Sample records for nanometer scale crystallographic

  1. Electrochemistry at Nanometer-Scaled Electrodes

    ERIC Educational Resources Information Center

    Watkins, John J.; Bo Zhang; White, Henry S.

    2005-01-01

    Electrochemical studies using nanometer-scaled electrodes are leading to better insights into electrochemical kinetics, interfacial structure, and chemical analysis. Various methods of preparing electrodes of nanometer dimensions are discussed and a few examples of their behavior and applications in relatively simple electrochemical experiments…

  2. Toward in situ x-ray diffraction imaging at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami

    2008-08-01

    We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.

  3. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Gournay, Jonas P.; Kirkland, Brenda L.; Folk, Robert L.; Lynch, F. Leo

    1999-07-01

    Scanning electron microscopy reveals an association between early dolomite in the Pennsylvanian Desert Creek (Paradox Fm.) and small (approximately 0.1 μm) nanometer-scale textures, termed `nannobacteria'. Three diagenetically distinct dolomites are present: early dolomite, limpid dolomite, and baroque dolomite. In this study, only the early dolomite contained nanometer-scale features. These textures occur as discrete balls and rods, clumps of balls, and chains of balls. Precipitation experiments demonstrate that these textures may be the result of precipitation in an organic-rich micro-environment. The presence of these nanometer-scale textures in Pennsylvanian rocks suggests that these early dolomites precipitated in organic-rich, bacterial environments.

  4. Programmable nanometer-scale electrolytic metal deposition and depletion

    DOEpatents

    Lee, James Weifu [Oak Ridge, TN; Greenbaum, Elias [Oak Ridge, TN

    2002-09-10

    A method of nanometer-scale deposition of a metal onto a nanostructure includes the steps of: providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart; and depositing metal on at least one of the nanostructures by electric field-directed, programmable, pulsed electrolytic metal deposition. Moreover, a method of nanometer-scale depletion of a metal from a nanostructure includes the steps of providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart, at least one of the nanostructures having a metal disposed thereon; and depleting at least a portion of the metal from the nanostructure by electric field-directed, programmable, pulsed electrolytic metal depletion. A bypass circuit enables ultra-finely controlled deposition.

  5. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  6. Substrate comprising a nanometer-scale projection array

    DOEpatents

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George

    2012-11-27

    A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.

  7. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water.

    PubMed

    Shen, Mengyan; Carey, James E; Crouch, Catherine H; Kandyla, Maria; Stone, Howard A; Mazur, Eric

    2008-07-01

    We report on the formation of high-density regular arrays of nanometer-scale rods using femtosecond laser irradiation of a silicon surface immersed in water. The resulting surface exhibits both micrometer-scale and nanometer-scale structures. The micrometer-scale structure consists of spikes of 5-10 mum width, which are entirely covered by nanometer-scale rods that are roughly 50 nm wide and normal to the surface of the micrometer-scale spikes. The formation of the nanometer-scale rods involves several processes: refraction of laser light in highly excited silicon, interference of scattered and refracted light, rapid cooling in water, roughness-enhanced optical absorptance, and capillary instabilities.

  8. Observing Optical Plasmons on a Single Nanometer Scale

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2014-01-01

    The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light - matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous potential applications. However, imaging optical plasmonic waves on a single nanometer scale is yet a substantial challenge mainly due to size and energy considerations. Here, for the first time, we use Kelvin Probe Force Microscopy (KPFM) under optical illumination to image and characterize plasmonic modes. We experimentally demonstrate unprecedented spatial resolution and measurement sensitivity both on the order of a single nanometer. By comparing experimentally obtained images with theoretical calculation results, we show that KPFM maps may provide valuable information on the phase of the optical near field. Additionally, we propose a theoretical model for the relation between surface plasmons and the material workfunction measured by KPFM. Our findings provide the path for using KPFM for high resolution measurements of optical plasmons, prompting the scientific frontier towards quantum plasmonic imaging on submolecular scales. PMID:24556874

  9. Fractography of glass at the nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilloteau, E.; Arribart, H.; Creuzet, F.

    1996-12-01

    The authors present a nanometer scale description of the fracture surface of soda-lime glass. This is achieved by the use of Atomic Force Microscopy. The mirror zone is shown to be built with elementary entities, the density of which increases continuously while the mist and hackle zones are approached. Moreover, the overall picture leads to some kind of self-similarity, in the sense that small regions of the hackle zone exhibit the full set of mirror, mist and hackle areas.

  10. Complex biomembrane mimetics on the sub-nanometer scale

    DOE PAGES

    Heberle, Frederick A.; Pabst, Georg

    2017-07-17

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  11. Complex biomembrane mimetics on the sub-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, Frederick A.; Pabst, Georg

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  12. Three-dimensional nanometer scale analyses of precipitate structures and local compositions in titanium aluminide engineering alloys

    NASA Astrophysics Data System (ADS)

    Gerstl, Stephan S. A.

    Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.

  13. Understanding batteries on the micro- and nanometer scale

    ScienceCinema

    None

    2018-01-16

    In order to understand performance limitations and failure mechanisms of batteries, one has to investigate processes on the micro- and nanometer scale. A typical failure mechanism in lithium metal batteries is dendritic growth. During discharge, lithium is stripped of the anode surface and migrates to the cathode. During charge, lithium is deposited back on the anode. Repeated cycling can result in stripping and re-deposition that roughens the surface. The roughening of the surface changes the electric field and draws more metal to spikes that are beginning to grow. These can grow with tremendous mechanical force, puncture the separator, and directly connect the anode with the cathode which can create an internal short circuit. This can lead to an uncontrolled discharge reaction, which heats the cell and causes additional exothermic reactions leading to what is called thermal runaway. ORNL has developed a new technology called liquid electron microscopy. In a specially designed sample holder micro-chamber with electron-transparent windows, researchers can hold a liquid and take images of structures and particles at nanometer size. It's the first microscope holder of its kind used to investigate the inside of a battery while cycled.

  14. Imaging high-speed friction at the nanometer scale

    PubMed Central

    Thorén, Per-Anders; de Wijn, Astrid S.; Borgani, Riccardo; Forchheimer, Daniel; Haviland, David B.

    2016-01-01

    Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl–Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution. PMID:27958267

  15. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, S. Y.

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  16. Carbon Nanotubules: Building Blocks for Nanometer-Scale Engineering

    NASA Technical Reports Server (NTRS)

    Sinnott, Susan B.

    1999-01-01

    The proposed work consisted of two projects: the investigation of fluid permeation and diffusion through ultrafiltration membranes composed of carbon nanotubules and the design and study of molecular transistors composed of nanotubules. The progress made on each project is summarized and also discussion about additional projects, one of which is a continuation of work supported by another grant, is included. The first project was Liquid Interactions within a Nanotubule Membrane. The second was the design of nanometer-scale hydrocarbon electronic devices. The third was the investigation of Mechanical properties of Nanotubules and Nanotubule bundles. The fourth project was to investigate the growth mechanisms of Carbon Nanotubules.

  17. Nanometer scale atomic structure of zirconium based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo

    We have studied the nanometer scale structure of bulk metallic glass (BMG) using fluctuation electron microscopy (FEM). The nanometer scale medium range order (MRO) in BMG is of significant interest because of its possible relationship to the properties, but the experimental study of the MRO is difficult because conventional diffraction techniques are not sensitive to the MRO scale. FEM is a quantitative transmission electron microscopy technique which measures the nanoscale structural fluctuation associated with MRO in amorphous materials, and provides information about the size, distribution, and internal structure of MRO. In this work, we developed an improved method for FEM using energy-filtered STEM nanodiffraction with highly coherent probes with size up to 11nm in a state-of-the-art Cs- corrected STEM. We also developed an effective way to eliminate the effect of sample thickness variation to the FEM data by using Z-contrast images as references. To study the detailed structure of MRO, we developed a hybrid reverse Monte Carlo (H-RMC) simulation which combines an empirical atomic potential and the FEM data. H-RMC generated model structures that match the experimental data at short and medium range. In addition, the subtle rotational symmetries in the FEM nanodiffraction patterns were analyzed by angular correlation function to reveal more details of the internal structure of MRO. Our experiments and simulations show that Zr-based BMG contains pseudo-planar, crystal-like MRO as well as icosahedral clusters in its nanoscale structure. We found that some icosahedral clusters may be connected, and that structural relaxation by annealing increases the population of icosahedral clusters.

  18. Mechanical Properties of Materials with Nanometer Scale Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations,more » talks and publications completed on this grant during the past 15 years.« less

  19. Rapid Polymer Transport in a Single Nanometer-Scale Pore

    NASA Astrophysics Data System (ADS)

    Kasianowicz, J. J.

    1998-03-01

    Protein ion channels are nanometer-scale pores that control the transport of ions and polymers across cell membranes. We compared the ability of charged and nonelectrolyte linear polymers to partition into a single channel reconstituted into a planar lipid bilayer membrane. The entry of each polymer (e.g. monodisperse length single-stranded homopolymeric RNA1 or poly(ethylene glycol)2,3) into the pore caused characteristic transient decreases in the channel's ionic conductance. The ionic current blockades yield detailed information about the physical properties of the polymers and the pore. The biological and technological significance of the results will be discussed.

  20. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  1. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale.

    PubMed

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öğüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F

    2018-02-02

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS_{2}, MoSe_{2}, WS_{2}, or WSe_{2}, are directly determined and mapped.

  2. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    PubMed

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  3. Bridging the Gap between the Nanometer-Scale Bottom-Up and Micrometer-Scale Top-Down Approaches for Site-Defined InP/InAs Nanowires.

    PubMed

    Zhang, Guoqiang; Rainville, Christophe; Salmon, Adrian; Takiguchi, Masato; Tateno, Kouta; Gotoh, Hideki

    2015-11-24

    This work presents a method that bridges the gap between the nanometer-scale bottom-up and micrometer-scale top-down approaches for site-defined nanostructures, which has long been a significant challenge for applications that require low-cost and high-throughput manufacturing processes. We realized the bridging by controlling the seed indium nanoparticle position through a self-assembly process. Site-defined InP nanowires were then grown from the indium-nanoparticle array in the vapor-liquid-solid mode through a "seed and grow" process. The nanometer-scale indium particles do not always occupy the same locations within the micrometer-scale open window of an InP exposed substrate due to the scale difference. We developed a technique for aligning the nanometer-scale indium particles on the same side of the micrometer-scale window by structuring the surface of a misoriented InP (111)B substrate. Finally, we demonstrated that the developed method can be used to grow a uniform InP/InAs axial-heterostructure nanowire array. The ability to form a heterostructure nanowire array with this method makes it possible to tune the emission wavelength over a wide range by employing the quantum confinement effect and thus expand the application of this technology to optoelectronic devices. Successfully pairing a controllable bottom-up growth technique with a top-down substrate preparation technique greatly improves the potential for the mass-production and widespread adoption of this technology.

  4. Metal substrates with nanometer scale surface roughness for flexible electronics

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Lam; Kim, Kisoo

    2012-09-01

    In this work, we present a novel way in fabricating a metal substrate with nanometer scale in surface roughness (Ra < 1 nm) using a surface roughness transfer method without any polishing or planarization process. Ag film (8 inch, Ra = 0.57 nm) and an INVAR (Invariable alloy) one (20 cm × 20 cm, Ra = 1.40 nm) were demonstrated. The INVAR film was used as a substrate for fabricating organic light emitting diodes (OLED) and organic photovoltaic (OPV). The optical and electrical characteristics of OLEDs and OPVs using the INVAR were comparable to those using a conventional ITO glass substrate.

  5. Carbon Nanotubules: Building Blocks for Nanometer-Scale Engineering

    NASA Technical Reports Server (NTRS)

    Sinnott, Susan B.

    1997-01-01

    Proximal probe technology has provided researchers with new ways to investigate and manipulate matter on the nanometer scale. We have studied, through molecular dynamics simulations, using a many-body empirical potential, the indentation of a hydrogen-terminated, diamond (111 ) surface, with a proximal probe tip that consists of an open, hydrogen-terminated, (10,10) carbon nanotubule. The simulations showed that upon indenting 1.8 A, the tubule deforms but returns to its original shape upon retraction. The Young's modulus of the tubule was determined using the predicted Euler buckling force and was found to be comparable to measured and calculated values. In a second series of simulations, an open (10, 10) nanotubule was heated to 4500 K and allowed to close. We find that at this temperature the resulting cap contains numerous imperfections, including some not mentioned previously in the literature.

  6. Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices.

    PubMed

    Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György

    2015-03-14

    The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.

  7. TEM Study of Intergranular Fluid Distributions in Rocks at a Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Hiraga, T.; Anderson, I. M.; Kohlstedt, D. L.

    2002-12-01

    The distribution of intergranular fluids in rocks plays an essential role in fluid migration and rock rheology. Structural and chemical analyses with sub-nanometer resolution is possible with transmission and scanning-transmission electron microscopy; therefore, it is possible to perform the fine-scale structural analyses required to determine the presence or absence of very thin fluid films along grain boundaries. For aqueous fluids in crustal rocks, Hiraga et al. (2001) observed a fluid morphology controlled by the relative values of the solid-solid and solid-fluid interfacial energies, which resulted in well-defined dihedral angles. Their high-resolution transmission electron microscopy (TEM) observations demonstrate that grain boundaries are tight even at a nanometer scale, consistent with the absence of aqueous fluid films. For partially molten ultra-mafic rocks, two conflicting conclusions have been reached: nanometer-thick melt films wet grain boundaries (Drury and Fitz Gerald 1996; De Kloe et al. 2000) versus essentially all grain boundaries are melt-free (Vaughan et al. 1982; Kohlstedt 1990). To resolve this conflict, Hiraga et al. (2002) examined grain boundaries in quenched partially molten peridotites. Their observations demonstrate the following: (i) Although a small fraction of the grains are separated by relatively thick (~1 μm) layers of melt, lattice fringe images obtained with a high-resolution TEM reveal that most of the remaining boundaries do not contain a thin amorphous phase. (ii) In addition, the composition of olivine-olivine grain boundaries was analyzed with a nano-beam analytical scanning TEM with a probe size of <2 nm. Although the grain boundaries contained no melt film, the concentration of Ca, Al and Ti were enhanced near the boundaries. The segregation of these elements to the grain boundaries formed enriched regions <7 nm wide. A similar pattern of chemical segregation was detected in subsolidus systems. Creep experiments on the

  8. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  9. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  10. Nanometer scale thermometry in a living cell

    PubMed Central

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2014-01-01

    Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of sub-degree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool for many areas of biological, physical and chemical research; possibilities range from the temperature-induced control of gene expression2–5 and tumor metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the sub-cellular level2–5. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9mK/Hz) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds, NDs), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences. PMID:23903748

  11. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.

    PubMed

    Xu, Shengyong; Tian, Mingliang; Wang, Jinguo; Xu, Jian; Redwing, Joan M; Chan, Moses H W

    2005-12-01

    We demonstrate that a high-intensity electron beam can be applied to create holes, gaps, and other patterns of atomic and nanometer dimensions on a single nanowire, to weld individual nanowires to form metal-metal or metal-semiconductor junctions, and to remove the oxide shell from a crystalline nanowire. In single-crystalline Si nanowires, the beam induces instant local vaporization and local amorphization. In metallic Au, Ag, Cu, and Sn nanowires, the beam induces rapid local surface melting and enhanced surface diffusion, in addition to local vaporization. These studies open up a novel approach for patterning and connecting nanomaterials in devices and circuits at the nanometer scale.

  12. Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (~50 nm)

    NASA Astrophysics Data System (ADS)

    Bacciochini, Antoine; Montavon, Ghislain; Ilavsky, Jan; Denoirjean, Alain; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is a fairly recent technology that is able to process sub-micrometer-sized or nanometer-sized feedstock particles and permits the deposition of coatings thinner (from 20 to 100 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists of mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm. Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick nanometer- or sub-micrometer-sized coatings exhibit better properties than conventional micrometer-sized ones (e.g., higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, particularly for energy production, energy saving, etc. Coatings structured at the nanometer scale exhibit nanometer-sized voids. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers, from connected to non-connected network. Nevertheless, the discrimination of porosity in different classes of criteria such as size, shape, orientation, specific surface area, etc., is essential to describe the coating architecture. Moreover, the primary steps of the coating manufacturing process affect significantly the coating porous architecture. These steps need to be further understood. Different types of imaging experiments were performed to understand, describe and quantify the pore level of thick finely structured ceramics coatings.

  13. The role of crystallographic texture in achieving low friction zinc oxide nanolaminate films

    NASA Astrophysics Data System (ADS)

    Mojekwu, Nneoma

    Metal oxide nanolaminate films are potential high temperature solid lubricants due to their ability to exhibit significant plasticity when grain size is reduced to the nanometer scale, and defective growth structure is achieved by condensation of oxygen vacancies to form intrinsic stacking faults. This is in contrast to conventional microcrystalline and single crystal oxides that exhibit brittle fracture during loading in a sliding contact. This study emphasizes the additional effect of growth orientation, in particular crystallographic texture, on determining the sliding friction behavior in nanocolumnar grain zinc oxide films grown by atomic layer deposition. It was determined that zinc oxide low (0002) versus higher (101¯3) surface energy crystallographic planes influenced the sliding friction coefficient. Texturing of the (0002) grains resulted in a decreased adhesive component of friction thereby lowering the sliding friction coefficient to ˜0.25, while the friction coefficient doubled to ˜0.5 with increasing contribution of surface (101¯3) grains. In addition, the variation of the x-ray grazing incident angle from 0.5° to 5° was studied to better understand the surface grain orientation as a function of ZnO layer thickness in one versus four bilayer nanolaminates where the under layer (seed layer) was load-bearing Zn(Ti,Zr)O3.

  14. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy.

    PubMed

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2010-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO(x) micro-patterns prepared by O(2)(+) ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale.

  15. Detecting Intramolecular Conformational Dynamics of Single Molecules in Short Distance Range with Sub-Nanometer Sensitivity

    PubMed Central

    Zhou, Ruobo; Kunzelmann, Simone; Webb, Martin R.; Ha, Taekjip

    2011-01-01

    Single molecule detection is useful for characterizing nanoscale objects such as biological macromolecules, nano-particles and nano-devices with nano-meter spatial resolution. Fluorescence resonance energy transfer (FRET) is widely used as a single-molecule assay to monitor intramolecular dynamics in the distance range of 3–8 nm. Here we demonstrate that self-quenching of two rhodamine derivatives can be used to detect small conformational dynamics corresponding to sub-nanometer distance changes in a FRET-insensitive short range at the single molecule level. A ParM protein mutant labeled with two rhodamines works as a single molecule ADP sensor which has 20 times brighter fluorescence signal in the ADP bound state than the unbound state. Single molecule time trajectories show discrete transitions between fluorescence on and off states that can be directly ascribed to ADP binding and dissociation events. The conformational changes observed with 20:1 contrast are only 0.5 nm in magnitude and are between crystallographic distances of 1.6 nm and 2.1 nm, demonstrating exquisite sensitivity to short distance scale changes. The systems also allowed us to gain information on the photophysics of self-quenching induced by rhodamine stacking: (1) photobleaching of either of the two rhodamines eliminates quenching of the other rhodamine fluorophore and (2) photobleaching from the highly quenched, stacked state is only two-fold slower than from the unstacked state. PMID:22023515

  16. Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale

    DOE PAGES

    Manfrinato, Vitor R.; Stein, Aaron; Zhang, Lihua; ...

    2017-04-18

    Patterning materials efficiently at the smallest length scales has been a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) andmore » the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.« less

  17. Chirally directed formation of nanometer-scale proline clusters.

    PubMed

    Myung, Sunnie; Fioroni, Marco; Julian, Ryan R; Koeniger, Stormy L; Baik, Mu-Hyun; Clemmer, David E

    2006-08-23

    Ion mobility measurements, combined with molecular mechanics simulations, are used to study enantiopure and racemic proline clusters formed by electrospray ionization. Broad distributions of cluster sizes and charge states are observed, ranging from clusters containing only a few proline units to clusters that contain more than 100 proline units (i.e., protonated clusters of the form [xPro + nH](n+) with x = 1 to >100 and n = 1-7). As the sizes of clusters increase, there is direct evidence for nanometer scale, chirally induced organization into specific structures. For n = 4 and 5, enantiopure clusters of approximately 50 to 100 prolines assemble into structures that are more elongated than the most compact structure that is observed from the racemic proline clusters. A molecular analogue, cis-4-hydroxy-proline, displays significantly different behavior, indicating that in addition to the rigidity of the side chain ring, intermolecular interactions are important in the formation of chirally directed clusters. This is the first case in which assemblies of chirally selective elongated structures are observed in this size range of amino acid clusters. Relationships between enantiopurity, cluster shape, and overall energetics are discussed.

  18. Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer.

    PubMed

    McMullen, Angus J; Tang, Jay X; Stein, Derek

    2017-11-28

    We report measurements and analyses of nanopore translocations by fd and M13, two related strains of filamentous virus that are identical except for their charge densities. The standard continuum theory of electrokinetics greatly overestimates the translocation speed and the conductance associated with counterions for both viruses. Furthermore, fd and M13 behave differently from one another, even translocating in opposite directions under certain conditions. This cannot be explained by Manning-condensed counterions or a number of other proposed models. Instead, we argue that these anomalous findings are consequences of the breakdown of the validity of continuum hydrodynamics at the scale of a few molecular layers. Next to a polyelectrolyte, there exists an extra-viscous, sub-nanometer-thin boundary layer that has a giant influence on the transport characteristics. We show that a stagnant boundary layer captures the essential hydrodynamics and extends the validity of the electrokinetic theory beyond the continuum limit. A stagnant layer with a thickness of about half a nanometer consistently improves predictions of the ionic current change induced by virus translocations and of the translocation velocity for both fd and M13 over a wide range of nanopore dimensions and salt concentrations.

  19. Nanometer-scale imaging and pore-scale fluid flow modeling inchalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomutsa, Liviu; Silin, Dmitriy; Radmilovich, Velimir

    2005-08-23

    For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next,more » the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations from the new FIB data.« less

  20. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, andmore » background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.« less

  1. Carbon nanotube transistors scaled to a 40-nanometer footprint.

    PubMed

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B; Zhu, Yu; Han, Shu-Jen

    2017-06-30

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density-above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Nanometer-Scale Force Detected Nuclear Magnetic Resonance Imaging

    DTIC Science & Technology

    2013-01-01

    different crystallographic orientation. Single crystal thin films should thus minimize the stray electric fields by reducing the number of grain ...from epitaxial Ag films, rather than polycrystalline Ag films. It is thought that grain boundaries in polycrystalline metal films give rise to stray...electric fields near the surface of the film. The electric fields are produced as a consequence of the work func- tion difference between grains of

  3. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    PubMed

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  4. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    NASA Astrophysics Data System (ADS)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  5. Flow and evaporation in single micrometer and nanometer scale pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco, A. E.; Yang, C.; Siwy, Z. S.

    2014-07-21

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10 μm to 31 nm. The flow of gaseous and liquid nitrogen was studied near 77 K, while the flow of helium was studied from the lambda point (2.18 K) to above the critical point (5.2 K). Flow rates were controlled by changing the pressure drop across the pipemore » in the range 0–31 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.« less

  6. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds

    NASA Astrophysics Data System (ADS)

    Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh

    2016-02-01

    A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.

  7. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation.

    PubMed

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (∼9  nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Probing dynamics and pinning of single vortices in superconductors at nanometer scales.

    PubMed

    Embon, L; Anahory, Y; Suhov, A; Halbertal, D; Cuppens, J; Yakovenko, A; Uri, A; Myasoedov, Y; Rappaport, M L; Huber, M E; Gurevich, A; Zeldov, E

    2015-01-07

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

  9. Probing dynamics and pinning of single vortices in superconductors at nanometer scales

    NASA Astrophysics Data System (ADS)

    Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E.

    2015-01-01

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

  10. Preparation of high-strength nanometer scale twinned coating and foil

    DOEpatents

    Zhang, Xinghang [Los Alamos, NM; Misra, Amit [Los Alamos, NM; Nastasi, Michael A [Santa Fe, NM; Hoagland, Richard G [Santa Fe, NM

    2006-07-18

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

  11. Functional nanometer-scale structures

    NASA Astrophysics Data System (ADS)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some

  12. Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges

    DOE PAGES

    Yan, Hanfei; Huang, Xiaojing; Bouet, Nathalie; ...

    2017-10-16

    In this article, we discuss misalignment-induced aberrations in a pair of crossed multilayer Laue lenses used for achieving a nanometer-scale x-ray point focus. We thoroughly investigate the impacts of two most important contributions, the orthogonality and the separation distance between two lenses. We find that misalignment in the orthogonality results in astigmatism at 45º and other inclination angles when coupled with a separation distance error. Theoretical explanation and experimental verification are provided. We show that to achieve a diffraction-limited point focus, accurate alignment of the azimuthal angle is required to ensure orthogonality between two lenses, and the required accuracy ismore » scaled with the ratio of the focus size to the aperture size.« less

  13. Three-dimensional integrated circuits for lab-on-chip dielectrophoresis of nanometer scale particles

    NASA Astrophysics Data System (ADS)

    Dickerson, Samuel J.; Noyola, Arnaldo J.; Levitan, Steven P.; Chiarulli, Donald M.

    2007-01-01

    In this paper, we present a mixed-technology micro-system for electronically manipulating and optically detecting virusscale particles in fluids that is designed using 3D integrated circuit technology. During the 3D fabrication process, the top-most chip tier is assembled upside down and the substrate material is removed. This places the polysilicon layer, which is used to create geometries with the process' minimum feature size, in close proximity to a fluid channel etched into the top of the stack. By taking advantage of these processing features inherent to "3D chip-stacking" technology, we create electrode arrays that have a gap spacing of 270 nm. Using 3D CMOS technology also provides the ability to densely integrate analog and digital control circuitry for the electrodes by using the additional levels of the chip stack. We show simulations of the system with a physical model of a Kaposi's sarcoma-associated herpes virus, which has a radius of approximately 125 nm, being dielectrophoretically arranged into striped patterns. We also discuss how these striped patterns of trapped nanometer scale particles create an effective diffraction grating which can then be sensed with macro-scale optical techniques.

  14. Metrics for comparison of crystallographic maps

    DOE PAGES

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; ...

    2014-10-01

    Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less

  15. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew, E-mail: amugler@purdue.edu

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations ofmore » the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.« less

  16. Large-scale freestanding nanometer-thick graphite pellicles for mass production of nanodevices beyond 10 nm.

    PubMed

    Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom

    2015-09-21

    Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm.

  17. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  18. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  19. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  20. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry.

    PubMed

    Villarrubia, J S; Tondare, V N; Vladár, A E

    2016-01-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples-mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  1. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    NASA Astrophysics Data System (ADS)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  2. Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes.

    PubMed

    Song, Jinsuk; Han, Oc Hee; Han, Songi

    2015-03-16

    Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. SQUID magnetometry from nanometer to centimeter length scales

    NASA Astrophysics Data System (ADS)

    Hatridge, Michael Jonathan

    Information stored in magnetic fields plays an important role in everyday life. This information exists over a remarkably wide range of sizes, so that magnetometry at a variety of length scales can extract useful information. Examples at centimeter to millimeter length scales include measurement of spatial and temporal character of fields generated in the human brain and heart, and active manipulation of spins in the human body for non-invasive magnetic resonance imaging (MRI). At micron length scales, magnetometry can be used to measure magnetic objects such as flux qubits; at nanometer length scales it can be used to study individual magnetic domains, and even individual spins. The development of Superconducting QUantum Interference Device (SQUID) based magnetometer for two such applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nanoscale magnetometry, are the focus of this thesis. Conventional MRI has developed into a powerful clinical tool for imaging the human body. This technique is based on nuclear magnetic resonance of protons with the addition application of three-dimensional magnetic field gradients to encode spatial information. Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems. Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. The prepolarized, SQUID detected ultra-low field MRI (ULF MRI) developed by the Clarke group allows imaging in very weak fields (typically 132 muT, corresponding to a resonant frequency of 5.6 kHz). At these low field strengths, there is enhanced contrast in the longitudinal relaxation time of various tissue types, enabling imaging of objects which are not visible to conventional MRI, for instance prostate cancer. We are currently investigating the contrast between normal and cancerous

  4. The electrostatic fluidic trap: a new approach to the spatial control and manipulation of matter at the nanometer scale (presentation video)

    NASA Astrophysics Data System (ADS)

    Krishnan, Madhavi

    2014-09-01

    I will describe a new technique to trap matter at the nanometer scale in fluids. Rather than apply external fields to the object of interest, our approach relies on spatial tailoring of the interaction between an object and its neighbouring surfaces in order to create spatial potential minima in three dimensions. We demonstrate how the strong and long-ranged electrostatic interaction can be modulated by tailoring substrate geometry to achieve stable spatial trapping of charged objects, as small as single proteins in solution.

  5. Nanoparticle Superlattice Engineering with DNA

    NASA Astrophysics Data System (ADS)

    Macfarlane, Robert J.; Lee, Byeongdu; Jones, Matthew R.; Harris, Nadine; Schatz, George C.; Mirkin, Chad A.

    2011-10-01

    A current limitation in nanoparticle superlattice engineering is that the identities of the particles being assembled often determine the structures that can be synthesized. Therefore, specific crystallographic symmetries or lattice parameters can only be achieved using specific nanoparticles as building blocks (and vice versa). We present six design rules that can be used to deliberately prepare nine distinct colloidal crystal structures, with control over lattice parameters on the 25- to 150-nanometer length scale. These design rules outline a strategy to independently adjust each of the relevant crystallographic parameters, including particle size (5 to 60 nanometers), periodicity, and interparticle distance. As such, this work represents an advance in synthesizing tailorable macroscale architectures comprising nanoscale materials in a predictable fashion.

