannot be excluded, but are unlikely), whereas ENMs with proven beneficial effects are on the market. Therefore, the mandatory awareness about possible adverse effects of ENMs should in no way be interpreted as a motivation to disregard the great opportunity represented by nanotechnology.

  14. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.

    PubMed

    Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai

    2014-04-01

    There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch.

    PubMed

    Zhu, Dawei; Wei, Haiyan; Guo, Baowei; Dai, Qigen; Wei, Cunxu; Gao, Hui; Hu, Yajie; Cui, Peiyuan; Li, Min; Huo, Zhongyang; Xu, Ke; Zhang, Hongcheng

    2017-12-15

    This study investigates the effect of chilling stress, over a period of three days after anthesis, on the physicochemical properties of starches derived from six rice cultivars. Chilling stress significantly affected the grain characteristics and physicochemical properties of rice starches, except for those of two varieties, NJ 9108 and ZD 18. In the other four rice cultivars subjected to chilling stress, the content of medium, and large sized granules showed a decrease, and an increase, respectively. Amylose content increased as a result of chilling stress, thereby resulting in starch with a lower swelling power, water solubility, and higher retrogradation enthalpy and gelatinization temperature. Chilling stress led to deterioration of cooked rice quality as determined by the pasting properties of starch. This study indicated that among the cultivars studied, the two rice varieties most resistant to chilling stress after rice anthesis were NJ 9108 and ZD 18. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization

    PubMed Central

    Brandão, Natasha Lamego; Portela, Maristela Barbosa; Maia, Luciane Cople; Antônio, Andréa; Silva, Vanessa Loureiro Moreira e

    2018-01-01

    Abstract Although resin composites are widely used in the clinical practice, the development of recurrent caries at composite-tooth interface still remains as one of the principal shortcomings to be overcome in this field. Objectives To evaluate the activity against S. mutans biofilm of model resin composites incorporating different concentrations of ZnO-nanoparticles (ZnO-NP) and characterize their physicochemical properties. Materials and Methods Different concentrations of ZnO-NP (wt.%): E1=0, E2=0.5, E3=1, E4=2, E5=5 and E6=10 were incorporated into a model resin composite consisting of Bis-GMA-TEGDMA and barium borosilicate particles. The activity against S. mutans biofilm was evaluated by metabolic activity and lactic acid production. The following physicochemical properties were characterized: degree of conversion (DC%), flexural strength (FS), elastic modulus (EM), hardness (KHN), water sorption (Wsp), water solubility (Wsl) and translucency (TP). Results E3, E4, E5 and E6 decreased the biofilm metabolic activity and E5 and E6 decreased the lactic acid production (p<0.05). E6 presented the lowest DC% (p<0.05). No significant difference in FS and EM was found for all resin composites (p>0.05). E5 and E6 presented the lowest values of KHN (p<0.05). E6 presented a higher Wsp than E1 (p<0.05) and the highest Wsl (p<0.05). The translucency significantly decreased as the ZnO- NP concentration increased (p<0.05). Conclusions The incorporation of 2 – 5 wt.% of ZnO-NP could endow antibacterial activity to resin composites, without jeopardizing their physicochemical properties. PMID:29742262

  17. Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization.

    PubMed

    Brandão, Natasha Lamego; Portela, Maristela Barbosa; Maia, Luciane Cople; Antônio, Andréa; Silva, Vanessa Loureiro Moreira E; Silva, Eduardo Moreira da

    2018-01-01

    Although resin composites are widely used in the clinical practice, the development of recurrent caries at composite-tooth interface still remains as one of the principal shortcomings to be overcome in this field. Objectives To evaluate the activity against S. mutans biofilm of model resin composites incorporating different concentrations of ZnO-nanoparticles (ZnO-NP) and characterize their physicochemical properties. Materials and Methods Different concentrations of ZnO-NP (wt.%): E1=0, E2=0.5, E3=1, E4=2, E5=5 and E6=10 were incorporated into a model resin composite consisting of Bis-GMA-TEGDMA and barium borosilicate particles. The activity against S. mutans biofilm was evaluated by metabolic activity and lactic acid production. The following physicochemical properties were characterized: degree of conversion (DC%), flexural strength (FS), elastic modulus (EM), hardness (KHN), water sorption (Wsp), water solubility (Wsl) and translucency (TP). Results E3, E4, E5 and E6 decreased the biofilm metabolic activity and E5 and E6 decreased the lactic acid production (p<0.05). E6 presented the lowest DC% (p<0.05). No significant difference in FS and EM was found for all resin composites (p>0.05). E5 and E6 presented the lowest values of KHN (p<0.05). E6 presented a higher Wsp than E1 (p<0.05) and the highest Wsl (p<0.05). The translucency significantly decreased as the ZnO- NP concentration increased (p<0.05). Conclusions The incorporation of 2 - 5 wt.% of ZnO-NP could endow antibacterial activity to resin composites, without jeopardizing their physicochemical properties.

  18. Synthesis and Technological Innovation of Applying Oxide Nanomaterials in Wastewater Treatment by Flotation

    NASA Astrophysics Data System (ADS)

    Covaliu, C. I.; Moga, I. C.; Matache, M. G.; Paraschiv, G.; Gageanu, I.; Vasile, E.

    2018-06-01

    The appearance and development of nanotechnology gave new and efficient modalities for pollutants removal from wastewaters by using new compounds called nanomaterials which possess unique structural and morphological properties. In this paper we investigated the application of CoFe2O4 nanomaterial for increasing the efficiency of oily wastewater treatment by flotation. CoFe2O4 nanomaterial was prepared by precipitation method. Prior testing their application in wastewater treatment by flotation, the oxide nanomaterial was structural and morphological characterized by XRD and TEM analyses. The influence of CoFe2O4nanomaterial on oily wastewater depollution by flotation process was investigated by measuring the following parameters: treatment efficiency [%] and the stability of froth.

  19. Evaluation of the physicochemical and biopharmaceutical properties of fluoro-indomethacin.

    PubMed

    Mori, Michela M; Airaksinen, Anu J; Hirvonen, Jouni T; Santos, Hélder A; Caramella, Carla M

    2013-01-01

    Drug nanocarriers have shown great potential in therapy and as diagnostic probes, e.g. in imaging of cancer and inflammation. Imaging can be applied to localize the carrier or the drug itself in the body and/or tissues. In this particular case it is important that drug molecules have the characteristics for possible detection, e.g. after modification with positron emission tomography compliant radioisotopes, without affecting their pharmacological behavior. In order to easily and efficiently follow the ADME profile of the drug after loaded into nanocarriers, the drug can be radiolabelled with, e.g. 18F-label, in order to assess its biodistribution after enteral and parenteral administration in rats. However, this is only possible if the derivative compound behaves similarly to the parent drug compound. In this study, indomethacin (a poorly water-soluble drug) was chosen as a model compound and aimed to evaluate the physicochemical and biopharmaceutical properties of an analog of indomethacin (IMC), fluoro-indomethacin (F-IMC). Although some of the physicochemical and biopharmaceutical properties of IMC are already known, in order to establish a feasible comparison between IMC and F-IMC, the behavior of the former was also investigated in the same conditions as for F-IMC. In this context, both IMC and F-IMC were thermally and morphologically studied. Furthermore, the following properties were also studied for both compounds: pKa and logP, solubility and dissolution profiles at physiological pH values, and toxicity at different concentrations in Caco-2 cells. Finally, the transport across Caco- 2 monolayers of the IMC and F-IMC at physiological pH range was also investigated. The results obtained showed similar values in pKalogP, solubility, dissolution, cytotoxicity, and permeability for both compounds. Thus, there might be strong evidence that both IMC and F-IMC should have a similar ADME behavior and profiles in vivo. The results provide fundamental tools and

  20. Analysis of Physicochemical and Structural Properties Determining HIV-1 Coreceptor Usage

    PubMed Central

    Bozek, Katarzyna; Lengauer, Thomas; Sierra, Saleta; Kaiser, Rolf; Domingues, Francisco S.

    2013-01-01

    The relationship of HIV tropism with disease progression and the recent development of CCR5-blocking drugs underscore the importance of monitoring virus coreceptor usage. As an alternative to costly phenotypic assays, computational methods aim at predicting virus tropism based on the sequence and structure of the V3 loop of the virus gp120 protein. Here we present a numerical descriptor of the V3 loop encoding its physicochemical and structural properties. The descriptor allows for structure-based prediction of HIV tropism and identification of properties of the V3 loop that are crucial for coreceptor usage. Use of the proposed descriptor for prediction results in a statistically significant improvement over the prediction based solely on V3 sequence with 3 percentage points improvement in AUC and 7 percentage points in sensitivity at the specificity of the 11/25 rule (95%). We additionally assessed the predictive power of the new method on clinically derived ‘bulk’ sequence data and obtained a statistically significant improvement in AUC of 3 percentage points over sequence-based prediction. Furthermore, we demonstrated the capacity of our method to predict therapy outcome by applying it to 53 samples from patients undergoing Maraviroc therapy. The analysis of structural features of the loop informative of tropism indicates the importance of two loop regions and their physicochemical properties. The regions are located on opposite strands of the loop stem and the respective features are predominantly charge-, hydrophobicity- and structure-related. These regions are in close proximity in the bound conformation of the loop potentially forming a site determinant for the coreceptor binding. The method is available via server under http://structure.bioinf.mpi-inf.mpg.de/. PMID:23555214

  1. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing.

    PubMed

    Miao, Chuanwei; Hamad, Wadood Y

    2016-11-20

    CNC-PLLA nanomaterials were synthesized via in-situ ring-opening polymerization of l-lactide in the presence of CNC, resulting in hydrophobic, homogeneous mixture of PLLA-grafted-CNC and free PLLA homopolymer. The free PLLA serves two useful functions: as barrier to further prevent PLLA-g-CNC from forming aggregates, and in creating improved interfacial properties when these nanomaterials are blended with other polymers, hence enhancing their performance. CNC-PLLA nanomaterials can be used for medical or engineering applications as-they-are or by compounding with suitable biopolymers using versatile techniques, such as solution casting, co-extrusion or injection molding, to form hybrid nanocomposites of tunable mechanical properties. When compounded with commercial-grade PLA, the resulting CNC-PLA nanocomposites appear transparent and have tailored (dynamic and static) mechanical and barrier properties, approaching those of poly(ethylene terephthalate), PET. The effect of reaction conditions on the properties of CNC-PLLA nanomaterials have been carefully studied and detailed throughout the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Tools for Assessing Ecological Nanomaterial Exposures

    EPA Science Inventory

    Manufactured nanomaterials (MNs) are commonly defined as being commercial products with at least one dimension in the size range of 1 nm to 100 nm that also possess unique properties as the result of their size. Anecdotal evidence suggests that at least 600 MN products a...

  3. Molecular toxicity of nanomaterials.

    PubMed

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  4. A comparative study of the antihyaluronidase, antiurease, antioxidant, antimicrobial and physicochemical properties of different unifloral degrees of chestnut (Castanea sativa Mill.) honeys.

    PubMed

    Kolayli, Sevgi; Can, Zehra; Yildiz, Oktay; Sahin, Huseyin; Karaoglu, Sengul Alpay

    2016-01-01

    This study was planned to investigate some physicochemical and anti-inflammatory, antioxidant, antimicrobial properties of three different degrees of unifloral characters of chestnut honeys. Antihyaluronidase, antiurease and antimicrobial activities were evaluated as anti-inflammatory characteristics. Total phenolic contents, flavonoids, tannins, phenolic profiles, ferric-reducing antioxidant power (FRAP), scavenging activities of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS + ) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals were evaluated as antioxidant properties. Color, optical rotation, conductivity, moisture, pH and ash content were evaluated as physicochemical parameters, and some sugars content, prolin, diastase, HMF and minerals (Na, K, Ca, P, Fe, Cu and Zn) were evaluated as chemical and biochemical parameters. All studied physicochemical and biological active properties were changed in line with the unifloral character of the chestnut honeys. A higher unifloral character was found associated with greater apitherapeutic capacity of the honey, as well as biological active compounds.

  5. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  6. The relationship between target-class and the physicochemical properties of antibacterial drugs

    PubMed Central

    Mugumbate, Grace; Overington, John P.

    2015-01-01

    The discovery of novel mechanism of action (MOA) antibacterials has been associated with the concept that antibacterial drugs occupy a differentiated region of physicochemical space compared to human-targeted drugs. With, in broad terms, antibacterials having higher molecular weight, lower log P and higher polar surface area (PSA). By analysing the physicochemical properties of about 1700 approved drugs listed in the ChEMBL database, we show, that antibacterials for whose targets are riboproteins (i.e., composed of a complex of RNA and protein) fall outside the conventional human ‘drug-like’ chemical space; whereas antibacterials that modulate bacterial protein targets, generally comply with the ‘rule-of-five’ guidelines for classical oral human drugs. Our analysis suggests a strong target-class association for antibacterials—either protein-targeted or riboprotein-targeted. There is much discussion in the literature on the failure of screening approaches to deliver novel antibacterial lead series, and linkage of this poor success rate for antibacterials with the chemical space properties of screening collections. Our analysis suggests that consideration of target-class may be an underappreciated factor in antibacterial lead discovery, and that in fact bacterial protein-targets may well have similar binding site characteristics to human protein targets, and questions the assumption that larger, more polar compounds are a key part of successful future antibacterial discovery. PMID:25975639

  7. Effect of nitrogen rate and the environment on physicochemical properties of selected high amylose rice cultivars

    USDA-ARS?s Scientific Manuscript database

    Genetic marker haplotypes for the Waxy and alk genes are associated with amylose content and gelatinization temperature, respectively, and are used by breeders to develop rice cultivars that have physicochemical properties desired by the parboiling and canning industries. Cultivars that provide cons...

  8. Price tag in nanomaterials?

    NASA Astrophysics Data System (ADS)

    Gkika, D. A.; Vordos, N.; Nolan, J. W.; Mitropoulos, A. C.; Vansant, E. F.; Cool, P.; Braet, J.

    2017-05-01

    With the evolution of the field of nanomaterials in the past number of years, it has become apparent that it will be key to future technological developments. However, while there are unlimited research undertakings on nanomaterials, limited research results on nanomaterial costs exist; all in spite of the generous funding that nanotechnology projects have received. There has recently been an exponential increase in the number of studies concerning health-related nanomaterials, considering the various medical applications of nanomaterials that drive medical innovation. This work aims to analyze the effect of the cost factor on acceptability of health-related nanomaterials independently or in relation to material toxicity. It appears that, from the materials studied, those used for cancer treatment applications are more expensive than the ones for drug delivery. The ability to evaluate cost implications improves the ability to undertake research mapping and develop opinions on nanomaterials that can drive innovation.

  9. TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals

    EPA Pesticide Factsheets

    TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals -- Brominated Phthalates Cluster Flame Retardants.

  10. Antimicrobial Properties of 2D MnO2 and MoS2 Nanomaterials Vertically Aligned on Graphene Materials and Ti3C2 MXene.

    PubMed

    Alimohammadi, Farbod; Sharifian Gh, Mohammad; Attanayake, Nuwan H; Thenuwara, Akila C; Gogotsi, Yury; Anasori, Babak; Strongin, Daniel R

    2018-06-07

    Two-dimensional (2D) nanomaterials have attracted considerable attention in biomedical and environmental applications due to their antimicrobial activity. In the interest of investigating the primary antimicrobial mode-of-action of 2D nanomaterials, we studied the antimicrobial properties of MnO 2 and MoS 2 , toward Gram-positive and Gram-negative bacteria. Bacillus subtilis and Escherichia coli bacteria were treated individually with 100 μg/mL of randomly oriented and vertically aligned nanomaterials for ∼3 h in the dark. The vertically aligned 2D MnO 2 and MoS 2 were grown on 2D sheets of graphene oxide, reduced graphene oxide, and Ti 3 C 2 MXene. Measurements to determine the viability of bacteria in the presence of the 2D nanomaterials performed by using two complementary techniques, flow cytometry, and fluorescence imaging showed that, while MnO 2 and MoS 2 nanosheets show different antibacterial activities, in both cases, Gram-positive bacteria show a higher loss in membrane integrity. Scanning electron microscopy images suggest that the 2D nanomaterials, which have a detrimental effect on bacteria viability, compromise the cell wall, leading to significant morphological changes. We propose that the peptidoglycan mesh (PM) in the bacterial wall is likely the primary target of the 2D nanomaterials. Vertically aligned 2D MnO 2 nanosheets showed the highest antimicrobial activity, suggesting that the edges of the nanosheets were likely compromising the cell walls upon contact.

  11. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Dufresne, Alain

    2017-12-01

    Unexpected and attractive properties can be observed when decreasing the size of a material down to the nanoscale. Cellulose is no exception to the rule. In addition, the highly reactive surface of cellulose resulting from the high density of hydroxyl groups is exacerbated at this scale. Different forms of cellulose nanomaterials, resulting from a top-down deconstruction strategy (cellulose nanocrystals, cellulose nanofibrils) or bottom-up strategy (bacterial cellulose), are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, the basis for low-density foams, additives in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic and medical products. This paper focuses on the use of cellulose nanomaterials as a filler for the preparation of polymer nanocomposites. Impressive mechanical properties can be obtained for these materials. They obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials, which has not yet been properly resolved and remains a challenge. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  12. Understanding the biological and environmental implications of nanomaterials

    NASA Astrophysics Data System (ADS)

    Lin, Sijie

    The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is

  13. 20180318 - Rapid collection of experimental physicochemical property data to inform various models and testing methods (ACS Spring)

    EPA Science Inventory

    In order to determine the potential toxicological effects, toxicokinetics, and route(s) of exposure for chemicals, their structures and corresponding physicochemical properties are required. With this data, the risk for thousands of environmental chemicals can be prioritized. How...

  14. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms

    NASA Astrophysics Data System (ADS)

    Golbamaki, Nazanin; Rasulev, Bakhtiyor; Cassano, Antonio; Marchese Robinson, Richard L.; Benfenati, Emilio; Leszczynski, Jerzy; Cronin, Mark T. D.

    2015-01-01

    Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the

  15. Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review

    PubMed Central

    Scida, Karen; Stege, Patricia W.; Haby, Gabrielle; Messina, Germán A.; García, Carlos D.

