Sample records for nanomechanical displacement detection

  1. Nanomechanics for specific biological detection

    NASA Astrophysics Data System (ADS)

    Alvarez, Mar; Carrascosa, Laura G.; Tamayo, Javier; Calle, Ana; Lechuga, Laura M.

    2003-04-01

    Nanomechanical biosensors have emerged as a promising platform for specific biological. Among the advantages are direct detection without need of labelling with fluorescent or radioactive molecules, very high sensitivity, reduced sensor area, and suitability for integration using silicon technology. Here we have studied the immobilization of oligonucleotide monolayers by monitoring the microcantilever bending. Oligonucleotides were derivatized with thiol molecules for self-assembly on the gold-coated side of a microcantilever. The geometry of the binding and the surface density were studied by mixing derivatized oligonucleotides with spacer self-assembled monolayers and by controlling the oligonucleotide functional group form. These results are compared with fluoresencent and chemiluminescence techniques. Furthermore, we present the first results of direct pesticide detection with microcantilever-based biosensors. Herbicide DDT was detected by performing competitive assays, in which the cantilever was coated with a synthetic DDT hapten, and it was exposured to different rations between the monoclonal antibody and the DDT. A new technique is presented for the detection of the nanomechanical response for biosensing applications, in which the resonant frequency is measured with about two orders of magnitude higher sensitivity. The low quality factor of the microcantilever in liquid is increased up by using an active feedback control, in which the cantilever oscillation is amplified and delayed and it is used as a driving force. The technique has been applied for the detection of ethanol, proteins, and pathogens.

  2. Microfluidic Transducer for Detecting Nanomechanical Movements of Bacteria

    NASA Astrophysics Data System (ADS)

    Kara, Vural; Ekinci, Kamil

    2017-11-01

    Various nanomechanical movements of bacteria are currently being explored as an indication of bacterial viability. Most notably, these movements have been observed to subside rapidly and dramatically when the bacteria are exposed to an effective antibiotic. This suggests that monitoring bacterial movements, if performed with high fidelity, can offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and sensitive microfluidic transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microchannel which the bacteria populate. These electrical fluctuations are caused by the swimming of motile, planktonic bacteria and random oscillations of surface-immobilized bacteria. The technique provides enough sensitivity to detect even the slightest movements of a single cell and lends itself to smooth integration with other microfluidic methods and devices; it may eventually be used for rapid antibiotic susceptibility testing. We acknowledge support from Boston University Office of Technology Development, Boston University College of Engineering, NIH (1R03AI126168-01) and The Wallace H. Coulter Foundation.

  3. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets.

    PubMed

    Husale, Sudhir; Persson, Henrik H J; Sahin, Ozgur

    2009-12-24

    Techniques to detect and quantify DNA and RNA molecules in biological samples have had a central role in genomics research. Over the past decade, several techniques have been developed to improve detection performance and reduce the cost of genetic analysis. In particular, significant advances in label-free methods have been reported. Yet detection of DNA molecules at concentrations below the femtomolar level requires amplified detection schemes. Here we report a unique nanomechanical response of hybridized DNA and RNA molecules that serves as an intrinsic molecular label. Nanomechanical measurements on a microarray surface have sufficient background signal rejection to allow direct detection and counting of hybridized molecules. The digital response of the sensor provides a large dynamic range that is critical for gene expression profiling. We have measured differential expressions of microRNAs in tumour samples; such measurements have been shown to help discriminate between the tissue origins of metastatic tumours. Two hundred picograms of total RNA is found to be sufficient for this analysis. In addition, the limit of detection in pure samples is found to be one attomolar. These results suggest that nanomechanical read-out of microarrays promises attomolar-level sensitivity and large dynamic range for the analysis of gene expression, while eliminating biochemical manipulations, amplification and labelling.

  4. Dynamic near-field optical interaction between oscillating nanomechanical structures

    DOE PAGES

    Ahn, Phillip; Chen, Xiang; Zhang, Zhen; ...

    2015-05-27

    Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequencymore » demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45pm/Hz 1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures.« less

  5. Biomolecule recognition using piezoresistive nanomechanical force probes

    NASA Astrophysics Data System (ADS)

    Tosolini, Giordano; Scarponi, Filippo; Cannistraro, Salvatore; Bausells, Joan

    2013-06-01

    Highly sensitive sensors are one of the enabling technologies for the biomarker detection in early stage diagnosis of pathologies. We have developed a self-sensing nanomechanical force probe able for detecting the unbinding of single couples of biomolecular partners in nearly physiological conditions. The embedding of a piezoresistive transducer into a nanomechanical cantilever enabled high force measurement capability with sub 10-pN resolution. Here, we present the design, microfabrication, optimization, and complete characterization of the sensor. The exceptional electromechanical performance obtained allowed us to detect biorecognition specific events underlying the biotin-avidin complex formation, by integrating the sensor in a commercial atomic force microscope.

  6. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  7. Nano-Electromechanical Systems: Displacement Detection and the Mechanical Single Electron Shuttle

    NASA Astrophysics Data System (ADS)

    Blick, R. H.; Beil, F. W.; Höhberger, E.; Erbe, A.; Weiss, C.

    For an introduction to nano-electromechanical systems we present measurements on nanomechanical resonators operating in the radio frequency range. We discuss in detail two different schemes of displacement detection for mechanical resonators, namely conventional reflection measurements of a probing signal and direct detection by capacitive coupling via a gate electrode. For capacitive detection we employ an on-chip preamplifier, which enables direct measurements of the resonator's disp lacement. We observe that the mechanical quality factor of the resonator depends on the detection technique applied, which is verified in model calculations and report on the detection of sub-harmonics. In the second part we extend our investigations to include transport of single electrons through an electron island on the tip of a nanomachined mechanical pendulum. The pendulum is operated by applying a modulating electromagnetic field in the range of 1 - 200 MHz, leading to mechanical oscillations between two laterally integrated source and drain contacts. Forming tunneling barriers the metallic tip shuttles single electrons from source to drain. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. The transport properties of the device are compared in detail to model calculations based on a Master-equation approach.

  8. Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging.

    PubMed

    Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco

    2017-05-04

    Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.

  9. Nanomechanical motion measured with an imprecision below that at the standard quantum limit.

    PubMed

    Teufel, J D; Donner, T; Castellanos-Beltran, M A; Harlow, J W; Lehnert, K W

    2009-12-01

    Nanomechanical oscillators are at the heart of ultrasensitive detectors of force, mass and motion. As these detectors progress to even better sensitivity, they will encounter measurement limits imposed by the laws of quantum mechanics. If the imprecision of a measurement of the displacement of an oscillator is pushed below a scale set by the standard quantum limit, the measurement must perturb the motion of the oscillator by an amount larger than that scale. Here we show a displacement measurement with an imprecision below the standard quantum limit scale. We achieve this imprecision by measuring the motion of a nanomechanical oscillator with a nearly shot-noise limited microwave interferometer. As the interferometer is naturally operated at cryogenic temperatures, the thermal motion of the oscillator is minimized, yielding an excellent force detector with a sensitivity of 0.51 aN Hz(-1/2). This measurement is a critical step towards observing quantum behaviour in a mechanical object.

  10. Tunable Micro- and Nanomechanical Resonators

    PubMed Central

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2015-01-01

    Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294

  11. Nonlinear cavity optomechanics with nanomechanical thermal fluctuations

    PubMed Central

    Leijssen, Rick; La Gala, Giada R.; Freisem, Lars; Muhonen, Juha T.; Verhagen, Ewold

    2017-01-01

    Although the interaction between light and motion in cavity optomechanical systems is inherently nonlinear, experimental demonstrations to date have allowed a linearized description in all except highly driven cases. Here, we demonstrate a nanoscale optomechanical system in which the interaction between light and motion is so large (single-photon cooperativity C0≈103) that thermal motion induces optical frequency fluctuations larger than the intrinsic optical linewidth. The system thereby operates in a fully nonlinear regime, which pronouncedly impacts the optical response, displacement measurement and radiation pressure backaction. Specifically, we measure an apparent optical linewidth that is dominated by thermo-mechanically induced frequency fluctuations over a wide temperature range, and show that in this regime thermal displacement measurements cannot be described by conventional analytical models. We perform a proof-of-concept demonstration of exploiting the nonlinearity to conduct sensitive quadratic readout of nanomechanical displacement. Finally, we explore how backaction in this regime affects the mechanical fluctuation spectra. PMID:28685755

  12. Nano-mechanical Resonantor Sensors for Virus Detection

    NASA Astrophysics Data System (ADS)

    Bashir, Rashid

    2005-03-01

    Micro and nanoscale cantilever beams can be used as highly sensitive mass detectors. Scaling down the area of the cantilever allows a decrease in minimum detectable mass limit while scaling down the thickness allows the resonant frequencies to be within measurable range. We have fabricated arrays of silicon cantilever beams as nanomechanical resonant sensors to detect the mass of individual virus particles. The dimensions of the fabricated cantilever beams were in the range of 4-5 μm in length, 1-2 μm in width and 20-30 nm in thickness. The virus particles we used in the study were vaccinia virus, which is a member of the Poxviridae family and forms the basis of the smallpox vaccine. The frequency spectra of the cantilever beams, due to thermal and ambient noise, were measured using a laser Doppler vibrometer under ambient conditions. The change in resonant frequency as a function of the virus particle mass binding on the cantilever beam surface forms the basis of the detection scheme. We have demonstrated the detection of a single vaccinia virus particle with an average mass of 9.5 fg. Specific capture of the antigens requires attachment of antibodies, which can be in the same range of thickness as these cantilever sensors, and can alter their mechanical properties. We have attached protein layers on both sides of 30nm thick cantilever beams and we show that the resonant frequencies can increase or decrease upon the attachment of protein layers to the cantilevers. In certain cases, the increase in spring constant out-weighs the increase in mass and the resonant frequencies can increase upon the attachment of the protein layers. These devices can be very useful as components of biosensors for the detection of air-borne virus particles.

  13. Nanomechanical electric and electromagnetic field sensor

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  14. Self-excitation of single nanomechanical pillars

    NASA Astrophysics Data System (ADS)

    Kim, Hyun S.; Qin, Hua; Blick, Robert H.

    2010-03-01

    Self-excitation is a mechanism that is ubiquitous for electromechanical power devices such as electrical generators. This is conventionally achieved by making use of the magnetic field component in electrical generators (Nedic and Lipo 2000 IEEE/IAS Conf. Records (Rome, Italy) vol 1 pp 51-6), a good and widely visible example of which is the wind turbine farm (Muljadi et al 2005 J. Sol. Energy Eng. 127 581-7). In other words, a static force, such as the wind acting on rotor blades, can generate a resonant excitation at a certain mechanical frequency. For nanomechanical systems (Craighead 2000 Science 290 1532-5 Roukes 2001 Phys. World 14 25-31 Cleland 2003 Foundations of Nanomechanics (Berlin: Springer); Ayari et al 2007 Nano Lett. 7 2252-7 Koenig et al 2008 Nat. Nanotechnol. 3 482-4) such a self-excitation (SE) mechanism is also highly desirable, because it can generate mechanical oscillations at radio frequencies by simply applying a dc bias voltage. This is of great importance for low-power signal communication devices and detectors, as well as for mechanical computing elements. For a particular nanomechanical system—the single electron shuttle—this effect was predicted some time ago by Gorelik et al (Phys. Rev. Lett. 80 4526-9). Here, we use a nanoelectromechanical single electron transistor (NEMSET) to demonstrate self-excitation for both the soft and hard regimes, respectively. The ability to use self-excitation in nanomechanical systems may enable the detection of quantum mechanical backaction effects (Naik et al 2006 Nature 443 193-6) in direct tunneling, macroscopic quantum tunneling (Savelev et al 2006 New J. Phys. 8 105-15) and rectification (Pistolesi and Fazio 2005 Phys. Rev. Lett. 94 036806-4). All these effects have so far been overshadowed by the large driving voltages that had to be applied.

  15. Nanomechanical molecular devices made of DNA origami.

    PubMed

    Kuzuya, Akinori; Ohya, Yuichi

    2014-06-17

    CONSPECTUS: Eight years have passed since the striking debut of the DNA origami technique ( Rothemund, P. W. K. Nature 2006 , 440 , 297 - 302 ), in which long single-stranded DNA is folded into a designed nanostructure, in either 2D or 3D, with the aid of many short staple strands. The number of proposals for new design principles for DNA origami structures seems to have already reached a peak. It is apparent that DNA origami study is now entering the second phase of creating practical applications. The development of functional nanomechanical molecular devices using the DNA origami technique is one such application attracting significant interest from researchers in the field. Nanomechanical DNA origami devices, which maintain the characteristics of DNA origami structures, have various advantages over conventional DNA nanomachines. Comparatively high assembly yield, relatively large size visible via atomic force microscopy (AFM) or transmission electron microscopy (TEM), and the capability to assemble multiple functional groups with precision using multiple staple strands are some of the advantages of the DNA origami technique for constructing sophisticated molecular devices. This Account describes the recent developments of such nanomechanical DNA origami devices and reviews the emerging target of DNA origami studies. First, simple "dynamic" DNA origami structures with transformation capability, such as DNA origami boxes and a DNA origami hatch with structure control, are briefly summarized. More elaborate nanomechanical DNA origami devices are then reviewed. The first example describes DNA origami pinching devices that can be used as "single-molecule" beacons to detect a variety of biorelated molecules, from metal ions at the size of a few tens of atomic mass number units to relatively gigantic proteins with a molecular mass greater than a hundred kilodaltons, all on a single platform. Clamshell-like DNA nanorobots equipped with logic gates can discriminate

  16. Detection of radial motion depends on spatial displacement.

    PubMed

    de la Malla, Cristina; López-Moliner, Joan

    2010-06-01

    Nakayama and Tyler (1981) disentangled the use of pure motion (speed) information from spatial displacement information for the detection of lateral motion. They showed that when positional cues were removed the contribution of motion or spatial information was dependent on the temporal frequency: for temporal frequencies lower than 1Hz the mechanism used to detect motion relied on speed information while for higher temporal frequencies a mechanism based on displacement information was used. Here we test whether the same dependency is also revealed in radial motion. In order to do so, we adapted the paradigm previously used by Nakayama and Tyler to obtain detection thresholds for lateral and radial motion by using a 2-IFC procedure. Subjects had to report which of the intervals contained the signal stimulus (33% coherent motion). We replicated the temporal frequency dependency for lateral motion but results indicate, however, that the detection of radial is always consistent with detecting a spatial displacement amplitude. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.

    PubMed

    Bartsch, Sebastian T; Lovera, Andrea; Grogg, Daniel; Ionescu, Adrian M

    2012-01-24

    Nanoelectromechanical systems (NEMS) as integrated components for ultrasensitive sensing, time keeping, or radio frequency applications have driven the search for scalable nanomechanical transduction on-chip. Here, we present a hybrid silicon-on-insulator platform for building NEM oscillators in which fin field effect transistors (FinFETs) are integrated into nanomechanical silicon resonators. We demonstrate transistor amplification and signal mixing, coupled with mechanical motion at very high frequencies (25-80 MHz). By operating the transistor in the subthreshold region, the power consumption of resonators can be reduced to record-low nW levels, opening the way for the parallel operation of hundreds of thousands of NEM oscillators. The electromechanical charge modulation due to the field effect in a resonant transistor body constitutes a scalable nanomechanical motion detection all-on-chip and at room temperature. The new class of tunable NEMS represents a major step toward their integration in resonator arrays for applications in sensing and signal processing. © 2011 American Chemical Society

  18. Shape tailoring to enhance and tune the properties of graphene nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Miller, David; Alemán, Benjamín

    2017-06-01

    The shape of a nanomechanical resonator profoundly affects its mechanical properties and determines its suitability for various applications, such as ultra-sensitive mass and force detection. Despite the promise of 2D nanomechanical systems in such applications, full control over the shape of suspended 2D materials, such as graphene, has not been achieved. We present an effective, single-step method to shape pre-suspended graphene into nanomechanical resonators with arbitrary geometries leading to enhanced properties in comparison to conventional drumheads. Our technique employs focused ion beam milling and achieves feature sizes ranging from a few tens of nanometers to several microns, while obtaining near perfect yield. We compare the mechanical properties of the shaped devices to unmodified drumheads, and find that low-tension, singly-clamped graphene cantilevers display a 20 fold increase in the mechanical quality factor (Q) with a factor 100 reduction in the mechanical damping. Importantly, we achieve these results while simultaneously removing mass, which enables state-of-the-art force sensitivity for a graphene mechanical resonator at room temperature. Our approach opens up a unique, currently inaccessible regime in graphene nanomechanics, one characterized by low strain, low frequency, small mass, and high Q, and facilitates tailoring of non-linearity and damping in mechanical structures composed of graphene and other 2D crystals.

  19. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.

    PubMed

    Hamoumi, M; Allain, P E; Hease, W; Gil-Santos, E; Morgenroth, L; Gérard, B; Lemaître, A; Leo, G; Favero, I

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300  MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  20. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators

    NASA Astrophysics Data System (ADS)

    Hamoumi, M.; Allain, P. E.; Hease, W.; Gil-Santos, E.; Morgenroth, L.; Gérard, B.; Lemaître, A.; Leo, G.; Favero, I.

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz ) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  1. Anomalous resonance in a nanomechanical biosensor

    PubMed Central

    Gupta, Amit K.; Nair, Pradeep R.; Akin, Demir; Ladisch, Michael R.; Broyles, Steve; Alam, Muhammad A.; Bashir, Rashid

    2006-01-01

    The decrease in resonant frequency (−Δωr) of a classical cantilever provides a sensitive measure of the mass of entities attached on its surface. This elementary phenomenon has been the basis of a new class of bio-nanomechanical devices as sensing components of integrated microsystems that can perform rapid, sensitive, and selective detection of biological and biochemical entities. Based on classical analysis, there is a widespread perception that smaller sensors are more sensitive (sensitivity ≈ −0.5ωr/mC, where mC is the mass of the cantilever), and this notion has motivated scaling of biosensors to nanoscale dimensions. In this work, we show that the response of a nanomechanical biosensor is far more complex than previously anticipated. Indeed, in contrast to classical microscale sensors, the resonant frequencies of the nanosensor may actually decrease or increase after attachment of protein molecules. We demonstrate theoretically and experimentally that the direction of the frequency change arises from a size-specific modification of diffusion and attachment kinetics of biomolecules on the cantilevers. This work may have broad impact on microscale and nanoscale biosensor design, especially when predicting the characteristics of bio-nanoelectromechanical sensors functionalized with biological capture molecules. PMID:16938886

  2. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    PubMed Central

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  3. Bistability and displacement fluctuations in a quantum nanomechanical oscillator

    NASA Astrophysics Data System (ADS)

    Avriller, R.; Murr, B.; Pistolesi, F.

    2018-04-01

    Remarkable features have been predicted for the mechanical fluctuations at the bistability transition of a classical oscillator coupled capacitively to a quantum dot [Micchi et al., Phys. Rev. Lett. 115, 206802 (2015), 10.1103/PhysRevLett.115.206802]. These results have been obtained in the regime ℏ ω0≪kBT ≪ℏ Γ , where ω0, T , and Γ are the mechanical resonating frequency, the temperature, and the tunneling rate, respectively. A similar behavior could be expected in the quantum regime of ℏ Γ ≪kBT ≪ℏ ω0 . We thus calculate the energy- and displacement-fluctuation spectra and study their behavior as a function of the electromechanical coupling constant when the system enters the Frank-Condon regime. We find that in analogy with the classical case, the energy-fluctuation spectrum and the displacement spectrum widths show a maximum for values of the coupling constant at which a mechanical bistability is established.

  4. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser

    PubMed Central

    Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas

    2013-01-01

    Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. PMID:23346368

  5. Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.

    PubMed

    Kara, V; Sohn, Y-I; Atikian, H; Yakhot, V; Lončar, M; Ekinci, K L

    2015-12-09

    Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond nanocantilevers with different linear dimensions and frequencies in three gases, He, N2, and Ar. We observe that a subtle interplay between the length scale and the frequency governs the scaling of the fluidic dissipation. Second, we obtain a comparison of the surface accommodation of different gases on the diamond surface by analyzing the dissipation in the molecular flow regime. Finally, we measure the thermal fluctuations of the nanocantilevers in water and compare the observed dissipation and frequency shifts with theoretical predictions. These findings set the stage for developing diamond nanomechanical resonators operable in fluids.

  6. Bioassays Based on Molecular Nanomechanics

    DOE PAGES

    Majumdar, Arun

    2002-01-01

    Recent experiments have shown that when specific biomolecular interactions are confined to one surface of a microcantilever beam, changes in intermolecular nanomechanical forces provide sufficient differential torque to bend the cantilever beam. This has been used to detect single base pair mismatches during DNA hybridization, as well as prostate specific antigen (PSA) at concentrations and conditions that are clinically relevant for prostate cancer diagnosis. Since cantilever motion originates from free energy change induced by specific biomolecular binding, this technique is now offering a common platform for label-free quantitative analysis of protein-protein binding, DNA hybridization DNA-protein interactions, and in general receptor-ligandmore » interactions. Current work is focused on developing “universal microarrays” of microcantilever beams for high-throughput multiplexed bioassays.« less

  7. Electromechanical Displacement Detection With an On-Chip High Electron Mobility Transistor Amplifier

    NASA Astrophysics Data System (ADS)

    Oda, Yasuhiko; Onomitsu, Koji; Kometani, Reo; Warisawa, Shin-ichi; Ishihara, Sunao; Yamaguchi, Hiroshi

    2011-06-01

    We developed a highly sensitive displacement detection scheme for a GaAs-based electromechanical resonator using an integrated high electron mobility transistor (HEMT). Piezoelectric voltage generated by the vibration of the resonator is applied to the gate of the HEMT, resulting in the on-chip amplification of the signal voltage. This detection scheme achieves a displacement sensitivity of ˜9 pm·Hz-1/2, which is one of the highest among on-chip purely electrical displacement detection schemes at room temperature.

  8. Phonon Counting and Intensity Interferometry of a Nanomechanical Resonator

    DTIC Science & Technology

    2014-10-04

    photon detectors, Γdark, and the residual pump laser light which is transmitted through the filters. In this work we use a cascaded pair of tunable...T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Nature Photon . 7, 210 6 a b 0 1 10−1 FIG. 5. FEM simulations . a, Electric... photon detection we have performed effective phonon counting measurements of the acoustic emission and absorption processes in a nanomechanical res

  9. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening

    NASA Astrophysics Data System (ADS)

    Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong

    2015-09-01

    Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c

  10. A Novel Displacement and Tilt Detection Method Using Passive UHF RFID Technology.

    PubMed

    Lai, Xiaozheng; Cai, Zhirong; Xie, Zeming; Zhu, Hailong

    2018-05-21

    The displacement and tilt angle of an object are useful information for wireless monitoring applications. In this paper, a low-cost detection method based on passive radio frequency identification (RFID) technology is proposed. This method uses a standard ultrahigh-frequency (UHF) RFID reader to measure the phase variation of the tag response and detect the displacement and tilt angle of RFID tags attached to the targeted object. An accurate displacement result can be detected by the RFID system with a linearly polarized (LP) reader antenna. Based on the displacement results, an accurate tilt angle can also be detected by the RFID system with a circularly polarized (CP) reader antenna, which has been proved to have a linear relationship with the phase parameter of the tag’s backscattered wave. As far as accuracy is concerned, the mean absolute error (MAE) of displacement is less than 2 mm and the MAE of the tilt angle is less than 2.5° for an RFID system with 500 mm working range.

  11. Invasive reaction assisted strand-displacement signal amplification for sensitive DNA detection.

    PubMed

    Zou, Bingjie; Song, Qinxin; Wang, Jianping; Liu, Yunlong; Zhou, Guohua

    2014-11-18

    A novel DNA detection assay was proposed by invasive reaction coupled with molecular beacon assisted strand-displacement signal amplification (IRASA). Target DNAs are firstly hybridized to two probes to initiate invasive reaction to produce amplified flaps. Then these flaps are further amplified by strand-displacement signal amplification. The detection limit was around 0.2 pM.

  12. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope

    NASA Astrophysics Data System (ADS)

    Li, Tianwei; Zou, Qingze

    2017-12-01

    In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.

  13. Simulation of Biomolecular Nanomechanical Systems

    DTIC Science & Technology

    2006-10-01

    optimization of doping concentration and minimizing the interface traps. Surface Immobilization of Receptors For biomolecular binding experiments...Biosensors,” Langmuir, Vol. 21, pp. 1956-1961 (2005). 13. M. Yue, Multiplexed Label-Free Bioassays Using Nanomechanics and Nanofluidics , PhD Thesis

  14. Displacemon Electromechanics: How to Detect Quantum Interference in a Nanomechanical Resonator

    NASA Astrophysics Data System (ADS)

    Khosla, K. E.; Vanner, M. R.; Ares, N.; Laird, E. A.

    2018-04-01

    We introduce the "displacemon" electromechanical architecture that comprises a vibrating nanobeam, e.g., a carbon nanotube, flux coupled to a superconducting qubit. This platform can achieve strong and even ultrastrong coupling, enabling a variety of quantum protocols. We use this system to describe a protocol for generating and measuring quantum interference between trajectories of a nanomechanical resonator. The scheme uses a sequence of qubit manipulations and measurements to cool the resonator, to apply two effective diffraction gratings, and then to measure the resulting interference pattern. We demonstrate the feasibility of generating a spatially distinct quantum superposition state of motion containing more than 1 06 nucleons using a vibrating nanotube acting as a junction in this new superconducting qubit configuration.

  15. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2010-05-21

    We have theoretically demonstrated the large enhancement of the optical Kerr effect in a scheme of a nanomechanical resonator coupled to a quantum dot and shown that this phenomenon can be used to realize a fast optical Kerr switch by turning the control field on or off. Due to the vibration of the nanoresonator, as we pump on the strong control beam, the optical spectrum shows that the magnitude of this optical Kerr effect is proportional to the intensity of the control field. In this case, a fast and tunable optical Kerr switch can be implemented easily by an intensity-adjustable laser. Based on this tunable optical Kerr switch, we also provide a detection method to measure the frequency of the nanomechanical resonator in this coupled system.

  16. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Badzey, Robert L.; Mohanty, Pritiraj

    2005-10-01

    Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

  17. Metrologies for quantitative nanomechanical testing and quality control in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Pratt, Jon R.; Kramar, John A.; Newell, David B.; Smith, Douglas T.

    2005-05-01

    If nanomechanical testing is to evolve into a tool for process and quality control in semiconductor fabrication, great advances in throughput, repeatability, and accuracy of the associated instruments and measurements will be required. A recent grant awarded by the NIST Advanced Technology Program seeks to address the throughput issue by developing a high-speed AFM-based platform for quantitative nanomechanical measurements. The following paper speaks to the issue of quantitative accuracy by presenting an overview of various standards and techniques under development at NIST and other national metrology institutes (NMIs) that can provide a metrological basis for nanomechanical testing. The infrastructure we describe places firm emphasis on traceability to the International System of Units, paving the way for truly quantitative, rather than qualitative, physical property testing.

  18. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    PubMed

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  19. Heat pumping in nanomechanical systems.

    PubMed

    Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society

  20. Nanotribological and Nanomechanical Properties Changes of Tooth After Bleaching and Remineralization in Wet Environment.

    PubMed

    Yu, Dandan; Gao, Shanshan; Min, Jie; Zhang, Qianqian; Gao, Shuai; Yu, Haiyang

    2015-12-01

    Teeth bleaching cases had increased with people's desire for oral aesthetic; however, bleached teeth would still undertake chewing actions and remineralizing process in saliva. Nanotribological and nanomechanical properties are proper displays for dental performance of bleached teeth. The purpose of the research was to reveal the effect of bleaching and remineralization on the nanotribological and nanomechanical properties of teeth in wet environment. The specimens were divided into four groups according to the bleaching products used: 12 % hydrogen peroxide (HP) (12HP group); 15 % carbamide peroxide (CP) (15CP group); 35 % CP (35CP group); and artificial saliva (control group). The nanotribological and nanomechanical property changes of tooth enamel after bleaching and remineralization were evaluated respectively by nanoscratch and nanoindentation tests in wet environment, imitating the wet oral environment. The morphology changes were evaluated by statistical parametric mapping (SPM) and scanning electron microscopy (SEM). After bleaching, 12HP group and 15CP group showed increased scratch depth with more pile ups on the scratch edges, decreased nanohardness, and corroded surface appearance. While the 35CP group showed an increase in nanoscratch depth, no change in nanohardness and surface appearance was observed. The control group showed no change in these measurements. After remineralization, the three bleaching groups showed decreased nanoscratch depth and no change of nanohardness compared with the bleached teeth. And the control group showed no changes in nanotribological and nanomechanical properties. The nanotribological and nanomechanical properties of the 12HP group and 15CP group were affected by bleaching, but the nanotribological properties recovered partly and the nanomechanical properties got no change after 1 week of remineralization. As for the 35CP group, the nanotribological properties were influenced and the nanomechanical properties were

  1. Nanotribological and Nanomechanical Properties Changes of Tooth After Bleaching and Remineralization in Wet Environment

    NASA Astrophysics Data System (ADS)

    Yu, Dandan; Gao, Shanshan; Min, Jie; Zhang, Qianqian; Gao, Shuai; Yu, Haiyang

    2015-12-01

    Teeth bleaching cases had increased with people's desire for oral aesthetic; however, bleached teeth would still undertake chewing actions and remineralizing process in saliva. Nanotribological and nanomechanical properties are proper displays for dental performance of bleached teeth. The purpose of the research was to reveal the effect of bleaching and remineralization on the nanotribological and nanomechanical properties of teeth in wet environment. The specimens were divided into four groups according to the bleaching products used: 12 % hydrogen peroxide (HP) (12HP group); 15 % carbamide peroxide (CP) (15CP group); 35 % CP (35CP group); and artificial saliva (control group). The nanotribological and nanomechanical property changes of tooth enamel after bleaching and remineralization were evaluated respectively by nanoscratch and nanoindentation tests in wet environment, imitating the wet oral environment. The morphology changes were evaluated by statistical parametric mapping (SPM) and scanning electron microscopy (SEM). After bleaching, 12HP group and 15CP group showed increased scratch depth with more pile ups on the scratch edges, decreased nanohardness, and corroded surface appearance. While the 35CP group showed an increase in nanoscratch depth, no change in nanohardness and surface appearance was observed. The control group showed no change in these measurements. After remineralization, the three bleaching groups showed decreased nanoscratch depth and no change of nanohardness compared with the bleached teeth. And the control group showed no changes in nanotribological and nanomechanical properties. The nanotribological and nanomechanical properties of the 12HP group and 15CP group were affected by bleaching, but the nanotribological properties recovered partly and the nanomechanical properties got no change after 1 week of remineralization. As for the 35CP group, the nanotribological properties were influenced and the nanomechanical properties were not

  2. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    NASA Astrophysics Data System (ADS)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  3. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    PubMed Central

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-01-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level. PMID:28382928

  4. Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: rate-dependent elastic modulus of live cells.

    PubMed

    Ren, Juan; Yu, Shiyan; Gao, Nan; Zou, Qingze

    2013-11-01

    In this paper, a control-based approach to replace the conventional method to achieve accurate indentation quantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accurate indentation quantification is central to probe-based nanomechanical property measurement. The conventional method for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify the indentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As a result, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper, a control-based approach is proposed to account for these adverse effects by tracking the same excitation force profile on both a live cell and a hard reference sample through the use of an advanced control technique, and by quantifying the indentation from the difference of the cantilever base displacement in these two measurements. The proposed control-based approach not only eliminates the relative probe acceleration effect with no need to calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when the force load rate becomes high. We further hypothesize that, by using the proposed control-based approach, the rate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliably quantified to predict the elasticity evolution of cell membranes, and hence can be used to predict cellular behaviors. By implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress process were quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where the amplitude of the applied force and the indentation were at 0.4-2 nN and 250-450 nm, respectively. The measured elastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after the stress

  5. Tailoring protein nanomechanics with chemical reactivity

    PubMed Central

    Beedle, Amy E. M.; Mora, Marc; Lynham, Steven; Stirnemann, Guillaume; Garcia-Manyes, Sergi

    2017-01-01

    The nanomechanical properties of elastomeric proteins determine the elasticity of a variety of tissues. A widespread natural tactic to regulate protein extensibility lies in the presence of covalent disulfide bonds, which significantly enhance protein stiffness. The prevalent in vivo strategy to form disulfide bonds requires the presence of dedicated enzymes. Here we propose an alternative chemical route to promote non-enzymatic oxidative protein folding via disulfide isomerization based on naturally occurring small molecules. Using single-molecule force-clamp spectroscopy, supported by DFT calculations and mass spectrometry measurements, we demonstrate that subtle changes in the chemical structure of a transient mixed-disulfide intermediate adduct between a protein cysteine and an attacking low molecular-weight thiol have a dramatic effect on the protein's mechanical stability. This approach provides a general tool to rationalize the dynamics of S-thiolation and its role in modulating protein nanomechanics, offering molecular insights on how chemical reactivity regulates protein elasticity. PMID:28585528

  6. Nanomechanical DNA origami pH sensors.

    PubMed

    Kuzuya, Akinori; Watanabe, Ryosuke; Yamanaka, Yusei; Tamaki, Takuya; Kaino, Masafumi; Ohya, Yuichi

    2014-10-16

    Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM). Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers), which consist of two levers of 170-nm long and 20-nm wide connected at a Holliday-junction fulcrum. DNA Origami Pliers can be observed as in three distinct forms; cross, antiparallel and parallel forms, and cross form is the dominant species when no additional interaction is introduced to DNA Origami Pliers. Introduction of nine pairs of 12-mer sequence (5'-AACCCCAACCCC-3'), which dimerize into i-motif quadruplexes upon protonation of cytosine, drives transition of DNA Origami Pliers from open cross form into closed parallel form under acidic conditions. Such pH-dependent transition was clearly imaged on mica in molecular resolution by AFM, showing potential application of the system to single-molecular pH sensors.

  7. Improving Broadband Displacement Detection with Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Kampel, N. S.; Peterson, R. W.; Fischer, R.; Yu, P.-L.; Cicak, K.; Simmonds, R. W.; Lehnert, K. W.; Regal, C. A.

    2017-04-01

    Interferometers enable ultrasensitive measurement in a wide array of applications from gravitational wave searches to force microscopes. The role of quantum mechanics in the metrological limits of interferometers has a rich history, and a large number of techniques to surpass conventional limits have been proposed. In a typical measurement configuration, the trade-off between the probe's shot noise (imprecision) and its quantum backaction results in what is known as the standard quantum limit (SQL). In this work, we investigate how quantum correlations accessed by modifying the readout of the interferometer can access physics beyond the SQL and improve displacement sensitivity. Specifically, we use an optical cavity to probe the motion of a silicon nitride membrane off mechanical resonance, as one would do in a broadband displacement or force measurement, and observe sensitivity better than the SQL dictates for our quantum efficiency. Our measurement illustrates the core idea behind a technique known as variational readout, in which the optical readout quadrature is changed as a function of frequency to improve broadband displacement detection. And, more generally, our result is a salient example of how correlations can aid sensing in the presence of backaction.

  8. Nanomechanical architecture of semiconductor nanomembranes.

    PubMed

    Huang, Minghuang; Cavallo, Francesca; Liu, Feng; Lagally, Max G

    2011-01-01

    Semiconductor nanomembranes are single-crystal sheets with thickness ranging from 5 to 500nm. They are flexible, bondable, and mechanically ultra-compliant. They present a new platform to combine bottom-up and top-down semiconductor processing to fabricate various three-dimensional (3D) nanomechanical architectures, with an unprecedented level of control. The bottom-up part is the self-assembly, via folding, rolling, bending, curling, or other forms of shape change of the nanomembranes, with top-down patterning providing the starting point for these processes. The self-assembly to form 3D structures is driven by elastic strain relaxation. A variety of structures, including tubes, rings, coils, rolled-up "rugs", and periodic wrinkles, has been made by such self-assembly. Their geometry and unique properties suggest many potential applications. In this review, we describe the design of desired nanostructures based on continuum mechanics modelling, definition and fabrication of 2D strained nanomembranes according to the established design, and release of the 2D strained sheet into a 3D or quasi-3D object. We also describe several materials properties of nanomechanical architectures. We discuss potential applications of nanomembrane technology to implement simple and hybrid functionalities.

  9. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction.

    PubMed

    Guo, Qiuping; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Wei; Tang, Hongxing; Li, Huimin

    2009-02-01

    Here we have developed a sensitive DNA amplified detection method based on isothermal strand-displacement polymerization reaction. This method takes advantage of both the hybridization property of DNA and the strand-displacement property of polymerase. Importantly, we demonstrate that our method produces a circular polymerization reaction activated by the target, which essentially allows it to self-detect. Functionally, this DNA system consists of a hairpin fluorescence probe, a short primer and polymerase. Upon recognition and hybridization with the target ssDNA, the stem of the hairpin probe is opened, after which the opened probe anneals with the primer and triggers the polymerization reaction. During this process of the polymerization reaction, a complementary DNA is synthesized and the hybridized target is displaced. Finally, the displaced target recognizes and hybridizes with another probe, triggering the next round of polymerization reaction, reaching a target detection limit of 6.4 x 10(-15) M.

  10. Faster than the Speed of Hearing: Nanomechanical Force Probes Enable the Electromechanical Observation of Cochlear Hair Cells

    PubMed Central

    Doll, Joseph C.; Peng, Anthony W.; Ricci, Anthony J.; Pruitt, Beth L.

    2012-01-01

    Understanding the mechanisms responsible for our sense of hearing requires new tools for unprecedented stimulation and monitoring of sensory cell mechanotransduction at frequencies yet to be explored. We describe nanomechanical force probes designed to evoke mechanotransduction currents at up to 100kHz in living cells. High-speed force and displacement metrology is enabled by integrating piezoresistive sensors and piezoelectric actuators onto nanoscale cantilevers. The design, fabrication process, actuator performance and actuator-sensor crosstalk compensation results are presented. We demonstrate the measurement of mammalian cochlear hair cell mechanotransduction with simultaneous patch clamp recordings at unprecedented speeds. The probes can deliver mechanical stimuli with sub-10 μs rise times in water and are compatible with standard upright and inverted microscopes. PMID:23181721

  11. A single electron nanomechanical Y-switch.

    PubMed

    Kim, Chulki; Kim, Hyun-Seok; Prada, Marta; Blick, Robert H

    2014-08-07

    We demonstrate current switching in the frequency domain using a nanomechanical shuttle with three terminals operating at room temperature. The shuttle consists of a metallic island on top of a Si nanopillar forming the Y-junction. A flexural mode of the nanopillar is excited by applying an external bias to one of the contacts, allowing electrons to be shuttled across the oscillating island.

  12. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device.

    PubMed

    Yazdi, Soroush H; Giles, Kristen L; White, Ian M

    2013-11-05

    We demonstrate sensitive and multiplexed detection of DNA sequences through a surface enhanced resonance Raman spectroscopy (SERRS)-based competitive displacement assay in an integrated microsystem. The use of the competitive displacement scheme, in which the target DNA sequence displaces a Raman-labeled reporter sequence that has lower affinity for the immobilized probe, enables detection of unlabeled target DNA sequences with a simple single-step procedure. In our implementation, the displacement reaction occurs in a microporous packed column of silica beads prefunctionalized with probe-reporter pairs. The use of a functionalized packed-bead column in a microfluidic channel provides two major advantages: (i) immobilization surface chemistry can be performed as a batch process instead of on a chip-by-chip basis, and (ii) the microporous network eliminates the diffusion limitations of a typical biological assay, which increases the sensitivity. Packed silica beads are also leveraged to improve the SERRS detection of the Raman-labeled reporter. Following displacement, the reporter adsorbs onto aggregated silver nanoparticles in a microfluidic mixer; the nanoparticle-reporter conjugates are then trapped and concentrated in the silica bead matrix, which leads to a significant increase in plasmonic nanoparticles and adsorbed Raman reporters within the detection volume as compared to an open microfluidic channel. The experimental results reported here demonstrate detection down to 100 pM of the target DNA sequence, and the experiments are shown to be specific, repeatable, and quantitative. Furthermore, we illustrate the advantage of using SERRS by demonstrating multiplexed detection. The sensitivity of the assay, combined with the advantages of multiplexed detection and single-step operation with unlabeled target sequences makes this method attractive for practical applications. Importantly, while we illustrate DNA sequence detection, the SERRS-based competitive

  13. Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Baik, Seunghyun; Kim, Yong Ho; Eom, Kilho; Kwon, Taeyun

    2018-07-01

    Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics.

  14. Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils.

    PubMed

    Lee, Gyudo; Lee, Wonseok; Baik, Seunghyun; Kim, Yong Ho; Eom, Kilho; Kwon, Taeyun

    2018-04-12

    Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy (AFM) experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their radial bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics. © 2018 IOP Publishing Ltd.

  15. Local Nanomechanical Motion In Single Cells.

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew; Gimzewski, James

    2004-03-01

    We present new evidence that the nanoscale motion of the cell wall of Saccharomyces cerevisiae exhibits local bionanomechanical motion at characteristic frequencies and which is not caused by random or Brownian processes. This motion is measured with the AFM tip which acts as a nanomechanical sensor, permitting the motion of the cell wall to be recorded as a function of time, applied force, etc. We present persuasive evidence which shows that the local nanomechanical motion is characteristic of metabolic processes taking place inside the cell. This is demonstrated by clear differences between living cells and living cells treated with a metabolic inhibitor. This inhibitor specifically targets cytochrome oxidase inside the mitochondria and inhibits ATP production. The cells observed in this study display characteristic local cell wall motion with amplitudes between 1 and 3 nm and frequencies between 500 and 1700 Hz. The motion is temperature dependant which also suggests the mechanism for the observed motion has biological origins. In addition to a stringent series of control experiments we also discuss local measurements of the cell's mechanical properties and their influence on the observed bionanomechanical motion.

  16. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    PubMed

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew E.; Sehati, Sadaf; Gralla, Edith B.; Valentine, Joan S.; Gimzewski, James K.

    2004-08-01

    We demonstrate that the cell wall of living Saccharomyces cerevisiae (baker's yeast) exhibits local temperature-dependent nanomechanical motion at characteristic frequencies. The periodic motions in the range of 0.8 to 1.6 kHz with amplitudes of ~3 nm were measured using the cantilever of an atomic force microscope (AFM). Exposure of the cells to a metabolic inhibitor causes the periodic motion to cease. From the strong frequency dependence on temperature, we derive an activation energy of 58 kJ/mol, which is consistent with the cell's metabolism involving molecular motors such as kinesin, dynein, and myosin. The magnitude of the forces observed (~10 nN) suggests concerted nanomechanical activity is operative in the cell.

  18. Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing.

    PubMed

    Imboden, Matthias; Williams, Oliver A; Mohanty, Pritiraj

    2013-09-11

    We report the observation of nonlinear dissipation in diamond nanomechanical resonators measured by an ultrasensitive heterodyne down-mixing piezoresistive detection technique. The combination of a hybrid structure as well as symmetry breaking clamps enables sensitive piezoresistive detection of multiple orthogonal modes in a diamond resonator over a wide frequency and temperature range. Using this detection method, we observe the transition from purely linear dissipation at room temperature to strongly nonlinear dissipation at cryogenic temperatures. At high drive powers and below liquid nitrogen temperatures, the resonant structure dynamics follows the Pol-Duffing equation of motion. Instead of using the broadening of the full width at half-maximum, we propose a nonlinear dissipation backbone curve as a method to characterize the strength of nonlinear dissipation in devices with a nonlinear spring constant.

  19. Synergetic effect of graphene oxide-carbon nanotube on nanomechanical properties of acrylonitrile butadiene styrene nanocomposites

    NASA Astrophysics Data System (ADS)

    Jyoti, Jeevan; Pratap Singh, Bhanu; Chockalingam, Sreekumar; Joshi, Amish G.; Gupta, Tejendra K.; Dhakate, S. R.

    2018-04-01

    Herein, multiwall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), graphene oxide-carbon nanotubes (GCNTs) hybrid reinforced acrylonitrile butadiene styrene (ABS) nanocomposites have been prepared by micro twin screw extruder with back flow channel and the effect of different type of fillers on the nanomechanical properties are studied. The combination of both graphene oxide and CNT has enhanced the dispersion in polymer matrix and lower the probability of CNTs aggregation. GCNTs hybrid have been synthesized via novel chemical route and well characterized using Raman spectroscopic technique. The nanoindentation hardness and elastic modulus of GCNTs-ABS hybrid nanocomposites were improved from 211.3 MPa and 4.12 GPa of neat ABS to 298.9 MPa and 6.02 GPa, respectively at 5wt% GCNTs loading. In addition to hardness and elastic modulus, other mechanical properties i.e. plastic index parameter, elastic recovery, ratio of residual displacement after load removal and displacement at the maximum load and plastic deformation energy have also been investigated. These results were correlated with Raman and X-ray photoelectron spectroscopic (XPS) techniques and microstructural characterizations (scanning electron microscopy). Our demonstration would provide guidelines for the fabrication of hard and scratches nanocomposite materials for potential use in, automotive trim components and bumper bars, carrying cases and electronic industries and electromagnetic interference shielding.

  20. An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities.

    PubMed

    Chew, Xiongyeu; Zhou, Guangya; Yu, Hongbin; Chau, Fook Siong; Deng, Jie; Loke, Yee Chong; Tang, Xiaosong

    2010-10-11

    Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches.

  1. Stress-relaxation heat treatment in FeSiBNb amorphous alloy: Thermal, microstructure, nanomechanical and magnetic texture measurements

    NASA Astrophysics Data System (ADS)

    Lashgari, H. R.; Cadogan, J. M.; Kong, C.; Tang, C.; Doherty, C.; Chu, D.; Li, S.

    2018-06-01

    In the present study, the effect of stress-relaxation treatment (Tstress-relaxation < Tglass transition) on the magnetic texture, nanomechanical properties, and variation of free-volume in FeSiBNb amorphous alloy was investigated using Mössbauer spectroscopy, nanoindentation, dynamic mechanical analysis (DMA), and positron annihilation lifetime spectroscopy (PALS) techniques. It was shown that stress-relaxation treatment slightly improved the magnetic texture by 6% at T ≪Tg due to small-scale displacement of atoms whereas the magnetic texture was deteriorated due to thermal treatment at temperatures around the glass transition point (large-scale displacement of atoms). According to nanoindentation results, the hardness (H) and reduced modulus (Er) of the amorphous ribbon increased by 15% and 13%, respectively, after stress-relaxation treatment at 716 K for 5 min. Increasing the stress-relaxation time from 5 min to 60 min at 716 K resulted in decreases in the hardness and reduced modulus which are attributed to the increase of free-volume defects (increase of τ2 lifetime measured by PALS). Transmission electron microscopy (TEM) showed the formation of extremely fine embryos of α-Fe (3-5 nm in size) after stress-relaxation treatment.

  2. Can pulpal floor debonding be detected from occlusal surface displacement in composite restorations?

    PubMed

    Novaes, João Batista; Talma, Elissa; Las Casas, Estevam Barbosa; Aregawi, Wondwosen; Kolstad, Lauren Wickham; Mantell, Sue; Wang, Yan; Fok, Alex

    2018-01-01

    Polymerization shrinkage of resin composite restorations can cause debonding at the tooth-restoration interface. Theory based on the mechanics of materials predicts that debonding at the pulpal floor would half the shrinkage displacement at the occlusal surface. The aim of this study is to test this theory and to examine the possibility of detecting subsurface resin composite restoration debonding by measuring the superficial shrinkage displacements. A commercial dental resin composite with linear shrinkage strain of 0.8% was used to restore 2 groups of 5 model Class-II cavities (8-mm long, 4-mm wide and 4-mm deep) in aluminum blocks (8-mm thick, 10-mm wide and 14-mm tall). Group I had the restorations bonded to all cavity surfaces, while Group II had the restorations not bonded to the cavity floor to simulate debonding. One of the proximal surfaces of each specimen was sprayed with fine carbon powder to allow surface displacement measurement by Digital Image Correlation. Images of the speckled surface were taken before and after cure for displacement calculation. The experiment was simulated using finite element analysis (FEA) for comparison. Group I showed a maximum occlusal displacement of 34.7±6.7μm and a center of contraction (COC) near the pulpal floor. Group II had a COC coinciding with the geometric center and showed a maximum occlusal displacement of 17.4±3.8μm. The difference between the two groups was statistically significant (p-value=0.0007). Similar results were obtained by FEA. The theoretical shrinkage displacement was 44.6 and 22.3μm for Group I and II, respectively. The lower experimental displacements were probably caused by slumping of the resin composite before cure and deformation of the adhesive layer. The results confirmed that the occlusal shrinkage displacement of a resin composite restoration was reduced significantly by pulpal floor debonding. Recent in vitro studies seem to indicate that this reduction in shrinkage displacement

  3. All-optical nanomechanical heat engine.

    PubMed

    Dechant, Andreas; Kiesel, Nikolai; Lutz, Eric

    2015-05-08

    We propose and theoretically investigate a nanomechanical heat engine. We show how a levitated nanoparticle in an optical trap inside a cavity can be used to realize a Stirling cycle in the underdamped regime. The all-optical approach enables fast and flexible control of all thermodynamical parameters and the efficient optimization of the performance of the engine. We develop a systematic optimization procedure to determine optimal driving protocols. Further, we perform numerical simulations with realistic parameters and evaluate the maximum power and the corresponding efficiency.