  6. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  7. A scanning tunneling microscope with a scanning range from hundreds of micrometers down to nanometer resolution.

    PubMed

    Kalkan, Fatih; Zaum, Christopher; Morgenstern, Karina

    2012-10-01

    A beetle type stage and a flexure scanning stage are combined to form a two stages scanning tunneling microscope (STM). It operates at room temperature in ultrahigh vacuum and is capable of scanning areas up to 300 μm × 450 μm down to resolution on the nanometer scale. This multi-scale STM has been designed and constructed in order to investigate prestructured metallic or semiconducting micro- and nano-structures in real space from atomic-sized structures up to the large-scale environment. The principle of the instrument is demonstrated on two different systems. Gallium nitride based micropillars demonstrate scan areas up to hundreds of micrometers; a Au(111) surface demonstrates nanometer resolution.

  8. Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hua; Bai, Hai Yang; Zhang, Ming; Zhao, J. H.; Zhang, X. Y.; Wang, W. K.

    1999-04-01

    An in situ low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena in various metal-metal and metal-amorphous Si nanometer-scale compositionally modulated multilayers (ML's). The temperature-dependent interdiffusivities are obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. Activation enthalpies and preexponential factors for the interdiffusion in the Fe-Ti, Ag-Bi, Fe-Mo, Mo-Si, Ni-Si, Nb-Si, and Ag-Si ML's are determined. Activation enthalpies and preexponential factors for the interdiffusion in the ML's are very small compared with that in amorphous alloys and crystalline solids. The relation between the atomic-size difference and interdiffusion in the ML's are investigated. The observed interdiffusion characteristics are compared with that in amorphous alloys and crystalline α-Zr, α-Ti, and Si. The experimental results suggest that a collective atomic-jumping mechanism govern the interdiffusion in the ML's, the collective proposal involving 8-15 atoms moving between extended nonequilibrium defects by thermal activation. The role of the interdiffusion in the solid-state reaction in the ML's is also discussed.

  9. Single-Enzyme Nanoparticles Armored by a Nanometer-Scale Organic/Inorganic Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungbae; Grate, Jay W.

    2003-09-01

    We have developed armored single-enzyme nanoparticles (SENs), which dramatically stabilize a protease (a-chymotrypsin, CT) by surrounding each enzyme molecule with a porous composite organic/inorganic shell of less than a few nanometers thick. The armored enzymes show no decrease in CT activity at 30C for four days while free CT activity is rapidly reduced by orders of magnitude. The armored shell around CT is sufficiently thin and porous that it does not place any serious mass-transfer limitation on substrates. This unique approach will have a great impact in using enzymes in various fields.

  10. Nanometer-scale oxide thin film transistor with potential for high-density image sensor applications.

    PubMed

    Jeon, Sanghun; Park, Sungho; Song, Ihun; Hur, Ji-Hyun; Park, Jaechul; Kim, Hojung; Kim, Sunil; Kim, Sangwook; Yin, Huaxiang; Chung, U-In; Lee, Eunha; Kim, Changjung

    2011-01-01

    The integration of electronically active oxide components onto silicon circuits represents an innovative approach to improving the functionality of novel devices. Like most semiconductor devices, complementary-metal-oxide-semiconductor image sensors (CISs) have physical limitations when progressively scaled down to extremely small dimensions. In this paper, we propose a novel hybrid CIS architecture that is based on the combination of nanometer-scale amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) and a conventional Si photo diode (PD). With this approach, we aim to overcome the loss of quantum efficiency and image quality due to the continuous miniaturization of PDs. Specifically, the a-IGZO TFT with 180 nm gate length is probed to exhibit remarkable performance including low 1/f noise and high output gain, despite fabrication temperatures as low as 200 °C. In particular, excellent device performance is achieved using a double-layer gate dielectric (Al₂O₃/SiO₂) combined with a trapezoidal active region formed by a tailored etching process. A self-aligned top gate structure is adopted to ensure low parasitic capacitance. Lastly, three-dimensional (3D) process simulation tools are employed to optimize the four-pixel CIS structure. The results demonstrate how our stacked hybrid device could be the starting point for new device strategies in image sensor architectures. Furthermore, we expect the proposed approach to be applicable to a wide range of micro- and nanoelectronic devices and systems.

  11. Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale

    PubMed Central

    Das, Kalipada; Dasgupta, P.; Poddar, A.; Das, I.

    2016-01-01

    The Physics of materials with large magnetoresistance (MR), defined as the percentage change of electrical resistance with the application of external magnetic field, has been an active field of research for quite some times. In addition to the fundamental interest, large MR has widespread application that includes the field of magnetic field sensor technology. New materials with large MR is interesting. However it is more appealing to vast scientific community if a method describe to achieve many fold enhancement of MR of already known materials. Our study on several manganite samples [La1−xCaxMnO3 (x = 0.52, 0.54, 0.55)] illustrates the method of significant enhancement of MR with the reduction of the particle size in nanometer scale. Our experimentally observed results are explained by considering model consisted of a charge ordered antiferromagnetic core and a shell having short range ferromagnetic correlation between the uncompensated surface spins in nanoscale regime. The ferromagnetic fractions obtained theoretically in the nanoparticles has been shown to be in the good agreement with the experimental results. The method of several orders of magnitude improvement of the magnetoresistive property will have enormous potential for magnetic field sensor technology. PMID:26837285

  12. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic

    PubMed Central

    Poinern, GJE; Brundavanam, R; Le, X Thi; Djordjevic, S; Prokic, M; Fawcett, D

    2011-01-01

    Hydroxyapatite (HAP) is a widely used biocompatible ceramic in many biomedical applications and devices. Currently nanometer-scale forms of HAP are being intensely investigated due to their close similarity to the inorganic mineral component of the natural bone matrix. In this study nano-HAP was prepared via a wet precipitation method using Ca(NO3)2 and KH2PO4 as the main reactants and NH4OH as the precipitator under ultrasonic irradiation. The Ca/P ratio was set at 1.67 and the pH was maintained at 9 during the synthesis process. The influence of the thermal treatment was investigated by using two thermal treatment processes to produce ultrafine nano-HAP powders. In the first heat treatment, a conventional radiant tube furnace was used to produce nano-particles with an average size of approximately 30 nm in diameter, while the second thermal treatment used a microwave-based technique to produce particles with an average diameter of 36 nm. The crystalline structure and morphology of all nanoparticle powders produced were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Both thermal techniques effectively produced ultrafine powders with similar crystalline structure, morphology and particle sizes. PMID:22114473

  13. In vivo detection of nanometer-scale structural changes of the human tympanic membrane in otitis media.

    PubMed

    Dsouza, Roshan; Won, Jungeun; Monroy, Guillermo L; Hill, Malcolm C; Porter, Ryan G; Novak, Michael A; Boppart, Stephen A

    2018-06-08

    Otitis media (OM) is a common ear infection and a leading cause of conductive hearing loss in the pediatric population. Current technologies such as otoscopy, pneumatic otoscopy, tympanometry, and acoustic reflectometry are used to diagnose OM, which can reasonably diagnose the infection with a sensitivity and specificity of 50-90% and 60-90%, respectively. However, these techniques provide limited information about the physical architecture of the tympanic membrane (TM), or what may lie behind it. Here, we report the detection of nanometer-scale structural changes of the TM using nano-sensitive optical coherence tomography (nsOCT). In total, an image dataset from 65 pediatric subjects from three different groups (normal, acute OM, and chronic OM) and with longitudinal image-based analysis of ear infections were included in this study. The nsOCT data were correlated with physician diagnosis and with OCT thickness measurements and were found to be in good agreement with these results. We report that nsOCT detects in vivo structural deformations of the TM earlier than OCT alone, and enhances the detection sensitivity of OCT measurements. This unique technique for early detection of nano-scale structural modifications in the TM has the potential to aid in our understanding of microbiological effects, and possibly for early diagnosis and more effective treatment of OM.

  14. Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Marimpul, Rinaldo

    High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parametersmore » and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.« less

  15. Progress on glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Weber, Peter; Westerhoff, Thomas

    2016-03-01

    The Semiconductor Industry is making continuous progress in shrinking feature size developing technologies and process to achieve < 10 nm feature size. The required Overlay specification for successful production is in the range one nanometer or even smaller. Consequently, materials designed into metrology systems of exposure or inspection tools need to fulfill ever tighter specification on the coefficient of thermal expansion (CTE). The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion, the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR®. This paper is focusing on the "Advanced Dilatometer" for determination of the CTE developed at SCHOTT in the recent years and introduced into production in Q1 2015. The achievement for improving the absolute CTE measurement accuracy and the reproducibility are described in detail. Those achievements are compared to the CTE measurement accuracy reported by the Physikalische Technische Bundesanstalt (PTB), the National Metrology Institute of Germany. The CTE homogeneity is of highest importance to achieve nanometer precision on larger scales. Additionally, the paper presents data on the short scale CTE homogeneity and its improvement in the last two years. The data presented in this paper will explain the capability of ZERODUR® to enable the extreme precision required for future generation of lithography equipment and processes.

  16. Glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  17. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    PubMed

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Laser damage of free-standing nanometer membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Roland, Iännis; Rennesson, Stéphanie; Semond, Fabrice; Boucaud, Philippe; Baum, Peter

    2017-12-01

    Many high-field/attosecond and ultrafast electron diffraction/microscopy experiments on condensed matter require samples in the form of free-standing membranes with nanometer thickness. Here, we report the measurement of the laser-induced damage threshold of 11 different free-standing nanometer-thin membranes of metallic, semiconducting, and insulating materials for 1-ps, 1030-nm laser pulses at 50 kHz repetition rate. We find a laser damage threshold that is very similar to each corresponding bulk material. The measurements also reveal a band gap dependence of the damage threshold as a consequence of different ionization rates. These results establish the suitability of free-standing nanometer membranes for high-field pump-probe experiments.

  19. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, Olga S; Nikiforov, Maxim; Bradshaw, James A

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2more » array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.« less

  20. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    PubMed

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

  1. Mechanical design of multiple zone plates precision alignment apparatus for hard X-ray focusing in twenty-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming; Liu, Jie; Gleber, Sophie C.

    An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respectivemore » zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.« less

  2. From direct-space discrepancy functions to crystallographic least squares.

    PubMed

    Giacovazzo, Carmelo

    2015-01-01

    Crystallographic least squares are a fundamental tool for crystal structure analysis. In this paper their properties are derived from functions estimating the degree of similarity between two electron-density maps. The new approach leads also to modifications of the standard least-squares procedures, potentially able to improve their efficiency. The role of the scaling factor between observed and model amplitudes is analysed: the concept of unlocated model is discussed and its scattering contribution is combined with that arising from the located model. Also, the possible use of an ancillary parameter, to be associated with the classical weight related to the variance of the observed amplitudes, is studied. The crystallographic discrepancy factors, basic tools often combined with least-squares procedures in phasing approaches, are analysed. The mathematical approach here described includes, as a special case, the so-called vector refinement, used when accurate estimates of the target phases are available.

  3. Electron tomography and 3D molecular simulations of platinum nanocrystals

    NASA Astrophysics Data System (ADS)

    Florea, Ileana; Demortière, Arnaud; Petit, Christophe; Bulou, Hervé; Hirlimann, Charles; Ersen, Ovidiu

    2012-07-01

    This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface.This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30990d

  4. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    NASA Astrophysics Data System (ADS)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; Sweat, Daniel P.; Wang, Xudong; Gopalan, Padma

    2016-06-01

    In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and

  5. Artificial submicron or nanometer speckle fabricating technique and electron microscope speckle photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhanwei; Xie Huimin; Fang Daining

    2007-03-15

    In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less

  6. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    NASA Astrophysics Data System (ADS)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (<10 nm) possess advantages for surface enhanced Raman scattering (SERS) via the synergic effects of nanogaps and efficient decoupling from the substrate through an elevated three-dimensional (3D) design. In this work, we demonstrate a pattern-transfer-free process to reliably define elevated nanometer-separated mushroom-shaped dimers directly from 3D resist patterns based on the gap-narrowing effect during the metallic film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  7. Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography.

    PubMed

    Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine

    2016-12-01

    The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.

  8. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    PubMed

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  9. Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures.

    PubMed

    Jin, Yuanhao; Wang, Yingcheng; Chen, Mo; Xiao, Xiaoyang; Zhang, Tianfu; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Li, Qunqing

    2017-09-20

    We introduce a simple and cost-effective approach for fabrication of effective surface-enhanced Raman spectroscopy (SERS) substrates. It is shown that the as-fabricated substrates show excellent SERS effects in various probe molecules with high sensitivity, that is, picomolar level detection, and also good reliability. With a SERS enhancement factor beyond 10 8 and excellent reproducibility (deviation less than 5%) of signal intensity, the fabrication of the SERS substrate is realized on a four-inch wafer and proven to be effective in pesticide residue detection. The SERS substrate is realized first through the fabrication of quasi-periodic nanostructured silicon with dimension features in tens of nanometers using superaligned carbon nanotubes networks as an etching mask, after which a large amount of hot spots with nanometer gaps are formed through deposition of a gold film. With rigorous nanostructure design, the enhanced performance of electromagnetic field distribution for nanostructures is optimized. With the advantage of cost-effective large-area preparation, it is believed that the as-fabricated SERS substrate could be used in a wide variety of actual applications where detection of trace amounts is necessary.

  10. Atomic-Scale Insights into the Oxidation of Aluminum.

    PubMed

    Nguyen, Lan; Hashimoto, Teruo; Zakharov, Dmitri N; Stach, Eric A; Rooney, Aidan P; Berkels, Benjamin; Thompson, George E; Haigh, Sarah J; Burnett, Tim L

    2018-01-24

    The surface oxidation of aluminum is still poorly understood despite its vital role as an insulator in electronics, in aluminum-air batteries, and in protecting the metal against corrosion. Here we use atomic resolution imaging in an environmental transmission electron microscope (TEM) to investigate the mechanism of aluminum oxide formation. Harnessing electron beam sputtering we prepare a pristine, oxide-free metal surface in the TEM. This allows us to study, as a function of crystallographic orientation and oxygen gas pressure, the full oxide growth regime from the first oxide nucleation to a complete saturated, few-nanometers-thick surface film.

  11. Crystallographic Information Resources

    ERIC Educational Resources Information Center

    Glasser, Leslie

    2016-01-01

    Crystallographic information provides the fundamental basis for understanding the properties and behavior of materials. This data, such as chemical composition, unit cell dimensions, space group, and atomic positions, derives from the primary literature--that is, from published experimental measurement or theoretical calculation. Although the…

  12. Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations

    PubMed Central

    Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

    2014-01-01

    Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

  13. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    DOE PAGES

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; ...

    2016-05-04

    Here in this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order–disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns andmore » registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. Lastly, we conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.« less

  14. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.

    Here in this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order–disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns andmore » registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. Lastly, we conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.« less

  15. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE PAGES

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; ...

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  16. Nanometer-Scale Dissection of Chromosomes by Atomic Force Microscopy Combined with Heat-Denaturing Treatment

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru

    2006-03-01

    We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.

  17. Cambridge Crystallographic Data Centre. II. Structural Data File

    ERIC Educational Resources Information Center

    Allen, F. H.; And Others

    1973-01-01

    The Cambridge Crystallographic Data Centre is concerned with the retrieval, evaluation, synthesis, and dissemination of structural data obtained by diffraction methods. This article (Part I is EJ053033) describes the work of the center and deals with the organization and maintenance of a computerized file of numeric crystallographic structural…

  18. Fast live cell imaging at nanometer scale using annihilating filter-based low-rank Hankel matrix approach

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2015-09-01

    Localization microscopy such as STORM/PALM can achieve a nanometer scale spatial resolution by iteratively localizing fluorescence molecules. It was shown that imaging of densely activated molecules can accelerate temporal resolution which was considered as major limitation of localization microscopy. However, this higher density imaging needs to incorporate advanced localization algorithms to deal with overlapping point spread functions (PSFs). In order to address this technical challenges, previously we developed a localization algorithm called FALCON1, 2 using a quasi-continuous localization model with sparsity prior on image space. It was demonstrated in both 2D/3D live cell imaging. However, it has several disadvantages to be further improved. Here, we proposed a new localization algorithm using annihilating filter-based low rank Hankel structured matrix approach (ALOHA). According to ALOHA principle, sparsity in image domain implies the existence of rank-deficient Hankel structured matrix in Fourier space. Thanks to this fundamental duality, our new algorithm can perform data-adaptive PSF estimation and deconvolution of Fourier spectrum, followed by truly grid-free localization using spectral estimation technique. Furthermore, all these optimizations are conducted on Fourier space only. We validated the performance of the new method with numerical experiments and live cell imaging experiment. The results confirmed that it has the higher localization performances in both experiments in terms of accuracy and detection rate.

  19. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    PubMed

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  20. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  1. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.

    PubMed

    Ren, Fang-Fang; Ang, Kah-Wee; Ye, Jiandong; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2011-03-09

    Bull's eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal-oxide-semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull's eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.

  2. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  3. Oxidation-induced structural changes in sub-nanometer platinum supported on alumina

    DOE PAGES

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; ...

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al 2O 3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, wemore » find that sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  4. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    NASA Astrophysics Data System (ADS)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  5. Thermoelectric device with multiple, nanometer scale, elements

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alexander (Inventor); Herman, Jennifer (Inventor)

    2006-01-01

    A thermoelectric device formed of nanowires on the nm scale. The nanowires are preferably of a size that causes quantum confinement effects within the wires. The wires are connected together into a bundle to increase the power density.

  6. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    PubMed

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  7. Evaluation of crystallographic strain, rotation and defects in functional oxides by the moiré effect in scanning transmission electron microscopy.

    PubMed

    Naden, A B; O'Shea, K J; MacLaren, D A

    2018-04-20

    Moiré patterns in scanning transmission electron microscopy (STEM) images of epitaxial perovskite oxides are used to assess strain and defect densities over fields of view extending over several hundred nanometers. The patterns arise from the geometric overlap of the rastered STEM electron beam and the samples' crystal periodicities and we explore the emergence and application of these moiré fringes for rapid strain analysis. Using the epitaxial functional oxide perovskites BiFeO 3 and Pr 1-x Ca x MnO 3 , we discuss the impact of large degrees of strain on the quantification of STEM moiré patterns, identify defects in the fringe patterns and quantify strain and lattice rotation. Such a wide-area analysis of crystallographic strain and defects is crucial for developing structure-function relations of functional oxides and we find the STEM moiré technique to be an attractive means of structural assessment that can be readily applied to low dose studies of damage sensitive crystalline materials.

  8. Evaluation of crystallographic strain, rotation and defects in functional oxides by the moiré effect in scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Naden, A. B.; O'Shea, K. J.; MacLaren, D. A.

    2018-04-01

    Moiré patterns in scanning transmission electron microscopy (STEM) images of epitaxial perovskite oxides are used to assess strain and defect densities over fields of view extending over several hundred nanometers. The patterns arise from the geometric overlap of the rastered STEM electron beam and the samples’ crystal periodicities and we explore the emergence and application of these moiré fringes for rapid strain analysis. Using the epitaxial functional oxide perovskites BiFeO3 and Pr1-x Ca x MnO3, we discuss the impact of large degrees of strain on the quantification of STEM moiré patterns, identify defects in the fringe patterns and quantify strain and lattice rotation. Such a wide-area analysis of crystallographic strain and defects is crucial for developing structure-function relations of functional oxides and we find the STEM moiré technique to be an attractive means of structural assessment that can be readily applied to low dose studies of damage sensitive crystalline materials.

  9. Non-crystallographic nets: characterization and first steps towards a classification.

    PubMed

    Moreira de Oliveira, Montauban; Eon, Jean Guillaume

    2014-05-01

    Non-crystallographic (NC) nets are periodic nets characterized by the existence of non-trivial bounded automorphisms. Such automorphisms cannot be associated with any crystallographic symmetry in realizations of the net by crystal structures. It is shown that bounded automorphisms of finite order form a normal subgroup F(N) of the automorphism group of NC nets (N, T). As a consequence, NC nets are unstable nets (they display vertex collisions in any barycentric representation) and, conversely, stable nets are crystallographic nets. The labelled quotient graphs of NC nets are characterized by the existence of an equivoltage partition (a partition of the vertex set that preserves label vectors over edges between cells). A classification of NC nets is proposed on the basis of (i) their relationship to the crystallographic net with a homeomorphic barycentric representation and (ii) the structure of the subgroup F(N).

  10. Recovery of crystallographic texture in remineralized dental enamel.

    PubMed

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  11. A Journey into Reciprocal Space; A crystallographer's perspective

    NASA Astrophysics Data System (ADS)

    Glazer, A. M.

    2017-10-01

    This book introduces undergraduate and graduate students to a crystallographer's view of real and reciprocal space, a concept that has been of particular use by crystallographers to understand the patterns of spots when x-rays are diffracted by crystals. It then proceeds to develop the concept in a form suitable for physics applications; such as how solid-state physicists use reciprocal space to explain various solid-state properties such as thermal and electrical phenomena.

  12. Quantum crystallographic charge density of urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  13. Quantum crystallographic charge density of urea

    DOE PAGES

    Wall, Michael E.

    2016-06-08

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  14. A preliminary neutron crystallographic study of thaumatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Susana C. M.; Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble; EPSAM and ISTM, Keele University, Staffordshire ST5 5BG

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL).more » The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.« less

  15. Recovery of Crystallographic Texture in Remineralized Dental Enamel

    PubMed Central

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  16. Properties of antibacterial polypropylene/nanometal composite fibers

    USDA-ARS?s Scientific Manuscript database

    Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted...

  17. An ``Alternating-Curvature'' Model for the Nanometer-scale Structure of the Nafion Ionomer, Based on Backbone Properties Detected by NMR

    NASA Astrophysics Data System (ADS)

    Schmidt-Rohr, Klaus; Chen, Q.

    2006-03-01

    The perfluorinated ionomer, Nafion, which consists of a (-CF2-)n backbone and charged side branches, is useful as a proton exchange membrane in H2/O2 fuel cells. A modified model of the nanometer-scale structure of hydrated Nafion will be presented. It features hydrated ionic clusters familiar from some previous models, but is based most prominently on pronounced backbone rigidity between branch points and limited orientational correlation of local chain axes. These features have been revealed by solid-state NMR measurements, which take advantage of fast rotations of the backbones around their local axes. The resulting alternating curvature of the backbones towards the hydrated clusters also better satisfies the requirement of dense space filling in solids. Simulations based on this ``alternating curvature'' model reproduce orientational correlation data from NMR, as well as scattering features such as the ionomer peak and the I(q) ˜ 1/q power law at small q values, which can be attributed to modulated cylinders resulting from the chain stiffness. The shortcomings of previous models, including Gierke's cluster model and more recent lamellar or bundle models, in matching all requirements imposed by the experimental data will be discussed.

  18. Crystallographic and Spectroscopic Symmetry Notations.

    ERIC Educational Resources Information Center

    Sharma, B. D.

    1982-01-01

    Compares Schoenflies and Hermann-Mauguin notations of symmetry. Although the former (used by spectroscopists) and latter (used by crystallographers) both describe the same symmetry, there are distinct differences in the manner of description which may lead to confusion in correlating the two notations. (Author/JN)

  19. Crystallographic Topology 2: Overview and Work in Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.K.

    1999-08-01

    This overview describes an application of contemporary geometric topology and stochastic process concepts to structural crystallography. In this application, crystallographic groups become orbifolds, crystal structures become Morse functions on orbifolds, and vibrating atoms in a crystal become vector valued Gaussian measures with the Radon-Nikodym property. Intended crystallographic benefits include new methods for visualization of space groups and crystal structures, analysis of the thermal motion patterns seen in ORTEP drawings, and a classification scheme for crystal structures based on their Heegaard splitting properties.

  20. Crystallographic tile

    NASA Astrophysics Data System (ADS)

    Kartono; Heri Sulistyo Utomo, R.; Priyo, Sidik S.; Titi Ujiani, SRRM

    2018-05-01

    A symmetry operation is a rigid motion that include reflection, rotation, translation and their combinations. These motions determine orderly repetition, that can have aesthetic appeal. So, the symmetry is often found in art, and the decorative tiles are wonderful sources of examples of symmetry. In this article, we introduce and describe the crystallographic tile (CT). Ornament decorative motif on the CT is designed with consider the symmetry operations. Surprisingly, orderly repetition of this CT can generate many variant patterns. The result of this research, orderly repetition of one motif can produce 14 patterns. Finally, we conclude that an application of the crystallography theory can increase the product competitiveness.

  1. Shape and crystallographic orientation of nanodiamonds for quantum sensing.

    PubMed

    Ong, S Y; Chipaux, M; Nagl, A; Schirhagl, R

    2017-05-03

    Nanodiamonds with dimensions down to a few tens of nanometers containing nitrogen-vacancy (NV) color centers have revealed their potential as powerful and versatile quantum sensors with a unique combination of spatial resolution and sensitivity. The NV centers allow transducing physical properties, such as strain, temperature, and electric or magnetic field, to an optical transition that can be detected in the single photon range. For example, this makes it possible to sense a single electron spin or a few nuclear spins by detecting their magnetic resonance. The location and orientation of these defects with respect to the diamond surface play a crucial role in interpreting the data and predicting their sensitivities. Despite its relevance, the geometry of these nanodiamonds has never been thoroughly investigated. Without accurate data, spherical models have been applied to interpret or predict results in the past. With the use of High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), we investigated nanodiamonds with an average hydrodynamic diameter of 25 nm (the most common type for quantum sensing) and found a flake-like geometry, with 23.2 nm and 4.5 nm being the average lateral and vertical dimensions. We have also found evidence for a preferred crystallographic orientation of the main facet in the (110) direction. Furthermore, we discuss the consequences of this difference in geometry on diamond-based applications. Shape not only influences the creation efficiency of nitrogen-vacancy centers and their quantum coherence properties (and thus sensing performance), but also the optical properties of the nanodiamonds, their interaction with living cells, and their surface chemistry.

  2. Crystallographic texture in oxide-dispersion-strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1982-01-01

    Crystallographic and elastic moduli data are presented which document the degree of texture in several oxide dispersion-strengthened (ODS) nickel-base alloys. The existence of strong crystallographic textures in such multicrystalline alloys is considered important, since the small angle grain boundaries may be partially responsible for creep threshold stresses. Gleiter (1979) has shown that ideal, low energy boundaries will act as vacancy sources only when the applied stress is greater than a threshold stress, while large angle grain boundaries will emit vacancies at all stress levels. The continued operation of a net vacancy in an ODS alloy must be avoided, since it will lead to a localized disruption of the microstructure.

  3. Effects of Dissolved Organic Matter Properties on Formation and Composition of Mineral-Organic Co-Precipitates at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Possinger, A. R.; Zachman, M.; Lehmann, J.

    2016-12-01

    An important, yet largely overlooked case of soil organic carbon (SOC) stabilization through mineral-organic associations is the co-precipitation of dissolved organic matter (DOM) into mineral precipitates as they form. The contribution of co-precipitated DOM to the mineral-stabilized SOC pool is expected to be greatest in soil environments with frequent mineral dissolution and precipitation processes. Compared to surface adsorption, properties of mineral-organic co-precipitates are expected to differ at both the particle scale (e.g., total carbon (C) content and composition) and the molecular scale (e.g., impurities in mineral structure), with potential implications for stability and C turnover; additionally, these properties vary across C sources, amounts, and forms. Consequently, high-resolution visualization and characterization combined with bulk chemical measurements is needed to provide a more complete understanding of co-precipitate formation processes and properties, especially as a function of C co-precipitant characteristics. In this study, we evaluate the effect of model C compound and DOM chemical properties (e.g., iron-binding affinity) on the formation, structure, and chemical properties of ferrihydrite (Fh) (Fe3+3O2 •0.5H2O) co-precipitates. Salicylic acid (SA), sucrose and water-extractable DOM from coniferous or deciduous-dominated organic soils were either adsorbed to pre-formed Fh or co-precipitated with Fh. At a C/Fe ratio 10, the amount of co-precipitated C differed among all organic compounds, and for DOM, was more than 2X greater for co-precipitation than adsorption, suggesting a greater capacity for C retention. To probe the molecular-scale C spatial distribution of Fh-SA particles, we obtained Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) maps at a nanometer-scale spatial pixel resolution. Additionally, we will present chemical characteristics of organic-Fh co-precipitates and adsorption

  4. Antimicrobial Susceptibility Test with Plasmonic Imaging and Tracking of Single Bacterial Motions on Nanometer Scale.

    PubMed

    Syal, Karan; Iriya, Rafael; Yang, Yunze; Yu, Hui; Wang, Shaopeng; Haydel, Shelley E; Chen, Hong-Yuan; Tao, Nongjian

    2016-01-26

    Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Currently, most ASTs performed in clinical microbiology laboratories are based on bacterial culturing, which take days to complete for slowly growing microorganisms. A faster AST will reduce morbidity and mortality rates and help healthcare providers administer narrow spectrum antibiotics at the earliest possible treatment stage. We report the development of a nonculture-based AST using a plasmonic imaging and tracking (PIT) technology. We track the motion of individual bacterial cells tethered to a surface with nanometer (nm) precision and correlate the phenotypic motion with bacterial metabolism and antibiotic action. We show that antibiotic action significantly slows down bacterial motion, which can be quantified for development of a rapid phenotypic-based AST.