    2011-01-01

    The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005–2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry. PMID:21458626

  16. Physicochemical Properties of Meat Batter Added with Edible Silkworm Pupae (Bombyx mori) and Transglutaminase.

    PubMed

    Park, Yoo-Sun; Choi, Yun-Sang; Hwang, Ko-Eun; Kim, Tae-Kyung; Lee, Cheol-Won; Shin, Dong-Min; Han, Sung Gu

    2017-01-01

    This study was conducted to investigate the physicochemical properties of meat batters prepared with fresh pork meat, back fat, water, and salt and formulated with three different amounts (5%, 10%, and 15%) of silkworm pupae ( Bombyx mori ) powder and transglutaminase (TG). Meat batters formulated with silkworm pupae powder showed significantly higher contents of protein and ash than control batter. Addition of silkworm pupae to batter also showed significantly lower cooking loss than the control. Moreover, meat batter containing 15% silkworm pupae showed no significant difference in redness value compared to the control. In addition, pH, viscosity, hardness, gumminess, and chewiness were improved after the addition of silkworm pupae. Furthermore, meat batter formulated with TG and silkworm pupae showed improved hardness, gumminess, chewiness and viscosity compared to control batter. Addition of 1% TG with 15% silkworm pupae to meat batter resulted in significantly higher pH, textures, and viscosity. Our data suggest that both silkworm pupae and TG can be added to meat batter to improve its physicochemical properties. Therefore, combination of silkworm pupae and TG could be a new nutritional and functional source for meat products.

  17. Physicochemical Properties of Meat Batter Added with Edible Silkworm Pupae (Bombyx mori) and Transglutaminase

    PubMed Central

    Choi, Yun-Sang

    2017-01-01

    This study was conducted to investigate the physicochemical properties of meat batters prepared with fresh pork meat, back fat, water, and salt and formulated with three different amounts (5%, 10%, and 15%) of silkworm pupae (Bombyx mori) powder and transglutaminase (TG). Meat batters formulated with silkworm pupae powder showed significantly higher contents of protein and ash than control batter. Addition of silkworm pupae to batter also showed significantly lower cooking loss than the control. Moreover, meat batter containing 15% silkworm pupae showed no significant difference in redness value compared to the control. In addition, pH, viscosity, hardness, gumminess, and chewiness were improved after the addition of silkworm pupae. Furthermore, meat batter formulated with TG and silkworm pupae showed improved hardness, gumminess, chewiness and viscosity compared to control batter. Addition of 1% TG with 15% silkworm pupae to meat batter resulted in significantly higher pH, textures, and viscosity. Our data suggest that both silkworm pupae and TG can be added to meat batter to improve its physicochemical properties. Therefore, combination of silkworm pupae and TG could be a new nutritional and functional source for meat products. PMID:28747820

  18. Microstructure and physicochemical properties reveal differences between high moisture buffalo and bovine Mozzarella cheeses.

    PubMed

    Nguyen, Hanh T H; Ong, Lydia; Lopez, Christelle; Kentish, Sandra E; Gras, Sally L

    2017-12-01

    Mozzarella cheese is a classical dairy product but most research to date has focused on low moisture products. In this study, the microstructure and physicochemical properties of both laboratory and commercially produced high moisture buffalo Mozzarella cheeses were investigated and compared to high moisture bovine products. Buffalo and bovine Mozzarella cheeses were found to significantly differ in their microstructure, chemical composition, organic acid and proteolytic profiles but had similar hardness and meltability. The buffalo cheeses exhibited a significantly higher ratio of fat to protein and a microstructure containing larger fat patches and a less dense protein network. Liquid chromatography mass spectrometry detected the presence of only β-casein variant A2 and a single β-lactoglobulin variant in buffalo products compared to the presence of both β-casein variants A1 and A2 and β-lactoglobulin variants A and B in bovine cheese. These differences arise from the different milk composition and processing conditions. The differences in microstructure and physicochemical properties observed here offer a new approach to identify the sources of milk used in commercial cheese products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β-Carotene Content of Arachis Oil

    PubMed Central

    Falade, Ayodeji Osmund

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  20. Evolution of the physicochemical properties of marketed drugs: can history foretell the future?

    PubMed

    Faller, Bernard; Ottaviani, Giorgio; Ertl, Peter; Berellini, Giuliano; Collis, Alan

    2011-11-01

    A set of diverse bioactive molecules, relevant from a medicinal chemistry viewpoint, was assembled and used to navigate the physicochemical property space of new and old, or traditional drugs against a larger set of 12,000 diverse bioactive small molecules. Most drugs on the market only occupy a fraction of the property space of the bioactive molecules, whereas new molecular entities (NMEs) approved since 2002 are moving away from this traditional drug space. In this new territory, semi-empirical rules derived from knowledge accumulated from historic, older molecules are not necessarily valid and different liabilities become more prominent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets.

    PubMed

    Kim, Jeongho; Yu, Il Je

    2016-01-01

    A national survey on workplace environment nanomaterial handling and manufacturing was conducted in 2014. Workplaces relevant to nanomaterials were in the order of TiO2 (91), SiO2 (88), carbon black (84), Ag (35), Al2O3 (35), ZnO (34), Pb (33), and CeO2 (31). The survey results indicated that the number of workplaces handling or manufacturing nanomaterials was 340 (0.27% of total 126,846) workplaces. The number of nanomaterials used and products was 546 (1.60 per company) and 583 (1.71 per company), respectively. For most workplaces, the results on exposure to hazardous particulate materials, including nanomaterials, were below current OELs, yet a few workplaces were above the action level. As regards the health status of workers, 9 workers were diagnosed with a suspected respiratory occupational disease, where 7 were recommended for regular follow-up health monitoring. 125 safety data sheets (SDSs) were collected from the nanomaterial-relevant workplaces and evaluated for their completeness and reliability. Only 4 CNT SDSs (3.2%) included the term nanomaterial, while most nanomaterial SDSs were not regularly updated and lacked hazard information. When taken together, the current analysis provides valuable national-level information on the exposure and health status of workers that can guide the next policy steps for nanomaterial management in the workplace.

  2. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets

    PubMed Central

    2016-01-01

    A national survey on workplace environment nanomaterial handling and manufacturing was conducted in 2014. Workplaces relevant to nanomaterials were in the order of TiO2 (91), SiO2 (88), carbon black (84), Ag (35), Al2O3 (35), ZnO (34), Pb (33), and CeO2 (31). The survey results indicated that the number of workplaces handling or manufacturing nanomaterials was 340 (0.27% of total 126,846) workplaces. The number of nanomaterials used and products was 546 (1.60 per company) and 583 (1.71 per company), respectively. For most workplaces, the results on exposure to hazardous particulate materials, including nanomaterials, were below current OELs, yet a few workplaces were above the action level. As regards the health status of workers, 9 workers were diagnosed with a suspected respiratory occupational disease, where 7 were recommended for regular follow-up health monitoring. 125 safety data sheets (SDSs) were collected from the nanomaterial-relevant workplaces and evaluated for their completeness and reliability. Only 4 CNT SDSs (3.2%) included the term nanomaterial, while most nanomaterial SDSs were not regularly updated and lacked hazard information. When taken together, the current analysis provides valuable national-level information on the exposure and health status of workers that can guide the next policy steps for nanomaterial management in the workplace. PMID:27556041

  3. Nanomaterials in consumer's goods: the problems of risk assessment

    NASA Astrophysics Data System (ADS)

    Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanotechnology and engineered nanomaterials are currently used in wide variety of cosmetic products, while their use in food industry, packaging materials, household chemicals etc. still includes a limited number of items and does not show a significant upward trend. However, the problem of priority nanomaterials associated risks is relevant due to their high production volumes and an constantly growing burden on the environment and population. In accordance with the frequency of use in mass-produced consumer goods, leading priority nanomaterials are silver nanoparticles (NPs) and (by a wide margin) NPs of gold, platinum, and titanium dioxide. Frequency of nanosized silica introduction into food products as a food additive, at the moment, seems to be underestimated, since the use of this nanomaterial is not declared by manufacturers of products and objective control of its content is difficult. Analysis of literature data on toxicological properties of nanomaterials shows that currently accumulated amount of information is sufficient to establish the safe doses of nanosized silver, gold and titanium dioxide. Data have been provided in a series of studies concerning the effect of oral intake of nanosized silica on the condition of laboratory animals, including on the performance of the immune system. The article examines the existing approaches to the assessment of population exposure to priority nanomaterials, characteristics of existing problems and risk management.

  4. The hemolymph of caterpillars Spodoptera littoralis: physico-chemical properties and ionic composition compared to culture media.

    PubMed

    Smagghe, G; Van Leeuwen, T

    2004-01-01

    In this paper, we determined some physico-chemical properties like osmotic pressure, pH and electrical conductivity of the hemolymph from caterpillars of Spodoptera littoralis (Lepidoptera: Noctuidae) during the last larval instar. It was of interest that we observed an increase in osmotic pressure with the increase in age in the last instar that may concur with the start of histolysis at metamorphosis. These physicochemical properties were then compared to those of Grace's and modified Grace's tissue culture medium. In addition, concentrations of the cations Na, K, Ca and Mg, and the anions Cl, NO3, PO4 and SO4 were determined in the insect hemolymph of S. littoralis. The cations K and Mg reached high values with a percent of about 52% of the total amount of cations. The concentration of sodium was low. The total sum of the anions consisted about 56 meq/1, and this allows to neutralise about 45 % of the total cations.

  5. Learning from nature: binary cooperative complementary nanomaterials.

    PubMed

    Su, Bin; Guo, Wei; Jiang, Lei

    2015-03-01

    In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Characterization of Carbon Onion Nanomaterials for Environmental Remediation

    EPA Science Inventory

    The unique properties of carbonaceous nanomaterials, including small particle size, high surface area, and manipulatable surface chemistry, provide high potential for their application to environmental remediation. While research has devoted to develop nanotechnology for environm...

  7. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure.

    PubMed

    Zhou, Aimei; Lin, Liying; Liang, Yan; Benjakul, Soottawat; Shi, Xiaoling; Liu, Xin

    2014-08-01

    Changes of physicochemical properties in natural actomyosin (NAM) from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure (200, 400, 600MPa for 10, 30, 50min) were studied. The increase in turbidity of NAM was coincidental with the decrease in protein solubility with increasing pressure and time, suggesting the formation of protein aggregates. SDS-PAGE showed that polymerisation and degradation of myosin heavy chain were induced by high pressure. Ca(2+)-ATPase activity of NAM treated by high pressure was lost, suggesting the denaturation of myosin and the dissociation of actomyosin complex. Surface hydrophobicity of NAM increased when the pressure and pressurization time increased, indicating that the exposed hydrophobic residues increased upon application of high pressure. Decrease in total sulfhydryl content and increase in surface-reactive sulfhydryl content of NAM samples were observed with the extension of pressurizing time, indicating the formation of disulphide bonds through oxidation of SH groups or disulphide interchanges. The above changes of physicochemical properties suggested conformational changes of NAM from muscle of threadfin bream induced by high hydrostatic pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Experimental and Molecular Modeling Evaluation of the Physicochemical Properties of Proline-Based Deep Eutectic Solvents.

    PubMed

    van den Bruinhorst, Adriaan; Spyriouni, Theodora; Hill, Jörg-Rüdiger; Kroon, Maaike C

    2018-01-11

    The liquid range and applicability of deep eutectic solvents (DESs) are determined by their physicochemical properties. In this work, the physicochemical properties of glycolic acid:proline and malic acid:proline were evaluated experimentally and with MD simulations at five different ratios. Both DESs exhibited esterification upon preparation, which affected the viscosity in particular. In order to minimize oligomer formation and water release, three different experimental preparation methods were explored, but none could prevent esterification. The experimental and calculated densities of the DESs were found to be in good agreement. The measured and modeled glass transition temperature showed similar trends with composition, as did the experimental viscosity and the calculated diffusivities. The MD simulations provided additional insight at the atomistic level, showing that at acid-rich compositions, the acid-acid hydrogen bonding (HB) interactions prevail. Malic acid-based DESs show stronger acid-acid HB interactions than glycolic acid-based ones, possibly explaining its extreme viscosity. Upon the addition of proline, the interspecies interactions become predominant, confirming the formation of the widely assumed HB network between the DESs constituents in the liquid phase.

  9. Physical modification of palm kernel meal improved available carbohydrate, physicochemical properties and in vitro digestibility in economic freshwater fish.

    PubMed

    Thongprajukaew, Karun; Yawang, Pinya; Dudae, Lateepah; Bilanglod, Husna; Dumrongrittamatt, Terdtoon; Tantikitti, Chutima; Kovitvadhi, Uthaiwan

    2013-12-01

    Unavailable carbohydrates are an important limiting factor for utilization of palm kernel meal (PKM) as aquafeed ingredients. The aim of this study was to improve available carbohydrate from PKM. Different physical modifications including water soaking, microwave irradiation, gamma irradiation and electron beam, were investigated in relation to chemical composition, physicochemical properties and in vitro carbohydrate digestibility using digestive enzymes from economic freshwater fish. Modified methods had significant (P < 0.05) effects on chemical composition by decreasing crude fiber and increasing available carbohydrates. Improvements in physicochemical properties of PKM, such as water solubility, microstructure, relative crystallinity and lignocellulosic spectra, were mainly achieved by soaking and microwave irradiation. Carbohydrate digestibility varied among the physical modifications tested (P < 0.05) and three fish species had different abilities to digest PKM. Soaking was the appropriate modification for increasing carbohydrate digestion specifically in Nile tilapia (Oreochromis niloticus), whereas either soaking or microwave irradiation was effective for striped snakehead (Channa striata). For walking catfish (Clarias batrachus), carbohydrate digestibility was similar among raw, soaked and microwave-irradiated PKM. These findings suggest that soaking and microwave irradiation could be practical methods for altering appropriate physicochemical properties of PKM as well as increasing carbohydrate digestibility in select economic freshwater fish. © 2013 Society of Chemical Industry.

  10. Aggregates, Crystals, Gels, and Amyloids: Intracellular and Extracellular Phenotypes at the Crossroads of Immunoglobulin Physicochemical Property and Cell Physiology

    PubMed Central

    2013-01-01

    Recombinant immunoglobulins comprise an important class of human therapeutics. Although specific immunoglobulins can be purposefully raised against desired antigen targets by various methods, identifying an immunoglobulin clone that simultaneously possesses potent therapeutic activities and desirable manufacturing-related attributes often turns out to be challenging. The variable domains of individual immunoglobulins primarily define the unique antigen specificities and binding affinities inherent to each clone. The primary sequence of the variable domains also specifies the unique physicochemical properties that modulate various aspects of individual immunoglobulin life cycle, starting from the biosynthetic steps in the endoplasmic reticulum, secretory pathway trafficking, secretion, and the fate in the extracellular space and in the endosome-lysosome system. Because of the diverse repertoire of immunoglobulin physicochemical properties, some immunoglobulin clones' intrinsic properties may manifest as intriguing cellular phenotypes, unusual solution behaviors, and serious pathologic outcomes that are of scientific and clinical importance. To gain renewed insights into identifying manufacturable therapeutic antibodies, this paper catalogs important intracellular and extracellular phenotypes induced by various subsets of immunoglobulin clones occupying different niches of diverse physicochemical repertoire space. Both intrinsic and extrinsic factors that make certain immunoglobulin clones desirable or undesirable for large-scale manufacturing and therapeutic use are summarized. PMID:23533417

  11. Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits of Manipur, India.

    PubMed

    Sharma, Ph Baleshwor; Handique, Pratap Jyoti; Devi, Huidrom Sunitibala

    2015-02-01

    Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits viz., Garcinia pedunculata, Garcinia xanthochymus, Docynia indica, Rhus semialata and Averrhoa carambola grown in Manipur, India were presented in the current study. The order of the antioxidant activity and reducing power of the fruit samples was found as R. semialata > D. indica > G. xanthochymus > A. carambola > G. pedunculata. Good correlation coefficient (R(2) > 0.99) was found among the three methods applied to determine antioxidant activity. Total phenolic content was positively correlated (R(2) = 0.960) with the antioxidant activity however, total flavonoid content was not positively correlated with the antioxidant activity. Physico-chemical and proximate composition of these fruits is documented for the first time.

  12. Effect of irradiated pork on physicochemical properties of meat emulsions

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Sang; Sung, Jung-Min; Jeong, Tae-Jun; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei

    2016-02-01

    The effect of pork irradiated with doses up to 10 kGy on meat emulsions formulated with carboxy methyl cellulose (CMC) was investigated. Raw pork was vacuums packaged at a thickness of 2.0 cm and irradiated by X-ray linear accelerator (15 kW, 5 MeV). The emulsion had higher lightness, myofibrillar protein solubility, total protein solubility, and apparent viscosity with increasing doses, whereas cooking loss, total expressible fluid separation, and hardness decreased. There were no significant differences in fat separation, sarcoplasmic protein solubility, springiness, and cohesiveness. Our results indicated that it is treatment by ionizing radiation which causes the effects the physicochemical properties of the final raw meat product.

  13. Modified atmosphere packaging of precooked vegetables: effect on physicochemical properties and sensory quality.

    PubMed

    Barbosa, Carla; Alves, M Rui; Rocha, Susana; Oliveira, M Beatriz P P

    2016-03-01

    This study aims at verifying the effect of three modified atmosphere packaging (MAP) conditions, all with high CO2 and residual or low O2 contents (%O2/%CO2: 0/40; 2.5/40 and 2.5/60), on the quality preservation of several species of precooked vegetables (cabbage, carrots, green beans and bell peppers). The study was carried out for different storage periods (up to 28 days and 6 sampling periods). Physicochemical parameters (pH, acidity, moisture and ash contents, antioxidant activity, colour, and texture), microbial growth, organoleptic properties and consumer acceptability were assessed. Concerning physicochemical parameters and microbial growth only slight changes without any consistent tendency were observed. This was also confirmed by the trained panel that could not discriminate samples with different storage times. Best preservation conditions were obtained with 0%O2/40%CO2, promoting a shelf life extension of almost 12 days more comparing to commercial conditions presently used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases.

    PubMed

    Zhang, Bingbo; Yan, Wei; Zhu, Yanjing; Yang, Weitao; Le, Wenjun; Chen, Bingdi; Zhu, Rongrong; Cheng, Liming

    2018-04-01

    Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy. Nanomaterials have been envisioned as innovative components to further empower the field of NSC-based regenerative medicine, because their unique physicochemical characteristics provide unparalleled solutions to the imaging and treatment of diseases. By building on the advantages of nanomaterials, tremendous efforts have been devoted to facilitate research into the clinical translation of NSC-based therapy. Here, recent work on emerging nanomaterials is highlighted and their performance in the imaging and treatment of neurological diseases is evaluated, comparing the strengths and weaknesses of various imaging modalities currently used. The underlying mechanisms of therapeutic efficacy are discussed, and future research directions are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation.