  4. All-Optical Nanomechanical Heat Engine

    NASA Astrophysics Data System (ADS)

    Dechant, Andreas; Kiesel, Nikolai; Lutz, Eric

    2015-05-01

    We propose and theoretically investigate a nanomechanical heat engine. We show how a levitated nanoparticle in an optical trap inside a cavity can be used to realize a Stirling cycle in the underdamped regime. The all-optical approach enables fast and flexible control of all thermodynamical parameters and the efficient optimization of the performance of the engine. We develop a systematic optimization procedure to determine optimal driving protocols. Further, we perform numerical simulations with realistic parameters and evaluate the maximum power and the corresponding efficiency.

  5. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism.

    PubMed

    Ali, Mubarak; Ramirez, Patricio; Duznovic, Ivana; Nasir, Saima; Mafe, Salvador; Ensinger, Wolfgang

    2017-02-01

    We design and characterize a nanofluidic device for the label-free specific detection of histamine neurotransmitter based on a metal ion displacement mechanism. The sensor consists of an asymmetric polymer nanopore fabricated via ion track-etching technique. The nanopore sensor surface having metal-nitrilotriacetic (NTA-Ni 2+ ) chelates is obtained by covalent coupling of native carboxylic acid groups with N α ,N α -bis(carboxymethyl)-l-lysine (BCML), followed by exposure to Ni 2+ ion solution. The BCML immobilization and subsequent Ni 2+ ion complexation with NTA moieties change the surface charge concentration, which has a significant impact on the current-voltage (I-V) curve after chemical modification of the nanopore. The sensing mechanism is based on the displacement of the metal ion from the NTA-Ni 2+ chelates. When the modified pore is exposed to histamine solution, the Ni 2+ ion in NTA-Ni 2+ chelate recognizes histamine through a metal ion coordination displacement process and formation of stable Ni-histamine complexes, leading to the regeneration of metal-free NTA groups on the pore surface, as shown in the current-voltage characteristics. Nanomolar concentrations of the histamine in the working electrolyte can be detected. On the contrary, other neurotransmitters such as glycine, serotonin, gamma-aminobutyric acid, and dopamine do not provoke significant changes in the nanopore electronic signal due to their inability to displace the metal ion and form a stable complex with Ni 2+ ion. The nanofluidic sensor exhibits high sensitivity, specificity and reusability towards histamine detection and can then be used to monitor the concentration of biological important neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Electrochemical detection of glutathione based on Hg(2+)-mediated strand displacement reaction strategy.

    PubMed

    Lv, Yun; Yang, Lili; Mao, Xiaoxia; Lu, Mengjia; Zhao, Jing; Yin, Yongmei

    2016-11-15

    Glutathione (GSH) plays an important role in numerous cellular functions, and the abnormal GSH expression is closely related with many dangerous human diseases. In this work, we have proposed a simple but sensitive electrochemical method for quantitative detection of GSH based on an Hg(2+)-mediated strand displacement reaction. Owing to the specific binding of Hg(2+) with T-T mismatches, helper DNA can bind to 3' terminal of probe DNA 1 and initiate the displacement of probe DNA 2 immobilized on an electrode surface. However, Hg(2+)-mediated strand displacement reaction can be inhibited by the chelation of GSH with Hg(2+), thereby leading to an obvious electrochemical response obtained from methylene blue that is modified onto the probe DNA. Our method can sensitively detect GSH in a wide linear range from 0.5nM to 5μM with a low detection limit of 0.14nM, which can also easily distinguish target molecules in complex serum samples and even cell extractions. Therefore, this method may have great potential to monitor GSH in the physiological and pathological condition in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Superconducting inductive displacement detection of a microcantilever

    NASA Astrophysics Data System (ADS)

    Vinante, A.

    2014-07-01

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  8. Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target

    PubMed Central

    Irwin, David E.; Robinson, Maria M.

    2015-01-01

    Retinal image displacements caused by saccadic eye movements are generally unnoticed. Recent theories have proposed that perceptual stability across saccades depends on a local evaluation process centered on the saccade target object rather than on remapping and evaluating the positions of all objects in a display. In three experiments, we examined whether objects other than the saccade target also influence perceptual stability by measuring displacement detection thresholds across saccades for saccade targets and a variable number of non-saccade objects. We found that the positions of multiple objects are maintained across saccades, but with variable precision, with the saccade target object having priority in the perception of displacement, most likely because it is the focus of attention before the saccade and resides near the fovea after the saccade. The perception of displacement of objects that are not the saccade target is affected by acuity limitations, attentional limitations, and limitations on memory capacity. Unlike previous studies that have found that a postsaccadic blank improves the detection of displacement direction across saccades, we found that postsaccadic blanking hurt the detection of displacement per se by increasing false alarms. Overall, our results are consistent with the hypothesis that visual working memory underlies the perception of stability across saccades. PMID:26640430

  9. Effect of oxygen plasma on nanomechanical silicon nitride resonators

    NASA Astrophysics Data System (ADS)

    Luhmann, Niklas; Jachimowicz, Artur; Schalko, Johannes; Sadeghi, Pedram; Sauer, Markus; Foelske-Schmitz, Annette; Schmid, Silvan

    2017-08-01

    Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.

  10. Nanomechanical membrane-type surface stress sensor.

    PubMed

    Yoshikawa, Genki; Akiyama, Terunobu; Gautsch, Sebastian; Vettiger, Peter; Rohrer, Heinrich

    2011-03-09

    Nanomechanical cantilever sensors have been emerging as a key device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. In this letter, we present a membrane-type surface stress sensor (MSS), which is based on the piezoresistive read-out integrated in the sensor chip. The MSS is not a simple "cantilever," rather it consists of an "adsorbate membrane" suspended by four piezoresistive "sensing beams," composing a full Wheatstone bridge. The whole analyte-induced isotropic surface stress on the membrane is efficiently transduced to the piezoresistive beams as an amplified uniaxial stress. Evaluation of a prototype MSS used in the present experiments demonstrates a high sensitivity which is comparable with that of optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that changing dimensions of the membrane and beams can substantially increase the sensitivity further. Given the various conveniences and advantages of the integrated piezoresistive read-out, this platform is expected to open a new era of surface stress-based sensing.

  11. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    PubMed

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  12. Near-Field Integration of a SiN Nanobeam and a SiO2 Microcavity for Heisenberg-Limited Displacement Sensing

    NASA Astrophysics Data System (ADS)

    Schilling, R.; Schütz, H.; Ghadimi, A. H.; Sudhir, V.; Wilson, D. J.; Kippenberg, T. J.

    2016-05-01

    Placing a nanomechanical object in the evanescent near field of a high-Q optical microcavity gives access to strong gradient forces and quantum-limited displacement readout, offering an attractive platform for both precision sensing technology and basic quantum optics research. Robustly implementing this platform is challenging, however, as it requires integrating optically smooth surfaces separated by ≲λ /10 . Here we describe an exceptionally high-cooperativity, single-chip optonanomechanical transducer based on a high-stress Si3N4 nanobeam monolithically integrated into the evanescent near field of SiO2 microdisk cavity. Employing a vertical integration technique based on planarized sacrificial layers, we realize beam-disk gaps as little as 25 nm while maintaining mechanical Q f >1012 Hz and intrinsic optical Q ˜107. The combination of low loss, small gap, and parallel-plane geometry results in radio-frequency flexural modes with vacuum optomechanical coupling rates of 100 kHz, single-photon cooperativities in excess of unity, and large zero-point frequency (displacement) noise amplitudes of 10 kHz (fm )/√ Hz . In conjunction with the high power-handling capacity of SiO2 and low extraneous substrate noise, the transducer performs particularly well as a sensor, with recent deployment in a 4-K cryostat realizing a displacement imprecision 40 dB below that at the standard quantum limit (SQL) and an imprecision-backaction product <5 ℏ [Wilson et al., Nature (London) 524, 325 (2015)]. In this report, we provide a comprehensive description of device design, fabrication, and characterization, with an emphasis on extending Heisenberg-limited readout to room temperature. Towards this end, we describe a room-temperature experiment in which a displacement imprecision 32 dB below that at the SQL and an imprecision-backaction product <60 ℏ is achieved. Our results extend the outlook for measurement-based quantum control of nanomechanical oscillators and suggest an

  13. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing

    PubMed Central

    Hui, Yu; Gomez-Diaz, Juan Sebastian; Qian, Zhenyun; Alù, Andrea; Rinaldi, Matteo

    2016-01-01

    Ultrathin plasmonic metasurfaces have proven their ability to control and manipulate light at unprecedented levels, leading to exciting optical functionalities and applications. Although to date metasurfaces have mainly been investigated from an electromagnetic perspective, their ultrathin nature may also provide novel and useful mechanical properties. Here we propose a thin piezoelectric plasmonic metasurface forming the resonant body of a nanomechanical resonator with simultaneously tailored optical and electromechanical properties. We experimentally demonstrate that it is possible to achieve high thermomechanical coupling between electromagnetic and mechanical resonances in a single ultrathin piezoelectric nanoplate. The combination of nanoplasmonic and piezoelectric resonances allows the proposed device to selectively detect long-wavelength infrared radiation with unprecedented electromechanical performance and thermal capabilities. These attributes lead to the demonstration of a fast, high-resolution, uncooled infrared detector with ∼80% absorption for an optimized spectral bandwidth centered around 8.8 μm. PMID:27080018

  14. High-Q, in-plane modes of nanomechanical resonators operated in air

    NASA Astrophysics Data System (ADS)

    Waggoner, Philip S.; Tan, Christine P.; Bellan, Leon; Craighead, Harold G.

    2009-05-01

    Nanomechanical resonators have traditionally been limited to use in vacuum due to low quality factors that come as a result of viscous damping effects in air or liquid. We have fabricated arrays of 90 nm thick trampoline-shaped resonators, studied their resonant frequency spectrum as a function of pressure, and found that some high frequency modes exhibit quality factors over 2000 at atmospheric pressure. We have excited the in-plane resonances of these devices, verified their identities both experimentally and with finite element modeling, and demonstrated their advantageous characteristics for ambient sensing. Even after deposition of a relatively thick polymer layer, the in-plane resonant modes still boast quality factors on the order of 2000. These results show promise for the use of nanomechanical resonant sensors in real-time atmospheric sensing applications.

  15. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology.

    PubMed

    Bache, Michael; Bosco, Filippo G; Brøgger, Anna L; Frøhling, Kasper B; Alstrøm, Tommy Sonne; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja

    2013-11-08

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.

  16. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate.

    PubMed

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-10-12

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.

  17. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    PubMed Central

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-01-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901

  18. Double displacement: An improved bioorthogonal reaction strategy for templated nucleic acid detection.

    PubMed

    Kleinbaum, Daniel J; Miller, Gregory P; Kool, Eric T

    2010-06-16

    Quenched autoligation probes have been employed previously in a target-templated nonenzymatic ligation strategy for detecting nucleic acids in cells by fluorescence. A common source of background signal in such probes is the undesired reaction with water and other cellular nucleophiles. Here, we describe a new class of self-ligating probes, double displacement (DD) probes, that rely on two displacement reactions to fully unquench a nearby fluorophore. Three potential double displacement architectures, all possessing two fluorescence quencher/leaving groups (dabsylate groups), were synthesized and evaluated for templated reaction with nucleophile (phosphorothioate) probes both in vitro and in intact bacterial cells. All three DD probe designs provided substantially better initial quenching than a single-Dabsyl control. In isothermal templated reactions in vitro, double displacement probes yielded considerably lower background signal than previous single displacement probes; investigation into the mechanism revealed that one dabsylate acts as a sacrificial leaving group, reacting nonspecifically with water, but yielding little signal because another quencher group remains. Templated reaction with the specific nucleophile probe is required to activate a signal. The double displacement probes provided a ca. 80-fold turn-on signal and yielded a 2-4-fold improvement in signal/background over single Dabsyl probes. The best-performing probe architecture was demonstrated in a two-color, FRET-based two-allele discrimination system in vitro and was shown to be capable of discriminating between two closely related species of bacteria differing by a single nucleotide at an rRNA target site.

  19. GaAs-based micro/nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi

    2017-10-01

    Micro/nanomechanical resonators have been extensively studied both for device applications, such as high-performance sensors and high-frequency devices, and for fundamental science, such as quantum physics in macroscopic objects. The advantages of GaAs-based semiconductor heterostructures include improved mechanical properties through strain engineering, highly controllable piezoelectric transduction, carrier-mediated optomechanical coupling, and hybridization with quantum low-dimensional structures. This article reviews our recent activities, as well as those of other groups, on the physics and applications of mechanical resonators fabricated using GaAs-based heterostructures.

  20. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    PubMed

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  1. Needle detection in ultrasound using the spectral properties of the displacement field: a feasibility study

    NASA Astrophysics Data System (ADS)

    Beigi, Parmida; Salcudean, Tim; Rohling, Robert; Lessoway, Victoria A.; Ng, Gary C.

    2015-03-01

    This paper presents a new needle detection technique for ultrasound guided interventions based on the spectral properties of small displacements arising from hand tremour or intentional motion. In a block-based approach, the displacement map is computed for each block of interest versus a reference frame, using an optical flow technique. To compute the flow parameters, the Lucas-Kanade approach is used in a multiresolution and regularized form. A least-squares fit is used to estimate the flow parameters from the overdetermined system of spatial and temporal gradients. Lateral and axial components of the displacement are obtained for each block of interest at consecutive frames. Magnitude-squared spectral coherency is derived between the median displacements of the reference block and each block of interest, to determine the spectral correlation. In vivo images were obtained from the tissue near the abdominal aorta to capture the extreme intrinsic body motion and insertion images were captured from a tissue-mimicking agar phantom. According to the analysis, both the involuntary and intentional movement of the needle produces coherent displacement with respect to a reference window near the insertion site. Intrinsic body motion also produces coherent displacement with respect to a reference window in the tissue; however, the coherency spectra of intrinsic and needle motion are distinguishable spectrally. Blocks with high spectral coherency at high frequencies are selected, estimating a channel for needle trajectory. The needle trajectory is detected from locally thresholded absolute displacement map within the initial estimate. Experimental results show the RMS localization accuracy of 1:0 mm, 0:7 mm, and 0:5 mm for hand tremour, vibrational and rotational needle movements, respectively.

  2. Fluorescence detection of thrombin using autocatalytic strand displacement cycle reaction and a dual-aptamer DNA sandwich assay.

    PubMed

    Niu, Shuyan; Qu, Lijing; Zhang, Qing; Lin, Jiehua

    2012-02-15

    A sensitive and specific sandwich assay for the detection of thrombin is described. Two affiliative aptamers were used to increase the assay specificity through sandwich recognition. Recognition DNA loaded on gold nanoparticles (AuNPs) partially hybridized with the initiator DNA, which was displaced by surviving DNA. After the initiator DNA was released into the solution, one hairpin structure was opened, which in turn opened another hairpin structure. The initiator DNA was displaced and released into the solution again by another hairpin structure because of the hybridized reaction. Then the released initiator DNA initiated another autocatalytic strand displacement reaction. A sophisticated network of three such duplex formation cycles was designed to amplify the fluorescence signal. Other proteins, such as bovine serum albumin and lysozyme, did not interfere with the detection of thrombin. This approach enables rapid and specific thrombin detection with reduced costs and minimized material consumption compared with traditional assay processes. The detection limit of thrombin was as low as 4.3 × 10⁻¹³ M based on the AuNP amplification and the autocatalytic strand displacement cycle reaction. This method could be used in biological samples with excellent selectivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  4. Correlating Single Crystal Structure, Nanomechanical, and Bulk Compaction Behavior of Febuxostat Polymorphs.

    PubMed

    Yadav, Jayprakash A; Khomane, Kailas S; Modi, Sameer R; Ugale, Bharat; Yadav, Ram Naresh; Nagaraja, C M; Kumar, Navin; Bansal, Arvind K

    2017-03-06

    Febuxostat exhibits unprecedented solid forms with a total of 40 polymorphs and pseudopolymorphs reported. Polymorphs differ in molecular arrangement and conformation, intermolecular interactions, and various physicochemical properties, including mechanical properties. Febuxostat Form Q (FXT Q) and Form H1 (FXT H1) were investigated for crystal structure, nanomechanical parameters, and bulk deformation behavior. FXT Q showed greater compressibility, densification, and plastic deformation as compared to FXT H1 at a given compaction pressure. Lower mechanical hardness of FXT Q (0.214 GPa) as compared to FXT H1 (0.310 GPa) was found to be consistent with greater compressibility and lower mean yield pressure (38 MPa) of FXT Q. Superior compaction behavior of FXT Q was attributed to the presence of active slip systems in crystals which offered greater plastic deformation. By virtue of greater compressibility and densification, FXT Q showed higher tabletability over FXT H1. Significant correlation was found with anticipation that the preferred orientation of molecular planes into a crystal lattice translated nanomechanical parameters to a bulk compaction process. Moreover, prediction of compactibility of materials based on true density or molecular packing should be carefully evaluated, as slip-planes may cause deviation in the structure-property relationship. This study supported how molecular level crystal structure confers a bridge between particle level nanomechanical parameters and bulk level deformation behavior.

  5. Nanomechanics of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.

    2017-04-01

    This review focusses on introducing the mechanics in carbon nanotubes (CNT), and the major applications of CNT and its composites in biomedicine. It emphasizes the nanomechanics of these materials by reviewing the widely followed experimental methods, theoretical models, simulations, classification, segregation and applications the aforementioned materials. First, several mechanical properties contributing to the classification of the CNT, for various biomedicine applications, are discussed in detail to provide a cursory glance at the uses of CNT. The mechanics of CNT discussed in this paper include: elasticity, stress, tension, compression, nano-scale mechanics. In addition to these basic properties, a brief introduction about nanoscale composites is given. Second, a brief review on some of the major applications of CNT in biomedicine including drug delivery, therapeutics, diagnostics and regenerative medicine is given.

  6. Opto-nanomechanical spectroscopic material characterization

    DOE PAGES

    Tetard, Laurene; Passian, Ali; Farahi, R. H.; ...

    2015-08-10

    Cellulosic ethanol is a biofuel of considerable potential in the search for sustainable and renewable bioenergy [1,2]. However, while rich in carbohydrates [3], the plant cell walls exhibit a natural resistance to complex phenotype treatments such as enzymatic microbial deconstruction, heat and acid treatments that can remove the lignin polymers from cellulose before hydrolysis [5]. Noninvasive physical and chemical characterization of the cell walls and the effect of such treatments on biomass are challenging but necessary to understand and overcome such resistance [6]. Although lacking chemical recognition in their traditional forms, the various emerging modalities of nano-mechanical [7] and opto-nano-mechanicalmore » [8] force microscopies [9,10] provide a superb window into the needed nanoscale material characterization [6]. Infrared absorption spectroscopy is a powerful, non- destructive and ultra-sensitive technique that can provide the needed molecular fingerprinting but the photothermal channel is delocalized and thus lacks spatial resolution. Utilizing the emerging dynamic concepts of mode synthesizing atomic force microscopy (MSAFM) [11] and virtual resonance [12], we introduce a hybrid photonic and nanomechanical force microscopy (hp-MSAFM) with molecular recognition and characterize the extraction, holopulping and acid treatment of biomass. We present spatially and spectrally resolved cell wall images that reveal both the morphological and the compositional alterations of the cell walls. The measured biomolecular traits are in agreement with chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. The presented findings should prove highly relevant in fields such as cancer research [13], nanotoxicity [14], energy storage and production [15], where morphological, chemical and subsurface studies of nanocomposites [16], nanoparticle uptake by cells [14], and nanoscale quality control [17] are in demand.« less

  7. Structurally Driven Enhancement of Resonant Tunneling and Nanomechanical Properties in Diamond-like Carbon Superlattices.

    PubMed

    Dwivedi, Neeraj; McIntosh, Ross; Dhand, Chetna; Kumar, Sushil; Malik, Hitendra K; Bhattacharyya, Somnath

    2015-09-23

    We report nitrogen-induced enhanced electron tunnel transport and improved nanomechanical properties in band gap-modulated nitrogen doped DLC (N-DLC) quantum superlattice (QSL) structures. The electrical characteristics of such superlattice devices revealed negative differential resistance (NDR) behavior. The interpretation of these measurements is supported by 1D tight binding calculations of disordered superlattice structures (chains), which include bond alternation in sp(3)-hybridized regions. Tandem theoretical and experimental analysis shows improved tunnel transport, which can be ascribed to nitrogen-driven structural modification of the N-DLC QSL structures, especially the increased sp(2) clustering that provides additional conduction paths throughout the network. The introduction of nitrogen also improved the nanomechanical properties, resulting in enhanced elastic recovery, hardness, and elastic modulus, which is unusual but is most likely due to the onset of cross-linking of the network. Moreover, the materials' stress of N-DLC QSL structures was reduced with the nitrogen doping. In general, the combination of enhanced electron tunnel transport and nanomechanical properties in N-DLC QSL structures/devices can open a platform for the development of a new class of cost-effective and mechanically robust advanced electronic devices for a wide range of applications.

  8. Investigation on the remineralization effect of arginine toothpaste for early enamel caries: nanotribological and nanomechanical properties

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Arola, Dwayne D.; Min, Jie; Yu, Dandan; Xu, Zhou; Li, Zhi; Gao, Shanshan

    2016-11-01

    Remineralization is confirmed as a feasible method to restore early enamel caries. While there is evidence that the 8% arginine toothpaste has a good remineralization effect by increasing surface microhardness, the repair effect on wear-resistance and nanomechanical properties still remains unclear. Therefore, this research was conducted to reveal the nanotribological and nanomechanical properties changes of early caries enamel after remineralized with arginine toothpaste. Early enamel caries were created in bovine enamel blocks, and divided into three groups according to the treatment solutions: distilled and deionized water (DDW group), arginine toothpaste slurry (arginine group) and fluoride toothpaste slurry (fluoride group). All of the samples were subjected to pH cycling for 12 d. The nanotribological and nanomechanical properties were evaluated via the nanoscratch and nanoindentation tests. The wear depth and scratch morphology were observed respectively by scanning probe microscopic (SPM) and scanning electron microscopy (SEM). Finally, x-ray photoelectron spectroscopy (XPS) was used for element analysis of remineralized surfaces. Results showed that the wear depth of early caries enamel decreased after remineralization treatment and both the nanohardness and elastic modulus increased. Compared with the fluoride group, the arginine group exhibited higher nanohardness and elastic modulus with higher levels of calcium, fluoride, nitrogen and phosphorus; this group also underwent less wear and related damage. Overall, the synergistic effect of arginine and fluoride in arginine toothpaste achieves better nanotribological and nanomechanical properties than the single fluoride toothpaste, which could have significant impact on fight against early enamel caries.

  9. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    NASA Astrophysics Data System (ADS)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  10. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor

    PubMed Central

    Sul, Onejae; Lee, Seung-Beck

    2017-01-01

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm−1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree−1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP−1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm. PMID:28878166

  11. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor.

    PubMed

    Choi, Eunsuk; Sul, Onejae; Lee, Seung-Beck

    2017-09-06

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm −1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree −1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP −1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm.

  12. Coupling of a nanomechanical oscillator and an atomic three-level medium

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Eisfeld, A.; Wüster, S.; Rost, J.-M.

    2016-02-01

    We theoretically investigate the coupling of an ultracold three-level atomic gas and a nanomechanical mirror via classical electromagnetic radiation. The radiation pressure on the mirror is modulated by absorption of a probe light field, caused by the atoms which are electromagnetically rendered nearly transparent, allowing the gas to affect the mirror. In turn, the mirror can affect the gas as its vibrations generate optomechanical sidebands in the control field. We show that the sidebands cause modulations of the probe intensity at the mirror frequency, which can be enhanced near atomic resonances. Through the radiation pressure from the probe beam onto the mirror, this results in resonant driving of the mirror. Controllable by the two-photon detuning, the phase relation of the driving to the mirror motion decides upon amplification or damping of mirror vibrations. This permits direct phase locking of laser amplitude modulations to the motion of a nanomechanical element opening a perspective for cavity-free cooling through coupling to an atomic gas.

  13. Application of Hybrid Along-Track Interferometry/Displaced Phase Center Antenna Method for Moving Human Target Detection in Forest Environments

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced

  14. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin

    PubMed Central

    Castelain, Mickaël; Duviau, Marie-Pierre; Canette, Alexis; Schmitz, Philippe; Loubière, Pascal; Cocaign-Bousquet, Muriel; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-01-01

    Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis. PMID:27010408

  15. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading

    NASA Astrophysics Data System (ADS)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M.; Sendra, Jose Ramón; Lechuga, Laura M.

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  16. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading.

    PubMed

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  17. Simplified Real-Time Multiplex Detection of Loop-Mediated Isothermal Amplification Using Novel Mediator Displacement Probes with Universal Reporters.

    PubMed

    Becherer, Lisa; Bakheit, Mohammed; Frischmann, Sieghard; Stinco, Silvina; Borst, Nadine; Zengerle, Roland; von Stetten, Felix

    2018-04-03

    A variety of real-time detection techniques for loop-mediated isothermal amplification (LAMP) based on the change in fluorescence intensity during DNA amplification enable simultaneous detection of multiple targets. However, these techniques depend on fluorogenic probes containing target-specific sequences. That complicates the adaption to different targets leading to time-consuming assay optimization. Here, we present the first universal real-time detection technique for multiplex LAMP. The novel approach allows simple assay design and is easy to implement for various targets. The innovation features a mediator displacement probe and a universal reporter. During amplification of target DNA the mediator is displaced from the mediator displacement probe. Then it hybridizes to the reporter generating a fluorescence signal. The novel mediator displacement (MD) detection was validated against state-of-the-art molecular beacon (MB) detection by means of a HIV-1 RT-LAMP: MD surpassed MB detection by accelerated probe design (MD: 10 min, MB: 3-4 h), shorter times to positive (MD 4.1 ± 0.1 min shorter than MB, n = 36), improved signal-to-noise fluorescence ratio (MD: 5.9 ± 0.4, MB: 2.7 ± 0.4; n = 15), and showed equally good or better analytical performance parameters. The usability of one universal mediator-reporter set in different multiplex assays was successfully demonstrated for a biplex RT-LAMP of HIV-1 and HTLV-1 and a biplex LAMP of Haemophilus ducreyi and Treponema pallidum, both showing good correlation between target concentration and time to positive. Due to its simple implementation it is suggested to extend the use of the universal mediator-reporter sets to the detection of various other diagnostic panels.

  18. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    PubMed

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  19. Homogenous assay for protein detection based on proximity DNA hybridization and isothermal circular strand displacement amplification reaction.

    PubMed

    Zhang, Manjun; Li, Ruimin; Ling, Liansheng

    2017-06-01

    This work proposed a homogenous fluorescence assay for proteins, based on the target-triggered proximity DNA hybridization in combination with strand displacement amplification (SDA). It benefited from target-triggered proximity DNA hybridization to specifically recognize the target and SDA making recycling signal amplification. The system included a molecular beacon (MB), an extended probe (EP), and an assistant probe (AP), which were not self-assembly in the absence of target proteins, due to the short length of the designed complementary sequence among MB, EP, and AP. Upon addition of the target proteins, EP and AP are bound to the target proteins, which induced the occurrence of proximity hybridization between MB, EP, and AP and followed by strand displacement amplification. Through the primer extension, a tripartite complex of probes and target was displaced and recycled to hybridize with another MB, and the more opened MB enabled the detection signal to amplify. Under optimum conditions, it was used for the detection of streptavidin and thrombin. Fluorescence intensity was proportional to the concentration of streptavidin and thrombin in the range of 0.2-30 and 0.2-35 nmol/L, respectively. Furthermore, this fluorescent method has a good selectivity, in which the fluorescence intensity of thrombin was ~37-fold or even larger than that of the other proteins at the same concentration. It is a new and simple method for SDA-involved target protein detection and possesses a great potential for other protein detection in the future. Graphical abstract A homogenous assay for protein detection is based on proximity DNA hybridization and strand displacement amplification reaction.

  20. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  1. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection

    PubMed Central

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world’s attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg2+ ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  2. Characterization of hydrogen responsive nanoporous palladium films synthesized via a spontaneous galvanic displacement reaction.

    PubMed

    Patton, J F; Lavrik, N V; Joy, D C; Hunter, S R; Datskos, P G; Smith, D B; Sepaniak, M J

    2012-11-23

    A model is presented regarding the mechanistic properties associated with the interaction of hydrogen with nanoporous palladium (np-Pd) films prepared using a spontaneous galvanic displacement reaction (SGDR), which involves PdCl(2) reduction by atomic Ag. Characterization of these films shows both chemical and morphological factors, which influence the performance characteristics of np-Pd microcantilever (MC) nanomechanical sensing devices. Raman spectroscopy, uniquely complemented with MC response profiles, is used to explore the chemical influence of palladium oxide (PdO). These combined techniques support a reaction mechanism that provides for rapid response to H(2) and recovery in the presence of O(2). Post-SGDR processing via reduction of PdCl(2)(s) in a H(2) environment results in a segregated nanoparticle three-dimensional matrix dispersed in a silver layer. The porous nature of the reduced material is shown by high resolution scanning electron microscopy. Extended grain boundaries, typical of these materials, result in a greater surface area conducive to fast sorption/desorption of hydrogen, encouraged by the presence of PdO. X-ray diffraction and inductively coupled plasma-optical emission spectroscopy are employed to study changes in morphology and chemistry occurring in these nanoporous films under different processing conditions. The unique nature of chemical/morphological effects, as demonstrated by the above characterization methods, provides evidence in support of observed nanomechanical response/recovery profiles offering insight for catalysis, H(2) storage and improved sensing applications.

  3. Non-continuum, anisotropic nanomechanics of random and aligned electrospun nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Chery, Daphney; Han, Biao; Mauck, Robert; Shenoy, Vivek; Han, Lin

    Polymer nanofiber assemblies are widely used in cell culture and tissue engineering, while their nanomechanical characteristics have received little attention. In this study, to understand their nanoscale structure-mechanics relations, nanofibers of polycaprolactone (PCL) and poly(vinyl alcohol) (PVA) were fabricated via electrospinning, and tested via AFM-nanoindentation with a microspherical tip (R ~10 μm) in PBS. For the hydrophobic, less-swollen PCL, a novel, non-continuum linear F-D dependence was observed, instead of the typical Hertzian F-D3/2 behavior, which is usually expected for continuum materials. This linear trend is likely resulted from the tensile stretch of a few individual nanofibers as they were indented in the normal plane. In contrast, for the hydrophilic, highly swollen PVA, the observed typical Hertzian response indicates the dominance of localized deformation within each nanofiber, which had swollen to become hydrogels. Furthermore, for both matrices, aligned fibers showed significantly higher stiffness than random fibers. These results provide a fundamental basis on the nanomechanics of biomaterials for specialized applications in cell phenotype and tissue repair.

  4. Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer.

    PubMed

    Huang, Jin; Chen, Yan; Yang, Liu; Zhu, Zhi; Zhu, Guizhi; Yang, Xiaohai; Wang, Kemin; Tan, Weihong

    2011-10-15

    Cocaine is one of the most abused drugs in the United States and is potentially dangerous when consumed in excess. Its detection is thus important in many areas in the fight against drug trafficking. We have developed an amplified detection method for cocaine based on a strand-displacement polymerization reaction using aptamer recognition. The system mainly consists of a hairpin probe with Cy5 labeled on its 3' end, a primer with FAM labeled on its 5' end, and polymerase. The aptamer sequence is integrated into the 5'-section of the hairpin probe. The primer is designed complementary to the 3' end of the hairpin probe, which is also part of the hairpin stem region. The cocaine induced reaction cycle generates product for detection and thus for signal amplification. The detection limit of this method is 200 nM in about 16 min and the specificity of this approach is excellent. We believe that this strategy will be useful for the development of analytical schemes for a variety of aptamers for small molecules, metal ions, and proteins. This simple scheme employing the strand-displacement polymerization reaction may find wide application in forensic analysis, environmental monitoring, and clinical diagnostics. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. High-Resolution “Fleezers”: Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection

    PubMed Central

    Whitley, Kevin D.; Comstock, Matthew J.; Chemla, Yann R.

    2017-01-01

    Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection—fluorescence optical tweezers, or “fleezers”—is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities. PMID:27844430

  6. How much articular displacement can be detected using fluoroscopy for tibial plateau fractures?

    PubMed

    Haller, Justin M; O'Toole, Robert; Graves, Matthew; Barei, David; Gardner, Michael; Kubiak, Erik; Nascone, Jason; Nork, Sean; Presson, Angela P; Higgins, Thomas F

    2015-11-01

    While there is conflicting evidence regarding the importance of anatomic reduction for tibial plateau fractures, there are currently no studies that analyse our ability to grade reduction based on fluoroscopic imaging. The purpose of this study was to determine the accuracy of fluoroscopy in judging tibial plateau articular reduction. Ten embalmed human cadavers were selected. The lateral plateau was sagitally sectioned, and the joint was reduced under direct visualization. Lateral, anterior-posterior (AP), and joint line fluoroscopic views were obtained. The same fluoroscopic views were obtained with 2mm displacement and 5mm displacement. The images were randomised, and eight orthopaedic traumatologists were asked whether the plateau was reduced. Within each pair of conditions (view and displacement from 0mm to 5mm) sensitivity, specificity, and intraclass correlations (ICC) were evaluated. The AP-lateral view with 5mm displacement yielded the highest accuracy for detecting reduction at 90% (95% CI: 83-94%). For the other conditions, accuracy ranged from (37-83%). Sensitivity was highest for the reduced lateral view (79%, 95% CI: 57-91%). Specificity was highest in the AP-lateral view 98% (95% CI: 93-99%) for 5mm step-off. ICC was perfect for the AP-lateral view with 5mm displacement, but otherwise agreement ranged from poor to moderate at ICC=0.09-0.46. Finally, there was no additional benefit to including the joint-line view with the AP and lateral views. Using both AP and lateral views for 5mm displacement had the highest accuracy, specificity, and ICC. Outside of this scenario, agreement was poor to moderate and accuracy was low. Applying this clinically, direct visualization of the articular surface may be necessary to ensure malreduction less than 5mm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. DNA-mediated strand displacement facilitates sensitive electronic detection of antibodies in human serums.

    PubMed

    Dou, Baoting; Yang, Jianmei; Shi, Kai; Yuan, Ruo; Xiang, Yun

    2016-09-15

    We describe here the development of a sensitive and convenient electronic sensor for the detection of antibodies in human serums. The sensor is constructed by self-assembly formation of a mixed monolayer containing the small molecule epitope conjugated double stranded DNA probes on gold electrode. The target antibody binds the epitope on the dsDNA probe and lowers the melting temperature of the duplex, which facilitates the displacement of the antibody-linked strand of the duplex probe by an invading methylene blue-tagged single stranded DNA (MB-ssDNA) through the strand displacement reaction and leads to the capture of many MB-ssDNA on the sensor surface. Subsequent electrochemical oxidation of the methylene blue labels results in amplified current response for sensitive monitoring of the antibodies. The antibody assay conditions are optimized and the sensor exhibits a linear range between 1.0 and 25.0nM with a detection limit of 0.67nM for the target antibody. The sensor is also selective and can be employed to detect the target antibodies in human serum samples. With the advantages of using small molecule epitope as the antibody recognition element over traditional antigen, the versatile manipulability of the DNA probes and the unique properties of the electrochemical transduction technique, the developed sensor thus hold great potential for simple and sensitive detection of different antibodies and other proteins in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Triplex molecular layers with nonlinear nanomechanical response

    NASA Astrophysics Data System (ADS)

    Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.

    2002-06-01

    The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.

  9. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    NASA Astrophysics Data System (ADS)

    Blencowe, M. P.; Armour, A. D.

    2008-09-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  10. Enzyme-less electrochemical displacement heterogeneous immunosensor for diclofenac detection.

    PubMed

    Nguyen, T T K; Vu, T T; Anquetin, G; Tran, H V; Reisberg, S; Noël, V; Mattana, G; Nguyen, Q V; Dai Lam, Tran; Pham, M C; Piro, B

    2017-11-15

    We describe an electrochemical immunosensor based on functionalization of a working electrode by electrografting two functional diazonium salts. The first one is a molecular probe, diclofenac, coupled with an arylamine onto which a specific antibody is immobilized by affinity interactions; the second is a redox probe (a quinone) also coupled with an arylamine, able to transduce the hapten-antibody association into a change in electroactivity. The steric hindrance induced by the antibody leads to a current decrease upon binding of the antibody on the grafted molecular probe; conversely, when diclofenac is present in solution, a displacement equilibrium occurs between the target diffusing into the solution and the grafted probe. This leads to dissociation of the antibody from the electrode surface, event which is transduced into a current increase ("signal-on" detection). The detection limit is ca. 20 fM, corresponding to 6pgL -1 diclofenac, which is competitive compared to other label-free immunosensors. We demonstrate that the sensor is selective and is able to quantify diclofenac in tap water. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Heisenberg limit for displacements with semiclassical states

    NASA Astrophysics Data System (ADS)

    Luis, Alfredo

    2004-04-01

    We analyze the quantum limit to the sensitivity of the detection of small displacements. We focus on the case of free particles and harmonic oscillators as the systems experiencing the displacement. We show that the minimum displacement detectable is proportional to the inverse of the square root of the mean value of the energy in the state experiencing the displacement (Heisenberg limit). We present a measuring scheme that reaches this limit using semiclassical states. We examine the performance of this strategy under realistic practical conditions by computing the effect of imperfections such as losses and nonunit detection efficiencies. This analysis confirms the robustness of this measuring strategy by showing that the experimental imperfections can be suitably compensated by increasing the mean energy of the input state.

  12. In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene

    DOE PAGES

    Xu, Feng; Ma, Hongyu; Lei, Shuangying; ...

    2016-06-20

    Recently discovered atomically thin black phosphorus (called phosphorene) holds great promise for applications in flexible nanoelectronic devices. Experimentally identifying and characterizing nanomechanical properties of phosphorene are challenging, but also potentially rewarding. Our work combines for the first time in situ transmission electron microscopy (TEM) imaging and an in situ micro-manipulation system to directly visualize the nanomechanical behaviour of individual phosphorene nanoflakes. Furthermore, we demonstrate that the phosphorene nanoflakes can be easily bent, scrolled, and stretched, showing remarkable mechanical flexibility rather than fracturing. An out-of-plane plate-like bending mechanism and in-plane tensile strain of up to 34% were observed. Moreover, a facilemore » liquid-phase shear exfoliation route has been developed to produce such mono-layer and few-layer phosphorene nanoflakes in organic solvents using only a household kitchen blender. The effects of surface tensions of the applied solvents on the ratio of average length and thickness (L/T) of the nanoflakes were studied systematically. These results reported here will pave the way for potential industrial-scale applications of flexible phosphorene nanoelectronic devices.« less

  13. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.

    PubMed

    Zhang, Xiao; Ren, Juan; Wang, Jingren; Li, Shixie; Zou, Qingze; Gao, Nan

    2018-08-01

    Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals. © 2017 Wiley Periodicals, Inc.

  14. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    NASA Astrophysics Data System (ADS)

    Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter

    2017-11-01

    Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  15. Effect of high energy X-ray irradiation on the nano-mechanical properties of human enamel and dentine.

    PubMed

    Liang, Xue; Zhang, Jing Yang; Cheng, Iek Ka; Li, Ji Yao

    2016-01-01

    Radiotherapy for malignancies in the head and neck can cause common complications that can result in tooth damage that are also known as radiation caries. The aim of this study was to examine damage to the surface topography and calculate changes in friction behavior and the nano-mechanical properties (elastic modulus, nanohardness and friction coefficient) of enamel and dentine from extracted human third molars caused by exposure to radiation. Enamel and dentine samples from 50 human third molars were randomly assigned to four test groups or a control group. The test groups were exposed to high energy X-rays at 2 Gy/day, 5 days/week for 5 days (10 Gy group), 15 days (30 Gy group), 25 days (50 Gy group), 35 days (70 Gy group); the control group was not exposed. The nanohardness, elastic modulus, and friction coefficient were analyzed using a Hysitron Triboindenter. The nano-mechanical properties of both enamel and dentine showed significant dose-response relationships. The nanohardness and elastic modulus were most variable between 30-50 Gy, while the friction coefficient was most variable between 0-10 Gy for dentine and 30-50 Gy for enamel. After exposure to X-rays, the fracture resistance of the teeth clearly decreased (rapidly increasing friction coefficient with increasing doses under the same load), and they were more fragile. These nano-mechanical changes in dental hard tissue may increase the susceptibility to caries. Radiotherapy caused nano-mechanical changes in dentine and enamel that were dose related. The key doses were 30-50 Gy and the key time points occurred during the 15th-25th days of treatment, which is when application of measures to prevent radiation caries should be considered.

  16. Nanomechanics of Actively Controlled Deployable Optics

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    2000-01-01

    This document is the interim, annual report for the research grant entitled "Nanomechanics of Actively Controlled Deployed Optics." It is supported by NASA Langley Research Center Cooperative Agreement NCC-1 -281. Dr. Mark S. Lake is the technical monitor of the research program. This document reports activities for the year 1998, beginning 3/11/1998, and for the year 1999. The objective of this report is to summarize the results and the status of this research. This summary appears in Section 2.0. Complete details of the results of this research have been reported in several papers, publications and theses. Section 3.0 lists these publications and, when available, presents their abstracts. Each publication is available in electronic form from a web site identified in Section 3.0.

  17. Rheticus Displacement: an Automatic Geo-Information Service Platform for Ground Instabilities Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Chiaradia, M. T.; Samarelli, S.; Agrimano, L.; Lorusso, A. P.; Nutricato, R.; Nitti, D. O.; Morea, A.; Tijani, K.

    2016-12-01

    Rheticus® is an innovative cloud-based data and services hub able to deliver Earth Observation added-value products through automatic complex processes and a minimum interaction with human operators. This target is achieved by means of programmable components working as different software layers in a modern enterprise system which relies on SOA (service-oriented-architecture) model. Due to its architecture, where every functionality is well defined and encapsulated in a standalone component, Rheticus is potentially highly scalable and distributable allowing different configurations depending on the user needs. Rheticus offers a portfolio of services, ranging from the detection and monitoring of geohazards and infrastructural instabilities, to marine water quality monitoring, wildfires detection or land cover monitoring. In this work, we outline the overall cloud-based platform and focus on the "Rheticus Displacement" service, aimed at providing accurate information to monitor movements occurring across landslide features or structural instabilities that could affect buildings or infrastructures. Using Sentinel-1 (S1) open data images and Multi-Temporal SAR Interferometry techniques (i.e., SPINUA), the service is complementary to traditional survey methods, providing a long-term solution to slope instability monitoring. Rheticus automatically browses and accesses (on a weekly basis) the products of the rolling archive of ESA S1 Scientific Data Hub; S1 data are then handled by a mature running processing chain, which is responsible of producing displacement maps immediately usable to measure with sub-centimetric precision movements of coherent points. Examples are provided, concerning the automatic displacement map generation process, as well as the integration of point and distributed scatterers, the integration of multi-sensors displacement maps (e.g., Sentinel-1 IW and COSMO-SkyMed HIMAGE), the combination of displacement rate maps acquired along both ascending

  18. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Birkedal, V.; Gothelf, K. V.

    2016-05-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection.

  19. Quantitative Nanomechanical Properties of Multilayer Films Made of Polysaccharides through Spray Assisted Layer-by-Layer Assembly.

    PubMed

    Criado, Miryam; Rebollar, Esther; Nogales, Aurora; Ezquerra, Tiberio A; Boulmedais, Fouzia; Mijangos, Carmen; Hernández, Rebeca

    2017-01-09

    Nanomechanical properties of alginate/chitosan (Alg/Chi) multilayer films, obtained through spray assisted layer-by-layer assembly, were studied by means of PeakForce quantitative nanomechanical mapping atomic force microscopy (PF-QNM AFM). Prepared at two different alginate concentrations (1.0 and 2.5 mg/mL) and a fixed chitosan concentration (1.0 mg/mL), Alg/Chi films have an exponential growth in thickness with a transition to a linear growth toward a plateau by increasing the number of deposited bilayers. Height, elastic modulus, deformation, and adhesion maps were simultaneously recorded depending on the number of deposited bilayers. The elastic modulus of Alg/Chi films was found to be related to the mechanism of growth in contrast to the adhesion and deformation. A comparison of the nanomechanical properties obtained for non-cross-linked and thermally cross-linked Alg/Chi films revealed an increase of the elastic modulus after cross-linking regardless alginate concentration. The incorporation of iron oxide nanoparticles (NPs), during the spray preparation of the films, gave rise to nanocomposite Alg/Chi films with increased elastic moduli with the number of incorporated NPs layers. Deformation maps of the films strongly suggested the presence of empty spaces associated with the method of preparation. Finally, adhesion measurements point out to a significant role of NPs on the increase of the adhesion values found for nanocomposite films.

  20. Optomechanical terahertz detection with single meta-atom resonator.

    PubMed

    Belacel, Cherif; Todorov, Yanko; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo

    2017-11-17

    Most of the common technologies for detecting terahertz photons (>1 THz) at room temperature rely on slow thermal devices. The realization of fast and sensitive detectors in this frequency range is indeed a notoriously difficult task. Here we propose a novel device consisting of a subwavelength terahertz meta-atom resonator, which integrates a nanomechanical element and allows energy exchange between the mechanical motion and the electromagnetic degrees of freedom. An incident terahertz wave thus produces a nanomechanical signal that can be read out optically with high precision. We exploit this concept to demonstrate a terahertz detector that operates at room temperature with high sensitivity and a much higher frequency response compared to standard detectors. Beyond the technological issue of terahertz detection, our architecture opens up new perspectives for fundamental science of light-matter interaction at terahertz frequencies, combining optomechanical approaches with semiconductor quantum heterostructures.

  1. Growth and nanomechanical characterization of nanoscale 3D architectures grown via focused electron beam induced deposition

    DOE PAGES

    Lewis, Brett B.; Mound, Brittnee A.; Srijanto, Bernadeta; ...

    2017-10-12

    Here, nanomechanical measurements of platinum–carbon 3D nanoscale architectures grown via focused electron beam induced deposition (FEBID) were performed using a nanoindentation system in a scanning electron microscope (SEM) for simultaneous in situ imaging.

  2. Polymerase chain displacement reaction.

    PubMed

    Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang

    2013-02-01

    Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics.

  3. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.

    PubMed

    Pan, Kang; Zhong, Qixin

    2015-08-07

    Amyloid-like fibrils are studied because of their significance in understanding pathogenesis and creating functional materials. Amyloid-like fibrils have been studied by heating globular proteins at acidic conditions. In the present study, intrinsically disordered α-, β-, and κ-caseins were studied to form amyloid-like fibrils at pH 2.0 and 90 °C. No fibrils were observed for α-caseins, and acid hydrolysis was found to be the rate-limiting step of fibrillation of β- and κ-caseins. An increase of β-sheet structure was observed after fibrillation. Nanomechanic analysis of long amyloid-like fibrils using peak-force quantitative nanomechanical atomic force microscopy showed the lowest and highest Young's modulus for β-casein (2.35 ± 0.29 GPa) and κ-casein (4.14 ± 0.66 GPa), respectively. The dispersion with β-casein fibrils had a viscosity more than 10 and 5 times higher than those of κ-casein and β-lactoglobulin, respectively, at 0.1 s(-1) at comparable concentrations. The current findings may assist not only the understanding of amyloid fibril formation but also the development of novel functional materials from disordered proteins.