  5. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of themore » interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.« less

  6. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of themore » interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.« less

  7. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    DOE PAGES

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; ...

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. Here, the chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side ofmore » the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO 3 biomineralization.« less

  8. Crystallographic interpretation of Galois symmetries for magnetic pentagonal ring

    NASA Astrophysics Data System (ADS)

    Milewski, J.; Lulek, T.; Łabuz, M.

    2017-03-01

    Galois symmetry of exact Bethe Ansatz eigenstates for the magnetic pentagonal ring within the XXX model are investigated by a comparison with crystallographic constructions of space groups. It follows that the arithmetic symmetry of Bethe parameters for the interior of the Brillouin zone admits crystallographic interpretation, in terms of the periodic square Z2 ×Z2 , that is the two-dimensional crystal lattice with Born-Karman period two in both directions.

  9. Acoustical nanometre-scale vibrations of live cells detected by a near-field optical setup

    NASA Astrophysics Data System (ADS)

    Piga, Rosaria; Micheletto, Ruggero; Kawakami, Yoichi

    2007-04-01

    The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s life, such as cell cycle and cell death, on rat pheochromocytoma line PC12. Working in culture medium with alive and unperturbed samples, we could detect nanometer-sized movements; Fourier components revealed a clear distinct behavior associated to regulation of neurite outgrowth and changes on morphology after necrotic stimulus.

  10. Effect of crystallographic orientations of grains on the global mechanical properties of steel sheets by depth sensing indentation

    NASA Astrophysics Data System (ADS)

    Burik, P.; Pesek, L.; Kejzlar, P.; Andrsova, Z.; Zubko, P.

    2017-01-01

    The main idea of this work is using a physical model to prepare a virtual material with required properties. The model is based on the relationship between the microstructure and mechanical properties. The macroscopic (global) mechanical properties of steel are highly dependent upon microstructure, crystallographic orientation of grains, distribution of each phase present, etc... We need to know the local mechanical properties of each phase separately in multiphase materials. The grain size is a scale, where local mechanical properties are responsible for the behavior. Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. The aim of this experimental investigation is: (i) to prove how the mixing rule works for local mechanical properties (indentation hardness HIT) in microstructure scale using the DSI technique on steel sheets with different microstructure; (ii) to compare measured global properties with properties achieved by mixing rule; (iii) to analyze the effect of crystallographic orientations of grains on the mixing rule.

  11. Nondestructive characterization of textured a-Si:H/c-Si heterojunction solar cell structures with nanometer-scale a-Si:H and In2O3:Sn layers by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Matsuki, Nobuyuki; Fujiwara, Hiroyuki

    2013-07-01

    Nanometer-scale hydrogenated amorphous silicon (a-Si:H) layers formed on crystalline silicon (c-Si) with pyramid-shaped textures have been characterized by spectroscopic ellipsometry (SE) using a tilt angle measurement configuration, in an attempt to establish a nondestructive method for the structural characterization of the a-Si:H/c-Si heterojunction solar cells. By applying an a-Si:H dielectric function model developed recently, the thickness and SiH2 content of the a-Si:H layer have been determined even on the textured substrates. Furthermore, from the SE analysis incorporating the Drude model, the carrier properties of the In2O3:Sn layers in the textured solar-cell structure have been characterized.

  12. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry

    PubMed Central

    2017-01-01

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations. PMID:28094977

  13. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.

    PubMed

    Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto

    2017-02-08

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

  14. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  15. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco).

    PubMed

    Cosmidis, J; Benzerara, K; Gheerbrant, E; Estève, I; Bouya, B; Amaghzaz, M

    2013-03-01

    Micrometer-sized spherical and rod-shaped forms have been reported in many phosphorites and often interpreted as microbes fossilized by apatite, based on their morphologic resemblance with modern bacteria inferred by scanning electron microscopy (SEM) observations. This interpretation supports models involving bacteria in the formation of phosphorites. Here, we studied a phosphatic coprolite of Paleocene age originating from the Ouled Abdoun phosphate basin (Morocco) down to the nanometer-scale using focused ion beam milling, transmission electron microscopy (TEM), and scanning transmission x-ray microscopy (STXM) coupled with x-ray absorption near-edge structure spectroscopy (XANES). The coprolite, exclusively composed of francolite (a carbonate-fluroapatite), is formed by the accumulation of spherical objects, delimited by a thin envelope, and whose apparent diameters are between 0.5 and 3 μm. The envelope of the spheres is composed of a continuous crown dense to electrons, which measures 20-40 nm in thickness. It is surrounded by two thinner layers that are more porous and transparent to electrons and enriched in organic carbon. The observed spherical objects are very similar with bacteria encrusting in hydroxyapatite as observed in laboratory experiments. We suggest that they are Gram-negative bacteria fossilized by francolite, the precipitation of which started within the periplasm of the cells. We discuss the role of bacteria in the fossilization mechanism and propose that they could have played an active role in the formation of francolite. This study shows that ancient phosphorites can contain fossil biological subcellular structures as fine as a bacterial periplasm. Moreover, we demonstrate that while morphological information provided by SEM analyses is valuable, the use of additional nanoscale analyses is a powerful approach to help inferring the biogenicity of biomorphs found in phosphorites. A more systematic use of this approach could considerably

  16. X-ray crystallographic data for minerals

    USGS Publications Warehouse

    Robie, Richard A.; Bethke, Philip M.; Toulmin, M.S.; Edwards, Jerry L.

    1963-01-01

    X-ray crystallographic data are of particular importance to the mineralogist. Beyond the considerations of structural chemistry they provide. one of the most accurate methods for phase and/or compositional determination and for obtaining _the molar volumes and densities of minerals {Robie and Bethke, 1962).

  17. Crystallographic Orientation Identification in Multicrystalline Silicon Wafers Using NIR Transmission Intensity

    NASA Astrophysics Data System (ADS)

    Skenes, Kevin; Kumar, Arkadeep; Prasath, R. G. R.; Danyluk, Steven

    2018-02-01

    Near-infrared (NIR) polariscopy is a technique used for the non-destructive evaluation of the in-plane stresses in photovoltaic silicon wafers. Accurate evaluation of these stresses requires correct identification of the stress-optic coefficient, a material property which relates photoelastic parameters to physical stresses. The material stress-optic coefficient of silicon varies with crystallographic orientation. This variation poses a unique problem when measuring stresses in multicrystalline silicon (mc-Si) wafers. This paper concludes that the crystallographic orientation of silicon can be estimated by measuring the transmission of NIR light through the material. The transmission of NIR light through monocrystalline wafers of known orientation were compared with the transmission of NIR light through various grains in mc-Si wafers. X-ray diffraction was then used to verify the relationship by obtaining the crystallographic orientations of these assorted mc-Si grains. Variation of transmission intensity for different crystallographic orientations is further explained by using planar atomic density. The relationship between transmission intensity and planar atomic density appears to be linear.

  18. Triangulating the source of tunneling resonances in a point contact with nanometer scale sensitivity

    NASA Astrophysics Data System (ADS)

    Bishop, N. C.; Boras Pinilla, C.; Stalford, H. L.; Young, R. W.; Ten Eyck, G. A.; Wendt, J. R.; Eng, K.; Lilly, M. P.; Carroll, M. S.

    2011-03-01

    We observe resonant tunneling in split gate point contacts defined in a double gate enhancement mode Si-MOS device structure. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position [Stalford et al., IEEE Nanotechnology], identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Crystallographic Data Centre Services and Publications.

    ERIC Educational Resources Information Center

    Cambridge Univ. (England). Chemical Lab.

    The Cambridge Crystallographic Data Centre is concerned with the retrieval, evaluation, synthesis, and dissemination of structural data based on diffraction methods. The source of input is almost entirely primary journals. Bibliographic information and numeric data on crystal and molecular structures are on magnetic tapes. The bibliographic file…

  20. Crystallographically Anisotropic Shape of Forsterite: New Probe for Evaluating Dust Formation History from Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Takigawa, Aki; Tachibana, Shogo

    2012-05-01

    Crystalline dust has been observed by infrared spectroscopy around dust-enshrouded asymptotic giant branch stars, in protoplanetary disks, and from some comets. Crystalline materials often have a specific shape related to a specific crystallographic orientation (crystallographically anisotropic shape), which reflects the anisotropic nature of crystals, and their infrared spectral features depend on crystallographically anisotropic shapes. The crystallographically anisotropic shape is thus a potentially powerful probe to evaluate circumstellar dust-forming conditions quantitatively. In order to assess the possibility to determine the crystallographically anisotropic shape from infrared spectra, we calculated mass absorption coefficients for ellipsoidal forsterite particles, the most abundant circumstellar crystalline silicate, elongated and flattened along the crystallographic a-, b-, and c-axes with various aspect ratios in the wavelength range of 9-70 μm. It was found that differences in infrared features caused by various crystallographicaly anisotropic shapes are distinguishable from each other irrespective of the effects of temperature, size, chemical composition, and grain edges of forsterite in the range of 9-12 μm and 15-20 μm. We thus concluded that the crystallographically anisotropic shape of forsterite can be deduced from peak features in infrared spectra. We also showed that the crystallographically anisotropic shapes formed by evaporation and condensation of forsterite can be distinguished from each other and the temperature condition for evaporation can be evaluated from the peak features. We applied the present results to the infrared spectrum of a protoplanetary disk HD100546 and found that a certain fraction (~25%) of forsterite dust may have experienced high-temperature evaporation (>1600 K).

  1. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, S.; Chung, C.; Fitsos, P.

    2007-04-24

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Acceleratormore » Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.« less

  2. A theoretical consideration of ion size effects on the electric double layer and voltammetry of nanometer-sized disk electrodes.

    PubMed

    Gao, Yu; Liu, Yuwen; Chen, Shengli

    2016-12-12

    Considering that an electric-double-layer (EDL) structure may significantly impact on the mass transport and charge transfer kinetics at the interfaces of nanometer-sized electrodes, while EDL structures could be altered by the finite sizes of electrolyte and redox ions, the possible effects of ion sizes on EDL structures and voltammetric responses of nanometer-sized disk (nanodisk) electrodes are investigated. Modified Boltzmann and Nernst-Planck (NP) equations, which include the influence of the finite ion volumes, are combined with the Poisson equation and modified Butler-Volmer equation to gain knowledge on how the finite sizes of ions and the nanometer sizes of electrodes may couple with each other to affect the structures and reactivities of a nanoscale electrochemical interface. Two typical ion radii, 0.38 nm and 0.68 nm, which could represent the sizes of the commonly used aqueous electrolyte ions (e.g., the solvated K + ) and the organic electrolyte ions (e.g., the solvated TEA + ) respectively, are considered. The finite size of ions can result in decreased screening of electrode charges, therefore magnifying EDL effects on the ion transport and the electron transfer at electrochemical interfaces. This finite size effect of ions becomes more pronounced for larger ions and at smaller electrodes as the electrode radii is larger than 10 nm. For electrodes with radii smaller than 10 nm, however, the ion size effect may be less pronounced with decreasing the electrode size. This can be explained in terms of the increased edge effect of disk electrodes at nanometer scales, which could relax the ion crowding at/near the outer Helmholtz plane. The conditions and situations under which the ion sizes may have a significant effect on the voltammetry of electrodes are discussed.

  3. Atomic-Scale Factors of Combustion Nanocatalysts

    DTIC Science & Technology

    2014-03-27

    AFRL-OSR-VA-TR-2014-0122 ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS Uzi Landman GEORGIA TECH RESEARCH CORPORATION Final Report 05/19/2014...Prescribed by ANSI Std. Z39.18 27-03-2014 Final 01-06-2008 - 31-12-2013 MURI 08) - ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS N/A FA9550-08...of predictive capabilities, addressing the creation, characterization, atomic- scale manipulations, and control of nanometer- scale catalytic systems

  4. Photosensitizing effects of nanometer TiO2 on chlorothalonil photodegradation in aqueous solution and on the surface of pepper.

    PubMed

    Tan, Yong Qiang; Xiong, Hai Xia; Shi, Tao Zhong; Hua, Ri Mao; Wu, Xiang Wei; Cao, Hai Qun; Li, Xue De; Tang, Jun

    2013-05-29

    The present study examined the effects of anatase nanometer TiO2 on photochemical degradation of chlorothalonil in aqueous solution and on the plant surface. Results showed that nanometer TiO2 exhibited a strong photosensitizing effect on the degradation of chlorothalonil both in aqueous solution and on the surface of green pepper. The photosensitization rate was the highest in the sunlight compared to illumination under high-pressure mercury and UV lamps. Use of distinct hydroxyl radical scavengers indicated that nanometer TiO2 acted by producing hydroxyl radicals with strong oxidizing capacity. Notably, nanometer TiO2 facilitated complete photodegradation of chlorothalonil with no detectable accumulation of the intermediate chlorothalonil-4-hydroxy. Nanometer TiO2 was also active on the surface of green pepper under natural sunlight both inside and outside of plastic greenhouse. These results together suggest that nanometer TiO2 can be used as a photosensitizer to accelerate degradation of the pesticides under greenhouse conditions.

  5. Fundamental Scaling Laws in Nanophotonics

    PubMed Central

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-01-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159

  6. Fundamental Scaling Laws in Nanophotonics.

    PubMed

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J

    2016-11-21

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  7. Fundamental Scaling Laws in Nanophotonics

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-11-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  8. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  9. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE PAGES

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; ...

    2016-02-27

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  10. Atomic-scale thermocapillary flow in focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Das, Kallol; Johnson, Harley; Freund, Jonathan

    2016-11-01

    Focused ion beams (FIB) offer an attractive tool for nanometer-scale manufacturing and material processing, particularly because they can be focused to a few nanometer diameter spot. This motivates their use for many applications, such as sample preparation for transmission electron microscopy (TEM), forming nanometer scale pores in thin films for DNA sequencing. Despite its widespread use, the specific mechanisms of FIB milling, especially at high ion fluxes for which significant phase change might occur, remains incompletely understood. Here we investigate the process of nanopore fabrication in thin Si films using molecular dynamics simulation where Ga+ ions are used as the focused ions. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it is driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A continuum flow model with Marangoni forcing reproduces the flow.

  11. Critical current densities of powder-in-tube MgB2 tapes fabricated with nanometer-size Mg powder

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Hirakawa, M.; Kumakura, H.; Matsumoto, A.; Kitaguchi, H.

    2004-03-01

    We fabricated powder-in-tube MgB2/Fe tapes using a powder mixture of nanometer-size Mg and commercial amorphous B and investigated the transport properties. High-purity nanometer-size Mg powder was fabricated by applying the thermal plasma method. 5-10 mol % SiC powder doping was tried to enhance the Jc properties. We found that the use of nanometer-size Mg powder was effective to increase the Jc values. The transport Jc values of the nondoped and 10 mol % SiC-doped tapes prepared with nanometer-size Mg powder reached 90 and 250 A/mm2 at 4.2 K and 10 T, respectively. These values were about five times higher than those of the tapes prepared with commercial Mg powder.

  12. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks

    NASA Astrophysics Data System (ADS)

    Bayburt, Timothy H.; Sligar, Stephen G.

    2002-05-01

    The architecture of membrane proteins in their native environment of the phospholipid bilayer is critical for understanding physiological function, but has been difficult to realize experimentally. In this communication we describe the incorporation of a membrane-anchored protein into a supported phospholipid bilayer. Cytochrome P450 2B4 solubilized and purified from the hepatic endoplasmic reticulum was incorporated into phospholipid bilayer nanostructures and oriented on a surface for visualization by atomic force microscopy. Individual P450 molecules were observed protruding from the bilayer surface. Problems associated with deformation of the protein by the atomic force microscopy probe were avoided by analyzing force-dependent height measurements to quantitate the height of the protein above the bilayer surface. Measurements of the atomic force microscopy cantilever deflection as a function of probe-sample separation reveal that the top of the P450 opposite the N-terminal membrane anchor region sits 3.5 nanometers above the phospholipid-water boundary. Models of the orientation of the enzyme are presented and discussed in relation to membrane interactions and interaction with cytochrome P450 reductase.

  13. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    NASA Astrophysics Data System (ADS)

    Hollander, R. W.; Bom, V. R.; van Eijk, C. W. E.; Faber, J. S.; Hoevers, H.; Kruit, P.

    1994-09-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the "true" to "accidental" ratio will be 5. The dead time is 15%.

  14. A crystallographic perspective on sharing data and knowledge

    NASA Astrophysics Data System (ADS)

    Bruno, Ian J.; Groom, Colin R.

    2014-10-01

    The crystallographic community is in many ways an exemplar of the benefits and practices of sharing data. Since the inception of the technique, virtually every published crystal structure has been made available to others. This has been achieved through the establishment of several specialist data centres, including the Cambridge Crystallographic Data Centre, which produces the Cambridge Structural Database. Containing curated structures of small organic molecules, some containing a metal, the database has been produced for almost 50 years. This has required the development of complex informatics tools and an environment allowing expert human curation. As importantly, a financial model has evolved which has, to date, ensured the sustainability of the resource. However, the opportunities afforded by technological changes and changing attitudes to sharing data make it an opportune moment to review current practices.

  15. Computational Nanotribology of Nanometer Confined Liquid Films

    DTIC Science & Technology

    2012-02-29

    Nanotribology of Nanometer Confined Liquid Films 5b. GRANT NUMBER FA9550-08-1-0214 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...NUMBER Yongsheng Leng & Peter T. Cummings 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES...NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) Joycelyn Harrison AFOSR/RSA 875 North Randolph Street 11. SPONSOR/MONITOR’S REPORT

  16. 3D nanometer images of biological fibers by directed motion of gold nanoparticles.

    PubMed

    Estrada, Laura C; Gratton, Enrico

    2011-11-09

    Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.

  17. Application of maximum-likelihood estimation in optical coherence tomography for nanometer-class thickness estimation

    NASA Astrophysics Data System (ADS)

    Huang, Jinxin; Yuan, Qun; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew; Hindman, Holly B.; Aquavella, James V.; Rolland, Jannick P.

    2015-03-01

    In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 μm axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.

  18. Rapid Water Permeation Through Carbon Nanomembranes with Sub-Nanometer Channels.

    PubMed

    Yang, Yang; Dementyev, Petr; Biere, Niklas; Emmrich, Daniel; Stohmann, Patrick; Korzetz, Riko; Zhang, Xianghui; Beyer, André; Koch, Sascha; Anselmetti, Dario; Gölzhäuser, Armin

    2018-05-22

    The provision of clean water is a global challenge, and membrane filtration is a key technology to address it. Conventional filtration membranes are constrained by a trade-off between permeance and selectivity. Recently, some nanostructured membranes demonstrated the ability to overcome this limitation by utilizing well-defined carbon nanoconduits that allow a coordinated passage of water molecules. The fabrication of these materials is still very challenging, but their performance inspires research toward nanofabricated membranes. This study reports on molecularly thin membranes with sub-nanometer channels that combine high water selectivity with an exceptionally high permeance. Carbon nanomembranes (CNMs) of ∼1.2 nm thickness are fabricated from terphenylthiol (TPT) monolayers. Scanning probe microscopy and transport measurements reveal that TPT CNMs consist of a dense network of sub-nanometer channels that efficiently block the passage of most gases and liquids. However, water passes through with an extremely high permeance of ∼1.1 × 10 -4 mol·m -2 ·s -1 ·Pa -1 , as does helium, but with a ∼ 2500 times lower flux. Assuming all channels in a TPT CNM are active in mass transport, we find a single-channel permeation of ∼66 water molecules·s -1 ·Pa -1 . This suggests that water molecules translocate fast and cooperatively through the sub-nanometer channels, similar to carbon nanotubes and membrane proteins (aquaporins). CNMs are thus scalable two-dimensional sieves that can be utilized toward energy-efficient water purification.

  19. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton

    PubMed Central

    Bridges, Andrew A.; Jentzsch, Maximilian S.; Oakes, Patrick W.; Occhipinti, Patricia

    2016-01-01

    Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. PMID:27044896

  20. Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028

    NASA Astrophysics Data System (ADS)

    Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu

    2018-06-01

    The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.

  1. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis.

    PubMed

    Meng, Xianguang; Liu, Lequan; Ouyang, Shuxin; Xu, Hua; Wang, Defa; Zhao, Naiqin; Ye, Jinhua

    2016-08-01

    Nanometal materials play very important roles in solar-to-chemical energy conversion due to their unique catalytic and optical characteristics. They have found wide applications from semiconductor photocatalysis to rapidly growing surface plasmon-mediated heterogeneous catalysis. The recent research achievements of nanometals are reviewed here, with regard to applications in semiconductor photocatalysis, plasmonic photocatalysis, and plasmonic photo-thermocatalysis. As the first important topic discussed here, the latest progress in the design of nanometal cocatalysts and their applications in semiconductor photocatalysis are introduced. Then, plasmonic photocatalysis and plasmonic photo-thermocatalysis are discussed. A better understanding of electron-driven and temperature-driven catalytic behaviors over plasmonic nanometals is helpful to bridge the present gap between the communities of photocatalysis and conventional catalysis controlled by temperature. The objective here is to provide instructive information on how to take the advantages of the unique functions of nanometals in different types of catalytic processes to improve the efficiency of solar-energy utilization for more practical artificial photosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, V; Hayano, H; Honda, Y

    2005-10-14

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics.more » A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.« less

  3. The Synergistic Effect of Leukocyte Platelet-Rich Fibrin and Micrometer/Nanometer Surface Texturing on Bone Healing around Immediately Placed Implants: An Experimental Study in Dogs

    PubMed Central

    Neiva, Rodrigo F.; Gil, Luiz Fernando; Tovar, Nick; Janal, Malvin N.; Marao, Heloisa Fonseca; Pinto, Nelson; Coelho, Paulo G.

    2016-01-01

    Aims. This study evaluated the effects of L-PRF presence and implant surface texture on bone healing around immediately placed implants. Methods. The first mandibular molars of 8 beagle dogs were bilaterally extracted, and implants (Blossom™, Intra-Lock International, Boca Raton, FL) were placed in the mesial or distal extraction sockets in an interpolated fashion per animal. Two implant surfaces were distributed per sockets: (1) dual acid-etched (DAE, micrometer scale textured) and (2) micrometer/nanometer scale textured (Ossean™ surface). L-PRF (Intraspin system, Intra-Lock International) was placed in a split-mouth design to fill the macrogap between implant and socket walls on one side of the mandible. The contralateral side received implants without L-PRF. A mixed-model ANOVA (at α = 0.05) evaluated the effect of implant surface, presence of L-PRF, and socket position (mesial or distal), individually or in combination on bone area fraction occupancy (BAFO). Results. BAFO values were significantly higher for the Ossean relative to the DAE surface on the larger mesial socket. The presence of L-PRF resulted in higher BAFO. The Ossean surface and L-PRF presence resulted in significantly higher BAFO. Conclusion. L-PRF and the micro-/nanometer scale textured surface resulted in increased bone formation around immediately placed implants. PMID:28042577

  4. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

    PubMed

    Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M

    2014-05-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  5. Low-Cost Sensors Deliver Nanometer-Accurate Measurements

    NASA Technical Reports Server (NTRS)

    2015-01-01

    As part of a unique partnership program, Kennedy Space Center collaborated with a nearby business school to allow MBA students to examine and analyze the market potential for a selection of NASA-patented technologies. Following the semester, a group of students decided to form Winter Park, Florida-based Juntura Group Inc. to license and sell a technology they had worked with: a sensor capable of detecting position changes as small as 10 nanometers-approximately the thickness of a cell wall.

  6. Nanometer-Scale Epitaxial Strain Release in Perovskite Heterostructures Using 'SrAlOx' Sliding Buffer Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Christopher

    2011-08-11

    the relative crystalline orientation between the filmand the substrate. For 4 uc or greater, the perovskite epitaxial template is lost and the LAO filmis amorphous. These results suggest that metastable interlayers can be used for strain release on the nanometer scale.« less

  7. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE PAGES

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.; ...

    2017-04-07

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  8. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  9. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    PubMed

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  10. Reverse-transformation austenite structure control with micro/nanometer size

    NASA Astrophysics Data System (ADS)

    Wu, Hui-bin; Niu, Gang; Wu, Feng-juan; Tang, Di

    2017-05-01

    To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870°C for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850°C, where grains with a diameter ≤ 500 nm accounted for 30% and those with a diameter > 0.5 μm accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.

  11. High Temperature Mechanical Behavior of Polycrystalline Alumina from Mixed Nanometer and Micrometer Powders

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Sintered aluminum oxide materials were formed using commercial methods from mechanically mixed powders of nano-and micrometer alumina. The powders were consolidated at 1500 and 1600 C with 3.2 and 7.2 ksi applied stress in argon. The conventional micrometer sized powders failed to consolidate. While 100 percent nanometer-sized alumina and its mixture with the micrometer powders achieved less than 99 percent density. Preliminary high temperature creep behavior indicates no super-plastic strains. However high strains (less than 0.65 percent) were generated in the nanometer powder, due to cracks and linked voids initiated by cavitation.

  12. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    PubMed

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  13. Crystallographic data processing for free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show thatmore » the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.« less

  14. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  15. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  16. Facile transfer of thickness controllable poly(methyl methacrylate) patterns on a nanometer scale onto SiO2 substrates via microcontact printing combined with simplified Langmuir-Schaefer technique.

    PubMed

    Kim, Yong-Kwan; Kim, Dae-Il; Park, Jaehyun; Shin, Gunchul; Kim, Gyu Tae; Ha, Jeong Sook

    2008-12-16

    We report on the facile patterning of poly(methyl methacrylate) (PMMA) layers onto SiO2 substrates via microcontact printing combined with the simplified Langmuir-Schaefer (LS) technique. Langmuir film of PMMA was formed just by dropping a dilute PMMA solution onto the air/water surface in a glass Petri dish via self-assembly, and it was used as an ink for the patterned poly(dimethylsilioxane) (PDMS) stamp. The transferred film properties were systematically investigated with variation of postannealing temperature, molecular weight of PMMA, and the inking number. The patterned PMMA film surface was smooth with no vacancy defect in a few micrometers scale AFM images over the whole film area after post-annealing process. The thickness of the PMMA patterns was controlled on the nanometer scale by the number of inkings of the LS layer of PMMA on the PDMS stamp. By using the PMMA patterns as a barrier and a sacrificial layer against the chemical etching and metal deposition, SiO2 and metal patterns were fabricated, respectively. The PMMA layers also worked as a passivation layer against the patterning of V2O5 nanowires and the selective adsorption of single-walled carbon nanotubes (SWCNTs). We also fabricated thin film transistors using patterned SWCNTs with different percolation states and investigated the electrical properties.

  17. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.

    PubMed

    Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J

    2016-11-15

    Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k 0 , of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale

  18. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.

    2014-05-01

    Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM)more » program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.« less

  19. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    DOE PAGES

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; ...

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr 0 .5Ti 0 .5O 3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 10 15 neutrons/cm 2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which themore » effects of radiation on crystallographic structure may be investigated.« less

  20. Cryogenic colocalization microscopy for nanometer-distance measurements.

    PubMed

    Weisenburger, Siegfried; Jing, Bo; Hänni, Dominik; Reymond, Luc; Schuler, Benjamin; Renn, Alois; Sandoghdar, Vahid

    2014-03-17

    The main limiting factor in spatial resolution of localization microscopy is the number of detected photons. Recently we showed that cryogenic measurements improve the photostability of fluorophores, giving access to Angstrom precision in localization of single molecules. Here, we extend this method to colocalize two fluorophores attached to well-defined positions of a double-stranded DNA. By measuring the separations of the fluorophore pairs prepared at different design positions, we verify the feasibility of cryogenic distance measurement with sub-nanometer accuracy. We discuss the important challenges of our method as well as its potential for further improvement and various applications.

  1. Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong

    Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzagmore » directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. Lastly, the correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene.« less

  2. Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene

    DOE PAGES

    Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong; ...

    2014-12-01

    Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzagmore » directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. Lastly, the correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene.« less

  3. Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene.

    PubMed

    Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong; Son, Young-Woo; Park, Yeonggu; Lee, Mi Jung; Byun, Ik-Su; Kim, Jin-Soo; Choi, Choon-Gi; Bostwick, Aaron; Rotenberg, Eli; Park, Bae Ho

    2014-12-01

    Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzag directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. The correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene.

  4. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  5. TEMPORAL EVOLUTION OF SUB-NANOMETER COMPOSITIONAL PROFILES ACROSS THE GAMMA/GAMMA' INTERFACE IN A MODEL Ni-Al-Cr SUPERALLOY

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.

    2005-01-01

    Early-stage phase separation in a Ni-5.2 Al-14.2 Cr at.% superalloy, isothermally decomposing at 873 K, is investigated with atom-probe tomography. Sub-nanometer scale compositional profiles across the gamma/gamma'(L12) interfaces demonstrate that both the gamma-matrix and the gamma'-precipitate compositions evolve with time. Observed chemical gradients of Al depletion and Cr enrichment adjacent to the gamma'-precipitates are transient, consistent with well-established model predictions for diffusion-limited growth, and mark the first detailed observation of this phenomenon. Furthermore, it is shown that Cr atoms are kinetically trapped in the growing precipitates.