    PubMed

    Niu, Liyong; Coleman, Jonathan N; Zhang, Hua; Shin, Hyeonsuk; Chhowalla, Manish; Zheng, Zijian

    2016-01-20

    Tremendous efforts have been devoted to the synthesis and application of two-dimensional (2D) nanomaterials due to their extraordinary and unique properties in electronics, photonics, catalysis, etc., upon exfoliation from their bulk counterparts. One of the greatest challenges that scientists are confronted with is how to produce large quantities of 2D nanomaterials of high quality in a commercially viable way. This review summarizes the state-of-the-art of the production of 2D nanomaterials using liquid-based direct exfoliation (LBE), a very promising and highly scalable wet approach for synthesizing high quality 2D nanomaterials in mild conditions. LBE is a collection of methods that directly exfoliates bulk layered materials into thin flakes of 2D nanomaterials in liquid media without any, or with a minimum degree of, chemical reactions, so as to maintain the high crystallinity of 2D nanomaterials. Different synthetic methods are categorized in the following, in which material characteristics including dispersion concentration, flake thickness, flake size and some applications are discussed in detail. At the end, we provide an overview of the advantages and disadvantages of such synthetic methods of LBE and propose future perspectives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Physicochemical properties of chars at different treatment temperatures.

    PubMed

    Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae Kwan; Hong, Sung Chang

    2012-02-01

    In this study, the physicochemical properties of the char of Indonesian SM coal following heat treatment at various temperatures were evaluated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and morphological and specific surface area analysis. Based on these analyses, heat treatment of coal was determined to be the most effective in increasing the coal rank. In the XPS analysis, the C-O and C-O-C groups and quaternary-N species were found to be of a lower grade coal when the pretreatment temperature decreased, meanwhile the C-C group and pyridinic species increased. In the FT-IR analysis, the collapse of the C-O and C-O-C group was observed due to the collapse of the ether group. In SEM and Brunauer-Emmett-Teller (BET) analysis, a decrease in the ether group was shown to be accompanied with the formation of micropores.

  17. Green chemical synthesis of silver nanomaterials with maltodextrin.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallant, David Robert; Lu, Ping; Lambert, Timothy N.

    2010-11-01

    Silver nanomaterials have significant application resulting from their optical properties related to surface enhanced Raman spectroscopy, high electrical conductivity, and anti-microbial impact. A 'green chemistry' synthetic approach for silver nanomaterials minimizes the environmental impact of silver synthesis, as well as lowers the toxicity of the reactive agents. Biopolymers have long been used for stabilization of silver nanomaterials during synthesis, and include gum Arabic, heparin, and common starch. Maltodextrin is a processed derivative of starch with lower molecular weight and an increase in the number of reactive reducing aldehyde groups, and serves as a suitable single reactant for the formation ofmore » metallic silver. Silver nanomaterials can be formed under either a thermal route at neutral pH in water or by reaction at room temperature under more alkaline conditions. Deposited silver materials are formed on substrates from near neutral pH solutions at low temperatures near 50 C. Experimental conditions based on material concentrations, pH and reaction time are investigated for development of deposited films. Deposit morphology and optical properties are characterized using SEM and UV-vis techniques. Silver nanoparticles are generated under alkaline conditions by a dissolution-reduction method from precipitated silver (II) oxide. Synthesis conditions were explored for the rapid development of stable silver nanoparticle dispersions. UV-vis absorption spectra, powder X-ray diffraction (PXRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques were used to characterize the nanoparticle formation kinetics and the influence of reaction conditions. The adsorbed content of the maltodextrin was characterized using thermogravimetric analysis (TGA).« less

  18. Cyclodextrin Inclusion Complex to Improve Physicochemical Properties of Herbicide Bentazon: Exploring Better Formulations

    PubMed Central

    Yáñez, Claudia; Cañete-Rosales, Paulina; Castillo, Juan Pablo; Catalán, Nicole; Undabeytia, Tomás; Morillo, Esmeralda

    2012-01-01

    The knowledge of the host-guest complexes using cyclodextrins (CDs) has prompted an increase in the development of new formulations. The capacity of these organic host structures of including guest within their hydrophobic cavities, improves physicochemical properties of the guest. In the case of pesticides, several inclusion complexes with cyclodextrins have been reported. However, in order to explore rationally new pesticide formulations, it is essential to know the effect of cyclodextrins on the properties of guest molecules. In this study, the inclusion complexes of bentazon (Btz) with native βCD and two derivatives, 2-hydroxypropyl-β-cyclodextrin (HPCD) and sulfobutylether-β-cyclodextrin (SBECD), were prepared by two methods: kneading and freeze-drying, and their characterization was investigated with different analytical techniques including Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), X-ray diffractometry (XRD) and differential pulse voltammetry (DPV). All these approaches indicate that Btz forms inclusion complexes with CDs in solution and in solid state, with a stoichiometry of 1∶1, although some of them are obtained in mixtures with free Btz. The calculated association constant of the Btz/HPCD complex by DPV was 244±19 M−1 being an intermediate value compared with those obtained with βCD and SBECD. The use of CDs significantly increases Btz photostability, and depending on the CDs, decreases the surface tension. The results indicated that bentazon forms inclusion complexes with CDs showing improved physicochemical properties compared to free bentazon indicating that CDs may serve as excipient in herbicide formulations. PMID:22952577

  19. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    PubMed

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of food processing on the physicochemical properties of dietary fibre.

    PubMed

    Ozyurt, Vasfiye Hazal; Ötles, Semih

    2016-01-01

    Products derived from the manufacturing or processing of plant based foods: cereals, fruits, vegetables, as well as algae, are sources of abundant dietary fibre. Diets high in dietary fibre have been associated with the reduced risk of cardiovascular disease, diabetes, hypertension, obesity, and gastrointestinal disorders. These fibre-rich products and byproducts can also fortify foods, increase their dietary fibre content and result in healthy products, low in calories, cholesterol and fat. Traditionally, consumers have chosen foods such as whole grains, fruits and vegetables as sources of dietary fibre. Recently, food manufacturers have responded to consumer demand for foods with a higher fibre content by developing products in which highfibre ingredients are used. Different food processing methods also increase the dietary fiber content of food. Moreover, its chemical and physical properties may be affected by food processing. Some of them might even improve the functionality of fibre. Therefore, they may also be applied as functional ingredients to improve physical properties like the physical and structural properties of hydration, oil-holding capacity, viscosity. This study was conducted to examine the effect of different food processing methods on the physicochemical properties of dietary fibre.

  1. Physicochemical properties of mucus and their impact on transmucosal drug delivery.

    PubMed

    Leal, Jasmim; Smyth, Hugh D C; Ghosh, Debadyuti

    2017-10-30

    Mucus is a selective barrier to particles and molecules, preventing penetration to the epithelial surface of mucosal tissues. Significant advances in transmucosal drug delivery have recently been made and have emphasized that an understanding of the basic structure, viscoelastic properties, and interactions of mucus is of great value in the design of efficient drug delivery systems. Mucins, the primary non-aqueous component of mucus, are polymers carrying a complex and heterogeneous structure with domains that undergo a variety of molecular interactions, such as hydrophilic/hydrophobic, hydrogen bonds and electrostatic interactions. These properties are directly relevant to the numerous mucin-associated diseases, as well as delivering drugs across the mucus barrier. Therefore, in this review we discuss regional differences in mucus composition, mucus physicochemical properties, such as pore size, viscoelasticity, pH, and ionic strength. These factors are also discussed with respect to changes in mucus properties as a function of disease state. Collectively, the review seeks to provide a state of the art roadmap for researchers who must contend with this critical barrier to drug delivery. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    PubMed

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  3. Preface -2017EMRS-Fall-symposium W: Stress, structure and stoichiometry effects on the properties of nanomaterials IV

    NASA Astrophysics Data System (ADS)

    Sánchez, Florencio; Craciun, Valentin

    2018-07-01

    Research on nanomaterials and nanostructures is continuing to grow at a rapid pace as they are used in many important devices like transistors, sensors, MEMS or components of modern tools for diagnosis and treatment in medicine. The functional properties of the materials used in these devices depend on their microstructure, and can be finely tuned using physical and chemical synthesis or various processing techniques that change the structure, composition, morphology and defects type and concentration. The investigation of stress, stoichiometry, phase structure and defects at atomic level is necessary to understand, model and further optimize the electric, magnetic, optical and mechanical properties of the nanosystems and for engineers to design new, better and more reliable devices.

  4. Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.

    PubMed

    Eichmann, Shannon L; Burnham, Nancy A

    2017-09-14

    Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.

  5. Center for Functional Nanomaterials

    ScienceCinema

    BNL

    2017-12-09

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  6. Recent applications of carbon-based nanomaterials in analytical chemistry: critical review.

    PubMed

    Scida, Karen; Stege, Patricia W; Haby, Gabrielle; Messina, Germán A; García, Carlos D

    2011-04-08

    The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005-2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons

    PubMed Central

    Ghanbari, Hossein; de Mel, Achala; Seifalian, Alexander M

    2011-01-01

    Revolutionary advances in nanotechnology propose novel materials with superior properties for biomedical application. One of the most promising nanomaterials for biomedical application is polyhedral oligomeric silsesquioxane (POSS), an amazing nanocage consisting of an inner inorganic framework of silicon and oxygen atoms and an outer shell of organic groups. The unique properties of this nanoparticle has led to the development of a wide range of nanostructured copolymers with significantly enhanced properties including improved mechanical, chemical, and physical characteristics. Since POSS nanomaterials are highly biocompatible, biomedical application of POSS nanostructures has been intensely explored. One of the most promising areas of application of POSS nanomaterials is the development of cardiovascular implants. The incorporation of POSS into biocompatible polymers has resulted in advanced nanocomposite materials with improved hemocompatibility, antithrombogenicity, enhanced mechanical and surface properties, calcification resistance, and reduced inflammatory response, which make these materials the material of choice for cardiovascular implants. These highly versatile POSS derivatives have opened new horizons to the field of cardiovascular implant. Currently, application of POSS containing polymers in the development of new generation cardiovascular implants including heart valve prostheses, bypass grafts, and coronary stents is under intensive investigation, with encouraging outcomes. PMID:21589645

  8. Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials

    NASA Astrophysics Data System (ADS)

    Jian, Muqiang; Xie, Huanhuan; Wang, Qi; Xia, Kailun; Yin, Zhe; Zhang, Mingyu; Deng, Ningqin; Wang, Luning; Ren, Tianling; Zhang, Yingying

    2016-07-01

    The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of nanomaterials under conventional OMs with the aid of volatile nanoparticles (NPs), which can be deposited and removed in a controlled manner. The NPs deposited on the surface of nanomaterials render strong light scattering to enable the nanomaterials to become optically visible. For example, this approach enables the observation of individual carbon nanotubes (CNTs) with OMs at low magnification or even with the naked eye. Both supported CNTs on various substrates and suspended CNTs can be observed with this approach. Most importantly, the NPs can be completely removed through moderate heat treatment or laser irradiation, avoiding potential influence on the properties or subsequent applications of nanomaterials. Furthermore, we systematically investigate the deposition of various volatile NPs (up to 14 kinds) for the optical observation of nanomaterials. We also demonstrated the application of this approach on other nanomaterials, including nanowires and graphene. We showed that this approach is facile, controllable, non-destructive, and contamination-free, indicating wide potential applications.The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of

  9. Abbott Physicochemical Tiering (APT)--a unified approach to HTS triage.

    PubMed

    Cox, Philip B; Gregg, Robert J; Vasudevan, Anil

    2012-07-15

    The selection of the highest quality chemical matter from high throughput screening (HTS) is the ultimate aim of any triage process. Typically there are many hundreds or thousands of hits capable of modulating a given biological target in HTS with a wide range of physicochemical properties that should be taken into consideration during triage. Given the multitude of physicochemical properties that define drug-like space, a system needs to be in place that allows for a rapid selection of chemical matter based on a prioritized range of these properties. With this goal in mind, we have developed a tool, coined Abbott Physicochemical Tiering (APT) that enables hit prioritization based on ranges of these important physicochemical properties. This tool is now used routinely at Abbott to help prioritize hits out of HTS during the triage process. Herein we describe how this tool was developed and validated using Abbott internal high throughput ADME data (HT-ADME). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities

    PubMed Central

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.; Laskin, Julia; Lai, Jinfeng; Mueller, Karl; Munusamy, Prabhakaran; Thevuthasan, Suntharampillai; Wang, Hongfei; Washton, Nancy; Elder, Alison; Baisch, Brittany L.; Karakoti, Ajay; Kuchibhatla, Satyanarayana V. N. T.; Moon, DaeWon

    2013-01-01

    This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may

  11. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.

    2013-09-15

    This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of thesemore » often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these

  12. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid.

    PubMed

    Hiendrawan, Stevanus; Veriansyah, Bambang; Widjojokusumo, Edward; Soewandhi, Sundani Nurono; Wikarsa, Saleh; Tjandrawinata, Raymond R

    2016-01-30

    We report novel pharmaceutical cocrystal of a popular antipyretic drug paracetamol (PCA) with coformer 5-nitroisophhthalic acid (5NIP) to improve its tabletability. The cocrystal (PCA-5NIP at molar ratio of 1:1) was synthesized by solvent evaporation technique using methanol as solvent. The physicochemical properties of cocrystal were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), fourier transform infrared spectroscopy (FTIR), hot stage polarized microscopy (HSPM) and scanning electron microscopy (SEM). Stability of the cocrystal was assessed by storing them at 40°C/75% RH for one month. Compared to PCA, the cocrystal displayed superior tableting performance. PCA-5NIP cocrystal showed a similar dissolution profile as compared to PCA and exhibited good stability. This study showed the utility of PCA-5NIP cocrystal for improving mechanical properties of PCA. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.

    PubMed

    Secor, Ethan B; Hersam, Mark C

    2015-02-19

    Carbon and post-carbon nanomaterials present desirable electrical, optical, chemical, and mechanical attributes for printed electronics, offering low-cost, large-area functionality on flexible substrates. In this Perspective, recent developments in carbon nanomaterial inks are highlighted. Monodisperse semiconducting single-walled carbon nanotubes compatible with inkjet and aerosol jet printing are ideal channels for thin-film transistors, while inkjet, gravure, and screen-printable graphene-based inks are better-suited for electrodes and interconnects. Despite the high performance achieved in prototype devices, additional effort is required to address materials integration issues encountered in more complex systems. In this regard, post-carbon nanomaterial inks (e.g., electrically insulating boron nitride and optically active transition-metal dichalcogenides) present promising opportunities. Finally, emerging work to extend these nanomaterial inks to three-dimensional printing provides a path toward nonplanar devices. Overall, the superlative properties of these materials, coupled with versatile assembly by printing techniques, offer a powerful platform for next-generation printed electronics.

  14. Investigation on physicochemical properties of plasma-activated water for the application of medical device sterilization

    NASA Astrophysics Data System (ADS)

    Abuzairi, Tomy; Ramadhanty, Savira; Puspohadiningrum, Dini Fithriaty; Ratnasari, Anita; Poespawati, Nji Raden; Purnamaningsih, Retno Wigajatri

    2018-02-01

    Plasma activated water (PAW) is a new approach to bacterial inactivation while ensuring safety and maintaining the properties of the material sterilized. Reported research imply that PAW has been effective for inactivation of bacteria. In this paper, plasma treatment using atmospheric pressure plasma was demonstrated. Physicochemical properties such as pH, temperature, ORP, and nitrite concentration were assessed. The results suggest that plasma treatment causes acidification on water and generate reactive species, creating an environment suitable for killing bacteria. Therefore, plasma activated water is an assuring method for medical devices sterilization.

  15. [Physicochemical properties of Guanting Reservoir sediment and its land application].

    PubMed

    Su, De-Chun; Hu, Yu-Feng; Song, Chong-Wei; Wu, Fei-Long; Liu, Pei-Bin

    2007-06-01

    Surface sediment of Guanting Reservoir was dredged up and dewatered in field, and pollutant and physicochemical characterizations were mensurated. The stabilization and agricultural land use of the sediment was also studied in the field. Results showed that the sediments have a higher clay content, bulk density (1.89 g x cm(-3)) and lower porosity (23.8%), higher deoxidize material and available nitrogen, phosphorus concentration. Heavy metal and organochlorinated pesticides concentration was lower than the class II of national standard for soil. Stabilized the sediment with sand soil and straw could improve the physical property and decrease the concentration of deoxidize material and available nitrogen, phosphorus. Stabilized sediment could be a suitable medium for alfalfa, tree and corn growth and used for agricultural land.

  16. Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review

    PubMed Central

    Tran, Thi Ha; Nguyen, Viet Tuyen

    2014-01-01

    Cupric oxide (CuO), having a narrow bandgap of 1.2 eV and a variety of chemophysical properties, is recently attractive in many fields such as energy conversion, optoelectronic devices, and catalyst. Compared with bulk material, the advanced properties of CuO nanostructures have been demonstrated; however, the fact that these materials cannot yet be produced in large scale is an obstacle to realize the potential applications of this material. In this respect, chemical methods seem to be efficient synthesis processes which yield not only large quantities but also high quality and advanced material properties. In this paper, the effect of some general factors on the morphology and properties of CuO nanomaterials prepared by solution methods will be overviewed. In terms of advanced nanostructure synthesis, microwave method in which copper hydroxide nanostructures are produced in the precursor solution and sequentially transformed by microwave into CuO may be considered as a promising method to explore in the near future. This method produces not only large quantities of nanoproducts in a short reaction time of several minutes, but also high quality materials with advanced properties. A brief review on some unique properties and applications of CuO nanostructures will be also presented. PMID:27437488

  17. Effect of High-Pressure Treatment on Catalytic and Physicochemical Properties of Pepsin.

    PubMed

    Wang, Jianan; Bai, Tenghui; Ma, Yaping; Ma, Hanjun

    2017-10-11

    For a long time, high-pressure treatment has been used to destroy the compact structures of natural proteins in order to promote subsequent enzymatic hydrolysis. However, there are few reports evaluating the feasibility of directly improving the catalytic capability of proteases by using high-pressure treatments. In this study, the effects of high-pressure treatment on the catalytic capacity and structure of pepsin were investigated, and the relationship between its catalytic properties and changes in its physicochemical properties was explored. It was found that high-pressure treatment could lead to changes of the sulfhydryl group/disulfide bond content, hydrophobicity, hydrodynamic radius, intrinsic viscosity, and subunit composition of pepsin, and the conformational change of pepsin resulted in improvement to its enzymatic activity and hydrolysis efficiency, which had an obvious relationship with the high-pressure treatment conditions.