  4. A label-free amplified fluorescence DNA detection based on isothermal circular strand-displacement polymerization reaction and graphene oxide.

    PubMed

    Li, Zhen; Zhu, Wenping; Zhang, Jinwen; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2013-07-07

    A label-free fluorescent DNA biosensor has been presented based on isothermal circular strand-displacement polymerization reaction (ICSDPR) combined with graphene oxide (GO) binding. The proposed method is simple and cost-effective with a low detection limit of 4 pM, which compares favorably with other GO-based homogenous DNA detection methods.

  5. The nanomechanical signature of liver cancer tissues and its molecular origin

    NASA Astrophysics Data System (ADS)

    Tian, Mengxin; Li, Yiran; Liu, Weiren; Jin, Lei; Jiang, Xifei; Wang, Xinyan; Ding, Zhenbin; Peng, Yuanfei; Zhou, Jian; Fan, Jia; Cao, Yi; Wang, Wei; Shi, Yinghong

    2015-07-01

    Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus distribution of surgically removed liver cancer tissues can serve as a mechanical fingerprint to evaluate the malignancy of liver cancer. Cirrhotic tissues shared the same LEP as normal tissues. However, a noticeable downward shift in the LEP was detected when the cirrhotic tissues progressed to a malignant state, making the tumor tissues more prone to microvascular invasion. Cell-level mechanistic studies revealed that the expression level of a Rho-family effector (mDia1) was consistent with the mechanical trend exhibited by the tissue. Our findings indicate that the mechanical profiles of liver cancer tissues directly varied with tumor progression, providing an additional platform for the future diagnosis of HCC.Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus

  6. Optical displacement sensor

    DOEpatents

    Carr, Dustin W [Albuquerque, NM

    2008-04-08

    An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

  7. Nanomechanical Sensing of Biological Interfacial Interactions

    NASA Astrophysics Data System (ADS)

    Du, Wenjian

    Cellulose is the most abundant biopolymer on earth. Cellulase is an enzyme capable of converting insoluble cellulose into soluble sugars. Cellulosic biofuel produced from such fermentable simple sugars is a promising substitute as an energy source. However, its economic feasibility is limited by the low efficiency of the enzymatic hydrolysis of cellulose by cellulase. Cellulose is insoluble and resistant to enzymatic degradation, not only because the beta-1,4-glycosidic bonds are strong covalent bonds, but also because cellulose microfibrils are packed into tightly bound, crystalline lattices. Enzymatic hydrolysis of cellulose by cellulase involves three steps--initial binding, decrystallization, and hydrolytic cleavage. Currently, the mechanism for the decrystallization has not yet been elucidated, though it is speculated to be the rate-limiting step of the overall enzymatic activity. The major technical challenge limiting the understanding of the decrystallization is the lack of an effective experimental approach capable of examining the decrystallization, an interfacial enzymatic activity on solid substrates. The work presented develops a nanomechanical sensing approach to investigate both the decrystallization and enzymatic hydrolytic cleavage of cellulose. The first experimental evidence of the decrystallization is obtained by comparing the results from native cellulase and non-hydrolytic cellulase. Surface topography has been applied to examine the activities of native cellulase and non-hydrolytic cellulase on cellulose substrate. The study demonstrates additional experimental evidence of the decrystallization in the hydrolysis of cellulose. By combining simulation and monitoring technology, the current study also investigates the structural changes of cellulose at a molecular level. In particular, the study employs cellulose nanoparticles with a bilayer structure on mica sheets. By comparing results from a molecular dynamic simulation and the distance

  8. Highly sensitive "signal-on" electrochemiluminescent biosensor for the detection of DNA based on dual quenching and strand displacement reaction.

    PubMed

    Lou, Jing; Wang, Zhaoyin; Wang, Xiao; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2015-10-07

    A "signal-on" electrochemiluminescent DNA biosensing platform was proposed based on the dual quenching and strand displacement reaction. This novel "signal-on" detection strategy revealed its sensitivity in achieving a detection limit of 2.4 aM and its selectivity in distinguishing single nucleotide polymorphism of target DNA.

  9. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes

    NASA Astrophysics Data System (ADS)

    Etayash, Hashem; Khan, M. F.; Kaur, Kamaljit; Thundat, Thomas

    2016-10-01

    In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a concentration of single cell per μl. Trapped Escherichia coli in the microchannel shows a distinct nanomechanical response when exposed to antibiotics. This approach, which combines enrichment with three different modes of detection, can serve as a platform for the development of a portable, high-throughput device for use in the real-time detection of bacteria and their response to antibiotics.

  10. Dependence of nanomechanical modification of polymers on plasma-induced cross-linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, S.; Komvopoulos, K.

    2007-01-01

    The nanomechanical properties of low-density polyethylene (LDPE) modified by inductively coupled, radio-frequency Ar plasma were investigated by surface force microscopy. The polymer surface was modified under plasma conditions of different ion energy fluences and radiation intensities obtained by varying the sample distance from the plasma power source. Nanoindentation results of the surface stiffness versus maximum penetration depth did not reveal discernible differences between untreated and plasma-treated LDPE, presumably due to the small thickness of the modified surface layer that resulted in a substrate effect. On the contrary, nanoscratching experiments demonstrated a significant increase in the surface shear resistance of plasma-modifiedmore » LDPE due to chain cross-linking. These experiments revealed an enhancement of cross-linking with increasing ion energy fluence and radiation intensity, and a tip size effect on the friction force and dominant friction mechanisms (adhesion, plowing, and microcutting). In addition, LDPE samples with a LiF crystal shield were exposed to identical plasma conditions to determine the role of vacuum ultraviolet (VUV) and ultraviolet (UV) radiation in the cross-linking process. The cross-linked layer of plasma-treated LDPE exhibited much higher shear strength than that of VUV/UV-treated LDPE. Plasma-induced surface modification of the nanomechanical properties of LDPE is interpreted in the context of molecular models of the untreated and cross-linked polymer surfaces derived from experimental findings.« less

  11. Optical and nanomechanical study of anti-scratch layers on polycarbonate lenses

    NASA Astrophysics Data System (ADS)

    Charitidis, C.; Laskarakis, A.; Kassavetis, S.; Gravalidis, C.; Logothetidis, S.

    2004-07-01

    In recent years, as the optical-electronic industry developed, polymeric materials were gradually increasing in importance. Polycarbonate (PC) is a good candidate for eyewear applications due to its low weight and transparency. In the case of PC lenses, the deposition of anti-scratch (AS) coatings on the polymer surface is essential for the improvement of the mechanical behavior of the lens. In this work, we present a detailed investigation of the optical and nanomechanical properties of a PC based optical lens and coated by an AS coating as a protective overcoat. The study of the effect of the AS coating on the optical response of the PC lens has been performed by the use of Spectroscopic Ellipsometry (SE) in the IR spectral region, where the characteristic features corresponding to the different bonding configuration of the PC lens and the AS coating were studied. Also, the nanomechanical study of the PC lens, before and after the deposition of the AS coating, performed by nanoindentation measurements revealed the significant enhancement of the mechanical response of the AS/PC lens. More specifically, the AS/PC lens is characterized by enhanced values of hardness and elastic modulus. Finally, the use of AS coating has found to lead to a better scratch resistance and to the reduction of the coefficient of friction (μ) of the PC lens.

  12. Tactile suppression of displacement.

    PubMed

    Ziat, Mounia; Hayward, Vincent; Chapman, C Elaine; Ernst, Marc O; Lenay, Charles

    2010-10-01

    In vision, the discovery of the phenomenon of saccadic suppression of displacement has made important contributions to the understanding of the stable world problem. Here, we report a similar phenomenon in the tactile modality. When scanning a single Braille dot with two fingers of the same hand, participants were asked to decide whether the dot was stationary or whether it was displaced from one location to another. The stimulus was produced by refreshable Braille devices that have dots that can be swiftly raised and recessed. In some conditions, the dot was stationary. In others, a displacement was created by monitoring the participant's finger position and by switching the dot activation when it was not touched by either finger. The dot displacement was of either 2.5 mm or 5 mm. We found that in certain cases, displaced dots were felt to be stationary. If the displacement was orthogonal to the finger movements, tactile suppression occurred effectively when it was of 2.5 mm, but when the displacement was of 5 mm, the participants easily detected it. If the displacement was medial-lateral, the suppression effect occurred as well, but less often when the apparent movement of the dot opposed the movement of the finger. In such cases, the stimulus appeared sooner than when the brain could predict it from finger movement, supporting a predictive rather than a postdictive differential processing hypothesis.

  13. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacement detection

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Sieradzki, Rafal; Baryla, Radoslaw

    2018-03-01

    This paper provides the methodology and performance assessment of multi-GNSS signal processing for the detection of small-scale high-rate dynamic displacements. For this purpose, we used methods of relative (RTK) and absolute positioning (PPP), and a novel direct signal processing approach. The first two methods are recognized as providing accurate information on position in many navigation and surveying applications. The latter is an innovative method for dynamic displacement determination with the use of GNSS phase signal processing. This method is based on the developed functional model with parametrized epoch-wise topocentric relative coordinates derived from filtered GNSS observations. Current regular kinematic PPP positioning, as well as medium/long range RTK, may not offer coordinate estimates with subcentimeter precision. Thus, extended processing strategies of absolute and relative GNSS positioning have been developed and applied for displacement detection. The study also aimed to comparatively analyze the developed methods as well as to analyze the impact of combined GPS and BDS processing and the dependence of the results of the relative methods on the baseline length. All the methods were implemented with in-house developed software allowing for high-rate precise GNSS positioning and signal processing. The phase and pseudorange observations collected with a rate of 50 Hz during the field test served as the experiment’s data set. The displacements at the rover station were triggered in the horizontal plane using a device which was designed and constructed to ensure a periodic motion of GNSS antenna with an amplitude of ~3 cm and a frequency of ~4.5 Hz. Finally, a medium range RTK, PPP, and direct phase observation processing method demonstrated the capability of providing reliable and consistent results with the precision of the determined dynamic displacements at the millimeter level. Specifically, the research shows that the standard deviation of

  14. The application of nanoindentation for determination of cellulose nanofibrils (CNF) nanomechanical properties

    NASA Astrophysics Data System (ADS)

    Yildirim, N.; Shaler, S.

    2016-10-01

    Nanocellulose is a polymer which can be isolated from nature (woods, plants, bacteria, and from sea animals) through chemical or mechanical treatments, as cellulose nanofibrils (CNF), cellulose nanocrystals or bacterial celluloses. Focused global research activities have resulted in decreasing costs. A nascent industry of producers has created a huge market interest in CNF. However, there is still lack of knowledge on the nanomechanical properties of CNF, which create barriers for the scientist and producers to optimize and predict behavior of the final product. In this research, the behavior of CNF under nano compression loads were investigated through three different approaches, Oliver-Pharr (OP), fused silica (FS), and tip imaging (TI) via nanoindentation in an atomic force microscope. The CNF modulus estimates for the three approaches were 16.6 GPa, for OP, 15.8 GPa for FS, and 10.9 GPa for TI. The CNF reduced moduli estimates were consistently higher and followed the same estimate rankings by analysis technique (18.2, 17.4, and 11.9 GPa). This unique study minimizes the uncertainties related to the nanomechanical properties of CNFs and provides increased knowledge on understanding the role of CNFs as a reinforcing material in composites and also improvement in making accurate theoretical calculations and predictions.

  15. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    PubMed

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  16. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification.

    PubMed

    Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun

    2015-07-08

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61-65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique.

  17. Nanocantilevers with Adjustable Static Deflection and Significantly Tunable Spectrum Resonant Frequencies for Applications in Nanomechanical Mass Sensors

    PubMed Central

    Stachiv, Ivo; Sittner, Petr

    2018-01-01

    Nanocantilevers have become key components of nanomechanical sensors that exploit changes in their resonant frequencies or static deflection in response to the environment. It is necessary that they can operate at a given, but adjustable, resonant frequency and/or static deflection ranges. Here we propose a new class of nanocantilevers with a significantly tunable spectrum of the resonant frequencies and changeable static deflection utilizing the unique properties of a phase-transforming NiTi film sputtered on the usual nanotechnology cantilever materials. The reversible frequency tuning and the adjustable static deflection are obtained by intentionally changing the Young’s modulus and the interlayer stress of the NiTi film during its phase transformation, while the usual cantilever elastic materials guarantee a high frequency actuation (up to tens of MHz). By incorporating the NiTi phase transformation characteristic into the classical continuum mechanics theory we present theoretical models that account for the nanocantilever frequency shift and variation in static deflection caused by a phase transformation of NiTi film. Due to the practical importance in nanomechanical sensors, we carry out a complete theoretical analysis and evaluate the impact of NiTi film on the cantilever Young’s modulus, static deflection, and the resonant frequencies. Moreover, the importance of proposed NiTi nanocantilever is illustrated on the nanomechanical based mass sensors. Our findings will be of value in the development of advanced nanotechnology sensors with intentionally-changeable physical and mechanical properties. PMID:29462996

  18. Reaction-based Indicator displacement Assay (RIA) for the selective colorimetric and fluorometric detection of peroxynitrite.

    PubMed

    Sun, Xiaolong; Lacina, Karel; Ramsamy, Elena C; Flower, Stephen E; Fossey, John S; Qian, Xuhong; Anslyn, Eric V; Bull, Steven D; James, Tony D

    2015-05-01

    Using the self-assembly of aromatic boronic acids with Alizarin Red S (ARS), we developed a new chemosensor for the selective detection of peroxynitrite. Phenylboronic acid (PBA), benzoboroxole (BBA) and 2-( N , N -dimethylaminomethyl)phenylboronic acid (NBA) were employed to bind with ARS to form the complex probes. In particular, the ARS-NBA system with a high binding affinity can preferably react with peroxynitrite over hydrogen peroxide and other ROS/RNS due to the protection of the boron via the solvent-insertion B-N interaction. Our simple system produces a visible colorimetric change and on-off fluorescence response towards peroxynitrite. By coupling a chemical reaction that leads to an indicator displacement, we have developed a new sensing strategy, referred to herein as RIA (Reaction-based Indicator displacement Assay).

  19. Strand displacement amplification for ultrasensitive detection of human pluripotent stem cells.

    PubMed

    Wu, Wei; Mao, Yiping; Zhao, Shiming; Lu, Xuewen; Liang, Xingguo; Zeng, Lingwen

    2015-06-30

    Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a powerful model system for studies of cellular identity and early mammalian development, which hold great promise for regenerative medicine. It is necessary to develop a convenient method to discriminate hPSCs from other cells in clinics and basic research. Herein, a simple and reliable biosensor for stem cell detection was established. In this biosensor system, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4) were used to mark human pluripotent stem cells (hPSCs). Antibody specific for SSEA-3 was coated onto magnetic beads for hPSCs enrichment, and antibody specific for SSEA-4 was conjugated with carboxyl-modified tDNA sequence which was used as template for strand displacement amplification (SDA). The amplified single strand DNA (ssDNA) was detected with a lateral flow biosensor (LFB). This biosensor is capable of detecting a minimum of 19 human embryonic stem cells by a strip reader and 100 human embryonic stem cells by the naked eye within 80min. This approach has also shown excellent specificity to distinguish hPSCs from other types of cells, showing that it is promising for specific and handy detection of human pluripotent stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Visualizing In Situ Microstructure Dependent Crack Tip Stress Distribution in IN-617 Using Nano-mechanical Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Mohanty, Debapriya P.; Tomar, Vikas

    2016-11-01

    Inconel 617 (IN-617) is a solid solution alloy, which is widely used in applications that require high-temperature component operation due to its high-temperature stability and strength as well as strong resistance to oxidation and carburization. The current work focuses on in situ measurements of stress distribution under 3-point bending at elevated temperature in IN-617. A nanomechanical Raman spectroscopy measurement platform was designed and built based on a combination of a customized open Raman spectroscopy (NMRS) system incorporating a motorized scanning and imaging system with a nanomechanical loading platform. Based on the scanning of the crack tip notch area using the NMRS notch tip, stress distribution under applied load with micron-scale resolution for analyzed microstructures is predicted. A finite element method-based formulation to predict crack tip stresses is presented and validated using the presented experimental data.

  1. Ultra-Sensitive Magnetoresistive Displacement Sensing Device

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)

    2003-01-01

    An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.

  2. Signal-on electrochemiluminescence biosensor for microRNA-319a detection based on two-stage isothermal strand-displacement polymerase reaction.

    PubMed

    Wang, Minghui; Zhou, Yunlei; Yin, Huanshun; Jiang, Wenjing; Wang, Haiyan; Ai, Shiyun

    2018-06-01

    MicroRNAs play crucial role in regulating gene expression in organism, thus it is very necessary to exploit an efficient method for the sensitive and specific detection of microRNA. Herein, a signal-on electrochemiluminescence biosensor was fabricated for microRNA-319a detection based on two-stage isothermal strand-displacement polymerase reaction (ISDPR). In the presence of target microRNA, amounts of trigger DNA could be generated by the first ISDPR. Then, the trigger DNA and the primer hybridized simultaneously with the hairpin probe to open the stem of the probe, and then the ECL signal will be emitted. In the presence of phi29 DNA polymerase and dNTPs, the trigger DNA could be displaced to initiate a new cycle which was the second ISDPR. Due to the two-stage amplification, this method presented excellent detection sensitivity with a low detection limit of 0.14 fM. Moreover, the applicability of the developed method was demonstrated by detecting the change of microRNA-319a content in the leaves of rice seedlings after the rice seeds were incubated with chemical mutagen of ethyl methanesulfonate. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Perceived displacement explains wolfpack effect

    PubMed Central

    Šimkovic, Matúš; Träuble, Birgit

    2014-01-01

    We investigate the influence of perceived displacement of moving agent-like stimuli on the performance in dynamic interactive tasks. In order to reliably measure perceived displacement we utilize multiple tasks with different task demands. The perceived center of an agent's body is displaced in the direction in which the agent is facing and this perceived displacement is larger than the theoretical position of the center of mass would predict. Furthermore, the displacement in the explicit judgment is dissociated from the displacement obtained by the implicit measures. By manipulating the location of the pivot point, we show that it is not necessary to postulate orientation as an additional cue utilized by perception, as has been suggested by earlier studies. These studies showed that the agent's orientation influences the detection of chasing motion and the detection-related performance in interactive tasks. This influence has been labeled wolfpack effect. In one of the demonstrations of the wolfpack effect participants control a green circle on a display with a computer mouse. It has been shown that participants avoid display areas with agents pointing toward the green circle. Participants do so in favor of areas where the agents point in the direction perpendicular to the circle. We show that this avoidance behavior arises because the agent's pivot point selected by the earlier studies is different from where people locate the center of agent's body. As a consequence, the nominal rotation confounds rotation and translation. We show that the avoidance behavior disappears once the pivot point is set to the center of agent's body. PMID:25566114

  4. Nanomechanical resonators based on group IV element monolayers

    NASA Astrophysics Data System (ADS)

    He, Ji-Dong; Sun, Jia-Sheng; Jiang, Jin-Wu

    2018-04-01

    We perform molecular dynamics simulations to investigate the energy dissipation of the resonant oscillation for the group IV monolayers of puckered configuration, in which the oscillation is driven with different actuation velocities. We find that, in the moderate actuation velocity regime, the nonlinear coupling between the resonant oscillation mode and other high-frequency modes will lead to the non-resonant motion of the system. For the larger actuation velocity, the effective strain generated during the resonant oscillating causes a structural transition from the puckered configuration into the planar configuration, which is a characteristic energy dissipation mechanism for the resonant oscillation of these group IV puckered monolayers. Our findings shed light on mechanical applications of the group IV monolayers in the nanomechanical resonator field.

  5. Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.

    PubMed

    Fon, Warren; Matheny, Matthew H; Li, Jarvis; Krayzman, Lev; Cross, Michael C; D'Souza, Raissa M; Crutchfield, James P; Roukes, Michael L

    2017-10-11

    Control of the global parameters of complex networks has been explored experimentally in a variety of contexts. Yet, the more difficult prospect of realizing arbitrary network architectures, especially analog physical networks that provide dynamical control of individual nodes and edges, has remained elusive. Given the vast hierarchy of time scales involved, it also proves challenging to measure a complex network's full internal dynamics. These span from the fastest nodal dynamics to very slow epochs over which emergent global phenomena, including network synchronization and the manifestation of exotic steady states, eventually emerge. Here, we demonstrate an experimental system that satisfies these requirements. It is based upon modular, fully controllable, nonlinear radio frequency nanomechanical oscillators, designed to form the nodes of complex dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the uncoupled state to full synchronization.

  6. Magnetic-field-mediated coupling and control in hybrid atomic-nanomechanical systems

    NASA Astrophysics Data System (ADS)

    Tretiakov, A.; LeBlanc, L. J.

    2016-10-01

    Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample magnetically coupled to a nanomechanical resonator can be used to cool the resonator's mechanical motion, to measure the mechanical temperature, and to enable entanglement of more than one of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips.

  7. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin.

    PubMed

    Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2015-02-15

    Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    PubMed

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  9. Object form discontinuity facilitates displacement discrimination across saccades.

    PubMed

    Demeyer, Maarten; De Graef, Peter; Wagemans, Johan; Verfaillie, Karl

    2010-06-01

    Stimulus displacements coinciding with a saccadic eye movement are poorly detected by human observers. In recent years, converging evidence has shown that this phenomenon does not result from poor transsaccadic retention of presaccadic stimulus position information, but from the visual system's efforts to spatially align presaccadic and postsaccadic perception on the basis of visual landmarks. It is known that this process can be disrupted, and transsaccadic displacement detection performance can be improved, by briefly blanking the stimulus display during and immediately after the saccade. In the present study, we investigated whether this improvement could also follow from a discontinuity in the task-irrelevant form of the displaced stimulus. We observed this to be the case: Subjects more accurately identified the direction of intrasaccadic displacements when the displaced stimulus simultaneously changed form, compared to conditions without a form change. However, larger improvements were still observed under blanking conditions. In a second experiment, we show that facilitation induced by form changes and blanks can combine. We conclude that a strong assumption of visual stability underlies the suppression of transsaccadic change detection performance, the rejection of which generalizes from stimulus form to stimulus position.

  10. Reverse strand-displacement amplification strategy for rapid detection of p53 gene.

    PubMed

    Wang, Lisha; Han, Ying; Xiao, Shuai; Lv, Sha; Wang, Cong; Zhang, Nan; Wang, Zhengyong; Tang, Yongqiong; Li, Hongbo; Lyu, Jianxin; Xu, Huo; Shen, Zhifa

    2018-09-01

    The development of rapid approaches to detect prognostic markers is significant in reducing the morbidity and mortality of cancer. In this paper, we describe a rapid and specific biosensing platform for target DNA (p53 gene as a model) detection based on reverse strand displacement amplification (R-SDA). When the p53 gene is added, multifuctional molecular beacon (MMB) is unfolded via the hybridization with p53 gene. With the assist of Klenow fragment (KF) and Nt.BbvCI (the nicking endonuclease), p53 gene recycling could be initiated and considerable amount of complementary sequences for the MMBs (Nicked fragments, NFs) could be formed, generating enhanced fluorescence signal. Using this amplification strategy, the proposed biosensor displays the detection limit of 1 nM and a wide linear range from 1 to 100 nM, even if only one type of probe is involved. Notably, remarkable detection specificity for single-base mismatched target p53 gene is achieved. Moreover, the described biosensor also exhibited the stability in real biological samples (human serum). The rapid detection strategy can be performed less than 30 min without harsh reaction conditions or expensive nanoparticles. This biosensor shows great potential for application in clinic assay, especially, for early cancer diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  12. Nonlinear Dynamics of Nanomechanical Resonators

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym

    2007-03-01

    Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).

  13. Nanomechanical and nanotribological properties of Nb substituted TiN thin films

    NASA Astrophysics Data System (ADS)

    Krishna, M. Ghanashyam; Vasu, K.; Padmanabhan, K. A.

    2012-06-01

    Nanomechanical and nanotribological properties of Ti1-xNbxN (0≤x≤1) thin films were investigated as a function x. The films were deposited onto polycrystalline nuclear grade 316LN stainless steel (SS) substrate by radio frequency magnetron sputtering in 100% N2 plasma. The hardness and Young's modulus increased while the friction coefficient and wear volume decreased with increasing Nb substitution. The highest hardness achieved was 31GPa for x=0.77. At the same Nb concentration, the friction coefficient was 0.15 and the elastic recovery was 60%.

  14. Fluorescent aptasensor for detection of four tetracycline veterinary drugs in milk based on catalytic hairpin assembly reaction and displacement of G-quadruplex.

    PubMed

    Zhou, Chen; Zou, Haimin; Sun, Chengjun; Ren, Dongxia; Xiong, Wei; Li, Yongxin

    2018-05-01

    Based on a novel signal amplification strategy by catalytic hairpin assembly and displacement of G-quadruplex DNA, an enzyme-free, non-label fluorescent aptasensing approach was established for sensitive detection of four tetracycline veterinary drugs in milk. The network consisted of a pair of partially complementary DNA hairpins (HP1 and HP2). The DNA aptamer of four tetracycline veterinary drugs was located at the sticky end of the HP1. The ring region of HP1 rich in G and C could form a stable G-quadruplex structure, which could emit specific fluorescence signal after binding with the fluorescent dye and N-methylmesoporphyrin IX (NMM). When presented in the system, the target analytes would be repeatedly used to trigger a recycling procedure between the hairpins, generating numerous HP1-HP2 duplex complexes and displacing G-quadruplex DNA. Thus, the sensitive detection of target analytes was achieved in a wide linear range (0-1000 μg/L) with the detection limit of 4.6 μg/L. Moreover, this proposed method showed high discrimination efficiency towards target analytes against other common mismatched veterinary drugs, and could be successfully applied to the analysis of milk samples. Graphical abstract Schematic of target analyte detection based on catalytic hairpin assembly reaction and displacement of G-quadruplex.

  15. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots

    NASA Astrophysics Data System (ADS)

    Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.

    2016-05-01

    The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar

  16. Development of a Tandem Repeat-Based Polymerase Chain Displacement Reaction Method for Highly Sensitive Detection of 'Candidatus Liberibacter asiaticus'.

    PubMed

    Lou, Binghai; Song, Yaqin; RoyChowdhury, Moytri; Deng, Chongling; Niu, Ying; Fan, Qijun; Tang, Yan; Zhou, Changyong

    2018-02-01

    Huanglongbing (HLB) is one of the most destructive diseases in citrus production worldwide. Early detection of HLB pathogens can facilitate timely removal of infected citrus trees in the field. However, low titer and uneven distribution of HLB pathogens in host plants make reliable detection challenging. Therefore, the development of effective detection methods with high sensitivity is imperative. This study reports the development of a novel method, tandem repeat-based polymerase chain displacement reaction (TR-PCDR), for the detection of 'Candidatus Liberibacter asiaticus', a widely distributed HLB-associated bacterium. A uniquely designed primer set (TR2-PCDR-F/TR2-PCDR-1R) and a thermostable Taq DNA polymerase mutant with strand displacement activity were used for TR-PCDR amplification. Performed in a regular thermal cycler, TR-PCDR could produce more than two amplicons after each amplification cycle. Sensitivity of the developed TR-PCDR was 10 copies of target DNA fragment. The sensitive level was proven to be 100× higher than conventional PCR and similar to real-time PCR. Data from the detection of 'Ca. L. asiaticus' with filed samples using the above three methods also showed similar results. No false-positive TR-PCDR amplification was observed from healthy citrus samples and water controls. These results thereby illustrated that the developed TR-PCDR method can be applied to the reliable, highly sensitive, and cost-effective detection of 'Ca. L. asiaticus'.

  17. Effects of γ-ray radiation on two-dimensional molybdenum disulfide (MoS{sub 2}) nanomechanical resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaesung; Feng, Philip X.-L., E-mail: philip.feng@case.edu; Krupcale, Matthew J.

    We report on experimental investigation and analysis of γ-ray radiation effects on two-dimensional molybdenum disulfide (MoS{sub 2}) drumhead nanomechanical resonators vibrating at megahertz frequencies. Given calibrated dosages of γ-ray radiation of ∼5000 photons with energy at 662 keV, upon exposure over 24 or 12 h, all the MoS{sub 2} resonators exhibit ∼0.5–2.1% resonance frequency upshifts due to the ionizing γ-ray induced charges and their interactions. The devices show γ-ray photon responsivity of ∼30–82 Hz/photon, with an intrinsic γ-ray sensitivity (limit of detection) estimated to approach ∼0.02–0.05 photon. After exposure expires, resonance frequencies return to an ordinary tendency where the frequency variations are dominatedmore » by long-term drift. These γ-ray radiation induced frequency shifts are distinctive from those due to pressure variation or surface adsorption mechanisms. The measurements and analyses show that MoS{sub 2} resonators are robust yet sensitive to very low dosage γ-ray, demonstrating a potential for ultrasensitive detection and early alarm of radiation in the very low dosage regime.« less

  18. Nanomechanics of Protein Unfolding outside Protease Nanopores

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Zhou, Ruhong

    Protein folding and unfolding have been the subject of active research for decades. Most of previous studies in protein unfolding were focused on temperature, chemical and/or force (such as in AFM) induced denaturations. Recent studies on the functional roles of proteasomes (such as ClpXP) revealed a novel unfolding process in cell, during which a target protein is mechanically unfolded and pulled into a confined, pore-like geometry for degradation. While the proteasome nanomachine has been extensively studied, the mechanism for unfolding proteins with the proteasome pore is still poorly understood. Here, we investigate the mechanical unfolding process of ubiquitin with (or really outside) an idealized proteasome pore, and compare such process with that in the AFM pulling experiment. Unexpectedly, the required force by a proteosome can be much smaller than that by the AFM. Simulation results also unveiled different nanomechanics, tearing fracture vs. shearing friction, in these two distinct types of mechanical unfoldings.

  19. Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills.

    PubMed

    Zügner, Sascha; Marquardt, Karin; Zimmermann, Ingfried

    2006-02-01

    Elastic-plastic properties of single crystals are supposed to influence the size reduction process of bulk materials during jet milling. According to Pahl [M.H. Pahl, Zerkleinerungstechnik 2. Auflage. Fachbuchverlag, Leipzig (1993)] and H. Rumpf: [Prinzipien der Prallzerkleinerung und ihre Anwendung bei der Strahlmahlung. Chem. Ing. Tech., 3(1960) 129-135.] fracture toughness, maximum strain or work of fracture for example are strongly dependent on mechanical parameters like hardness (H) and young's modulus of elasticity (E). In addition the dwell time of particles in a spiral jet mill proved to correlate with the hardness of the feed material [F. Rief: Ph. D. Thesis, University of Würzburg (2001)]. Therefore 'near-surface' properties have a direct influence on the effectiveness of the comminution process. The mean particle diameter as well as the size distribution of the ground product may vary significantly with the nanomechanical response of the material. Thus accurate measurement of crystals' hardness and modulus is essential to determine the ideal operational micronisation conditions of the spiral jet mill. The recently developed nanoindentation technique is applied to examine subsurface properties of pharmaceutical bulk materials, namely calcite, sodium ascorbate, lactose and sodium chloride. Pressing a small sized tip into the material while continuously recording load and displacement, characteristic diagrams are derived. The mathematical evaluation of the force-displacement-data allows for calculation of the hardness and the elastic modulus of the investigated material at penetration depths between 50-300 nm. Grinding experiments performed with a modified spiral jet mill (Type Fryma JMRS 80) indicate the strong impact of the elastic-plastic properties of a given substance on its breaking behaviour. The fineness of milled products produced at constant grinding conditions but with different crystalline powders varies significantly as it is dependent on the

  20. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization

    Treesearch

    Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...

  1. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-14

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  2. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  3. In situ nanomechanical testing of twinned metals in a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Wang, Jiangwei; Mao, Scott

    This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.

  4. In situ nanomechanical testing of twinned metals in a transmission electron microscope

    DOE PAGES

    Li, Nan; Wang, Jiangwei; Mao, Scott; ...

    2016-04-01

    This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.

  5. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  6. Electrically detected displacement assay (EDDA): a practical approach to nucleic acid testing in clinical or medical diagnosis.

    PubMed

    Liepold, P; Kratzmüller, T; Persike, N; Bandilla, M; Hinz, M; Wieder, H; Hillebrandt, H; Ferrer, E; Hartwich, G

    2008-07-01

    This paper introduces the electrically detected displacement assay (EDDA), a electrical biosensor detection principle for applications in medical and clinical diagnosis, and compares the method to currently available microarray technologies in this field. The sensor can be integrated into automated systems of routine diagnosis, but may also be used as a sensor that is directly applied to the polymerase chain reaction (PCR) reaction vessel to detect unlabeled target amplicons within a few minutes. Major aspects of sensor assembly like immobilization procedure, accessibility of the capture probes, and prevention from nonspecific target adsorption, that are a prerequisite for a robust and reliable performance of the sensor, are demonstrated. Additionally, exemplary results from a human papillomavirus assay are presented.

  7. Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system.

    PubMed

    Geng, Qi; Zhu, Ka-Di

    2016-07-10

    We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.

  8. An ultrasensitive universal detector based on neutralizer displacement

    NASA Astrophysics Data System (ADS)

    Das, Jagotamoy; Cederquist, Kristin B.; Zaragoza, Alexandre A.; Lee, Paul E.; Sargent, Edward H.; Kelley, Shana O.

    2012-08-01

    Diagnostic technologies that can provide the simultaneous detection of nucleic acids for gene expression, proteins for host response and small molecules for profiling the human metabolome will have a significant advantage in providing comprehensive patient monitoring. Molecular sensors that report changes in the electrostatics of a sensor's surface on analyte binding have shown unprecedented sensitivity in the detection of charged biomolecules, but do not lend themselves to the detection of small molecules, which do not carry significant charge. Here, we introduce the neutralizer displacement assay that allows charge-based sensing to be applied to any class of molecule irrespective of the analyte charge. The neutralizer displacement assay starts with an aptamer probe bound to a neutralizer. When analyte binding occurs the neutralizer is displaced, which results in a dramatic change in the surface charge for all types of analytes. We have tested the sensitivity, speed and specificity of this system in the detection of a panel of molecules: (deoxy)ribonucleic acid, ribonucleic acid, cocaine, adenosine triphosphate and thrombin.

  9. Doppler ultrasound-based measurement of tendon velocity and displacement for application toward detecting user-intended motion.

    PubMed

    Stegman, Kelly J; Park, Edward J; Dechev, Nikolai

    2012-07-01

    The motivation of this research is to non-invasively monitor the wrist tendon's displacement and velocity, for purposes of controlling a prosthetic device. This feasibility study aims to determine if the proposed technique using Doppler ultrasound is able to accurately estimate the tendon's instantaneous velocity and displacement. This study is conducted with a tendon mimicking experiment consisting of two different materials: a commercial ultrasound scanner, and a reference linear motion stage set-up. Audio-based output signals are acquired from the ultrasound scanner, and are processed with our proposed Fourier technique to obtain the tendon's velocity and displacement estimates. We then compare our estimates to an external reference system, and also to the ultrasound scanner's own estimates based on its proprietary software. The proposed tendon motion estimation method has been shown to be repeatable, effective and accurate in comparison to the external reference system, and is generally more accurate than the scanner's own estimates. After establishing this feasibility study, future testing will include cadaver-based studies to test the technique on the human arm tendon anatomy, and later on live human test subjects in order to further refine the proposed method for the novel purpose of detecting user-intended tendon motion for controlling wearable prosthetic devices.

  10. Catalytic molecular logic devices by DNAzyme displacement.

    PubMed

    Brown, Carl W; Lakin, Matthew R; Stefanovic, Darko; Graves, Steven W

    2014-05-05

    Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA-based logic gates in which DNAzyme catalysis is controlled via toehold-mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Phononic heat transport in nanomechanical structures: steady-state and pumping

    NASA Astrophysics Data System (ADS)

    Sena-Junior, Marcone I.; Lima, Leandro R. F.; Lewenkopf, Caio H.

    2017-10-01

    We study the heat transport due to phonons in nanomechanical structures using a phase space representation of non-equilibrium Green’s functions. This representation accounts for the atomic degrees of freedom making it particularly suited for the description of small (molecular) junctions systems. We rigorously show that for the steady state limit our formalism correctly recovers the heuristic Landauer-like heat conductance for a quantum coherent molecular system coupled to thermal reservoirs. We find general expressions for the non-stationary heat current due to an external periodic drive. In both cases we discuss the quantum thermodynamic properties of the systems. We apply our formalism to the case of a diatomic molecular junction.

  12. High-rate real-time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements

    USGS Publications Warehouse

    Langbein, J.; Bock, Y.

    2004-01-01

    A network of 13 continuous GPS stations near Parkfield, California has been converted from 30 second to 1 second sampling with positions of the stations estimated in real-time relative to a master station. Most stations are near the trace of the San Andreas fault, which exhibits creep. The noise spectra of the instantaneous 1 Hz positions show flicker noise at high frequencies and change to frequency independence at low frequencies; the change in character occurs between 6 to 8 hours. Our analysis indicates that 1-second sampled GPS can estimate horizontal displacements of order 6 mm at the 99% confidence level from a few seconds to a few hours. High frequency GPS can augment existing measurements in capturing large creep events and postseismic slip that would exceed the range of existing creepmeters, and can detect large seismic displacements. Copyright 2004 by the American Geophysical Union.

  13. Nanomechanical signatures of oral submucous fibrosis in sub-epithelial connective tissue.

    PubMed

    Anura, Anji; Das, Debanjan; Pal, Mousumi; Paul, Ranjan Rashmi; Das, Soumen; Chatterjee, Jyotirmoy

    2017-01-01

    Oral sub-mucous fibrosis (OSF), a potentially malignant disorder, exhibits extensive remodeling of extra-cellular matrix in the form of sub-epithelial fibrosis which is a possible sequel of assaults from different oral habit related irritants. It has been assumed that micro/nanobio-mechanical imbalance experienced in the oral mucosa due to fibrosis may be deterministic for malignant potential (7-13%) of this pathosis. Present study explores changes in mechanobiological attributes of sub-epithelial connective tissue of OSF and the normal counterpart. The atomic force microscopy was employed to investigate tissue topography at micro/nano levels. It documented the presence of closely packed parallel arrangement of dense collagen fibers with wide variation in bandwidth and loss of D-space in OSF as compared to normal. The AFM based indentation revealed that sub-epithelium of OSF tissue has lost its flexibility with increased Young's modulus, stiffness, adhesiveness and reduced deformation of the juxta-epithealial connective tissue towards the deeper layer. These significant variations in nano-mechanical properties of the connective tissue indicated plausible impacts on patho-physiological microenvironment. Excessive deposition of collagen I and diminished expression of collagen III, fibronectin along with presence of α-SMA positive myofibroblast in OSF depicted its pathological basis and indicated the influence of altered ECM on this pathosis. The mechanobiological changes in OSF were corroborative with change in collagen composition recorded through immunohistochemistry and RT-PCR. The revelation of comparative nanomechanical profiles of normal oral mucosa and OSF in the backdrop of their structural and cardinal molecular attributes thus became pivotal for developing holistic pathobiological insight about possible connects for malignant transformation of this pre-cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Phonon counting and intensity interferometry of a nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar

    2015-04-01

    In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.

  15. Determination of Stent Frame Displacement After Endovascular Aneurysm Sealing.

    PubMed

    van Veen, Ruben; van Noort, Kim; Schuurmann, Richte C L; Wille, Jan; Slump, Cornelis H; de Vries, Jean-Paul P M

    2018-02-01

    To describe and validate a new methodology for visualizing and quantifying 3-dimensional (3D) displacement of the stent frames of the Nellix endosystem after endovascular aneurysm sealing (EVAS). The 3D positions of the stent frames were registered to 5 fixed anatomical landmarks on the post-EVAS computed tomography (CT) scans, facilitating comparison of the position and shape of the stent frames between consecutive follow-up scans. Displacement of the proximal and distal ends of the stent frames, the entire stent frame trajectories, as well as changes in distance between the stent frames were determined for 6 patients with >5-mm displacement and 6 patients with <5-mm displacement at 1-year follow-up. The measurements were performed by 2 independent observers; the intraclass correlation coefficient (ICC) was used to determine interobserver variability. Three types of displacement were identified: displacement of the proximal and/or distal end of the stent frames, lateral displacement of one or both stent frames, and stent frame buckling. The ICC ranged from good (0.750) to excellent (0.958). No endoleak or migration was detected in the 12 patients on conventional CT angiography at 1 year. However, of the 6 patients with >5-mm displacement on the 1-year CT as determined by the new methodology, 2 went on to develop a type Ia endoleak in longer follow-up, and displacement progressed to >15 mm for 2 other patients. No endoleak or progressive displacement was appreciated for the patients with <5-mm displacement. The sac anchoring principle of the Nellix endosystem may result in several types of displacement that have not been observed during surveillance of regular endovascular aneurysm repairs. The presented methodology allows precise 3D determination of the Nellix endosystems and can detect subtle displacement better than standard CT angiography. Displacement >5 mm on the 1-year CT scans reconstructed with the new methodology may forecast impaired sealing and

  16. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study.

    PubMed

    Nussio, Matthew R; Oncins, Gerard; Ridelis, Ingrid; Szili, Endre; Shapter, Joseph G; Sanz, Fausto; Voelcker, Nicolas H

    2009-07-30

    In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands. For mica and silicon, significant differences in breakthrough force between the center and the edges of bilayer islands were observed for both phospolipids. These differences were more pronounced for DMPC than for DPPC, presumably due to melting effects at the edges of DMPC bilayers. In contrast, bilayer islands deposited on pSi yielded similar breakthrough forces in the central region and along the perimeter of the islands, and those values in turn were similar to those measured along the perimeter of bilayer islands deposited on the flat substrates. The study also demonstrates that pSi is suitable solid support for the formation of pore-spanning phospholipid bilayers with potential applications in transmembrane protein studies, drug delivery, and biosensing.

  17. Signal-on fluorescence biosensor for microRNA-21 detection based on DNA strand displacement reaction and Mg2+-dependent DNAzyme cleavage.

    PubMed

    Yin, Huan-Shun; Li, Bing-Chen; Zhou, Yun-Lei; Wang, Hai-Yan; Wang, Ming-Hui; Ai, Shi-Yun

    2017-10-15

    MicroRNAs have been involved into many biological processes and are regarded as disease biomarkers. Simple, rapid, sensitive and selective method for microRNA detection is crucial for early diagnosis and therapy of diseases. In this work, sensitive fluorescence assay was developed for microRNA-21 detection based on DNA polymerase induced strand displacement amplification reaction, Mg 2+ -dependent DNAzyme catalysis reaction, and magnetic separation. In the presence of target microRNA-21, amounts of trigger DNA could be produced with DNA polymerase induced strand displacement amplification reaction, and the trigger DNA could be further hybridized with signal DNA, which was labeled with biotin and AMCA dye. After introduction of Mg 2+ , trigger DNA could form DNAzyme to cleave signal DNA. After magnetic separation, the DNA fragment with AMCA dye could give fluorescence signal, which was related to microRNA-21 concentration. Based on the two efficient signal amplifications, the developed method showed high detection sensitivity with low detection limit of 0.27fM (3σ). In addition, this fluorescence strategy also possessed excellent detection specificity, and could be applied to analyze microRNA-21 expression level in serum of cancer patient. According to the obtained results, the developed fluorescence method might be a promising detection platform for microRNA-21 quantitative analysis in biomedical research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

    PubMed Central

    Pollard, Benjamin

    2016-01-01

    Summary Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750

  19. Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles.

    PubMed

    Paliwoda, Rebecca E; Li, Feng; Reid, Michael S; Lin, Yanwen; Le, X Chris

    2014-06-17

    Functionalizing nanomaterials for diverse analytical, biomedical, and therapeutic applications requires determination of surface coverage (or density) of DNA on nanomaterials. We describe a sequential strand displacement beacon assay that is able to quantify specific DNA sequences conjugated or coconjugated onto gold nanoparticles (AuNPs). Unlike the conventional fluorescence assay that requires the target DNA to be fluorescently labeled, the sequential strand displacement beacon method is able to quantify multiple unlabeled DNA oligonucleotides using a single (universal) strand displacement beacon. This unique feature is achieved by introducing two short unlabeled DNA probes for each specific DNA sequence and by performing sequential DNA strand displacement reactions. Varying the relative amounts of the specific DNA sequences and spacing DNA sequences during their coconjugation onto AuNPs results in different densities of the specific DNA on AuNP, ranging from 90 to 230 DNA molecules per AuNP. Results obtained from our sequential strand displacement beacon assay are consistent with those obtained from the conventional fluorescence assays. However, labeling of DNA with some fluorescent dyes, e.g., tetramethylrhodamine, alters DNA density on AuNP. The strand displacement strategy overcomes this problem by obviating direct labeling of the target DNA. This method has broad potential to facilitate more efficient design and characterization of novel multifunctional materials for diverse applications.

  20. Road displacement model based on structural mechanics

    NASA Astrophysics Data System (ADS)

    Lu, Xiuqin; Guo, Qingsheng; Zhang, Yi

    2006-10-01

    Spatial conflict resolution is an important part of cartographic generalization, and it can deal with the problems of having too much information competing for too little space, while feature displacement is a primary operator of map generalization, which aims at resolving the spatial conflicts between neighbor objects especially road features. Considering the road object, this paper explains an idea of displacement based on structural mechanics. In view of spatial conflict problem after road symbolization, it is the buffer zones that are used to detect conflicts, then we focus on each conflicting region, with the finite element method, taking every triangular element for analysis, listing stiffness matrix, gathering system equations and calculating with iteration strategy, and we give the solution to road symbol conflicts. Being like this until all the conflicts in conflicting regions are solved, then we take the whole map into consideration again, conflicts are detected by reusing the buffer zones and solved by displacement operator, so as to all of them are handled.

  1. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  2. Nanomechanics of Pectin-Linked β-Lactoglobulin Nanofibril Bundles.

    PubMed

    Loveday, Simon M; Gunning, A Patrick

    2018-06-14

    Nanofibrils of β-lactoglobulin can be assembled into bundles by site-specific noncovalent cross-linking with high-methoxyl pectin (Hettiarachchi et al. Soft Matter 2016, 12, 756). Here we characterized the nanomechanical properties of bundles using atomic force microscopy and force spectroscopy. Bundles had Gaussian cross sections and a mean height of 17.4 ± 1.4 nm. Persistence lengths were calculated using image analysis with the mean-squared end-to-end model. The relationship between the persistence length and the thickness had exponents of 1.69-2.30, which is consistent with previous reports for other fibril types. In force spectroscopy experiments, the bundles stretched in a qualitatively different manner to fibrils, and some of the force curves were consistent with peeling fibrils away from bundles. The flexibility of pectin-linked nanofibril bundles is likely to be tunable by modulating the stiffness and length of fibrils and the ratio of pectin to fibrils, giving rise to a wide range of structures and functionalities.

  3. Energy-dependent path of dissipation in nanomechanical resonators.

    PubMed

    Güttinger, Johannes; Noury, Adrien; Weber, Peter; Eriksson, Axel Martin; Lagoin, Camille; Moser, Joel; Eichler, Christopher; Wallraff, Andreas; Isacsson, Andreas; Bachtold, Adrian

    2017-07-01

    Energy decay plays a central role in a wide range of phenomena, such as optical emission, nuclear fission, and dissipation in quantum systems. Energy decay is usually described as a system leaking energy irreversibly into an environmental bath. Here, we report on energy decay measurements in nanomechanical systems based on multilayer graphene that cannot be explained by the paradigm of a system directly coupled to a bath. As the energy of a vibrational mode freely decays, the rate of energy decay changes abruptly to a lower value. This finding can be explained by a model where the measured mode hybridizes with other modes of the resonator at high energy. Below a threshold energy, modes are decoupled, resulting in comparatively low decay rates and giant quality factors exceeding 1 million. Our work opens up new possibilities to manipulate vibrational states, engineer hybrid states with mechanical modes at completely different frequencies, and to study the collective motion of this highly tunable system.

  4. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.

    2013-10-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.