  6. Phaser crystallographic software.

    PubMed

    McCoy, Airlie J; Grosse-Kunstleve, Ralf W; Adams, Paul D; Winn, Martyn D; Storoni, Laurent C; Read, Randy J

    2007-08-01

    Phaser is a program for phasing macromolecular crystal structures by both molecular replacement and experimental phasing methods. The novel phasing algorithms implemented in Phaser have been developed using maximum likelihood and multivariate statistics. For molecular replacement, the new algorithms have proved to be significantly better than traditional methods in discriminating correct solutions from noise, and for single-wavelength anomalous dispersion experimental phasing, the new algorithms, which account for correlations between F(+) and F(-), give better phases (lower mean phase error with respect to the phases given by the refined structure) than those that use mean F and anomalous differences DeltaF. One of the design concepts of Phaser was that it be capable of a high degree of automation. To this end, Phaser (written in C++) can be called directly from Python, although it can also be called using traditional CCP4 keyword-style input. Phaser is a platform for future development of improved phasing methods and their release, including source code, to the crystallographic community.

  7. Solid-density plasma expansion in intense ultra-short laser irradiation measured on nanometer scale and in real time

    NASA Astrophysics Data System (ADS)

    Kluge, T.; Metzkes, J.; Pelka, A.; Laso Garcia, A.; Prencipe, I.; Bussmann, M.; Zeil, K.; Schoenherr, T.; Hartley, N.; Gutt, C.; Galtier, E.; Nam, I.; Lee, Hj; McBride, Ee; Glenzer, S.; Huebner, U.; Roedel, C.; Nakatsutsumi, M.; Roedel, M.; Rehwald, M.; Garten, M.; Zacharias, M.; Schramm, U.; Cowan, T. E.

    2017-10-01

    Small Angle X-ray Scattering (SAXS) is discussed to allow unprecedented direct measurements limited only by the probe X-ray wavelength and duration. Here we present the first direct in-situ measurement of intense short-pulse laser - solid interaction that allows nanometer and high temporal resolution at the same time. A 120 fs laser pulse with energy 1 J was focused on a silicon membrane. The density was probed with an X-ray beam of 49 fs duration by SAXS. Despite prepulses, we can exclude premature bulk expansion. The plasma expansion is triggered only shortly before the main pulse, when an expansion of 10 nm within less than 200 fs was measured. Analysis of scattering patterns allows the first direct verification of numerical simulations. Supported by DOE FWP 100182, SF00515; EC FP7 LASERLAB-EUROPE/CHARPAC (contract 284464); German Federal Ministry of Education and Research (BMBF) under Contract Number 03Z1O511; MG and MZ supported by the European Union's Horizon 2020 No 654220.

  8. Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles

    PubMed Central

    Ichimura, Taro; Jin, Takashi; Fujita, Hideaki; Higuchi, Hideo; Watanabe, Tomonobu M.

    2014-01-01

    Over the past decade, great developments in optical microscopy have made this technology increasingly compatible with biological studies. Fluorescence microscopy has especially contributed to investigating the dynamic behaviors of live specimens and can now resolve objects with nanometer precision and resolution due to super-resolution imaging. Additionally, single particle tracking provides information on the dynamics of individual proteins at the nanometer scale both in vitro and in cells. Complementing advances in microscopy technologies has been the development of fluorescent probes. The quantum dot, a semi-conductor fluorescent nanoparticle, is particularly suitable for single particle tracking and super-resolution imaging. This article overviews the principles of single particle tracking and super resolution along with describing their application to the nanometer measurement/observation of biological systems when combined with quantum dot technologies. PMID:25120488

  9. Crystallographic studies of gas sorption in metal–organic frameworks

    PubMed Central

    Carrington, Elliot J.; Vitórica-Yrezábal, Iñigo J.; Brammer, Lee

    2014-01-01

    Metal–organic frameworks (MOFs) are a class of porous crystalline materials of modular design. One of the primary applications of these materials is in the adsorption and separation of gases, with potential benefits to the energy, transport and medical sectors. In situ crystallography of MOFs under gas atmospheres has enabled the behaviour of the frameworks under gas loading to be investigated and has established the precise location of adsorbed gas molecules in a significant number of MOFs. This article reviews progress in such crystallographic studies, which has taken place over the past decade, but has its origins in earlier studies of zeolites, clathrates etc. The review considers studies by single-crystal or powder diffraction using either X-rays or neutrons. Features of MOFs that strongly affect gas sorption behaviour are discussed in the context of in situ crystallographic studies, specifically framework flexibility, and the presence of (organic) functional groups and unsaturated (open) metal sites within pores that can form specific interactions with gas molecules. PMID:24892587

  10. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  11. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    PubMed

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  12. Crystallographic control and texture inheritance during mylonitization of coarse grained quartz veins

    NASA Astrophysics Data System (ADS)

    Ceccato, Alberto; Pennacchioni, Giorgio; Menegon, Luca; Bestmann, Michel

    2017-10-01

    Quartz veins within Rieserferner pluton underwent deformation during post-magmatic cooling at temperature around 450 °C. Different crystallographic orientations of cm-sized quartz vein crystals conditioned the evolution of microstructures and crystallographic preferred orientations (CPO) during vein-parallel simple shear up to high shear strains (γ ≈ 10). For γ < 2, crystals stretched to ribbons of variable aspect ratios. The highest aspect ratios resulted from {m} glide in ribbons with c-axis sub-parallel to the shear zone vorticity Y-axis. Ribbons with c-axis orthogonal to Y (XZ-type ribbons) were stronger and hardened more quickly: they show lower aspect ratios and fine (grain size 10-20 μm) recrystallization along sets of microshear zones (μSZs) exploiting crystallographic planes. Distortion of XZ-type ribbons and recrystallization preferentially exploited the slip systems with misorientation axis close to Y. New grains of μSZs initiated by subgrain rotation recrystallization (SGR) and thereupon achieved high angle misorientations by a concurrent process of heterogeneous rigid grain rotation around Y associated with the confined shear within the μSZ. Dauphiné twinning occurred pervasively, but did not play a dominant role on μSZ nucleation. Recrystallization became widespread at γ > 2 and pervasive at γ ≈ 10. Ultramylonitic quartz veins are fine grained ( 10 μm, similar to new grains of μSZ) and show a CPO banding resulting in a bulk c-axis CPO with a Y-maximum, as part of a single girdle about orthogonal to the foliation, and orientations at the pole figure periphery at moderate to high angle to the foliation. This bulk CPO derives from steady-state SGR associated with preferential activity, in the different CPO bands, of slip systems generating subgrain boundaries with misorientation axes close to Y. The CPO of individual recrystallized bands is largely inherited from the original crystallographic orientation of the ribbons (and therefore

  13. Three-dimensional single-molecule localization with nanometer accuracy using Metal-Induced Energy Transfer (MIET) imaging

    NASA Astrophysics Data System (ADS)

    Karedla, Narain; Chizhik, Anna M.; Stein, Simon C.; Ruhlandt, Daja; Gregor, Ingo; Chizhik, Alexey I.; Enderlein, Jörg

    2018-05-01

    Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films.

  14. Biophysics: Breaking the Nanometer Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, Steven

    2006-03-20

    A new field of scientific exploration – single molecule biophysics – is currently reshaping and redefining our understanding of the mechanochemistry of life. The development of laser-based optical traps, or ‘optical tweezers,’ has allowed for physiological assessments of such precision that bio-molecules can now be measured and studied one at a time. In this colloquium, Professor Block will present findings based on his group’s construction of optical trapping instrumentation that has broken the nanometer barrier, allowing researchers to study single-molecule displacements on the Angstrom level. Focusing on RNA polymerase, the motor enzyme responsible for transcribing the genetic code contained inmore » DNA, Block’s group has been able to measure, in real time, the motion of a single molecule of RNA polymerase as it moves from base to base along the DNA template. A remarkable opportunity to gain insight into one of the most fundamental biological processes of life, this colloquium can not be missed!« less

  15. HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal

    NASA Astrophysics Data System (ADS)

    Yasar, Bengisu; Ergunt, Yasin; Kabukcuoglu, Merve Pinar; Parlak, Mehmet; Turan, Rasit; Kalay, Yunus Eren

    2018-01-01

    In recent years, CdZnTe has attracted much attention due to its superior electrical and structural properties for room-temperature operable gamma and x-ray detectors. However, CdZnTe (CZT) material has often suffered from crystallographic defects encountered during the growth and post-growth processes. The identification and structural characterization of these defects is crucial to synthesize defect-free CdZnTe single crystals. In this study, Cd0.95 Zn0.05 Te single crystals were grown using a three-zone vertical Bridgman system. The single crystallinity of the material was ensured by using x-ray diffraction measurements. High-resolution electron microscopy (HRTEM) was used to characterize the nano-scale defects on the CdZnTe matrix. The linear defects oriented along the ⟨211⟩ direction were examined by transmission electron microscopy (TEM) and the corresponding HRTEM image simulations were performed by using a quantitative scanning TEM simulation package.

  16. Crystallization and preliminary X-ray crystallographic analysis of agkicetin-C from Deinagkistrodon acutus venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Gufeng; Departments of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026; Huang, Qingqiu

    2005-01-01

    The crystallization and preliminary crystallographic analysis of agkicetin-C, a well known platelet glycoprotein Ib (GPIb) antagonist from the venom of Deinagkistrodon acutus found in Anhui Province, China is reported. The crystallization and preliminary crystallographic analysis of agkicetin-C, a well known platelet glycoprotein Ib (GPIb) antagonist from the venom of Deinagkistrodon acutus found in Anhui Province, China is reported. Crystals of agkicetin-C suitable for structure determination were obtained from 1.8 M ammonium sulfate, 40 mM MES pH 6.5 with 2%(v/v) PEG 400. Interestingly, low buffer concentrations of MES seem to be necessary for crystal growth. The crystals of agkicetin-C belong tomore » space group C2, with unit-cell parameters a = 177.5, b = 97.7, c = 106.8 Å, β = 118.5°, and diffract to 2.4 Å resolution. Solution of the phase problem by the molecular-replacement method shows that there are four agkicetin-C molecules in the asymmetric unit, with a V{sub M} value of 3.4 Å{sup 3} Da{sup −1}, which corresponds to a high solvent content of approximately 64%. Self-rotation function calculations show a single well defined non-crystallographic twofold axis with features that may represent additional elements of non-crystallographic symmetry.« less

  17. Detection of submicron scale cracks and other surface anomalies using positron emission tomography

    DOEpatents

    Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.

    2004-02-17

    Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.

  18. Surface effects on ionic Coulomb blockade in nanometer-size pores

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  19. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    PubMed

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  20. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE PAGES

    Kluge, T.; Rödel, C.; Rödel, M.; ...

    2017-10-23

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  1. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T.; Rödel, C.; Rödel, M.

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  2. Homology‐based hydrogen bond information improves crystallographic structures in the PDB

    PubMed Central

    van Beusekom, Bart; Touw, Wouter G.; Tatineni, Mahidhar; Somani, Sandeep; Rajagopal, Gunaretnam; Luo, Jinquan; Gilliland, Gary L.; Perrakis, Anastassis

    2017-01-01

    Abstract The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H‐bond) distances as a source of information. However, H‐bond restraints can improve structures at low resolution where diffraction data are limited. To improve low‐resolution structure refinement, we present methods for deriving H‐bond information either globally from well‐refined high‐resolution structures from the PDB‐REDO databank, or specifically from on‐the‐fly constructed sets of homologous high‐resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low‐resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB‐REDO databank (https://pdb-redo.eu). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset. PMID:29168245

  3. Homology-based hydrogen bond information improves crystallographic structures in the PDB.

    PubMed

    van Beusekom, Bart; Touw, Wouter G; Tatineni, Mahidhar; Somani, Sandeep; Rajagopal, Gunaretnam; Luo, Jinquan; Gilliland, Gary L; Perrakis, Anastassis; Joosten, Robbie P

    2018-03-01

    The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H-bond) distances as a source of information. However, H-bond restraints can improve structures at low resolution where diffraction data are limited. To improve low-resolution structure refinement, we present methods for deriving H-bond information either globally from well-refined high-resolution structures from the PDB-REDO databank, or specifically from on-the-fly constructed sets of homologous high-resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low-resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB-REDO databank (https://pdb-redo.eu). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset. © 2017 The Protein Society.

  4. All-optical lithography process for contacting nanometer precision donor devices

    NASA Astrophysics Data System (ADS)

    Ward, D. R.; Marshall, M. T.; Campbell, D. M.; Lu, T. M.; Koepke, J. C.; Scrymgeour, D. A.; Bussmann, E.; Misra, S.

    2017-11-01

    We describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  5. Sub-Optical Lithography With Nanometer Definition Masks

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Malek, Chantal Khan; Neogi, Jayant

    2000-01-01

    Nanometer feature size lithography represents a major paradigm shift for the electronics and micro-electro-mechanical industries. In this paper, we discuss the capacity of dynamic focused reactive ion beam (FIB) etching systems to undertake direct and highly anisotropic erosion of thick evaporated gold coatings on boron-doped silicon X-ray mask membranes. FIB offers a new level of flexibility in micro fabrication, allowing for fast fabrication of X-ray masks, where pattern definition and surface alteration are combined in the same step which eliminates the whole lithographic process, in particular resist, resist development, electro-deposition and resist removal. Focused ion beam diameters as small as 7 nm can be obtained enabling fabrication well into the sub-20 nm regime. In preliminary demonstrations of this X-ray mask fabrication technique 22 nm width lines were milled directly through 0.9 microns of gold and a miniature mass spectrometer pattern was milled through over 0.5 microns of gold. Also presented are the results of the shadow printing, using the large depth of field of synchrotron high energy parallel X-ray beam, of these and other sub-optical defined patterns in photoresist conformally coated over surfaces of extreme topographical variation. Assuming that electronic circuits and/or micro devices scale proportionally, the surface area of devices processed with X-ray lithography and 20 nm critical dimension X-ray masks would be 0.5% that of contemporary devices (350 nm CD). The 20 CD mask fabrication represents an initial effort - a further factor of three reduction is anticipated which represents a further order-of-magnitude reduction in die area.

  6. Histological and histomorphometric evaluation of implant with nanometer scale and oxidized surface. in vitro and in vivo study.

    PubMed

    Corvino, V; Iezzi, G; Trubiani, O; Traini, T; Piattelli, M

    2012-01-01

    The biological fixation of an implant to bone is influenced by numerous factors, including surface chemistry and surface topography. Various methods have been developed to create rough implant surfaces in order to improve the clinical performance of implants and to guarantee a stable mechanical bone-implant interface. Anodic oxidation is a dental implant surface modification technique that results in oxide layer growth up to a thickness of 1–10 micron. The purpose of this study was to evaluate the performance of the surface through the osteoblasts cells growth and the influence of oxidixed surface on BIC percent, in the human posterior maxilla after 2 months of unloaded healing. In vitro commercially available primary human osteoblasts (NHOst) from both femur and tibia of different donor systems (Lonza Walkersville Inc, Walkersville, MD, USA) were grown in Osteoblast Growth Media (OBM) (Lonza). Osteogenic differentiation was induced for a period of 4 weeks by the OGM medium (OBM basal medium supplemented with 200nM of hydrocortisone-21-hemisuccinate and 7.5 mM of glycerophosphate). The viability of NHOst cells seeded test A and B was measured by the quantitative colorimetric MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2Htetrazoliumbromide test) (Promega, Milan, Italy). One custom-made 2 x 10-mm site evaluation implant (SEI) with nanometer scale and oxidized surface (test) ( Evo Plan 1 Health s.r.l. - Amaro, UD, Italy), and one SEI with hydroxyapatite sandblasted surface (control) (Osseogrip Plan 1 Health s.r.l. – Amaro, UD, Italy), were placed in the posterior maxilla of 15 patients. Patients received one of each type of SEI placed on controlateral side. The proliferation rate studied by the MTT assay showed that during the incubation time, starting at 24 h, an increased proliferation rate was evident in Test B respect to Test A. After 2 months of unloaded healing BIC percent was significantly higher in oxidized implants. BIC percent mean values for the

  7. To Keep or Not to Keep? The Question of Crystallographic Waters for Enzyme Simulations in Organic Solvent

    PubMed Central

    Dahanayake, Jayangika N.; Gautam, Devaki N.; Verma, Rajni; Mitchell-Koch, Katie R.

    2016-01-01

    The use of enzymes in non-aqueous solvents expands the use of biocatalysts to hydrophobic substrates, with the ability to tune selectivity of reactions through solvent selection. Non-aqueous enzymology also allows for fundamental studies on the role of water and other solvents in enzyme structure, dynamics, and function. Molecular dynamics simulations serve as a powerful tool in this area, providing detailed atomic information about the effect of solvents on enzyme properties. However, a common protocol for non-aqueous enzyme simulations does not exist. If you want to simulate enzymes in non-aqueous solutions, how many and which crystallographic waters do you keep? In the present work, this question is addressed by determining which crystallographic water molecules lead most quickly to an equilibrated protein structure. Five different methods of selecting and keeping crystallographic waters are used in order to discover which crystallographic waters lead the protein structure to reach an equilibrated structure more rapidly in organic solutions. It is found that buried waters contribute most to rapid equilibration in organic solvent, with slow-diffusing waters giving similar results. PMID:27403032

  8. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates

    PubMed Central

    Xu, Lizhong

    2018-01-01

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively. PMID:29373546

  9. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates.

    PubMed

    Fu, Xiaorui; Xu, Lizhong

    2018-01-26

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively.

  10. All-optical lithography process for contacting nanometer precision donor devices

    DOE PAGES

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie; ...

    2017-11-06

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  11. All-optical lithography process for contacting nanometer precision donor devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  12. Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg; Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721; Wynne, B.P.

    2012-02-15

    In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder.more » The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.« less

  13. Surface crystallographic structures of cellulose nanofiber films and overlayers of pentacene

    NASA Astrophysics Data System (ADS)

    Nakayama, Yasuo; Mori, Toshiaki; Tsuruta, Ryohei; Yamanaka, Soichiro; Yoshida, Koki; Imai, Kento; Koganezawa, Tomoyuki; Hosokai, Takuya

    2018-03-01

    Cellulose nanofibers or nanocellulose is a promising recently developed biomass and biodegradable material used for various applications. In order to utilize this material as a substrate in organic electronic devices, thorough understanding of the crystallographic structures of the surfaces of the nanocellulose composites and of their interfaces with organic semiconductor molecules is essential. In this work, surface crystallographic structures of nanocellulose films (NCFs) and overlayers of pentacene were investigated by two-dimensional grazing-incidence X-ray diffraction. The NCFs are found to crystallize on solid surfaces with the crystal lattice preserving the same structure of the known bulk phase, whereas distortion of interchain packing toward the surface normal direction is suggested. The pentacene overlayers on the NCFs are found to form the thin-film phase with an in-plane mean crystallite size of over 10 nm.

  14. Structural studies in columnar basalts from crystallographic and magnetic fabrics

    NASA Astrophysics Data System (ADS)

    Tiphaine, Boiron; Jérôme, Bascou; Pierre, Camps; Eric, Ferre; Claire, Maurice; Bernard, Guy; Marie-Christine, Gerbe

    2010-05-01

    The purpose of this study is to better characterize the columnar and the associated microstructure development in basalt flows. The thermal contraction (O'Reilly, 1879) is the main hypothesis to explain the columnar formation. However, neither the structures which appear in basalt flow constituted of three levels (Tomkeieff, 1940) nor circular and radial structures within the prisms (for which weathering nor fracturing can account for) can be explained by the thermal contraction theory alone. An early structuring process during solidification (Guy and Le Coze, 1990) could play for a part that must be discussed (Guy, 2010). We studied two recent basalt flows (75 000 years) from the French Massif Central, in which the three flow levels are clearly observed. In the first basalt flow (La Palisse, Ardèche), the emission centre and the flow direction are known. In the second one (Saint Arcons d'Allier, Haute Loire), the prismatic columns are particularly well developed. In order to characterize the flow structure at different scales, from the flow to the grain scale, anisotropy of magnetic susceptibility (AMS) measurements were performed. The AMS data were coupled with crystallographic preferred orientation measurements of magnetite, plagioclase and clinopyroxene using Electron Backscattered Diffraction (EBSD) and image analyses from perpendicular thin sections. Magnetic mineralogy studies of the La Palisse basalts, in particular the thermomagnetic curves, indicate that the main carrier of AMS is high-Ti titanomagnetite (Tc≈130°C). AMS measurements of about a hundred samples show a higher degree of AMS (P parameter) in the middle level in comparison to the base. Inversely, the bulk magnetic susceptibility (Km) is higher at the flow base. Distinctive parameters for the different levels of the basaltic flows could be then provided by AMS measurements.. Moreover, the comparison between AMS and EBSD data indicate that the magnetic susceptibility carried by the magnetic

  15. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation

    PubMed Central

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-01-01

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826

  16. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation.

    PubMed

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-04-27

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.

  17. Atomic scale chemical tomography of human bone

    NASA Astrophysics Data System (ADS)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  18. Sub-nanometer surface chemistry and orbital hybridization in lanthanum-doped ceria nano-catalysts revealed by 3D electron microscopy.

    PubMed

    Collins, Sean M; Fernandez-Garcia, Susana; Calvino, José J; Midgley, Paul A

    2017-07-14

    Surface chemical composition, electronic structure, and bonding characteristics determine catalytic activity but are not resolved for individual catalyst particles by conventional spectroscopy. In particular, the nano-scale three-dimensional distribution of aliovalent lanthanide dopants in ceria catalysts and their effect on the surface electronic structure remains unclear. Here, we reveal the surface segregation of dopant cations and oxygen vacancies and observe bonding changes in lanthanum-doped ceria catalyst particle aggregates with sub-nanometer precision using a new model-based spectroscopic tomography approach. These findings refine our understanding of the spatially varying electronic structure and bonding in ceria-based nanoparticle aggregates with aliovalent cation concentrations and identify new strategies for advancing high efficiency doped ceria nano-catalysts.

  19. Micrometer- and nanometer-sized platinum group nuggets in micrometeorites from deep-sea sediments of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Parashar, K.; Shyam Prasad, M.

    2011-03-01

    We examined 378 micrometeorites collected from deep-sea sediments of the Indian Ocean of which 175, 180, and 23 are I-type, S-type, and G-type, respectively. Of the 175 I-type spherules, 13 contained platinum group element nuggets (PGNs). The nuggets occur in two distinct sizes and have distinctly different elemental compositions: micrometer (μm)-sized nuggets that are >3 μm contain dominantly Ir, Os, and Ru (iridium-platinum group element or IPGE) and sub-μm (or nanometer)-sized (<1 μm) nuggets, which contain dominantly Pt, Rh, and Pd (palladium—PGE or PPGE). The μm-sized nuggets are found only one per spherule in the cross section observed and are usually found at the edge of the spherule. By contrast, there are hundreds of nanometer-sized nuggets distributed dominantly in the magnetite phases of the spherules, and rarely in the wüstite phases. Both the nugget types are found as separate entities in the same spherule and apparently, nugget formation is a common phenomenon among I-type micrometeorites. However, the μm-sized nuggets are seen in fewer specimens (˜2.5% of the observed I-type spherules). In all, we analyzed four nuggets of μm size and 213 nanometer-sized nuggets from 13 I-type spherules for platinum group elements. Chemically, the μm-sized PGNs contain chondritic ratios of Os/Ir, but are depleted in the more volatile PGE (Pt, Rh, and Pd) relative to chondritic ratios. On the other hand, the nanometer-sized nuggets contain dominantly Pt and Rh. Importantly, the refractory PGEs are conspicuous by their absence in these nanometer nuggets. Palladium, the most volatile PGE is highly depleted (<1.1%) with respect to chondritic ratios in the μm-sized PGNs, and is observed in only 17 of 213 nanometer nuggets with concentrations that are just above the detection limit (≥0.2%). Distinct fractionation of the PGE into IPGE (Ir, Os, Ru) and PPGE seems to take place during the short span of atmospheric entry. These observations suggest several

  20. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  1. Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.

    2017-09-01

    This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.

  2. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  3. The Hydrophobicity and Adhesion of Heterogeneous Surfaces of Dual Nanometer and Micron Scale Structures

    DTIC Science & Technology

    2011-04-11

    scale post geometry. superhydrophobic , surface modification, adhesion, contact angle, Cassie, Wenzel, PDMS, CYTOP, Teflon AF, roll-off angle U U U U SAR...width > 1, the micro-scale features dominated the wetting state regardless of the nano-scale post geometry., KEYWORDS superhydrophobic , surface... superhydrophobicity can be routinely found in nature. Fo~ example, many plant leaves1.2, bird feathers3, insect wings and insect legs4 take advantage of

  4. Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite

    PubMed Central

    Checa, Antonio G.; Bonarski, Jan T.; Willinger, Marc G.; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M.; Pospiech, Jan; Morawiec, Adam

    2013-01-01

    The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research. PMID:23804442

  5. Investigating the reversibility of structural modifications of Li xNi yMn zCo 1-y-zO₂ cathode materials during initial charge/discharge, at multiple length scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min

    2015-08-11

    In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of Li xNi yMn zCo 1-y-zO₂ (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors,more » which is deviate from the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.« less

  6. Melting behavior of nanometer sized gold isomers

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Ascencio, J. A.; Perez-Alvarez, M.; Yacaman, M. J.

    2001-09-01

    In the present work, the melting behavior of nanometer sized gold isomers was studied using a tight-binding potential with a second momentum approximation. The cases of cuboctahedra, icosahedra, Bagley decahedra, Marks decahedra and star-like decahedra were considered. We calculated the temperature dependence of the total energy and volume during melting and the melting point for different types and sizes of clusters. In addition, the structural evolutions of the nanosized clusters during the melting transition were monitored and revealed. It is found that the melting process has three characteristic time periods for the intermediate nanosized clusters. The whole process includes surface disordering and reordering, followed by surface melting and a final rapid overall melting. This is a new observation, which it is in contrast with previous reports where surface melting is the dominant step.

  7. DSPI technique for nanometer vibration mode measurement

    NASA Astrophysics Data System (ADS)

    Yue, Kaiduan; Jia, Shuhai; Tan, Yushan

    2000-05-01

    A time-average DSPI method for nanometer vibration mode measurement is presented in this paper. The phase continuous scan technique is combined with the Bessel fringe-shifting technique to quantitatively analyze the vibration mode by time-average DSPI is used in measurement system. Through the phase continuous scan, the background and speckle items are completely eliminated, which improves the fringe quality and enhances the signal-to-noise ratio of interferogram. There is no need to calibrate the optical phase-shifter exactly in this method. The anti-disturbance capability of this method is higher than that of the phase-stepping technique, so it is robust and easy to be used. In the vibration measurement system, the speckle average technology is used, so the high quality measuring results are obtained.

  8. Fabrication of Nanometer- and Micrometer-Scale Protein Structures by Site-Specific Immobilization of Histidine-Tagged Proteins to Aminosiloxane Films with Photoremovable Protein-Resistant Protecting Groups

    PubMed Central

    2016-01-01

    The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scale patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. This simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces. PMID:26820378

  9. First-principles study of crystallographic slip modes in ω-Zr.

    PubMed

    Kumar, Anil; Kumar, M Arul; Beyerlein, Irene J

    2017-08-21

    We use first-principles density functional theory to study the preferred modes of slip in the high-pressure ω phase of Zr. The generalized stacking fault energy surfaces associated with shearing on nine distinct crystallographic slip modes in the hexagonal ω-Zr crystal are calculated, from which characteristics such as ideal shear stress, the dislocation Burgers vector, and possible accompanying atomic shuffles, are extracted. Comparison of energy barriers and ideal shear stresses suggests that the favorable modes are prismatic 〈c〉, prismatic-II [Formula: see text] and pyramidal-II 〈c + a〉, which are distinct from the ground state hexagonal close packed α phase of Zr. Operation of these three modes can accommodate any deformation state. The relative preferences among the identified slip modes are examined using a mean-field crystal plasticity model and comparing the calculated deformation texture with the measurement. Knowledge of the basic crystallographic modes of slip is critical to understanding and analyzing the plastic deformation behavior of ω-Zr or mixed α-ω phase-Zr.

  10. First-principles study of crystallographic slip modes in ω-Zr

    DOE PAGES

    Kumar, Anil; Kumar, M. Arul; Beyerlein, Irene Jane

    2017-08-21

    We use first-principles density functional theory to study the preferred modes of slip in the high-pressure ω phase of Zr. The generalized stacking fault energy surfaces associated with shearing on nine distinct crystallographic slip modes in the hexagonal ω-Zr crystal are calculated, from which characteristics such as ideal shear stress, the dislocation Burgers vector, and possible accompanying atomic shuffles, are extracted. Comparison of energy barriers and ideal shear stresses suggests that the favorable modes are prismatic < c >, prismatic-II <101¯0> and pyramidal-II < c+a >, which are distinct from the ground state hexagonal close packed α phase of Zr.more » Operation of these three modes can accommodate any deformation state. The relative preferences among the identified slip modes are examined using a mean-field crystal plasticity model and comparing the calculated deformation texture with the measurement. In conclusion, knowledge of the basic crystallographic modes of slip is critical to understanding and analyzing the plastic deformation behavior of ω-Zr or mixed α-ω phase-Zr.« less

  11. Crystallographic education in the 21st century

    PubMed Central

    Gražulis, Saulius; Sarjeant, Amy Alexis; Moeck, Peter; Stone-Sundberg, Jennifer; Snyder, Trevor J.; Kaminsky, Werner; Oliver, Allen G.; Stern, Charlotte L.; Dawe, Louise N.; Rychkov, Denis A.; Losev, Evgeniy A.; Boldyreva, Elena V.; Tanski, Joseph M.; Bernstein, Joel; Rabeh, Wael M.; Kantardjieff, Katherine A.