  18. Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.

    PubMed

    Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji

    2018-07-04

    Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.

  19. Biomedical Applications of Zinc Oxide Nanomaterials

    PubMed Central

    Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo

    2013-01-01

    Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130

  20. Versatile in situ gas analysis apparatus for nanomaterials reactors.

    PubMed

    Meysami, Seyyed Shayan; Snoek, Lavina C; Grobert, Nicole

    2014-09-02

    We report a newly developed technique for the in situ real-time gas analysis of reactors commonly used for the production of nanomaterials, by showing case-study results obtained using a dedicated apparatus for measuring the gas composition in reactors operating at high temperature (<1000 °C). The in situ gas-cooled sampling probe mapped the chemistry inside the high-temperature reactor, while suppressing the thermal decomposition of the analytes. It thus allows a more accurate study of the mechanism of progressive thermocatalytic cracking of precursors compared to previously reported conventional residual gas analyses of the reactor exhaust gas and hence paves the way for the controlled production of novel nanomaterials with tailored properties. Our studies demonstrate that the composition of the precursors dynamically changes as they travel inside of the reactor, causing a nonuniform growth of nanomaterials. Moreover, mapping of the nanomaterials reactor using quantitative gas analysis revealed the actual contribution of thermocatalytic cracking and a quantification of individual precursor fragments. This information is particularly important for quality control of the produced nanomaterials and for the recycling of exhaust residues, ultimately leading toward a more cost-effective continuous production of nanomaterials in large quantities. Our case study of multiwall carbon nanotube synthesis was conducted using the probe in conjunction with chemical vapor deposition (CVD) techniques. Given the similarities of this particular CVD setup to other CVD reactors and high-temperature setups generally used for nanomaterials synthesis, the concept and methodology of in situ gas analysis presented here does also apply to other systems, making it a versatile and widely applicable method across a wide range of materials/manufacturing methods, catalysis, as well as reactor design and engineering.

  1. Roles of Direct and Indirect Light-Induced Transformations of Carbon Nanomaterials in Exposures in Aquatic Systems

    EPA Science Inventory

    Carbon nanomaterials (CNMs) such as fullerenes, carbon nanotubes and graphene-based nanomaterials have a variety of useful characteristics such as extraordinary electron and heat conducting abilities, optical absorption and mechanical properties, and potential applications in tra...

  2. ECOTOXICOLOGY OF NANOMATERIALS

    EPA Science Inventory

    An overview of issues associated with potential ecological toxicity of nanomaterials with research needs outlined, current literature reviewed and discussion of nanomaterial toxicity relative to concerns that EPA and state risk assessors might have.

  3. Predictions of the physicochemical properties of amino acid side chain analogs using molecular simulation.

    PubMed

    Ahmed, Alauddin; Sandler, Stanley I

    2016-03-07

    A candidate drug compound is released for clinical trails (in vivo activity) only if its physicochemical properties meet desirable bioavailability and partitioning criteria. Amino acid side chain analogs play vital role in the functionalities of protein and peptides and as such are important in drug discovery. We demonstrate here that the predictions of solvation free energies in water, in 1-octanol, and self-solvation free energies computed using force field-based expanded ensemble molecular dynamics simulation provide good accuracy compared to existing empirical and semi-empirical methods. These solvation free energies are then, as shown here, used for the prediction of a wide range of physicochemical properties important in the assessment of bioavailability and partitioning of compounds. In particular, we consider here the vapor pressure, the solubility in both water and 1-octanol, and the air-water, air-octanol, and octanol-water partition coefficients of amino acid side chain analogs computed from the solvation free energies. The calculated solvation free energies using different force fields are compared against each other and with available experimental data. The protocol here can also be used for a newly designed drug and other molecules where force field parameters and charges are obtained from density functional theory.

  4. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    PubMed

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  5. Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue.

    PubMed

    Chen, Jinjin; Zhao, Qingsheng; Wang, Liwei; Zha, Shenghua; Zhang, Lijun; Zhao, Bing

    2015-11-05

    Using maca (Lepidium meyenii) liquor residue as the raw material, dietary fiber (DF) was prepared by chemical (MCDF) and enzymatic (MEDF) methods, respectively, of which the physicochemical and functional properties were comparatively studied. High contents of DF were found in MCDF (55.63%) and MEDF (81.10%). Both fibers showed good functional properties, including swelling capacity, water holding capacity, oil holding capacity, glucose adsorption capacity and glucose retardation index. MEDF showed better functional properties, which could be attributed to its higher content of DF, more irregular surface and more abundant monosaccharide composition. The results herein suggest that maca DF prepared by enzymatic method from liquor residue is a good functional ingredient in food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Pyro-Synthesis of Functional Nanocrystals

    PubMed Central

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a rapid pyro-synthesis that produces highly crystalline functional nanomaterials under reaction times of a few seconds in open-air conditions. The versatile technique may facilitate the development of a variety of nanomaterials and, in particular, carbon-coated metal phosphates with appreciable physico-chemical properties benefiting energy storage applications. The present strategy may present opportunities to develop “design rules” not only to produce nanomaterials for various applications but also to realize cost-effective and simple nanomaterial production beyond lab-scale limitations. PMID:23230511

  7. Pyro-synthesis of functional nanocrystals.

    PubMed

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a rapid pyro-synthesis that produces highly crystalline functional nanomaterials under reaction times of a few seconds in open-air conditions. The versatile technique may facilitate the development of a variety of nanomaterials and, in particular, carbon-coated metal phosphates with appreciable physico-chemical properties benefiting energy storage applications. The present strategy may present opportunities to develop "design rules" not only to produce nanomaterials for various applications but also to realize cost-effective and simple nanomaterial production beyond lab-scale limitations.

  8. Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch.

    PubMed

    Hu, Xiao-Pei; Zhang, Bao; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2017-10-01

    In this study, the effects of high hydrostatic pressure and retrogradation (HHPR) treatments on in vitro digestibility, structural and physicochemical properties of waxy wheat starch were investigated. The waxy wheat starch slurries (10%, w/v) were treated with high hydrostatic pressures of 300, 400, 500, 600MPa at 20°C for 30min, respectively, and then retrograded at 4°C for 4d. The results indicated that the content of slowly digestible starch (SDS) in HHPR-treated starch samples increased with increasing pressure level, and it reached the maximum (31.12%) at 600MPa. HHPR treatment decreased the gelatinization temperatures, the gelatinization enthalpy, the relative crystallinity and the peak viscosity of the starch samples. Moreover, HHPR treatment destroyed the surface and interior structures of starch granules. These results suggest that the in vitro digestibility, physicochemical, and structural properties of waxy wheat starch are effectively modified by HHPR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Physicochemical and Functional Properties of Vegetable and Cereal Proteins as Potential Sources of Novel Food Ingredients

    PubMed Central

    Soria-Hernández, Cintya; Serna-Saldívar, Sergio

    2015-01-01

    Summary Proteins from vegetable and cereal sources are an excellent alternative to substitute animal-based counterparts because of their reduced cost, abundant supply and good nutritional value. The objective of this investigation is to study a set of vegetable and cereal proteins in terms of physicochemical and functional properties. Twenty protein sources were studied: five soya bean flour samples, one pea flour and fourteen newly developed blends of soya bean and maize germ (five concentrates and nine hydrolysates). The physicochemical characterization included pH (5.63 to 7.57), electrical conductivity (1.32 to 4.32 mS/cm), protein content (20.78 to 94.24% on dry mass basis), free amino nitrogen (0.54 to 2.87 mg/g) and urease activity (0.08 to 2.20). The functional properties showed interesting differences among proteins: water absorption index ranged from 0.41 to 18.52, the highest being of soya and maize concentrates. Nitrogen and water solubility ranged from 10.14 to 74.89% and from 20.42 to 95.65%, respectively. Fat absorption and emulsification activity indices ranged from 2.59 to 4.72 and from 3936.6 to 52 399.2 m2/g respectively, the highest being of pea flour. Foam activity (66.7 to 475.0%) of the soya and maize hydrolysates was the best. Correlation analyses showed that hydrolysis affected solubility-related parameters whereas fat-associated indices were inversely correlated with water-linked parameters. Foam properties were better of proteins treated with low heat, which also had high urease activity. Physicochemical and functional characterization of the soya and maize protein concentrates and hydrolysates allowed the identification of differences regarding other vegetable and cereal protein sources such as pea or soya bean. PMID:27904358

  10. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations.

    PubMed

    Falinski, Mark M; Plata, Desiree L; Chopra, Shauhrat S; Theis, Thomas L; Gilbertson, Leanne M; Zimmerman, Julie B

    2018-04-30

    Engineered nanomaterials (ENMs) and ENM-enabled products have emerged as potentially high-performance replacements to conventional materials and chemicals. As such, there is an urgent need to incorporate environmental and human health objectives into ENM selection and design processes. Here, an adapted framework based on the Ashby material selection strategy is presented as an enhanced selection and design process, which includes functional performance as well as environmental and human health considerations. The utility of this framework is demonstrated through two case studies, the design and selection of antimicrobial substances and conductive polymers, including ENMs, ENM-enabled products and their alternatives. Further, these case studies consider both the comparative efficacy and impacts at two scales: (i) a broad scale, where chemical/material classes are readily compared for primary decision-making, and (ii) within a chemical/material class, where physicochemical properties are manipulated to tailor the desired performance and environmental impact profile. Development and implementation of this framework can inform decision-making for the implementation of ENMs to facilitate promising applications and prevent unintended consequences.

  11. Seed characteristics and physicochemical properties of powders of 25 edible dry bean varieties.

    PubMed

    Cappa, Carola; Kelly, James D; Ng, Perry K W

    2018-07-01

    Information on the physicochemical variability in dry bean seeds from different varieties grown over distinct crop years is lacking. This study was designed to investigate the relationship between the environment and the seed characteristics of 25 edible dry bean varieties and to expand the knowledge on their proximate composition, starch digestibility, solvent retention capacity, and pasting and thermal properties. The impact of bean genotype (25 varieties), growing environment (two crop years), and powder particle size (≤0.5 mm, ≤1.0 mm) was investigated. Statistical differences (P > 0.05) in seed characteristics and in starch, amylose and protein contents were found among the 25 varieties. Unique pasting and thermal properties were observed, and genotype and particle size greatly affected these properties. The accumulated information can be used in breeding programs to select bean lines possessing unique properties for food ingredients while increasing the market value of the crop and enhancing human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Pulmonary and Hematological Effects in Rats Following a Single Inhalation Exposure to Ce02 Nanoparticles

    EPA Science Inventory

    Engineered nanomaterials have unknown environmental and health implications due to their novel properties and/or by-products associated with their applications. Combustion studies have shown nanoCe-enabled fuel additives alter the physicochemical properties of diesel emissions (D...

  13. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    PubMed

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  14. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish.

    PubMed

    Xu, Bao-Guo; Zhang, Min; Bhandari, Bhesh; Cheng, Xin-Feng; Islam, Md Nahidul

    2015-11-01

    Power ultrasound, which can enhance nucleation rate and crystal growth rate, can also affect the physico-chemical properties of immersion frozen products. In this study, the influence of slow freezing (SF), immersion freezing (IF) and ultrasound-assisted freezing (UAF) on physico-chemical properties and volatile compounds of red radish was investigated. Results showed that ultrasound application significantly improved the freezing rate; the freezing time of ultrasound application at 0.26 W/cm(2) was shorten by 14% and 90%, compared to IF and SF, respectively. UAF products showed significant (p<0.05) reduction in drip loss and phytonutrients (anthocyanins, vitamin C and phenolics) loss. Compared to SF products, IF and UAF products showed better textural preservation and higher calcium content. The radish tissues exhibited better cellular structures under ultrasonic power intensities of 0.17 and 0.26 W/cm(2) with less cell separation and disruption. Volatile compound data revealed that radish aromatic profile was also affected in the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Proximate composition and physicochemical properties of European beaver (Castor fiber L.) meat.

    PubMed

    Florek, Mariusz; Drozd, Leszek; Skałecki, Piotr; Domaradzki, Piotr; Litwińczuk, Anna; Tajchman, Katarzyna

    2017-01-01

    The proximate composition of meat from young and mature European beaver and physicochemical properties during storage were investigated. The young beaver meat contains 20.52g of protein and 1.86g of fat in 100g, while mature animals 22.16g and 0.73g. Index of nutritional quality for protein ranged from 2.03 to 2.24. Storage had a greater impact on the physicochemical properties of beaver meat than animal age and muscle type. The meat of mature beavers was significantly (P<0.05) darker (L*=28.51) in comparison with young animals (L*=30.79) and contained significantly (P<0.01) more total pigments. However, the negative b* values (between -2.05 and -2.19) indicated a bluish tint on the surface of beaver meat. The significantly (P<0.05) lower drip loss and cooking loss showed semimembranosus (0.65% and 17.89%) compared to longissimus thoracis et lumborum muscle (0.84% and 19.58%). Significantly (P<0.01) lower values of TBARS, drip loss and cooking loss were determined in meat at 24h (0.15mgMDAkg -1 , 0.59% and 15.99%) in comparison with stored for 7days (0.46mgMDAkg -1 , 0.90% and 21.49%). Generally, storage for 7days improved meat water holding capacity and tenderness. W-B shear force and shear energy of beaver meat decreased from 51.4N and 0.21J at 24h to 33.2N and 0.11J at 7days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Determination of physicochemical properties and degradation kinetics of triamcinolone acetonide palmitate in vitro.

    PubMed

    Peng, Cuilian; Liu, Cong; Tang, Xing

    2010-12-01

    Triamcinolone acetonide palmitate (TAP) is a lipophilic prodrug of triamcinolone acetonide (TAA) to improve the insoluble TAA physicochemical properties for the preparation of emulsions. This investigation has focused on the preformulation study of TAP, including its physicochemical properties and hydrolysis kinetics in vitro. The solubility of TAP in medium-chain triglyceride is about twice greater than that in soybean oil (long-chain triglyceride) (19.17 versus 9.55 mg/g) at 25°C, and in all investigated cases, lecithin (80, 160, and 240 mg/g) as solubilizer provided increased solubility of drugs in medium-chain triglyceride and long-chain triglyceride, whereas the maximum water solubility of TAP was 0.10 μg/mL. The partition coefficient (log P) of TAP was 5.79 irrespective of the pH conditions. The hydrolysis of TAP followed pseudo-first-order kinetics in aqueous solutions, and the stable pH range was from pH 5.0 to 9.0. The in vitro enzymolysis kinetics of TAP in rat plasma and liver homogenate was evaluated by measuring the decrease of TAP as well as the increase of TAA at 37°C for 96 hours. The results demonstrated that the TAP may be hydrolyzed mainly by rat plasma esterase and, to a minor extent, by liver esterase, and the hydrolysis half-life of TAP in 100% rat plasma was 17.53 ± 6.85 hours at pH 7.4. All these results indicated that TAP had successfully obtained higher lipid-soluble property for the preparation of intravenous emulsion and may be an effective prodrug for sustained release of TAA in vivo.

  17. Biocompatible Nanomaterials and Nanodevices Promising for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Firkowska, Izabela; Giannona, Suna; Rojas-Chapana, José A.; Luecke, Klaus; Brüstle, Oliver; Giersig, Michael

    Nanotechnology applied to biology requires a thorough understanding of how molecules, sub-cellular entities, cells, tissues, and organs function and how they are structured. The merging of nanomaterials and life science into hybrids of controlled organization and function is possible, assuming that biology is nanostructured, and therefore man-made nano-materials can structurally mimic nature and complement each other. By taking advantage of their special properties, nanomaterials can stimulate, respond to and interact with target cells and tissues in controlled ways to induce desired physiological responses with a minimum of undesirable effects. To fulfill this goal the fabrication of nano-engineered materials and devices has to consider the design of natural systems. Thus, engineered micro-nano-featured systems can be applied to biology and biomedicine to enable new functionalities and new devices. These include, among others, nanostructured implants providing many advantages over existing, conventional ones, nanodevices for cell manipulation, and nanosensors that would provide reliable information on biological processes and functions.

  18. Physicochemical and tablet properties of Cyperus alulatus rhizomes starch granules.

    PubMed

    Paramakrishnan, N; Jha, S; Kumar, K Jayaram

    2015-05-01

    The starch extracted from rhizomes of Cyperus alulatus (CA) was characterized for its physicochemical, morphological and tableting properties. Rhizomes of CA yield a significant quantity of starch granules (CASG) i.e., 11.93%. CASG was characterized in terms of moisture, ash and amylose contents, solubility and swelling power, paste clarity and water retention capacity. The swelling power was found to be significantly improved with the increase in temperature. Scanning electron micrographs revealed that the granule's surface was smooth, the granules were spherical, mostly round, disc like, and the size range was 6.65-12.13 μm. Finger print region in FTIR spectra confirmed its carbohydrate nature. The evaluated micromeritic properties of extracted granule's bulk density, tapped density, Carr's index, Hausner ratio, true density and porosity render unique practicability of CASG being used as an adjuvant in pharmaceutical solid dosage forms. Tablets prepared by using CASG showed higher mechanical strength and more disintegration time, which depicted the characteristic binding nature of the starch granules. As CASG is imparting better binding properties in less concentration and also it can be used in combination with the established starches to get the synergistic effect; this starch can be used commercially in the tablet preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nanomaterials in preventive dentistry

    NASA Astrophysics Data System (ADS)

    Hannig, Matthias; Hannig, Christian

    2010-08-01

    The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

  20. MAPLE deposition of nanomaterials

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  1. Physicochemical Properties of Defatted Rambutan (Nephelium lappaceum) Seed Flour after Alkaline Treatment.

    PubMed

    Eiamwat, Jirawat; Wanlapa, Sorada; Kampruengdet, Sukit

    2016-03-31

    Rambutan seeds were subjected to SC-CO₂ extraction at 35 MPa, 45 °C to obtain defatted rambutan seed flour. Its physicochemical properties before and after treatment with alkali solution using 0.075 N NaOH were investigated. Alkali-treated flour had a significant increment in bulk density, swelling power, water adsorption capacity, emulsion capacity and stability but a reduction in turbidity, solubility and oil absorption capacity. Pasting measurements showed peak viscosity, breakdown, setback and final viscosity increased significantly for the alkali-treated flour, while pasting temperature decreased. The alkaline treatment decreased the least gelation concentration, but increased the apparent viscosity.