  5. On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Wüster, S.; Rost, J.-M.

    2017-07-01

    Nanomechanical oscillators as well as Rydberg-atomic waveguides hosted on microfabricated chip surfaces hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams of Rydberg atoms in waveguides can quantum coherently interrogate and manipulate nanomechanical elements, allowing full quantum state tomography. Central to the tomography are quantum nondemolition measurements using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible by driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the feasibility of this fully integrated on-chip control and read-out suite for quantum nanomechanics, taking into account noise and error sources.

  6. What visual information is used for stereoscopic depth displacement discrimination?

    PubMed

    Nefs, Harold T; Harris, Julie M

    2010-01-01

    There are two ways to detect a displacement in stereoscopic depth, namely by monitoring the change in disparity over time (CDOT) or by monitoring the interocular velocity difference (IOVD). Though previous studies have attempted to understand which cue is most significant for the visual system, none has designed stimuli that provide a comparison in terms of relative efficiency between them. Here we used two-frame motion and random-dot noise to deliver equivalent strengths of CDOT and IOVD information to the visual system. Using three kinds of random-dot stimuli, we were able to isolate CDOT or IOVD or deliver both simultaneously. The proportion of dots delivering CDOT or IOVD signals could be varied, and we defined the discrimination threshold as the proportion needed to detect the direction of displacement (towards or away). Thresholds were similar for stimuli containing CDOT only, and containing both CDOT and IOVD, but only one participant was able to consistently perceive the displacement for stimuli containing only IOVD. We also investigated the effect of disparity pedestals on discrimination. Performance was best when the displacement crossed the reference plane, but was not significantly different for stimuli containing CDOT only and those containing both CDOT and IOVD. When stimuli are specifically designed to provide equivalent two-frame motion or disparity-change, few participants can reliably detect displacement when IOVD is the only cue. This challenges the notion that IOVD is involved in the discrimination of direction of displacement in two-frame motion displays.

  7. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements.

    PubMed

    Hsieh, Hung-Lin; Pan, Ssu-Wen

    2015-02-09

    A grating-based interferometer for 6-DOF displacement and angle measurement is proposed in this study. The proposed interferometer is composed of three identical detection parts sharing the same light source. Each detection part utilizes three techniques: heterodyne, grating shearing, and Michelson interferometries. Displacement information in the three perpendicular directions (X, Y, Z) can be sensed simultaneously by each detection part. Furthermore, angle information (θX, θY, θZ) can be obtained by comparing the displacement measurement results between two corresponding detection parts. The feasibility and performance of the proposed grating-based interferometer are evaluated in displacement and angle measurement experiments. In comparison with the internal capacitance sensor built into the commercial piezo-stage, the measurement resolutions of the displacement and angle of our proposed interferometer are about 2 nm and 0.05 μrad.

  8. A complete solution of cartographic displacement based on elastic beams model and Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Guo, Q.; Sun, Y.

    2014-04-01

    In map production and generalization, it is inevitable to arise some spatial conflicts, but the detection and resolution of these spatial conflicts still requires manual operation. It is become a bottleneck hindering the development of automated cartographic generalization. Displacement is the most useful contextual operator that is often used for resolving the conflicts arising between two or more map objects. Automated generalization researches have reported many approaches of displacement including sequential approaches and optimization approaches. As an excellent optimization approach on the basis of energy minimization principles, elastic beams model has been used in resolving displacement problem of roads and buildings for several times. However, to realize a complete displacement solution, techniques of conflict detection and spatial context analysis should be also take into consideration. So we proposed a complete solution of displacement based on the combined use of elastic beams model and constrained Delaunay triangulation (CDT) in this paper. The solution designed as a cyclic and iterative process containing two phases: detection phase and displacement phase. In detection phase, CDT of map is use to detect proximity conflicts, identify spatial relationships and structures, and construct auxiliary structure, so as to support the displacement phase on the basis of elastic beams. In addition, for the improvements of displacement algorithm, a method for adaptive parameters setting and a new iterative strategy are put forward. Finally, we implemented our solution on a testing map generalization platform, and successfully tested it against 2 hand-generated test datasets of roads and buildings respectively.

  9. Lateral displacement and rotational displacement sensor

    DOEpatents

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  10. Use of airborne and terrestrial lidar to detect ground displacement hazards to water systems

    USGS Publications Warehouse

    Stewart, J.P.; Hu, Jiawen; Kayen, R.E.; Lembo, A.J.; Collins, B.D.; Davis, C.A.; O'Rourke, T. D.

    2009-01-01

    We investigate the use of multiepoch airborne and terrestrial lidar to detect and measure ground displacements of sufficient magnitude to damage buried pipelines and other water system facilities that might result, for example, from earthquake or rainfall-induced landslides. Lidar scans are performed at three sites with coincident measurements by total station surveying. Relative horizontal accuracy is evaluated by measurements of lateral dimensions of well defined objects such as buildings and tanks; we find misfits ranging from approximately 5 to 12 cm, which is consistent with previous work. The bias and dispersion of lidar elevation measurements, relative to total station surveying, is assessed at two sites: (1) a power plant site (PP2) with vegetated steeply sloping terrain; and (2) a relatively flat and unvegetated site before and after trenching operations were performed. At PP2, airborne lidar showed minimal elevation bias and a standard deviation of approximately 70 cm, whereas terrestrial lidar did not produce useful results due to beam divergence issues and inadequate sampling of the study region. At the trench site, airborne lidar showed minimal elevation bias and reduced standard deviation relative to PP2 (6-20 cm), whereas terrestrial lidar was nearly unbiased with very low dispersion (4-6 cm). Pre- and posttrench bias-adjusted normalized residuals showed minimal to negligible correlation, but elevation change was affected by relative bias between epochs. The mean of elevation change bias essentially matches the difference in means of pre- and posttrench elevation bias, whereas elevation change standard deviation is sensitive to the dispersion of individual epoch elevations and their correlation coefficient. The observed lidar bias and standard deviations enable reliable detection of damaging ground displacements for some pipelines types (e.g., welded steel) but not all (e.g., concrete with unwelded, mortared joints). ?? ASCE 2009.

  11. Mass Spectrometry Using Nanomechanical Systems: Beyond the Point-Mass Approximation.

    PubMed

    Sader, John E; Hanay, M Selim; Neumann, Adam P; Roukes, Michael L

    2018-03-14

    The mass measurement of single molecules, in real time, is performed routinely using resonant nanomechanical devices. This approach models the molecules as point particles. A recent development now allows the spatial extent (and, indeed, image) of the adsorbate to be characterized using multimode measurements ( Hanay , M. S. , Nature Nanotechnol. , 10 , 2015 , pp 339 - 344 ). This "inertial imaging" capability is achieved through virtual re-engineering of the resonator's vibrating modes, by linear superposition of their measured frequency shifts. Here, we present a complementary and simplified methodology for the analysis of these inertial imaging measurements that exhibits similar performance while streamlining implementation. This development, together with the software that we provide, enables the broad implementation of inertial imaging that opens the door to a range of novel characterization studies of nanoscale adsorbates.

  12. Detection of miRNA using a double-strand displacement biosensor with a self-complementary fluorescent reporter.

    PubMed

    Larkey, Nicholas E; Almlie, C Kyle; Tran, Victoria; Egan, Marianne; Burrows, Sean M

    2014-02-04

    Design of rapid, selective, and sensitive DNA and ribonucleic acid (RNA) biosensors capable of minimizing false positives from nuclease degradation is crucial for translational research and clinical diagnostics. We present proof-of-principle studies of an innovative micro-ribonucleic acid (miRNA) reporter-probe biosensor that displaces a self-complementary reporter, while target miRNA binds to the probe. The freed reporter folds into a hairpin structure to induce a decrease in the fluorescent signal. The self-complementarity of the reporter facilitates the reduction of false positives from nuclease degradation. Nanomolar limits of detection and quantitation were capable with this proof-of-principle design. Detection of miRNA occurs within 10 min and does not require any additional hybridization, labeling, or rinsing steps. The potential for medical applications of the reporter-probe biosensor is demonstrated by selective detection of a cancer regulating microRNA, Lethal-7 (Let-7a). Mechanisms for transporting the biosensor across the cell membrane will be the focus of future work.

  13. Simultaneous measurement of displacement current and absorption spectra of Langmuir film

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin; Kubota, Tohru; Iwamoto, Mitsumasa

    1995-07-01

    A Maxwell-displacement-current measuring system coupled with the system used for the measurement of absorption spectra of monolayers on a water surface has been developed. Using this system, the displacement current and the absorbance across monolayers of squarylium dye at the air/water surface were detected. It was found that the change in J aggregate in the monolayers with monolayer compression was detectable using the system.

  14. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay

    NASA Astrophysics Data System (ADS)

    Xing, Yun-Peng; Liu, Chun; Zhou, Xiao-Hong; Shi, Han-Chang

    2015-01-01

    This work was the first to report that the kanamycin-binding DNA aptamer (5'-TGG GGG TTG AGG CTA AGC CGA-3') can form stable parallel G-quadruplex DNA (G4-DNA) structures by themselves and that this phenomenon can be verified by nondenaturing polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Based on these findings, we developed a novel label-free strategy for kanamycin detection based on the G4-DNA aptamer-based fluorescent intercalator displacement assay with thiazole orange (TO) as the fluorescence probe. In the proposed strategy, TO became strongly fluorescent upon binding to kanamycin-binding G4-DNA. However, the addition of kanamycin caused the displacement of TO from the G4-DNA-TO conjugate, thereby resulting in decreased fluorescent signal, which was inversely related to the kanamycin concentration. The detection limit of the proposed assay decreased to 59 nM with a linear working range of 0.1 μM to 20 μM for kanamycin. The cross-reactivity against six other antibiotics was negligible compared with the response to kanamycin. A satisfactory recovery of kanamycin in milk samples ranged from 80.1% to 98.0%, confirming the potential of this bioassay in the measurement of kanamycin in various applications. Our results also served as a good reference for developing similar fluorescent G4-DNA-based bioassays in the future.

  15. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.

    PubMed

    Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J

    2015-10-14

    Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.

  16. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    NASA Astrophysics Data System (ADS)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  17. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit

    DOE PAGES

    Pooser, Raphael C.; Lawrie, Benjamin J.

    2015-04-23

    The displacement of micro-electro-mechanical-systems (MEMs) cantilevers is used to measure a variety of phe- nomena in devices ranging from force microscopes for single spin detection[1] to biochemical sensors[2] to un- cooled thermal imaging systems[3]. The displacement readout is often performed optically with segmented de- tectors or interference measurements. Until recently, var- ious noise sources have limited the minimum detectable displacement in MEMs systems, but it is now possible to minimize all other sources[4] so that the noise level of the coherent light eld, called the shot noise limit (SNL), becomes the dominant source. Light sources dis- playing quantum-enhanced statistics belowmore » this limit are available[5, 6], with applications in gravitational wave astronomy[7] and bioimaging[8], but direct displacement measurements of MEMS cantilevers below the SNL have been impossible until now. Here, we demonstrate the rst direct measurement of a MEMs cantilever displace- ment with sub-SNL sensitivity, thus enabling ultratrace sensing, imaging, and microscopy applications. By com- bining multi-spatial-mode quantum light sources with a simple dierential measurement, we show that sub-SNL MEMs displacement sensitivity is highly accessible com- pared to previous eorts that measured the displacement of macroscopic mirrors with very distinct spatial struc- tures crafted with multiple optical parametric ampliers and locking loops[9]. We apply this technique to a com- mercially available microcantilever in order to detect dis- placements 60% below the SNL at frequencies where the microcantilever is shot-noise-limited. These results sup- port a new class of quantum MEMS sensor whose ulti- mate signal to noise ratio is determined by the correla- tions possible in quantum optics systems.« less

  18. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C.; Lawrie, Benjamin J.

    The displacement of micro-electro-mechanical-systems (MEMs) cantilevers is used to measure a variety of phe- nomena in devices ranging from force microscopes for single spin detection[1] to biochemical sensors[2] to un- cooled thermal imaging systems[3]. The displacement readout is often performed optically with segmented de- tectors or interference measurements. Until recently, var- ious noise sources have limited the minimum detectable displacement in MEMs systems, but it is now possible to minimize all other sources[4] so that the noise level of the coherent light eld, called the shot noise limit (SNL), becomes the dominant source. Light sources dis- playing quantum-enhanced statistics belowmore » this limit are available[5, 6], with applications in gravitational wave astronomy[7] and bioimaging[8], but direct displacement measurements of MEMS cantilevers below the SNL have been impossible until now. Here, we demonstrate the rst direct measurement of a MEMs cantilever displace- ment with sub-SNL sensitivity, thus enabling ultratrace sensing, imaging, and microscopy applications. By com- bining multi-spatial-mode quantum light sources with a simple dierential measurement, we show that sub-SNL MEMs displacement sensitivity is highly accessible com- pared to previous eorts that measured the displacement of macroscopic mirrors with very distinct spatial struc- tures crafted with multiple optical parametric ampliers and locking loops[9]. We apply this technique to a com- mercially available microcantilever in order to detect dis- placements 60% below the SNL at frequencies where the microcantilever is shot-noise-limited. These results sup- port a new class of quantum MEMS sensor whose ulti- mate signal to noise ratio is determined by the correla- tions possible in quantum optics systems.« less

  19. Nanomechanics of slip avalanches in amorphous plasticity

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Dahmen, Karin A.; Kushima, Akihiro; Wright, Wendelin J.; Park, Harold S.; Short, Michael P.; Yip, Sidney

    2018-05-01

    Discrete stress relaxations (slip avalanches) in a model metallic glass under uniaxial compression are studied using a metadynamics algorithm for molecular simulation at experimental strain rates. The onset of yielding is observed at the first major stress drop, accompanied, upon analysis, by the formation of a single localized shear band region spanning the entire system. During the elastic response prior to yielding, low concentrations of shear transformation deformation events appear intermittently and spatially uncorrelated. During serrated flow following yielding, small stress drops occur interspersed between large drops. The simulation results point to a threshold value of stress dissipation as a characteristic feature separating major and minor avalanches consistent with mean-field modeling analysis and mechanical testing experiments. We further interpret this behavior to be a consequence of a nonlinear interplay of two prevailing mechanisms of amorphous plasticity, thermally activated atomic diffusion and stress-induced shear transformations, originally proposed by Spaepen and Argon, respectively. Probing the atomistic processes at widely separate strain rates gives insight to different modes of shear band formation: percolation of shear transformations versus crack-like propagation. Additionally a focus on crossover avalanche size has implications for nanomechanical modeling of spatially and temporally heterogeneous dynamics.

  20. Optical readout of displacements of nanowires along two mutually perpendicular directions

    NASA Astrophysics Data System (ADS)

    Fu, Chenghua

    2017-05-01

    Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.

  1. Fundamental uncertainty limit for speckle displacement measurements.

    PubMed

    Fischer, Andreas

    2017-09-01

    The basic metrological task in speckle photography is to quantify displacements of speckle patterns, allowing for instance the investigation of the mechanical load and modification of objects with rough surfaces. However, the fundamental limit of the measurement uncertainty due to photon shot noise is unknown. For this reason, the Cramér-Rao bound (CRB) is derived for speckle displacement measurements, representing the squared minimal achievable measurement uncertainty. As result, the CRB for speckle patterns is only two times the CRB for an ideal point light source. Hence, speckle photography is an optimal measurement approach for contactless displacement measurements on rough surfaces. In agreement with a derivation from Heisenberg's uncertainty principle, the CRB depends on the number of detected photons and the diffraction limit of the imaging system described by the speckle size. The theoretical results are verified and validated, demonstrating the capability for displacement measurements with nanometer resolution.

  2. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    PubMed

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  3. A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement.

    PubMed

    Li, Xin; Wang, Xun; Song, Tao; Lu, Wei; Chen, Zhihua; Shi, Xiaolong

    2015-01-01

    DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement.

  4. A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement

    PubMed Central

    Li, Xin; Wang, Xun; Song, Tao; Lu, Wei; Chen, Zhihua; Shi, Xiaolong

    2015-01-01

    DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement. PMID:26491602

  5. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays

    NASA Astrophysics Data System (ADS)

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-01

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j

  6. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction.

    PubMed

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-24

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag(+)-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  8. Synthesis of finite displacements and displacements in continental margins

    NASA Technical Reports Server (NTRS)

    Speed, R. C.; Elison, M. W.; Heck, F. R.; Russo, R. M.

    1988-01-01

    The scope of the project is the analysis of displacement-rate fields in the transitional regions between cratonal and oceanic lithospheres over Phanerozoic time (last 700 ma). Associated goals are an improved understanding of range of widths of major displacement zones; the partition of displacement gradients and rotations with position and depth in such zones; the temporal characteristics of such zones-the steadiness, episodicity, and duration of uniform versus nonunifrom fields; and the mechanisms and controls of the establishment and kinematics of displacement zones. The objective is to provide a context of time-averaged kinematics of displacement zones. The initial phase is divided topically among the methodology of measurement and reduction of displacements in the lithosphere and the preliminary analysis from geologic and other data of actual displacement histories from the Cordillera, Appalachians, and southern North America.

  9. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate.

    PubMed

    Li, Wei; Jiang, Wei; Ding, Yongshun; Wang, Lei

    2015-09-15

    MicroRNAs (miRNAs) play important roles in a variety of biological processes and have been regarded as tumor biomarkers in cancer diagnosis and prognosis. In this work, a single-molecule counting method for miRNA analysis was proposed based on toehold-mediated strand displacement reaction (SDR) and DNA tetrahedron substrate. Firstly, a specially designed DNA tetrahedron was assembled with a hairpin at one of the vertex, which has an overhanging toehold domain. Then, the DNA tetrahedron was immobilized on the epoxy-functional glass slide by epoxy-amine reaction, forming a DNA tetrahedron substrate. Next, the target miRNA perhybridized with the toehold domain and initiated a strand displacement reaction along with the unfolding of the hairpin, realizing the selective recognization of miRNA. Finally, a biotin labeled detection DNA was hybridized with the new emerging single strand and the streptavidin coated QDs were used as fluorescent probes. Fluorescent images were acquired via epi-fluorescence microscopy, the numbers of fluorescence dots were counted one by one for quantification. The detection limit is 5 fM, which displayed an excellent sensitivity. Moreover, the proposed method which can accurately be identified the target miRNA among its family members, demonstrated an admirable selectivity. Furthermore, miRNA analysis in total RNA samples from human lung tissues was performed, suggesting the feasibility of this method for quantitative detection of miRNA in biomedical research and early clinical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Influence of Ar-irradiation on structural and nanomechanical properties of pure zirconium measured by means of GIXRD and nanoindentation techniques

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Gapinska, M.; Jasinski, J.; Lesniak, M.; Sitarz, M.; Nowakowska-Langier, K.; Jagielski, J.; Wozniak, K.

    2016-12-01

    An effect of Ar-irradiation on structural and nanomechanical properties of pure zirconium at room temperature was investigated. In order to simulate the radiation damage, the argon ions were implanted into the pure zirconium coupons with fluences ranging from 1 × 1015 to 1 × 1017 cm-2. Prior to irradiation, zirconium samples were chemically polished with a solution of HF/HNO3/H2O. Structural properties of the implanted layer were studied using Grazing Incidence X-Ray Diffraction (GIXRD) technique. The nanomechanical properties of the material were measured by means of nanoindentation technique. The obtained results revealed correlation between Ar-implantation fluence, hardness and structural properties (as confirmed by the modification of the diffraction peaks). Material hardening and peak shift & broadening in GIXD spectra were associated with the local increase of micro-strains, which is related to the increased density of type - dislocation loops. Presented study confirms that the structural changes induced by ion irradiation are directly linked to the mechanical response of the sample.

  11. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  12. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification.

    PubMed

    Cheng, Rui; Tao, Mangjuan; Shi, Zhilu; Zhang, Xiafei; Jin, Yan; Li, Baoxin

    2015-11-15

    Several fluorescence signal amplification strategies have been developed for sensitive detection of T4 polynucleotide kinase (T4 PNK) activity, but they need fluorescence dye labeled DNA probe. We have addressed the limitation and report here a label-free strategy for sensitive detection of PNK activity by coupling DNA strand displacement reaction with enzymatic-aided amplification. A hairpin oligonucleotide (hpDNA) with blunt ends was used as the substrate for T4 PNK phosphorylation. In the presence of T4 PNK, the stem of hpDNA was phosphorylated and further degraded by lambda exonuclease (λ exo) from 5' to 3' direction to release a single-stranded DNA as a trigger of DNA strand displacement reaction (SDR). The trigger DNA can continuously displace DNA P2 from P1/P2 hybrid with the help of specific cleavage of nicking endonuclease (Nt.BbvCI). Then, DNA P2 can form G-quadruplex in the presence of potassium ions and quadruplex-selective fluorphore, N-methyl mesoporphyrin IX (NMM), resulting in a significant increase in fluorescence intensity of NMM. Thus, the accumulative release of DNA P2 led to fluorescence signal amplification for determining T4 PNK activity with a detection limit of 6.6×10(-4) U/mL, which is superior or comparative with established approaches. By ingeniously utilizing T4 PNK-triggered DNA SDR, T4 PNK activity can be specifically and facilely studied in homogeneous solution containing complex matrix without any external fluorescence labeling. Moreover, the influence of different inhibitors on the T4 PNK activity revealed that it also can be explored to screen T4 PNK inhibitors. Therefore, this label-free amplification strategy presents a facile and cost-effective approach for nucleic acid phosphorylation related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Probing nanomechanical interaction at the interface between biological membrane and potentially toxic chemical.

    PubMed

    Lim, Chanoong; Park, Sohee; Park, Jinwoo; Ko, Jina; Lee, Dong Woog; Hwang, Dong Soo

    2018-04-12

    Various xenobiotics interact with biological membranes, and precise evaluations of the molecular interactions between them are essential to foresee the toxicity and bioavailability of existing or newly synthesized molecules. In this study, surface forces apparatus (SFA) measurement and Langmuir trough based tensiometry are performed to reveal nanomechanical interaction mechanisms between potential toxicants and biological membranes for ex vivo toxicity evaluation. As a toxicant, polyhexamethylene guanidine (PHMG) was selected because PHMG containing humidifier disinfectant and Vodka caused lots of victims in both S. Korea and Russia, respectively, due to the lack of holistic toxicity evaluation of PHMG. Here, we measured strong attraction (Wad ∼4.2 mJ/m 2 ) between PHMG and head group of biological membranes while no detectable adhesion force between the head group and control molecules was measured. Moreover, significant changes in π-A isotherm of 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) monolayers were measured upon PHMG adsorption. These results indicate PHMG strongly binds to hydrophilic group of lipid membranes and alters the structural and phase behavior of them. More importantly, complementary utilization of SFA and Langmuir trough techniques are found to be useful to predict the potential toxicity of a chemical by evaluating the molecular interaction with biological membranes, the primary protective barrier for living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.

    PubMed

    Cui, Peng; Wang, Xinnan; Tangpong, X W

    2012-11-01

    In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.

  15. In vitro isolation of small-molecule-binding aptamers with intrinsic dye-displacement functionality

    PubMed Central

    Yu, Haixiang; Yang, Weijuan; Alkhamis, Obtin; Canoura, Juan; Yang, Kyung-Ae; Xiao, Yi

    2018-01-01

    Abstract Aptamer-based sensors offer a powerful tool for molecular detection, but the practical implementation of these biosensors is hindered by costly and laborious sequence engineering and chemical modification procedures. We report a simple strategy for directly isolating signal-reporting aptamers in vitro through systematic evolution of ligands by exponential enrichment (SELEX) that transduce binding events into a detectable change of absorbance via target-induced displacement of a small-molecule dye. We first demonstrate that diethylthiatricarbocyanine (Cy7) can stack into DNA three-way junctions (TWJs) in a sequence-independent fashion, greatly altering the dye's absorbance spectrum. We then design a TWJ-containing structured library and isolate an aptamer against 3,4-methylenedioxypyrovalerone (MDPV), a synthetic cathinone that is an emerging drug of abuse. This aptamer intrinsically binds Cy7 within its TWJ domain, but MDPV efficiently displaces the dye, resulting in a change in absorbance within seconds. This assay is label-free, and detects nanomolar concentrations of MDPV. It also recognizes other synthetic cathinones, offering the potential to detect newly-emerging designer drugs, but does not detect structurally-similar non-cathinone compounds or common cutting agents. Moreover, we demonstrate that the Cy7-displacement colorimetric assay is more sensitive than a conventional strand-displacement fluorescence assay. We believe our strategy offers an effective generalized approach for the development of sensitive dye-displacement colorimetric assays for other small-molecule targets. PMID:29361056

  16. Displacement Vector Measurement Using 2D Modulation by Virtual Hyperbolic Beam Forming

    NASA Astrophysics Data System (ADS)

    Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    For the purpose of diagnosing ischemic heart disease by detection of malfunction area and cancer tumor by detection of hard area, 3-D tissue motion must be correctly evaluated. So far various methods of measuring multidimensional displacement have been developed. Most of present techniques are restricted to one-dimensional measurement of tissue displacement such as myocardial stain-rate imaging. Although lateral modulation method enables us to attain high-accuracy measurement of lateral displacement as well as axial direction by generating lateral oscillating RF signals, the method causes distorted RF far from center of aperture. As a result, the method is not suited to sector scan which is used for myocardial examination. We propose a method to solve the problem by using 2-D modulation with the virtual hyperbolic beam forming and detection of 2-D displacement vector. The feasibilities of the proposed method were evaluated by numerically simulating the left ventricle short-axis imaging of cylindrical myocardial model. The volume strain image obtained by the proposed method clearly depicted the hard infarction area where conventional multi-beam Doppler imaging could not.

  17. Topological quantization of energy transport in micromechanical and nanomechanical lattices

    NASA Astrophysics Data System (ADS)

    Chien, Chih-Chun; Velizhanin, Kirill A.; Dubi, Yonatan; Ilic, B. Robert; Zwolak, Michael

    2018-03-01

    Topological effects typically discussed in the context of quantum physics are emerging as one of the central paradigms of physics. Here, we demonstrate the role of topology in energy transport through dimerized micro- and nanomechanical lattices in the classical regime, i.e., essentially "masses and springs." We show that the thermal conductance factorizes into topological and nontopological components. The former takes on three discrete values and arises due to the appearance of edge modes that prevent good contact between the heat reservoirs and the bulk, giving a length-independent reduction of the conductance. In essence, energy input at the boundary mostly stays there, an effect robust against disorder and nonlinearity. These results bridge two seemingly disconnected disciplines of physics, namely topology and thermal transport, and suggest ways to engineer thermal contacts, opening a direction to explore the ramifications of topological properties on nanoscale technology.

  18. A colorimetric indicator-displacement assay array for selective detection and identification of biological thiols.

    PubMed

    Qian, Sihua; Lin, Hengwei

    2014-03-01

    A simple, inexpensive yet highly selective colorimetric indicator-displacement assay array for the simultaneous detection and identification of three important biothiols at micromolar concentrations under physiological conditions and in real samples has been developed in this work. With use of an array composed of metal indicators and metal ions, clear differentiation among cysteine, homocysteine and glutathione was achieved. On the basis of the colour change of the array, quantification of each analyte was accomplished easily, and different biothiols were identified readily using standard chemometric approaches (hierarchical clustering analysis). Moreover, the colorimetric sensor array was not responsive to changes with 19 other natural amino acids, and it showed excellent reproducibility. Importantly, the sensor array developed was successfully applied to the determination and identification of the three biothiols in a real biological sample.

  19. Nanomechanical properties of α-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM

    PubMed Central

    2011-01-01

    We report on the use of three different atomic force spectroscopy modalities to determine the nanomechanical properties of amyloid fibrils of the human α-synuclein protein. α-Synuclein forms fibrillar nanostructures of approximately 10 nm diameter and lengths ranging from 100 nm to several microns, which have been associated with Parkinson's disease. Atomic force microscopy (AFM) has been used to image the morphology of these protein fibrils deposited on a flat surface. For nanomechanical measurements, we used single-point nanoindentation, in which the AFM tip as the indenter is moved vertically to the fibril surface and back while the force is being recorded. We also used two recently developed AFM surface property mapping techniques: Harmonic force microscopy (HarmoniX) and Peakforce QNM. These modalities allow extraction of mechanical parameters of the surface with a lateral resolution and speed comparable to tapping-mode AFM imaging. Based on this phenomenological study, the elastic moduli of the α-synuclein fibrils determined using these three different modalities are within the range 1.3-2.1 GPa. We discuss the relative merits of these three methods for the determination of the elastic properties of protein fibrils, particularly considering the differences and difficulties of each method. PMID:21711775

  20. The inverse problem of sensing the mass and force induced by an adsorbate on a beam nanomechanical resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Zhang, Yin

    2016-06-08

    The mass sensing superiority of a micro/nanomechanical resonator sensor over conventional mass spectrometry has been, or at least, is being firmly established. Because the sensing mechanism of a mechanical resonator sensor is the shifts of resonant frequencies, how to link the shifts of resonant frequencies with the material properties of an analyte formulates an inverse problem. Besides the analyte/adsorbate mass, many other factors such as position and axial force can also cause the shifts of resonant frequencies. The in-situ measurement of the adsorbate position and axial force is extremely difficult if not impossible, especially when an adsorbate is as smallmore » as a molecule or an atom. Extra instruments are also required. In this study, an inverse problem of using three resonant frequencies to determine the mass, position and axial force is formulated and solved. The accuracy of the inverse problem solving method is demonstrated and how the method can be used in the real application of a nanomechanical resonator is also discussed. Solving the inverse problem is helpful to the development and application of mechanical resonator sensor on two things: reducing extra experimental equipments and achieving better mass sensing by considering more factors.« less

  1. Is fibular fracture displacement consistent with tibiotalar displacement?

    PubMed

    van den Bekerom, Michel P J; van Dijk, C Niek

    2010-04-01

    We believed open reduction with internal fixation is required for supination-external rotation ankle fractures located at the level of the distal tibiofibular syndesmosis (Lauge-Hanssen SER II and Weber B) with 2 mm or more fibular fracture displacement. The rationale for surgery for these ankle fractures is based on the notion of elevated intraarticular contact pressures with lateral displacement. To diagnose these injuries, we presumed that in patients with a fibular fracture with at least 2 mm fracture displacement, the lateral malleolus and talus have moved at least 2 mm in a lateral direction without medial displacement of the proximal fibula. We reviewed 55 adult patients treated operatively for a supination-external rotation II ankle fracture (2 mm or more fibular fracture displacement) between 1990 and 1998. On standard radiographs, distance from the tibia to the proximal fibula, distance from the tibia to the distal fibula, and displacement at the level of the fibular fracture were measured. These distances were compared preoperatively and postoperatively. We concluded tibiotalar displacement cannot be reliably assessed at the level of the fracture. Based on this and other studies, we believe there is little evidence to perform open reduction and internal fixation of supination-external rotation II ankle fractures. Level IV, case series. See Guidelines for Authors for a complete description of levels of evidence.

  2. Ultrawide Band Gap β-Ga2O3 Nanomechanical Resonators with Spatially Visualized Multimode Motion.

    PubMed

    Zheng, Xu-Qian; Lee, Jaesung; Rafique, Subrina; Han, Lu; Zorman, Christian A; Zhao, Hongping; Feng, Philip X-L

    2017-12-13

    Beta gallium oxide (β-Ga 2 O 3 ) is an emerging ultrawide band gap (4.5 eV-4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. β-Ga 2 O 3 thin films made by various methods are being actively studied toward such devices. Here, we report on the experimental demonstration of single-crystal β-Ga 2 O 3 nanomechanical resonators using β-Ga 2 O 3 nanoflakes grown via low-pressure chemical vapor deposition (LPCVD). By investigating β-Ga 2 O 3 circular drumhead structures, we demonstrate multimode nanoresonators up to the sixth mode in high and very high frequency (HF/VHF) bands, and also realize spatial mapping and visualization of the multimode motion. These measurements reveal a Young's modulus of E Y = 261 GPa and anisotropic biaxial built-in tension of 37.5 MPa and 107.5 MPa. We find that thermal annealing can considerably improve the resonance characteristics, including ∼40% upshift in frequency and ∼90% enhancement in quality (Q) factor. This study lays a foundation for future exploration and development of mechanically coupled and tunable β-Ga 2 O 3 electronic, optoelectronic, and physical sensing devices.

  3. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays.

    PubMed

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-19

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.

  4. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it?

    PubMed

    Sirbuly, Donald J; Friddle, Raymond W; Villanueva, Joshua; Huang, Qian

    2015-02-01

    Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.

  5. Eddy current gauge for monitoring displacement using printed circuit coil

    DOEpatents

    Visioli, Jr., Armando J.

    1977-01-01

    A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.

  6. Smell identification of spices using nanomechanical membrane-type surface stress sensors

    NASA Astrophysics Data System (ADS)

    Imamura, Gaku; Shiba, Kota; Yoshikawa, Genki

    2016-11-01

    Artificial olfaction, that is, a chemical sensor system that identifies samples by smell, has not been fully achieved because of the complex perceptional mechanism of olfaction. To realize an artificial olfactory system, not only an array of chemical sensors but also a valid feature extraction method is required. In this study, we achieved the identification of spices by smell using nanomechanical membrane-type surface stress sensors (MSS). Features were extracted from the sensing signals obtained from four MSS coated with different types of polymers, focusing on the chemical interactions between polymers and odor molecules. The principal component analysis (PCA) of the dataset consisting of the extracted parameters demonstrated the separation of each spice on the scatter plot. We discuss the strategy for improving odor identification based on the relationship between the results of PCA and the chemical species in the odors.

  7. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    PubMed Central

    Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao

    2012-01-01

    Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566

  8. Portable and sensitive quantitative detection of DNA based on personal glucose meters and isothermal circular strand-displacement polymerization reaction.

    PubMed

    Xu, Xue-tao; Liang, Kai-yi; Zeng, Jia-ying

    2015-02-15

    A portable and sensitive quantitative DNA detection method based on personal glucose meters and isothermal circular strand-displacement polymerization reaction was developed. The target DNA triggered target recycling process, which opened capture DNA. The released target then found another capture DNA to trigger another polymerization cycle, which was repeated for many rounds, resulting in the multiplication of the DNA-invertase conjugation on the surface of Streptavidin-MNBs. The DNA-invertase was used to catalyze the hydrolysis of sucrose into glucose for PGM readout. There was a liner relationship between the signal of PGM and the concentration of target DNA in the range of 5.0 to 1000 fM, which is lower than some DNA detection method. In addition, the method exhibited excellent sequence selectivity and there was almost no effect of biological complex to the detection performance, which suggested our method can be successfully applied to DNA detection in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Detection of single-nucleotide polymorphisms using an ON-OFF switching of regenerated biosensor based on a locked nucleic acid-integrated and toehold-mediated strand displacement reaction.

    PubMed

    Gao, Zhong Feng; Ling, Yu; Lu, Lu; Chen, Ning Yu; Luo, Hong Qun; Li, Nian Bing

    2014-03-04

    Although various strategies have been reported for single-nucleotide polymorphisms (SNPs) detection, development of a time-saving, specific, and regenerated electrochemical sensing platform still remains a realistic goal. In this study, an ON-OFF switching of a regenerated biosensor based on a locked nucleic acid (LNA)-integrated and toehold-mediated strand displacement reaction technique is constructed for detection of SNPs. The LNA-integrated and methylene blue-labeled capture probe with an external toehold is designed to switch on the sensing system. The mutant-type DNA probe completes complementary with the capture probe to trigger the strand displacement reaction, which switches off the sensing system. However, when the single-base mismatched wild-type DNA probe is presented, the strand displacement reaction cannot be achieved; therefore, the sensing system still keeps the ON state. This DNA sensor is stable over five reuses. We further testify that the LNA-integrated sequence has better recognition ability for SNPs detection compared to the DNA-integrated sequence. Moreover, this DNA senor exhibits a remarkable discrimination capability of SNPs among abundant wild-type targets and 6000-fold (m/m) excess of genomic DNA. In addition, it is selective enough in complex and contaminant-ridden samples, such as human urine, soil, saliva, and beer. Overall, these results demonstrate that this reliable DNA sensor is easy to be fabricated, simple to operate, and stable enough to be readily regenerated.

  10. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  11. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  12. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction.

    PubMed

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.

  13. Structure and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: Insights into the Role of Cholesterol and Sphingolipids.

    PubMed

    Gumí-Audenis, Berta; Costa, Luca; Carlá, Francesco; Comin, Fabio; Sanz, Fausto; Giannotti, Marina I

    2016-12-19

    Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.

  14. Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current.

    PubMed

    Stadler, P; Belzig, W; Rastelli, G

    2014-07-25

    We study the nonequilibrium steady state of a mechanical resonator in the quantum regime realized by a suspended carbon nanotube quantum dot in contact with two ferromagnets. Because of the spin-orbit interaction and/or an external magnetic field gradient, the spin on the dot couples directly to the flexural eigenmodes. Accordingly, the nanomechanical motion induces inelastic spin flips of the tunneling electrons. A spin-polarized current at finite bias voltage causes either heating or active cooling of the mechanical modes. We show that maximal cooling is achieved at resonant transport when the energy splitting between two dot levels of opposite spin equals the vibrational frequency. Even for weak electron-resonator coupling and moderate polarizations we can achieve ground-state cooling with a temperature of the leads, for instance, of T = 10 ω.

  15. An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement

    NASA Astrophysics Data System (ADS)

    Pullteap, S.; Seat, H. C.

    2015-03-01

    A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 μm to 140 μm. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of λ/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.

  16. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  17. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE PAGES

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.; ...

    2017-03-16

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  18. A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters.

    PubMed

    Zhang, Peng; Liu, Hui; Li, Xiaocheng; Ma, Suzhen; Men, Shuai; Wei, Heng; Cui, Jingjing; Wang, Hongning

    2017-01-15

    The harm of Salmonella typhimurium (S. typhimurium) to public health mainly by the consumption of contaminated agricultural products or water stresses an urgent need for rapid detection methods to help control the spread of S. typhimurium. In this work, an intelligently designed sensor system took creative advantage of triple trigger sequences-regenerated strand displacement amplification and self-protective hairpin template-generated-scaffolded silver nanoclusters (AgNCs) for the first time. In the presence of live S. typhimurium, single-stranded trigger sequences were released from aptamer-trigger sequences complex, initiating a branch migration to open the hairpin template I containing complementary scaffolds of AgNCs. Then the first strand displacement amplification was induced to produce numerous scaffolds of AgNCs and reporter strands which initiated a branch migration to open the hairpin template II containing complementary scaffolds of AgNCs. Then the second strand displacement amplification was induced to generate numerous scaffolds of AgNCs and trigger sequences which initiated the third branch migration and strand displacement amplification to produce numerous scaffolds of AgNCs and reporter strands in succession. Cyclically, the reproduction of the trigger sequences and cascade successive production of scaffolds were achieved successfully, forming highly fluorescent AgNCs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. typhimurium down to 50 CFU/mL with a linear range from 10 2 to 10 7 CFU/mL. It is the first report on a fluorescent biosensor for detecting viable S. typhimurium directly, which can distinguish from heat denatured S. typhimurium. And it develops a new strategy to generate the DNA-scaffolds for forming AgNCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element.

    PubMed

    Li, Chun Hong; Xiao, Xue; Tao, Jing; Wang, Dong Mei; Huang, Cheng Zhi; Zhen, Shu Jun

    2017-05-15

    The toxic plant protein ricin is a potential agent for criminal or bioterrorist attacks due to the wide availability and relative ease of preparation. Herein, we developed a novel strategy for the detection of ricin B-chain (RTB) based on isothermal strand-displacement polymerase reaction (ISDPR) by using aptamer as a recognition element and graphene oxide (GO) as a low background platform. In this method, ricin-binding aptamer (RBA) hybridized with a short blocker firstly, and then was immobilized on the surface of streptavidin-coated magnetic beads (MBs). The addition of RTB could release the blocker, which could hybridize with the dye-modified hairpin probe and trigger the ISDPR, resulting in high fluorescence intensity. In the absence of RTB, however, the fluorescence of the dye could be quenched strongly by GO, resulting in the extremely low background signal. Thus, RTB could be sensitively detected by the significantly increased fluorescence signal. The linear range of the current analytical system was from 0.75μg/mL to 100μg/mL and the limit of detection (3σ) was 0.6μg/mL. This method has been successfully utilized for the detection of both the RTB and the entire ricin toxin in real samples, and it could be generalized to any kind of target detection based on an appropriate aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Suppression of displacement detection in the presence and absence of eye movements: a neuro-computational perspective.

    PubMed

    Bergelt, Julia; Hamker, Fred H

    2016-02-01

    Understanding the subjective experience of a visually stable world during eye movements has been an important research topic for many years. Various studies were conducted to reveal fundamental mechanisms of this phenomenon. For example, in the paradigm saccadic suppression of displacement (SSD), it has been observed that a small displacement of a saccade target could not easily be reported if this displacement took place during a saccade. New results from Zimmermann et al. (J Neurophysiol 112(12):3066-3076, 2014) show that the effect of being oblivious to small displacements occurs not only during saccades, but also if a mask is introduced while the target is displaced. We address the question of how neurons in the parietal cortex may be connected to each other to account for the SSD effect in experiments involving a saccade and equally well in the absence of an eye movement while perception is disrupted by a mask.

  1. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM.

    PubMed

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G; Vázquez, Luis

    2015-11-25

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young's modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young's modulus.

  2. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction

    PubMed Central

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Background Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. Methods A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. Results This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. Conclusion This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice. PMID:25848224

  3. Detection of stain formation on teeth by oral antiseptic solution using fiber optic displacement sensor

    NASA Astrophysics Data System (ADS)

    Rahman, H. A.; Rahim, H. R. A.; Harun, S. W.; Yasin, M.; Apsari, R.; Ahmad, H.; Wan Abas, W. A. B.

    2013-02-01

    The application of a simple intensity modulated fiber optic displacement sensor for the detection of stain formation on human teeth is demonstrated. The proposed sensor uses a concentric type bundled plastic optical fiber (POF) as a probe in conjunction with the surfaces of five human teeth as the reflecting targets. Prior to the experiment, the stains were produced extrinsically by soaking the teeth in different concentrations of oral antiseptic solution containing hexetidine. The concentration of the oral antiseptic solution is measured in volume%. For a concentration change from 0% to 80%, the peak voltage decreases exponentially from 1.15 mV to 0.41 mV with a measured resolution of 0.48% and 1.75% for concentration ranges of 0-40% and 40-80%, respectively. The correlation between the detector output and variation in the color of human tooth surface has successfully been examined. Simple in design and low in cost, this sensor can detect color changes due to hexetidine-induced stain on a tooth surface in a fast and convenient way. Thus, this sensor will be very promising in esthetic dentistry, dental color matching techniques, chemical and biomedical applications.

  4. Dynamic measurement of local displacements within curing resin-based dental composite using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Tomlins, Peter H.; Rahman, Mohammed Wahidur; Donnan, Robert S.

    2016-04-01

    This study aimed to determine the feasibility of using optical coherence elastography to measure internal displacements during the curing phase of a light-activated, resin-based composite material. Displacement vectors were spatially mapped over time within a commercial dental composite. Measurements revealed that the orientation of cure-induced displacement vectors varied spatially in a complex manner; however, each vector showed a systematic evolution with time. Precision of individual displacements was estimated to be ˜1 to 2 μm, enabling submicrometer time-varying displacements to be detected.

  5. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction

    NASA Astrophysics Data System (ADS)

    Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu

    2018-02-01

    In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.

  6. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction.

    PubMed

    Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu

    2018-02-23

    In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.

  7. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    PubMed

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  8. Visualizing Stress and Temperature Distribution During Elevated Temperature Deformation of IN-617 Using Nanomechanical Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wang, Hao; Tomar, Vikas

    2018-04-01

    This work presents direct measurements of stress and temperature distribution during the mesoscale microstructural deformation of Inconel-617 (IN-617) during 3-point bending tests as a function of temperature. A novel nanomechanical Raman spectroscopy (NMRS)-based measurement platform was designed for simultaneous in situ temperature and stress mapping as a function of microstructure during deformation. The temperature distribution was found to be directly correlated to stress distribution for the analyzed microstructures. Stress concentration locations are shown to be directly related to higher heat conduction and result in microstructural hot spots with significant local temperature variation.

  9. Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing.

    PubMed

    Wang, Quanbo; Xu, Nan; Gui, Zhen; Lei, Jianping; Ju, Huangxian; Yan, Feng

    2015-10-07

    To efficiently regulate the catalytic activity of the peroxidase mimic hemin, this work designs a double-stranded DNA probe containing an intermolecular dimer of hemin, whose peroxidase activity can be activated by a DNA strand displacement reaction. The double-stranded probe is prepared by annealing two strands of hemin labelled DNA oligonucleotides. Using the fluorescent oxidation product of tyramine by H2O2 as a tracing molecule, the low peroxidase activity of the hemin dimer ensures a low fluorescence background. The strand displacement reaction of the target DNA dissociates the hemin dimer and thus significantly increases the catalytic activity of hemin to produce a large amount of dityramine for fluorescence signal readout. Based on the strand displacement regulated peroxidase activity, a simple and sensitive homogeneous fluorescent DNA sensing method is proposed. The detection can conveniently be carried out in a 96-well plate within 20 min with a detection limit of 0.18 nM. This method shows high specificity, which can effectively distinguish single-base mismatched DNA from perfectly matched target DNA. The DNA strand displacement regulated catalytic activity of hemin has promising application in the determination of various DNA analytes.

  10. Displacement and Deflection of AN Optical Beam by Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Caron, James N.

    2008-02-01

    Gas-Coupled Laser Acoustic Detection enables laser-based sensing of ultrasound from a solid without contact of the surface, and independent of the optical properties of the solid surface. The interaction between the probe beam and acoustic field has typically been modeled as creating a deflection in the optical beam. This paper describes this interaction as a combination of displacement and deflection. Sensing displacement can significantly decrease the system's dependence of length.

  11. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Jesse, Stephen; Yu, Pu

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  12. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE PAGES

    Balke, Nina; Jesse, Stephen; Yu, Pu; ...

    2016-09-15

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  13. Structure and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: Insights into the Role of Cholesterol and Sphingolipids

    PubMed Central

    Gumí-Audenis, Berta; Costa, Luca; Carlá, Francesco; Comin, Fabio; Sanz, Fausto; Giannotti, Marina I.

    2016-01-01

    Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information. PMID:27999368

  14. Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection.

    PubMed

    Chen, Anyi; Gui, Guo-Feng; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo

    2015-06-16

    A target induced cycling strand displacement amplification (SDA) mediated by phi29 DNA polymerase (phi29) was first investigated and applied in a signal-off electrochemiluminescence (ECL) biosensor for microRNA (miRNA) detection. Herein, the target miRNA triggered the phi29-mediated SDA which could produce amounts of single-stranded DNA (assistant probe) with accurate and comprehensive nucleotide sequence. Then, the assistant probe hybridized with the capture probe and the ferrocene-labeled probe (Fc-probe) to form a ternary "Y" structure for ECL signal quenching by ferrocene. Therefore, the ECL intensity would decrease with increasing concentration of the target miRNA, and the sensitivity of biosensor would be promoted on account of the efficient signal amplification of the target induced cycling reaction. Besides, a self-enhanced Ru(II) ECL system was designed to obtain a stable and strong initial signal to further improve the sensitivity. The ECL assay for miRNA-21 detection is developed with excellent sensitivity of a concentration variation from 10 aM to 1.0 pM and limit of detection down to 3.3 aM.

  15. Quantum sensing of the phase-space-displacement parameters using a single trapped ion

    NASA Astrophysics Data System (ADS)

    Ivanov, Peter A.; Vitanov, Nikolay V.

    2018-03-01

    We introduce a quantum sensing protocol for detecting the parameters characterizing the phase-space displacement by using a single trapped ion as a quantum probe. We show that, thanks to the laser-induced coupling between the ion's internal states and the motion mode, the estimation of the two conjugated parameters describing the displacement can be efficiently performed by a set of measurements of the atomic state populations. Furthermore, we introduce a three-parameter protocol capable of detecting the magnitude, the transverse direction, and the phase of the displacement. We characterize the uncertainty of the two- and three-parameter problems in terms of the Fisher information and show that state projective measurement saturates the fundamental quantum Cramér-Rao bound.