    2015-01-01

    There are many methods that can be used to incorporate concepts of crystallography into the learning experiences of students, whether they are in elementary school, at university or part of the public at large. It is not always critical that those who teach crystallography have immediate access to diffraction equipment to be able to introduce the concepts of symmetry, packing or molecular structure in an age- and audience-appropriate manner. Crystallography can be used as a tool for teaching general chemistry concepts as well as general research techniques without ever having a student determine a crystal structure. Thus, methods for younger students to perform crystal growth experiments of simple inorganic salts, organic compounds and even metals are presented. For settings where crystallographic instrumentation is accessible (proximally or remotely), students can be involved in all steps of the process, from crystal growth, to data collection, through structure solution and refinement, to final publication. Several approaches based on the presentations in the MS92 Microsymposium at the IUCr 23rd Congress and General Assembly are reported. The topics cover methods for introducing crystallography to undergraduate students as part of a core chemistry curriculum; a successful short-course workshop intended to bootstrap researchers who rely on crystallography for their work; and efforts to bring crystallography to secondary school children and non-science majors. In addition to these workshops, demonstrations and long-format courses, open-format crystallographic databases and three-dimensional printed models as tools that can be used to excite target audiences and inspire them to pursue a deeper understanding of crystallography are described. PMID:26664347

  12. 50 Years of ``Scaling'' Jack Kilby's Invention

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    2008-03-01

    This year is the 50th anniversary of Jack Kilby's 1958 invention of the integrated circuit (IC), for which he won the 2000 Nobel Prize in Physics. Since that invention in a laboratory at Texas Instruments, IC components have been continuously miniaturized, which has resulted in exponential improvement trends in their performance, energy efficiency, and cost per function. These improvements have created a semiconductor industry that has grown to over 250B in annual sales. The process of reducing integrated-circuit component size and associated parameters in a coordinated fashion is traditionally called ``feature-size scaling.'' Kilby's original circuit had active (transistor) and passive (resistor, capacitor) components with dimensions of a few millimeters. Today, the minimum feature sizes on integrated circuits are less than 30 nanometers for patterned line widths and down to about one nanometer for film thicknesses. Thus, we have achieved about five orders of magnitude in linear-dimension scaling over the past fifty years, which has resulted in about ten orders of magnitude increase in the density of IC components, a representation of ``Moore's Law.'' As IC features are approaching atomic dimensions, increasing emphasis is now being given to the parallel effort of further diversifying the types of components in integrated circuits. This is called ``functional scaling'' and ``more then Moore.'' Of course, the enablers for both types of scaling have been developed at many laboratories around the world. This talk will review a few of the highlights in scaling and its applications from R&D projects at Texas Instruments.

  13. An Automated Method of Scanning Probe Microscopy (SPM) Data Analysis and Reactive Site Tracking for Mineral-Water Interface Reactions Observed at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Campbell, B. D.; Higgins, S. R.

    2008-12-01

    Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.

  14. Surface Crystallographic Dependence of Voltammetric Oxidation of Polyhydric Alcohols and Related Systems at Monocrystalline Gold-Acidic Aqueous Interfaces

    DTIC Science & Technology

    1992-02-01

    Crystallographic Dependence of Voltaumetric Oxidation of Polyhydric Alcohols and Related Systems at Monocrystalline Gold -Acidic Aqueous Interfaces by...Crystallographic Dependence of Voltamnnetric Oxidation )f Polyhydric Alcohols and Related Systems at onocrystalline Gold -Acidic Aqueous [nterfaces...mannitol, on seven oriented gold surfaces, Au(lll), 100), (110), (221), (533), (311), and (210), is reported with the objective of assessing the ole of

  15. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE PAGES

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy; ...

    2018-02-07

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  16. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  17. Rattling of Oxygen Ions in a Sub-Nanometer-Sized Cage Converts Terahertz Radiation to Visible Light.

    PubMed

    Toda, Yoshitake; Ishiyama, Shintaro; Khutoryan, Eduard; Idehara, Toshitaka; Matsuishi, Satoru; Sushko, Peter V; Hosono, Hideo

    2017-12-26

    A simple and robust approach to visualization of continuous wave terahertz (CW-THz) light would open up opportunities to couple physical phenomena that occur at fundamentally different energy scales. Here we demonstrate how nanoscale cages of Ca 12 Al 14 O 33 crystal enable conversion of CW-THz radiation to visible light. These crystallographic cages are partially occupied with weakly bonded oxygen ions and give rise to a narrow conduction band that can be populated with localized, yet mobile electrons. CW-THz light excites a nearly stand-alone rattling motion of the encaged oxygen species, which promotes electron transfer from them to the neighboring vacant cages. When the power of CW-THz light reaches tens of watts, the coupling between forced rattling in the confined space, electronic excitation and ionization of oxygen species, and corresponding recombination processes result in emission of bright visible light.

  18. Techniques for 3D tracking of single molecules with nanometer accuracy in living cells

    NASA Astrophysics Data System (ADS)

    Gardini, Lucia; Capitanio, Marco; Pavone, Francesco S.

    2013-06-01

    We describe a microscopy technique that, combining wide-field single molecule microscopy, bifocal imaging and Highly Inclined and Laminated Optical sheet (HILO) microscopy, allows a 3D tracking with nanometer accuracy of single fluorescent molecules in vitro and in living cells.

  19. Mechanical behavior of concrete and related porous materials under partial saturation: The effective stress and the viscous softening due to movement of nanometer-scale pore fluid

    NASA Astrophysics Data System (ADS)

    Vlahinic, Ivan

    becomes necessary to describe the fluid flow in a double porosity medium, i.e. a medium containing both macro- and nano-scale porosity. We show that the proposed model can quantitatively capture the key observations that have thus far evaded a simple mechanical description. The materials more closely examined in this work enjoy a wide variety of practical uses. Wood and concrete are used as a basis for infrastructure the world over; porous glass with engineered nanometer-sized openings is used for its sorptive and filtering abilities; KevlarRTM and similar synthetic polymers are used for their high strength-to-weight ratio in creating body armor, ropes, and even sails.

  20. Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication.

    PubMed

    Rawlings, Colin D; Zientek, Michal; Spieser, Martin; Urbonas, Darius; Stöferle, Thilo; Mahrt, Rainer F; Lisunova, Yuliya; Brugger, Juergen; Duerig, Urs; Knoll, Armin W

    2017-11-28

    Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.

  1. Track structure of protons and other light ions in liquid water: applications of the LIonTrack code at the nanometer scale.

    PubMed

    Bäckström, G; Galassi, M E; Tilly, N; Ahnesjö, A; Fernández-Varea, J M

    2013-06-01

    The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H(+), He(2+), and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. ["Electron inelastic-scattering cross sections in liquid water," Radiat. Phys. Chem. 53, 1-18 (1998); "Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water," Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C(6+) ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H(+). On average clusters of two to three EDs for 1 MeV/u H(+) and clusters of four to five EDs for 1 MeV/u C(6+) could be expected for a modeling double strand break distance of 3.4 nm.

  2. Influence of different kinds of rolling on the crystallographic texture and magnetic induction of a NOG 3 wt% Si steel

    NASA Astrophysics Data System (ADS)

    Silva, J. M.; Baêta Júnior, E. S.; Moraes, N. R. D. C.; Botelho, R. A.; Felix, R. A. C.; Brandao, L.

    2017-01-01

    The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes.

  3. A crystallographic investigation of GaN nanostructures by reciprocal space mapping in a grazing incidence geometry.

    PubMed

    Lee, Sanghwa; Sohn, Yuri; Kim, Chinkyo; Lee, Dong Ryeol; Lee, Hyun-Hwi

    2009-05-27

    Reciprocal space mapping with a two-dimensional (2D) area detector in a grazing incidence geometry was applied to determine crystallographic orientations of GaN nanostructures epitaxially grown on a sapphire substrate. By using both unprojected and projected reciprocal space mapping with a proper coordinate transformation, the crystallographic orientations of GaN nanostructures with respect to that of a substrate were unambiguously determined. In particular, the legs of multipods in the wurtzite phase were found to preferentially nucleate on the sides of tetrahedral cores in the zinc blende phase.

  4. A CPU benchmark for protein crystallographic refinement.

    PubMed

    Bourne, P E; Hendrickson, W A

    1990-01-01

    The CPU time required to complete a cycle of restrained least-squares refinement of a protein structure from X-ray crystallographic data using the FORTRAN codes PROTIN and PROLSQ are reported for 48 different processors, ranging from single-user workstations to supercomputers. Sequential, vector, VLIW, multiprocessor, and RISC hardware architectures are compared using both a small and a large protein structure. Representative compile times for each hardware type are also given, and the improvement in run-time when coding for a specific hardware architecture considered. The benchmarks involve scalar integer and vector floating point arithmetic and are representative of the calculations performed in many scientific disciplines.

  5. Fabrications of insulator-protected nanometer-sized electrode gaps

    NASA Astrophysics Data System (ADS)

    Arima, Akihide; Tsutsui, Makusu; Morikawa, Takanori; Yokota, Kazumichi; Taniguchi, Masateru

    2014-03-01

    We developed SiO2-coated mechanically controllable break junctions for accurate tunneling current measurements in an ionic solution. By breaking the junction, we created dielectric-protected Au nanoprobes with nanometer separation. We demonstrated that the insulator protection was capable to suppress the ionic contribution to the charge transport through the electrode gap, thereby enabled reliable characterizations of liquid-mediated exponential decay of the tunneling conductance in an electrolyte solution. From this, we found distinct roles of charge points such as molecular dipoles and ion species on the tunneling decay constant, which was attributed to local structures of molecules and ions in the confined space between the sensing electrodes. The device described here would provide improved biomolecular sensing capability of tunneling current sensors.

  6. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.

    PubMed

    Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L

    2016-12-16

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  7. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    EPA Science Inventory

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  8. The localization and crystallographic dependence of Si suboxide species at the SiO2/Si interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Hecht, M. H.; Grunthaner, F. J.; Johnson, N. M.

    1987-01-01

    X-ray photoemission spectroscopy has been used to examine the localization and crystallographic dependence of Si(+), Si(2+), and Si(3+) suboxide states at the SiO2/Si interface for (100)and (111)-oriented substrates with gate oxide quality thermal oxides. The Si(+) and Si(2+) states are localized within 6-10 A of the interface while the Si(3+) state extends about 30 A into the bulk SiO2. The distribution of Si(+) and Si(2+) states shows a strong crystallographic dependence with Si(2+) dominating on (100) substrates and Si(+) dominating on (111) substrates. This crystallographic dependence is anticipated from consideration of ideal unreconstructed (100) and (111) Si surfaces, suggesting that (1) the Si(+) and Si(2+) states are localized immediately within the first monolayer at the interface and (2) the first few monolayers of substrate Si atoms are not significantly displaced from the bulk. The total number of suboxide states observed at the SiO2/Si interface corresponds to 94 and 83 percent of a monolayer for these (100) and (111) substrates, respectively.

  9. On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space.

    PubMed

    Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P

    2018-06-01

    Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Piezoelectricity of green carp scales

    NASA Astrophysics Data System (ADS)

    Jiang, H. Y.; Yen, F.; Huang, C. W.; Mei, R. B.; Chen, L.

    2017-04-01

    Piezoelectricity takes part in multiple important functions and processes in biomaterials often vital to the survival of organisms. Here, we investigate the piezoelectric properties of fish scales of green carp by directly examining their morphology at nanometer levels. Two types of regions are found to comprise the scales, a smooth one and a rough one. The smooth region is comprised of a ridge and trough pattern and the rough region characterized by a flat base with an elevated mosaic of crescents. Piezoelectricity is found on the ridges and base regions of the scales. From clear distinctions between the composition of the inner and outer surfaces of the scales, we identify the piezoelectricity to originate from the presence of hydroxyapatite which only exists on the surface of the fish scales. Our findings reveal a different mechanism of how green carp are sensitive to their surroundings and should be helpful to studies related to the electromechanical properties of marine life and the development of bio-inspired materials.

  11. Mineralogical, crystallographic and morphological characteristics of natural kaolins from the Ivory Coast (West Africa)

    NASA Astrophysics Data System (ADS)

    Sei, J.; Morato, F.; Kra, G.; Staunton, S.; Quiquampoix, H.; Jumas, J. C.; Olivier-Fourcade, J.

    2006-10-01

    Thirteen clay samples from four deposits in the Ivory Coast (West Africa) were studied using X-ray diffraction, thermogravimetric analysis and chemical analysis. Mineralogical, crystallographic and morphological characteristics of these samples are given. Kaolinite is the principal mineral but other minerals are present in small quantities: illite, quartz, anatase and iron oxides (oxides and oxyhydroxides). The crystallographic, morphological and surface characteristics are influenced by the presence of these impurities. In particular, the presence of iron oxides was associated with reduced structural ordering and thermal stability of kaolinite and increased specific surface area. These clays could be used in the ceramics industry to make tiles and bricks, and also in agronomy as supports for chemical fertilizers or for environmental protection by immobilising potentially toxic waste products.

  12. Extracellular overproduction and preliminary crystallographic analysis of a family I.3 lipase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angkawidjaja, Clement; You, Dong-Ju; Matsumura, Hiroyoshi

    2007-03-01

    A family I.3 lipase from Pseudomonas sp. MIS38 was secreted from Escherichia coli cells to the external medium, purified and crystallized and preliminary crystallographic studies were performed. A family I.3 lipase from Pseudomonas sp. MIS38 was secreted from Escherichia coli cells to the external medium, purified and crystallized and preliminary crystallographic studies were performed. The crystal was grown at 277 K by the hanging-drop vapour-diffusion method. Native X-ray diffraction data were collected to 1.7 Å resolution using synchrotron radiation at station BL38B1, SPring-8. The crystal belongs to space group P2{sub 1}, with unit-cell parameters a = 48.79, b = 84.06,more » c = 87.04 Å. Assuming the presence of one molecule per asymmetric unit, the Matthews coefficient V{sub M} was calculated to be 2.73 Å{sup 3} Da{sup −1} and the solvent content was 55%.« less

  13. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness

    PubMed Central

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418

  14. Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Arias-González, Felipe; del Val, Jesús; Comesaña, Rafael; Penide, Joaquín; Lusquiños, Fernando; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Gil, Francisco Javier; Pou, Juan

    2018-01-01

    In this paper, the microstructure and crystallographic texture of pure Ti thin walls generated by Additive Manufacturing based on Laser Cladding (AMLC) are analyzed in depth. From the results obtained, it is possible to better understand the AMLC process of pure titanium. The microstructure observed in the samples consists of large elongated columnar prior β grains which have grown epitaxially from the substrate to the top, in parallel to the building direction. Within the prior β grains, α-Ti lamellae and lamellar colonies are the result of cooling from above the β-transus temperature. This transformation follows the Burgers relationship and the result is a basket-weave microstructure with a strong crystallographic texture. Finally, a thermal treatment is proposed to transform the microstructure of the as-deposited samples into an equiaxed microstructure of α-Ti grains.

  15. Crystallographic Analysis of a Japanese Sword by using Bragg Edge Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shiota, Yoshinori; Hasemi, Hiroyuki; Kiyanagi, Yoshiaki

    Neutron imaging using a pulsed neutron source can give crystallographic information over wide area of a sample by analysing position dependent transmission spectra. With the use of a Bragg edge imaging method we non-destructively obtained crystallographic information of a Japanese sword, signed by Bishu Osafune Norimitsu, in order to know position dependent crystallographic characteristics and to check usefulness of the method for the Japanese sword investigation. Strong texture appeared on the back side. On the other hand in the middle area almost isotropic feature appeared and edge side showed feature between them. Rather isotropic area in the centre area gradually reduced from the grip side to the tip side. The crystallite size was smaller near the edge and became larger towards the back side. The smaller crystallite size will be due to quenching around the edge and this trend disappeared in the grip (nakago) area. The larger crystallite size will be due to strong hammering. Coarse grains were also observed directly as transmission images with the use of a high spatial resolution detector. The spatial distribution of the grains was not uniform but the reason have not been understood. Furthermore, a white area around a tip area was proved to be a void by looking at the Brag edge transmission spectra. This void may be formed during forging process of two kinds of steel. It is suggested that consideration on differences in the texture and the crystallite size depending on position will give information to clarify the manufacturing process, and Bragg edge analysis will be a profitable tool for research of Japanese sword.

  16. On the control of the crystallographic texture in cladding tubes from Zr-based alloys for nuclear reactor

    NASA Astrophysics Data System (ADS)

    Isaenkova, M.; Perlovich, Yu.; Fesenko, V.

    2016-10-01

    This paper summarizes researches of authors, directed to the development of the methodological basis of X-ray studies as applied to zirconium alloys and on the systematization of new experimental results obtained using developed methods. The paper describes regularities of crystallographic texture formation in cladding tubes from zirconium alloys and their substructure inhomogeneity at various stages of manufacture, i.e. at hot and cold deformation, recrystallization, phase transformations and interaction of the above processes. The special attention is payed to possibilities of control the crystallographic texture of tubes at successive stages of their technological treatment.

  17. The X-ray system of crystallographic programs for any computer having a PIDGIN FORTRAN compiler

    NASA Technical Reports Server (NTRS)

    Stewart, J. M.; Kruger, G. J.; Ammon, H. L.; Dickinson, C.; Hall, S. R.

    1972-01-01

    A manual is presented for the use of a library of crystallographic programs. This library, called the X-ray system, is designed to carry out the calculations required to solve the structure of crystals by diffraction techniques. It has been implemented at the University of Maryland on the Univac 1108. It has, however, been developed and run on a variety of machines under various operating systems. It is considered to be an essentially machine independent library of applications programs. The report includes definition of crystallographic computing terms, program descriptions, with some text to show their application to specific crystal problems, detailed card input descriptions, mass storage file structure and some example run streams.

  18. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    PubMed Central

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-01-01

    Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  19. A synthesis, X-ray crystallographic and vibrational studies of guanidinium o-nitrobenzoate hydrate. New NLO crystal in guanidinium nitrobenzoate family

    NASA Astrophysics Data System (ADS)

    Drozd, Marek; Daszkiewicz, Marek

    2018-06-01

    According to literature data the two crystals are known: guanidinium m-nitrobenzoate and guanidinium p-nitrobenzoate. Both compounds belong to noncetrosymmetric crystallographic systems are consider as second order generators in nonlinear optic (NLO). For each of these crystals the detailed crystallographic, theoretical calculations and vibrational studies were performed. It is interesting that nitrobenzoic acid create tree variety of compounds ((2) ortho-, (3) meta- and (4) para-) what any data for third member of guanidinium nitrobenzoate crystal were not known. The guanidinium o-nitrobenzoate hydrate crystal was synthesized first time. The performed X-ray crystallographic study shown that crystal belongs to space group without macroscopic symmetry center. Additionally, the vibrational spectra (intensities, frequencies and PED analysis) of investigated compound are presented. These results are compared with theoretical calculations for equilibrium geometry and vibrational properties. Furthermore, the results of the theoretical approach include HOMO and LUMO energies and first order hyperpolarizability were obtained, also. On the basis of these data the crystal was classified as second order generator. All obtained results are compared with previous literature data of guanidinium m-nitrobenzoate and guanidinium p-nitrobenzoate compounds. Surprisingly, each of examined crystal belongs to different crystallographic system and shows different vibrational properties.

  20. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    DOE PAGES

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; ...

    2016-04-21

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. Our short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. In this discussion we present the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  1. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal

    NASA Astrophysics Data System (ADS)

    Gan, Zibao; Chen, Jishi; Wang, Juan; Wang, Chengming; Li, Man-Bo; Yao, Chuanhao; Zhuang, Shengli; Xu, An; Li, Lingling; Wu, Zhikun

    2017-03-01

    Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate μ4-S atoms not previously reported in the Au-S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au-S bonding and solid photoluminescence of gold nanoclusters.

  2. Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material

    NASA Astrophysics Data System (ADS)

    Christensen, Thomas; Yan, Wei; Jauho, Antti-Pekka; Soljačić, Marin; Mortensen, N. Asger

    2017-04-01

    The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions—the Feibelman d parameters—in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum rule for complementary structures, a rigorous reformulation of Kreibig's phenomenological damping prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.

  3. Improved measurement performance of the Physikalisch-Technische Bundesanstalt nanometer comparator by integration of a new Zerodur sample carriage

    NASA Astrophysics Data System (ADS)

    Flügge, Jens; Köning, Rainer; Schötka, Eugen; Weichert, Christoph; Köchert, Paul; Bosse, Harald; Kunzmann, Horst

    2014-12-01

    The paper describes recent improvements of Physikalisch-Technische Bundesanstalt's (PTB) reference measuring instrument for length graduations, the so-called nanometer comparator, intended to achieve a measurement uncertainty in the domain of 1 nm for a length up to 300 mm. The improvements are based on the design and realization of a new sample carriage, integrated into the existing structure and the optimization of coupling this new device to the vacuum interferometer, by which the length measuring range of approximately 540 mm with sub-nm resolution is given. First, measuring results of the enhanced nanometer comparator are presented and discussed, which show the improvements of the measuring capabilities and verify the step toward the sub-nm accuracy level.

  4. Full path compensation laser feedback interferometry for remote sensing with recovered nanometer resolutions

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Tan, Yidong; Zhang, Shulian

    2018-03-01

    The accuracy of the existing laser feedback interferometry for measuring the remote target is limited to several microns due to environmental disturbances. A novel approach is presented in this paper based on the double-beam frequency-shift feedback of the laser, which can completely eliminate the dead path errors and measure the displacement or vibration with accuracy at nanometer scale even at a far measurement distance. The two beams emitted from one Nd:YVO4 crystal are incident on the measurement target and its adjacent reference surface, respectively. The reference surface could be taken from the nearby stationary object, without the need to put a reference mirror. The feedback paths and shift frequencies of the two beams are the same, so the air disturbances and the thermal effects in the way could be fully compensated. Under common room conditions, the displacement of a steel block at a distance of 10 m is measured, which proved that the system's stability is ±12 nm in 100 s and ±50 nm in 1000 s, the short-term resolution is better than 3 nm, and the linearity within the 300 mm range is 5 × 10-6 and within the 100 μm range is 1 × 10-4.

  5. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOEpatents

    Musket, Ronald G.; Felter, Thomas E.

    2002-01-01

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  6. Crystallization and preliminary crystallographic study of 3 alpha, 20 beta-hydroxysteroid dehydrogenase from Streptomyces hydrogenans.

    PubMed

    Fitzgerald, P M; Duax, W L; Punzi, J S; Orr, J C

    1984-05-15

    3 alpha, 20 beta-Hydroxysteroid dehydrogenase, an NADH-dependent oxidoreductase isolated from Streptomyces hydrogenans , is a tetramer containing four subunits each of Mr 25,000. The enzyme has been crystallized by the vapor diffusion technique using either phosphate or borate buffered ammonium sulfate (pH between 6.0 and 8.7) as the precipitant. The crystals are hexagonal bipyramids ; they have the symmetry of space group P6(4)22 (or P6(2)22), with unit cell dimensions a = 127.3 A, c = 112.2 A. Volume and density considerations imply that the crystallographic asymmetric unit contains two monomers, and therefore that the tetramer possesses a 2-fold axis of symmetry that is coincident with a crystallographic 2-fold symmetry element.

  7. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  8. Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank

    PubMed Central

    Joosten, Robbie P.; Joosten, Krista; Cohen, Serge X.; Vriend, Gert; Perrakis, Anastassis

    2011-01-01

    Motivation: Macromolecular crystal structures in the Protein Data Bank (PDB) are a key source of structural insight into biological processes. These structures, some >30 years old, were constructed with methods of their era. With PDB_REDO, we aim to automatically optimize these structures to better fit their corresponding experimental data, passing the benefits of new methods in crystallography on to a wide base of non-crystallographer structure users. Results: We developed new algorithms to allow automatic rebuilding and remodeling of main chain peptide bonds and side chains in crystallographic electron density maps, and incorporated these and further enhancements in the PDB_REDO procedure. Applying the updated PDB_REDO to the oldest, but also to some of the newest models in the PDB, corrects existing modeling errors and brings these models to a higher quality, as judged by standard validation methods. Availability and Implementation: The PDB_REDO database and links to all software are available at http://www.cmbi.ru.nl/pdb_redo. Contact: r.joosten@nki.nl; a.perrakis@nki.nl Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22034521

  9. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  10. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  11. Nanometer-Sized Diamond Particle as a Probe for Biolabeling

    PubMed Central

    Chao, Jui-I.; Perevedentseva, Elena; Chung, Pei-Hua; Liu, Kuang-Kai; Cheng, Chih-Yuan; Chang, Chia-Ching; Cheng, Chia-Liang

    2007-01-01

    A novel method is proposed using nanometer-sized diamond particles as detection probes for biolabeling. The advantages of nanodiamond's unique properties were demonstrated in its biocompatibility, nontoxicity, easily detected Raman signal, and intrinsic fluorescence from its natural defects without complicated pretreatments. Carboxylated nanodiamond's (cND's) penetration ability, noncytotoxicity, and visualization of cND-cell interactions are demonstrated on A549 human lung epithelial cells. Protein-targeted cell interaction visualization was demonstrated with cND-lysozyme complex interaction with bacteria Escherichia coli. It is shown that the developed biomolecule-cND complex preserves the original functions of the test protein. The easily detected natural fluorescent and Raman intrinsic signals, penetration ability, and low cytotoxicity of cNDs render them promising agents in multiple medical applications. PMID:17513352

  12. [Clinical observation on nanometer acupoint mounting method for alleviation of myospasm complicated by spinal injury].

    PubMed

    Zhang, Su-Jie; Si, Tong; Li, Zhi

    2008-11-01

    To observe clinical effect of nanometer acupoint mounting method for alleviation of myospasm complicated by spinal injury. Sixty cases were randomly divided into an observation group and a control group, 30 cases in each group. The observation group were treated by nanometer mounting at 4 Jiaji (EX-B 2) points each on both sides of the affected spine and Shenshu (BL 23), Shangliao (BL 31), Ciliao (BL 32), Yang-lingquan (GB 34), Xuanzhong (GB 39); and the control group by mounting zinc oxide sticking tablets at the above acupoints. The mounting was replaced once each two days, 7 times constituting one course. One week and one month after the end of 3 courses, their results were recorded, respectively. Before treatment, there was no significant difference between the two groups in grades of the myospasm degree (P > 0.05). One week after the end of treatment, 15 cases were grade I of myospasm, 9 cases were grade II, 5 cases were grade III and 1 case was grade IV in the observation group, and 1 cases grade I, 7 cases grade II, 14 cases grade III, 8 cases grade IV in the control group. Ridit analysis on the data indicated that there were significant differences before and after treatment in the myospasm degree (P < 0.01) and between the two groups after treatment (P < 0.01). One month after the end of treatment, the results were similar to those one week after the end of treatment. Nanometer acupoint mounting method is a new one for alleviation of myospasm complicated by spinal injury, with convenience, safety and no side effect.

  13. Nanometer-sized materials for solid-phase extraction of trace elements.

    PubMed

    Hu, Bin; He, Man; Chen, Beibei

    2015-04-01

    This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.

  14. Contact area of rough spheres: Large scale simulations and simple scaling laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastewka, Lars, E-mail: lars.pastewka@kit.edu; Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218; Robbins, Mark O., E-mail: mr@pha.jhu.edu

    2016-05-30

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the wholemore » range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.« less

  15. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    NASA Astrophysics Data System (ADS)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  16. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    NASA Astrophysics Data System (ADS)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki; Young Jeong, Hu; Galeano, Carolina; Schüth, Ferdi; Terasaki, Osamu

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  17. Preferred crystallographic orientation in the ice I ← II transformation and the flow of ice II

    USGS Publications Warehouse

    Bennett, K.; Wenk, H.-R.; Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1997-01-01

    The preferred crystallographic orientation developed during the ice I ← II transformation and during the plastic flow of ice II was measured in polycrystalline deuterium oxide (D2O) specimens using low-temperature neutron diffraction. Samples partially transformed from ice I to II under a non-hydrostatic stress developed a preferred crystallographic orientation in the ice II. Samples of pure ice II transformed from ice I under a hydrostatic stress and then when compressed axially, developed a strong preferred orientation of compression axes parallel to (1010). A match to the observed preferred orientation using the viscoplastic self-consistent theory was obtained only when (1010) [0001] was taken as the predominant slip system in ice II.

  18. Laser interferometer used for nanometer vibration measurements

    NASA Astrophysics Data System (ADS)

    Sun, Jiaxing; Yang, Jun; Liu, Zhihai; Yuan, Libo

    2007-01-01

    A novel laser interferometer which adopts alternating modulation phase tracking homodyne technique is proposed. The vibration of nanometer-accuracy is measured with the improved Michelson interferometer by adding cat's eye moving mirror and PZT phase modulation tracking structure. The working principle and the structure of the interferometer are analyzed and the demodulation scheme of alternating phase modulation and tracking is designed. The signal detection is changed from direct current detecting to alternating current detecting. The signal's frequency spectrum transform is achieved, the low-frequency noise jamming is abated, the Signal-to-Noise of the system is improved and the measured resolution is enhanced. Phase tracking technique effectively suppresses the low-frequency noise which is caused by outside environment factors such as temperature and vibration, and the stability of the system is enhanced. The experimental results indicate that for the signal with the frequency of 100Hz and the amplitude of 25nm, the output Signal-to-Noise is 30dB and the measured resolution is 1nm.