  2. The retina as a potential site of nanomaterial phototoxicity

    EPA Science Inventory

    Manufactured nanomaterials are designed for their unique properties, one of which is to be photoreactive. Photocatalysts are desirable in many applications including self-cleaning surfaces, sterilization and decontamination of polluted media, and photovoltaic devices. Photo-catal...

  3. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.

    PubMed

    Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo

    2016-01-15

    One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors.

    PubMed

    Hardman, Ron

    2006-02-01

    As a growing applied science, nanotechnology has considerable global socioeconomic value, and the benefits afforded by nanoscale materials and processes are expected to have significant impacts on almost all industries and all areas of society. A diverse array of engineered nanoscale products and processes have emerged [e.g., carbon nanotubes, fullerene derivatives, and quantum dots (QDs)], with widespread applications in fields such as medicine, plastics, energy, electronics, and aerospace. With the nanotechnology economy estimated to be valued at dollar 1 trillion by 2012, the prevalence of these materials in society will be increasing, as will the likelihood of exposures. Importantly, the vastness and novelty of the nanotechnology frontier leave many areas unexplored, or underexplored, such as the potential adverse human health effects resulting from exposure to novel nanomaterials. It is within this context that the need for understanding the potentially harmful side effects of these materials becomes clear. The reviewed literature suggests several key points: Not all QDs are alike; engineered QDs cannot be considered a uniform group of substances. QD absorption, distribution, metabolism, excretion, and toxicity depend on multiple factors derived from both inherent physicochemical properties and environmental conditions; QD size, charge, concentration, outer coating bioactivity (capping material and functional groups), and oxidative, photolytic, and mechanical stability have each been implicated as determining factors in QD toxicity. Although they offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging, QDs may also pose risks to human health and the environment under certain conditions. Key words: environment, human health, nanomaterials, nanosized particles, nanotechnology, nanotoxicology, quantum dots, toxicology.

  5. Nanomaterials at the neural interface.

    PubMed

    Scaini, Denis; Ballerini, Laura

    2018-06-01

    Interfacing the nervous system with devices able to efficiently record or modulate the electrical activity of neuronal cells represents the underlying foundation of future theranostic applications in neurology and of current openings in neuroscience research. These devices, usually sensing cell activity via microelectrodes, should be characterized by safe working conditions in the biological milieu together with a well-controlled operation-life. The stable device/neuronal electrical coupling at the interface requires tight interactions between the electrode surface and the cell membrane. This neuro-electrode hybrid represents the hyphen between the soft nature of neural tissue, generating electrical signals via ion motions, and the rigid realm of microelectronics and medical devices, dealing with electrons in motion. Efficient integration of these entities is essential for monitoring, analyzing and controlling neuronal signaling but poses significant technological challenges. Improving the cell/electrode interaction and thus the interface performance requires novel engineering of (nano)materials: tuning at the nanoscale electrode's properties may lead to engineer interfacing probes that better camouflaged with their biological target. In this brief review, we highlight the most recent concepts in nanotechnologies and nanomaterials that might help reducing the mismatch between tissue and electrode, focusing on the device's mechanical properties and its biological integration with the tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization and physicochemical properties of some potential fibres derived from Averrhoa carambola.

    PubMed

    Chau, Chi-Fai; Chen, Chien-Hung; Lee, Mao-Hsiang

    2004-02-01

    The pomace of Averrhoa carambola (carambola) was found to possess a high level of insoluble fibre-rich fractions (FRFs) including insoluble dietary fibre, alcohol-insoluble solid, and water-insoluble solid (46.0-58.2 g/100 g of pomace). These FRFs were mainly composed of pectic substances and hemicellulose. The physicochemical properties of these FRFs (e.g., water-holding capacities, swelling properties, and cation-exchange capacities) were significantly (P < 0.05) higher than those of cellulose. The apparent abilities of these FRFs to adsorb glucose and reduce amylase activity implied that they might help control postprandial serum glucose. These results recommended the consumption and application of the insoluble FRFs as low-calorie bulk ingredients in fibre enrichment. Further investigations on the in vivo hypoglycemic effect and other physiological effects of these FRFs using animal-feeding experiments are underway.

  7. Heterocyclic cationic gemini surfactants: a comparative overview of their synthesis, self-assembling, physicochemical, and biological properties.

    PubMed

    Sharma, Vishnu Dutt; Ilies, Marc A

    2014-01-01

    Gemini surfactants (GS) are presently receiving substantial attention due to their special self-assembling properties and unique interfacial activity. This comprehensive review is focused on positively charged heterocyclic GS, presenting their major synthetic access routes and examining the impact of structural elements on physicochemical and aggregation properties of this class of amphiphiles. Interaction of geminis surfactants with cells and their biological properties as novel transfection agents are emphasized through a detailed structure-activity relationship analysis. Throughout the review we have also presented the properties of selected ammonium GS, simple surfactants and lipid congeners, in order to emphasize the advantages conferred by using heterocyclic polar heads in GS design. © 2012 Wiley Periodicals, Inc.

  8. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, David A., E-mail: dave.winkler@csiro.au

    2016-05-15

    Nanomaterials research is one of the fastest growing contemporary research areas. The unprecedented properties of these materials have meant that they are being incorporated into products very quickly. Regulatory agencies are concerned they cannot assess the potential hazards of these materials adequately, as data on the biological properties of nanomaterials are still relatively limited and expensive to acquire. Computational modelling methods have much to offer in helping understand the mechanisms by which toxicity may occur, and in predicting the likelihood of adverse biological impacts of materials not yet tested experimentally. This paper reviews the progress these methods, particularly those QSAR-based,more » have made in understanding and predicting potentially adverse biological effects of nanomaterials, and also the limitations and pitfalls of these methods. - Highlights: • Nanomaterials regulators need good information to make good decisions. • Nanomaterials and their interactions with biology are very complex. • Computational methods use existing data to predict properties of new nanomaterials. • Statistical, data driven modelling methods have been successfully applied to this task. • Much more must be learnt before robust toolkits will be widely usable by regulators.« less

  9. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems.

    PubMed

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-01-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial's functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field.

  10. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    PubMed Central

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-01-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial's functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field. PMID:29707534

  11. Physicochemical and phytochemical properties of cold and hot water extraction from Hibiscus sabdariffa.

    PubMed

    Ramirez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R

    2011-04-01

    Hibiscus cold (25 °C) and hot (90 °C) water extracts were prepared in various time-temperature combinations to determine equivalent extraction conditions regarding their physicochemical and phytochemical properties. Equivalent anthocyanins concentration was obtained at 25 °C for 240 min and 90 °C for 16 min. Total phenolics were better extracted with hot water that also resulted in a higher antioxidant capacity in these extracts. Similar polyphenolic profiles were observed between fresh and dried hibiscus extracts. Hibiscus acid and 2 derivatives were found in all extracts. Hydroxybenzoic acids, caffeoylquinic acids, flavonols, and anthocyanins constituted the polyphenolic compounds identified in hibiscus extracts. Two major anthocyanins were found in both cold and hot extracts: delphynidin-3-sambubioside and cyanidin-3-sambubioside. In general, both cold and hot extractions yielded similar phytochemical properties; however, under cold extraction, color degradation was significantly lower and extraction times were 15-fold longer. Hibiscus beverages are prepared from fresh or dried calyces by a hot extraction and pasteurized, which can change organoleptic, nutritional, and color attributes. Nonthermal technologies such as dense phase carbon dioxide may maintain their fresh-like color, flavor, and nutrients. This research compares the physicochemical and phytochemical changes resulting from a cold and hot extraction of fresh and dried hibiscus calyces and adds to the knowledge of work done on color, quality attributes, and antioxidant capacity of unique tropical products. In addition, the research shows how these changes could lead to alternative nonthermal processes for hibiscus.

  12. Effect of resistant starch and aging conditions on the physicochemical properties of frozen soy yogurt.

    PubMed

    Rezaei, Rahil; Khomeiri, Morteza; Kashaninejad, Mahdi; Mazaheri-Tehrani, Mostafa; Aalami, Mehran

    2015-12-01

    The present study investigated the effects of resistant starch concentration (0, 1, 2 %), aging time (2, 13, 24 h) and aging temperature (2, 4, 6 °C) on the physicochemical properties of frozen soy yogurt. The results showed that resistant starch increased viscosity because of its water binding properties. Resistant starch also increased foam stability, fat destabilization, and hardness, but it decreased overrun and meltdown rate. Viscosity, hardness and fat destabilization increased as aging time increased. An increase in aging temperature decreased viscosity, overrun, hardness and fat destabilization of frozen yoghurt, but increased the meltdown rate.

  13. Physicochemical and mechanical properties of carbamazepine cocrystals with saccharin.

    PubMed

    Rahman, Ziyaur; Samy, Raghu; Sayeed, Vilayat A; Khan, Mansoor A

    2012-01-01

    The aim of present research was to investigate the physicochemical, mechanical properties, and stability characteristics of cocrystal of carbamazepine (CBZ) using saccharin (SAC) as a coformer. The cocrystals were prepared by solubility method and characterized by pH-solubility profile, intrinsic dissolution by static disk method, and surface morphology by scanning electron microscopy (SEM), crystallinity by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD), and mechanical properties by Heckel analysis. Stability of the cocrystals were assessed by storing them at 60 (°)C for two weeks, 25 (°)C/60%RH, 40 (°)C/75%RH and 40 (°)C/94%RH for one month and compared with the stability of CBZ. The solubility profile of cocrystal was similar to CBZ. The cocrystal and CBZ have shown the same stability profile at all the conditions of studies except at 40 (°)C/94%RH. Unlike the CBZ, cocrystal was stable against dihydrate transformation. The compacts of cocrystal have a greater tensile strength and more compressibility. The Heckel analysis suggested that plastic deformation started at low compression pressure in the cocrystal than CBZ. In summary, the cocrystal form of carbamazepine provides another avenue for product development which is more stable than the parent drug.

  14. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  15. Correlation Between Physicochemical Characteristics and Toxicological Properties of Nanomaterials

    DTIC Science & Technology

    2012-01-25

    gold, Mn, MWCNT , on the targeted surfaces. An in - vivo electrospray system was developed to disperse airborne CNTs and TiO2, QDs with various degrees...Finkelstein, JN, Elder A, Bentley K, Oberdörster G, and Pui DYH. A nanoparticle dispersion method for in vitro and in vivo nanotoxicity study...Pentland, AP, DeLouise, LA. (2008). In vivo skin penetration of quantum dot nanopartiles in the murine model: The effect of UVR. Nano Letters

  16. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications.

    PubMed

    Manivasagan, Panchanathan; Oh, Junghwan

    2016-01-01

    Research on marine polysaccharide-based nanomaterials is emerging in nanobiotechnological fields such as drug delivery, gene delivery, tissue engineering, cancer therapy, wound dressing, biosensors, and water treatment. Important properties of the marine polysaccharides include biocompatibility, biodegradability, nontoxicity, low cost, and abundance. Most of the marine polysaccharides are derived from natural sources such as fucoidan, alginates, carrageenan, agarose, porphyran, ulvan, mauran, chitin, chitosan, and chitooligosaccharide. Marine polysaccharides are very important biological macromolecules that widely exist in marine organisms. Marine polysaccharides exhibit a vast variety of structures and are still under-exploited and thus should be considered as a novel source of natural products for drug discovery. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. Marine polysaccharides have been shown to have a variety of biological and biomedical properties. Recently, research and development of marine polysaccharide-based nanomaterials have received considerable attention as one of the major resources for nanotechnological applications. This review highlights the recent research on marine polysaccharide-based nanomaterials for biotechnological and biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Electronic structure and physicochemical properties of selected penicillins

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Ruiz, Juan F. Sánchez; Raya, A.; Esquivel, Rodolfo O.

    Traditionally, penicillins have been used as antibacterial agents due to their characteristics and widespread applications with few collateral effects, which have motivated several theoretical and experimental studies. Despite the latter, their mechanism of biological action has not been completely elucidated. We present a theoretical study at the Hartree-Fock and density functional theory (DFT) levels of theory of a selected group of penicillins such as the penicillin-G, amoxicillin, ampicillin, dicloxacillin, and carbenicillin molecules, to systematically determine the electron structure of full ?-lactam antibiotics. Our results allow us to analyze the electronic properties of the pharmacophore group, the aminoacyl side-chain, and the influence of the substituents (R and X) attached to the aminoacyl side-chain at 6? (in contrast with previous studies focused at the 3? substituents), and to corroborate the results of previous studies performed at the semiempirical level, solely on the ?-lactam ring of penicillins. Besides, several density descriptors are determined with the purpose of analyzing their link to the antibacterial activity of these penicillin compounds. Our results for the atomic charges (fitted to the electrostatic potential), the bond orders, and several global reactivity descriptors, such as the dipole moments, ionization potential, hardness, and the electrophilicity index, led us to characterize: the active sites, the effect of the electron-attracting substituent properties and their physicochemical features, which altogether, might be important to understand the biological activity of these type of molecules.

  18. Nanomaterials in Biomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Wahhab, Mosaad A.; Márquez, Francisco

    Nowadays, nanomaterials have become an emerging field that has shown great promise in the development of novel diagnostic, imaging and therapeutic agents for a variety of diseases, including cancer, due to their nanoscale size effects and increased surface area. In comparison to their larger counterparts, nanomaterials have unique physicochemical and biological properties including size, shape, chemical composition, surface structure and charge, aggregation and agglomeration, and solubility which can affect their interactions with biomolecules and cells. In addition, nanoparticles (NPs) with size-tunable light emission have demonstrated an impressive potential as high-efficiency delivery transporters for biomolecules into cells, being used to producemore » exceptional images of tumor sites. Moreover, NPs delivery system has been widely applied in pharmaceutical field to enhance absorption of bioactive compounds since they can interact with several phytochemicals by hydrogen bonds and hydrophobic interactions to encapsulate these phytochemicals in NPs and thus enhance aqueous solubility of the chemicals. Moreover, NPs also can prevent against oxidation/degradation of the phytochemicals encapsulated in the gastrointestinal tract and can be taken directly up by epithelial cells in the small intestine resulting in the increase of absorption and bioavailability of phytochemicals. In general, there are two specific fields of utilization of intrinsically active NPs as pharmacologic agents including oxidative-related pathologies and cancer. On the other hand, Redox active NPs have been shown to ameliorate many clinically relevant pathological disorders that implicate oxidative stress, reducing the oxidative burden and alleviating many important symptoms. In additionuch NPs act either in a catalytic way resembling the action of antioxidant enzymes such as catalase and superoxide dismutase, or as activating surfaces to facilitate reactions between the aqueous environment

  19. Nanomaterials in Biomedicine

    DOE PAGES

    Abdel-Wahhab, Mosaad A.; Márquez, Francisco

    2015-06-11

    Nowadays, nanomaterials have become an emerging field that has shown great promise in the development of novel diagnostic, imaging and therapeutic agents for a variety of diseases, including cancer, due to their nanoscale size effects and increased surface area. In comparison to their larger counterparts, nanomaterials have unique physicochemical and biological properties including size, shape, chemical composition, surface structure and charge, aggregation and agglomeration, and solubility which can affect their interactions with biomolecules and cells. In addition, nanoparticles (NPs) with size-tunable light emission have demonstrated an impressive potential as high-efficiency delivery transporters for biomolecules into cells, being used to producemore » exceptional images of tumor sites. Moreover, NPs delivery system has been widely applied in pharmaceutical field to enhance absorption of bioactive compounds since they can interact with several phytochemicals by hydrogen bonds and hydrophobic interactions to encapsulate these phytochemicals in NPs and thus enhance aqueous solubility of the chemicals. Moreover, NPs also can prevent against oxidation/degradation of the phytochemicals encapsulated in the gastrointestinal tract and can be taken directly up by epithelial cells in the small intestine resulting in the increase of absorption and bioavailability of phytochemicals. In general, there are two specific fields of utilization of intrinsically active NPs as pharmacologic agents including oxidative-related pathologies and cancer. On the other hand, Redox active NPs have been shown to ameliorate many clinically relevant pathological disorders that implicate oxidative stress, reducing the oxidative burden and alleviating many important symptoms. In additionuch NPs act either in a catalytic way resembling the action of antioxidant enzymes such as catalase and superoxide dismutase, or as activating surfaces to facilitate reactions between the aqueous environment

  20. The effect of inulin as a fat substitute on the physicochemical and sensory properties of chicken sausages.

    PubMed

    Alaei, Fereshteh; Hojjatoleslamy, Mohammad; Hashemi Dehkordi, Seyyed Majid

    2018-03-01

    Due to its high thermal resistance and compatibility with the sausage emulsion system, the long-chain inulin can be used as a fat substitute in the formulation of this product. This study was conducted to investigate the effect of inulin on the physicochemical, textural, and sensory properties of chicken sausages. The study included treatments of 25%, 50%, 75%, and 100% substitution. After preparing the samples, their physicochemical, textural, calorimetric, and sensory properties were evaluated. The treatment of 100% substitution of inulin had the maximum amount of sugar (29.90%), moisture (72.63%), protein (51.34), ash (6.95%), and salt (4.02%) (dry basis). The fat content was decreased with the increased levels of inulin substitution (p < .05). The increased amount of inulin reduced hardness, cohesiveness, gumminess, and stringiness, but increased springiness and chewiness up to the 25% substitution of inulin. The highest color difference and hue angle were related to 100% substitution treatment. The sensory evaluation of the samples showed that with the increase in the amount of inulin, the mean scores of the factors including color, appearance, and texture were increased, but the mean scores of smell and mouthfeel were decreased. Overall, the substitution of the entire fat existing in the formulation of the sausage with inulin led to the best physicochemical, textural, colorimetric, and sensory results. The use of inulin could be recommended as a fat substitute in the formulation of chicken sausages.

  1. Physicochemical and Pharmacokinetic Characterization of Amorphous Solid Dispersion of Meloxicam with Enhanced Dissolution Property and Storage Stability.