  16. Multi-pedal DNA walker biosensors based on catalyzed hairpin assembly and isothermal strand-displacement polymerase reaction for the chemiluminescent detection of proteins.

    PubMed

    Li, Ningxing; Du, Mingyuan; Liu, Yucheng; Ji, Xinghu; He, Zhike

    2018-06-25

    Two kinds of sensitive biosensors based on multi-pedal DNA walker along a 3-D DNA functional magnet particles track for the chemiluminescent detection of streptavidin are constructed and compared in this study. In the presence of SA, multi-pedal DNA walker has been constructed by biotin-modified catalyst as a result of the terminal protection for avoiding the digestion by exonuclease I. Then a toehold of CHA-H1 conjugated with magnetic microparticles (MMPs) could interact with a 'leg' of multi-pedal DNA walker to open the hairpin via toehold-mediated strand exchange catalysis. A newly exposed DNA segment in CHA-H1 would be hybridized with a toehold of biotin-labeled H2. Via the strand displacement process, H2 displaces one 'leg' of multi-pedal DNA walker, and the other 'leg' could still hybridize with neighboring H1 to initiate the next cycle. In order to solve the high background caused by the hybridization between CHA-H1 and H2 without CHA-catalyst, the other model has been designed. The principle of the other model (ISDPR DNA walker) is similar to the above one. After the terminal protection of SA, a 'leg' of multi-pedal DNA walker triggers the opening of the hairpin of ISDPR-H1 conjugated with MMPs. Then the biotin-modified primer could hybridize with the open stem, triggering the polymerization reaction in the presence of dNTPs/polymerase. As the extension of the primer, the 'leg' of multi-pedal DNA walker is displaced so that the other 'leg' could trigger proximal H1 to go on the next cycle. Due to its lower background and stronger signal, multi-pedal DNA walker based on ISDPR has a lower limit of detection for SA. The limit of detection (LOD) for SA is 6.5 pM. What's more, these DNA walker methods have been applied in complex samples successfully.

  17. Size dependent nanomechanics of coil spring shaped polymer nanowires

    NASA Astrophysics Data System (ADS)

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-11-01

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke’s law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.

  18. Size dependent nanomechanics of coil spring shaped polymer nanowires.

    PubMed

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-11-27

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke's law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.

  19. Size dependent nanomechanics of coil spring shaped polymer nanowires

    PubMed Central

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-01-01

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke’s law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials. PMID:26612544

  20. Structure, Nanomechanics and Dynamics of Dispersed Surfactant-Free Clay Nanocomposite Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhao, Jing; Snyder, Chad; Karim, Alamgir; National Institute of Standards; Technology Collaboration

    Natural Montmorillonite particles were dispersed as tactoids in thin films of polycaprolactone (PCL) through a flow coating technique assisted by ultra-sonication. Wide angle X-ray scattering (WAXS), Grazing-incidence wide angle X-ray scattering (GI-WAXS), and transmission electron microscopy (TEM) were used to confirm the level of dispersion. These characterization techniques are in conjunction with its nanomechanical properties via strain-induced buckling instability for modulus measurements (SIEBIMM), a high throughput technique to characterize thin film mechanical properties. The linear strengthening trend of the elastic modulus enhancements was fitted with Halpin-Tsai (HT) model, correlating the nanoparticle geometric effects and mechanical behaviors based on continuum theories. The overall aspect ratio of dispersed tactoids obtained through HT model fitting is in reasonable agreement with digital electron microscope image analysis. Moreover, glass transition behaviors of the composites were characterized using broadband dielectric relaxation spectroscopy. The segmental relaxation behaviors indicate that the associated mechanical property changes are due to the continuum filler effect rather than the interfacial confinement effect.

  1. Detection of Alzheimer's Disease by Three-Dimensional Displacement Field Estimation in Structural Magnetic Resonance Imaging.

    PubMed

    Wang, Shuihua; Zhang, Yudong; Liu, Ge; Phillips, Preetha; Yuan, Ti-Fei

    2016-01-01

    Within the past decade, computer scientists have developed many methods using computer vision and machine learning techniques to detect Alzheimer's disease (AD) in its early stages. However, some of these methods are unable to achieve excellent detection accuracy, and several other methods are unable to locate AD-related regions. Hence, our goal was to develop a novel AD brain detection method. In this study, our method was based on the three-dimensional (3D) displacement-field (DF) estimation between subjects in the healthy elder control group and AD group. The 3D-DF was treated with AD-related features. The three feature selection measures were used in the Bhattacharyya distance, Student's t-test, and Welch's t-test (WTT). Two non-parallel support vector machines, i.e., generalized eigenvalue proximal support vector machine and twin support vector machine (TSVM), were then used for classification. A 50 × 10-fold cross validation was implemented for statistical analysis. The results showed that "3D-DF+WTT+TSVM" achieved the best performance, with an accuracy of 93.05 ± 2.18, a sensitivity of 92.57 ± 3.80, a specificity of 93.18 ± 3.35, and a precision of 79.51 ± 2.86. This method also exceled in 13 state-of-the-art approaches. Additionally, we were able to detect 17 regions related to AD by using the pure computer-vision technique. These regions include sub-gyral, inferior parietal lobule, precuneus, angular gyrus, lingual gyrus, supramarginal gyrus, postcentral gyrus, third ventricle, superior parietal lobule, thalamus, middle temporal gyrus, precentral gyrus, superior temporal gyrus, superior occipital gyrus, cingulate gyrus, culmen, and insula. These regions were reported in recent publications. The 3D-DF is effective in AD subject and related region detection.

  2. Angular displacement measuring device

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1992-01-01

    A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.

  3. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    PubMed Central

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus. PMID:26602631

  4. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.

    PubMed

    Zhu, Zongda; Liu, Lu; Liu, Zhihai; Zhang, Yu; Zhang, Yaxun

    2017-05-15

    We propose and demonstrate a novel optical-fiber micro-displacement sensor based on surface plasmon resonance (SPR) by fabricating a Kretschmann configuration on graded-index multimode fiber (GIMMF). We employ a single-mode fiber to change the radial position of the incident beam as the displacement. In the GIMMF, the angle between the light beam and fiber axis, which is closely related to the resonance angle, is changed by the displacement; thus, the resonance wavelength of the fiber SPR shifts. This micro-displacement fiber sensor has a wide detection range of 0-25 μm, a high sensitivity with maximum up to 10.32 nm/μm, and a nanometer resolution with minimum to 2 nm, which transcends almost all of other optical-fiber micro-displacement sensors. In addition, we also research that increasing the fiber polishing angle or medium refractive index can improve the sensitivity. This micro-displacement sensor will have a great significance in many industrial applications and provide a neoteric, rapid, and accurate optical measurement method in micro-displacement.

  5. Enhancement of the photoprotection and nanomechanical properties of polycarbonate by deposition of thin ceramic coatings

    NASA Astrophysics Data System (ADS)

    Mailhot, B.; Rivaton, A.; Gardette, J.-L.; Moustaghfir, A.; Tomasella, E.; Jacquet, M.; Ma, X.-G.; Komvopoulos, K.

    2006-05-01

    The chemical reactions resulting from ultraviolet radiation produce discoloration and significant changes in the surface properties of polycarbonate (PC). To prevent photon absorption from irradiation and oxygen diffusion and to enhance the surface nanomechanical properties of PC, thin ceramic coatings of ZnO and Al2O3 (both single- and multi-layer) were deposited on bulk PC by radio-frequency magnetron sputtering. The samples were irradiated at wavelengths greater than 300 nm, representative of outdoor conditions. Despite the effectiveness of ZnO to protect PC from irradiation damage, photocatalytic oxidation at the PC/ZnO interface was the limiting factor. To overcome this deficiency, a thin Al2O3 coating was used both as intermediate and top layer because of its higher hardness and wear resistance than ZnO. Therefore, PC/Al2O3/ZnO, PC/ZnO/Al2O3, and PC/Al2O3/ZnO/Al2O3 layered media were fabricated and their photodegradation properties were examined by infrared and ultraviolet-visible spectroscopy. It was found that the photocatalytic activity at the PC/ZnO interface was reduced in the presence of the intermediate Al2O3 layer that limited the oxygen permeability. Nanomechanical experiments performed with a surface force apparatus revealed that the previous coating systems enhanced both the surface nanohardness and the elastic modulus and reduced the coefficient of friction in the order of ZnO, Al2O3, and Al2O3/ZnO/Al2O3. Although irradiation increased the nanohardness and the elastic modulus of PC, the irradiation effect on the surface mechanical properties of ceramic-coated PC was secondary.

  6. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.

    PubMed

    Wu, Yushu; Wang, Lei; Jiang, Wei

    2017-03-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is beneficial for evaluating the repairing process of DNA lesions. Here, toehold-mediated strand displacement reaction (TSDR)-dependent fluorescent strategy was constructed for sensitive detection of UDG activity. A single-stranded DNA (ssDNA) probe with two uracil bases and a trigger sequence were designed. A hairpin probe with toehold domain was designed, and a reporter probe was also designed. Under the action of UDG, two uracil bases were removed from ssDNA probe, generating apurinic/apyrimidinic (AP) sites. Then, the AP sites could inhibit the TSDR between ssDNA probe and hairpin probe, leaving the trigger sequence in ssDNA probe still free. Subsequently, the trigger sequence was annealed with the reporter probe, initiating the polymerization and nicking amplification reaction. As a result, numerous G-quadruplex (G4) structures were formed, which could bind with N-methyl-mesoporphyrin IX (NMM) to generate enhanced fluorescent signal. In the absence of UDG, the ssDNA probe could hybridize with the toehold domain of the hairpin probe to initiate TSDR, blocking the trigger sequence, and then the subsequent amplification reaction would not occur. The proposed strategy was successfully implemented for detecting UDG activity with a detection limit of 2.7×10 -5 U/mL. Moreover, the strategy could distinguish UDG well from other interference enzymes. Furthermore, the strategy was also applied for detecting UDG activity in HeLa cells lysate with low effect of cellular components. These results indicated that the proposed strategy offered a promising tool for sensitive quantification of UDG activity in UDG-related function study and disease prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Hairpin DNA-Templated Silver Nanoclusters as Novel Beacons in Strand Displacement Amplification for MicroRNA Detection.

    PubMed

    Zhang, Jingpu; Li, Chao; Zhi, Xiao; Ramón, Gabriel Alfranca; Liu, Yanlei; Zhang, Chunlei; Pan, Fei; Cui, Daxiang

    2016-01-19

    MicroRNA (miRNA) biomarkers display great potential for cancer diagnosis and prognosis. The development of rapid and specific methods for miRNA detection has become a hotspot. Herein, hairpin DNA-templated silver nanoclusters (AgNCs/HpDNA) were prepared and integrated into strand-displacement amplification (SDA) as a novel beacon for miRNA detection. The light-up platform was established based on guanine (G)-rich fluorescence enhancement that essentially converted the excitation/emission pair of AgNCs/HpDNAs from a shorter wavelength to a longer wavelength, and then achieved fluorescent enhancement at longer wavelength. On the basis of the validation of the method, the single and duplex detection were conducted in two plasma biomarkers (miR-16-5p and miR-19b-3p) for the diagnosis of gastric cancer. The probe (AgNCs/RED 16(7s)C) utilized for miR-16-5p detection adopted a better conformation with high specificity to recognize single-base mismatches by producing dramatically opposite signals (increase or decrease at 580 nm ex/640 nm em) while the probe (AgNCs/GRE 19b(5s)C) for miR-19b-3p generated dual signals (increase at 490 nm ex/570 nm em and decrease at 430 nm ex/530 nm em) with bright fluorescence in one reaction during the amplification, but unexpectedly was partially digested. This is for the first time to allow the generation of enhanced fluorescent AgNCs and the target recognition integrated into a single process, which offers great opportunity for specific miRNA detection in an easy and rapid way.

  8. Freely Suspended Two-Dimensional Electron Gases.

    NASA Astrophysics Data System (ADS)

    Blick, Robert; Monzon, Franklin; Roukes, Michael; Wegscheider, Werner; Stern, Frank

    1998-03-01

    We present a new technique that has allowed us to build the first freely suspended two-dimensional electron gas devices from AlGaAs/GaAs/AlAs heterostructures. This technique is based upon specially MBE grown structures that include a sacrificial layer. In order to design the MBE layer sequence, the conduction band lineup for these samples was modelled numerically. The overall focus of this work is to provide a new approach for studies of the quantum mechanical properties of nanomachined structures. Our current experiments are directed toward use of these techniques for research on very high frequency nanomechanical resonators. The high mobility 2DEG system provides a unique approach to realizing wideband, extremely sensitive displacement detection, using the piezoelectric properties of GaAs to modulate a suspended nanometer-scale HEMT. This approach offers promise for sensitive displacement detectors with sub-nanometer resolution and bandwidths into the microwave range.

  9. Atomic Force Microscopy Nanomechanical Mapping Visualizes Interfacial Broadening between Networks Due to Chemical Exchange Reactions.

    PubMed

    He, Changfei; Shi, Shaowei; Wu, Xuefei; Russell, Thomas P; Wang, Dong

    2018-06-06

    The interfacial broadening between two different epoxy networks having different moduli was nanomechanically mapped. The interfacial broadening of the two networks produced an interfacial zone having a gradient in the concentration and, hence, properties of the original two networks. This interfacial broadening of the networks leads to the generation of a new network with a segmental composition corresponding to a mixture of the original two network segments. The intermixing of the two, by nature of the exchange reactions, was on the segmental level. By mapping the time dependence of the variation in the modulus at different temperatures, the kinetics of the exchange reaction was measured and, by varying the temperature, the activation energy of the exchange reaction was determined.

  10. Accuracy of radiographs in assessment of displacement in lateral humeral condyle fractures.

    PubMed

    Knutsen, Ashleen; Avoian, Tigran; Borkowski, Sean L; Ebramzadeh, Edward; Zionts, Lewis E; Sangiorgio, Sophia N

    2014-02-01

    Determining the magnitude of displacement in pediatric lateral humeral condyle fractures can be difficult. The purpose of this study was to (1) assess the effect of forearm rotation on true fracture displacement using a cadaver model and to (2) determine the accuracy of radiographic measurements of the fracture gap. A non-displaced fracture was created in three human cadaveric arms. The specimens were mounted on a custom apparatus allowing forearm rotation with the humerus fixed. First, the effect of pure rotation on fracture displacement was simulated by rotating the forearm from supination to pronation about the central axis of the forearm, to isolate the effects of muscle pull. Then, the clinical condition of obtaining a lateral oblique radiograph was simulated by rotating the forearm about the medial aspect of the forearm. Fracture displacements were measured using a motion-capture system (true-displacement) and clinical radiographs (apparent-displacement). During pure rotation of the forearm, there were no significant differences in fracture displacement between supination and pronation, with changes in displacement of <1.0 mm. During rotation about the medial aspect of the forearm, there was a significant difference in true displacements between supination and pronation at the posterior edge (p < 0.05). Overall, true fracture displacement measurements were larger than apparent radiographic displacement measurements, with differences from 1.6 to 6.0 mm, suggesting that the current clinical methods may not be sensitive enough to detect a displacement of 2.0 mm, especially when positioning the upper extremity for an internal oblique lateral radiograph.

  11. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.

    PubMed

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang

    2015-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.

  12. An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain

    PubMed Central

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang

    2014-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398

  13. Competitive-type displacement reaction for direct potentiometric detection of low-abundance protein.

    PubMed

    Zhang, Bing; Liu, Bingqian; Chen, Guonan; Tang, Dianping

    2014-03-15

    Prostate-specific antigen (PSA), one of the indications of possible prostate malignancy, is used as a biomarker for the diagnosis and prognosis of prostate cancer. Herein, we develop a new homogeneous potentiometric immunoassay for sensitive detection of low-concentration PSA without the need of sample separation and washing step. Two nanostructures including positively charged polyethyleneimine-poly(styrene-co-acrylic acid) (PEI-PSAA) nanospheres and negatively charged gold nanoparticles conjugated with anti-PSA antibody (Ab-AuNP) were first synthesized by using mulsifier-free emulsion copolymerization and wet chemistry method, respectively. Thereafter, the as-prepared PEI-PSAA was used as a pseudo hapten for the construction of immunosensing probe based on an electrostatic interaction between PEI-PSAA and Ab-AuNP. Upon target introduction, the added PSA competed with PEI-PASS for Ab-AuNP based on a specific antigen-antibody interaction, and displaced Ab-AuNP from PEI-PASS. The dissociated PEI-PASS was captured through the negatively charged Nafion- modified electrode, thereby resulting in the change of membrane potential. The fabrication process was characterized by using high-resolution transmission electron microscope (HRTEM), scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX), surface plasmon resonance (SPR) and dynamic laser scattering (DLS) technique. Under optimal conditions, the output signal was indirectly proportional to the concentration of target PSA in the sample and exhibited a dynamic range from 0.1 to 50 ng/mL with a detection limit (LOD) of 0.04 ng/mL. Intra- and inter-assay coefficients of variation (CVs) were 6.8 and 7.5%, respectively. In addition, the methodology was evaluated for analysis of 12 clinical serum samples and showed good accordance between the results obtained by the developed immunosensing protocol and a commercialized enzyme-linked immunosorbent assay (ELISA) method. © 2013 Published by Elsevier B.V.

  14. A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs.

    PubMed

    Chen, Yuqi; Song, Yanyan; Wu, Fan; Liu, Wenting; Fu, Boshi; Feng, Bingkun; Zhou, Xiang

    2015-04-25

    A conveniently amplified DNA AND logic gate platform was designed for the highly sensitive detection of low-abundance DNA fragment inputs based on strand displacement reaction and rolling circle amplification strategy. Compared with others, this system can detect miRNAs in biological samples. The success of this strategy demonstrates the potential of DNA logic gates in disease diagnosis.

  15. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe.

    PubMed

    La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo

    2016-01-01

    A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN(-)) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu(2+) and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu(2+) complex can act as an effective OFF-ON type fluorescent probe for sensing CN(-) anion. Due to the strong binding affinity of CN(-) to Cu(2+), CN(-) can extract Cu(2+) from C-GGH-Cu(2+) complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu(2+) allowed detection of CN(-) in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN(-) in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN(-) towards other anions, including F(-), Cl(-), Br(-), I(-), SCN(-), PO4 (3-), N3 (-), NO3 (-), AcO(-), SO4 (2-), and CO3 (2-).

  16. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe

    PubMed Central

    La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo

    2016-01-01

    A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN−) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN− in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO4 3−, N3 −, NO3 −, AcO−, SO4 2−, and CO3 2−. PMID:26881185

  17. [Displaced women's opinion of the impact of forced displacement on their health].

    PubMed

    Mogollón Pérez, Amparo Susana; Vázquez Navarrete, María Luisa

    2006-01-01

    To analyze the adaptation process of women internally displaced to the city and the relationship between displacement and their self-perceived main health problems. A qualitative, exploratory, descriptive study was carried out by means of semi-structured individual interviews with a maximum variation sample of 25 internally displaced women. A narrative content analysis was conducted with mixed generation of categories and data segmentation by age and themes. The area under study consisted of five localities in the city of Bogotá (Colombia). According to the interviewed women's discourses, their adaptation to city life depended on the new socioeconomic and environmental conditions and the psychosocial impact of displacement on the family. Precarious economic conditions forced them to live in an unhealthy environment and, occasionally, to adopt the role of head of household. In this role, many of these women, particularly young women, faced great difficulties in ensuring that the family's needs were met. Young women and teenagers reported behavioral changes due to displacement, including reproduction of violence in the home. The main self-perceived health problems among displaced women were mental health, access to food, infections and gynecological alterations. Displaced women identified the main factors hindering their access to health services as their economic situation and home responsibilities. Displaced women face new environmental and family challenges that negatively affect their health and access to healthcare. Specific interventions aimed at displaced women are required to foster better health through access to work and long -term socioeconomic stability.

  18. Multiple Cross Displacement Amplification Combined with Gold Nanoparticle-Based Lateral Flow Biosensor for Detection of Vibrio parahaemolyticus

    PubMed Central

    Wang, Yi; Li, Hui; Li, Dongxun; Li, Kewei; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2016-01-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is a marine seafood-borne pathogen causing severe illnesses in humans and aquatic animals. In the present study, multiple cross displacement amplification was combined with a lateral flow biosensor (MCDA-LFB) to detect the toxR gene of V. parahaemolyticus in DNA extracts from pure cultures and spiked oyster homogenates. Amplification was carried out at a constant temperature (62°C) for only 30 min, and amplification products were directly applied to the biosensor. The entire process, including oyster homogenate processing (30 min), isothermal amplification (30 min) and results indicating (∼2 min), could be completed within 65 min. Amplification product was detectable from as little as 10 fg of pure V. parahaemolyticus DNA and from approximately 4.2 × 102 CFU in 1 mL of oyster homogenate. No cross-reaction with other Vibrio species and with non-Vibrio species was observed. Therefore, the MCDA-LFB method established in the current report is suitable for the rapid screening of V. parahaemolyticus in clinical, food, and environmental samples. PMID:28066368

  19. High-Resolution Displacement Sensor Using a SQUID Array Amplifier

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Penanen, Konstantin; Barmatz, M.; Paik, Ho Jung

    2004-01-01

    Improvement in the measurement of displacement has profound implications for both exploration technologies and fundamental physics. For planetary exploration, the new SQUID-based capacitive displacement sensor will enable a more sensitive gravity gradiometer for mapping the interior of planets and moons. A new concept of a superfluid clock to be reported by Penanen and Chui at this workshop is also based on a high-resolution displacement sensor. Examples of high-impact physics projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated "axion" particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.

  20. Exploration of the psychophysics of a motion displacement hyperacuity stimulus.

    PubMed

    Verdon-Roe, Gay Mary; Westcott, Mark C; Viswanathan, Ananth C; Fitzke, Frederick W; Garway-Heath, David F

    2006-11-01

    To explore the summation properties of a motion-displacement hyperacuity stimulus with respect to stimulus area and luminance, with the goal of applying the results to the development of a motion-displacement test (MDT) for the detection of early glaucoma. A computer-generated line stimulus was presented with displacements randomized between 0 and 40 minutes of arc (min arc). Displacement thresholds (50% seen) were compared for stimuli of equal area but different edge length (orthogonal to the direction of motion) at four retinal locations. Also, MDT thresholds were recorded at five values of Michelson contrast (25%-84%) for each of five line lengths (11-128 min arc) at a single nasal location (-27,3). Frequency-of-seeing (FOS) curves were generated and displacement thresholds and interquartile ranges (IQR, 25%-75% seen) determined by probit analysis. Equivalent displacement thresholds were found for stimuli of equal area but half the edge length. Elevations of thresholds and IQR were demonstrated as line length and contrast were reduced. Equivalent displacement thresholds were also found for stimuli of equivalent energy (stimulus area x [stimulus luminance - background luminance]), in accordance with Ricco's law. There was a linear relationship (slope -0.5) between log MDT threshold and log stimulus energy. Stimulus area, rather than edge length, determined displacement thresholds within the experimental conditions tested. MDT thresholds are linearly related to the square root of the total energy of the stimulus. A new law, the threshold energy-displacement (TED) law, is proposed to apply to MDT summation properties, giving the relationship T = K logE where, T is the MDT threshold, Kis the constant, and E is the stimulus energy.

  1. Measuring vulnerability to disaster displacement

    NASA Astrophysics Data System (ADS)

    Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann

    2015-04-01

    Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We

  2. Triplex DNA formation-mediated strand displacement reaction for highly sensitive fluorescent detection of melamine.

    PubMed

    Liu, Xiaojuan; Xu, Ningning; Gai, Panpan; Li, Feng

    2018-08-01

    Since melamine is a strong hazard to human health, the development of new methods for highly sensitive detection of melamine is highly desirable. Herein, a novel fluorescent biosensing strategy was designed for sensitive and selective melamine assay based on the recognition ability of abasic (AP) site in triplex towards melamine and signal amplification by Mg 2+ -dependent DNAzyme. In this strategy, the melamine-induced formation of triplex DNA was employed to trigger the strand displacement reaction (SDR). The SDR process converted the specific target recognition into the release and activation of Mg 2+ -dependent DNAzyme, which could catalyze the cleavage of fluorophore/quencher labeled DNA substrate (FQ), resulting in a significantly increased fluorescent signal. Under the optimal conditions, the fluorescent signal has a linear relationship with the logarithm of the melamine concentration in a wide range of 0.005-50 μM. The detection limit was estimated to be 0.9 nM (0.1ppb), which is sufficiently sensitive for practical application. Furthermore, this strategy exhibits high selectivity against other potential interfering substances, and the practical application of this strategy for milk samples reveals that the proposed strategy works well for melamine assay in real samples. Therefore, this strategy presents a new method for the sensitive melamine assay and holds great promise for sensing applications in the environment and the food safety field. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Detection of lead(II) ions with a DNAzyme and isothermal strand displacement signal amplification.

    PubMed

    Li, Wenying; Yang, Yue; Chen, Jian; Zhang, Qingfeng; Wang, Yan; Wang, Fangyuan; Yu, Cong

    2014-03-15

    A DNAzyme based method for the sensitive and selective quantification of lead(II) ions has been developed. A DNAzyme that requires Pb(2+) for activation was selected. An RNA containing DNA substrate was cleaved by the DNAzyme in the presence of Pb(2+). The 2',3'-cyclic phosphate of the cleaved 5'-part of the substrate was efficiently removed by Exonuclease III. The remaining part of the single stranded DNA (9 or 13 base long) was subsequently used as the primer for the strand displacement amplification reaction (SDAR). The method is highly sensitive, 200 pM lead(II) could be easily detected. A number of interference ions were tested, and the sensor showed good selectivity. Underground water samples were also tested, which demonstrated the feasibility of the current approach for real sample applications. It is feasible that our method could be used for DNAzyme or aptazyme based new sensing method developments for the quantification of other target analytes with high sensitivity and selectivity. © 2013 Elsevier B.V. All rights reserved.

  4. Using a 2D displacement sensor to derive 3D displacement information

    NASA Technical Reports Server (NTRS)

    Soares, Schubert F. (Inventor)

    2002-01-01

    A 2D displacement sensor is used to measure displacement in three dimensions. For example, the sensor can be used in conjunction with a pulse-modulated or frequency-modulated laser beam to measure displacement caused by deformation of an antenna on which the sensor is mounted.

  5. A finite element model of remote palpation of breast lesions using radiation force: factors affecting tissue displacement.

    PubMed

    Nightingale, K R; Nightingale, R W; Palmeri, M L; Trahey, G E

    2000-01-01

    The early detection of breast cancer reduces patient mortality. The most common method of breast cancer detection is palpation. However, lesions that lie deep within the breast are difficult to palpate when they are small. Thus, a method of remote palpation, which may allow the detection of small lesions lying deep within the breast, is currently under investigation. In this method, acoustic radiation force is used to apply localized forces within tissue (to tissue volumes on the order of 2 mm3) and the resulting tissue displacements are mapped using ultrasonic correlation based methods. A volume of tissue that is stiffer than the surrounding medium (i.e., a lesion) distributes the force throughout the tissue beneath it, resulting in larger regions of displacement, and smaller maximum displacements. The resulting displacement maps may be used to image tissue stiffness. A finite-element-model (FEM) of acoustic remote palpation is presented in this paper. Using this model, a parametric analysis of the affect of varying tissue and acoustic beam characteristics on radiation force induced tissue displacements is performed. The results are used to evaluate the potential of acoustic remote palpation to provide useful diagnostic information in a clinical setting. The potential for using a single diagnostic transducer to both generate radiation force and track the resulting displacements is investigated.

  6. Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires

    NASA Astrophysics Data System (ADS)

    Asiry, Moshabab A.; AlShahrani, Ibrahim; Almoammar, Salem; Durgesh, Bangalore H.; Kheraif, Abdulaziz A. Al; Hashem, Mohamed I.

    2018-02-01

    Aim. To investigate the effect of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires Methods. Three different coated (Epoxy, polytetrafluoroethylene (PTFE) and rhodium) and one uncoated Ni-Ti archwires were evaluated in the present study. Surface roughness (Ra) was assessed using a non-contact surface profilometer. The mechanical properties (nano-hardness and elastic modulus) were measured using a nanoindenter. Bacterial adhesion assays were performed using Streptococcus mutans (MS) and streptococcus sobrinus (SS) in an in-vitro set up. The data obtained were analyzed using analyses of variance, Tukey’s post hoc test and Pearson’s correlation coefficient test. Result. The highest Ra values (1.29 ± 0.49) were obtained for epoxy coated wires and lowest Ra values (0.29 ± 0.16) were obtained for the uncoated wires. No significant differences in the Ra values were observed between the rhodium coated and uncoated archwires (P > 0.05). The highest nano-hardness (3.72 ± 0.24) and elastic modulus values (61.15 ± 2.59) were obtained for uncoated archwires and the lowest nano-hardness (0.18 ± 0.10) and elastic modulus values (4.84 ± 0.65) were observed for epoxy coated archwires. No significant differences in nano-hardness and elastic modulus values were observed between the coated archwires (P > 0.05). The adhesion of Streptococcus mutans (MS) to the wires was significantly greater than that of streptococcus sobrinus (SS). The epoxy coated wires demonstrated an increased adhesion of MS and SS and the uncoated wires demonstrated decreased biofilm adhesion. The Spearman correlation test showed that MS and SS adhesion was positively correlated with the surface roughness of the wires. Conclusion. The different surface coatings significantly influence the roughness, nano-mechanical properties and biofilm adhesion parameters of the archwires. The

  7. On the reach of perturbative descriptions for dark matter displacement fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel, E-mail: baldauf@ias.edu, E-mail: eschaan@astro.princeton.edu, E-mail: matiasz@ias.edu

    We study Lagrangian Perturbation Theory (LPT) and its regularization in the Effective Field Theory (EFT) approach. We evaluate the LPT displacement with the same phases as a corresponding N-body simulation, which allows us to compare perturbation theory to the non-linear simulation with significantly reduced cosmic variance, and provides a more stringent test than simply comparing power spectra. We reliably detect a non-vanishing leading order EFT coefficient and a stochastic displacement term, uncorrelated with the LPT terms. This stochastic term is expected in the EFT framework, and, to the best of our understanding, is not an artifact of numerical errors ormore » transients in our simulations. This term constitutes a limit to the accuracy of perturbative descriptions of the displacement field and its phases, corresponding to a 1% error on the non-linear power spectrum at k = 0.2 h{sup −1}Mpc at z = 0. Predicting the displacement power spectrum to higher accuracy or larger wavenumbers thus requires a model for the stochastic displacement.« less

  8. Low-cost and highly sensitive immunosensing platform for aflatoxins using one-step competitive displacement reaction mode and portable glucometer-based detection.

    PubMed

    Tang, Dianping; Lin, Youxiu; Zhou, Qian; Lin, Yuping; Li, Peiwu; Niessner, Reinhard; Knopp, Dietmar

    2014-11-18

    Aflatoxins are highly toxic secondary metabolites produced by a number of different fungi and present in a wide range of food and feed commodities. Herein, we designed a simple and low-cost immunosensing platform for highly sensitive detection of mycotoxins (aflatoxin B1, AFB1, used as a model) on polyethylenimine (PEI)-coated mesoporous silica nanocontainers (PEI-MSN). The assay was carried out by using a portable personal glucometer (PGM) as the readout based on a competitive displacement reaction mode between target AFB1 and its pseudo-hapten (PEI-MSN) for monoclonal anti-AFB1 antibody (mAb). To construct such an assay protocol, two nanostructures including mAb-labeled gold nanoparticle (mAb-AuNP) and PEI-MSN were initially synthesized, and then numerous glucose molecules were gated into the pores based on the interaction between negatively charged mAb-AuNP and positively charged PEI-MSN. In the presence of target AFB1, a competitive-type displacement reaction was implemented between mAb-AuNP and PEI-MSN by target AFB1 through the specific antigen-antibody reaction. Accompanying the reaction, target AFB1 could displace the mAb-AuNP from the surface of PEI-MSN, resulting in the release of the loading glucose from the pores due to the gate opened. The released glucose molecules could be quantitatively determined by using a portable PGM. Under optimal conditions, the PGM signal increased with the increment of AFB1 concentration in the range from 0.01 to 15 μg/kg (ppb) with a detection limit (LOD) of 5 ng/kg (5 ppt) at the 3sblank criterion. The selectivity and precision were acceptable. Importantly, the methodology was further validated for assaying naturally contaminated or spiked blank peanut samples, and consistent results between the PGM-based immunoassay and the referenced enzyme-linked immunosorbent assay (ELISA) were obtained. Therefore, the developed immunoassay provides a promising approach for rapid screening of organic pollutants because it is simple

  9. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein.

    PubMed

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-11-30

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson's disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young's modulus).

  10. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein

    PubMed Central

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-01-01

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus). PMID:27901068

  11. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein

    NASA Astrophysics Data System (ADS)

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-11-01

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus).

  12. Estimation of physiological sub-millimeter displacement with CW Doppler radar.

    PubMed

    Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga

    2015-01-01

    Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.

  13. Contactless sub-millimeter displacement measurements

    NASA Astrophysics Data System (ADS)

    Sliepen, Guus; Jägers, Aswin P. L.; Bettonvil, Felix C. M.; Hammerschlag, Robert H.

    2008-07-01

    Weather effects on foldable domes, as used at the DOT and GREGOR, are investigated, in particular the correlation between the wind field and the stresses caused to both metal framework and tent clothing. Camera systems measure contactless the displacement of several dome points. The stresses follow from the measured deformation pattern. The cameras placed near the dome floor do not disturb telescope operations. In the set-ups of DOT and GREGOR, these cameras are up to 8 meters away from the measured points and must be able to detect displacements of less than 0.1 mm. The cameras have a FireWire (IEEE1394) interface to eliminate the need for frame grabbers. Each camera captures 15 images of 640 × 480 pixels per second. All data is processed on-site in real-time. In order to get the best estimate for the displacement within the constraints of available processing power, all image processing is done in Fourier-space, with all convolution operations being pre-computed once. A sub-pixel estimate of the peak of the correlation function is made. This enables to process the images of four cameras using only one commodity PC with a dual-core processor, and achieve an effective sensitivity of up to 0.01 mm. The deformation measurements are well correlated to the simultaneous wind measurements. The results are of high interest to upscaling the dome design (ELTs and solar telescopes).

  14. Isothermal strand-displacement polymerase reaction for visual detection of the Southeast Asian-type deletion of α-thalassemia.

    PubMed

    Yu, Luxin; Wu, Wei; Lie, Puchang; Liu, Yunhua; Zeng, Lingwen

    2013-11-01

    A rapid and reliable screening test for thalassemia carrier couples is the most effective strategy to decrease the risk of conceiving fetuses with severe thalassemia. We present an approach based on the isothermal strand-displacement polymerase reaction and the use of a lateral flow strip for the visual detection of an α-thalassemia Southeast Asian-type deletion. This assay was used to evaluate 86 clinical samples (72 cases of Southeast Asian-type deletions and 14 cases of other types of thalassemia), and the results obtained were 100% consistent with those obtained using conventional gap-PCR. The approach thus provides a simple, sensitive, rapid, and cost-effective method for the diagnosis of thalassemia genotypes. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. Geometrical analysis of an optical fiber bundle displacement sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Atsushi; Tanaka, Kohichi

    1996-12-01

    The performance of a multifiber optical lever was geometrically analyzed by extending the Cook and Hamm model [Appl. Opt. 34, 5854-5860 (1995)] for a basic seven-fiber optical lever. The generalized relationships between sensitivity and the displacement detection limit to the fiber core radius, illumination irradiance, and coupling angle were obtained by analyses of three various types of light source, i.e., a parallel beam light source, an infinite plane light source, and a point light source. The analysis of the point light source was confirmed by a measurement that used the light source of a light-emitting diode. The sensitivity of the fiber-optic lever is inversely proportional to the fiber core radius, whereas the receiving light power is proportional to the number of illuminating and receiving fibers. Thus, the bundling of the finer fiber with the larger number of illuminating and receiving fibers is more effective for improving sensitivity and the displacement detection limit.

  16. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    PubMed

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  17. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    PubMed

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  18. Nanoscale displacement sensing using microfabricated variable-inductance planar coils

    NASA Astrophysics Data System (ADS)

    Coskun, M. Bulut; Thotahewa, Kasun; Ying, York-Sing; Yuce, Mehmet; Neild, Adrian; Alan, Tuncay

    2013-09-01

    Microfabricated spiral inductors were employed for nanoscale displacement detection, suitable for use in implantable pressure sensor applications. We developed a variable inductor sensor consisting of two coaxially positioned planar coils connected in series to a measurement circuit. The devices were characterized by varying the air gap between the coils hence changing the inductance, while a Colpitts oscillator readout was used to obtain corresponding frequencies. Our approach shows significant advantages over existing methodologies combining a displacement resolution of 17 nm and low hysteresis (0.15%) in a 1 × 1 mm2 device. We show that resolution could be further improved by shrinking the device's lateral dimensions.

  19. Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification.

    PubMed

    Ge, Jia; Bai, Dong-Mei; -Geng, Xin; Hu, Ya-Lei; Cai, Qi-Yong; Xing, Ke; Zhang, Lin; Li, Zhao-Hui

    2018-01-10

    The authors describe a fluorometric method for the quantitation of nucleic acids by combining (a) cycled strand displacement amplification, (b) the unique features of the DNA probe SYBR Green, and (c) polydopamine nanotubes. SYBR Green undergoes strong fluorescence enhancement upon intercalation into double-stranded DNA (dsDNA). The polydopamine nanotubes selectively adsorb single-stranded DNA (ssDNA) and molecular beacons. In the absence of target DNA, the molecular beacon, primer and SYBR Green are adsorbed on the surface of polydopamine nanotubes. This results in quenching of the fluorescence of SYBR Green, typically measured at excitation/emission wavelengths of 488/518 nm. Upon addition of analyte (target DNA) and polymerase, the stem of the molecular beacon is opened so that it can bind to the primer. This triggers target strand displacement polymerization, during which dsDNA is synthesized. The hybridized target is then displaced due to the strand displacement activity of the polymerase. The displaced target hybridizes with another molecular beacon. This triggers the next round of polymerization. Consequently, a large amount of dsDNA is formed which is detected by addition of SYBR Green. Thus, sensitive and selective fluorometric detection is realized. The fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 0.05 to 25 nM with a low limit of detection of 20 pM. Graphical abstract Schematic of a fluorometric strategy for highly sensitive and selective determination of nucleic acids by combining strand displacement amplification and the unique features of SYBR Green I (SG) and polydopamine nanotubes.

  20. Measuring relative-story displacement and local inclination angle using multiple position-sensitive detectors.

    PubMed

    Matsuya, Iwao; Katamura, Ryuta; Sato, Maya; Iba, Miroku; Kondo, Hideaki; Kanekawa, Kiyoshi; Takahashi, Motoichi; Hatada, Tomohiko; Nitta, Yoshihiro; Tanii, Takashi; Shoji, Shuichi; Nishitani, Akira; Ohdomari, Iwao

    2010-01-01

    We propose a novel sensor system for monitoring the structural health of a building. The system optically measures the relative-story displacement during earthquakes for detecting any deformations of building elements. The sensor unit is composed of three position sensitive detectors (PSDs) and lenses capable of measuring the relative-story displacement precisely, even if the PSD unit was inclined in response to the seismic vibration. For verification, laboratory tests were carried out using an Xθ-stage and a shaking table. The static experiment verified that the sensor could measure the local inclination angle as well as the lateral displacement. The dynamic experiment revealed that the accuracy of the sensor was 150 μm in the relative-displacement measurement and 100 μrad in the inclination angle measurement. These results indicate that the proposed sensor system has sufficient accuracy for the measurement of relative-story displacement in response to the seismic vibration.

  1. Adapting to variable prismatic displacement

    NASA Technical Reports Server (NTRS)

    Welch, Robert B.; Cohen, Malcolm M.

    1989-01-01

    In each of two studies, subjects were exposed to a continuously changing prismatic displacement with a mean value of 19 prism diopters (variable displacement) and to a fixed 19-diopter displacement (fixed displacement). In Experiment 1, significant adaptation (post-pre shifts in hand-eye coordination) was found for fixed, but not for variable, displacement. Experiment 2 demonstrated that adaptation was obtained for variable displacement, but it was very fragile and is lost if the measures of adaptation are preceded by even a very brief exposure of the hand to normal or near-normal vision. Contrary to the results of some previous studies, an increase in within-S dispersion was not found of target pointing responses as a result of exposure to variable displacement.

  2. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  3. Ultrasensitive electrochemical DNA detection based on dual amplification of circular strand-displacement polymerase reaction and hybridization chain reaction.

    PubMed

    Wang, Cui; Zhou, Hui; Zhu, Wenping; Li, Hongbo; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2013-09-15

    We developed a novel electrochemical strategy for ultrasensitive DNA detection using a dual amplification strategy based on the circular strand-displacement polymerase reaction (CSDPR) and the hybridization chain reaction (HCR). In this assay, hybridization of hairpin-shaped capture DNA to target DNA resulted in a conformational change of the capture DNA with a concomitant exposure of its stem. The primer was then hybridized with the exposed stem and triggered a polymerization reaction, allowing a cyclic reaction comprising release of target DNA, hybridization of target with remaining capture DNA, polymerization initiated by the primer. Furthermore, the free part of the primer propagated a chain reaction of hybridization events between two DNA hairpin probes with biotin labels, enabling an electrochemical reading using the streptavidin-alkaline phosphatase. The proposed biosensor showed to have very high sensitivity and selectivity with a dynamic response range through 10fM to 1nM, and the detect limit was as low as 8fM. The proposed strategy could have the potential for molecular diagnostics in complex biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The displaced aggression questionnaire.

    PubMed

    Denson, Thomas F; Pedersen, William C; Miller, Norman

    2006-06-01

    Previous measures of aggressive personality have focused on direct aggression (i.e., retaliation toward the provoking agent). An original self-report measure of trait displaced aggression is presented. Exploratory and confirmatory factor analyses provided support for a 3-factor conceptualization of the construct. These analyses identified an affective dimension (angry rumination), a cognitive dimension (revenge planning), and a behavioral dimension (general tendency to engage in displaced aggression). The trait measure demonstrated good internal consistency and test-retest reliability as well as convergent and discriminant construct validity. Unlike other related personality measures, trait displaced aggression significantly predicted indirect indicators of real-world displaced aggression (i.e., self-reported domestic abuse and road rage) as well as laboratory displaced aggression in 2 experiments. Copyright 2006 APA, all rights reserved.

  5. Displaced femoral neck fatigue fractures in military recruits.

    PubMed

    Pihlajamäki, Harri K; Ruohola, Juha-Petri; Kiuru, Martti J; Visuri, Tuomo I

    2006-09-01

    Displaced fatigue fractures of the femoral neck are uncommon, but they can lead to substantial patient morbidity. This study was performed to examine the incidence, long-term consequences, radiographic findings, risk factors, and complications associated with this fracture. Between 1975 and 1994, twenty-one military recruits sustained a displaced fatigue fracture of the femoral neck. Nineteen patients were followed for an average of eighteen years. Data regarding the population at risk, hospital records, initial and follow-up radiographs, and physical findings were analyzed. The impact of instructions from the Finnish Defense Forces, Department of Medical Services, provided in 1986 for prevention of femoral neck fatigue fractures was assessed. At our institution, the incidence of displaced fatigue fractures of the femoral neck was 5.3/100,000 service years from 1975 to 1986, prior to the introduction of the prevention regimen in 1986, and it was 2.3/100,000 service years (95% confidence interval, 0.11 to 1.31) from 1987 to 1994. The rate of Garden type-IV fractures decreased from 3.8 to 0/100,000 service years (95% confidence interval, 0 to 0.66) between the first and second time-periods. The detection of nondisplaced symptomatic fatigue fractures of the femoral neck increased from 15.5 to 53.2/100,000 service years (95% confidence interval, 2.27 to 5.21) between the two time-periods. Eighteen of the nineteen patients had had prodromal symptoms prior to the fracture displacement. Following fracture treatment, six patients had delayed union or nonunion of the fracture. Osteonecrosis of the femoral head developed in six patients and was significantly associated (p = 0.001) with shortening of the femoral neck. Severe osteoarthritis developed in eight patients. A displaced fatigue fracture of the femoral neck leads to long-term morbidity in a high percentage of patients. Most patients have prodromal symptoms, which provide an opportunity to prevent fracture

  6. Computational Nanomechanics of Carbon Nanotubes and Composites

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  7. 20 CFR 627.230 - Displacement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Displacement. 627.230 Section 627.230... PROGRAMS UNDER TITLES I, II, AND III OF THE ACT Program Requirements § 627.230 Displacement. (a) No currently employed worker shall be displaced by any participant (including partial displacement such as a...

  8. 20 CFR 627.230 - Displacement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Displacement. 627.230 Section 627.230... PROGRAMS UNDER TITLES I, II, AND III OF THE ACT Program Requirements § 627.230 Displacement. (a) No currently employed worker shall be displaced by any participant (including partial displacement such as a...

  9. 20 CFR 627.230 - Displacement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Displacement. 627.230 Section 627.230... PROGRAMS UNDER TITLES I, II, AND III OF THE ACT Program Requirements § 627.230 Displacement. (a) No currently employed worker shall be displaced by any participant (including partial displacement such as a...

  10. Nonclassicality of Photon-Added Displaced Thermal State via Quantum Phase-Space Distributions

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Meng, Xiang-Guo; Du, Chuan-Xun; Wang, Ji-Suo

    2018-02-01

    We introduce a new kind of nonclassical mixed state generated by adding arbitrary photons to a displaced thermal state, i.e., the photon-added displaced thermal state (PADTS), and obtain the normalization factor, which is simply related to two-variable Hermite polynomials. We also discuss the nonclassicality of the PADTS by considering quantum phase-space distributions. The results indicate that the value of the photon count statistics is maximum when the number of detected photons is equal to the number of added photons, and that the photon-added operation has a similar modulation effect with increasing displacement. Moreover, the negative volume of the Wigner function for the PADTS takes a maximal value for a specific photon-added number.

  11. Internal displacement in Burma.

    PubMed

    Lanjouw, S; Mortimer, G; Bamforth, V

    2000-09-01

    The internal displacement of populations in Burma is not a new phenomenon. Displacement is caused by numerous factors. Not all of it is due to outright violence, but much is a consequence of misguided social and economic development initiatives. Efforts to consolidate the state by assimilating populations in government-controlled areas by military authorities on the one hand, while brokering cease-fires with non-state actors on the other, has uprooted civilian populations throughout the country. Very few areas in which internally displaced persons (IDPs) are found are not facing social turmoil within a climate of impunity. Humanitarian access to IDP populations remains extremely problematic. While relatively little information has been collected, assistance has been focused on targeting accessible groups. International concern within Burma has couched the problems of displacement within general development modalities, while international attention along its borders has sought to contain displacement. With the exception of several recent initiatives, few approaches have gone beyond assistance and engaged in the prevention or protection of the displaced.

  12. Nanometer-scale displacement sensing using self-mixing interferometry with a correlation-based signal processing technique

    NASA Astrophysics Data System (ADS)

    Hast, J.; Okkonen, M.; Heikkinen, H.; Krehut, L.; Myllylä, R.

    2006-06-01

    A self-mixing interferometer is proposed to measure nanometre-scale optical path length changes in the interferometer's external cavity. As light source, the developed technique uses a blue emitting GaN laser diode. An external reflector, a silicon mirror, driven by a piezo nanopositioner is used to produce an interference signal which is detected with the monitor photodiode of the laser diode. Changing the optical path length of the external cavity introduces a phase difference to the interference signal. This phase difference is detected using a signal processing algorithm based on Pearson's correlation coefficient and cubic spline interpolation techniques. The results show that the average deviation between the measured and actual displacements of the silicon mirror is 3.1 nm in the 0-110 nm displacement range. Moreover, the measured displacements follow linearly the actual displacement of the silicon mirror. Finally, the paper considers the effects produced by the temperature and current stability of the laser diode as well as dispersion effects in the external cavity of the interferometer. These reduce the sensor's measurement accuracy especially in long-term measurements.