  19. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures

    PubMed Central

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2015-01-01

    The number of macromolecular structures deposited in the Protein Data Bank now exceeds 45 000, with the vast majority determined using crystallographic methods. Thousands of studies describing such structures have been published in the scientific literature, and 14 Nobel prizes in chemistry or medicine have been awarded to protein crystallographers. As important as these structures are for understanding the processes that take place in living organisms and also for practical applications such as drug design, many non-crystallographers still have problems with critical evaluation of the structural literature data. This review attempts to provide a brief outline of technical aspects of crystallography and to explain the meaning of some parameters that should be evaluated by users of macromolecular structures in order to interpret, but not over-interpret, the information present in the coordinate files and in their description. A discussion of the extent of the information that can be gleaned from the coordinates of structures solved at different resolution, as well as problems and pitfalls encountered in structure determination and interpretation are also covered. PMID:18034855

  20. Crystallographic orientation mapping with an electron backscattered diffraction technique in (Bi, Pb)2Sr2Ca2Cu3O10 superconductor tapes

    NASA Astrophysics Data System (ADS)

    Tan, T. T.; Li, S.; Oh, J. T.; Gao, W.; Liu, H. K.; Dou, S. X.

    2001-02-01

    It is believed that grain boundaries act as weak links in limiting the critical current density (Jc) of bulk high-Tc superconductors. The weak-link problem can be greatly reduced by elimination or minimization of large-angle grain boundaries. It has been reported that the distribution of the Jc in (Bi, Pb)2Sr2Ca2Cu3O10+x (Bi2223) superconductor tapes presents a parabolic relationship in the transverse cross section of the tapes, with the lowest currents occurring at the centre of the tapes. It was proposed that the Jc distribution is strongly dependent on the local crystallographic orientation distribution of the Bi2223 oxides. However, the local three-dimensional crystallographic orientation distribution of Bi2223 crystals in (Bi, Pb)2Sr2Ca2Cu3O10+x superconductor tapes has not yet been experimentally determined. In this work, the electron backscattered diffraction technique was employed to map the crystallographic orientation distribution, determine the misorientation of grain boundaries and also map the misorientation distribution in Bi2223 superconductor tapes. Through crystallographic orientation mapping, the relationship between the crystallographic orientation distribution, the boundary misorientation distribution and the fabrication parameters may be understood. This can be used to optimize the fabrication processes thus increasing the critical current density in Bi2223 superconductor tapes.

  1. Preface: Special Topic on Frontiers in Molecular Scale Electronics

    NASA Astrophysics Data System (ADS)

    Evers, Ferdinand; Venkataraman, Latha

    2017-03-01

    The electronic, mechanical, and thermoelectric properties of molecular scale devices have fascinated scientists across several disciplines in natural sciences and engineering. The interest is partially technological, driven by the fast miniaturization of integrated circuits that now have reached characteristic features at the nanometer scale. Equally important, a very strong incentive also exists to elucidate the fundamental aspects of structure-function relations for nanoscale devices, which utilize molecular building blocks as functional units. Thus motivated, a rich research field has established itself, broadly termed "Molecular Electronics," that hosts a plethora of activities devoted to this goal in chemistry, physics, and electrical engineering. This Special Topic on Frontiers of Molecular Scale Electronics captures recent theoretical and experimental advances in the field.

  2. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesada, Odayme; Gurda, Brittney; Govindasamy, Lakshmanan

    2007-12-01

    Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids have been produced which diffract X-rays to ∼3.0 Å resolution. Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids diffract X-rays to ∼3.0 Å resolution. The crystals belong to the rhombohedral space group R3, with unit-cell parameters a = 252.4, c = 591.2 Å in the hexagonal setting. The diffraction data were processed and reduced to an overall completeness of 79.0% and an R{sub merge} of 12.0%. There are three viral capsids in the unit cell. The icosahedral threefold axis is coincident with the crystallographic threefold axis, resulting in one third of amore » capsid (20 monomers) per crystallographic asymmetric unit. The orientation of the viral capsid has been determined by rotation-function searches and is positioned at (0, 0, 0) by packing considerations.« less

  3. Biosafety of the application of biogenic nanometal powders in husbandry

    NASA Astrophysics Data System (ADS)

    Anatolievna Nazarova, Anna; Dmitrievna Polischuk, Svetlana; Anatolievna Stepanova, Irina; Ivanovich Churilov, Gennady; Chau Nguyen, Hoai; Buu Ngo, Quoc

    2014-03-01

    Effects of iron and copper nanopowders (particle size of 20-40 nm) were investigated on rabbits of 1 month age and heifers of 6 months. For introduction of nanometals into the animal's ration, the mixed fodder was treated with the nanometal powder suspension in such a way: 0.08 mg of nanoiron per kg of animal's body weight and 0.04 mg kg-1 for nanocopper. The weight gain of the heifers who received nanoiron and nanocopper after 8 months was 22.4 and 10.7% higher than that of the control, respectively. For the rabbits who received nano Fe and Cu after 3 months, the weight gain was 11.7 and 7.3% compared to the control, respectively. Under the action of metal nanopowders morphological indices of blood were changed in comparison with the control: after 8 months the quantity of erythrocytes increased by 19.6%, hemoglobin by 17.1% and leukocytes by 7.6%. There was a realignment in leukocytic formula: the quantity of lymphocytes increased by 9% compared to the control. Biogenic metals in superdispersive state were able to stimulate immune, enzymatic and humoral systems of the animal's organism, promoting metabolism. Adding Co and Cu metal nanopowders to the bull-calves’ fodder rations increased content of Ca by 31.8 and 0%, Fe by 38.8 and 37.5%, K by 19.2 and 15.3%, Mg by 17.6 and 23.5%, Mn by 9.8 and 45% and Na by 20.5 and 8.8%, respectively, compared to control. Metal nanopowders improved the quality indices and meat productivity of black-white bull-calves, expressed in intensive growth of muscle, tissue and more nutritious meat. The conducted veterinary-sanitary expertise showed that the supplements based on iron, cobalt and copper nanopowders can be used as safe bioactive supplements in animal husbandry.

  4. Conventional and Eccentric Uses of Crystallographic Databases in Practical Materials Identification Problems

    PubMed Central

    Kaduk, James A.

    1996-01-01

    The crystallographic databases are powerful and cost-effective tools for solving materials identification problems, both individually and in combination. Examples of the conventional and unconventional use of the databases in solving practical problems involving organic, coordination, and inorganic compounds are provided. The creation and use of fully-relational versions of the Powder Diffraction File and NIST Crystal Data are described. PMID:27805165

  5. Direct observation of terahertz surface modes in nanometer-sized liquid water pools.

    PubMed

    Boyd, J E; Briskman, A; Colvin, V L; Mittleman, D M

    2001-10-01

    The far-infrared absorption spectrum of nanometer-sized water pools at the core of AOT micelles exhibits a pronounced resonance which is absent in bulk water. The amplitude and spectral position of this resonance are sensitive to the size of the confined water core. This resonance results from size-dependent modifications in the vibrational density of states, and thus has far-reaching implications for chemical processes which involve water sequestered within small cavities. These data represent the first study of the terahertz dielectric properties of confined liquids.

  6. A new capacitive long-range displacement nanometer sensor with differential sensing structure based on time-grating

    NASA Astrophysics Data System (ADS)

    Yu, Zhicheng; Peng, Kai; Liu, Xiaokang; Pu, Hongji; Chen, Ziran

    2018-05-01

    High-precision displacement sensors, which can measure large displacements with nanometer resolution, are key components in many ultra-precision fabrication machines. In this paper, a new capacitive nanometer displacement sensor with differential sensing structure is proposed for long-range linear displacement measurements based on an approach denoted time grating. Analytical models established using electric field coupling theory and an area integral method indicate that common-mode interference will result in a first-harmonic error in the measurement results. To reduce the common-mode interference, the proposed sensor design employs a differential sensing structure, which adopts a second group of induction electrodes spatially separated from the first group of induction electrodes by a half-pitch length. Experimental results based on a prototype sensor demonstrate that the measurement accuracy and the stability of the sensor are substantially improved after adopting the differential sensing structure. Finally, a prototype sensor achieves a measurement accuracy of  ±200 nm over the full 200 mm measurement range of the sensor.

  7. Revealing the cell-material interface with nanometer resolution by FIB-SEM

    PubMed Central

    Santoro, Francesca; Zhao, Wenting; Joubert, Lydia-Marie; Duan, Liting; Schnitker, Jan; van de Burgt, Yoeri; Lou, Hsin-Ya; Liu, Bofei; Salleo, Alberto; Cui, Lifeng; Cui, Yi; Cui, Bianxiao

    2018-01-01

    The interface between cells and non-biological surfaces regulates cell attachment, chronic tissue responses, and ultimately the success of medical implants or biosensors. Clinical and laboratory studies show that topological features of the surface profoundly influences cellular responses, e.g. titanium surfaces with nano- and microtopographical structures enhance osteoblast attachment and host-implant integration as compare to smooth surface. To understand how cells and tissues respond to different topographical features, it is of critical importance to directly visualize the cell-materials interface at the relevant nanometer length scale. Here, we present a new method for in situ examination of the cell-to-material interface at any desired location, based on focused-ion beam milling and scanning electron microscopy imaging (FIB-SEM) to resolve the cell membrane-to-material interface with 10 nm resolution. By examining how cell membranes interact with topographical features such as nanoscale protrusions or invaginations, we discovered that the cell membrane readily deforms inward and wraps around protruding structures, but hardly deforms outward to contour invaginating structures. This asymmetric membrane response (inward vs. outward deformation) causes the cleft width between the cell membrane and the nanostructure surface to vary for more than an order of magnitude. Our results suggest that surface topology is a crucial consideration for the development of medical implants or biosensors whose performances are strongly influenced by the cell-to-material interface. We anticipate that the method can be used to explore the direct interaction of cells/tissue with medical devices such as metal implants in the future. PMID:28682058

  8. Understanding Hydraulic Fracturing: A Multi-Scale Problem

    DOE PAGES

    Hyman, Jeffrey De'Haven; Gimenez Martinez, Joaquin; Viswanathan, Hari S.; ...

    2016-09-05

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nano-meters to kilo-meters. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical, and experimental efforts. At the field scale, we use discrete fracture network modeling to simulate production at a well site whose fracture network is based on a site characterization of a shale formation. At the core scale, we use triaxial fracture experiments and a finite-element discrete-elementmore » fracture propagation model with a coupled fluid solver to study dynamic crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and real micromodels to study pore-scale flow phenomenon such as multiphase flow and mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs.« less

  9. Label-free, multi-scale imaging of ex-vivo mouse brain using spatial light interference microscopy

    NASA Astrophysics Data System (ADS)

    Min, Eunjung; Kandel, Mikhail E.; Ko, Chemyong J.; Popescu, Gabriel; Jung, Woonggyu; Best-Popescu, Catherine

    2016-12-01

    Brain connectivity spans over broad spatial scales, from nanometers to centimeters. In order to understand the brain at multi-scale, the neural network in wide-field has been visualized in detail by taking advantage of light microscopy. However, the process of staining or addition of fluorescent tags is commonly required, and the image contrast is insufficient for delineation of cytoarchitecture. To overcome this barrier, we use spatial light interference microscopy to investigate brain structure with high-resolution, sub-nanometer pathlength sensitivity without the use of exogenous contrast agents. Combining wide-field imaging and a mosaic algorithm developed in-house, we show the detailed architecture of cells and myelin, within coronal olfactory bulb and cortical sections, and from sagittal sections of the hippocampus and cerebellum. Our technique is well suited to identify laminar characteristics of fiber tract orientation within white matter, e.g. the corpus callosum. To further improve the macro-scale contrast of anatomical structures, and to better differentiate axons and dendrites from cell bodies, we mapped the tissue in terms of its scattering property. Based on our results, we anticipate that spatial light interference microscopy can potentially provide multiscale and multicontrast perspectives of gross and microscopic brain anatomy.

  10. Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi2Se3 and MoS2 atomic layers

    PubMed Central

    Vargas, Anthony; Liu, Fangze; Lane, Christopher; Rubin, Daniel; Bilgin, Ismail; Hennighausen, Zachariah; DeCapua, Matthew; Bansil, Arun; Kar, Swastik

    2017-01-01

    Vertical stacking is widely viewed as a promising approach for designing advanced functionalities using two-dimensional (2D) materials. Combining crystallographically commensurate materials in these 2D stacks has been shown to result in rich new electronic structure, magnetotransport, and optical properties. In this context, vertical stacks of crystallographically incommensurate 2D materials with well-defined crystallographic order are a counterintuitive concept and, hence, fundamentally intriguing. We show that crystallographically dissimilar and incommensurate atomically thin MoS2 and Bi2Se3 layers can form rotationally aligned stacks with long-range crystallographic order. Our first-principles theoretical modeling predicts heterocrystal electronic band structures, which are quite distinct from those of the parent crystals, characterized with an indirect bandgap. Experiments reveal striking optical changes when Bi2Se3 is stacked layer by layer on monolayer MoS2, including 100% photoluminescence (PL) suppression, tunable transmittance edge (1.1→0.75 eV), suppressed Raman, and wide-band evolution of spectral transmittance. Disrupting the interface using a focused laser results in a marked the reversal of PL, Raman, and transmittance, demonstrating for the first time that in situ manipulation of interfaces can enable “reconfigurable” 2D materials. We demonstrate submicrometer resolution, “laser-drawing” and “bit-writing,” and novel laser-induced broadband light emission in these heterocrystal sheets. PMID:28740860

  11. Influence of laser radiation polarisation on small-scale self-focusing in isotropic crystals

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. N.; Kochetkov, A. A.; Kuz'mina, M. S.; Burdonov, K. F.; Shaykin, A. A.; Khazanov, E. A.

    2017-04-01

    The gain of spatial noise in the field of an intense linearly polarised wave, propagating in a BaF2 cubic crystal with orientation [001], is directly measured. The previously predicted strong dependence of the evolution of small-scale self-focusing on the angle between the radiation polarisation vector and the crystallographic axis of crystal is demonstrated.

  12. Sharing electronic structure and crystallographic data with ETSF_IO

    NASA Astrophysics Data System (ADS)

    Caliste, D.; Pouillon, Y.; Verstraete, M. J.; Olevano, V.; Gonze, X.

    2008-11-01

    We present a library of routines whose main goal is to read and write exchangeable files (NetCDF file format) storing electronic structure and crystallographic information. It is based on the specification agreed inside the European Theoretical Spectroscopy Facility (ETSF). Accordingly, this library is nicknamed ETSF_IO. The purpose of this article is to give both an overview of the ETSF_IO library and a closer look at its usage. ETSF_IO is designed to be robust and easy to use, close to Fortran read and write routines. To facilitate its adoption, a complete documentation of the input and output arguments of the routines is available in the package, as well as six tutorials explaining in detail various possible uses of the library routines. Catalogue identifier: AEBG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Gnu Lesser General Public License No. of lines in distributed program, including test data, etc.: 63 156 No. of bytes in distributed program, including test data, etc.: 363 390 Distribution format: tar.gz Programming language: Fortran 95 Computer: All systems with a Fortran95 compiler Operating system: All systems with a Fortran95 compiler Classification: 7.3, 8 External routines: NetCDF, http://www.unidata.ucar.edu/software/netcdf Nature of problem: Store and exchange electronic structure data and crystallographic data independently of the computational platform, language and generating software Solution method: Implement a library based both on NetCDF file format and an open specification (http://etsf.eu/index.php?page=standardization)

  13. Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton

    The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c =more » 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.« less

  14. The nature of the Fe–graphene interface at the nanometer level

    DOE PAGES

    Cattelan, M.; Peng, G. W.; Cavaliere, E.; ...

    2014-12-22

    The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This paper reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, near edge X-ray absorption fine structure, scanning tunnelling microscopy and spin polarized density functional theory calculations. Quasi-free-standing graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Here, calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.

  15. Pore-Scale Geochemical Reactivity Associated with CO2 Storage: New Frontiers at the Fluid-Solid Interface.

    PubMed

    Noiriel, Catherine; Daval, Damien

    2017-04-18

    reactivity, which challenges the continuum description of porous media and assumptions required for reactive transport modeling at larger scales. The conventional approach, which consists of developing dissolution rate laws normalized to the surface area, should be revisited to account for both the anisotropic crystallographic structure of minerals and the transport of chemical species near the interface, which are responsible for the intrinsic evolution of the mineral dissolution rate as the reaction progresses. In addition, the crystal morphology and the mineral assemblage composition, texture, and structural heterogeneities are crucial in determining whether the permeability and transport properties of the reservoir will be altered drastically or maintain the sealing properties required to ensure the safe sequestration of CO 2 for hundreds of years. Investigating the transport properties in nanometer- to micrometer-thick amorphous Si-rich surface layers (ASSLs), which develop at the fluid-mineral interface in silicates, provides future direction, as ASSLs may prevent contact between the dissolving solids and the pore fluid, potentially inhibiting the dissolution/carbonation process. Equally, at a larger scale, the growth of micrometer- to millimeter-thick alteration layers, which result from the difference in reactivity between silicates and carbonates, slows the transport in the vicinity of the fluid-solid interface in polymineralic rocks, thus limiting the global reactivity of the carbonate matrix. In contrast, in pure limestone, the global reactivity of the monomineralic rock decreases because the flow localization promotes the local reactivity within the forming channels, thus enhancing permeability changes compared with more homogeneous dissolution of the rock matrix. These results indicate that the transformation of the rock matrix should control the evolution of the transport properties in reservoirs injected with CO 2 to the same extent as the intrinsic chemical

  16. CRYSNET manual. Informal report. [Hardware and software of crystallographic computing network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1976-07-01

    This manual describes the hardware and software which together make up the crystallographic computing network (CRYSNET). The manual is intended as a users' guide and also provides general information for persons without any experience with the system. CRYSNET is a network of intelligent remote graphics terminals that are used to communicate with the CDC Cyber 70/76 computing system at the Brookhaven National Laboratory (BNL) Central Scientific Computing Facility. Terminals are in active use by four research groups in the field of crystallography. A protein data bank has been established at BNL to store in machine-readable form atomic coordinates and othermore » crystallographic data for macromolecules. The bank currently includes data for more than 20 proteins. This structural information can be accessed at BNL directly by the CRYSNET graphics terminals. More than two years of experience has been accumulated with CRYSNET. During this period, it has been demonstrated that the terminals, which provide access to a large, fast third-generation computer, plus stand-alone interactive graphics capability, are useful for computations in crystallography, and in a variety of other applications as well. The terminal hardware, the actual operations of the terminals, and the operations of the BNL Central Facility are described in some detail, and documentation of the terminal and central-site software is given. (RWR)« less

  17. Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    NASA Astrophysics Data System (ADS)

    Montalto, L.; Natali, P. P.; Daví, F.; Mengucci., P.; Paone, N.; Rinaldi, D.

    2017-12-01

    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual (a, c) crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the (a, c) crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.

  18. Cluster Analysis of Time-Dependent Crystallographic Data: Direct Identification of Time-Independent Structural Intermediates

    PubMed Central

    Kostov, Konstantin S.; Moffat, Keith

    2011-01-01

    The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which these intermediates interconvert; and thereby to elucidate a chemical kinetic mechanism. One strategy toward achieving this goal is to use cluster analysis, a statistical method that groups objects based on their similarity. If the difference electron density at a particular voxel in the time-dependent difference electron density (TDED) maps is sensitive to the presence of one and only one intermediate, then its temporal evolution will exactly parallel the concentration profile of that intermediate with time. The rationale is therefore to cluster voxels with respect to the shapes of their TDEDs, so that each group or cluster of voxels corresponds to one structural intermediate. Clusters of voxels whose TDEDs reflect the presence of two or more specific intermediates can also be identified. From such groupings one can then infer the number of intermediates, obtain their time-independent difference density characteristics, and refine the structure of each intermediate. We review the principles of cluster analysis and clustering algorithms in a crystallographic context, and describe the application of the method to simulated and experimental time-resolved crystallographic data for the photocycle of photoactive yellow protein. PMID:21244840

  19. Crystallographic Stability of Metastable Phase Formed by Containerless Processing in REFeO3 (RE: Rare-Earth Element)

    NASA Technical Reports Server (NTRS)

    Kuribayashi, Kazuhiko; Kumar, M. S. Vijaya

    2012-01-01

    Undercooling a melt often facilitates a metastable phase to nucleate preferentially. Although the classical nucleation theory shows that the most critical factor for forming a metastable phase is the interface free energy, the crystallographic stability is also indispensable for the phase to be frozen at ambient temperature. In compound materials such as oxides, authors have suggested that the decisive factors for forming a critical nucleus are not only the free energy difference but also the difference of the entropy of fusion between stable and metastable phases. In the present study, using REFeO3 (RE: rare-earth element) as a model material, we investigate the formation of a metastable phase from undercooled melts with respect to the competitive nucleation and crystallographical stabilities of both phases.

  20. On the validity of the Poisson assumption in sampling nanometer-sized aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damit, Brian E; Wu, Dr. Chang-Yu; Cheng, Mengdawn

    2014-01-01

    A Poisson process is traditionally believed to apply to the sampling of aerosols. For a constant aerosol concentration, it is assumed that a Poisson process describes the fluctuation in the measured concentration because aerosols are stochastically distributed in space. Recent studies, however, have shown that sampling of micrometer-sized aerosols has non-Poissonian behavior with positive correlations. The validity of the Poisson assumption for nanometer-sized aerosols has not been examined and thus was tested in this study. Its validity was tested for four particle sizes - 10 nm, 25 nm, 50 nm and 100 nm - by sampling from indoor air withmore » a DMA- CPC setup to obtain a time series of particle counts. Five metrics were calculated from the data: pair-correlation function (PCF), time-averaged PCF, coefficient of variation, probability of measuring a concentration at least 25% greater than average, and posterior distributions from Bayesian inference. To identify departures from Poissonian behavior, these metrics were also calculated for 1,000 computer-generated Poisson time series with the same mean as the experimental data. For nearly all comparisons, the experimental data fell within the range of 80% of the Poisson-simulation values. Essentially, the metrics for the experimental data were indistinguishable from a simulated Poisson process. The greater influence of Brownian motion for nanometer-sized aerosols may explain the Poissonian behavior observed for smaller aerosols. Although the Poisson assumption was found to be valid in this study, it must be carefully applied as the results here do not definitively prove applicability in all sampling situations.« less

  1. Inheritance of Crystallographic Orientation during Lithiation/Delithiation Processes of Single-Crystal α-Fe2O3 Nanocubes in Lithium-Ion Batteries.

    PubMed

    Ma, Xiaowei; Zhang, Manyu; Liang, Chongyun; Li, Yuesheng; Wu, Jingjing; Che, Renchao

    2015-11-04

    Iron oxides are very promising anode materials based on conversion reactions for lithium-ion batteries (LIBs). During conversion processes, the crystal structure and composition of the electrode material are drastically changed. Surprisingly, in our study, inheritance of a crystallographic orientation was found during lithiation/delithiation processes of single-crystal α-Fe2O3 nanocubes by ex situ transmission electron microscopy. Single-crystal α-Fe2O3 was first transformed into numerous Fe nanograins embedded in a Li2O matrix, and then the conversion between Fe and FeO nanograins became the main reversible electrochemical reaction for energy storage. Interestingly, these Fe/FeO nanograins had almost the same crystallographic orientation, indicating that the lithiated/delithiated products can inherit the crystallographic orientation of single-crystal α-Fe2O3. This finding is important for understanding the detailed electrochemical conversion processes of iron oxides, and this feature may also exist during lithiation/delithiation processes of other transition-metal oxides.

  2. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    PubMed Central

    Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-01-01

    Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory-based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with Ångström-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na and Mg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca2+, previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic templates. PMID:27794119

  3. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation.

    PubMed

    Branson, Oscar; Bonnin, Elisa A; Perea, Daniel E; Spero, Howard J; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D; Fehrenbacher, Jennifer S; Gagnon, Alexander C

    2016-11-15

    Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory-based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with Ångström-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na and Mg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca 2+ , previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic templates.

  4. Optical depth localization of nitrogen-vacancy centers in diamond with nanometer accuracy.

    PubMed

    Häußler, Andreas J; Heller, Pascal; McGuinness, Liam P; Naydenov, Boris; Jelezko, Fedor

    2014-12-01

    Precise positioning of nitrogen-vacancy (NV) centers is crucial for their application in sensing and quantum information. Here we present a new purely optical technique enabling determination of the NV position with nanometer resolution. We use a confocal microscope to determine the position of individual emitters along the optical axis. Using two separate detection channels, it is possible to simultaneously measure reflected light from the diamond surface and fluorescent light from the NV center and statistically evaluate both signals. An accuracy of 2.6 nm for shallow NV centers was achieved and is consistent with other techniques for depth determination.

  5. The effects of deposition parameters on surface morphology and crystallographic orientation of electroless Ni-B coatings

    NASA Astrophysics Data System (ADS)

    Bulbul, Ferhat

    2011-02-01

    Electroless Ni-B coatings were deposited on AISI 304 stainless steels by electroless deposition method, which was performed for nine different test conditions at various levels of temperature, concentration of NaBH4, concentration of NiCl2, and time, using the Taguchi L9(34) experimental method. The effects of deposition parameters on the crystallographic orientation of electroless Ni-B coatings were investigated using SEM and XRD equipment. SEM analysis revealed that the Ni-B coatings developed six types (pea-like, maize-like, primary nodular, blackberry-like or grapes-like, broccoli-like, and cauliflower-like) of morphological structures depending on the deposition parameters. XRD results also showed that these structures exhibited different levels of amorphous character. The concentration of NaBH4 had the most dominant effect on the morphological and crystallographic development of electroless Ni-B coatings.

  6. Crystallographic phases in heavy rare earth metals under megabar pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, G. K.; Vohra, Y. K.

    2012-07-01

    Experiments aimed at understanding the crystallographic phases of heavy rare earth metals were carried out in a diamond anvil cell at the Advanced Photon Source, Argonne National Laboratory. Heavy rare earth metals dysprosium (Dy), holmium (Ho), erbium (Er) and thulium (Tm) were compressed to multi-megabar pressures. The rare earth crystal sequence hcp→Sm-type→dhcp→distorted-fcc (dfcc) is observed in all four elements. Upon further compression, a structural transformation to a monoclinic C2/m phase has been observed. We summarize the results from these experiments and present Rietveld structural refinements on high pressure phases for the specific case of dysprosium.

  7. Modeling the characteristic etch morphologies along specific crystallographic orientations by anisotropic chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Miao, Jin-Ru

    2018-02-01

    To improve the advanced manufacturing technology for functional materials, a sophisticated control of chemical etching process is highly demanded, especially in the fields of environment and energy related applications. In this study, a phase-field-based model is utilized to investigate the etch morphologies influenced by the crystallographic characters during anisotropic chemical etching. Three types of etching modes are inspected theoretically, including the isotropic, <100> and <111> preferred oriented etchings. Owing to the specific etching behavior along the crystallographic directions, different characteristic surface structures are presented in the simulations, such as the pimple-like, pyramidal hillock and ridge-like morphologies. In addition, the processing parameters affecting the surface morphological formation and evolution are also examined systematically. According to the numerical results, the growth mechanism of surface morphology in a chemical etching is revealed distinctly. While the etching dynamics plays a dominant role on the surface formation, the characteristic surface morphologies corresponding to the preferred etching direction become more apparent. As the atomic diffusion turned into a determinative factor, a smoothened surface would appear, even under the anisotropic etching conditions. These simulation results provide fundamental information to enhance the development and application of anisotropic chemical etching techniques.

  8. Optical field enhancement of nanometer-sized gaps at near-infrared frequencies.

    PubMed

    Ahn, Jae Sung; Kang, Taehee; Singh, Dilip K; Bahk, Young-Mi; Lee, Hyunhwa; Choi, Soo Bong; Kim, Dai-Sik

    2015-02-23

    We report near-field and far-field measurements of transmission through nanometer-sized gaps at near-infrared frequencies with varying the gap size from 1 nm to 10 nm. In the far-field measurements, we excluded direct transmission on the metal film surface via interferometric method. Kirchhoff integral formalism was used to relate the far-field intensity to the electric field at the nanogaps. In near-field measurements, field enhancement factors of the nanogaps were quantified by measuring transmission of the nanogaps using near-field scanning optical microscopy. All the measurements produce similar field enhancements of about ten, which we put in the context of comparing with the giant field enhancements in the terahertz regime.

  9. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE PAGES

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    2016-12-21

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  10. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  11. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures

    NASA Astrophysics Data System (ADS)

    Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2017-02-01

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  12. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures.

    PubMed

    Johnson, Craig R; Tsoi, Georgiy M; Vohra, Yogesh K

    2017-02-15

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  13. Phasing via pure crystallographic least squares: an unexpected feature.

    PubMed

    Burla, Maria Cristina; Carrozzini, Benedetta; Cascarano, Giovanni Luca; Giacovazzo, Carmelo; Polidori, Giampiero

    2018-03-01

    Crystallographic least-squares techniques, the main tool for crystal structure refinement of small and medium-size molecules, are for the first time used for ab initio phasing. It is shown that the chief obstacle to such use, the least-squares severe convergence limits, may be overcome by a multi-solution procedure able to progressively recognize and discard model atoms in false positions and to include in the current model new atoms sufficiently close to correct positions. The applications show that the least-squares procedure is able to solve many small structures without the use of important ancillary tools: e.g. no electron-density map is calculated as a support for the least-squares procedure.