    PubMed

    Ochi, Masanori; Kimura, Keisuke; Kanda, Atsushi; Kawachi, Takaki; Matsuda, Akitoshi; Yuminoki, Kayo; Hashimoto, Naofumi

    2016-08-01

    The aim of the present study was to develop amorphous solid dispersion (ASD) of meloxicam (MEL) for providing rapid onset of action. ASDs of MEL with polyvinylpyrrolidone (PVP) K-30 (MEL/PVP), HPC-SSL (MEL/HPC), and Eudragit EPO (MEL/EPO) were prepared. The physicochemical properties were characterized by focusing on morphology, crystallinity, dissolution properties, stability, and the interaction of MEL with coexisting polymers. MEL/EPO was physicochemically stable after storage at 40°C/75% RH for 30 days. In contrast, recrystallization of MEL was observed in MEL/PVP and MEL/HPC at 40°C/50% RH for 30 days. Infrared spectroscopic studies and (1)H NMR analyses of MEL/EPO revealed that Eudragit EPO interacted with MEL and reduced intermolecular binding between MEL molecules. Intermolecular interaction of drug molecules is necessary for the formation of crystalline. Thus, the interaction of MEL with Eudragit EPO and interruption of the formation of supramolecular interaction between MEL molecules might lead to the inhibition of crystal growth of MEL. Of all the MEL solid dispersions prepared, MEL/EPO showed the largest improvement in dissolution behavior. Oral administration of MEL/EPO to rats showed rapid and enhanced MEL exposure with a 2.4-fold increase in bioavailability compared with crystalline MEL. Based on these findings, MEL/EPO was physicochemically stable and provided a rapid onset of action and enhanced bioavailability after oral administration.

  2. Calculation of Physicochemical Properties for Short- and Medium-Chain Chlorinated Paraffins

    NASA Astrophysics Data System (ADS)

    Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Buser, Andreas M.; Hungerbühler, Konrad

    2013-06-01

    Short- and medium-chain chlorinated paraffins are potential PBT chemicals (persistent, bioaccumulative, toxic) and short-chain chlorinated paraffins are under review for inclusion in the UNEP Stockholm Convention on Persistent Organic Pollutants. Despite their high production volume of more than one million metric tonnes per year, only few data on their physicochemical properties are available. We calculated subcooled-liquid vapor pressure, subcooled-liquid solubility in water and octanol, Henry's law constant for water and octanol, as well as the octanol-water partition coefficient with the property calculation methods COSMOtherm, SPARC, and EPI Suite™, and compared the results to experimental data from the literature. For all properties, good or very good agreement between calculated and measured data was obtained for COSMOtherm; results from SPARC were in good agreement with the measured data except for subcooled-liquid water solubility, whereas EPI Suite™ showed the largest discrepancies for all properties. After critical evaluation of the three property calculation methods, a final set of recommended property data for short- and medium-chain chlorinated paraffins was derived. The calculated property data show interesting relationships with chlorine content and carbon chain length. Increasing chlorine content does not cause pronounced changes in water solubility and octanol-water partition coefficient (KOW) as long as it is below 55%. Increasing carbon chain length leads to strong increases in KOW and corresponding decreases in subcooled-liquid water solubility. The present data set can be used in further studies to assess the environmental fate and human exposure of this relevant compound class.

  3. Preparation, characterization and properties of ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Luo, Jiaolian; Zhang, Xiaoming; Chen, Ruxue; Wang, Xiaohui; Zhu, Ji; Wang, Xiaomin

    2017-06-01

    In this paper, using the hydrothermal synthesis method, NaOH, Zn(NO3)2, anhydrous ethanol, deionized water as raw material to prepare ZnO nanomaterial, and by X ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) on the synthesis of nano materials, surface morphology and phase luminescence characterization. The results show that the nano materials synthesized for single-phase ZnO, belonging to the six wurtzite structure; material surface shaped, arranged evenly distributed, and were the top six party structure; ZnO nano materials synthesized with strong emission spectra, emission peak is located at 394nm.

  4. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives.

    PubMed

    Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír

    2012-05-21

    In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.

  5. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches

    PubMed Central

    Claver, Irakoze Pierre; Zhang, Haihua; Li, Qin; Zhu, Kexue; Zhou, Huiming

    2010-01-01

    Starches were isolated from soaked and malted sorghum and studied to understand their physicochemical and functional properties. The swelling power (SP) and the water solubility index (WSI) of both starches were nearly similar at temperatures below 50 °C, but at more than 50 °C, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA) showed that malted sorghum starch had a lower viscosity peak value (86 BU/RVU) than raw sorghum starch (454 BU/RVU). For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC) revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp) at 78.06 °C and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22 °C and gelatinization enthalpies of 2.06 J/g. Storage modulus (G′) and loss modulus (G″) of all starch suspensions increased steeply to a maximum at 70 °C and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule’s surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods. PMID:21152287

  6. Physicochemical, microbial, and sensory properties of nanopowdered eggshell-supplemented yogurt during storage.

    PubMed

    Al Mijan, Mohammad; Choi, Kyung-Hoon; Kwak, Hae-Soo

    2014-01-01

    This study was carried out to investigate the possibility of adding nanopowdered eggshell (NPES) into yogurt to improve the functionality of yogurt and the effects of adding NPES on the physicochemical, microbial, and sensory properties of the products during storage. The pH and mean lactic acid bacteria counts of NPES-added (0.15-0.45%, wt/vol) yogurt ranged from 4.31 to 4.66 and from 6.56 × 10(8) to 8.56 × 10(8)cfu/mL, respectively, whereas these values ranged from 4.13 to 4.44 and 8.46 × 10(8) to 1.39 × 10(9), respectively, for the control samples during storage at 5 °C for 16d, which indicates a prolonged shelf-life with NPES-supplemented yogurt. Color analysis showed that the lightness (L*) and position between red and green (a*) values were not significantly influenced by the addition of NPES. However, the position between yellow and blue (b*) value significantly increased with the addition of the concentration (0.45%, wt/vol) of NPES at d 16 of storage. Sensory evaluation revealed that NPES-added yogurts showed a notably less sourness score and a higher astringency score than the control. An earthy flavor was higher in 0.45% NPES-supplemented yogurt compared with the control. Based on the results obtained from the current study, the concentration (0.15 to 0.30%, wt/vol) of NPES can be used to formulate NPES-supplemented yogurt without any significant adverse effects on the physicochemical, microbial, and sensory properties. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Influence of Nanomaterial Compatibilization Strategies on Polyamide Nanocomposites Properties and Nanomaterial Release during the Use Phase.

    PubMed

    Fernández-Rosas, Elisabet; Vilar, Gemma; Janer, Gemma; González-Gálvez, David; Puntes, Victor; Jamier, Vincent; Aubouy, Laurent; Vázquez-Campos, Socorro

    2016-03-01

    The incorporation of small amounts of nanofillers in polymeric matrices has enabled new applications in several industrial sectors. The nanofiller dispersion can be improved by modifying the nanomaterial (NM) surface or predispersing the NMs to enhance compatibility. This study evaluates the effect of these compatibilization strategies on migration/release of the nanofiller and transformation of polyamide-6 (PA6), a thermoplastic polymer widely used in industry during simulated outdoors use. Two nanocomposites (NCs) containing SiO2 nanoparticles (NPs) with different surface properties and two multiwalled carbon nanotube (MWCNT) NCs obtained by different addition methods were produced and characterized, before and after accelerated wet aging conditions. Octyl-modified SiO2 NPs, though initially more aggregated than uncoated SiO2 NPs, reduced PA6 hydrolysis and, consequently, NM release. Although no clear differences in dispersion were observed between the two types of MWCNT NCs (masterbatch vs direct addition) after manufacture, the use of the MWCNT masterbatch reduced PA6 degradation during aging, preventing MWCNT accumulation on the surface and further release or potential exposure by direct contact. The amounts of NM released were lower for MWCNTs (36 and 108 mg/m(2)) than for SiO2 NPs (167 and 730 mg/m(2)), being lower in those samples where the NC was designed to improve the nanofiller-matrix interaction. Hence, this study shows that optimal compatibilization between NM and matrix can improve NC performance, reducing polymer degradation and exposure and/or release of the nanofiller.

  8. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses.

    PubMed

    Gharsallaoui, Adem; Oulahal, Nadia; Joly, Catherine; Degraeve, Pascal

    2016-06-10

    Nisin is a natural preservative for many food products. This bacteriocin is mainly used in dairy and meat products. Nisin inhibits pathogenic food borne bacteria such as Listeria monocytogenes and many other Gram-positive food spoilage microorganisms. Nisin can be used alone or in combination with other preservatives or also with several physical treatments. This paper reviews physicochemical and biological properties of nisin, the main factors affecting its antimicrobial effectiveness, and its food applications as an additive directly incorporated into food matrices.

  9. Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles.

    PubMed

    Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Yeo, Eui-Joo; Jeong, Tae-Jun; Choi, Yun-Sang; Kim, Cheon-Jei

    2015-01-01

    This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle.

  10. Exploratory multivariate modeling and prediction of the physico-chemical properties of surface water and groundwater

    NASA Astrophysics Data System (ADS)

    Ayoko, Godwin A.; Singh, Kirpal; Balerea, Steven; Kokot, Serge

    2007-03-01

    SummaryPhysico-chemical properties of surface water and groundwater samples from some developing countries have been subjected to multivariate analyses by the non-parametric multi-criteria decision-making methods, PROMETHEE and GAIA. Complete ranking information necessary to select one source of water in preference to all others was obtained, and this enabled relationships between the physico-chemical properties and water quality to be assessed. Thus, the ranking of the quality of the water bodies was found to be strongly dependent on the total dissolved solid, phosphate, sulfate, ammonia-nitrogen, calcium, iron, chloride, magnesium, zinc, nitrate and fluoride contents of the waters. However, potassium, manganese and zinc composition showed the least influence in differentiating the water bodies. To model and predict the water quality influencing parameters, partial least squares analyses were carried out on a matrix made up of the results of water quality assessment studies carried out in Nigeria, Papua New Guinea, Egypt, Thailand and India/Pakistan. The results showed that the total dissolved solid, calcium, sulfate, sodium and chloride contents can be used to predict a wide range of physico-chemical characteristics of water. The potential implications of these observations on the financial and opportunity costs associated with elaborate water quality monitoring are discussed.

  11. METAL OXIDE NANOPARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  12. Hybrid 2D-nanomaterials-based electrochemical immunosensing strategies for clinical biomarkers determination.

    PubMed

    Campuzano, S; Pedrero, M; Nikoleli, G-P; Pingarrón, J M; Nikolelis, D P

    2017-03-15

    Owing to the outstanding conductivity and biocompatibility as well as numerous other fascinating properties of two-dimensional (2D)-nanomaterials, 2D-based nanohybrids have shown unparalleled superiorities in the field of electrochemical biosensors. This review highlights latest advances in electrochemical immunosensors for clinical biomarkers based on different hybrid 2D-nanomaterials. Particular attention will be given to hybrid nanostructures involving graphene and other graphene-like 2D-layered nanomaterials (GLNs). Several recent strategies for using such 2D-nanomaterial heterostructures in the development of modern immunosensors, both for tagging or modifying electrode transducers, are summarized and discussed. These hybrid nanocomposites, quite superior than their rival materials, will undoubtedly have an important impact within the near future and not only in clinical areas. Current challenges and future perspectives in this rapidly growing field are also outlined. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Physicochemical properties of precursors of Al2O3-ZrO2 oxide ceramics prepared by electrochemical method

    NASA Astrophysics Data System (ADS)

    Petrova, E. V.; Dresvyannikov, A. F.; Ahmadi Daryakenari, M.; Khairullina, A. I.

    2016-05-01

    Scanning electron microscopy, X-ray, and thermal analysis are used to examine the structure and properties of dispersive systems based on aluminum and zirconium oxides prepared electrochemically. The effect the conditions of synthesis have on the structure and morphology of Al2O3-ZrO2 particles is studied. It is shown that the effect of an electric field on the reaction medium allows us to adjust the physicochemical properties and morphology.

  14. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors

    NASA Astrophysics Data System (ADS)

    Lagorce, David; Douguet, Dominique; Miteva, Maria A.; Villoutreix, Bruno O.

    2017-04-01

    The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects.

  15. Modified β-Cyclodextrin Inclusion Complex to Improve the Physicochemical Properties of Albendazole. Complete In Vitro Evaluation and Characterization

    PubMed Central

    García, Agustina; Leonardi, Darío; Salazar, Mario Oscar; Lamas, María Celina

    2014-01-01

    The potential use of natural cyclodextrins and their synthetic derivatives have been studied extensively in pharmaceutical research and development to modify certain properties of hydrophobic drugs. The ability of these host molecules of including guest molecules within their cavities improves notably the physicochemical properties of poorly soluble drugs, such as albendazole, the first chosen drug to treat gastrointestinal helminthic infections. Thus, the aim of this work was to synthesize a beta cyclodextrin citrate derivative, to analyze its ability to form complexes with albendazole and to evaluate its solubility and dissolution rate. The synthesis progress of the cyclodextrin derivative was followed by electrospray mass spectrometry and the acid-base titration of the product. The derivative exhibited an important drug affinity. Nuclear magnetic resonance experiments demonstrated that the tail and the aromatic ring of the drug were inside the cavity of the cyclodextrin derivative. The inclusion complex was prepared by spray drying and full characterized. The drug dissolution rate displayed exceptional results, achieving 100% drug release after 20 minutes. The studies indicated that the inclusion complex with the cyclodextrin derivative improved remarkably the physicochemical properties of albendazole, being a suitable excipient to design oral dosage forms. PMID:24551084

  16. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    PubMed

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  17. Carbon Nanomaterials in Biological Studies and Biomedicine.

    PubMed

    Teradal, Nagappa L; Jelinek, Raz

    2017-09-01

    The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of added ingredients on water status and physico-chemical properties of tomato sauce.

    PubMed

    Diantom, Agoura; Curti, Elena; Carini, Eleonora; Vittadini, Elena

    2017-12-01

    Different ingredients (guar, xanthan, carboxy methyl cellulose, locust bean gums, potato fiber, milk, potato and soy proteins) were added to tomato sauce to investigate their effect on its physico-chemical properties. The products were characterized in terms of colour, rheological properties (Bostwick consistency, flow behavior and consistency coefficient), water status (water activity, moisture content) and molecular mobility by 1 H Nuclear Magnetic Resonance (NMR). Water activity was significantly decreased only by the addition of potato fiber. Xanthan, locust bean, guar and carboxy methyl cellulose significantly enhanced Bostwick consistency and consistency coefficient. Type of ingredient and concentration significantly affected 1 H NMR mobility indicators. Principal component analysis (PCA) indicated that only 1 H NMR mobility parameters were able to differentiate the effect of milk protein, xanthan and potato fiber on tomato sauce properties. The information collected in this work provides information to intelligently modulate tomato sauce attributes and tailor its properties for specific applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering.

    PubMed

    El-Fiqi, Ahmed; Lee, Jae Ho; Lee, Eun-Jung; Kim, Hae-Won

    2013-12-01

    Collagen (Col) hydrogels have poor physicochemical and mechanical properties and are susceptible to substantial shrinkage during cell culture, which limits their potential applications in hard tissue engineering. Here, we developed novel nanocomposite hydrogels made of collagen and mesoporous bioactive glass nanoparticles (mBGns) with surface amination, and addressed the effects of mBGn addition (Col:mBG = 2:1, 1:1 and 1:2) and its surface amination on the physicochemical and mechanical properties of the hydrogels. The amination of mBGn was shown to enable chemical bonding with collagen molecules. As a result, the nanocomposite hydrogels exhibited a significantly improved physicochemical and mechanical stability. The hydrolytic and enzymatic degradation of the Col-mBGn hydrogels were slowed down due to the incorporation of mBGn and its surface amination. The mechanical properties of the hydrogels, specifically the resistance to loading as well as the stiffness, significantly increased with the addition of mBGn and its aminated form, as assessed by a dynamic mechanical analysis. Mesenchymal stem cells cultivated within the Col-mBGn hydrogels were highly viable, with enhanced cytoskeletal extensions, due to the addition of surface aminated mBGn. While the Col hydrogel showed extensive shrinkage (down to ∼20% of initial size) during a few days of culture, the shrinkage of the mBGn-added hydrogel was substantially reduced, and the aminated mBGn-added hydrogel had no observable shrinkage over 21 days. Results demonstrated the effective roles of aminated mBGn in significantly improving the physicochemical and mechanical properties of Col hydrogel, which are ultimately favorable for applications in stem cell culture for bone tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures.

    PubMed

    Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J

    2018-02-25

    involved in the natural stability of Bio-Me-nanomaterials. As a result, macromolecules such as DNA, polyphosphates and proteins may electrostatically interact with Bio-Me-nanomaterials in suspension through their charged moieties, showing the same properties of counterions in Ch-Me-nanostructure suspensions. Since several biomolecules (e.g. neutral lipids, nonionic biosurfactants, polysaccharides, and secondary metabolites) produced by metal(loid)-grown organisms can develop similar steric hindrance as compared to nonionic amphiphilic surfactants and block co-polymers generally used to sterically stabilize Ch-Me-nanomaterials. These biomolecules, most likely, are involved in the development of steric stabilization, because of their bulky structures. Finally, charged lipids and polysaccharides, ionic biosurfactants or proteins with amphiphilic properties can exert a dual effect (i.e. electrostatic and steric repulsion interactions) in the contest of Bio-Me-nanomaterials, leading to the high degree of stability observed.

  1. Organic fluorescent dye-based nanomaterials: Advances in the rational design for imaging and sensing applications.

    PubMed

    Svechkarev, Denis; Mohs, Aaron M

    2018-02-25

    Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral property tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical, and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes

    PubMed Central

    Kim, Kyoung-Min; Choi, Mun-Hyoung; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Yu-Ri; Kim, Meyoung-Kon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about −40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. PMID:25565825

  3. Physicochemical and Immunomodulatory Properties of Gum Exudates Obtained from Astragalus myriacanthus and Some of Its Isolated Carbohydrate Biopolymers

    PubMed Central

    Hamedi, Azadeh; Yousefi, Gholamhossein; Farjadian, Shirin; Bour Bour, Mitra Saadat; Parhizkar, Elahenaz

    2017-01-01

    Plants gums are complex mixtures of different polysaccharides with a variety of biological activities and pharmaceutical applications. Few studies have focused on physicochemical and biological properties of gums obtained from different plants. This study was designed to determine potential pharmaceutical and pharmacological values of the gum exudates and its isolated biopolymers obtained from Astragalus myriacanthus Boiss [syn. Astracantha myriacantha (Boiss.) Podlech] (Fabaceae). The physicochemical, rheological, and mucoadhesion properties of the gum and its fractions was measured at 7, 27, and 37 °C with and without the presence of NaCl (1%). Also, the structural and immunomodulatory properties of several water soluble biopolymers isolated using ion exchange and size exclusion chromatographic methods were investigated on Jurkat cells at concentrations of 31.25, 62.5, 125, 250, 500 and 1000 μg/mL. The consistency and shear-thinning property of the gum and its fractions decreased as temperature increased. In the presence of NaCl, the consistency increased but no regular pattern was observed regarding to shear-thinning behavior. The mucoadhesion strength was 40.66 ± 2.08 g/cm2 which is suitable for use as a formulary mucoadhesive polymer. The isolated biopolymers had proteo-arabinoglycan structure. Their molecular weight was calculated to be 1.67-667 kDa. One biopolymer had a proliferative effect and others had dose dependent cytotoxic/proliferative properties. The crude gum and its insoluble fraction showed suitable mucoadhesion, swellability and rheological properties which makes them suitable for designing drug delivery systems. The gum proteo-arabinoglycans with different molecular weight and structures had different immunomodulatory properties. PMID:29552060

  4. Selenium and tellurium nanomaterials

    NASA Astrophysics Data System (ADS)

    Piacenza, Elena; Presentato, Alessandro; Zonaro, Emanuele; Lampis, Silvia; Vallini, Giovanni; Turner, Raymond J.