  13. Investigations of a voltage-biased microwave cavity for quantum measurements of nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Rouxinol, Francisco; Hao, Hugo; Lahaye, Matt

    2015-03-01

    Quantum electromechanical systems incorporating superconducting qubits have received extensive interest in recent years due to their promising prospects for studying fundamental topics of quantum mechanics such as quantum measurement, entanglement and decoherence in new macroscopic limits, also for their potential as elements in technological applications in quantum information network and weak force detector, to name a few. In this presentation we will discuss ours efforts toward to devise an electromechanical circuit to strongly couple a nanomechanical resonator to a superconductor qubit, where a high voltage dc-bias is required, to study quantum behavior of a mechanical resonator. Preliminary results of our latest generation of devices integrating a superconductor qubit into a high-Q voltage biased microwave cavities are presented. Developments in the circuit design to couple a mechanical resonator to a qubit in the high-Q voltage bias CPW cavity is discussed as well prospects of achieving single-phonon measurement resolution. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  14. Parametric Oscillation, Frequency Mixing, and Injection Locking of Strongly Coupled Nanomechanical Resonator Modes.

    PubMed

    Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M

    2017-06-23

    We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.

  15. MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Kyung

    hybridization and the conventional mode for cocaine detection, the lowest detectable concentration was determined by binding activity between the ligand and receptor molecules. In order to overcome this limitation for cocaine detection, a novel competition sensing mode that relies on rate of aptamers unbinding from the cantilever due to either diffusion or reaction with cocaine as target ligands in solution was investigated. The rate of unbinding is found to be dependent on the concentration of cocaine molecules. A model based on diffusion-reaction equation was developed to explain the experimental observation. Experimental results indicate that the competition mode reduces the lowest detectable threshold to 200 nM which is comparable to that achieved analytical techniques such as mass spectrometry.« less

  16. Detection of gas atoms with carbon nanotubes

    PubMed Central

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  17. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.

    PubMed

    Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J

    2015-11-18

    The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Highly Selective and Strong Anti-Interference Host-Guest Complex as Fluorescent Probe for Detection of Amantadine by Indicator Displacement Assay.

    PubMed

    Zhu, Linzhao; Zhao, Zhiyong; Zhang, Xiongzhi; Zhang, Haijun; Liang, Feng; Liu, Simin

    2018-04-18

    Amantadine (AMA) and its derivatives are illicit veterinary drugs that are hard to detect at very low concentrations. Developing a fast, simple and highly sensitive method for the detection of AMA is highly in demand. Here, we designed an anthracyclic compound (ABAM) that binds to a cucurbit[7]uril (CB[7]) host with a high association constant of up to 8.7 × 10⁸ M −1 . The host-guest complex was then used as a fluorescent probe for the detection of AMA. Competition by AMA for occupying the cavity of CB[7] allows ABAM to release from the CB[7]-ABAM complex, causing significant fluorescence quenching of ABAM (indicator displacement assay, IDA). The linear range of the method is from 0.000188 to 0.375 μg/mL, and the detection limit can be as low as 6.5 × 10 −5 μg/mL (0.35 nM). Most importantly, due to the high binding affinity between CB[7] and ABAM, this fluorescence host-guest system shows great anti-interference capacity. Thus, we are able to accurately determine the concentration of AMA in various samples, including pharmaceutical formulations.

  19. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing

    NASA Astrophysics Data System (ADS)

    Pontin, A.; Lang, J. E.; Chowdhury, A.; Vezio, P.; Marino, F.; Morana, B.; Serra, E.; Marin, F.; Monteiro, T. S.

    2018-01-01

    The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

  20. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing.

    PubMed

    Pontin, A; Lang, J E; Chowdhury, A; Vezio, P; Marino, F; Morana, B; Serra, E; Marin, F; Monteiro, T S

    2018-01-12

    The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

  1. A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand-displacement-driven assembly of G-quadruplex DNA.

    PubMed

    Zhang, Peng; Liu, Hui; Ma, Suzhen; Men, Shuai; Li, Qingzhou; Yang, Xin; Wang, Hongning; Zhang, Anyun

    2016-06-15

    The harm of Salmonella enteritidis (S. enteritidis ) to public health mainly by contaminating fresh food and water emphasizes the urgent need for rapid detection techniques to help control the spread of the pathogen. In this assay, an newly designed capture probe complex that contained specific S. enteritidis-aptamer and hybridized signal target sequence was used for viable S. enteritidis recognition directly. In the presence of the target S. enteritidis, single-stranded target sequences were liberated and initiated the replication-cleavage reaction, producing numerous G-quadruplex structures with a linker on the 3'-end. And then, the sensing system took innovative advantage of quadratic linker-induced strand-displacement for the first time to release target sequence in succession, leading to the cyclic reuse of the target sequences and cascade signal amplification, thereby achieving the successive production of G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binded to these G-quadruplex structures and generated significantly enhanced fluorescent signals to achieve highly sensitive detection of S. enteritidis down to 60 CFU/mL with a linear range from 10(2) to 10(7)CFU/mL. By coupling the cascade two-stage target sequences-recyclable toehold strand-displacement with aptamer-based target recognition successfully, it is the first report on a novel non-label, modification-free and DNA extraction-free ultrasensitive fluorescence biosensor for detecting viable S. enteritidis directly, which can discriminate from dead S. enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Detecting tents to estimate the displaced populations for post-disaster relief using high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Wang, Shifeng; So, Emily; Smith, Pete

    2015-04-01

    Estimating the number of refugees and internally displaced persons is important for planning and managing an efficient relief operation following disasters and conflicts. Accurate estimates of refugee numbers can be inferred from the number of tents. Extracting tents from high-resolution satellite imagery has recently been suggested. However, it is still a significant challenge to extract tents automatically and reliably from remote sensing imagery. This paper describes a novel automated method, which is based on mathematical morphology, to generate a camp map to estimate the refugee numbers by counting tents on the camp map. The method is especially useful in detecting objects with a clear shape, size, and significant spectral contrast with their surroundings. Results for two study sites with different satellite sensors and different spatial resolutions demonstrate that the method achieves good performance in detecting tents. The overall accuracy can be up to 81% in this study. Further improvements should be possible if over-identified isolated single pixel objects can be filtered. The performance of the method is impacted by spectral characteristics of satellite sensors and image scenes, such as the extent of area of interest and the spatial arrangement of tents. It is expected that the image scene would have a much higher influence on the performance of the method than the sensor characteristics.

  3. Is competition needed for ecological character displacement? Does displacement decrease competition?

    PubMed Central

    Abrams, Peter A.; Cortez, Michael H.

    2015-01-01

    Interspecific competition for resources is generally considered to be the selective force driving ecological character displacement, and displacement is assumed to reduce competition. Skeptics of the prevalence of character displacement often cite lack of evidence of competition. The present article uses a simple model to examine whether competition is needed for character displacement and whether displacement reduces competition. It treats systems with competing resources, and considers cases when only one consumer evolves. It quantifies competition using several different measures. The analysis shows that selection for divergence of consumers occurs regardless of the level of between‐resource competition or whether the indirect interaction between the consumers is competition (−,−), mutualism (+,+), or contramensalism (+,−). Also, divergent evolution always decreases the equilibrium population size of the evolving consumer. Whether divergence of one consumer reduces or increases the impact of a subsequent perturbation of the other consumer depends on the parameters and the method chosen for measuring competition. Divergence in mutualistic interactions may reduce beneficial effects of subsequent increases in the other consumer's population. The evolutionary response is driven by an increase in the relative abundance of the resource the consumer catches more rapidly. Such an increase can occur under several types of interaction. PMID:26548922

  4. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.

    PubMed

    Zhang, Li-rong; Zhu, Guichi; Zhang, Chun-yang

    2014-07-01

    MicroRNAs (miRNAs) are an emerging class of biomarkers and therapeutic targets for various diseases including cancers. Here, we develop a homogeneous and label-free method for sensitive detection of let-7a miRNA based on bifunctional strand displacement amplification (SDA)-mediated hyperbranched rolling circle amplification (HRCA). The binding of target miRNA with the linear template initiates the bifunctional SDA reaction, generating two different kinds of triggers which can hybridize with the linear template to initiate new rounds of SDA reaction for the production of more and more triggers. In the meantime, the released two different kinds of triggers can function as the first and the second primers, respectively, to initiate the HRCA reaction whose products can be simply monitored by a standard fluorometer with SYBR Green I as the fluorescent indicator. The proposed method exhibits high sensitivity with a detection limit of as low as 1.8 × 10(-13) M and a large dynamic range of 5 orders of magnitude from 0.1 pM to 10 nM, and it can even discriminate the single-base difference among the miRNA family members. Moreover, this method can be used to analyze the total RNA samples from the human lung tissues and might be further applied for sensitive detection of various proteins, small molecules, and metal ions in combination with specific aptamers.

  5. Novel infrared detector based on a tunneling displacement transducer

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Waltman, S. B.; Reynolds, J. K.

    1991-01-01

    The paper describes the design, fabrication, and characteristics of a novel infrared detector based on the principle of Golay's (1947) pneumatic infrared detector, which uses the expansion of a gas to detect infrared radiation. The present detector is constructed entirely from micromachined silicon and uses an electron tunneling displacement transducer for the detection of gas expansion. The sensitivity of the new detector is competitive with the best commercial pyroelectric sensors and can be readily improved by an order of magnitude through the use of an optimized transducer.

  6. Internal displacement in Colombia

    PubMed Central

    Shultz, James M; Ceballos, Ángela Milena Gómez; Espinel, Zelde; Oliveros, Sofia Rios; Fonseca, Maria Fernanda; Florez, Luis Jorge Hernandez

    2014-01-01

    This commentary aims to delineate the distinguishing features of conflict-induced internal displacement in the nation of Colombia, South America. Even as Colombia is currently implementing a spectrum of legal, social, economic, and health programs for “victims of armed conflict,” with particular focus on internally displaced persons (IDPs), the dynamics of forced migration on a mass scale within this country are little known beyond national borders.   The authors of this commentary are embarking on a global mental health research program in Bogota, Colombia to define best practices for reaching the displaced population and implementing sustainable, evidence-based screening and intervention for common mental disorders. Presenting the defining characteristics of internal displacement in Colombia provides the context for our work and, more importantly, conveys the compelling and complex nature of this humanitarian crisis. We attempt to demonstrate Colombia’s unique position within the global patterning of internal displacement. PMID:28228997

  7. Iraqi Population Displacement Analysis

    DTIC Science & Technology

    2016-11-01

    CENTER FOR ARMY ANALYSIS 6001 GOETHALS ROAD FORT BELVOIR, VA 22060-5230 CAA-2015098 IRAQI POPULATION DISPLACEMENT ANALYSIS NOVEMBER 2016...CONTRACT NUMBER Iraqi Population Displacement Analysis PDMC 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Ms...NOTES 14. ABSTRACT The purpose of this study was to inform CJ34 Civil Military Operations decisions on placement of internally displaced person (IDP

  8. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  9. Interplay between interstitial displacement and displacive lattice transformations

    NASA Astrophysics Data System (ADS)

    Zhang, Xie; Hickel, Tilmann; Rogal, Jutta; Neugebauer, Jörg

    2016-09-01

    Diffusionless displacive lattice rearrangements, which include martensitic transformations, are in real materials often accompanied by a displacive drag of interstitials. The interplay of both processes leads to a particular atomistic arrangement of the interstitials in the product phase, which is decisive for its performance. An archetype example is the martensitic transformation in Fe-C alloys. One of the puzzles for this system is that the deviation from the cubic symmetry (i.e., the tetragonality) in the martensite resulting from this interplay is lower than what thermodynamics dictates. In our ab initio approach, the relative motion of C in the transforming lattice is studied with the nudged elastic band method. We prove that an atomic shearlike shuffle mechanism of adjacent (11 2 ¯) Fe layers along the ±[111] bcc directions is essential to achieve a redistribution of C atoms during the fcc → bcc transition, which fully explains the abnormal behavior. Furthermore, the good agreement with experiment validates our method to treat a diffusionless redistribution of interstitials and a displacive rearrangement of the host lattice simultaneously.

  10. Visualization and characterization of the acoustic radiation force assisted displacement of particles using an OCT technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Razani, Marjan; Zam, Azhar; Arezza, Nico J. J.; Wang, Yan J.; Kolios, Michael C.

    2016-03-01

    In this study, we present a technique to image the enhanced particle displacement generated using an acoustic radiation force (ARF) excitation source. A swept-source OCT (SS-OCT) system with a center wavelength of 1310nm, a bandwidth of ~100nm, and an A-scan rate of 100 kHz (MEMS-VCSEL OCT Thorlabs) was used to detect gold nanoparticle (70nm in diameter) displacement .ARF was applied after the nanoparticles passed through a porous membrane and diffused into a collagen (6% collagen) matrix. B-mode, M-B mode, 3D and Speckle Variance (SV) images were acquired before and after the ARF beam was on. Differential OCT speckle variance images with and without the ARF were used to measure the particle displacement. The images were used to detect the microscopic enhancement of nanoparticle displacement generated by the ARF. Using this OCT imaging technique, the extravasation of particles though a porous membrane and characterization of the enhanced particle displacement in a collagen gel after using an ARF excitation was achieved.

  11. Displacement monitoring of switch track and its slab on a bridge of high speed railway by FBG

    NASA Astrophysics Data System (ADS)

    Li, Weilai; Li, He; Cheng, Jian; Huang, Xiaomei; Pan, Jianjun; Zhou, Ciming; Yang, Minghong

    2011-05-01

    In a 350km/h high speed railway line, there is a seamless switch with ballastless slabs built on a bridge. 54 Fiber Bragg Grating detecting cells are employed to monitor the displacement of track and slab. The cell is of extending function of measurement range, up to 50mm displacement, and is of good linearity. Protecting methods for cells and fiber are adopted to keep them surviving from the harsh conditions. The results show that in 75 days, the displacement of the track and sleeper slab was 8-9mm, and the displacement is of high correlation with daily environmental temperature change.

  12. High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel

    2017-04-01

    The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.

  13. Is competition needed for ecological character displacement? Does displacement decrease competition?

    PubMed

    Abrams, Peter A; Cortez, Michael H

    2015-12-01

    Interspecific competition for resources is generally considered to be the selective force driving ecological character displacement, and displacement is assumed to reduce competition. Skeptics of the prevalence of character displacement often cite lack of evidence of competition. The present article uses a simple model to examine whether competition is needed for character displacement and whether displacement reduces competition. It treats systems with competing resources, and considers cases when only one consumer evolves. It quantifies competition using several different measures. The analysis shows that selection for divergence of consumers occurs regardless of the level of between-resource competition or whether the indirect interaction between the consumers is competition (-,-), mutualism (+,+), or contramensalism (+,-). Also, divergent evolution always decreases the equilibrium population size of the evolving consumer. Whether divergence of one consumer reduces or increases the impact of a subsequent perturbation of the other consumer depends on the parameters and the method chosen for measuring competition. Divergence in mutualistic interactions may reduce beneficial effects of subsequent increases in the other consumer's population. The evolutionary response is driven by an increase in the relative abundance of the resource the consumer catches more rapidly. Such an increase can occur under several types of interaction. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  14. Kosi Floods 2008: Devastation, Displacement and Migration Experience

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Ahlawat, Monica

    2017-04-01

    The massive Kosi River floods of August 2008 caused unprecedented loss to lives, livelihoods, infrastructure and property in north-eastern Bihar. The five flood-affected districts (Araria, Madhepura, Purnia, Saharsa and Supaul) are among the poorest districts in India. In 2011, during the last national Census, the total population of the five districts was about 11 million. About 1,000 villages in these five districts were affected and nearly three million people were displaced. Displaced people had to face various kinds of problems like lack of livelihood, loss of house and property, lack of health and hygiene etc. Posts flooding, because of constrained livelihood opportunities, depressed economy, and probability of future flooding event, many families have migrated to other parts of the country. This study was done to find out how displacement as well as migration has affected their lives, how they have coped with it, and what the government response to this disaster was. Both primary as well as secondary data have been used for this study. Secondary data was collected from government offices and websites, news articles and satellite images. Satellite images were used to detect the change in course of river and how much this change in course affected the displacement pattern. For this purpose the satellite images of affected area from an earlier time period and during the floods were taken and their impact was studied. Primary data has been collected through questionnaire and field survey and has been used to understand migration experience of affected population. With the help of these data, the paper analyses the 2008 Kosi flood as a socio-ecological regime shift and explains migration as a societal response to such a shift. Keywords: Floods, Displacement, Satellite Images, Socio-Ecological Regime Shift, Migration

  15. Quantitation of Fine Displacement in Echography

    NASA Astrophysics Data System (ADS)

    Masuda, Kohji; Ishihara, Ken; Yoshii, Ken; Furukawa, Toshiyuki; Kumagai, Sadatoshi; Maeda, Hajime; Kodama, Shinzo

    1993-05-01

    A High-speed Digital Subtraction Echography was developed to visualize the fine displacement of human internal organs. This method indicates differences in position through time series images of high-frame-rate echography. Fine displacement less than ultrasonic wavelength can be observed. This method, however, lacks the ability to quantitatively measure displacement length. The subtraction between two successive images was affected by displacement direction in spite of the displacement length being the same. To solve this problem, convolution of an echogram with Gaussian distribution was used. To express displacement length as brightness quantitatively, normalization using a brightness gradient was applied. The quantitation algorithm was applied to successive B-mode images. Compared to the simply subtracted images, quantitated images express more precisely the motion of organs. Expansion of the carotid artery and fine motion of ventricular walls can be visualized more easily. Displacement length can be quantitated with wavelength. Under more static conditions, this system quantitates displacement length that is much less than wavelength.

  16. Displacement of squeezed propagating microwave states

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf

    Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.

  17. The use of a displacement device negatively affects the performance of dogs (Canis familiaris) in visible object displacement tasks.

    PubMed

    Müller, Corsin A; Riemer, Stefanie; Range, Friederike; Huber, Ludwig

    2014-08-01

    Visible and invisible displacement tasks have been used widely for comparative studies of animals' understanding of object permanence, with evidence accumulating that some species can solve invisible displacement tasks and, thus, reach Piagetian stage 6 of object permanence. In contrast, dogs appear to rely on associative cues, such as the location of the displacement device, during invisible displacement tasks. It remains unclear, however, whether dogs, and other species that failed in invisible displacement tasks, do so because of their inability to form a mental representation of the target object, or simply because of the involvement of a more salient but potentially misleading associative cue, the displacement device. Here we show that the use of a displacement device impairs the performance of dogs also in visible displacement tasks: their search accuracy was significantly lower when a visible displacement was performed with a displacement device, and only two of initially 42 dogs passed the sham-baiting control conditions. The negative influence of the displacement device in visible displacement tasks may be explained by strong associative cues overriding explicit information about the target object's location, reminiscent of an overshadowing effect, and/or object individuation errors as the target object is placed within the displacement device and moves along a spatiotemporally identical trajectory. Our data suggest that a comprehensive appraisal of a species' performance in object permanence tasks should include visible displacement tasks with the same displacement device used in invisible displacements, which typically has not been done in the past.

  18. Micro- and nano-mechanics in China: A brief review of recent progress and perspectives

    NASA Astrophysics Data System (ADS)

    Xu, ZhiPing; Zheng, QuanShui

    2018-07-01

    The past three decades have witnessed the explosion of nanoscience and technology, where notable research efforts have been made in synthesizing nanomaterials and controlling nanostructures of bulk materials. The uncovered mechanical behaviors of structures and materials with reduced sizes and dimensions pose open questions to the community of mechanicians, which expand the framework of continuum mechanics by advancing the theory, as well as modeling and experimental tools. Researchers in China have been actively involved into this exciting area, making remarkable contributions to the understanding of nanoscale mechanical processes, the development of multi-scale, multi-field modeling and experimental techniques to resolve the processing-microstructures-properties relationship of materials, and the interdisciplinary studies that broaden the subjects of mechanics. This article reviews selected progress made by this community, with the aim to clarify the key concepts, methods and applications of micro- and nano-mechanics, and to outline the perspectives in this fast-evolving field.

  19. Displacement data assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, W. Steven; Venkataramani, Shankar; Mariano, Arthur J.

    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.

  20. The use of a displacement device negatively affects the performance of dogs (Canis familiaris) in visible object displacement tasks

    PubMed Central

    Müller, Corsin A.; Riemer, Stefanie; Range, Friederike; Huber, Ludwig

    2014-01-01

    Visible and invisible displacement tasks have been used widely for comparative studies of animals’ understanding of object permanence, with evidence accumulating that some species can solve invisible displacement tasks and thus reach Piagetian stage 6 of object permanence. In contrast, dogs appear to rely on associative cues, such as the location of the displacement device, during invisible displacement tasks. It remains unclear, however, whether dogs, and other species that failed in invisible displacement tasks, do so due to their inability to form a mental representation of the target object, or simply due to the involvement of a more salient but potentially misleading associative cue, the displacement device. Here we show that the use of a displacement device impairs the performance of dogs also in visible displacement tasks: their search accuracy was significantly lower when a visible displacement was performed with a displacement device, and only two of initially 42 dogs passed the sham-baiting control conditions. The negative influence of the displacement device in visible displacement tasks may be explained by strong associative cues overriding explicit information about the target object’s location, reminiscent of an overshadowing effect, and/or object individuation errors as the target object is placed within the displacement device and moves along a spatiotemporally identical trajectory. Our data suggest that a comprehensive appraisal of a species’ performance in object permanence tasks should include visible displacement tasks with the same displacement device used in invisible displacements, which typically has not been done in the past. PMID:24611641

  1. Force Spectroscopy Reveals the Effect of Different Ions in the Nanomechanical Behavior of Phospholipid Model Membranes: The Case of Potassium Cation

    PubMed Central

    Redondo-Morata, Lorena; Oncins, Gerard; Sanz, Fausto

    2012-01-01

    How do metal cations affect the stability and structure of phospholipid bilayers? What role does ion binding play in the insertion of proteins and the overall mechanical stability of biological membranes? Investigators have used different theoretical and microscopic approaches to study the mechanical properties of lipid bilayers. Although they are crucial for such studies, molecular-dynamics simulations cannot yet span the complexity of biological membranes. In addition, there are still some experimental difficulties when it comes to testing the ion binding to lipid bilayers in an accurate way. Hence, there is a need to establish a new approach from the perspective of the nanometric scale, where most of the specific molecular phenomena take place. Atomic force microscopy has become an essential tool for examining the structure and behavior of lipid bilayers. In this work, we used force spectroscopy to quantitatively characterize nanomechanical resistance as a function of the electrolyte composition by means of a reliable molecular fingerprint that reveals itself as a repetitive jump in the approaching force curve. By systematically probing a set of bilayers of different composition immersed in electrolytes composed of a variety of monovalent and divalent metal cations, we were able to obtain a wealth of information showing that each ion makes an independent and important contribution to the gross mechanical resistance and its plastic properties. This work addresses the need to assess the effects of different ions on the structure of phospholipid membranes, and opens new avenues for characterizing the (nano)mechanical stability of membranes. PMID:22225799

  2. Microstructure, Morphology, and Nanomechanical Properties Near Fine Holes Produced by Electro-Discharge Machining

    NASA Astrophysics Data System (ADS)

    Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.

    2012-08-01

    Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.

  3. Homogeneous real-time detection of single-nucleotide polymorphisms by strand displacement amplification on the BD ProbeTec ET system.

    PubMed

    Wang, Sha-Sha; Thornton, Keith; Kuhn, Andrew M; Nadeau, James G; Hellyer, Tobin J

    2003-10-01

    The BD ProbeTec ET System is based on isothermal strand displacement amplification (SDA) of target nucleic acid coupled with homogeneous real-time detection using fluorescent probes. We have developed a novel, rapid method using this platform that incorporates a universal detection format for identification of single-nucleotide polymorphisms (SNPs) and other genotypic variations. The system uses a common pair of fluorescent Detector Probes in conjunction with unlabeled allele-specific Adapter Primers and a universal buffer chemistry to permit analysis of multiple SNP loci under generic assay conditions. We used Detector Probes labeled with different dyes to facilitate differentiation of two alternative alleles in a single reaction with no postamplification manipulation. We analyzed six SNPs within the human beta(2)-adrenergic receptor (beta(2)AR) gene, using whole blood, buccal swabs, and urine samples, and compared results with those obtained by DNA sequencing. Unprocessed whole blood was successfully genotyped with as little as 0.1-1 micro L of sample per reaction. All six beta(2)AR assays were able to accommodate >/==" BORDER="0">20 micro L of unprocessed whole blood. For the 14 individuals tested, genotypes determined with the six beta(2)AR assays agreed with DNA sequencing results. SDA-based allelic differentiation on the BD ProbeTec ET System can detect SNPs rapidly, using whole blood, buccal swabs, or urine.

  4. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Principal fault displacements -

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Inoue, N.; Tonagi, M.

    2016-12-01

    The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault

  5. Femtogram-scale photothermal spectroscopy of explosive molecules on nanostrings.

    PubMed

    Biswas, T S; Miriyala, N; Doolin, C; Liu, X; Thundat, T; Davis, J P

    2014-11-18

    We demonstrate detection of femtogram-scale quantities of the explosive molecule 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) via combined nanomechanical photothermal spectroscopy and mass desorption. Photothermal spectroscopy provides a spectroscopic fingerprint of the molecule, which is unavailable using mass adsorption/desorption alone. Our measurement, based on thermomechanical measurement of silicon nitride nanostrings, represents the highest mass resolution ever demonstrated via nanomechanical photothermal spectroscopy. This detection scheme is quick, label-free, and is compatible with parallelized molecular analysis of multicomponent targets.

  6. Modelling toehold-mediated RNA strand displacement.

    PubMed

    Šulc, Petr; Ouldridge, Thomas E; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2015-03-10

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Minimally displaced clavicle fracture after high-energy injury: are they likely to displace?

    PubMed

    Riehl, John T; Athans, Bill J; Munro, Mark W; Langford, Joshua R; Kupiszewski, Stanley J; Haidukewych, George J; Koval, Kenneth J

    2014-06-01

    Nondisplaced or minimally displaced clavicle fractures are often considered to be benign injuries. These fractures in the trauma patient population, however, may deserve closer follow-up than their low-energy counterparts. We sought to determine the initial assessment performed on these patients and the rate of subsequent fracture displacement in patients sustaining high-energy trauma when a supine chest radiograph on initial trauma survey revealed a well-aligned clavicle fracture. We retrospectively reviewed the cases of trauma alert patients who sustained a midshaft clavicle fracture (AO/OTA type 15-B) with less than 100% displacement treated at a single level 1 trauma centre between 2005 and 2010. We compared fracture displacement on initial supine chest radiographs and follow-up radiographs. Orthopedic consultation and the type of imaging studies obtained were also recorded. Ninety-five patients with clavicle fractures met the inclusion criteria. On follow-up, 57 (60.0%) had displacement of 100% or more of the shaft width. Most patients (63.2%) in our study had an orthopedic consultation during their hospital admission, and 27.4% had clavicle radiographs taken on the day of admission. Clavicle fractures in patients with a high-energy mechanism of injury are prone to fracture displacement, even when initial supine chest radiographs show nondisplacement. We recommend clavicle films as part of the initial evaluation for all patients with clavicle fractures and early follow-up within the first 2 weeks of injury.

  8. Minimally displaced clavicle fracture after high-energy injury: Are they likely to displace?

    PubMed Central

    Riehl, John T.; Athans, Bill J.; Munro, Mark W.; Langford, Joshua R.; Kupiszewski, Stanley J.; Haidukewych, George J.; Koval, Kenneth J.

    2014-01-01

    Background Nondisplaced or minimally displaced clavicle fractures are often considered to be benign injuries. These fractures in the trauma patient population, however, may deserve closer follow-up than their low-energy counterparts. We sought to determine the initial assessment performed on these patients and the rate of subsequent fracture displacement in patients sustaining high-energy trauma when a supine chest radiograph on initial trauma survey revealed a well-aligned clavicle fracture. Methods We retrospectively reviewed the cases of trauma alert patients who sustained a midshaft clavicle fracture (AO/OTA type 15-B) with less than 100% displacement treated at a single level 1 trauma centre between 2005 and 2010. We compared fracture displacement on initial supine chest radiographs and follow-up radiographs. Orthopedic consultation and the type of imaging studies obtained were also recorded. Results Ninety-five patients with clavicle fractures met the inclusion criteria. On follow-up, 57 (60.0%) had displacement of 100% or more of the shaft width. Most patients (63.2%) in our study had an orthopedic consultation during their hospital admission, and 27.4% had clavicle radiographs taken on the day of admission. Conclusion Clavicle fractures in patients with a high-energy mechanism of injury are prone to fracture displacement, even when initial supine chest radiographs show nondisplacement. We recommend clavicle films as part of the initial evaluation for all patients with clavicle fractures and early follow-up within the first 2 weeks of injury. PMID:24869608

  9. Automatic Alignment of Displacement-Measuring Interferometer

    NASA Technical Reports Server (NTRS)

    Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer

    2006-01-01

    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog

  10. Nanomechanics of the substrate binding domain of Hsp70 determine its allosteric ATP-induced conformational change.

    PubMed

    Mandal, Soumit Sankar; Merz, Dale R; Buchsteiner, Maximilian; Dima, Ruxandra I; Rief, Matthias; Žoldák, Gabriel

    2017-06-06

    Owing to the cooperativity of protein structures, it is often almost impossible to identify independent subunits, flexible regions, or hinges simply by visual inspection of static snapshots. Here, we use single-molecule force experiments and simulations to apply tension across the substrate binding domain (SBD) of heat shock protein 70 (Hsp70) to pinpoint mechanical units and flexible hinges. The SBD consists of two nanomechanical units matching 3D structural parts, called the α- and β-subdomain. We identified a flexible region within the rigid β-subdomain that gives way under load, thus opening up the α/β interface. In exactly this region, structural changes occur in the ATP-induced opening of Hsp70 to allow substrate exchange. Our results show that the SBD's ability to undergo large conformational changes is already encoded by passive mechanics of the individual elements.

  11. Nanomechanics of the substrate binding domain of Hsp70 determine its allosteric ATP-induced conformational change

    PubMed Central

    Mandal, Soumit Sankar; Buchsteiner, Maximilian; Dima, Ruxandra I.; Rief, Matthias; Žoldák, Gabriel

    2017-01-01

    Owing to the cooperativity of protein structures, it is often almost impossible to identify independent subunits, flexible regions, or hinges simply by visual inspection of static snapshots. Here, we use single-molecule force experiments and simulations to apply tension across the substrate binding domain (SBD) of heat shock protein 70 (Hsp70) to pinpoint mechanical units and flexible hinges. The SBD consists of two nanomechanical units matching 3D structural parts, called the α- and β-subdomain. We identified a flexible region within the rigid β-subdomain that gives way under load, thus opening up the α/β interface. In exactly this region, structural changes occur in the ATP-induced opening of Hsp70 to allow substrate exchange. Our results show that the SBD’s ability to undergo large conformational changes is already encoded by passive mechanics of the individual elements. PMID:28533394

  12. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    PubMed

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The case for character displacement in plants

    PubMed Central

    Beans, Carolyn M

    2014-01-01

    The evidence for character displacement as a widespread response to competition is now building. This progress is largely the result of the establishment of rigorous criteria for demonstrating character displacement in the animal literature. There are, however, relatively few well-supported examples of character displacement in plants. This review explores the potential for character displacement in plants by addressing the following questions: (1) Why aren't examples of character displacement in plants more common? (2) What are the requirements for character displacement to occur and how do plant populations meet those requirements? (3) What are the criteria for testing the pattern and process of character displacement and what methods can and have been used to address these criteria in the plant literature? (4) What are some additional approaches for studying character displacement in plants? While more research is needed, the few plant systems in which character displacement hypotheses have been rigorously tested suggest that character displacement may play a role in shaping plant communities. Plants are especially amenable to character displacement studies because of the experimental ease with which they can be used in common gardens, selection analyses, and breeding designs. A deeper investigation of character displacement in plants is critical for a more complete understanding of the ecological and evolutionary processes that permit the coexistence of plant species. PMID:24683467

  14. Analysis of nanomechanical properties of Borrelia burgdorferi spirochetes under the influence of lytic factors in an in vitro model using atomic force microscopy.

    PubMed

    Tokarska-Rodak, Małgorzata; Kozioł-Montewka, Maria; Skrzypiec, Krzysztof; Chmielewski, Tomasz; Mendyk, Ewaryst; Tylewska-Wierzbanowska, Stanisława

    2015-11-12

    Atomic force microscopy (AFM) is an experimental technique which recently has been used in biology, microbiology, and medicine to investigate the topography of surfaces and in the evaluation of mechanical properties of cells. The aim of this study was to evaluate the influence of the complement system and specific anti-Borrelia antibodies in in vitro conditions on the modification of nanomechanical features of B. burgdorferi B31 cells. In order to assess the influence of the complement system and anti-Borrelia antibodies on B. burgdorferi s.s. B31 spirochetes, the bacteria were incubated together with plasma of identified status. The samples were applied on the surface of mica disks. Young's modulus and adhesive forces were analyzed with a NanoScope V, MultiMode 8 AFM microscope (Bruker) by the PeakForce QNM technique in air using NanoScope Analysis 1.40 software (Bruker). The average value of flexibility of spirochetes' surface expressed by Young's modulus was 10185.32 MPa, whereas the adhesion force was 3.68 nN. AFM is a modern tool with a broad spectrum of observational and measurement abilities. Young's modulus and the adhesion force can be treated as parameters in the evaluation of intensity and changes which take place in pathogenic microorganisms under the influence of various lytic factors. The visualization of the changes in association with nanomechanical features provides a realistic portrayal of the lytic abilities of the elements of the innate and adaptive human immune system.

  15. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xu-Qian; Lee, Jaesung; Feng, Philip X. -L.

    Atomic layers of hexagonal boron nitride (h-BN) crystal are excellent candidates for structural materials as enabling ultrathin, two-dimensional (2D) nanoelectromechanical systems (NEMS) due to the outstanding mechanical properties and very wide bandgap (5.9 eV) of h-BN. In this work, we report the experimental demonstration of h-BN 2D nanomechanical resonators vibrating at high and very high frequencies (from ~ 5 to ~ 70 MHz), and investigations of the elastic properties of h-BN by measuring the multimode resonant behavior of these devices. First, we demonstrate a dry-transferred doubly clamped h-BN membrane with ~ 6.7 nm thickness, the thinnest h-BN resonator known tomore » date. In addition, we fabricate circular drumhead h-BN resonators with thicknesses ranging from ~ 9 to 292 nm, from which we measure up to eight resonance modes in the range of ~ 18 to 35 MHz. Combining measurements and modeling of the rich multimode resonances, we resolve h-BN’s elastic behavior, including the transition from membrane to disk regime, with built-in tension ranging from 0.02 to 2 N m -1. The Young’s modulus of h-BN is determined to be EY≈392 GPa from the measured resonances. The ultrasensitive measurements further reveal subtle structural characteristics and mechanical properties of the suspended h-BN diaphragms, including anisotropic built-in tension and bulging, thus suggesting guidelines on how these effects can be exploited for engineering multimode resonant functions in 2D NEMS transducers.« less

  16. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion

    DOE PAGES

    Zheng, Xu-Qian; Lee, Jaesung; Feng, Philip X. -L.

    2017-07-31

    Atomic layers of hexagonal boron nitride (h-BN) crystal are excellent candidates for structural materials as enabling ultrathin, two-dimensional (2D) nanoelectromechanical systems (NEMS) due to the outstanding mechanical properties and very wide bandgap (5.9 eV) of h-BN. In this work, we report the experimental demonstration of h-BN 2D nanomechanical resonators vibrating at high and very high frequencies (from ~ 5 to ~ 70 MHz), and investigations of the elastic properties of h-BN by measuring the multimode resonant behavior of these devices. First, we demonstrate a dry-transferred doubly clamped h-BN membrane with ~ 6.7 nm thickness, the thinnest h-BN resonator known tomore » date. In addition, we fabricate circular drumhead h-BN resonators with thicknesses ranging from ~ 9 to 292 nm, from which we measure up to eight resonance modes in the range of ~ 18 to 35 MHz. Combining measurements and modeling of the rich multimode resonances, we resolve h-BN’s elastic behavior, including the transition from membrane to disk regime, with built-in tension ranging from 0.02 to 2 N m -1. The Young’s modulus of h-BN is determined to be EY≈392 GPa from the measured resonances. The ultrasensitive measurements further reveal subtle structural characteristics and mechanical properties of the suspended h-BN diaphragms, including anisotropic built-in tension and bulging, thus suggesting guidelines on how these effects can be exploited for engineering multimode resonant functions in 2D NEMS transducers.« less

  17. Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Majima, Yutaka; Hirayama, Fuminori; Furuki, Makoto; Pu, Lyong Sun

    1992-07-01

    Maxwell displacement currents generated from monolayers of squarylium dye with propyl groups (SQ) and from mixed monolayers with arachidic acid were investigated during the course of monolayer compression in connection with the formation of J-aggregates in the monolayers. Abrupt changes in the generation of displacement current were observed for monolayers of SQ due to the transformation between two types of J-aggregates with different absorption spectra. In contrast, for mixed monolayers with arachidic acid which show no transition of J-aggregates, abrupt changes in the displacement current were not observed. It was concluded that displacement current measurement is effective in the detection of the transformation of the molecular arrangement in aggregates.

  18. The Effect of Viscous Air Damping on an Optically Actuated Multilayer MoS2 Nanomechanical Resonator Using Fabry-Perot Interference

    PubMed Central

    She, Yumei; Li, Cheng; Lan, Tian; Peng, Xiaobin; Liu, Qianwen; Fan, Shangchun

    2016-01-01

    We demonstrated a multilayer molybdenum disulfide (MoS2) nanomechanical resonator by using optical Fabry-Perot (F-P) interferometric excitation and detection. The thin circular MoS2 nanomembrane with an approximate 8-nm thickness was transferred onto the endface of a ferrule with an inner diameter of 125 μm, which created a low finesse F-P interferometer with a cavity length of 39.92 μm. The effects of temperature and viscous air damping on resonance behavior of the resonator were investigated in the range of −10–80 °C. Along with the optomechanical behavior of the resonator in air, the measured resonance frequencies ranged from 36 kHz to 73 kHz with an extremely low inflection point at 20 °C, which conformed reasonably to those solved by previously obtained thermal expansion coefficients of MoS2. Further, a maximum quality (Q) factor of 1.35 for the resonator was observed at 0 °C due to viscous dissipation, in relation to the lower Knudsen number of 0.0025~0.0034 in the tested temperature range. Moreover, measurements of Q factor revealed little dependence of Q on resonance frequency and temperature. These measurements shed light on the mechanisms behind viscous air damping in MoS2, graphene, and other 2D resonators. PMID:28335290

  19. A highly sensitive SPRi biosensing strategy for simultaneous detection of multiplex miRNAs based on strand displacement amplification and AuNP signal enhancement.

    PubMed

    Wei, Xiaotong; Duan, Xiaolei; Zhou, Xiaoyan; Wu, Jiangling; Xu, Hongbing; Min, Xun; Ding, Shijia

    2018-06-07

    Herein, a dual channel surface plasmon resonance imaging (SPRi) biosensor has been developed for the simultaneous and highly sensitive detection of multiplex miRNAs based on strand displacement amplification (SDA) and DNA-functionalized AuNP signal enhancement. In the presence of target miRNAs (miR-21 or miR-192), the miRNAs could specifically hybridize with the corresponding hairpin probes (H) and initiate the SDA, resulting in massive triggers. Subsequently, the two parts of the released triggers could hybridize with capture probes (CP) and DNA-functionalized AuNPs, assembling DNA sandwiches with great mass on the chip surface. A significantly amplified SPR signal readout was achieved. This established biosensing method was capable of simultaneously detecting multiplex miRNAs with a limit of detection down to 0.15 pM for miR-21 and 0.22 pM for miR-192. This method exhibited good specificity and acceptable reproducibility. Moreover, the developed method was applied to the determination of target miRNAs in a complex matrix. Thus, this developed SPRi biosensing method may present a potential alternative tool for miRNA detection in biomedical research and clinical diagnosis.

  20. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    NASA Astrophysics Data System (ADS)

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next

  1. Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction.

    PubMed

    Wang, Dingzhong; Tang, Wei; Wu, Xiaojie; Wang, Xinyi; Chen, Gengjia; Chen, Qiang; Li, Na; Liu, Feng

    2012-08-21

    Toehold-mediated strand displacement reaction (SDR) is first introduced to develop a simple quartz crystal microbalance (QCM) biosensor without an enzyme or label at normal temperature for highly selective and sensitive detection of single-nucleotide polymorphism (SNP) in the p53 tumor suppressor gene. A hairpin capture probe with an external toehold is designed and immobilized on the gold electrode surface of QCM. A successive SDR is initiated by the target sequence hybridization with the toehold domain and ends with the unfolding of the capture probe. Finally, the open-loop capture probe hybridizes with the streptavidin-coupled reporter probe as an efficient mass amplifier to enhance the QCM signal. The proposed biosensor displays remarkable specificity to target the p53 gene fragment against single-base mutant sequences (e.g., the largest discrimination factor is 63 to C-C mismatch) and high sensitivity with the detection limit of 0.3 nM at 20 °C. As the crucial component of the fabricated biosensor for providing the high discrimination capability, the design rationale of the capture probe is further verified by fluorescence sensing and atomic force microscopy imaging. Additionally, a recovery of 84.1% is obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of employing this biosensor in detecting SNPs in biological samples.

  2. Job Displacement Among Single Mothers:

    PubMed Central

    Brand, Jennie E.; Thomas, Juli Simon

    2015-01-01

    Given the recent era of economic upheaval, studying the effects of job displacement has seldom been so timely and consequential. Despite a large literature associating displacement with worker well-being, relatively few studies focus on the effects of parental displacement on child well-being, and fewer still focus on implications for children of single parent households. Moreover, notwithstanding a large literature on the relationship between single motherhood and children’s outcomes, research on intergenerational effects of involuntary employment separations among single mothers is limited. Using 30 years of nationally representative panel data and propensity score matching methods, we find significant negative effects of job displacement among single mothers on children’s educational attainment and social-psychological well-being in young adulthood. Effects are concentrated among older children and children whose mothers had a low likelihood of displacement, suggesting an important role for social stigma and relative deprivation in the effects of socioeconomic shocks on child well-being. PMID:25032267

  3. A Combined Approach to Cartographic Displacement for Buildings Based on Skeleton and Improved Elastic Beam Algorithm

    PubMed Central

    Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya

    2014-01-01

    Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727

  4. Study of the optical crosstalk in a heterodyne displacement gauge with cancelable circuit

    NASA Astrophysics Data System (ADS)

    Donazzan, Alberto; Naletto, Giampiero; Pelizzo, Maria G.

    2017-06-01

    One main focus of high precision heterodyne displacement interferometers are the means of splitting and merging for the reference (R) and measurement (M) beams when a cancelable circuit is implemented. Optical mixing of R and M gives birth to a systematc error called cyclic error, which appears as a periodic offset between the detected displacement and the actual one. A simple derivation of the cyclic error due to optical mixing is proposed for the cancelable circuit design. R and M beatings are collected by two photodiodes and conveniently converted by transimpedance amplifiers, such that the output signals are turned into ac-coupled voltages. The detected phase can be calculated as a function of the real phase (a change in optical path difference) in the case of zero-crossing detection. What turns out is a cyclic non-linearity which depends on the actual phase and on the amount of optical power leakage from the R channel into the M channel and vice versa. We then applied this result to the prototype of displacement gauge we are developing, which implements the cancelable circuit design with wavefront division. The splitting between R and M is done with a double coated mirror with a central hole, tilted by 45° with respect to the surface normal. The interferometer features two removable diffraction masks, respectively located before the merging point (a circular obscuration) and before the recombination point (a ring obscuration). In order to predict the extent of optical mixing between R and M, the whole layout was simulated by means of the Zemax ® Physical Optics Propagation (POP) tool. After the model of our setup was built and qualitatively verified, we proceeded by calculating the amount of optical leakages in various configurations: with and without the diffraction masks as well as for different sizes of both the holey mirror and the diffraction masks. The corrisponding maximum displacement error was then calculated for every configuration thanks to the

  5. Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air.

    PubMed

    Li, Cheng; Lan, Tian; Yu, Xiyu; Bo, Nan; Dong, Jingyu; Fan, Shangchun

    2017-11-04

    We demonstrated a miniature and in situ ~13-layer graphene nanomechanical resonator by utilizing a simple optical fiber Fabry-Perot (F-P) interferometric excitation and detection scheme. The graphene film was transferred onto the endface of a ferrule with a 125-μm inner diameter. In contrast to the pre-tension induced in membrane that increased quality ( Q ) factor to ~18.5 from ~3.23 at room temperature and normal pressure, the limited effects of air damping on resonance behaviors at 10 -2 and 10⁵ Pa were demonstrated by characterizing graphene F-P resonators with open and micro-air-gap cavities. Then in terms of optomechanical behaviors of the resonator with an air micro-cavity configuration using a polished ferrule substrate, measured resonance frequencies were increased to the range of 509-542 kHz from several kHz with a maximum Q factor of 16.6 despite the lower Knudsen number ranging from 0.0002 to 0.0006 in damping air over a relative pressure range of 0-199 kPa. However, there was the little dependence of Q on resonance frequency. Note that compared with the inferior F-P cavity length response to applied pressures due to interfacial air leakage, the developed F-P resonator exhibited a consistent fitted pressure sensitivity of 1.18 × 10⁵ kHz³/kPa with a good linearity error of 5.16% in the tested range. These measurements shed light on the pre-stress-dominated pressure-sensitive mechanisms behind air damping in in situ F-P resonant sensors using graphene or other 2D nanomaterials.

  6. Connecting localized DNA strand displacement reactions

    NASA Astrophysics Data System (ADS)

    Mullor Ruiz, Ismael; Arbona, Jean-Michel; Lad, Amitkumar; Mendoza, Oscar; Aimé, Jean-Pierre; Elezgaray, Juan

    2015-07-01

    Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions.Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR02434J

  7. Surface topography, nano-mechanics and secondary structure of wheat gluten pretreated by alternate dual-frequency ultrasound and the correlation to enzymolysis.

    PubMed

    Zhang, Yanyan; Wang, Bei; Zhou, Cunshan; Atungulu, Griffiths G; Xu, Kangkang; Ma, Haile; Ye, Xiaofei; Abdualrahman, Mohammed A Y

    2016-07-01

    The effects of alternate dual-frequency ultrasound (ADFU) pretreatment on the degree of hydrolysis (DH) of wheat gluten (WG) and angiotensin I-converting enzyme (ACE) inhibitory activity were investigated in this research. The surface topography, nano-mechanics and secondary structure of WG were also determined using atomic force microscope (AFM) and circular dichroism (CD). The correlations of ACE inhibitory activity and DH with surface topography, nano-mechanics and secondary structure of WG were determined using Pearson's correlation analysis. The results showed that with an increase in either pretreatment duration or power, the ACE inhibitory activity of the hydrolysate also increases, reaching maximum at 10 min and 150 W/L, respectively, and then decreases thereafter. Similarly, AFM analysis showed that as the pretreatment duration or power increases, the surface roughness also increase and again a decrease occurs thereafter. As the pretreatment duration or power increased, the Young's modulus and adhesion of WG also increased and then declined. Young's modulus and adhesions average values were compared with ACE inhibitory activity reversely. The result of the CD spectra analysis exhibited losses in the relative percentage of α-helix of WG. Pearson's correlation analysis showed that the average values of Young's modulus and the relative percentage of α-helix correlated with ACE inhibitory activity of the hydrolysates linearly and significantly (P<0.05); the relative percentage of β-sheet correlated linearly with DH of WG significantly (P<0.05). In conclusion, ADFU pretreatment is an efficient method in proteolysis due to its physical and chemical effect on the Young's modulus, α-helix and β-sheet of WG. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Strand Displacement Amplification Reaction on Quantum Dot-Encoded Silica Bead for Visual Detection of Multiplex MicroRNAs.