  14. Colorimetric monitoring of nanometer distance changes in DNA-templated plasmon rulers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lermusiaux, Laurent; Bidault, Sebastien

    2016-03-01

    The nanometer-scale sensitivity of plasmon coupling allows the translation of minute morphological changes in nanostructures into macroscopic optical signals. In particular, single nanostructure scattering spectroscopy provides a direct estimation of interparticle distances in gold nanoparticle (AuNP) dimers linked by a short DNA double-strand [M. P. Busson et al, Nano Lett. 11, 5060 (2011)]. We demonstrate here that this spectroscopic information can be inferred from simple widefield measurements on a calibrated color camera [L. Lermusiaux et al, ACS Nano 9, 978 (2015)]. This allows us to analyze the influence of electrostatic and steric interparticle interactions on the morphology of DNA-templated AuNP groupings. Furthermore, polarization-resolved measurements on a color CCD provide a parallel imaging of AuNP dimer orientations. We apply this spectroscopic characterization to identify dimers featuring two different conformations of the same DNA template. In practice, the biomolecular scaffold contains a hairpin-loop that opens after hybridization to a specific DNA sequence and increases the interparticle distance [L. Lermusiaux et al, ACS Nano 6, 10992 (2012)]. These results open exciting perspectives for the parallel sensing of single specific DNA strands using plasmon rulers. We discuss the limits of this approach in terms of the physicochemical stability and reactivity of these nanostructures and demonstrate the importance of engineering the AuNP surface chemistry, in particular using amphiphilic ligands [L. Lermusiaux and S. Bidault, Small (2015), in press].

  15. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Virtual mode

    NASA Astrophysics Data System (ADS)

    Lapshin, Rostislav V.

    2016-08-01

    A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).

  16. Discovery of novel inhibitors for DHODH via virtual screening and X-ray crystallographic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Larry R.; Zhang, Ying; Degnen, William

    2010-10-28

    Amino-benzoic acid derivatives 1-4 were found to be inhibitors for DHODH by virtual screening, biochemical, and X-ray crystallographic studies. X-ray structures showed that 1 and 2 bind to DHODH as predicted by virtual screening, but 3 and 4 were found to be structurally different from the corresponding compounds initially identified by virtual screening.

  17. Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer.

    PubMed

    Isbaner, Sebastian; Karedla, Narain; Kaminska, Izabela; Ruhlandt, Daja; Raab, Mario; Bohlen, Johann; Chizhik, Alexey; Gregor, Ingo; Tinnefeld, Philip; Enderlein, Jörg; Tsukanov, Roman

    2018-04-11

    Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.

  18. Electromagnetic coupling to centimeter-scale mechanical membrane resonators via RF cylindrical cavities

    NASA Astrophysics Data System (ADS)

    Martinez, Luis A.; Castelli, Alessandro R.; Delmas, William; Sharping, Jay E.; Chiao, Raymond

    2016-11-01

    We present experimental and theoretical results for the excitation of a mechanical oscillator via radiation pressure with a room-temperature system employing a relatively low-(Q) centimeter-size mechanical oscillator coupled to a relatively low-Q standard three-dimensional radio-frequency (RF) cavity resonator. We describe the forces giving rise to optomechanical coupling using the Maxwell stress tensor and show that nanometer-scale displacements are possible and experimentally observable. The experimental system is composed of a 35 mm diameter silicon nitride membrane sputtered with a 300 nm gold conducting film and attached to the end of a RF copper cylindrical cavity. The RF cavity is operated in its {{TE}}011 mode and amplitude modulated on resonance with the fundamental drum modes of the membrane. Membrane motion is monitored using an unbalanced, non-zero optical path difference, optically filtered Michelson interferometer capable of measuring sub-nanometer displacements.

  19. Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Robin J.; Goodsell, David S.; Musah, Rabi A.; Morris, Garrett M.; Goodin, David B.; Olson, Arthur J.

    2003-08-01

    The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxidation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained by including an additional crystallographically observed water molecule in the protein model. For the remaining 2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished, to some extent, from non-binders using a combination of two trends: predicted binding energy and level of clustering. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand binding in the W191G cavity.

  20. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2010-01-01

    Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  1. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  2. Seismic properties and mineral crystallographic preferred orientations from EBSD data: Results from a crustal-scale detachment system, Aegean region

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard; Habler, Gerlinde

    2015-05-01

    The crystallographic preferred orientations (CPOs) were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System, Greece. Electron backscatter diffraction (EBSD) analyses were conducted on calcitic and mica schists, impure quartzites, and a blueschist, and the average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by the blueschist, with AVp averaging 20.3% and AVs averaging 14.5%, due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localised anisotropies of very high magnitudes are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~ 25% for AVp and AVs. The direction of the fast and slow P-wave velocities occurs parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction experienced in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during extension in the Aegean. Radial anisotropy in the Aegean mid-crust is strongly favoured to azimuthal anisotropy by our results.

  3. Cleanability evaluation of ceramic glazes with nanometer far-infrared materials using contact angle measurement.

    PubMed

    Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo

    2014-05-01

    The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

  4. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth.

    PubMed

    Adachi, Tetsuya; Pezzotti, Giuseppe; Yamamoto, Toshiro; Ichioka, Hiroaki; Boffelli, Marco; Zhu, Wenliang; Kanamura, Narisato

    2015-05-01

    A systematic investigation, based on highly spectrally resolved Raman spectroscopy, was undertaken to research the efficacy of vibrational assessments in locating chemical and crystallographic fingerprints for the characterization of dental caries and the early detection of non-cavitated carious lesions. Raman results published by other authors have indicated possible approaches for this method. However, they conspicuously lacked physical insight at the molecular scale and, thus, the rigor necessary to prove the efficacy of this spectroscopy method. After solving basic physical challenges in a companion paper, we apply them here in the form of newly developed Raman algorithms for practical dental research. Relevant differences in mineral crystallite (average) orientation and texture distribution were revealed for diseased enamel at different stages compared with healthy mineralized enamel. Clear spectroscopy features could be directly translated in terms of a rigorous and quantitative classification of crystallography and chemical characteristics of diseased enamel structures. The Raman procedure enabled us to trace back otherwise invisible characteristics in early caries, in the translucent zone (i.e., the advancing front of the disease) and in the body of lesion of cavitated caries.

  5. Busting out of crystallography's Sisyphean prison: from pencil and paper to structure solving at the press of a button: past, present and future of crystallographic software development, maintenance and distribution.

    PubMed

    Cranswick, Lachlan Michael David

    2008-01-01

    The history of crystallographic computing and use of crystallographic software is one which traces the escape from the drudgery of manual human calculations to a world where the user delegates most of the travail to electronic computers. In practice, this involves practising crystallographers communicating their thoughts to the crystallographic program authors, in the hope that new procedures will be implemented within their software. Against this background, the development of small-molecule single-crystal and powder diffraction software is traced. Starting with the analogue machines and the use of Hollerith tabulators of the late 1930's, it is shown that computing developments have been science led, with new technologies being harnessed to solve pressing crystallographic problems. The development of software is also traced, with a final caution that few of the computations now performed daily are really understood by the program users. Unless a sufficient body of people continues to dismantle and re-build programs, the knowledge encoded in the old programs will become as inaccessible as the knowledge of how to build the Great Pyramid at Giza.

  6. Large-scale automated histology in the pursuit of connectomes.

    PubMed

    Kleinfeld, David; Bharioke, Arjun; Blinder, Pablo; Bock, Davi D; Briggman, Kevin L; Chklovskii, Dmitri B; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P; Lee, Wei-Chung Allen; Meyer, Hanno S; Micheva, Kristina D; Oberlaender, Marcel; Prohaska, Steffen; Reid, R Clay; Smith, Stephen J; Takemura, Shinya; Tsai, Philbert S; Sakmann, Bert

    2011-11-09

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.

  7. Large-Scale Automated Histology in the Pursuit of Connectomes

    PubMed Central

    Bharioke, Arjun; Blinder, Pablo; Bock, Davi D.; Briggman, Kevin L.; Chklovskii, Dmitri B.; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P.; Lee, Wei-Chung Allen; Meyer, Hanno S.; Micheva, Kristina D.; Oberlaender, Marcel; Prohaska, Steffen; Reid, R. Clay; Smith, Stephen J.; Takemura, Shinya; Tsai, Philbert S.; Sakmann, Bert

    2011-01-01

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity. PMID:22072665

  8. Transuranic Hybrid Materials: Crystallographic and Computational Metrics of Supramolecular Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surbella, Robert G.; Ducati, Lucas C.; Pellegrini, Kristi L.

    A family of twelve supramolecular [AnO2Cl4]2- (An = U, Np, Pu) containing compounds assembled via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I) is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons are the norm. We present a hierarchy of assembly criteria based on crystallographic observations, and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials (ESPs) of the actinyl tetrahalidemore » dianions and reconcile crystallographically observed structural motifs and non-covalent interaction (NCI) acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ~2 kJ mol-1 across the AnO22+ series, indicating the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen N-H+. Subsequent analyses using the Quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches support this conclusion and highlight the structure directing role of the cations. Whereas one can infer that the 2 Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.« less

  9. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    PubMed

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Understanding the effect of size and shape of gold nanomaterials on nanometal surface energy transfer.

    PubMed

    Rakshit, Soumyadipta; Moulik, Satya Priya; Bhattacharya, Subhash Chandra

    2017-04-01

    Gold Nanomaterials (GNMs) interact with fluorophores via electromagnetic coupling under excitation. In this particular work we carried out (to the best of our knowledge for the first time) a comprehensive study of systematic quenching of a blue emitter 2-Anthracene Sulfonate (2-AS) in the presence of gold nanoparticles of different size and shape. We synthesized gold nanomaterials of four different dimensions [nanoparticle (0D), nanorod (1D), nanotriangle (2D) and nanobipyramids (3D)] and realized the underlying effect on the emitting dipole in terms of steady and time resolved fluorescence. Nanometal Surface Energy Transfer (NSET) has already been proved to be the best long range spectroscopic ruler so far. Many attempts have been made to understand the interaction between a fluorescent molecule and gold nanomaterials. But not a single model can interpret alone the interaction phenomena. We have opted three different models to compare the experimental and theoretical data. Due to the presence of size dependent absorptivity and dielectric function, modified CPS-Kuhn model was proved to be the worthiest to comprehend variance of behavior of an emitting dipole in close proximity to nanometal surface by coupling with the image dipole of gold nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  12. Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots.

    PubMed

    Seo, Min-Kyo; Park, Hong-Gyu; Yang, Jin-Kyu; Kim, Ju-Young; Kim, Se-Heon; Lee, Yong-Hee

    2008-06-23

    We propose and demonstrate a scheme that enables spectral tuning of a photonic crystal high-quality resonant mode, in steps finer than 0.2 nm, via electron beam induced deposition of carbonaceous nano-dots. The position and size of a nano-dot with a diameter of <100 nm are controlled to an accuracy on the order of nanometers. The possibility of selective modal tuning is also demonstrated by placing nano-dots at locations pre-determined by theoretical computation. The lasing threshold of a photonic crystal mode tends to increase when a nano-dot is grown at the point of strong electric field, showing the absorptive nature of the nano-dot.

  13. Urinary calculi: microbiological and crystallographic studies.

    PubMed

    Rosenstein, I J

    1986-01-01

    Although referred to as "urinary calculus disease", the formation of stone in the urinary tract is not caused by a single etiological agent. As such, diverse clinical investigations to diagnose the cause of stone formation must be carried out and the course of management after diagnosis must inevitably be different in each case. This review will cover all aspects of calculus formation, but will give particular attention to calculi caused by infection of the urinary tract with urease-producing bacteria. This is a recurrent, potentially life-threatening disease which has led clinicians to refer to the condition as "stone cancer". Because the etiology of infection stones is so different from stones caused by metabolic disorders, the two disease patterns should be considered separately, a fact often overlooked in epidemiological studies of stone formation. The importance of analysis of calculi as an aid to management is thus emphasized; identification of stone type will help to indicate appropriate therapy. A review of methods of analysis will be covered, particularly crystallographic analysis. Inhibition of bacterial urease as a means of management of infection stones will be discussed together with problems encountered and brighter hopes for the future.

  14. Five-parameter crystallographic characteristics of the interfaces formed during ferrite to austenite transformation in a duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Haghdadi, N.; Cizek, P.; Hodgson, P. D.; Tari, V.; Rohrer, G. S.; Beladi, H.

    2018-05-01

    The crystallography of interfaces in a duplex stainless steel having an equiaxed microstructure produced through the ferrite to austenite diffusive phase transformation has been studied. The five-parameter interface character distribution revealed a high anisotropy in habit planes for the austenite-ferrite and austenite-austenite interfaces for different lattice misorientations. The austenite and ferrite habit planes largely terminated on (1 1 1) and (1 1 0) planes, respectively, for the austenite-ferrite interfaces associated with Kurdjumov-Sachs (K-S) and Nishiyama-Wasserman (N-W) orientation relationships. This was mostly attributed to the crystallographic preference associated with the phase transformation. For the austenite-ferrite interfaces with orientation relationships which are neither K-S nor N-W, both austenite and ferrite habit planes had (1 1 1) orientations. Σ3 twin boundaries comprised the majority of austenite-austenite interfaces, mostly showing a pure twist character and terminating on (1 1 1) planes due to the minimum energy configuration. The second highest populated austenite-austenite boundary was Σ9, which tended to have grain boundary planes in the tilt zone due to the geometrical constraints. Furthermore, the intervariant crystallographic plane distribution associated with the K-S orientation relationship displayed a general tendency for the austenite habit planes to terminate with the (1 1 1) orientation, mainly due to the crystallographic preference associated with the phase transformation.

  15. Structures of endothiapepsin-fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library.

    PubMed

    Huschmann, Franziska U; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S; Mueller, Uwe

    2016-05-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein-ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin-fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity.

  16. Structures of endothiapepsin–fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library

    PubMed Central

    Huschmann, Franziska U.; Linnik, Janina; Sparta, Karine; Ühlein, Monika; Wang, Xiaojie; Metz, Alexander; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard; Weiss, Manfred S.; Mueller, Uwe

    2016-01-01

    Crystallographic screening of the binding of small organic compounds (termed fragments) to proteins is increasingly important for medicinal chemistry-oriented drug discovery. To enable such experiments in a widespread manner, an affordable 96-compound library has been assembled for fragment screening in both academia and industry. The library is selected from already existing protein–ligand structures and is characterized by a broad ligand diversity, including buffer ingredients, carbohydrates, nucleotides, amino acids, peptide-like fragments and various drug-like organic compounds. When applied to the model protease endothiapepsin in a crystallographic screening experiment, a hit rate of nearly 10% was obtained. In comparison to other fragment libraries and considering that no pre-screening was performed, this hit rate is remarkably high. This demonstrates the general suitability of the selected compounds for an initial fragment-screening campaign. The library composition, experimental considerations and time requirements for a complete crystallographic fragment-screening campaign are discussed as well as the nine fully refined obtained endothiapepsin–fragment structures. While most of the fragments bind close to the catalytic centre of endothiapepsin in poses that have been observed previously, two fragments address new sites on the protein surface. ITC measurements show that the fragments bind to endothiapepsin with millimolar affinity. PMID:27139825

  17. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wikman, Linnea E. K.; Krasotkina, Julya; Kuchumova, Anastasia

    2005-04-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2{sub 1}, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity atmore » physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml{sup −1} purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2{sub 1} space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment.« less

  18. Optically tunable Quincke rotation of a nanometer-thin oblate spheroid

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Zeng, Haibo

    2017-08-01

    Ever since the discovery of Quincke rotation (spontaneous rotation of a particle in fluid under a dc electric field) more than 100 years ago [G. Quincke, Ann. Phys. (Leipzig) 295, 417 (1896), 10.1002/andp.18962951102], the strength of the dc field has been the only external parameter to actively tune the rotation speed. In this paper we theoretically propose an optically tunable Quincke rotor exploiting the photoconductivity of a semiconducting nanometer-thin oblate spheroid. A full analysis of the instability of the Quincke rotation reveals that, unlike a prolate spheroid, no bistability is possible in such a dynamical system. In addition, the required material property and the strength of the dc electric field needed to realize the rotation are also elucidated. It is also predicted that light can be used to tune the spinning speed or simply turn on and off the Quincke rotation very effectively.

  19. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    NASA Astrophysics Data System (ADS)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  20. Low Resolution Refinement of Atomic Models Against Crystallographic Data.

    PubMed

    Nicholls, Robert A; Kovalevskiy, Oleg; Murshudov, Garib N

    2017-01-01

    This review describes some of the problems encountered during low-resolution refinement and map calculation. Refinement is considered as an application of Bayes' theorem, allowing combination of information from various sources including crystallographic experimental data and prior chemical and structural knowledge. The sources of prior knowledge relevant to macromolecules include basic chemical information such as bonds and angles, structural information from reference models of known homologs, knowledge about secondary structures, hydrogen bonding patterns, and similarity of non-crystallographically related copies of a molecule. Additionally, prior information encapsulating local conformational conservation is exploited, keeping local interatomic distances similar to those in the starting atomic model. The importance of designing an accurate likelihood function-the only link between model parameters and observed data-is emphasized. The review also reemphasizes the importance of phases, and describes how the use of raw observed amplitudes could give a better correlation between the calculated and "true" maps. It is shown that very noisy or absent observations can be replaced by calculated structure factors, weighted according to the accuracy of the atomic model. This approach helps to smoothen the map. However, such replacement should be used sparingly, as the bias toward errors in the model could be too much to avoid. It is in general recommended that, whenever a new map is calculated, map quality should be judged by inspection of the parts of the map where there is no atomic model. It is also noted that it is advisable to work with multiple blurred and sharpened maps, as different parts of a crystal may exhibit different degrees of mobility. Doing so can allow accurate building of atomic models, accounting for overall shape as well as finer structural details. Some of the results described in this review have been implemented in the programs REFMAC5, Pro

  1. Comparison of quartz crystallographic preferred orientations identified with optical fabric analysis, electron backscatter and neutron diffraction techniques.

    PubMed

    Hunter, N J R; Wilson, C J L; Luzin, V

    2017-02-01

    Three techniques are used to measure crystallographic preferred orientations (CPO) in a naturally deformed quartz mylonite: transmitted light cross-polarized microscopy using an automated fabric analyser, electron backscatter diffraction (EBSD) and neutron diffraction. Pole figure densities attributable to crystal-plastic deformation are variably recognizable across the techniques, particularly between fabric analyser and diffraction instruments. Although fabric analyser techniques offer rapid acquisition with minimal sample preparation, difficulties may exist when gathering orientation data parallel with the incident beam. Overall, we have found that EBSD and fabric analyser techniques are best suited for studying CPO distributions at the grain scale, where individual orientations can be linked to their source grain or nearest neighbours. Neutron diffraction serves as the best qualitative and quantitative means of estimating the bulk CPO, due to its three-dimensional data acquisition, greater sample area coverage, and larger sample size. However, a number of sampling methods can be applied to FA and EBSD data to make similar approximations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Pillet, J. C.; Pierre, F.; Jalabert, D.

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed

  3. Crystallographic observation of nonenzymatic RNA primer extension.

    PubMed

    Zhang, Wen; Walton, Travis; Li, Li; Szostak, Jack W

    2018-05-31

    The importance of genome replication has inspired detailed crystallographic studies of enzymatic DNA/RNA polymerization. In contrast, the mechanism of nonenzymatic polymerization is less well understood, despite its critical role in the origin of life. Here we report the direct observation of nonenzymatic RNA primer extension through time-resolved crystallography. We soaked crystals of an RNA primer-template-dGMP complex with guanosine-5'-phosphoro-2-aminoimidazolide for increasing times. At early times we see the activated ribonucleotides bound to the template, followed by formation of the imidazolium-bridged dinucleotide intermediate. At later times, we see a new phosphodiester bond forming between the primer and the incoming nucleotide. The intermediate is pre-organized because of the constraints of base-pairing with the template and hydrogen bonding between the imidazole amino group and both flanking phosphates. Our results provide atomic-resolution insight into the mechanism of nonenzymatic primer extension, and set the stage for further structural dissection and optimization of the RNA copying process. © 2018, Zhang et al.

  4. Digital image processing of nanometer-size metal particles on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  5. Automated crystallographic system for high-throughput protein structure determination.

    PubMed

    Brunzelle, Joseph S; Shafaee, Padram; Yang, Xiaojing; Weigand, Steve; Ren, Zhong; Anderson, Wayne F

    2003-07-01

    High-throughput structural genomic efforts require software that is highly automated, distributive and requires minimal user intervention to determine protein structures. Preliminary experiments were set up to test whether automated scripts could utilize a minimum set of input parameters and produce a set of initial protein coordinates. From this starting point, a highly distributive system was developed that could determine macromolecular structures at a high throughput rate, warehouse and harvest the associated data. The system uses a web interface to obtain input data and display results. It utilizes a relational database to store the initial data needed to start the structure-determination process as well as generated data. A distributive program interface administers the crystallographic programs which determine protein structures. Using a test set of 19 protein targets, 79% were determined automatically.

  6. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Hyo-Soo; Choi, Nak-Jung; Kim, Kyoung-Bo

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al contentmore » in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.« less

  7. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  8. Depositing nanometer-sized particles of metals onto carbon allotropes

    NASA Technical Reports Server (NTRS)

    Delozier, Donavon M. (Inventor); Fallbach, Michael J. (Inventor); Smith, Joseph G. (Inventor); Watson, Kent A. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  9. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy

    PubMed Central

    2009-01-01

    An important part of characterizing any protein molecule is to determine its size and shape. Sedimentation and gel filtration are hydrodynamic techniques that can be used for this medium resolution structural analysis. This review collects a number of simple calculations that are useful for thinking about protein structure at the nanometer level. Readers are reminded that the Perrin equation is generally not a valid approach to determine the shape of proteins. Instead, a simple guideline is presented, based on the measured sedimentation coefficient and a calculated maximum S, to estimate if a protein is globular or elongated. It is recalled that a gel filtration column fractionates proteins on the basis of their Stokes radius, not molecular weight. The molecular weight can be determined by combining gradient sedimentation and gel filtration, techniques available in most biochemistry laboratories, as originally proposed by Siegel and Monte. Finally, rotary shadowing and negative stain electron microscopy are powerful techniques for resolving the size and shape of single protein molecules and complexes at the nanometer level. A combination of hydrodynamics and electron microscopy is especially powerful. PMID:19495910

  10. Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging

    DOE PAGES

    Ulvestad, A.; Nashed, Y.; Beutier, G.; ...

    2017-08-30

    In this study, crystallographic defects such as dislocations can significantly alter material properties and functionality. However, imaging these imperfections during operation remains challenging due to the short length scales involved and the reactive environments of interest. Bragg coherent diffractive imaging (BCDI) has emerged as a powerful tool capable of identifying dislocations, twin domains, and other defects in 3D detail with nanometer spatial resolution within nanocrystals and grains in reactive environments. However, BCDI relies on phase retrieval algorithms that can fail to accurately reconstruct the defect network. Here, we use numerical simulations to explore different guided phase retrieval algorithms for imagingmore » defective crystals using BCDI. We explore different defect types, defect densities, Bragg peaks, and guided algorithm fitness metrics as a function of signal-to-noise ratio. Based on these results, we offer a general prescription for phasing of defective crystals with no a prior knowledge.« less

  11. Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulvestad, A.; Nashed, Y.; Beutier, G.

    In this study, crystallographic defects such as dislocations can significantly alter material properties and functionality. However, imaging these imperfections during operation remains challenging due to the short length scales involved and the reactive environments of interest. Bragg coherent diffractive imaging (BCDI) has emerged as a powerful tool capable of identifying dislocations, twin domains, and other defects in 3D detail with nanometer spatial resolution within nanocrystals and grains in reactive environments. However, BCDI relies on phase retrieval algorithms that can fail to accurately reconstruct the defect network. Here, we use numerical simulations to explore different guided phase retrieval algorithms for imagingmore » defective crystals using BCDI. We explore different defect types, defect densities, Bragg peaks, and guided algorithm fitness metrics as a function of signal-to-noise ratio. Based on these results, we offer a general prescription for phasing of defective crystals with no a prior knowledge.« less

  12. Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Dong; Li, Shaohong; Li, Jun

    Effect of carbides and crystallographic orientation relationship on the formation mechanism of reversed austenite of economical Cr12 super martensitic stainless steel (SMSS) has been investigated mainly by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The results indicate that the M{sub 23}C{sub 6} precipitation and the formation of the reversed austenite have the interaction effect during tempering process in SMSS. The reversed austenite forms intensively at the sub-block boundary and the lath boundary within a misorientation range of 0–60°. M{sub 23}C{sub 6} has the same crystallographic orientation relationship with reversed austenite. There are two different kinds of formation modesmore » for reversed austenite. One is a nondiffusional shear reversion; the other is a diffusion transformation. Both are strictly limited by crystallographic orientation relationship. The austenite variants are limited to two kinds within one packet and five kinds within one prior austenite grain. - Highlights: • Reversed austenite forms at martensite boundaries with misorientation of 0–60° • M{sub 23}C{sub 6} precipitation and reversed austenite formation have the interaction effect. • Two austenite variants with different orientations can be formed inside a packet. • Two reversed austenite formation modes: shear reversion; diffusion transformation.« less

  13. Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Takeo, E-mail: t-ohno@wpi-aimr.tohoku.ac.jp; Japan Science and Technology Agency; Samukawa, Seiji, E-mail: samukawa@ifs.tohoku.ac.jp

    2015-04-27

    Resistive switching in a Cu/Ta{sub 2}O{sub 5}/Pt structure that consisted of a few nanometer-thick Ta{sub 2}O{sub 5} film was demonstrated. The Ta{sub 2}O{sub 5} film with thicknesses of 2–5 nm was formed with a combination of Ta metal film deposition and neutral oxygen particle irradiation at room temperature. The device exhibited a bipolar resistive switching with a threshold voltage of 0.2 V and multilevel switching operation.

  14. Bottom-up construction of a superstructure in a porous uranium-organic crystal

    NASA Astrophysics Data System (ADS)

    Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.; Gómez-Gualdrón, Diego A.; Howarth, Ashlee J.; Mehdi, B. Layla; Dohnalkova, Alice; Browning, Nigel D.; O'Keeffe, Michael; Farha, Omar K.

    2017-05-01

    Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation of colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.

  15. Helium Ion Microscope: A New Tool for Sub-nanometer Imaging of Soft Materials

    NASA Astrophysics Data System (ADS)

    Shutthanandan, V.; Arey, B.; Smallwood, C. R.; Evans, J. E.

    2017-12-01

    High-resolution inspection of surface details is needed in many biological and environmental researches to understand the Soil organic material (SOM)-mineral interactions along with identifying microbial communities and their interactions. SOM shares many imaging characteristics with biological samples and getting true surface details from these materials are challenging since they consist of low atomic number materials. FE-SEM imaging is the main imagining technique used to image these materials in the past. These SEM images often show loss of resolution and increase noise due to beam damage and charging issues. Newly developed Helium Ion Microscope (HIM), on the other hand can overcome these difficulties and give very fine details. HIM is very similar to scanning electron microscopy (SEM) but instead of using electrons as a probe beam, HIM uses helium ions with energy ranges from 5 to 40 keV. HIM offers a series of advantages compared to SEM such as nanometer and sub-nanometer image resolutions (about 0.35 nm), detailed surface topography, high surface sensitivity, low Z material imaging (especially for polymers and biological samples), high image contrast, and large depth of field. In addition, HIM also has the ability to image insulating materials without any conductive coatings so that surface details are not modified. In this presentation, several scientific applications across biology and geochemistry will be presented to highlight the effectiveness of this powerful microscope. Acknowledgements: Research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Work was supported by DOE-BER Mesoscale to Molecules Bioimaging Project FWP# 66382.

  16. Nanometer-scale anatomy of entire Stardust tracks

    NASA Astrophysics Data System (ADS)

    Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo

    2011-07-01

    We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot" and "bulbous" tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.

  17. Microfocus/Polycapillary-Optic Crystallographic X-Ray System

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Gubarev, Mikhail; Ciszak, Ewa

    2005-01-01

    A system that generates an intense, nearly collimated, nearly monochromatic, small-diameter x-ray beam has been developed for use in macromolecular crystallography. A conventional x-ray system for macromolecular crystallography includes a rotating-anode x-ray source, which is massive (.500 kg), large (approximately 2 by 2 by 1 m), and power-hungry (between 2 and 18 kW). In contrast, the present system generates a beam of the required brightness from a microfocus source, which is small and light enough to be mounted on a laboratory bench, and operates at a power level of only tens of watts. The figure schematically depicts the system as configured for observing x-ray diffraction from a macromolecular crystal. In addition to the microfocus x-ray source, the system includes a polycapillary optic . a monolithic block (typically a bundle of fused glass tubes) that contains thousands of straight or gently curved capillary channels, along which x-rays propagate with multiple reflections. This particular polycapillary optic is configured to act as a collimator; the x-ray beam that emerges from its output face consists of quasi-parallel subbeams with a small angular divergence and a diameter comparable to the size of a crystal to be studied. The gap between the microfocus x-ray source and the input face of the polycapillary optic is chosen consistently with the focal length of the polycapillary optic and the need to maximize the solid angle subtended by the optic in order to maximize the collimated x-ray flux. The spectrum from the source contains a significant component of Cu K (photon energy is 8.08 keV) radiation. The beam is monochromatized (for Cu K ) by a nickel filter 10 m thick. In a test, this system was operated at a power of 40 W (current of 897 A at an accelerating potential of 45 kV), with an anode x-ray spot size of 41+/-2 microns. Also tested, in order to provide a standard for comparison, was a commercial rotating-anode x-ray crystallographic system with a

  18. Metal-assisted exfoliation (MAE): green process for transferring graphene to flexible substrates and templating of sub-nanometer plasmonic gaps (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Marin, Brandon C.; Moetazedi, Herad; Dill, Tyler J.; Jibril, Liban; Kong, Casey; Tao, Andrea R.; Lipomi, Darren J.