    2018-04-01

    Over the last 40 years, the rapid and exponential growth of nanotechnology led to the development of various synthesis methodologies to generate nanomaterials different in size, shape and composition to be applied in various fields. In particular, nanostructures composed of Selenium (Se) or Tellurium (Te) have attracted increasing interest, due to their intermediate nature between metallic and non-metallic elements, being defined as metalloids. Indeed, this key shared feature of Se and Te allows us the use of their compounds in a variety of applications fields, such as for manufacturing photocells, photographic exposure meters, piezoelectric devices, and thermoelectric materials, to name a few. Considering also that the chemical-physical properties of elements result to be much more emphasized when they are assembled at the nanoscale range, huge efforts have been made to develop highly effective synthesis methods to generate Se- or Te-nanomaterials. In this context, the present book chapter will explore the most used chemical and/or physical methods exploited to generate different morphologies of metalloid-nanostructures, focusing also the attention on the major advantages, drawbacks as well as the safety related to these synthetic procedures.

  5. Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties.

    PubMed

    Leung, Yu Hang; Yung, Mana M N; Ng, Alan M C; Ma, Angel P Y; Wong, Stella W Y; Chan, Charis M N; Ng, Yip Hang; Djurišić, Aleksandra B; Guo, Muyao; Wong, Mabel Ting; Leung, Frederick C C; Chan, Wai Kin; Leung, Kenneth M Y; Lee, Hung Kay

    2015-04-01

    Conflicting reports on the toxicity of CeO2 nanomaterials have been published in recent years, with some studies finding CeO2 nanoparticles to be toxic, while others found it to have protective effects against oxidative stress. To investigate the possible reasons for this, we have performed a comprehensive study on the physical and chemical properties of nanosized CeO2 from three different suppliers as well as CeO2 synthesized by us, and tested their toxicity. For toxicity tests, we have studied the effects of CeO2 nanoparticles on a Gram-negative bacterium Escherichia coli in the dark, under ambient and UV illuminations. We have also performed toxicity tests on the marine diatom Skeletonema costatum under ambient and UV illuminations. We found that the CeO2 nanoparticle samples exhibited significantly different toxicity, which could likely be attributed to the differences in interactions with cells, and possibly to differences in nanoparticle compositions. Our results also suggest that toxicity tests on bacteria may not be suitable for predicting the ecotoxicity of nanomaterials. The relationship between the toxicity and physicochemical properties of the nanoparticles is explicitly discussed in the light of the current results. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials.

    PubMed

    Avramescu, M-L; Rasmussen, P E; Chénier, M; Gardner, H D

    2017-01-01

    Solubility is a critical component of physicochemical characterisation of engineered nanomaterials (ENMs) and an important parameter in their risk assessments. Standard testing methodologies are needed to estimate the dissolution behaviour and biodurability (half-life) of ENMs in biological fluids. The effect of pH, particle size and crystal form on dissolution behaviour of zinc metal, ZnO and TiO 2 was investigated using a simple 2 h solubility assay at body temperature (37 °C) and two pH conditions (1.5 and 7) to approximately frame the pH range found in human body fluids. Time series dissolution experiments were then conducted to determine rate constants and half-lives. Dissolution characteristics of investigated ENMs were compared with those of their bulk analogues for both pH conditions. Two crystal forms of TiO 2 were considered: anatase and rutile. For all compounds studied, and at both pH conditions, the short solubility assays and the time series experiments consistently showed that biodurability of the bulk analogues was equal to or greater than biodurability of the corresponding nanomaterials. The results showed that particle size and crystal form of inorganic ENMs were important properties that influenced dissolution behaviour and biodurability. All ENMs and bulk analogues displayed significantly higher solubility at low pH than at neutral pH. In the context of classification and read-across approaches, the pH of the dissolution medium was the key parameter. The main implication is that pH and temperature should be specified in solubility testing when evaluating ENM dissolution in human body fluids, even for preliminary (tier 1) screening.

  7. Effect of mineral elements on physicochemical properties of oxidised starches and generation of free radicals.

    PubMed

    Pietrzyk, Sławomir; Fortuna, Teresa; Królikowska, Karolina; Rogozińska, Ewelina; Labanowska, Maria; Kurdziel, Magdalena

    2013-09-12

    The objective of this study was to determine the effect of enrichment of oxidised starches with mineral compounds on their physicochemical properties and capability for free radical generation. Potato and spelt wheat starches were oxidised with sodium hypochlorite and, afterwards, modified with ions of potassium, magnesium and iron. The modified starches were analysed for: content of mineral elements, colour parameters (L*a*b*), water binding capacity solubility in water at temperature of 50 and 80 °C, and susceptibility to enzymatic hydrolysis with α-amylase. In addition, thermodynamic characteristics of gelatinisation was determined by differential scanning calorimetry (DSC), and the number and character of thermally generated free radicals was assayed using electron paramagnetic resonance (EPR). Based on the results achieved, it was concluded that the quantity of incorporated minerals and changes in the assayed physicochemical parameters depended not only on the botanical type of starch but also on the type of the incorporated mineral element. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  9. Differences in Physicochemical and Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent Hens

    PubMed Central

    Chen, Yulian; Qiao, Yan; Xiao, Yu; Chen, Haochun; Zhao, Liang; Huang, Ming; Zhou, Guanghong

    2016-01-01

    The objective of this study was to compare the physicochemical and nutritional properties of breast and thigh meat from commercial Chinese crossbred chickens (817 Crossbred chicken, 817C), imported commercial broilers (Arbor Acres broiler, AAB), and commercial spent hens (Hyline Brown, HLB). The crossbred chickens, commercial broilers and spent hens were slaughtered at their typical market ages of 45 d, 40 d, and 560 d, respectively. The results revealed that several different characteristic features for the three breeds. The meat of the 817C was darker than that of the other two genotypes. The 817C were also characterized by higher protein, lower intramuscular fat, and better texture attributes (cooking loss, pressing loss and Warner-Bratzler shear force [WBSF]) compared with AAB and HLB. The meat of the spent hens (i.e. HLB) was higher in WBSF and total collagen content than meat of the crossbred chickens and imported broilers. Furthermore, correlation analysis and principal component analysis revealed that there was a clear relationship among physicochemical properties of chicken meats. With regard to nutritional properties, it was found that 817C and HLB exhibited higher contents of essential amino acids and essential/non-essential amino acid ratios. In addition, 817C were noted to have highest content of microelements whereas AAB have highest content of potassium. Besides, 817C birds had particularly higher proportions of desirable fatty acids, essential fatty acids, polyunsaturated/saturated and (18:0+18:1)/16:0 ratios. The present study also revealed that there were significant differences on breast meat and thigh meat for the physicochemical and nutritional properties, regardless of chicken breeds. In conclusion, meat of crossbred chickens has some unique features and exhibited more advantages over commercial broilers and spent hens. Therefore, the current investigation would provide valuable information for the chicken meat product processing, and

  10. Differences in Physicochemical and Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent Hens.

    PubMed

    Chen, Yulian; Qiao, Yan; Xiao, Yu; Chen, Haochun; Zhao, Liang; Huang, Ming; Zhou, Guanghong

    2016-06-01

    The objective of this study was to compare the physicochemical and nutritional properties of breast and thigh meat from commercial Chinese crossbred chickens (817 Crossbred chicken, 817C), imported commercial broilers (Arbor Acres broiler, AAB), and commercial spent hens (Hyline Brown, HLB). The crossbred chickens, commercial broilers and spent hens were slaughtered at their typical market ages of 45 d, 40 d, and 560 d, respectively. The results revealed that several different characteristic features for the three breeds. The meat of the 817C was darker than that of the other two genotypes. The 817C were also characterized by higher protein, lower intramuscular fat, and better texture attributes (cooking loss, pressing loss and Warner-Bratzler shear force [WBSF]) compared with AAB and HLB. The meat of the spent hens (i.e. HLB) was higher in WBSF and total collagen content than meat of the crossbred chickens and imported broilers. Furthermore, correlation analysis and principal component analysis revealed that there was a clear relationship among physicochemical properties of chicken meats. With regard to nutritional properties, it was found that 817C and HLB exhibited higher contents of essential amino acids and essential/non-essential amino acid ratios. In addition, 817C were noted to have highest content of microelements whereas AAB have highest content of potassium. Besides, 817C birds had particularly higher proportions of desirable fatty acids, essential fatty acids, polyunsaturated/saturated and (18:0+18:1)/16:0 ratios. The present study also revealed that there were significant differences on breast meat and thigh meat for the physicochemical and nutritional properties, regardless of chicken breeds. In conclusion, meat of crossbred chickens has some unique features and exhibited more advantages over commercial broilers and spent hens. Therefore, the current investigation would provide valuable information for the chicken meat product processing, and

  11. Clay facial masks: physicochemical stability at different storage temperatures.

    PubMed

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  12. Physicochemical properties of film-coated melt-extruded pellets.

    PubMed

    Young, Chistopher R; Crowley, Michael; Dietzsch, Caroline; McGinity, James W

    2007-02-01

    The purpose of this study was to investigate the physicochemical properties of poly(ethylene oxide) (PEO) and guaifenesin containing beads prepared by a melt-extrusion process and film-coated with a methacrylic acid copolymer. Solubility parameter calculations, thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), modulated differential scanning calorimetry (MDSC), X-ray powder diffraction (XRPD) and high performance liquid chromatography (HPLC) were used to determine drug/polymer miscibility and/or the thermal processibility of the systems. Powder blends of guaifenesin, PEO and functional excipients were processed using a melt-extrusion and spheronization technique and then film-coated in a fluidized bed apparatus. Solubility parameter calculations were used to predict miscibility between PEO and guaifenesin, and miscibility was confirmed by SEM and observation of a single melting point for extruded drug/polymer blends during MDSC investigations. The drug was stable following melt-extrusion as determined by TGA and HPLC; however, drug release rate from pellets decreased upon storage in sealed HDPE containers with silica desiccants at 40 degrees C/75% RH. The weight loss on drying, porosity and tortuosity determinations were not influenced by storage. Recrystallization of guaifenesin and PEO was confirmed by SEM and XRPD. Additionally, the pellets exhibited a change in adhesion behaviour during dissolution testing. The addition of ethylcellulose to the extruded powder blend decreased and stabilized the drug release rate from the thermally processed pellets. The current study also demonstrated film-coating to be an efficient process for providing melt-extruded beads with pH-dependent drug release properties that were stable upon storage at accelerated conditions.

  13. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Zeng, Sheng; Kar, Piyush; Thakur, Ujwal Kumar; Shankar, Karthik

    2018-02-01

    As the search for efficient catalysts for CO2 photoreduction continues, nanostructured perovskite oxides have emerged as a class of high-performance photocatalytic materials. The perovskite oxide candidates for CO2 photoreduction are primarily nanostructured forms of titanates, niobates, tantalates and cobaltates. These materials form the focus of this review article because they are much sought-after due to their nontoxic nature, adequate chemical stability, and tunable crystal structures, bandgaps and surface energies. As compared to conventional semiconductors and nanomaterial catalysts, nanostructured perovskite oxides also exhibit an extended optical-absorption edge, longer charge carrier lifetimes, and favorable band-alignment with respect to reduction potential of activated CO2 and reduction products of the same. While CO2 reduction product yields of several hundred μmol-1 h-1 are observed with many types of perovskite oxide nanomaterials in stand-alone forms, yield of such quantities are not common with semiconductor nanomaterials of other types. In this review, we present current state-of-the-art synthesis methods to form perovskite oxide nanomaterials, and procedures to engineer their bandgaps. This review also presents a comprehensive summary and discussion on crystal structures, defect distribution, morphologies and electronic properties of the perovskite oxides, and correlation of these properties to CO2 photoreduction performance. This review offers researchers key insights for developing advanced perovskite oxides in order to further improve the yields of CO2 reduction products.

  14. The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials.

    PubMed

    Ma, Ming-Guo; Zhu, Jie-Fang; Zhu, Ying-Jie; Sun, Run-Cang

    2014-09-01

    In recent years, the microwave-assisted ionic-liquid method has been accepted as a promising methodology for the preparation of nanomaterials and cellulose-based nanocomposites. Applications of this method in the preparation of cellulose-based nanocomposites comply with the major principles of green chemistry, that is, they use an environmentally friendly method in environmentally preferable solvents to make use of renewable materials. This minireview focuses on the recent development of the synthesis of nanomaterials and cellulose-based nanocomposites by means of the microwave-assisted ionic-liquid method. We first discuss the preparation of nanomaterials including noble metals, metal oxides, complex metal oxides, metal sulfides, and other nanomaterials by means of this method. Then we provide an overview of the synthesis of cellulose-based nanocomposites by using this method. The emphasis is on the synthesis, microstructure, and properties of nanostructured materials obtained through this methodology. Our recent research on nanomaterials and cellulose-based nanocomposites by this rapid method is summarized. In addition, the formation mechanisms involved in the microwave-assisted ionic-liquid synthesis of nanostructured materials are discussed briefly. Finally, the future perspectives of this methodology in the synthesis of nanostructured materials are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.

    PubMed

    Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj

    2015-08-15

    Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    Treesearch

    Robert J. Moon; Gregory T. Schueneman; John Simonsen

    2016-01-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is...

  17. Current applications and future prospects of nanomaterials in tumor therapy.

    PubMed

    Huang, Yu; Fan, Chao-Qiang; Dong, Hui; Wang, Su-Min; Yang, Xiao-Chao; Yang, Shi-Ming

    2017-01-01

    Tumors are one of the most serious human diseases and cause numerous global deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost killer worldwide among human diseases, due to their specific limitations, such as multidrug resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for tumor therapy. Recently, the fast development of nanoscience has paved the way for designing new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific inhibition. This review summarizes the recent progress using the innate antitumor properties of metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects are discussed.

  18. Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches.

    PubMed

    Kong, Xiangli; Zhou, Xin; Sui, Zhongquan; Bao, Jinsong

    2016-10-01

    Effects of gamma irradiation on the physicochemical and crystalline properties of the native and acetylated wheat starches were investigated. Peak, hot paste, cool paste and setback viscosities of both native and acetylated wheat starches decreased continuously and significantly with the increase of the irradiation dose, whereas breakdown viscosity increased after irradiation. However, gamma irradiation only exerted slight effects on thermal and retrogradation properties of both native and acetylated wheat starches. X-ray diffraction and fourier transform infrared spectroscopy revealed that acetylation modification had considerable effects on the molecular structure of wheat starch, and the crystallinity of both untreated and acetylated starches increased slightly with the increase of irradiation dose. However, the V-type crystallinity of amylose-lipid complex was not affected by gamma irradiation treatments with doses up to 9kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Simulating Exposure Concentrations of Engineered Nanomaterials in Surface Water Systems: Release of WASP8

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Bouchard, D.; Zepp, R. G.; Henderson, W. M.; Han, Y.; Hsieh, H. S.; Avant, B. K.; Acrey, B.; Spear, J.

    2017-12-01

    The unique properties of engineered nanomaterials led to their increased production and potential release into the environment. Currently available environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials' environmental behavior. This is due to an incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. The well-known Water Quality Analysis Simulation Program (WASP) was updated to incorporate nanomaterial-specific processes, specifically hetero-aggregation with particulate matter. In parallel with this effort, laboratory studies were used to quantify parameter values parameters necessary for governing processes in surface waters. This presentation will discuss the recent developments in the new architecture for WASP8 and the newly constructed Advanced Toxicant Module. The module includes advanced algorithms for increased numbers of state variables: chemicals, solids, dissolved organic matter, pathogens, temperature, and salinity. This presentation will focus specifically on the incorporation of nanomaterials, with the applications of the fate and transport of hypothetical releases of Multi-Walled Carbon Nanotubes (MWCNT) and Graphene Oxide (GO) into the headwaters of a southeastern US coastal plains river. While this presentation focuses on nanomaterials, the advanced toxicant module can also simulate metals and organic contaminants.

  20. Physicochemical properties and antioxidant activity of gamma-oryzanol-loaded liposome formulations for topical use.

    PubMed

    Viriyaroj, Amornrat; Ngawhirunpat, Tanasait; Sukma, Monrudee; Akkaramongkolporn, Prasert; Ruktanonchai, Uracha; Opanasopit, Praneet

    2009-01-01

    The objective of this study is to prepare the gamma-oryzanol-loaded liposomes and investigate their physicochemical properties and antioxidant activity intended for cosmetic applications. Liposomes, Composing phosphatidylCholine (PC) and Cholesterol (Chol), CHAPS or sodium taurocholate (NaTC) were prepared by sonication method. Gamma-oryzanol-loaded liposomes were prepared by using 3, 5 and 10% gamma-oryzanol as an initial concentration. The formulation factors in a particular type and composition of lipid and initial drug loading on the physicochemical properties (i.e., particle size, zeta potential, entrapment efficiency, drug release) and antioxidant activity were studied. The particle sizes of bare liposomes were in nanometer range. The gamma-oryzanol-loaded liposomes in formulations of PC/CHAPS and PC/NaTC liposomes were smaller than PC/Chol liposomes. The incorporation efficiency of 10% gamma-oryzanol-loaded PC/Chol liposomes was less than gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes allowing higher in vitro release rate due to higher free gamma-oryzanol in buffer solution. The antioxidant activity of gamma-oryzanol-loaded liposomes was not different from pure gamma-oryzanol. Both gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes were showed to enhance the antioxidant activity in NHF cells. gamma-oryzanol-loaded PC/Chol liposomes demonstrated the lowest cytotoxicity in NHF cells. It was conceivably concluded that liposomes prepared in this study are suitable for gamma-oryzanol incorporation without loss of antioxidant activity.