    PubMed

    Qu, Xiaojun; Jin, Haojun; Liu, Yuqian; Sun, Qingjiang

    2018-03-06

    The combination of microbead array, isothermal amplification, and molecular signaling enables the continuous development of next-generation molecular diagnostic techniques. Herein we reported the implementation of nicking endonuclease-assisted strand displacement amplification reaction on quantum dots-encoded microbead (Qbead), and demonstrated its feasibility for multiplexed miRNA assay in real sample. The Qbead featured with well-defined core-shell superstructure with dual-colored quantum dots loaded in silica core and shell, respectively, exhibiting remarkably high optical encoding stability. Specially designed stem-loop-structured probes were immobilized onto the Qbead for specific target recognition and amplification. In the presence of low abundance of miRNA target, the target triggered exponential amplification, producing a large quantity of stem-G-quadruplexes, which could be selectively signaled by a fluorescent G-quadruplex intercalator. In one-step operation, the Qbead-based isothermal amplification and signaling generated emissive "core-shell-satellite" superstructure, changing the Qbead emission-color. The target abundance-dependent emission-color changes of the Qbead allowed direct, visual detection of specific miRNA target. This visualization method achieved limit of detection at the subfemtomolar level with a linear dynamic range of 4.5 logs, and point-mutation discrimination capability for precise miRNA analyses. The array of three encoded Qbeads could simultaneously quantify three miRNA biomarkers in ∼500 human hepatoma carcinoma cells. With the advancements in ease of operation, multiplexing, and visualization capabilities, the isothermal amplification-on-Qbead assay could potentially enable the development of point-of-care diagnostics.

  9. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing

    NASA Astrophysics Data System (ADS)

    Tseng, V. F.-G.; Xie, H.

    2015-11-01

    This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100 μm. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500 μm piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/μm with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.

  10. Detecting the position of the moving-iron solenoid by non-displacement sensor based on parameter identification of flux linkage characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Xuping; Quan, Long; Xiong, Guangyu

    2013-11-01

    Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for position estimation. The problem exists in these researches that the detected signals are prone to interference and difficult to obtain. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which adds a new group of secondary winding to the coil of the ordinary switching electromagnet. On the basis of electromagnetic coupling theory analysis and simulation research of the magnetic field regarding the primary and secondary winding coils, and in accordance with the fact that under PWM control mode varying core position and operating current of windings produce different characteristic of flux increment of the secondary winding. The flux increment of the electromagnet winding can be obtained by conducting time domain integration for the induced voltage signal of the extracted secondary winding, and the core position from the two-dimensional fitting curve of the operating winding current and flux-linkage characteristic quantity of solenoid are calculated. The detecting and testing system of solenoid core position is developed based on the theoretical research. The testing results show that the flux characteristic quantity of switching electromagnet magnetic circuit is able to effectively show the core position and thus to accomplish the non-displacement transducer detection of the said core position of the switching electromagnet. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which provides a new theory and method for switch solenoid to control the proportional valve.

  11. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  12. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  13. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  14. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  15. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...

  16. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification.

    PubMed

    Cheng, Wei; Zhang, Wei; Yan, Yurong; Shen, Bo; Zhu, Dan; Lei, Pinhua; Ding, Shijia

    2014-12-15

    A novel electrochemical biosensing strategy was developed for ultrasensitive and specific detection of target DNA using a cascade signal amplification based on molecular beacon (MB) mediated circular strand displacement (CSD), rolling circle amplification (RCA), biotin-strepavidin system, and enzymatic amplification. The target DNA hybridized with the loop portion of MB probe immobilized on the gold electrode and triggered the CSD, leading to multiple biotin-tagged DNA duplex. Furthermore, via biotin-streptavidin interaction, the RCA was implemented, producing long massive tandem-repeat DNA sequences for binding numerous biotinylated detection probes. This enabled an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor showed very high sensitivity and selectivity with a dynamic response range from 1 fM to 100 pM. The proposed strategy could have the potential for applying in clinical molecular diagnostics and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Attomolar detection of proteins via cascade strand-displacement amplification and polystyrene nanoparticle enhancement in fluorescence polarization aptasensors.

    PubMed

    Huang, Yong; Liu, Xiaoqian; Huang, Huakui; Qin, Jian; Zhang, Liangliang; Zhao, Shulin; Chen, Zhen-Feng; Liang, Hong

    2015-08-18

    Extremely sensitive and accurate measurements of protein markers for early detection and monitoring of diseases pose a formidable challenge. Herein, we develop a new type of amplified fluorescence polarization (FP) aptasensor based on allostery-triggered cascade strand-displacement amplification (CSDA) and polystyrene nanoparticle (PS NP) enhancement for ultrasensitive detection of proteins. The assay system consists of a fluorescent dye-labeled aptamer hairpin probe and a PS NP-modified DNA duplex (assistant DNA/trigger DNA duplex) probe with a single-stranded part and DNA polymerase. Two probes coexist stably in the absence of target, and the dye exhibits relatively low FP background. Upon recognition and binding with a target protein, the stem of the aptamer hairpin probe is opened, after which the opened hairpin probe hybridizes with the single-stranded part in the PS NP-modified DNA duplex probe and triggers the CSDA reaction through the polymerase-catalyzed recycling of both target protein and trigger DNA. Throughout this CSDA process, numerous massive dyes are assembled onto PS NPs, which results in a substantial FP increase that provides a readout signal for the amplified sensing process. Our newly proposed amplified FP aptasensor enables the quantitative measurement of proteins with the detection limit in attomolar range, which is about 6 orders of magnitude lower than that of traditional homogeneous aptasensors. Moreover, this sensing method also exhibits high specificity for target proteins and can be performed in homogeneous solutions. In addition, the suitability of this method for the quantification of target protein in biological samples has also been shown. Considering these distinct advantages, the proposed sensing method can be expected to provide an ultrasensitive platform for the analysis of various types of target molecules.

  18. Nanomechanics of Carbon and CxByNz Nanotubes: Via a Quantum Molecular Dynamics Method

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, M.; Cho, Kyeong Jae; Saini, Subhash (Technical Monitor)

    1999-01-01

    Nanomechanics of single-wall C, BN and BC$_3$ and B doped C nanotubes under axial compression and tension are investigated through a generalized tight-binding molecular dynamics (GTBMD) and {\\it ab-initio} electronic structure methods. The dynamic strength of BN, BC$_3$ and B doped C nanotubes for small axial strain are comparable to each other. The main difference is in the critical strain at which structural collapse occurs. For example, even a shallow doping with B lowers the value of critical strain for C nanotubes. The critical strain for BN nanotube is found to be more than that for the similar C nanotube. Once the structural collapse starts to occur we find that carbon nanotubes irreversibly go into plastic deformation regime via the formation of tetrahedral (four-fold coordinated) bonds at the location of sharp pinches or kinks. This finding is considerably different from the classical MD (molecular dynamics) simulation results known so far. The energetics and electronic densities of states of the collapsed structures, investigated with {\\it ab-initio) methods, will also be discussed.

  19. Slippage and boundary layer probed in an almost ideal gas by a nanomechanical oscillator.

    PubMed

    Defoort, M; Lulla, K J; Crozes, T; Maillet, O; Bourgeois, O; Collin, E

    2014-09-26

    We measure the interaction between ⁴He gas at 4.2 K and a high-quality nanoelectromechanical string device for its first three symmetric modes (resonating at 2.2, 6.7, and 11 MHz with quality factor Q>0.1×10⁶) over almost 6 orders of magnitude in pressure. This fluid can be viewed as the best experimental implementation of an almost ideal monoatomic and inert gas of which properties are tabulated. The experiment ranges from high pressure where the flow is of laminar Stokes-type presenting slippage down to very low pressures where the flow is molecular. In the molecular regime, when the mean-free path is of the order of the distance between the suspended nanomechanical probe and the bottom of the trench, we resolve for the first time the signature of the boundary (Knudsen) layer onto the measured dissipation. Our results are discussed in the framework of the most recent theories investigating boundary effects in fluids (both analytic approaches and direct simulation Monte Carlo methods).

  20. Clavicle fracture with intrathoracic displacement.

    PubMed

    Lohse, Grant R; Lee, Donald H

    2013-08-01

    Clavicle fractures are common, and most are isolated injuries. Injury to the nearby subclavian vessels and brachial plexus have classically been described as potential complications of clavicle fractures. However, in the setting of a substantially displaced clavicle fracture, concomitant thoracic trauma is relatively frequent. Injury to the thorax can be difficult to identify on physical examination, and advanced imaging modalities may be required for diagnosis. The evaluation, workup, and management of a patient with intrathoracic displacement of a clavicle fracture are described. Despite the significant fracture displacement and associated pneumothorax, the injury severity was not clinically obvious. Imaging, including a screening chest radiograph and subsequent axial computed tomography, played an important role in diagnosis and management. The patient underwent successful open reduction and plate fixation. A thoracostomy tube was not required at any point during the hospitalization. The patient recovered uneventfully and returned to full work duty by 3 months postoperatively. Including the current report, only 3 cases of intrathoracic displacement of the clavicle have been published in the English literature. All involved fractures of the middle third of the clavicle. The severity of displacement was not obvious in any patient, and diagnosis was dependent on additional imaging. Given the frequency of associated chest trauma and limitations of physical examination, chest radiography should be considered in the evaluation of patients with substantially displaced clavicle fractures. Copyright 2013, SLACK Incorporated.

  1. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    PubMed

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  2. Conflict, displacement and health in the Middle East.

    PubMed

    Mowafi, Hani

    2011-01-01

    Displacement is a hallmark of modern humanitarian emergencies. Displacement itself is a traumatic event that can result in illness or death. Survivors face challenges including lack of adequate shelter, decreased access to health services, food insecurity, loss of livelihoods, social marginalisation as well as economic and sexual exploitation. Displacement takes many forms in the Middle East and the Arab World. Historical conflicts have resulted in long-term displacement of Palestinians. Internal conflicts have driven millions of Somalis and Sudanese from their homes. Iraqis have been displaced throughout the region by invasion and civil strife. In addition, large numbers of migrants transit Middle Eastern countries or live there illegally and suffer similar conditions as forcibly displaced people. Displacement in the Middle East is an urban phenomenon. Many displaced people live hidden among host country populations in poor urban neighbourhoods - often without legal status. This represents a challenge for groups attempting to access displaced populations. Furthermore, health information systems in host countries often do not collect data on displaced people, making it difficult to gather data needed to target interventions towards these vulnerable populations. The following is a discussion of the health impacts of conflict and displacement in the Middle East. A review was conducted of published literature on migration and displacement in the region. Different cases are discussed with an emphasis on the recent, large-scale and urban displacement of Iraqis to illustrate aspects of displacement in this region.

  3. Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope.

    PubMed

    Sader, John E; Yousefi, Morteza; Friend, James R

    2014-02-01

    Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.

  4. Gender-based violence in conflict and displacement: qualitative findings from displaced women in Colombia.

    PubMed

    Wirtz, Andrea L; Pham, Kiemanh; Glass, Nancy; Loochkartt, Saskia; Kidane, Teemar; Cuspoca, Decssy; Rubenstein, Leonard S; Singh, Sonal; Vu, Alexander

    2014-01-01

    Gender-based violence (GBV) is prevalent among, though not specific to, conflict affected populations and related to multifarious levels of vulnerability of conflict and displacement. Colombia has been marked with decades of conflict, with an estimated 5.2 million internally displaced persons (IDPs) and ongoing violence. We conducted qualitative research to understand the contexts of conflict, displacement and dynamics with GBV. This as part of a multi-phase, mixed method study, in collaboration with UNHCR, to develop a screening tool to confidentially identify cases of GBV for referral among IDP women who were survivors of GBV. Qualitative research was used to identify the range of GBV, perpetrators, contexts in conflict and displacement, barriers to reporting and service uptake, as well as to understand experiences of service providers. Thirty-five female IDPs, aged 18 years and older, who self-identified as survivors of GBV were enrolled for in-depth interviews in San Jose de Guaviare and Quibdo, Colombia in June 2012. Thirty-one service providers participated in six focus group discussions and four interviews across these sites. Survivors described a range of GBV across conflict and displacement settings. Armed actors in conflict settings perpetrated threats of violence and harm to family members, child recruitment, and, to a lesser degree, rape and forced abortion. Opportunistic violence, including abduction, rape, and few accounts of trafficking were more commonly reported to occur in the displacement setting, often perpetrated by unknown individuals. Intrafamilial violence, intimate partner violence, including physical and sexual violence and reproductive control were salient across settings and may be exacerbated by conflict and displacement. Barriers to reporting and services seeking were reported by survivors and providers alike. Findings highlight the need for early identification of GBV cases, with emphasis on confidential approaches and active

  5. Gender-based violence in conflict and displacement: qualitative findings from displaced women in Colombia

    PubMed Central

    2014-01-01

    Introduction Gender-based violence (GBV) is prevalent among, though not specific to, conflict affected populations and related to multifarious levels of vulnerability of conflict and displacement. Colombia has been marked with decades of conflict, with an estimated 5.2 million internally displaced persons (IDPs) and ongoing violence. We conducted qualitative research to understand the contexts of conflict, displacement and dynamics with GBV. This as part of a multi-phase, mixed method study, in collaboration with UNHCR, to develop a screening tool to confidentially identify cases of GBV for referral among IDP women who were survivors of GBV. Methods Qualitative research was used to identify the range of GBV, perpetrators, contexts in conflict and displacement, barriers to reporting and service uptake, as well as to understand experiences of service providers. Thirty-five female IDPs, aged 18 years and older, who self-identified as survivors of GBV were enrolled for in-depth interviews in San Jose de Guaviare and Quibdo, Colombia in June 2012. Thirty-one service providers participated in six focus group discussions and four interviews across these sites. Results Survivors described a range of GBV across conflict and displacement settings. Armed actors in conflict settings perpetrated threats of violence and harm to family members, child recruitment, and, to a lesser degree, rape and forced abortion. Opportunistic violence, including abduction, rape, and few accounts of trafficking were more commonly reported to occur in the displacement setting, often perpetrated by unknown individuals. Intrafamilial violence, intimate partner violence, including physical and sexual violence and reproductive control were salient across settings and may be exacerbated by conflict and displacement. Barriers to reporting and services seeking were reported by survivors and providers alike. Conclusions Findings highlight the need for early identification of GBV cases, with emphasis on

  6. Displacement sensing system and method

    DOEpatents

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  7. High sensitivity waveguide micro-displacement sensor based on intermodal interference

    NASA Astrophysics Data System (ADS)

    Ji, Lanting; He, Guobing; Gao, Yang; Xu, Yan; Liang, Honglei; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming

    2017-11-01

    An optical waveguide displacement sensor according to core-cladding modes interference is theoretically proposed and experimentally demonstrated. Ultraviolet sensitive SU-8 polymer on silica is used as the guiding layer. It is covered by a 12 nm thick planar gold grating. The air gap sensing head which consists of the waveguide end and the single-mode fiber facet can realize the displacement detection by monitoring the wavelength dip shifting in transmission spectra. Cladding modes propagating in the exposed SU-8 can be effectively excited by the end-fire coupling because of the mode field mismatch between the SU-8 waveguide and lead-in fiber. A sinusoidal pattern transmission spectrum in C-band with the depth of over 14 dB can be observed due to the interference between the core and cladding modes. Peaks in the transmission spectrum vary continuously with the position offset of input fiber facet from the center of waveguide end. Both the sensitivity and the stability of sensing are enhanced by the introduction of nanometric gold gratings. The fabricated displacement sensor exhibits a high sensitivity of 2.3 nm μm-1, promising potentials for micromechanical processing and integrated optics application.

  8. Superresolution confocal technology for displacement measurements based on total internal reflection.

    PubMed

    Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu

    2010-10-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  9. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    PubMed Central

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  10. Label-free genotyping of cytochrome P450 2D6*10 using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection.

    PubMed

    Wang, Hong-Qi; Wu, Zhan; Zhang, Yan; Tang, Li-Juan; Yu, Ru-Qin; Jiang, Jian-Hui

    2012-01-13

    Genotyping of cytochrome P450 monooxygenase 2D6*10 (CYP2D6*10) plays an important role in pharmacogenomics, especially in clinical drug therapy of Asian populations. This work reported a novel label-free technique for genotyping of CYP2D6*10 based on ligation-mediated strand displacement amplification (SDA) with DNAzyme-based chemiluminescence detection. Discrimination of single-base mismatch is firstly accomplished using DNA ligase to generate a ligation product. The ligated product then initiates a SDA reaction to produce aptamer sequences against hemin, which can be probed by chemiluminescence detection. The proposed strategy is used for the assay of CYP2D6*10 target and the genomic DNA. The results reveal that the proposed technique displays chemiluminescence responses in linear correlation to the concentrations of DNA target within the range from 1 pM to 1 nM. A detection limit of 0.1 pM and a signal-to-background ratio of 57 are achieved. Besides such high sensitivity, the proposed CYP2D6*10 genotyping strategy also offers superb selectivity, great robustness, low cost and simplified operations due to its label-free, homogeneous, and chemiluminescence-based detection format. These advantages suggest this technique may hold considerable potential for clinical CYP2D6*10 genotyping and association studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Global surface displacement data for assessing variability of displacement at a point on a fault

    USGS Publications Warehouse

    Hecker, Suzanne; Sickler, Robert; Feigelson, Leah; Abrahamson, Norman; Hassett, Will; Rosa, Carla; Sanquini, Ann

    2014-01-01

    This report presents a global dataset of site-specific surface-displacement data on faults. We have compiled estimates of successive displacements attributed to individual earthquakes, mainly paleoearthquakes, at sites where two or more events have been documented, as a basis for analyzing inter-event variability in surface displacement on continental faults. An earlier version of this composite dataset was used in a recent study relating the variability of surface displacement at a point to the magnitude-frequency distribution of earthquakes on faults, and to hazard from fault rupture (Hecker and others, 2013). The purpose of this follow-on report is to provide potential data users with an updated comprehensive dataset, largely complete through 2010 for studies in English-language publications, as well as in some unpublished reports and abstract volumes.

  12. Novel combination of near-field s-SNOM microscopy with peak-force tapping for nano-chemical and nano-mechanical material characterization with sub-20 nm spatial resolution

    NASA Astrophysics Data System (ADS)

    Wagner, Martin; Carneiro, Karina; Habelitz, Stefan; Mueller, Thomas; BNS Team; UCSF Team

    Heterogeneity in material systems requires methods for nanoscale chemical identification. Scattering scanning near-field microscopy (s-SNOM) is chemically sensitive in the infrared fingerprint region while providing down to 10 nm spatial resolution. This technique detects material specific tip-scattering in an atomic force microscope. Here, we present the first combination of s-SNOM with peak-force tapping (PFT), a valuable AFM technique that allows precise force control between tip and sample down to 10s of pN. The latter is essential for imaging fragile samples, but allows also quantitative extraction of nano-mechanical properties, e.g. the modulus. PFT can further be complemented by KPFM or conductive AFM for nano-electrical mapping, allowing access to nanoscale optical, mechanical and electrical information in a single instrument. We will address several questions ranging from graphene plasmonics to material distributions in polymers. We highlight a biological application where dental amelogenin protein was studied via s-SNOM to learn about its self-assembly into nanoribbons. At the same time PFT allows to track crystallization to distinguish protein from apatite crystals for which amelogenin is supposed to act as a template.

  13. High-displacement spiral piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Kholkin, A. L.; Jadidian, B.; Safari, A.

    1999-10-01

    A high-displacement piezoelectric actuator, employing spiral geometry of a curved piezoelectric strip is described. The monolithic actuators are fabricated using a layered manufacturing technique, fused deposition of ceramics, which is capable of prototyping electroceramic components with complex shapes. The spiral actuators (2-3 cm in diameter) consisted of 4-5 turns of a lead zirconate titanate ceramic strip with an effective length up to 28 cm. The width was varied from 0.9 to 1.75 mm with a height of 3 mm. When driven by the electric field applied across the width of the spiral wall, the tip of the actuator was found to displace in both radial and tangential directions. The tangential displacement of the tip was about 210 μm under the field of 5 kV/cm. Both the displacement and resonant frequency of the spirals could be tailored by changing the effective length and wall width. The blocking force of the actuator in tangential direction was about 1 N under the field of 5 kV/cm. These properties are advantageous for high-displacement low-force applications where bimorph or monomorph actuators are currently employed.

  14. Borehole optical lateral displacement sensor

    DOEpatents

    Lewis, R.E.

    1998-10-20

    There is provided by this invention an optical displacement sensor that utilizes a reflective target connected to a surface to be monitored to reflect light from a light source such that the reflected light is received by a photoelectric transducer. The electric signal from the photoelectric transducer is then imputed into electronic circuitry to generate an electronic image of the target. The target`s image is monitored to determine the quantity and direction of any lateral displacement in the target`s image which represents lateral displacement in the surface being monitored. 4 figs.

  15. Simulations of threshold displacement in beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Matthew L.; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB; Fossati, Paul C. M.

    Atomic scale molecular dynamics simulations of radiation damage have been performed on beryllium. Direct threshold displacement simulations along a geodesic projection of directions were used to investigate the directional dependence with a high spatial resolution. It was found that the directionally averaged probability of displacement increases from 0 at 35 eV, with the energy at which there is a 50% chance of a displacement occurring is 70 eV and asymptotically approaching 1 for higher energies. This is, however, strongly directionally dependent with a 50% probability of displacement varying from 35 to 120 eV, with low energy directions corresponding to the nearest neighbour directions.more » A new kinetic energy dependent expression for the average maximum displacement of an atom as a function of energy is derived which closely matches the simulated data.« less

  16. VADASE: a new approach for real-time fast displacement detection - First application to Taiwan High-Rate GNSS Network

    NASA Astrophysics Data System (ADS)

    Hung, Huang-Kai; Rau, Ruey-Juin; Colosimo, Gabriele; Benedetti, Elisa; Branzanti, Mara; Crespi, Mattia; Mazzoni, Augusto

    2014-05-01

    The aim of this work is to show new possibilities for GNSS Permanent Network data processing offered by VADASE (Variometric Approach for Displacements Analysis Standalone Engine) to retrieve waveforms and coseismic displacements in real-time when an earthquake occurs. The main advantage of using GNSS receiver, in a complementary way with traditional seismic network, is that it can work without being affected by saturation, which commonly influence seismometers and accelerometers close to strong earthquake epicenters. VADASE was originally proposed in 2010 ([4],[5]) as the third way in GPS Seismology (in addition to Precise Point Positioning and Instantaneous Differential Positioning). The approach is based on time single differences of carrier phase observations continuously collected at high rate (1 Hz or higher) using a standalone GPS receiver and standard GPS broadcast products (orbits and clocks) that are available in real-time. Hence, one receiver works in standalone mode and the epoch-by-epoch displacements (equivalent to velocities) are estimated. Then, they are summed over the time interval when the earthquake occurred to retrieve coseismic displacements and waveforms. Considering time intervals limited to few minutes, the receiver displacements can be ascertained at a few centimeters accuracy level in real-time. The effectiveness of this approach was recognized by DLR (German Aerospace Agency), and VADASE was awarded the DLR Special Topic Prize and the Audience Award at the European Satellite Navigation Competition 2010. Moreover, VADASE potential was proven in the dramatic occasion of the Japanese earthquake occurred on March 11, 2011 ([3]-[6]); in fact VADASE was able to provide the first estimates of the displacements suffered at the IGS sites of MIZU and USUD [7], as soon as the data of these stations were available. The results were then confirmed by several other solutions based on the renown (DP, PPP) approaches. More recently, VADASE was applied

  17. High-Precision Displacement Sensing of Monolithic Piezoelectric Disk Resonators Using a Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Li, J.; Santos, J. T.; Sillanpää, M. A.

    2018-02-01

    A single-electron transistor (SET) can be used as an extremely sensitive charge detector. Mechanical displacements can be converted into charge, and hence, SETs can become sensitive detectors of mechanical oscillations. For studying small-energy oscillations, an important approach to realize the mechanical resonators is to use piezoelectric materials. Besides coupling to traditional electric circuitry, the strain-generated piezoelectric charge allows for measuring ultrasmall oscillations via SET detection. Here, we explore the usage of SETs to detect the shear-mode oscillations of a 6-mm-diameter quartz disk resonator with a resonance frequency around 9 MHz. We measure the mechanical oscillations using either a conventional DC SET, or use the SET as a homodyne or heterodyne mixer, or finally, as a radio-frequency single-electron transistor (RF-SET). The RF-SET readout is shown to be the most sensitive method, allowing us to measure mechanical displacement amplitudes below 10^{-13} m. We conclude that a detection based on a SET offers a potential to reach the sensitivity at the quantum limit of the mechanical vibrations.

  18. High-Precision Displacement Sensing of Monolithic Piezoelectric Disk Resonators Using a Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Li, J.; Santos, J. T.; Sillanpää, M. A.

    2018-06-01

    A single-electron transistor (SET) can be used as an extremely sensitive charge detector. Mechanical displacements can be converted into charge, and hence, SETs can become sensitive detectors of mechanical oscillations. For studying small-energy oscillations, an important approach to realize the mechanical resonators is to use piezoelectric materials. Besides coupling to traditional electric circuitry, the strain-generated piezoelectric charge allows for measuring ultrasmall oscillations via SET detection. Here, we explore the usage of SETs to detect the shear-mode oscillations of a 6-mm-diameter quartz disk resonator with a resonance frequency around 9 MHz. We measure the mechanical oscillations using either a conventional DC SET, or use the SET as a homodyne or heterodyne mixer, or finally, as a radio-frequency single-electron transistor (RF-SET). The RF-SET readout is shown to be the most sensitive method, allowing us to measure mechanical displacement amplitudes below 10^{-13} m. We conclude that a detection based on a SET offers a potential to reach the sensitivity at the quantum limit of the mechanical vibrations.

  19. Vibrational shape tracking of atomic force microscopy cantilevers for improved sensitivity and accuracy of nanomechanical measurements

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Killgore, Jason P.; Tung, Ryan C.; Raman, Arvind; Hurley, Donna C.

    2015-01-01

    Contact resonance atomic force microscopy (CR-AFM) methods currently utilize the eigenvalues, or resonant frequencies, of an AFM cantilever in contact with a surface to quantify local mechanical properties. However, the cantilever eigenmodes, or vibrational shapes, also depend strongly on tip-sample contact stiffness. In this paper, we evaluate the potential of eigenmode measurements for improved accuracy and sensitivity of CR-AFM. We apply a recently developed, in situ laser scanning method to experimentally measure changes in cantilever eigenmodes as a function of tip-sample stiffness. Regions of maximum sensitivity for eigenvalues and eigenmodes are compared and found to occur at different values of contact stiffness. The results allow the development of practical guidelines for CR-AFM experiments, such as optimum laser spot positioning for different experimental conditions. These experiments provide insight into the complex system dynamics that can affect CR-AFM and lay a foundation for enhanced nanomechanical measurements with CR-AFM.

  20. Experimental demonstration of beaconless beam displacement tracking for an orbital angular momentum multiplexed free-space optical link.

    PubMed

    Li, Long; Zhang, Runzhou; Xie, Guodong; Ren, Yongxiong; Zhao, Zhe; Wang, Zhe; Liu, Cong; Song, Haoqian; Pang, Kai; Bock, Robert; Tur, Moshe; Willner, Alan E

    2018-05-15

    In this Letter, we experimentally demonstrate beaconless beam displacement tracking for free-space optical communication link multiplexing multiple orbital angular momentum (OAM) beams, where the data-carrying OAM beams are used for position detection. 400 Gbit/s data transmission is demonstrated under emulated lateral displacement of up to ±10  mm with power penalties of less than 3 dB for all channels. Channel crosstalk is reduced by the beam tracking system to below -18  dB. Moreover, we investigate using a Gaussian beacon for beam displacement tracking, and achieve similar channel crosstalk and power penalties, compared with using the beaconless beam tracking.

  1. [Changes in perceived health in war-displaced population, Ayacucho, Peru: 1980-2004].

    PubMed

    Medina, José Moya; López-Moreno, Sergio

    2011-03-01

    The current study aims to show the individual and familiar changes in health patterns suffered by indigenous communities which were displaced from their Andean communities to Ayacucho city, Peru, for war-related political reasons, during the period of 1980 and 2004. Information about health self-perception was collected from displaced farmers living in Ayacucho city, and analyzed by using ethnographic research tools in: origin communities; during the displaced process to town, and during the integration process once the war was over in 1993. It was found out that these poor Andean communities had traditionally lived under severe social exclusion conditions, and were characterized by low access to health services and high childhood and maternal mortality rates. Vulnerability to disease, malnutrition and death reached a higher impact during the early years after the displacement, followed by a reconstructive process in order to set up a new social network. It gets consolidated once the war is over. At that time, life conditions start becoming more favorable, identification documents were regularized, and an improvement in access to health programs and services is detected. These changes also reflected the improvement on health self-perception. Nevertheless, mental health will remain causing distress in every age group of the population.

  2. Displacement imprinted polymer receptor analysis (DIPRA) for chlorophenolic contaminants in drinking water and packaging materials.

    PubMed

    Nicholls, C; Karim, K; Piletsky, S; Saini, S; Setford, S

    2006-01-15

    The preparation of a molecularly imprinted polymer (MIP) for pentachlorophenol is described together with two alternative reporter derivatives for use in a displacement imprinted polymer receptor analysis (DIPRA) format procedure. In this procedure, alternative reporter molecules were rebound to the synthetic receptor sites and their displacement by the target analyte was employed as the basis of a simple procedure for the measurement of chlorophenols in water and packaging material samples. Water samples were extracted using the standard procedure (EPA 528) and a detection limit of 0.5 microg l(-1) was achieved using the DIPRA detection method, with good agreement between the displacement technique and GC-ECD analysis. A variety of packaging materials, extracted using a buffered detergent solution were also analysed using the DIPRA procedure and showed good agreement with GC results. In addition, investigation of the cross-reactivity of a range of pesticides and materials commonly encountered in environmental analysis indicated the procedure gave good discrimination between pesticides bearing a chlorophenolic moiety and other materials. The procedure is considered highly suitable for use as a rapid field-test method or for incorporation into a test kit device.

  3. High speed displacement measurement based on electro-magnetic induction applied to electromagnetically driven ring expansion

    NASA Astrophysics Data System (ADS)

    Han, Xiaotao; Wu, Jiawei; Huang, Lantao; Qiu, Lei; Chen, Qi; Cao, Quanliang; Herlach, Fritz; Li, Liang

    2017-11-01

    Investigating the mechanism of electromagnetic forming (EMF) becomes a hot topic in the field of metal forming. The high speed up to 200 m/s in EMF makes it a real challenge to capture the forming process. To this end, a new method for measuring displacement at high speed based on electromagnetic induction has been developed. Specifically this is used to measure the displacement of an expanding metal ring driven by a pulsed magnetic field; this is one of the basic EMF processes. The new method is simple and practical, and it combines high-speed response with adequate precision. The new measurement system consists of a printed circuit board (PCB) and a Rogowski probe. Eleven coaxial annular detecting probes are arranged in the PCB plate to acquire induced voltage at different positions, and a Rogowski probe is used to measure the current in the driving coil. The displacement of the ring is deduced by analyzing the output voltages of the detecting probes and the Rogowski probe. The feasibility of the method is verified by comparing the results with pictures from a high speed camera taken simultaneously.

  4. Peroneal tendon displacement accompanying intra-articular calcaneal fractures.

    PubMed

    Toussaint, Rull James; Lin, Darius; Ehrlichman, Lauren K; Ellington, J Kent; Strasser, Nicholas; Kwon, John Y

    2014-02-19

    Peroneal tendon displacement (subluxation or dislocation) accompanying an intra-articular calcaneal fracture is often undetected and under-treated. The goals of this study were to determine (1) the prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures, (2) the association of tendon displacement with fracture classifications, (3) the association of tendon displacement with heel width, and (4) the rate of missed diagnosis of the tendon displacement on radiographs and computed tomography (CT) scans and the resulting treatment rate. A retrospective radiographic review of all calcaneal fractures presenting at three institutions from June 30, 2006, to June 30, 2011, was performed. CT imaging of 421 intra-articular calcaneal fractures involving the posterior facet was available for review. The prevalence of peroneal tendon displacement was noted and its associations with fracture classification and heel width were evaluated. Peroneal tendon displacement was identified in 118 (28.0%) of the 421 calcaneal fracture cases. The presence of tendon displacement was significantly associated with joint-depression fractures compared with tongue-type fractures (p < 0.001). Only twelve (10.2%) of the 118 cases of peroneal tendon displacement had been identified in the radiology reports. Although sixty-five (55.1%) of the fractures with tendon displacement had been treated with internal fixation, the tendon displacement was treated surgically in only seven (10.8%) of these cases. Analysis of CT images showed a 28% prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures. Surgeons and radiologists are encouraged to consider this association.

  5. Displacement of dental implants in trabecular bone under a static lateral load in fresh bovine bone.

    PubMed

    Engelke, Wilfried; Müller, Alois; Decco, Oscar A; Rau, María J; Cura, Andrea C; Ruscio, Mara L; Knösel, Michael

    2013-04-01

    The study aims to provide objective data for the displacement of titanium screw implants in trabecular bone specimens. One hundred Semados implants (Bego, Bremen, Germany) were inserted in bovine type IV bone specimens. All implants had a diameter of 3.75 mm; 50 implants had a length of 8.5 mm and 50 implants had a length of 15 mm. Insertion torque was determined at intervals of 10, 20, and 30 Ncm. Implants were loaded horizontally with 10, 20, and 30 N for 2 seconds. An indicator strip was attached to the implant abutment to allow direct observation of implant movement relative to the bone surface. Horizontal displacement was assessed with an accuracy of measurement of 10 µm. Seven implants got lost by visible loosening. Degree of displacement was subject to evaluation with all others. Those implants showed a mean displacement of 59 µm for 10 N (n = 100), 173 µm for 20 N (n = 99), and 211 µm for 30 N (n = 93). The mean displacement of 15-mm implants (16, 37, 51 µm) was significantly lower compared with 8.5-mm implants (103, 311, 396 µm) corresponding to 10, 20, and 30 N as lateral loads. Displacement of screw implants in trabecular bone can be detected and visualized using commercially available endoscopes with a high magnification. A lateral load of 20 N indicates a mean displacement of over 100 µm and therefore results in a critical displacement. © 2011 Wiley Periodicals, Inc.

  6. 24 CFR 583.310 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Displacement, relocation, and....310 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  7. 24 CFR 578.83 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... to minimize the displacement of persons (families, individuals, businesses, nonprofit organizations...

  8. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  9. 24 CFR 92.353 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  10. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  11. 24 CFR 583.310 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Displacement, relocation, and....310 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  12. 24 CFR 92.353 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  13. 24 CFR 92.353 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  14. 24 CFR 578.83 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... to minimize the displacement of persons (families, individuals, businesses, nonprofit organizations...

  15. 24 CFR 92.353 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  16. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  17. 24 CFR 583.310 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Displacement, relocation, and....310 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  18. 24 CFR 583.310 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Displacement, relocation, and....310 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  19. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  20. 24 CFR 583.310 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Displacement, relocation, and....310 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  1. 24 CFR 236.1001 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Displacement, relocation, and... Assistance § 236.1001 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with... reasonable steps to minimize the displacement of persons (households, businesses, nonprofit organizations...

  2. 24 CFR 92.353 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... minimize the displacement of persons (families, individuals, businesses, nonprofit organizations, and farms...

  3. Optimization of strand displacement amplification-sensitized G-quadruplex DNAzyme-based sensing system and its application in activity detection of uracil-DNA glycosylase.

    PubMed

    Du, Yi-Chen; Jiang, Hong-Xin; Huo, Yan-Fang; Han, Gui-Mei; Kong, De-Ming

    2016-03-15

    As an isothermal nucleic acid amplification technique, strand displacement amplification (SDA) reaction has been introduced in G-quadruplex DNAzyme-based sensing system to improve the sensing performance. To further provide useful information for the design of SDA-amplified G-quadruplex DNAzyme-based sensors, the effects of nicking site number in SDA template DNA were investigated. With the increase of the nicking site number from 1 to 2, enrichment of G-quadruplex DNAzyme by SDA is changed from a linear amplification to an exponential amplification, thus greatly increasing the amplification efficiency and subsequently improving the sensing performance of corresponding sensing system. The nicking site number cannot be further increased because more nicking sites might result in high background signals. However, we demonstrated that G-quadruplex DNAzyme enrichment efficiency could be further improved by introducing a cross-triggered SDA strategy, in which two templates each has two nicking sites are used. To validate the proposed cross-triggered SDA strategy, we used it to develop a sensing platform for the detection of uracil-DNA glycosylase (UDG) activity. The sensor enables sensitive detection of UDG activity in the range of 1 × 10(-4)-1 U/mL with a detection limit of 1 × 10(-4)U/mL. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Simplified models for displaced dark matter signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchmueller, Oliver; De Roeck, Albert; Hahn, Kristian

    We propose a systematic programme to search for long-lived neutral particle signatures through a minimal set of displaced =E T searches (dMETs). Here, our approach is to extend the well-established dark matter simpli ed models to include displaced vertices. The dark matter simplified models are used to describe the primary production vertex. A displaced secondary vertex, characterised by the mass of the long-lived particle and its lifetime, is added for the displaced signature. We show how these models can be motivated by, and mapped onto, complete models such as gauge-mediated SUSY breaking and models of neutral naturalness. We also outlinemore » how this approach may be used to extend other simplified models to incorporate displaced signatures and to characterise searches for longlived charged particles. Displaced vertices are a striking signature which is often virtually background free, and thus provide an excellent target for the high-luminosity run of the Large Hadron Collider. The proposed models and searches provide a first step towards a systematic broadening of the displaced dark matter search programme.« less

  5. Simplified models for displaced dark matter signatures

    DOE PAGES

    Buchmueller, Oliver; De Roeck, Albert; Hahn, Kristian; ...

    2017-09-18

    We propose a systematic programme to search for long-lived neutral particle signatures through a minimal set of displaced =E T searches (dMETs). Here, our approach is to extend the well-established dark matter simpli ed models to include displaced vertices. The dark matter simplified models are used to describe the primary production vertex. A displaced secondary vertex, characterised by the mass of the long-lived particle and its lifetime, is added for the displaced signature. We show how these models can be motivated by, and mapped onto, complete models such as gauge-mediated SUSY breaking and models of neutral naturalness. We also outlinemore » how this approach may be used to extend other simplified models to incorporate displaced signatures and to characterise searches for longlived charged particles. Displaced vertices are a striking signature which is often virtually background free, and thus provide an excellent target for the high-luminosity run of the Large Hadron Collider. The proposed models and searches provide a first step towards a systematic broadening of the displaced dark matter search programme.« less

  6. Project-induced displacement, secondary stressors, and health.

    PubMed

    Cao, Yue; Hwang, Sean-Shong; Xi, Juan

    2012-04-01

    It has been estimated that about 15 million people are displaced by development projects around the world each year. Despite the magnitude of people affected, research on the health and other impacts of project-induced displacement is rare. This study extends existing knowledge by exploring the short-term health impact of a large scale population displacement resulting from China's Three Gorges Dam Project. The study is theoretically guided by the stress process model, but we supplement it with Cernea's impoverishment risks and reconstruction (IRR) model widely used in displacement literature. Our panel analysis indicates that the displacement is associated positively with relocatees' depression level, and negatively with their self-rated health measured against a control group. In addition, a path analysis suggests that displacement also affects depression and self-rated health indirectly by changing social integration, socioeconomic status, and community resources. The importance of social integration as a protective mechanism, a factor that has been overlooked in past studies of population displacement, is highlighted in this study. Published by Elsevier Ltd.

  7. PROJECT-INDUCED DISPLACEMENT, SECONDARY STRESSORS, AND HEALTH

    PubMed Central

    Cao, Yue; Hwang, Sean-Shong; Xi, Juan

    2012-01-01

    It has been estimated that about 15 million people are displaced by development projects around the world each year. Despite the magnitude of people affected, research on the health and other impacts of project-induced displacement is rare. This study extends existing knowledge by exploring the short-term health impact of a large scale population displacement resulting from China’s Three Gorges Dam Project. The study is theoretically guided by the stress process model, but we supplement it with Cernea’s Impoverishment Risks and Reconstruction (IRR) model widely used in displacement literature. Our panel analysis indicates that the displacement is associated positively with relocatees’ depression level, and negatively with their self-rated health measured against a control group. In addition, a path analysis suggests that displacement also affects depression and self-rated health indirectly by changing social integration, socioeconomic status, and community resources. The importance of social integration as a protective mechanism, a factor that has been overlooked in past studies of population displacement, is highlighted in this study. PMID:22341203

  8. Breast surface radiation dose during coronary CT angiography: reduction by breast displacement and lead shielding.

    PubMed

    Foley, Shane J; McEntee, Mark F; Achenbach, Stephan; Brennan, Patrick C; Rainford, Louise S; Dodd, Jonathan D

    2011-08-01

    The purpose of this study was to prospectively evaluate the effect of cranial breast displacement and lead shielding on in vivo breast surface radiation dose in women undergoing coronary CT angiography. Fifty-four women (mean age, 59.2 ± 9.8 years) prospectively underwent coronary 64-MDCT angiography for evaluation of chest pain. The patients were randomly assigned to a control group (n = 16), breast displacement group (n = 22), or breast displacement plus lead shielding group (n = 16). Thermoluminescent dosimeters (TLDs) were placed superficially on each breast quadrant and the areolar region of both breasts. Breast surface radiation doses, the degree of breast displacement, and coronary image quality were compared between groups. A phantom dose study was conducted to compare breast doses with z-axis positioning on the chest wall. A total of 1620 TLD dose measurements were recorded. Compared with control values, the mean breast surface dose was reduced 23% in the breast displacement group (24.3 vs 18.6 mGy, p = 0.015) and 36% in the displacement plus lead shielding group (24.3 vs 15.6 mGy, p = 0.0001). Surface dose reductions were greatest in the upper outer (displacement alone, 66%; displacement plus shielding, 63%), upper inner (65%, 58%), and areolar quadrants (44%, 53%). The smallest surface dose reductions were recorded for A-cup breasts: 7% for the displacement group and 3% for the displacement plus lead group (p = 0.741). Larger reductions in surface dose were recorded for B-cup (25% and 56%, p = 0.273), C-cup (38% and 60%, p = 0.001), and D-cup (31% and 25%, p = 0.095) sizes. Most of the patients (79%) had either good (< 50% of breast above scan range) or excellent (< 75% of breast above the scan range) breast displacement. No significant difference in coronary image quality was detected between groups. The phantom dose study showed that surface TLD measurements were underestimates of absorbed tissue dose by a mean of 9% and that a strong negative

  9. Experimental investigation of the displacement dynamics during biphasic flow in porous media

    NASA Astrophysics Data System (ADS)

    Ayaz, Monem; Toussaint, Renaud; Måløy, Knut-Jørgen; Schafer, Gerhard

    2016-04-01

    We experimentally study the interface dynamics of an immiscible fluid as it displaces a fully saturated porous medium. The system is confined by a vertically oriented Hele-Shaw cell, with piezoelectric type acoustic sensors mounted along the centerline. During drainage potential surface energy is stored at the interface up to a given threshold in pressure, at which an instability occurs as new pores are invaded and the radius of curvature of the interface increases locally, the energy gets released, and part of this energy is detectable as acoustic emission. By detecting pore-scale events emanating from the interface at various points, we look to develop techniques for localizing the displacement front. To assess the quality, optical monitoring is done using a high speed camera.In our study we also aim to gain further insight into the interface dynamics by varying parameters such as the effective gravity, and the invasion speed and using other methods of probing the system such as active tomography. We here present our preliminary results of this study.

  10. 24 CFR 576.408 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Displacement, relocation, and... § 576.408 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the... assure that they have taken all reasonable steps to minimize the displacement of persons (families...

  11. 24 CFR 941.207 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... displacement of persons (households, businesses, nonprofit organizations, and farms) as a result of a project...

  12. 24 CFR 941.207 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... displacement of persons (households, businesses, nonprofit organizations, and farms) as a result of a project...

  13. 24 CFR 576.408 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Displacement, relocation, and... § 576.408 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the... assure that they have taken all reasonable steps to minimize the displacement of persons (families...

  14. 24 CFR 941.207 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... displacement of persons (households, businesses, nonprofit organizations, and farms) as a result of a project...

  15. 24 CFR 576.408 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Displacement, relocation, and... § 576.408 Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the... assure that they have taken all reasonable steps to minimize the displacement of persons (families...

  16. 24 CFR 941.207 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Displacement, relocation, and... Displacement, relocation, and acquisition. (a) Minimizing displacement. Consistent with the other goals and... displacement of persons (households, businesses, nonprofit organizations, and farms) as a result of a project...

  17. Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sader, John E., E-mail: jsader@unimelb.edu.au; Yousefi, Morteza; Friend, James R.

    2014-02-15

    Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noisemore » spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.« less

  18. Exploring methods of cGPS transient detections for the Chilean cGPS network in conjunction with displacement predictions from seismic catalogues: To what extent can we detect seismic and aseismic motion in the cGPS network?

    NASA Astrophysics Data System (ADS)

    Bedford, J. R.; Moreno, M.; Oncken, O.; Li, S.; Schurr, B.; Metzger, S.; Baez, J. C.; Deng, Z.; Melnick, D.

    2016-12-01

    Various algorithms for the detection of transient deformation in cGPS networks are under currently being developed to relieve us of by-eye detection, which is an error prone and time-expensive activity. Such algorithms aim to separate the time series into secular, seasonal, and transient components. Additional white and coloured noise, as well as common-mode (network correlated) noise, may remain in the separated transient component of the signal, depending on the processing flow before the separation step. The a-priori knowledge of regional seismicity can assist in the recognition of steps in the data, which are generally corrected for if they are above the noise-floor. Sometimes, the cumulative displacement caused by small earthquakes can create a seemingly continuous transient signal in the cGPS leading to confusion as to whether to attribute this transient motion as seismic or aseismic. Here we demonstrate the efficacy of various transient detection algorithms for subsets of the Chilean cGPS network and present the optimal processing flow for teasing out the transients. We present a step-detection and removal algorithm and estimate the seismic efficiency of any detected transient signals by forward modelling the surface displacements of the earthquakes and comparing to the recovered transient signals. A major challenge in separating signals in the Chilean cGPS network is the overlapping of postseismic effects at adjacent segments: For example, a Mw 9 earthquake will produce a postseismic viscoelastic relaxation that is sustained over decades and several hundreds of kilometres. Additionally, it has been observed in Chile and Japan that following moderately large earthquakes (e.g. Mw > 8) the secular velocities of adjacent segments in the subduction margin suddenly change and remain changed: this effect may be related to a change in speed of slab subduction rather than viscoelastic relaxation, and therefore the signal separation algorithms that assume a time

  19. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.

    PubMed

    Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai

    2013-04-15

    An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments

    PubMed Central

    Qin, Zhao; Kreplak, Laurent; Buehler, Markus J.

    2009-01-01

    Intermediate filaments (IFs), in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, playing a vital role in mechanotransduction and in providing mechanical stability to cells. Despite the importance of IF mechanics for cell biology and cell mechanics, the structural basis for their mechanical properties remains unknown. Specifically, our understanding of fundamental filament properties, such as the basis for their great extensibility, stiffening properties, and their exceptional mechanical resilience remains limited. This has prevented us from answering fundamental structure-function relationship questions related to the biomechanical role of intermediate filaments, which is crucial to link structure and function in the protein material's biological context. Here we utilize an atomistic-level model of the human vimentin dimer and tetramer to study their response to mechanical tensile stress, and describe a detailed analysis of the mechanical properties and associated deformation mechanisms. We observe a transition from alpha-helices to beta-sheets with subsequent interdimer sliding under mechanical deformation, which has been inferred previously from experimental results. By upscaling our results we report, for the first time, a quantitative comparison to experimental results of IF nanomechanics, showing good agreement. Through the identification of links between structures and deformation mechanisms at distinct hierarchical levels, we show that the multi-scale structure of IFs is crucial for their characteristic mechanical properties, in particular their ability to undergo severe deformation of ≈300% strain without breaking, facilitated by a cascaded activation of a distinct deformation mechanisms operating at different levels. This process enables IFs to combine disparate properties such as mechanosensitivity, strength and deformability. Our results enable a new paradigm in studying

  1. Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments.

    PubMed

    Qin, Zhao; Kreplak, Laurent; Buehler, Markus J

    2009-10-06

    Intermediate filaments (IFs), in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, playing a vital role in mechanotransduction and in providing mechanical stability to cells. Despite the importance of IF mechanics for cell biology and cell mechanics, the structural basis for their mechanical properties remains unknown. Specifically, our understanding of fundamental filament properties, such as the basis for their great extensibility, stiffening properties, and their exceptional mechanical resilience remains limited. This has prevented us from answering fundamental structure-function relationship questions related to the biomechanical role of intermediate filaments, which is crucial to link structure and function in the protein material's biological context. Here we utilize an atomistic-level model of the human vimentin dimer and tetramer to study their response to mechanical tensile stress, and describe a detailed analysis of the mechanical properties and associated deformation mechanisms. We observe a transition from alpha-helices to beta-sheets with subsequent interdimer sliding under mechanical deformation, which has been inferred previously from experimental results. By upscaling our results we report, for the first time, a quantitative comparison to experimental results of IF nanomechanics, showing good agreement. Through the identification of links between structures and deformation mechanisms at distinct hierarchical levels, we show that the multi-scale structure of IFs is crucial for their characteristic mechanical properties, in particular their ability to undergo severe deformation of approximately 300% strain without breaking, facilitated by a cascaded activation of a distinct deformation mechanisms operating at different levels. This process enables IFs to combine disparate properties such as mechanosensitivity, strength and deformability. Our results enable a new paradigm in

  2. Displacement of screw-retained single crowns into implants with conical internal connections.

    PubMed

    Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L

    2013-01-01

    Internal conical implant-abutment connections without platforms may lead to axial displacement of crowns during screw tightening. This displacement may affect proximal contacts, incisal edge position, or occlusion. This study aimed to measure the displacement of screw-retained single crowns into an implant in three dimensions during screw tightening by hand or via torque driver. A stereolithic acrylic resin cast was created using computed tomography data from a patient missing the maxillary right central incisor. A 4.0- × 11-mm implant was placed in the edentulous site. Five porcelain-fused-to-metal single crowns were made using "cast-to" abutments. Crowns were tried on the stereolithic model, representing the patient, and hand tightened. The spatial relationship of crowns to the model after hand tightening was determined using three-dimensional digital image correlation (3D DIC), an optical measurement technique. The crowns were then tightened using a torque driver to 20 Ncm and the relative crown positions were again recorded. Testing was repeated three times for each crown, and displacement of the crowns was compared between the hand-tightened and torqued states. Commercial image correlation software was used to analyze the data. Mean vertical and horizontal crown displacement values were calculated after torqueing. The interproximal contacts were evaluated before and after torquing using an 8-μm aluminum foil shim. There were vertical and horizontal differences in crown positions between hand tightening and torqueing. Although these were small in magnitude, detectable displacements occurred in both apical and facial directions. After hand tightening, the 8-μm shim could be dragged without tearing. However, after torque tightening, the interproximal contacts were too tight and the 8-μm shim could not be dragged without tearing. Differences between hand tightening and torque tightening should be taken into consideration during laboratory and clinical

  3. 7 CFR 1944.667 - Relocation and displacement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 13 2013-01-01 2013-01-01 false Relocation and displacement. 1944.667 Section 1944... displacement. (a) Relocation. Public bodies and agencies must comply with the requirements of the Uniform... maximum amount of temporary or permanent relocation costs proposed to be allowed. (b) Displacement. The...

  4. 7 CFR 1944.667 - Relocation and displacement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false Relocation and displacement. 1944.667 Section 1944... displacement. (a) Relocation. Public bodies and agencies must comply with the requirements of the Uniform... maximum amount of temporary or permanent relocation costs proposed to be allowed. (b) Displacement. The...

  5. 7 CFR 1944.667 - Relocation and displacement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Relocation and displacement. 1944.667 Section 1944.667...) PROGRAM REGULATIONS (CONTINUED) HOUSING Housing Preservation Grants § 1944.667 Relocation and displacement... maximum amount of temporary or permanent relocation costs proposed to be allowed. (b) Displacement. The...

  6. 7 CFR 1944.667 - Relocation and displacement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Relocation and displacement. 1944.667 Section 1944.667...) PROGRAM REGULATIONS (CONTINUED) HOUSING Housing Preservation Grants § 1944.667 Relocation and displacement... maximum amount of temporary or permanent relocation costs proposed to be allowed. (b) Displacement. The...

  7. 7 CFR 1944.667 - Relocation and displacement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 13 2014-01-01 2013-01-01 true Relocation and displacement. 1944.667 Section 1944.667...) PROGRAM REGULATIONS (CONTINUED) HOUSING Housing Preservation Grants § 1944.667 Relocation and displacement... maximum amount of temporary or permanent relocation costs proposed to be allowed. (b) Displacement. The...

  8. Moral Reasoning in Violent Contexts: Displaced and Non-Displaced Colombian Children's Evaluations of Moral Transgressions, Retaliation, and Reconciliation

    ERIC Educational Resources Information Center

    Ardila-Rey, Alicia; Killen, Melanie; Brenick, Alaina

    2009-01-01

    In order to assess the effects of displacement and exposure to violence on children's moral reasoning, Colombian children exposed to minimal violence (non-displaced or low risk; N = 99) and to extreme violence (displaced or high risk; N = 94), evenly divided by gender at 6, 9, and 12 years of age, were interviewed regarding their evaluation of…

  9. War, forced displacement and growth in Laotian adults.

    PubMed

    Clarkin, Patrick F

    2012-01-01

    Evidence from several populations suggests that war negatively impacts civilian nutrition, physical growth and overall health. This effect is often enduring or permanent, particularly if experienced early in life. To assess whether the number of lifetime displacement experiences and being displaced in infancy were associated with adult height, sitting height, leg length and the sitting height ratio. Retrospective questionnaires on displacement and resettlement experiences and anthropometric data were collected from a sample of Laotian adult refugees (ethnic Hmong and Lao; n = 365). All were born in Laos or Thailand and had resettled in French Guiana or the US. Many had been displaced several times by military conflict in Laos. In bivariate analyses, being displaced in infancy and the number of lifetime displacement experiences one had were negatively associated with final adult height and leg length in both sexes. The association was stronger in females, particularly Hmong females. There was no significant association between total displacement experiences and the sitting height ratio. In multiple regression analyses, linear growth in males was negatively associated with being displaced in infancy; in females, the number of lifetime displacement experiences was a significant predictor. Forced displacement from war appears to have a lasting effect on final adult height, sitting height and leg length, although not necessarily on the sitting height ratio in this sample.

  10. Detection of esophageal fiducial marker displacement during radiation therapy with a 2-dimensional on-board imager: analysis of internal margin for esophageal cancer.

    PubMed

    Fukada, Junichi; Hanada, Takashi; Kawaguchi, Osamu; Ohashi, Toshio; Takeuchi, Hiroya; Kitagawa, Yuko; Seki, Satoshi; Shiraishi, Yutaka; Ogata, Haruhiko; Shigematsu, Naoyuki

    2013-03-15

    To quantify the interfraction displacement of esophageal fiducial markers for primary esophageal cancer radiation therapy. Orthogonal 2-dimensional (2D) matching records fused to vertebrae were analyzed in clinically staged T1/2N0 esophageal cancer patients undergoing endoscopic clipping as fiducial metal markers. Displacement of the markers between the digitally reconstructed radiographs and on-board kilovoltage images during radiation therapy was analyzed according to direction and esophageal site. Forty-four patients, with 81 markers (10 proximal, 42 middle, and 29 distal), underwent 367 2D matching sessions during radiation therapy. The mean (SD) absolute marker displacement was 0.26 (0.30) cm in the right-left (RL), 0.50 (0.39) cm in the superior-inferior (SI), and 0.24 (0.21) cm in the anterior-posterior (AP) direction. Displacement was significantly larger in the SI than in the RL and AP directions (P<.0001). In the SI direction, mean absolute displacements of the distal, middle, and proximal esophagus were 0.67 (0.45) cm, 0.42 (0.32) cm, and 0.36 (0.30) cm, respectively. Distal esophagus displacement was significantly larger than those of the middle and proximal esophagus (P<.0001). The estimated internal margin to cover 95% of the cases was 0.75 cm in the RL and AP directions. In the SI direction, the margin was 1.25 cm for the proximal and middle esophagus and 1.75 cm for the distal esophagus. The magnitude of interfraction displacement of esophageal clips was larger in the SI direction, particularly in the distal esophagus, but substantial displacement was observed in other directions and at other esophageal sites. It is practical to take estimated movements into account with internal margins, even if vertebrae-based 2D matching is performed. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Detection of Esophageal Fiducial Marker Displacement During Radiation Therapy With a 2-dimensional On-board Imager: Analysis of Internal Margin for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukada, Junichi, E-mail: fukada@rad.med.keio.ac.jp; Hanada, Takashi; Kawaguchi, Osamu

    Purpose: To quantify the interfraction displacement of esophageal fiducial markers for primary esophageal cancer radiation therapy. Methods and Materials: Orthogonal 2-dimensional (2D) matching records fused to vertebrae were analyzed in clinically staged T1/2N0 esophageal cancer patients undergoing endoscopic clipping as fiducial metal markers. Displacement of the markers between the digitally reconstructed radiographs and on-board kilovoltage images during radiation therapy was analyzed according to direction and esophageal site. Results: Forty-four patients, with 81 markers (10 proximal, 42 middle, and 29 distal), underwent 367 2D matching sessions during radiation therapy. The mean (SD) absolute marker displacement was 0.26 (0.30) cm in themore » right–left (RL), 0.50 (0.39) cm in the superior–inferior (SI), and 0.24 (0.21) cm in the anterior–posterior (AP) direction. Displacement was significantly larger in the SI than in the RL and AP directions (P<.0001). In the SI direction, mean absolute displacements of the distal, middle, and proximal esophagus were 0.67 (0.45) cm, 0.42 (0.32) cm, and 0.36 (0.30) cm, respectively. Distal esophagus displacement was significantly larger than those of the middle and proximal esophagus (P<.0001). The estimated internal margin to cover 95% of the cases was 0.75 cm in the RL and AP directions. In the SI direction, the margin was 1.25 cm for the proximal and middle esophagus and 1.75 cm for the distal esophagus. Conclusions: The magnitude of interfraction displacement of esophageal clips was larger in the SI direction, particularly in the distal esophagus, but substantial displacement was observed in other directions and at other esophageal sites. It is practical to take estimated movements into account with internal margins, even if vertebrae-based 2D matching is performed.« less

  12. Optical inverse-square displacement sensor

    DOEpatents

    Howe, R.D.; Kychakoff, G.

    1989-09-12

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.

  13. Optical inverse-square displacement sensor

    DOEpatents

    Howe, Robert D.; Kychakoff, George

    1989-01-01

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##

  14. Displacement of the retina and its recovery after vitrectomy in idiopathic epiretinal membrane.

    PubMed

    Nitta, Eri; Shiraga, Fumio; Shiragami, Chieko; Fukuda, Kouki; Yamashita, Ayana; Fujiwara, Atsushi

    2013-06-01

    To study the displacement of the retina and its change after vitrectomy in idiopathic epiretinal membrane (ERM). Prospective, interventional case series. Fifty-six eyes of 53 consecutive patients with ERM underwent vitrectomy with ERM removal and internal limiting membrane peeling. Fundus autofluorescence (FAF) imaging was examined before and at 1, 3, 6, and 12 months after vitrectomy. Main outcome measures were the proportion of eyes with retinal displacement for ERM detected by FAF imaging and the recovery rate of retinal displacement after vitrectomy. Before surgery, FAF photography demonstrated hyperautofluorescent lines within the vascular arcade in 37 (66.1%) of the 56 eyes. The lines seemed to be consistent with the location of the retinal vessels before their displacement. These hyperautofluorescent lines appeared significantly more frequently among patients in whom the disease duration was 3 years or less. In 23 (62.2%) of these 37 eyes, within the first postoperative month, the hyperautofluorescent lines disappeared. The disappearance of the hyperautofluorescent line was thought to be the result of the return of the retinal vessel to its original position. Greater visual improvements (logarithm of the minimal angle of resolution, ≥0.3) were statistically significantly obtained in patients in whom the hyperautofluorescent lines had become indistinct at 1 month after surgery (P < .05). Hyperautofluorescent lines indicating retinal displacement were found by FAF in 66.1% of patients before surgery for ERM. In addition, retinal displacement was significantly more common among patients who had experienced subjective symptoms for 3 years or less. Fundus autofluorescence is useful for predicting postoperative visual acuity improvement. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    PubMed Central

    Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-01-01

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937

  16. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    PubMed

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  17. An unbiased measure of the contributions of chroma and luminance to saccadic suppression of displacement.

    PubMed

    Anand, Sulekha; Bridgeman, Bruce

    2002-02-01

    Perception of image displacement is suppressed during saccadic eye movements. We probed the source of saccadic suppression of displacement by testing whether it selectively affects chromatic- or luminance-based motion information. Human subjects viewed a stimulus in which chromatic and luminance cues provided conflicting information about displacement direction. Apparent motion occurred during either fixation or a 19.5 degree saccade. Subjects detected motion and discriminated displacement direction in each trial. They reported motion in over 90% of fixation trials and over 70% of saccade trials. During fixation, the probability of perceiving the direction carried by chromatic cues decreased as luminance contrast increased. During saccades, subjects tended to perceive the direction indicated by luminance cues when luminance contrast was high. However, when luminance contrast was low, subjects showed no preference for the chromatic- or luminance-based direction. Thus magnocellular channels are suppressed, while stimulation of parvocellular channels is below threshold, so that neither channel drives motion perception during saccades. These results confirm that magnocellular inhibition is the source of saccadic suppression.

  18. Development and Evolution of Character Displacement

    PubMed Central

    Pfennig, David W.; Pfennig, Karin S.

    2012-01-01

    Character displacement occurs when competition for either resources or successful reproduction imposes divergent selection on interacting species, causing divergence in traits associated with resource use or reproduction. Here, we describe how character displacement can be mediated either by genetically canalized changes (i.e., changes that reflect allelic or genotype frequency changes) or by phenotypic plasticity. We also discuss how these two mechanisms influence the tempo of character displacement. Specifically, we suggest that, under some conditions, character displacement mediated by phenotypic plasticity might occur more rapidly than that mediated by genetically canalized changes. Finally, we describe how these two mechanisms may act together and determine character displacement’s mode, such that it proceeds through an initial phase in which trait divergence is environmentally induced to a later phase in which divergence becomes genetically canalized. This plasticity-first hypothesis predicts that character displacement should be generally mediated by ancestral plasticity and that it will arise similarly in multiple, independently evolving populations. We conclude by highlighting future directions for research that would test these predictions. PMID:22257002

  19. Displaced epithelium after liposuction for gynecomastia.

    PubMed

    McLaughlin, Cristina S; Petrey, Chris; Grant, Shawn; Ransdell, Jill S; Reynolds, Carol

    2011-08-01

    The authors describe the case of a 36-year-old man with gynecomastia who was previously treated with liposuction of the breast for cosmetic purposes. Histologic examination of a subsequent excisional biopsy revealed nests of displaced epithelial cells in adipose tissue. Epithelial cell displacement is a well-known risk of core needle biopsies and fine-needle aspirations of breast lesions. However, to the authors' knowledge, epithelial displacement in gynecomastia after liposuction, mimicking invasive ductal carcinoma, has not previously been reported.

  20. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

    NASA Technical Reports Server (NTRS)

    Dhawan, R.; Gunther, M. F.; Claus, R. O.

    1991-01-01

    Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

  1. Optical Method for Detecting Displacements and Strains at Ultra-High Temperatures During Thermo-Mechanical Testing

    NASA Technical Reports Server (NTRS)

    Roth, Mark C. (Inventor); Smith, Russell W. (Inventor); Sikora, Joseph G. (Inventor); Rivers, H. Kevin (Inventor); Johnston, William M. (Inventor)

    2016-01-01

    An ultra-high temperature optical method incorporates speckle optics for sensing displacement and strain measurements well above conventional measurement techniques. High temperature pattern materials are used which can endure experimental high temperature environments while simultaneously having a minimum optical aberration. A purge medium is used to reduce or eliminate optical distortions and to reduce, and/or eliminate oxidation of the target specimen.

  2. 10 CFR 590.209 - Exchanges by displacement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Exchanges by displacement. 590.209 Section 590.209 Energy... Natural Gas § 590.209 Exchanges by displacement. Any importer of natural gas may enter into an exchange by displacement agreement without the prior authorization of the Assistant Secretary when the net effect of the...

  3. 10 CFR 590.209 - Exchanges by displacement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Exchanges by displacement. 590.209 Section 590.209 Energy... Natural Gas § 590.209 Exchanges by displacement. Any importer of natural gas may enter into an exchange by displacement agreement without the prior authorization of the Assistant Secretary when the net effect of the...

  4. 10 CFR 590.209 - Exchanges by displacement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Exchanges by displacement. 590.209 Section 590.209 Energy... Natural Gas § 590.209 Exchanges by displacement. Any importer of natural gas may enter into an exchange by displacement agreement without the prior authorization of the Assistant Secretary when the net effect of the...

  5. 10 CFR 590.209 - Exchanges by displacement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Exchanges by displacement. 590.209 Section 590.209 Energy... Natural Gas § 590.209 Exchanges by displacement. Any importer of natural gas may enter into an exchange by displacement agreement without the prior authorization of the Assistant Secretary when the net effect of the...

  6. 10 CFR 590.209 - Exchanges by displacement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Exchanges by displacement. 590.209 Section 590.209 Energy... Natural Gas § 590.209 Exchanges by displacement. Any importer of natural gas may enter into an exchange by displacement agreement without the prior authorization of the Assistant Secretary when the net effect of the...

  7. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  8. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  9. Tomography of a displacement photon counter for discrimination of single-rail optical qubits

    NASA Astrophysics Data System (ADS)

    Izumi, Shuro; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2018-04-01

    We investigate the performance of a detection strategy composed of a displacement operation and a photon counter, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the {\\hat{σ }}x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the detection strategy in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof-of-principle experiment shows that the proposed scheme can achieve a discrimination error surpassing homodyne detection.

  10. Competitive displacement of sodium caseinate by low-molecular-weight emulsifiers and the effects on emulsion texture and rheology.

    PubMed

    Munk, M B; Larsen, F H; van den Berg, F W J; Knudsen, J C; Andersen, M L

    2014-07-29

    Low-molecular-weight (LMW) emulsifiers are used to promote controlled destabilization in many dairy-type emulsions in order to obtain stable foams in whippable products. The relation between fat globule aggregation induced by three LMW emulsifiers, lactic acid ester of monoglyceride (LACTEM), saturated monoglyceride (GMS), and unsaturated monoglyceride (GMU) and their effect on interfacial protein displacement was investigated. It was found that protein displacement by LMW emulsifiers was not necessary for fat globule aggregation in emulsions, and conversely fat globule aggregation was not necessarily accompanied by protein displacement. The three LMW emulsifiers had very different effects on emulsions. LACTEM induced shear instability of emulsions, which was accompanied by protein displacement. High stability was characteristic for emulsions with GMS where protein was displaced from the interface. Emulsions containing GMU were semisolid, but only low concentrations of protein were detected in the separated serum phase. The effects of LACTEM, GMS, and GMU may be explained by three different mechanisms involving formation of interfacial α-gel, pickering stabilization and increased exposure of bound casein to the water phase. The latter may facilitate partial coalescence. Stabilizing hydrocolloids did not have any effect on the LMW emulsifiers' ability to induce protein displacement.

  11. Time-Resolved Study of Nanomorphology and Nanomechanic Change of Early-Stage Mineralized Electrospun Poly(lactic acid) Fiber by Scanning Electron Microscopy, Raman Spectroscopy and Atomic Force Microscopy

    PubMed Central

    Wang, Mengmeng; Cai, Yin; Zhao, Bo; Zhu, Peizhi

    2017-01-01

    In this study, scanning electron microscopy (SEM), Raman spectroscopy and high-resolution atomic force microscopy (AFM) were used to reveal the early-stage change of nanomorphology and nanomechanical properties of poly(lactic acid) (PLA) fibers in a time-resolved manner during the mineralization process. Electrospun PLA nanofibers were soaked in simulated body fluid (SBF) for different periods of time (0, 1, 3, 5, 7 and 21 days) at 10 °C, much lower than the conventional 37 °C, to simulate the slow biomineralization process. Time-resolved Raman spectroscopy analysis can confirm that apatites were deposited on PLA nanofibers after 21 days of mineralization. However, there is no significant signal change among several Raman spectra before 21 days. SEM images can reveal the mineral deposit on PLA nanofibers during the process of mineralization. In this work, for the first time, time-resolved AFM was used to monitor early-stage nanomorphology and nanomechanical changes of PLA nanofibers. The Surface Roughness and Young’s Modulus of the PLA nanofiber quantitatively increased with the time of mineralization. The electrospun PLA nanofibers with delicate porous structure could mimic the extracellular matrix (ECM) and serve as a model to study the early-stage mineralization. Tested by the mode of PLA nanofibers, we demonstrated that AFM technique could be developed as a potential diagnostic tool to monitor the early onset of pathologic mineralization of soft tissues. PMID:28817096

  12. A novel single fluorophore-labeled double-stranded oligonucleotide probe for fluorescence-enhanced nucleic acid detection based on the inherent quenching ability of deoxyguanosine bases and competitive strand-displacement reaction.

    PubMed

    Zhang, Yingwei; Tian, Jingqi; Li, Hailong; Wang, Lei; Sun, Xuping

    2012-01-01

    We develop a novel single fluorophore-labeled double-stranded oligonucleotide (OND) probe for rapid, nanostructure-free, fluorescence-enhanced nucleic acid detection for the first time. We further demonstrate such probe is able to well discriminate single-base mutation in nucleic acid. The design takes advantage of an inherent quenching ability of guanine bases. The short strand of the probe is designed with an end-labeled fluorophore that is placed adjacent to two guanines as the quencher located on the long opposite strand, resulting in great quenching of dye fluorescence. In the presence of a target complementary to the long strand of the probe, a competitive strand-displacement reaction occurs and the long strand forms a more stable duplex with the target, resulting in the two strands of the probe being separated from each other. As a consequence of this displacement, the fluorophore and the quencher are no longer in close proximity and dye fluorescence increases, signaling the presence of target.

  13. Application of laser speckle displacement analysis to clinical dentistry

    NASA Astrophysics Data System (ADS)

    Cumberpatch, G. K. D.; Hood, J. A. A.

    1997-03-01

    Success of dental restorations is dependent on the integrity of the tooth/restoration interface. Distortion of teeth due to operative procedures has previously been measured using LVDT's and strain-gauges and has provided useful but limited information. This paper reports on the verification of a system for laser speckle photography and its use to quantitative distortions in teeth from matrix band application and the use of bonded composite resin restorations. Tightening of matrix bands around teeth results in an inward deformation of the cusps, increasing incrementally as the band is tightened. Deflections of 50 micrometer/cusp were recorded. A delayed recovery was noted consistent with the viscoelastic behavior of dentine. For bonded restorations recovery will place the adhesion interface in a state of tension when the band is released and may cause premature failure. Premolar teeth restored with bonded resin restorations exhibited inward displacement of cusps of 12 - 15 micrometer. Deformation was not within the buccal-lingual axis as suggested by prior studies. Molar teeth bonded with composite resin restoration exhibit complex and variable cusp displacement in both magnitude (0 - 30 micrometer) and direction. Complete and partial debonding could be detected. Interproximal cusp bending could be quantitated and lifting of the restoration from the cavity floor was detectable. Deformations evidenced indicate the tooth/restoration interface is in a stressed state and this may subsequently lead to failure. The technique has the potential to aid in development of restoration techniques that minimize residual stress.

  14. Fragmentation of displacement cascades into subcascades: A molecular dynamics study

    DOE PAGES

    Antoshchenkova, E.; Luneville, L.; Simeone, D.; ...

    2014-12-12

    The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less

  15. Fragmentation of displacement cascades into subcascades: A molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoshchenkova, E.; Luneville, L.; Simeone, D.

    The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less

  16. Multiple Cross Displacement Amplification Coupled With Nanoparticles-Based Lateral Flow Biosensor for Detection of Staphylococcus aureus and Identification of Methicillin-Resistant S. aureus.

    PubMed

    Wang, Yi; Yan, Weiqiang; Fu, Shanshan; Hu, Shoukui; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2018-01-01

    Staphylococcus aureus ( S. aureus ), including methicillin-resistant S. aureus (MRSA), is one of the most important human pathogens, which is responsible for bacteremia, soft-tissue infections, and food poisoning. Hence, multiple cross displacement amplification (MCDA) is employed to detect all S. aureus strains, and differentiates MRSA from methicillin-sensitive S. aureus . Multiplex MCDA (m-MCDA), which targets the nuc gene ( S. aureus -specific gene) and mecA gene (encoding penicillin-binding protein-2'), could detect S. aureus strains and identify MRSA within 85 min. Detection of the m-MCDA products is achieved using disposable lateral flow biosensors. A total of 58 strains, including various species of Gram-positive and Gram-negative strains, are used for evaluating and optimizing m-MCDA assays. The optimal amplification condition is found to be 63°C for 40 min, with detection limits at 100 fg DNA/reaction for nuc and mecA genes in the pure cultures, and 10 CFU/tube for nuc and mecA genes in the blood samples. The analytical specificity of m-MCDA assay is of 100%, and no cross-reactions to non- S. aureus strains are produced according to the specificity testing. Particularly, two additional components, including AUDG enzyme and dUTP, are added into the m-MCDA amplification mixtures, which are used for eliminating the unwanted results arising from carryover contamination. Thus, the m-MCDA technique appears to be a simple, rapid, sensitive, and reliable assay to detect all S. aureus strains, and identify MRSA infection for appropriate antibiotic therapy.

  17. Displaced and non-displaced Colombian children's evaluations of moral transgressions, retaliation, and reconciliation

    PubMed Central

    Ardila-Rey, Alicia; Killen, Melanie; Brenick, Alaina

    2015-01-01

    In order to assess the effects of displacement and exposure to violence on children's moral reasoning, Colombian children exposed to minimal violence (non-displaced or low-risk) (N = 99) and to extreme violence (displaced or high-risk) (N = 94), evenly divided by gender, at 6-, 9-, and 12 - years of age, were interviewed regarding their evaluation of peer-oriented moral transgressions (hitting and not sharing toys). The vast majority of children evaluated moral transgressions as wrong. Group and age differences were revealed, however, regarding provocation and retaliation. Children who were exposed to violence, in contrast to those with minimum exposure, judged it more legitimate to inflict harm or deny resources when provoked and judged it more okay to retaliate for reasons of retribution. Surprisingly, and somewhat hopefully, all children viewed reconciliation as feasible. The results are informative regarding theories of morality, culture, and the effects of violence on children's social development. PMID:25722543

  18. Boundary displacement measurements using multi-energy soft x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tritz, K., E-mail: ktritz@pppl.gov; Stutman, D.; Diallo, A.

    The Multi-Energy Soft X-ray (ME-SXR) system on NSTX provides radial profiles of soft X-ray emission, measured through a set of filters with varying thickness, which have been used to reconstruct the electron temperature on fast time scales (∼10 kHz). In addition to this functionality, here we show that the ME-SXR system can be used to measure the boundary displacement of the NSTX plasma with a few mm spatial resolution during magnetohydrodyamic (MHD) activity. Boundary displacement measurements can serve to inform theoretical predictions of neoclassical toroidal viscosity, and will be used to investigate other edge phenomena on NSTX-U. For example, boundary measurementsmore » using filtered SXR measurements can provide information on pedestal steepness and dynamic evolution leading up to and during edge localized modes (ELMs). Future applications include an assessment of a simplified, filtered SXR edge detection system as well as its suitability for real-time non-magnetic boundary feedback for ELMs, MHD, and equilibrium position control.« less

  19. Displacement of location in illusory line motion.

    PubMed

    Hubbard, Timothy L; Ruppel, Susan E

    2013-05-01

    Six experiments examined displacement in memory for the location of the line in illusory line motion (ILM; appearance or disappearance of a stationary cue is followed by appearance of a stationary line that is presented all at once, but the stationary line is perceived to "unfold" or "be drawn" from the end closest to the cue to the end most distant from the cue). If ILM was induced by having a single cue appear, then memory for the location of the line was displaced toward the cue, and displacement was larger if the line was closer to the cue. If ILM was induced by having one of two previously visible cues vanish, then memory for the location of the line was displaced away from the cue that vanished. In general, the magnitude of displacement increased and then decreased as retention interval increased from 50 to 250 ms and from 250 to 450 ms, respectively. Displacement of the line (a) is consistent with a combination of a spatial averaging of the locations of the cue and the line with a relatively weaker dynamic in the direction of illusory motion, (b) might be implemented in a spreading activation network similar to networks previously suggested to implement displacement resulting from implied or apparent motion, and (c) provides constraints and challenges for theories of ILM.

  20. Quantitative measurement of MLC leaf displacements using an electronic portal image device

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Xing, Lei

    2004-04-01

    The success of an IMRT treatment relies on the positioning accuracy of the MLC (multileaf collimator) leaves for both step-and-shoot and dynamic deliveries. In practice, however, there exists no effective and quantitative means for routine MLC QA and this has become one of the bottleneck problems in IMRT implementation. In this work we present an electronic portal image device (EPID) based method for fast and accurate measurement of MLC leaf positions at arbitrary locations within the 40 cm × 40 cm radiation field. The new technique utilizes the fact that the integral signal in a small region of interest (ROI) is a sensitive and reliable indicator of the leaf displacement. In this approach, the integral signal at a ROI was expressed as a weighted sum of the contributions from the displacements of the leaf above the point and the adjacent leaves. The weighting factors or linear coefficients of the system equations were determined by fitting the integral signal data for a group of pre-designed MLC leaf sequences to the known leaf displacements that were intentionally introduced during the creation of the leaf sequences. Once the calibration is done, the system can be used for routine MLC leaf positioning QA to detect possible leaf errors. A series of tests was carried out to examine the functionality and accuracy of the technique. Our results show that the proposed technique is potentially superior to the conventional edge-detecting approach in two aspects: (i) it deals with the problem in a systematic approach and allows us to take into account the influence of the adjacent MLC leaves effectively; and (ii) it may improve the signal-to-noise ratio and is thus capable of quantitatively measuring extremely small leaf positional displacements. Our results indicate that the technique can detect a leaf positional error as small as 0.1 mm at an arbitrary point within the field in the absence of EPID set-up error and 0.3 mm when the uncertainty is considered. Given its

  1. Variable displacement alpha-type Stirling engine

    NASA Astrophysics Data System (ADS)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  2. Combination of optically measured coordinates and displacements for quantitative investigation of complex objects

    NASA Astrophysics Data System (ADS)

    Andrae, Peter; Beeck, Manfred-Andreas; Jueptner, Werner P. O.; Nadeborn, Werner; Osten, Wolfgang

    1996-09-01

    Holographic interferometry makes it possible to measure high precision displacement data in the range of the wavelength of the used laser light. However, the determination of 3D- displacement vectors of objects with complex surfaces requires the measurement of 3D-object coordinates not only to consider local sensitivities but to distinguish between in-plane deformation, i.e. strains, and out-of-plane components, i.e. shears, too. To this purpose both the surface displacement and coordinates have to be combined and it is advantageous to make the data available for CAE- systems. The object surface has to be approximated analytically from the measured point cloud to generate a surface mesh. The displacement vectors can be assigned to the nodes of this surface mesh for visualization of the deformation of the object under test. They also can be compared to the results of FEM-calculations or can be used as boundary conditions for further numerical investigations. Here the 3D-object coordinates are measured in a separate topometric set-up using a modified fringe projection technique to acquire absolute phase values and a sophisticated geometrical model to map these phase data onto coordinates precisely. The determination of 3D-displacement vectors requires the measurement of several interference phase distributions for at least three independent sensitivity directions depending on the observation and illumination directions as well as the 3D-position of each measuring point. These geometric quantities have to be transformed into a reference coordinate system of the interferometric set-up in order to calculate the geometric matrix. The necessary transformation can be realized by means of a detection of object features in both data sets and a subsequent determination of the external camera orientation. This paper presents a consistent solution for the measurement and combination of shape and displacement data including their transformation into simulation systems. The

  3. Finger displacement in Parkinson disease: up? down? sideways?

    PubMed

    Lieberman, Abraham; Dhall, Rohit; Salins, Naomi; Sadreddin, Arshia; Moguel-Cobos, Guillermo; Karis, John; Krishnamurthi, Narayanan

    2014-05-01

    We previously reported that patients with tremor preponderant Parkinson disease (PD) displayed upward or lateral displacement of their more tremulous finger when they pointed both their index fingers at a target and closed their eyes for 15 seconds. In this study, we examined the phenomenon in 104 PD patients: 72 patients without tremor and 32 with minimal tremor to see if the displacement is related to the disease or the tremor. Sixty-eight of the 72 patients without tremor, 94%, exhibited finger displacement suggesting the phenomenon is related to the disease. None of the 104 patients were demented: mini-mental status examination (MMSE) score 29.0 ± 0. 75. Ninety patients displayed upward displacement (56 patients) or lateral or medial displacement (34 patients). MMSE score of the 90 patients: 29.2 ± 0.74 with no score < 28. Eight patients (6 without tremor) displayed downward displacement. MMSE score of the 8 patients: 27.5 ± 0.35 with 5 having MMSE score of 27. Although not significant the results suggest that patients with downward displacement and lower MMSE score may be evolving a dementia. Upward displacement with eyes closed for 15 seconds requires an ability to "remember" the position of the finger in space and to alter tone to overcome gravity. Downward displacement implies an inability to "remember" the position of the finger in space an inability to overcome the effects of gravity. This may be more likely in patients who are evolving a dementia. Two patients, with PD-like symptoms, and specific anatomical abnormalities are also presented as they illustrate the anatomy of finger displacement.

  4. Prolonged displacement may compromise resilience in Eritrean mothers.

    PubMed

    Almedom, Astier; Tesfamichael, Berhe; Mohammed, Zein; Mascie-Taylor, Nick; Muller, Jocelyn; Alemu, Zemui

    2005-12-01

    to assess the impact of prolonged displacement on the resilience of Eritrean mothers. an adapted SOC scale (short form) was administered. Complementary qualitative data were gathered from study participants' spontaneous reactions to and commentaries on the SOC scale. Displaced women's SOC scores were significantly less than those of the non-displaced: Mean = 54.84; SD = 6.48 in internally displaced person (IDP) camps, compared to non-displaced urban and rural/pastoralist: Mean = 48. 94, SD = 11.99; t = 3.831, p < .001. Post hoc tests revealed that the main difference is between IDP camp dwellers and urban (non-displaced). Rural but traditionally mobile (pastoralist or transhumant) communities scored more or less the same as the urban non-displaced--i.e., significantly higher than those in IDP camps (p < 0.05). Analysis of variance confirmed that gender is critical: displacement has significantly negative effects on women compared to men: RR = .262, p < .001. SOC scores of urban and pastoralist/transhumant groups were similar, while women in IDP camps were lower scoring--RR = .268, p < .001. The implications of these findings for health policy are critical. It is incumbent on the international health institutions including the World Health Organization and regional as well as local players to address the plight of internally displaced women, their families and communities in Eritrea and other places of dire conditions such as, for example Darfur in the Sudan.

  5. Experimental Validation of Displacement Underestimation in ARFI Ultrasound

    PubMed Central

    Czernuszewicz, Tomasz J.; Streeter, Jason E.; Dayton, Paul A.; Gallippi, Caterina M.

    2014-01-01

    Acoustic radiation force impulse (ARFI) imaging is an elastography technique that uses ultrasonic pulses to both displace and track tissue motion. Previous modeling studies have shown that ARFI displacements are susceptible to underestimation due to lateral and elevational shearing that occurs within the tracking resolution cell. In this study, optical tracking was utilized to experimentally measure the displacement underestimation achieved by acoustic tracking using a clinical ultrasound system. Three optically translucent phantoms of varying stiffness were created, embedded with sub-wavelength diameter microspheres, and ARFI excitation pulses with F/1.5 or F/3 lateral focal configurations were transmitted from a standard linear array to induce phantom motion. Displacements were tracked using confocal optical and acoustic methods. As predicted by earlier FEM studies, significant acoustic displacement underestimation was observed for both excitation focal configurations; the maximum underestimation error was 35% of the optically measured displacement for the F/1.5 excitation pulse in the softest phantom. Using higher F/#, less tightly focused beams in the lateral dimension improved accuracy of displacements by approximately 10 percentage points. This work experimentally demonstrates limitations of ARFI implemented on a clinical scanner using a standard linear array and sets up a framework for future displacement tracking validation studies. PMID:23858054

  6. Miscible phase displacement, a survey. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, C.D.

    1965-03-01

    J. G. Fitzgerald displaced a heavy hydrocarbon and water with a light hydrocarbon. C. Gatlin displaced oil and water with IPA slugs and a variety of combination alcohol slugs. S. H. Raza found that the alcohol process was more efficient at the lower rates of injection as compared to the higher rates. J. J. Taber, et al. displaced Soltrol and brine with isopropyl alcohol and tertiary butyl alcohol. R. L. Boyers, from his experimental data, deduced that molecular diffusion contributed very little toward the growth of the mixing zone. Not all the investigators are in agreement concerning the role ofmore » the injection rate in miscible displacement. Some of them have concluded that the displacement is sensitive to rate at high rates. Some have found that there is relationship between rate and recovery and that higher rates are more efficient. A literature review reveals that there is a definite rate sensitivity at all rates, especially at low rates of flow. From this information it is concluded that low rates are superior to high rates from the displacement efficiency viewpoint. (18 refs.)« less

  7. Asymmetric SOL Current in Vertically Displaced Plasma

    NASA Astrophysics Data System (ADS)

    Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.

    2017-10-01

    Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n <=2) mode decomposition is done on toroidally spaced current monitors to attain measures of asymmetry in SOL current. Normalized to peak n=0 response, a 2-4x increase is seen in peak n=1 response in plasmas displaced by the PCS versus previous VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.

  8. Internal displacement in Colombia: Fifteen distinguishing features.

    PubMed

    Shultz, James M; Ceballos, Ángela Milena Gómez; Espinel, Zelde; Oliveros, Sofia Rios; Fonseca, Maria Fernanda; Florez, Luis Jorge Hernandez

    2014-01-01

    This commentary aims to delineate the distinguishing features of conflict-induced internal displacement in the nation of Colombia, South America. Even as Colombia is currently implementing a spectrum of legal, social, economic, and health programs for "victims of armed conflict," with particular focus on internally displaced persons (IDPs), the dynamics of forced migration on a mass scale within this country are little known beyond national borders.   The authors of this commentary are embarking on a global mental health research program in Bogota, Colombia to define best practices for reaching the displaced population and implementing sustainable, evidence-based screening and intervention for common mental disorders. Presenting the defining characteristics of internal displacement in Colombia provides the context for our work and, more importantly, conveys the compelling and complex nature of this humanitarian crisis. We attempt to demonstrate Colombia's unique position within the global patterning of internal displacement.

  9. Silicon displacement threshold energy determined by electron paramagnetic resonance and positron annihilation spectroscopy in cubic and hexagonal polytypes of silicon carbide

    NASA Astrophysics Data System (ADS)

    Kerbiriou, X.; Barthe, M.-F.; Esnouf, S.; Desgardin, P.; Blondiaux, G.; Petite, G.

    2007-05-01

    Both for electronic and nuclear applications, it is of major interest to understand the properties of point defects into silicon carbide (SiC). Low energy electron irradiations are supposed to create primary defects into materials. SiC single crystals have been irradiated with electrons at two beam energies in order to investigate the silicon displacement threshold energy into SiC. This paper presents the characterization of the electron irradiation-induced point defects into both polytypes hexagonal (6H) and cubic (3C) SiC single crystals by using both positron annihilation spectroscopy (PAS) and electron paramagnetic resonance (EPR). The nature and the concentration of the generated point defects depend on the energy of the electron beam and the polytype. After an electron irradiation at an energy of 800 keV vSi mono-vacancies and vSi-vC di-vacancies are detected in both 3C and 6H-SiC polytypes. On the contrary, the nature of point defects detected after an electron irradiation at 190 keV strongly depends on the polytype. Into 6H-SiC crystals, silicon Frenkel pairs vSi-Si are detected whereas only carbon vacancy related defects are detected into 3C-SiC crystals. The difference observed in the distribution of defects detected into the two polytypes can be explained by the different values of the silicon displacement threshold energies for 3C and 6H-SiC. By comparing the calculated theoretical numbers of displaced atoms with the defects numbers measured using EPR, the silicon displacement threshold energy has been estimated to be slightly lower than 20 eV in the 6H polytype and close to 25 eV in the 3C polytype.

  10. Drinking and displacement: a systematic review of the influence of forced displacement on harmful alcohol use.

    PubMed

    Weaver, Heather; Roberts, Bayard

    2010-11-01

    This paper systematically reviews evidence about factors associated with harmful alcohol use amongst forcibly displaced persons, including refugees and internally displaced persons. Bibliographic and humanitarian-related databases were searched. The number of quantitative and qualitative studies that were screened and reviewed was 1108. Only 10 studies met inclusion criteria. Risk factors identified included gender, age, exposure to traumatic events and resulting posttraumatic stress disorder, prior alcohol consumption-related problems, year of immigration, location of residence, social relations, and postmigration trauma and stress. The evidence base was extremely weak, and there is a need to improve the quantity and quality of research about harmful alcohol use by forcibly displaced persons.

  11. A new photoelectrochemical biosensors based on DNA conformational changes and isothermal circular strand-displacement polymerization reaction.

    PubMed

    Zhang, Xiaoru; Xu, Yunpeng; Zhao, Yanqing; Song, Weiling

    2013-01-15

    We report a strategy for the transduction of DNA hybridization into a readily detectable photoelectrochemical signal by means of a conformational change analogous to electrochemical DNA (E-DNA) approach. To demonstrate the effect of distance change for photosensitizer to the surface of electrode on the change of photocurrent, photosensitizer Ru(bpy)(2)(dcbpy)(2+) tagged DNA stem-loop structures were self-assembled onto a nanogold modified ITO electrode. Hybridization induced a large conformational change in DNA structure, which in turn significantly altered the electron-transfer tunneling distance between the electrode and photosensitizer. The resulting change in photocurrent was proportional to the concentration of DNA in the range of 1.0×10(-10)-8.0×10(-9)M. In order to improve the sensitivity of the photoelectrochemical biosensor, an amplified detection method based on isothermal strand displacement polymerization reaction was employed. With multiple rounds of isothermal strand replication, which led to strand displacement and constituted consecutive signal amplification, a detection limit of 9.4×10(-14)M target DNA was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Force transmissibility versus displacement transmissibility

    NASA Astrophysics Data System (ADS)

    Lage, Y. E.; Neves, M. M.; Maia, N. M. M.; Tcherniak, D.

    2014-10-01

    It is well-known that when a single-degree-of-freedom (sdof) system is excited by a continuous motion of the foundation, the force transmissibility, relating the force transmitted to the foundation to the applied force, equals the displacement transmissibility. Recent developments in the generalization of the transmissibility to multiple-degree-of-freedom (mdof) systems have shown that similar simple and direct relations between both types of transmissibility do not appear naturally from the definitions, as happens in the sdof case. In this paper, the authors present their studies on the conditions under which it is possible to establish a relation between force transmissibility and displacement transmissibility for mdof systems. As far as the authors are aware, such a relation is not currently found in the literature, which is justified by being based on recent developments in the transmissibility concept for mdof systems. Indeed, it does not appear naturally, but the authors observed that the needed link is present when the displacement transmissibility is obtained between the same coordinates where the applied and reaction forces are considered in the force transmissibility case; this implies that the boundary conditions are not exactly the same and instead follow some rules. This work presents a formal derivation of the explicit relation between the force and displacement transmissibilities for mdof systems, and discusses its potential and limitations. The authors show that it is possible to obtain the displacement transmissibility from measured forces, and the force transmissibility from measured displacements, opening new perspectives, for example, in the identification of applied or transmitted forces. With this novel relation, it becomes possible, for example, to estimate the force transmissibility matrix with the structure off its supports, in free boundary conditions, and without measuring the forces. As far as force identification is concerned, this

  13. 40 CFR 86.419-2006 - Engine displacement, motorcycle classes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Engine displacement, motorcycle... displacement, motorcycle classes. (a)(1) Engine displacement shall be calculated using nominal engine values... reference in § 86.1). (2) For rotary engines, displacement means the maximum volume of a combustion chamber...

  14. 40 CFR 86.419-2006 - Engine displacement, motorcycle classes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Engine displacement, motorcycle... displacement, motorcycle classes. (a)(1) Engine displacement shall be calculated using nominal engine values... reference in § 86.1). (2) For rotary engines, displacement means the maximum volume of a combustion chamber...

  15. 40 CFR 86.419-2006 - Engine displacement, motorcycle classes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Engine displacement, motorcycle... displacement, motorcycle classes. (a)(1) Engine displacement shall be calculated using nominal engine values... reference in § 86.1). (2) For rotary engines, displacement means the maximum volume of a combustion chamber...

  16. 40 CFR 86.419-2006 - Engine displacement, motorcycle classes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Engine displacement, motorcycle... displacement, motorcycle classes. (a)(1) Engine displacement shall be calculated using nominal engine values... reference in § 86.1). (2) For rotary engines, displacement means the maximum volume of a combustion chamber...

  17. 40 CFR 86.419-2006 - Engine displacement, motorcycle classes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Engine displacement, motorcycle... displacement, motorcycle classes. (a)(1) Engine displacement shall be calculated using nominal engine values... reference in § 86.1). (2) For rotary engines, displacement means the maximum volume of a combustion chamber...

  18. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.

    PubMed

    Begalle, Rebecca L; Walsh, Meghan C; McGrath, Melanie L; Boling, Michelle C; Blackburn, J Troy; Padua, Darin A

    2015-08-01

    The ankle, knee, and hip joints work together in the sagittal plane to absorb landing forces. Reduced sagittal plane motion at the ankle may alter landing strategies at the knee and hip, potentially increasing injury risk; however, no studies have examined the kinematic relationships between the joints during jump landings. Healthy adults (N = 30; 15 male, 15 female) performed jump landings onto a force plate while three-dimensional kinematic data were collected. Joint displacement values were calculated during the loading phase as the difference between peak and initial contact angles. No relationship existed between ankle dorsiflexion displacement during landing and three-dimensional knee and hip displacements. However, less ankle dorsiflexion displacement was associated with landing at initial ground contact with larger hip flexion, hip internal rotation, knee flexion, knee varus, and smaller plantar flexion angles. Findings of the current study suggest that restrictions in ankle motion during landing may contribute to contacting the ground in a more flexed position but continuing through little additional motion to absorb the landing. Transverse plane hip and frontal plane knee positioning may also occur, which are known to increase the risk of lower extremity injury.

  19. Interferometric measurement of displacements and displacement velocities for nondestructive quality control

    NASA Astrophysics Data System (ADS)

    Shpeĭzman, V. V.; Peschanskaya, N. N.

    2007-07-01

    It is shown that the interferometric measurement of small displacements and small-displacement velocities can be used to determine internal stresses or the stresses induced by an applied load in solids and to control structural changes in them. The interferometric method based on the measurement of the reaction of a solid to a small perturbation in its state of stress is applied to determine stresses from the deviation of the reaction to perturbations from that in the standard stress-free case. For structural control, this method is employed to study the specific features of the characteristics of microplastic deformation that appear after material treatment or operation and manifest themselves in the temperature and force dependences of the rate of a small inelastic strain.

  20. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment

    NASA Astrophysics Data System (ADS)

    Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; Short, Naomi; Brisco, Brian

    2018-02-01

    Arctic landscapes undergo seasonal and long-term changes as the active layer thaws and freezes, which can result in localized or irregular subsidence leading to the formation of thermokarst terrain. Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique capable of measuring ground surface displacements resulting from thawing permafrost at centimetre precision and is quickly gaining acceptance as a means of measuring ground displacement in permafrost regions. Using RADARSAT-2 stacked DInSAR data from 2013 and 2015 we determined the magnitude and patterns of land surface change in a continuous permafrost environment. At our study site situated in the Canadian High Arctic, DInSAR seasonal ground displacement patterns were consistent with field observations of permafrost degradation. As expected, many DInSAR values are close to the detection threshold (i.e., 1 cm) and therefore do not indicate significant change; however, DInSAR seasonal ground displacement patterns aligned well with climatological and soil conditions and offer geomorphological insight into subsurface processes in permafrost environments. While our dataset is limited to two years of data representing a three-year time period, the displacements derived from DInSAR provide insight into permafrost change in a High Arctic environment and demonstrate that DInSAR is an applicable tool for understanding environmental change in remote permafrost regions.