  1. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems

    NASA Astrophysics Data System (ADS)

    Cardano, Francesca; Frasconi, Marco; Giordani, Silvia

    2018-04-01

    Photo-responsive multifunctional nanomaterials are receiving considerable attention for biological applications because of their unique properties. The functionalization of the surface of carbon nanotubes (CNTs) and graphene, among other carbon based nanomaterials, with molecular switches that exhibit reversible transformations between two or more isomers in response to different kind of external stimuli, such as electromagnetic radiation, temperature and pH, has allowed the control of the optical and electrical properties of the nanomaterial. Light-controlled molecular switches, such as azobenzene and spiropyran, have attracted a lot of attention for nanomaterial’s functionalization because of the remote modulation of their physicochemical properties using light stimulus. The enhanced properties of the hybrid materials obtained from the coupling of carbon based nanomaterials with light-responsive switches has enabled the fabrication of smart devices for various biological applications, including drug delivery, bioimaging and nanobiosensors. In this review, we highlight the properties of photo-responsive carbon nanomaterials obtained by the conjugation of CNTs and graphene with azobenzenes and spiropyrans molecules to investigate biological systems, devising possible future directions in the field.

  2. Chemical composition and physicochemical properties of Phaeodactylum tricornutum microalgal residual biomass.

    PubMed

    German-Báez, L J; Valdez-Flores, M A; Félix-Medina, J V; Norzagaray-Valenzuela, C D; Santos-Ballardo, D U; Reyes-Moreno, C; Shelton, L M; Valdez-Ortiz, A

    2017-12-01

    The production of photosynthetic biofuels using microalgae is a promising strategy to combat the use of non-renewable energy sources. The microalgae residual biomass is a waste by-product of biofuel production; however, it could prove to have utility in the development of sustainable nutraceuticals and functional foods. In this study, a comprehensive characterisation of the under-utilised Phaeodactylum tricornutum microalgae residual biomass is presented. Proximal composition, antioxidant capacity (using three different antioxidant assays; oxygen radical absorbance capacity; radical cation activity, ABTS; and radical scavenging activity, DPPH), and total phenolic content of free and bound polyphenols were determined. Additionally, the physicochemical properties of water activity, pH, water absorption index, water solubility index, and dispersibility were evaluated. Results revealed that P. tricornutum microalgae residual biomass exhibits a relatively high protein and carbohydrate content, with values of 36.67% and 46.78%, respectively; and most carbohydrates were found as total dietary fibre (45.57%), of which insoluble dietary fibre was the most predominant (43.54%). Antioxidant capacity values for total phytochemicals of 106.22, 67.93, 9.54 µM TE g -1 dw were determined by oxygen radical absorbance capacity, ABTS, and DPPH assays, respectively. Total phenolic content was found to be 2.90 mg GAE g -1 dw. Interestingly, antioxidant capacity and total phenolic content were higher in bound than in free phytochemical extracts. The physicochemical analysis showed P. tricornutum microalgae residual biomass to have suitable properties for the generation of a beverage with Aw, pH, water absorption index, water solubility index, and dispersibility values of 0.45, 7.12, 3.40 g gel g -1  dw, 2.5 g solids 100 g -1  dw, and 90%, respectively. Hence, P. tricornutum microalgae residual biomass could be considered a potential source of bioactive

  3. Physicochemical properties of giant embryo rice Seonong 17 and Keunnunjami.

    PubMed

    Chung, Soo Im; Lee, Sang Chul; Kang, Mi Young

    2017-05-01

    This study was carried out to determine the physicochemical properties of giant embryo rice "Seonong 17" and "Keunnunjami" in comparison with the normal embryo rice. Scanning electron microscopy revealed that Seonong 17 and Keunnunjami have larger embryo and that starch granules from Keunnunjami were more tightly packed with smaller air spaces between granules. Seonong 17 exhibited the lowest amylose content. Keunnunjami showed the highest protein content, pasting temperature, peak and breakdown viscosities, and gelatinization temperature and enthalpy. Both giant embryo rice samples contained significantly higher amounts of essential amino acids and unsaturated fatty acids than the normal rice. Proteomic analysis using two-dimensional gel electrophoresis revealed differences in the protein profile of Seonong 17 and Keunnunjami. The results could serve as baseline information in evaluating the quality of these two giant embryo rice cultivars and provide a better understanding of their potential uses and food industry applications.

  4. Cooperative nanomaterials systems for cancer diagnosis and therapeutics

    NASA Astrophysics Data System (ADS)

    Park, Ji Ho

    The unique electromagnetic and biologic properties of nanomaterials are being harnessed to build powerful new medical technologies. Particularly, there have been recently increasing interests in cancer nanotechnology, wherein nanomaterials play an important role in ultrasensitive imaging, targeting, and therapy of cancer. However, these nanomaterials typically function as individual units and are designed to independently perform their tasks. In this dissertation, new cooperative nanosystems consisting of two distinct nanomaterials that work together to target, identify, or treat tumors in vivo were studied. In the first two chapters, the synthesis of worm-shaped dextran-coated iron oxide nanoparticles (nanoworms, NW) exhibiting substantial in vivo circulation times and significant tumor targeting when coated with tumor-homing peptides were studied. NWs are also found to display a greater magnetic resonance (MR) response than the spherical nanoparticles. Next, two types of multifunctional nanoparticles were fabricated for simultaneous detection and treatment of cancer. Micellar hybrid nanoparticles (MHN) that contain magnetic nanoparticles, quantum dots, and an anti-cancer drug doxorubicin (DOX) within a single PEG-modified phospholipid micelle were first prepared. Simultaneous multimodal imaging (MR and fluorescence) and targeted drug delivery in vitro and in vivo was performed using DOX-incorporated targeted MHN. Secondly, luminescent porous silicon nanoparticles (LPSINP) that were drug-loadable, biodegradable and relatively non-toxic were prepared. In contrast to most inorganic nanomaterials, LPSINP were degraded in vivo in a relatively short time with no noticeable toxicity. The clearance and degradation of intravenously injected LPSINP in the bladder, liver, and spleen were established by whole-body fluorescence imaging. Finally, two types of cooperative nanomaterials systems to amplify targeting and deliver drugs efficiently to regions of tumor invasion were

  5. Interactions between suspension characteristics and physicochemical properties of silver and copper oxide nanoparticles: a case study for optimizing nanoparticle stock suspensions using a central composite design.

    PubMed

    Son, Jino; Vavra, Janna; Li, Yusong; Seymour, Megan; Forbes, Valery

    2015-04-01

    The preparation of a stable nanoparticle stock suspension is the first step in nanotoxicological studies, but how different preparation methods influence the physicochemical properties of nanoparticles in a solution, even in Milli-Q water, is often under-appreciated. In this study, a systematic approach using a central composite design (CCD) was employed to investigate the effects of sonication time and suspension concentration on the physicochemical properties (i.e. hydrodynamic diameter, zeta potential and ion dissolution) of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) and to identify optimal conditions for suspension preparation in Milli-Q water; defined as giving the smallest particle sizes, highest suspension stability and lowest ion dissolution. Indeed, all the physicochemical properties of AgNPs and CuONPs varied dramatically depending on how the stock suspensions were prepared and differed profoundly between nanoparticle types, indicating the importance of suspension preparation. Moreover, the physicochemical properties of AgNPs and CuONPs, at least in simple media (Milli-Q water), behaved in predictable ways as a function of sonication time and suspension concentration, confirming the validity of our models. Overall, the approach allows systematic assessment of the influence of various factors on key properties of nanoparticle suspensions, which will facilitate optimization of the preparation of nanoparticle stock suspensions and improve the reproducibility of nanotoxicological results. We recommend that further attention be given to details of stock suspension preparation before conducting nanotoxicological studies as these can have an important influence on the behavior and subsequent toxicity of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effects of gamma irradiation on physicochemical properties of Korean red ginseng powder

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Yook, Hong-Sun; Kwon, Oh-Jin; Kang, Il-Jun

    1997-04-01

    Gamma irradiation was applied to Korean red ginseng powder to improve its quality. Major physicochemical properties (approximate composition, pH, acidity, browning pigment, hydrogen donating activity, fatty acids, minerals and saponin) were not significantly changed by gamma irradiation up to 10 kGy. The TBA value was increased depending on the increment of irradiation dose level. In free amino acids, threonine was increased while, serine and glutamic acid were decreased by gamma irradiation. In total amino acids, total contents were not significantly changed by gamma irradiation though tyrosine was slightly decreased P ⩽ 0.05. In free sugar, glucose, sucrose and maltose were significantly increased by 7.5 and 10 kGy gamma irradiation P ⩽ 0.05

  7. Effect of banana pulp and peel flour on physicochemical properties and in vitro starch digestibility of yellow alkaline noodles.

    PubMed

    Ramli, Saifullah; Alkarkhi, Abbas F M; Shin Yong, Yeoh; Min-Tze, Liong; Easa, Azhar Mat

    2009-01-01

    The present study describes the utilization of banana--Cavendish (Musa acuminata L., cv cavendshii) and Dream (Musa acuminata colla. AAA, cv 'Berangan')--pulp and peel flours as functional ingredients in yellow alkaline noodles. Noodles were prepared by partial substitution of wheat flour with ripe banana pulp or peel flours. In most cases, the starch hydrolysis index, predicted glycaemic index (pGI) and physicochemical properties of cooked noodles were affected by banana flour addition. In general, the pGI values of cooked noodles were in the order; banana peel noodles < banana pulp noodles < control noodles. Since the peel flour was higher in total dietary fibre but lower in resistant starch contents than the pulp flour, the low pGI of banana peel noodles was mainly due to its high dietary fibre content. In conclusion, banana pulp and peel flour could be useful for controlling starch hydrolysis of yellow noodles, even though some physicochemical properties of the noodles were altered.

  8. Nanomaterials and Global Sustainability.

    PubMed

    Hamers, Robert J

    2017-03-21

    Nanomaterials provide tremendous opportunities to advance human welfare in many areas including energy storage, catalysis, photovoltaic energy conversion, environmental remediation, and agriculture. As nanomaterials become incorporated into commercial processes and consumer products in increasing amounts, it will be essential to develop an understanding of how these materials interact with the environment. The broad spectrum and complexity of nanomaterials drive a need for molecular-level design rules. Ultimately a grand challenge is to use the power of chemistry to ensure that nanoenabled technologies can come to fruition in an environmentally benign manner.

  9. Nanomaterials and Retinal Toxicity

    EPA Science Inventory

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  10. Synthesis and Application of Graphene Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei

    Graphene, a two-dimensional sp2-bonded carbon material, has recently attracted major attention due to its excellent electrical, optical and mechanical properties. Depending on different applications, graphene and its derived hybrid nanomaterials can be synthesized by either bottom-up chemical vapor deposition (CVD) methods for electronics, or various top-down chemical reaction methods for energy generation and storage devices. My thesis begins with the investigation of CVD synthesis of graphene thin films in Chapter 1, including the direct growth of bilayer graphene on insulating substrates and synthesis of "rebar graphene": a hybrid structure with graphene and carbon or boron nitride nanotubes. Chapter 2 discusses the synthesis of nanoribbon-shaped materials and their applications, including splitting of vertically aligned multi-walled carbon nanotube carpets for supercapacitors, synthesis of dispersable ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in magnetic field, graphene nanoribbon/SnO 2 nanocomposite for lithium ion batteries, and enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Next, Chapter 3 discusses graphene coated iron oxide nanomaterials and their use in energy storage applications. Finally, Chapter 4 introduces the development, characterization, and fabrication of laser induced graphene and its application as supercapacitors.

  11. Predicted phototoxicities of carbon nano-material by quantum mechanical calculations.

    EPA Science Inventory

    The basis of this research is obtaining the best quantum mechanical structure of carbon nanomaterials and is fundamental in determining their other properties. Therefore, their predictive phototoxicity is directly related to the materials’ structure. The results of this project w...

  12. Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles

    PubMed Central

    Choi, Yun-Sang

    2015-01-01

    This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle. PMID:26761884

  13. Pathophysiologic mechanisms of biomedical nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future.more » We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.« less

  14. Engineered metal based nanomaterials in aqueous environments: Interactions, transformations and implications

    NASA Astrophysics Data System (ADS)

    Mudunkotuwa, Imali Ama

    . Specifically, the interactions of these metal and metal oxide nanoparticles with environmental and biological ligands in the solutions have demonstrated dramatic alterations in their aqueous phase behavior in terms of dissolution and aggregation. Dissolution and aggregation are among the determining factors of nanoparticle uptake and toxicity. Furthermore, solution conditions such as ionic strength and pH can act as controlling parameters for surface ligand adsorption while adsorbed ligands themselves undergo surface induced structural and conformational changes. Because, nanomaterials in both the environment and in biological systems are subjected to a wide range of matrix conditions they are in fact dynamic and not static entities. Thus monitoring and tracking these nanomaterials in real systems can be extremely challenging which requires a thorough understanding of the surface chemistry governing their transformations. The work presented in this dissertation attempts to bridge the gap between the dynamic processing of these nanomaterials, the details of the molecular level processes that occur at the liquid-solid interfacial region and potential environmental and biological interactions. Extensive nanomaterial characterization is an integral part of these investigations and all the materials presented here are thoroughly analyzed for particle size, shape, surface area, bulk and surface compositions. Detailed spectroscopic analysis was used to acquire molecular information of the processes in the liquid-solid interfacial region and the outcomes are linked with the macroscopic analysis with the aid of dynamic and static light scattering techniques. Furthermore, emphasis is given to the size dependent behavior and theoretical modeling is adapted giving careful consideration to the details of the physicochemical characterization and molecular information unique to the nanomaterials.

  15. Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles.

    PubMed

    Zaloga, Jan; Janko, Christina; Agarwal, Rohit; Nowak, Johannes; Müller, Robert; Boccaccini, Aldo R; Lee, Geoffrey; Odenbach, Stefan; Lyer, Stefan; Alexiou, Christoph

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.

  16. Germinated barley as a functional ingredient in chicken sausages: effect on physicochemical and technological properties at different levels.

    PubMed

    Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Jeong, Tae-Jun; Choi, Yun-Sang; Kim, Cheon-Jei

    2016-01-01

    The objective of this study was to evaluate the effect of germinated barley (GB) levels on physicochemical and technological properties of cooked chicken sausages. The chicken sausages were formulated with 0-4 % GB. Addition of GB increased pH and yellowness but decreased lightness of the cooked chicken sausages. However, there was no difference in redness among treatments (P > 0.05). Based on the positive effects of GB on measurements related to water and/or fat retention ability, such as emulsion stability, cooking loss, and thawing loss, such results depended upon the added amount of GB. In addition, apparent viscosity increased with increasing levels of GB, resulting in hardness, springiness, and chewiness (P < 0.05). These results could be associated with polysaccharides contained in GB, such as insoluble fiber, β-glucan, and starch. Therefore, our results suggests that GB could be a functional ingredient to improve physicochemical and technological properties of chicken sausages and optimal level of GB was determined as minimum 2 %.

  17. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    PubMed Central

    Yoon, Hyeonseok

    2013-01-01

    Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement. PMID:28348348

  18. Functional DNA-Containing Nanomaterials: Cellular Applications in Biosensing, Imaging, and Targeted Therapy

    PubMed Central

    2015-01-01

    single-stranded DNA. Nanomaterials can be designed and synthesized in needed sizes and shapes, and they possess unique chemical and physical properties, which make them useful as DNA carriers or assistants, excellent signal reporters, transducers, and amplifiers. When nanomaterials are combined with functional DNAs to create novel assay platforms, highly sensitive biosensing and high-resolution imaging result. For example, gold nanoparticles and graphene oxides can quench fluorescence efficiently to achieve low background and effectively increase the signal-to-background ratio. Meanwhile, gold nanoparticles themselves can be colorimetric reporters because of their different optical absorptions between monodispersion and aggregation. DNA self-assembled nanomaterials contain several properties of both DNA and nanomaterials. Compared with DNA–nanomaterial complexes, DNA self-assembled nanomaterials more closely resemble living beings, and therefore they have lower cytotoxicity at high concentrations. Functional DNA self-assemblies also have high density of DNA for multivalent reaction and three-dimensional nanostructures for cell uptake. Now and in the future, we envision the use of DNA bases in making designer molecules for many challenging applications confronting chemists. With the further development of artificial DNA bases using smart organic synthesis, DNA macromolecules based on elegant molecular assembly approaches are expected to achieve great diversity, additional versatility, and advanced functions. PMID:24780000

  19. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.

    PubMed

    Liang, Hao; Zhang, Xiao-Bing; Lv, Yifan; Gong, Liang; Wang, Ruowen; Zhu, Xiaoyan; Yang, Ronghua; Tan, Weihong

    2014-06-17

    -stranded DNA. Nanomaterials can be designed and synthesized in needed sizes and shapes, and they possess unique chemical and physical properties, which make them useful as DNA carriers or assistants, excellent signal reporters, transducers, and amplifiers. When nanomaterials are combined with functional DNAs to create novel assay platforms, highly sensitive biosensing and high-resolution imaging result. For example, gold nanoparticles and graphene oxides can quench fluorescence efficiently to achieve low background and effectively increase the signal-to-background ratio. Meanwhile, gold nanoparticles themselves can be colorimetric reporters because of their different optical absorptions between monodispersion and aggregation. DNA self-assembled nanomaterials contain several properties of both DNA and nanomaterials. Compared with DNA-nanomaterial complexes, DNA self-assembled nanomaterials more closely resemble living beings, and therefore they have lower cytotoxicity at high concentrations. Functional DNA self-assemblies also have high density of DNA for multivalent reaction and three-dimensional nanostructures for cell uptake. Now and in the future, we envision the use of DNA bases in making designer molecules for many challenging applications confronting chemists. With the further development of artificial DNA bases using smart organic synthesis, DNA macromolecules based on elegant molecular assembly approaches are expected to achieve great diversity, additional versatility, and advanced functions.

  20. Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?

    PubMed

    Bonfanti, Patrizia; Moschini, Elisa; Saibene, Melissa; Bacchetta, Renato; Rettighieri, Leonardo; Calabri, Lorenzo; Colombo, Anita; Mantecca, Paride

    2015-07-28

    The growing global production of zinc oxide nanoparticles (ZnONPs) suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1-100 mg/L) specifically synthesized for industrial purposes with different sizes, shapes (round, rod) and surface coatings (PEG, PVP) was tested using the frog embryo teratogenesis assay-Xenopus (FETAX) to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products.