    2015-09-01

    This paper describes a new technique, termed "metal-assisted exfoliation," for the scalable transfer of graphene from catalytic copper foils to flexible polymeric supports. The process is amenable to roll-to-roll manufacturing, and the copper substrate can be recycled. We then demonstrate the use of single-layer graphene as a template for the formation of sub-nanometer plasmonic gaps using a scalable fabrication process called "nanoskiving." These gaps are formed between parallel gold nanowires in a process that first produces three-layer thin films with the architecture gold/single-layer graphene/gold, and then sections the composite films with an ultramicrotome. The structures produced can be treated as two gold nanowires separated along their entire lengths by an atomically thin graphene nanoribbon. Oxygen plasma etches the sandwiched graphene to a finite depth; this action produces a sub-nanometer gap near the top surface of the junction between the wires that is capable of supporting highly confined optical fields. The confinement of light is confirmed by surface-enhanced Raman spectroscopy measurements, which indicate that the enhancement of the electric field arises from the junction between the gold nanowires. These experiments demonstrate nanoskiving as a unique and easy-to-implement fabrication technique that is capable of forming sub-nanometer plasmonic gaps between parallel metallic nanostructures over long, macroscopic distances. These structures could be valuable for fundamental investigations as well as applications in plasmonics and molecular electronics.

  19. A Versatile Methodology Using Sol-Gel, Supercritical Extraction, and Etching to Fabricate a Nitramine Explosive: Nanometer HNIW

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Song, Xiaolan; Song, Dan; Jiang, Wei; Liu, Hongying; Li, Fengsheng

    2013-01-01

    A combinative method with three steps was developed to fabricate HNIW (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtziane) nanoexplosives with the gas anti-solvent (GAS) method improved by introducing a gel frame to limit the overgrowth of recrystallized particles and an acid-assistant to remove the used frame. Forming the mixed gel, by locking the explosive solution into a wet gel whose volume was divided by the networks, was the key for the fabrication. As demonstrated by scanning electron microscopy (SEM) analysis, a log-normal size distribution of nano-HNIW indicated that about 74.4% of the particles had sizes <120 nm and maximum particle size was ∼300 nm. Energy-dispersive X-ray spectroscopy (EDS) and infrared (IR) characterizations showed that the aerogel embedded with nanoexplosive particles was dissolved in hydrochloric acid solution, and the raw ɛ-HNIW was mostly transformed into the α phase (nano-HNIW) during recrystallization. Nano-HNIW exhibited impact and friction sensitivity almost equal to those of raw HNIW, within experimental error. Thermal analysis showed that the decomposition peak temperature decreased by more than 10°C and that the heat release increased by 42.5% when the particle size of HNIW was at the nanometer scale.

  20. Structural similarities in tetraaryltins described by virtual non-crystallographic rotations or translations: Kitaigorodskii's morphotropism is revisited.

    PubMed

    Kálmán, Alajos; Fábián, László

    2007-06-01

    Recently Kálmán [(2005), Acta Cryst. B61, 536-547] revealed that semirigid molecules or their patterns held together e.g. by hydrogen bonds may perform non-crystallographic rotations (through 180, 90 degrees etc.) around themselves whenever a substitution, ring enlargement or isomerization destroys the existing close packing, i.e. the novel substituent or the enlarged ring can no longer fit in the hollows formed between the molecules. In other words, the old and new arrangements of such chemically similar molecules can be converted into each other by virtual rotations. However, when a semirigid molecule without substitution, but under the influence of solvents, temperature etc., is fully or partly rearranged in the solid state, the corresponding non-crystallographic rotation (hereinafter ncr) is real and gives rise to polymorphism. Such polymorphs are hallmarked by full or partial isostructurality and show that ncrs always occur together with isostructurality. First Kitaigorodskii [(1961), Organic Chemical Crystallography, New York: Consultants Bureau] reported on the structural similarity of three tetraaryltins, (p-RC(6)H(4))(4)Sn, R = H, CH(3), CH(3)O, which is terminated by the larger C(2)H(5)O group. A revisit to these structures revealed that the tetragonal --> monoclinic conversion termed by Kitaigorodskii as a ;morphotropic step' is also performed by an ncr. Similarly, other tetraaryltins in the literature are related by ncrs or the nc translation of the semirigid tetrahedra, or they remain isostructural. Since one of the definitions of morphotropism, a word of Greek origin, is 'turn of form', the ncrs of semirigid molecules can be denoted--following Kitaigorodskii--by this word, whereas its alternative definition in the morphological crystallography of ;unidirectional changes' [applied by Groth (1870). Ber. Chem. Ges. 3, 449-457] covers the non-crystallographic translations described first in this work.

  1. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Edward B.; Gurda-Whitaker, Brittney; Govindasamy, Lakshmanan

    2006-12-01

    Crystals of baculovirus-expressed adeno-associated virus serotype 1 (AAV1) capsids have been grown in the rhombohedral space group R32 (unit-cell parameters a = 254.7 Å, α = 62.3°) and shown to diffract X-rays to at least 2.5 Å resolution. Crystals of baculovirus-expressed adeno-associated virus serotype 1 (AAV1) capsids have been grown in the rhombohedral space group R32 (unit-cell parameters a = 254.7 Å, α = 62.3°) and shown to diffract X-rays to at least 2.5 Å resolution. The diffraction data were subsequently processed and reduced with an overall R{sub sym} of 12.3% and a completeness of 89.0%. Based on the unit-cellmore » volume, rotation-function and translation-function results and packing considerations, there is one virus capsid (60 viral proteins) per unit cell and there are ten viral proteins per crystallographic asymmetric unit. The AAV1 capsid shares both the twofold and threefold crystallographic symmetry operators. The AAV1 data have been initially phased using a polyalanine model (based on the crystal structure of AAV4) to 4.0 Å resolution and the structure determination and refinement is in progress using tenfold noncrystallographic symmetry electron-density averaging.« less

  2. Towards nanometer-spaced silicon contacts to proteins.

    PubMed

    Schukfeh, Muhammed I; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-18

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p(+) silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices' electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes' edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions' conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein's denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  3. A Compendium of Scale Surface Microstructures: Ni(pt)al Coatings Oxidized at 1150 C for 2000 1-h Cycles

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita

    2010-01-01

    The surface structure of scales formed on Ni(Pt)Al coatings was characterized by SEM/EDS/BSE in plan view. Two nominally identical {100} samples of aluminide coated CMSX4 single crystal were oxidized at 1150 C for 2000 1-h cycles and were found to produce somewhat disparate behavior. One sample, with less propensity for coating grain boundary ridge deformation, presented primarily alpha-Al2O3 scale structures, with minimal weight loss and spallation. The original scale structure, still retained over most of the sample, consisted of the classic theta-alpha transformation-induced ridge network structure, with approx. 25 nm crystallographic steps and terraces indicative of surface rearrangement to low energy alumina planes. The scale grain boundary ridges were often decorated with a fine, uniform distribution of (Hf,Ti)O2 particles. Another sample, producing steady state weight losses, exhibited much interfacial spallation and a complex assortment of different structures. Broad areas of interfacial spalling, crystallographically-faceted (Ni,Co)(Al,Cr)2O4 spinel, with an alpha-Al2O3 base scale, were the dominant features. Other regions exhibited nodular spinel grains, with fine or (Ta,Ti)-rich (rutile) particles decorating or interspersed with the spinel. While these features were consistent with a coating that presented more deformation at extruded grain boundaries, the root cause of the different behavior between the duplicate samples could not be conclusively identified.

  4. Winding single-molecule double-stranded DNA on a nanometer-sized reel

    PubMed Central

    You, Huijuan; Iino, Ryota; Watanabe, Rikiya; Noji, Hiroyuki

    2012-01-01

    A molecular system of a nanometer-sized reel was developed from F1–ATPase, a rotary motor protein. By combination with magnetic tweezers and optical tweezers, single-molecule double-stranded DNA (dsDNA) was wound around the molecular reel. The bending stiffness of dsDNA was determined from the winding tension (0.9–6.0 pN) and the diameter of the wound loop (21.4–8.5 nm). Our results were in good agreement with the conventional worm-like chain model and a persistence length of 54 ± 9 nm was estimated. This molecular reel system offers a new platform for single-molecule study of micromechanics of sharply bent DNA molecules and is expected to be applicable to the elucidation of the molecular mechanism of DNA-associating proteins on sharply bent DNA strands. PMID:22772992

  5. Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD–DNA complexes

    PubMed Central

    Carter, Ashley R.; Seaberg, Maasa H.; Fan, Hsiu-Fang; Sun, Gang; Wilds, Christopher J.; Li, Hung-Wen; Perkins, Thomas T.

    2016-01-01

    RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2–4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD–DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5′ strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket. PMID:27220465

  6. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    NASA Astrophysics Data System (ADS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2000-03-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po210), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below.

  7. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  8. The length and time scales of water's glass transitions

    NASA Astrophysics Data System (ADS)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  9. The length and time scales of water's glass transitions.

    PubMed

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  10. Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials

    NASA Astrophysics Data System (ADS)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Yoon, Bokwon; Schweinberger, Florian F.; Landman, Uzi; Heiz, Ueli

    2016-10-01

    The nature of the nano-catalyzed hydrogenation of ethylene, yielding benchmark information pertaining to the concept of structure sensitivity/insensitivity and its applicability at the bottom of the catalyst particle size-range, is explored with experiments on size-selected Ptn (n = 7-40) clusters soft-landed on MgO, in conjunction with first-principles simulations. As in the case of larger particles both the direct ethylene hydrogenation channel and the parallel hydrogenation-dehydrogenation ethylidyne-producing route must be considered, with the fundamental uncovering that at the < 1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to the structure insensitivity found for larger particles. In this size-regime, the chemical properties can be modulated and tuned by a single atom, reflected by the onset of low temperature hydrogenation at T > 150 K catalyzed by Ptn (n ≥ 10) clusters, with maximum room temperature reactivity observed for Pt13 using a pulsed molecular beam technique. Structure insensitive behavior, inherent for specific cluster sizes at ambient temperatures, can be induced in the more active sizes, e.g. Pt13, by a temperature increase, up to 400 K, which opens dehydrogenation channels leading to ethylidyne formation. This reaction channel was, however found to be attenuated on Pt20, as catalyst activity remained elevated after the 400 K step. Pt30 displayed behavior which can be understood from extrapolating bulk properties to this size range; in particular the calculated d-band center. In the non-scalable sub-nanometer size regime, however, precise control of particle size may be used for atom-by-atom tuning and manipulation of catalyzed hydrogenation activity and selectivity.

  11. CRYSTMET—The NRCC Metals Crystallographic Data File

    PubMed Central

    Wood, Gordon H.; Rodgers, John R.; Gough, S. Roger; Villars, Pierre

    1996-01-01

    CRYSTMET is a computer-readable database of critically evaluated crystallographic data for metals (including alloys, intermetallics and minerals) accompanied by pertinent chemical, physical and bibliographic information. It currently contains about 60 000 entries and covers the literature exhaustively from 1913. Scientific editing of the abstracted entries, consisting of numerous automated and manual checks, is done to ensure consistency with related, previously published studies, to assign structure types where necessary and to help guarantee the accuracy of the data and related information. Analyses of the entries and their distribution across key journals as a function of time show interesting trends in the complexity of the compounds studied as well as in the elements they contain. Two applications of CRYSTMET are the identification of unknowns and the prediction of properties of materials. CRYSTMET is available either online or via license of a private copy from the Canadian Scientific Numeric Database Service (CAN/SND). The indexed online search and analysis system is easy and economical to use yet fast and powerful. Development of a new system is under way combining the capabilities of ORACLE with the flexibility of a modern interface based on the Netscape browsing tool. PMID:27805157

  12. Controllable surface-plasmon resonance in engineered nanometer epitaxial silicide particles embedded in silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Ksendzov, A.; Iannelli, J. M.; George, T.

    1991-01-01

    Epitaxial CoSi2 particles in a single-crystal silicon matrix are grown by molecular-beam epitaxy using a technique that allows nanometer control over particle size in three dimensions. These composite layers exhibit resonant absorption predicted by effective-medium theory. Selection of the height and diameter of disklike particles through a choice of growth conditions allows tailoring of the depolarization factor and hence of the surface-plasmon resonance energy. Resonant absorption from 0.49 to 1.04 eV (2.5 to 1.2 micron) is demonstrated and shown to agree well with values predicted by the Garnett (1904, 1906) theory using the bulk dielectric constants for CoSi2 and Si.

  13. X-ray Tomography and Chemical Imaging within Butterfly Wing Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jianhua; Lee Yaochang; Tang, M.-T.

    2007-01-19

    The rainbow like color of butterfly wings is associated with the internal and surface structures of the wing scales. While the photonic structure of the scales is believed to diffract specific lights at different angle, there is no adequate probe directly answering the 3-D structures with sufficient spatial resolution. The NSRRC nano-transmission x-ray microscope (nTXM) with tens nanometers spatial resolution is able to image biological specimens without artifacts usually introduced in sophisticated sample staining processes. With the intrinsic deep penetration of x-rays, the nTXM is capable of nondestructively investigating the internal structures of fragile and soft samples. In this study,more » we imaged the structure of butterfly wing scales in 3-D view with 60 nm spatial resolution. In addition, synchrotron-radiation-based Fourier transform Infrared (FT-IR) microspectroscopy was employed to analyze the chemical components with spatial information of the butterfly wing scales. Based on the infrared spectral images, we suggest that the major components of scale structure were rich in protein and polysaccharide.« less

  14. Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi.

    PubMed

    Winter, Benjamin; Butz, Benjamin; Dieker, Christel; Schröder-Turk, Gerd E; Mecke, Klaus; Spiecker, Erdmann

    2015-10-20

    The wing scales of the Green Hairstreak butterfly Callophrys rubi consist of crystalline domains with sizes of a few micrometers, which exhibit a congenitally handed porous chitin microstructure identified as the chiral triply periodic single-gyroid structure. Here, the chirality and crystallographic texture of these domains are investigated by means of electron tomography. The tomograms unambiguously reveal the coexistence of the two enantiomeric forms of opposite handedness: the left- and right-handed gyroids. These two enantiomers appear with nonequal probabilities, implying that molecularly chiral constituents of the biological formation process presumably invoke a chiral symmetry break, resulting in a preferred enantiomeric form of the gyroid structure. Assuming validity of the formation model proposed by Ghiradella H (1989) J Morphol 202(1):69-88 and Saranathan V, et al. (2010) Proc Natl Acad Sci USA 107(26):11676-11681, where the two enantiomeric labyrinthine domains of the gyroid are connected to the extracellular and intra-SER spaces, our findings imply that the structural chirality of the single gyroid is, however, not caused by the molecular chirality of chitin. Furthermore, the wing scales are found to be highly textured, with a substantial fraction of domains exhibiting the <001> directions of the gyroid crystal aligned parallel to the scale surface normal. Both findings are needed to completely understand the photonic purpose of the single gyroid in gyroid-forming butterflies. More importantly, they show the level of control that morphogenesis exerts over secondary features of biological nanostructures, such as chirality or crystallographic texture, providing inspiration for biomimetic replication strategies for synthetic self-assembly mechanisms.

  15. Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomutsa, Liviu; Silin, Dmitriy

    2004-08-19

    For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed,more » a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.« less

  16. Resistivity scaling and electron relaxation times in metallic nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart

    2014-08-14

    We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less

  17. Geochemical and Crystallographic Study of Turbo Torquatus (Mollusca: Gastropoda) From Southwestern Australia

    NASA Astrophysics Data System (ADS)

    Roger, L. M.; George, A. D.; Shaw, J.; Hart, R. D.; Roberts, M. P.; Becker, T.; Evans, N. J.; McDonald, B. J.

    2018-01-01

    Shells of the marine gastropod Turbo torquatus were sampled from three different locations along the Western Australian coastline, namely Marmion Lagoon (31°S), Rottnest Island (32°S), and Hamelin Bay (34°S). Marmion Lagoon and Rottnest Island have similar sea surface temperature ranges that are ˜1°C warmer than Hamelin Bay, with all sites influenced by the warm southward flowing Leeuwin Current. The shells were characterized using crystallographic, spectroscopic, and geochemical analyses. Shell mineral composition varies between the three sites suggesting the influence of sea surface temperature, oxygen consumption, and/or bedrock composition on shell mineralogy and preferential incorporation and/or elemental discrimination of Mg, P, and S. Furthermore, T. torquatus was found to exert control over the incorporation of most, if not all, the elements measured here, suggesting strong biological regulation. At all levels of testing, the concentrations of Li varied significantly, which indicates that this trace element may not be a suitable environmental proxy. Variation in Sr concentration between sites and between specimens reflects combined environmental and biological controls suggesting that Sr/Ca ratios in T. torquatus cannot be used to estimate sea surface temperature without experimentally accounting for metabolic and growth effects. The mineral composition and microstructure of T. torquatus shells may help identify sea surface temperature variations on geological time scales. These findings support the previously hypothesized involvement of an active selective pathway across the calcifying mantle of T. torquatus for most, if not all, the elements measured here.

  18. Effects of 3 dimensional crystal geometry and orientation on 1D and 2D time-scale determinations of magmatic processes using olivine and orthopyroxene

    NASA Astrophysics Data System (ADS)

    Shea, Thomas; Krimer, Daniel; Costa, Fidel; Hammer, Julia

    2014-05-01

    One of the achievements in recent years in volcanology is the determination of time-scales of magmatic processes via diffusion in minerals and its addition to the petrologists' and volcanologists' toolbox. The method typically requires one-dimensional modeling of randomly cut crystals from two-dimensional thin sections. Here we address the question whether using 1D (traverse) or 2D (surface) datasets exploited from randomly cut 3D crystals introduces a bias or dispersion in the time-scales estimated, and how this error can be improved or eliminated. Computational simulations were performed using a concentration-dependent, finite-difference solution to the diffusion equation in 3D. The starting numerical models involved simple geometries (spheres, parallelepipeds), Mg/Fe zoning patterns (either normal or reverse), and isotropic diffusion coefficients. Subsequent models progressively incorporated more complexity, 3D olivines possessing representative polyhedral morphologies, diffusion anisotropy along the different crystallographic axes, and more intricate core-rim zoning patterns. Sections and profiles used to compare 1, 2 and 3D diffusion models were selected to be (1) parallel to the crystal axes, (2) randomly oriented but passing through the olivine center, or (3) randomly oriented and sectioned. Results show that time-scales estimated on randomly cut traverses (1D) or surfaces (2D) can be widely distributed around the actual durations of 3D diffusion (~0.2 to 10 times the true diffusion time). The magnitude over- or underestimations of duration are a complex combination of the geometry of the crystal, the zoning pattern, the orientation of the cuts with respect to the crystallographic axes, and the degree of diffusion anisotropy. Errors on estimated time-scales retrieved from such models may thus be significant. Drastic reductions in the uncertainty of calculated diffusion times can be obtained by following some simple guidelines during the course of data

  19. Towards nanometer-spaced silicon contacts to proteins

    NASA Astrophysics Data System (ADS)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  20. Synthesis of Nano-Scale Fast Ion Conducting Cubic Li7La3Zr2O12

    DTIC Science & Technology

    2013-09-25

    offer the flexibility to make nano-dimensional particles with high sinterability nor the ability to coat/protect electrode powders. By developing a...sintering temperature are needed. One possible approach is to use small particles , such as nano-scale particles , that can be sintered at lower temperatures...matrix to suppress Li dendrite penetration. By developing a sol–gel process, the LLZO particle size can be precisely tuned, from the nanometer to the

  1. The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results

    PubMed Central

    Rosenbaum, Gerd; Alkire, Randy W.; Evans, Gwyndaf; Rotella, Frank J.; Lazarski, Krzystof; Zhang, Rong-Guang; Ginell, Stephan L.; Duke, Norma; Naday, Istvan; Lazarz, Jack; Molitsky, Michael J.; Keefe, Lisa; Gonczy, John; Rock, Larry; Sanishvili, Ruslan; Walsh, Martin A.; Westbrook, Edwin; Joachimiak, Andrzej

    2008-01-01

    The 19ID undulator beamline of the Structure Biology Center has been designed and built to take full advantage of the high flux, brilliance and quality of X-ray beams delivered by the Advanced Photon Source. The beamline optics are capable of delivering monochromatic X-rays with photon energies from 3.5 to 20 keV (3.5–0.6 Å wavelength) with fluxes up to 8–18 × 1012 photons s−1 (depending on photon energy) onto cryogenically cooled crystal samples. The size of the beam (full width at half-maximum) at the sample position can be varied from 2.2 mm × 1.0 mm (horizontal × vertical, unfocused) to 0.083 mm × 0.020 mm in its fully focused configuration. Specimen-to-detector distances of between 100 mm and 1500 mm can be used. The high flexibility, inherent in the design of the optics, coupled with a κ-geometry goniometer and beamline control software allows optimal strategies to be adopted in protein crystallographic experiments, thus maximizing the chances of their success. A large-area mosaic 3 × 3 CCD detector allows high-quality diffraction data to be measured rapidly to the crystal diffraction limits. The beamline layout and the X-ray optical and endstation components are described in detail, and the results of representative crystallographic experiments are presented. PMID:16371706

  2. Length-Scale Effects and Material Models at Numerical Simulations of Nanoindentation of A Metallic Alloy

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Avdjieva, T.; Altaparmakov, I.

    2014-06-01

    Some specially designed metallic alloys crystallize during process of rapid quenching which aims their amorphization. Nevertheless, change in their mechanical properties could be seen compared to these obtained during conventional technological regimes of cooling. That attracts the attention in this elaboration. Full 3-D numerical simulations of nanoindentation process of two material models are performed. The models reflect equivalent elastic and different plastic material properties. The plastic behaviour of the first one is subjected to yield criterion of Dracker-Prager and this of the second one to yield criterion of Mises. The reported numerical results depending on the nanoindentation scale length of 1000 nanometers, suggest different adequacy of the two yield criteria to the data obtained experimentally with a Zr-Al-Cu-Ni-Mo alloy. It could be speculated that the different effects developed depending on the indenter travel of 1000 nanometers and taken into account in the two yield criteria stand behind this fact and determinate three structural levels of plastic deformation.

  3. Bottom-up construction of a superstructure in a porous uranium-organic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.

    Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation ofmore » colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.« less

  4. Osteomyelitis Treatment with Nanometer-Sized Hydroxyapatite Particles as a Delivery Vehicle for a Ciprofloxacin- Bisphosphonate Conjugate; New Fluoroquinolone-Bisphosphonate Derivatives Show Similar Binding Affinity to Hydroxyapatite and Improved Antibacterial Activity Against Drug-Resistant Pathogens

    DTIC Science & Technology

    2008-12-01

    1 OSTEOMYELITIS TREATMENT WITH NANOMETER-SIZED HYDROXYAPATITE PARTICLES AS A DELIVERY VEHICLE FOR A CIPROFLOXACIN- BISPHOSPHONATE CONJUGATE; NEW...FLUOROQUINOLONE-BISPHOSPHONATE DERIVATIVES SHOW SIMILAR BINDING AFFINITY TO HYDROXYAPATITE AND IMPROVED ANTIBACTERIAL ACTIVITY AGAINST DRUG-RESISTANT...vivo OM model. Current studies contrast two CP homeostatic bone-substitute particles, nanometer-sized hydroxyapatite NanOss™ (Nan), and µ-sized

  5. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  6. Advantages of Crystallographic Fragment Screening: Functional and Mechanistic Insights from a Powerful Platform for Efficient Drug Discovery

    PubMed Central

    Patel, Disha; Bauman, Joseph D.; Arnold, Eddy

    2015-01-01

    X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this “chemical interrogation” of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. PMID:25117499

  7. Advantages of crystallographic fragment screening: functional and mechanistic insights from a powerful platform for efficient drug discovery.

    PubMed

    Patel, Disha; Bauman, Joseph D; Arnold, Eddy

    2014-01-01

    X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this "chemical interrogation" of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. Copyright © 2014. Published by Elsevier Ltd.

  8. Modeling the Flow Behavior, Recrystallization, and Crystallographic Texture in Hot-Deformed Fe-30 Wt Pct Ni Austenite

    NASA Astrophysics Data System (ADS)

    Abbod, M. F.; Sellars, C. M.; Cizek, P.; Linkens, D. A.; Mahfouf, M.

    2007-10-01

    The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s-1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s-1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.

  9. Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films.

    PubMed

    Emori, Satoru; Yi, Di; Crossley, Sam; Wisser, Jacob J; Balakrishnan, Purnima P; Khodadadi, Behrouz; Shafer, Padraic; Klewe, Christoph; N'Diaye, Alpha T; Urwin, Brittany T; Mahalingam, Krishnamurthy; Howe, Brandon M; Hwang, Harold Y; Arenholz, Elke; Suzuki, Yuri

    2018-06-08

    Pure spin currents, unaccompanied by dissipative charge flow, are essential for realizing energy-efficient nanomagnetic information and communications devices. Thin-film magnetic insulators have been identified as promising materials for spin-current technology because they are thought to exhibit lower damping compared with their metallic counterparts. However, insulating behavior is not a sufficient requirement for low damping, as evidenced by the very limited options for low-damping insulators. Here, we demonstrate a new class of nanometer-thick ultralow-damping insulating thin films based on design criteria that minimize orbital angular momentum and structural disorder. Specifically, we show ultralow damping in <20 nm thick spinel-structure magnesium aluminum ferrite (MAFO), in which magnetization arises from Fe 3+ ions with zero orbital angular momentum. These epitaxial MAFO thin films exhibit a Gilbert damping parameter of ∼0.0015 and negligible inhomogeneous linewidth broadening, resulting in narrow half width at half-maximum linewidths of ∼0.6 mT around 10 GHz. Our findings offer an attractive thin-film platform for enabling integrated insulating spintronics.

  10. [The therapeutic effect of nanometer silver impregnated dressing on gunshot wounds after being immersed in brine and tapwater in rabbits].

    PubMed

    Chen, Bi; Ding, Guo-bin; Tang, Chao-wu

    2004-03-22

    To investigate the therapeutic effect of nanometer silver impregnated dressing on gunshot wounds after being immersed in brine and tapwater in rabbits. Rabbits were randomly divided into two groups after receiving gunshot wounds in both lower limbs. In group 1, the wounded limbs on the experimental side were immersed in brine for 5 h; in group 2, the wounded limbs on experimental side were immersed in tapwater for 5 h. All the wounds were treated with nanometer silver impregnated dressing on the experimental sides, while those of the control sides were treated with vaseline dressing. Biopsy was done after 30 min and 1, 2, 3, 4, 5 h, respectively. In group 1, the onset of inflammation around the wounds of the experimental sides was delayed, the inflammatory response was less serious, and the wounds were dry with less exudation compared to the controls. The mean healing time of the entry wounds on experimental and control sides was (29.4 +/- 6.6) d and (36.3 +/- 6.0) d (P < 0.01), respectively, and that of the exit wounds on experimental and control sides was (20.1 +/- 6.0) d and (27.3 +/- 5.7) d (P < 0.01), respectively. In group 2, only one of the experimental wounds showed mild inflammation, while all of the control wounds showed serious inflammation with much exudation. The mean healing time of the entry wounds on experimentsides was (13.0 +/- 1.52) d, while that on control sides was (16.0 +/- 3.10) d (P < 0.01). The mean healing time of exit wounds on experimental sides was (11.0 +/- 2.75) d, and those of the control sides was (15.6 +/- 2.85) d (P < 0.01). The nanometer silver impregnated dressing can control infection and accelerate healing in gunshot wounds in rabbits.

  11. Micro-scale and meso-scale architectural cues cooperate and compete to direct aligned tissue formation

    PubMed Central

    Gilchrist, Christopher L.; Ruch, David S.; Little, Dianne; Guilak, Farshid

    2014-01-01

    Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, “micro-scale” cues on the order of ~1–2 μm, and “meso-scale” cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (~500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes. PMID:25263687

  12. SEMICONDUCTOR TECHNOLOGY: Reduction of proximity effect in fabricating nanometer-spaced nanopillars by two-step exposure

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Renping, Zhang; Weihua, Han; Jian, Liu; Xiang, Yang; Ying, Wang; Chian Chiu, Li; Fuhua, Yang

    2009-11-01

    A two-step exposure method to effectively reduce the proximity effect in fabricating nanometer-spaced nanopillars is presented. In this method, nanopillar patterns on poly-methylmethacrylate (PMMA) were partly cross-linked in the first-step exposure. After development, PMMA between nanopillar patterns was removed, and hence the proximity effect would not take place there in the subsequent exposure. In the second-step exposure, PMMA masks were completely cross-linked to achieve good resistance in inductively coupled plasma etching. Accurate pattern transfer of rows of nanopillars with spacing down to 40 nm was realized on a silicon-on-insulator substrate.

  13. A crystallographic model for nickel base single crystal alloys

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1988-01-01

    The purpose of this research is to develop a tool for the mechanical analysis of nickel-base single-crystal superalloys, specifically Rene N4, used in gas turbine engine components. This objective is achieved by developing a rate-dependent anisotropic constitutive model and implementing it in a nonlinear three-dimensional finite-element code. The constitutive model is developed from metallurgical concepts utilizing a crystallographic approach. An extension of Schmid's law is combined with the Bodner-Partom equations to model the inelastic tension/compression asymmetry and orientation-dependence in octahedral slip. Schmid's law is used to approximate the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response and strain-rate sensitivity of the single-crystal superalloys. Methods for deriving the material constants from standard tests are also discussed. The model is implemented in a finite-element code, and the computed and experimental results are compared for several orientations and loading conditions.

  14. Crystallographic Study of Itokawa Particle, RA-QD02-0127 by Using Energy-Scanning X-Ray Diffraction Method with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Hagiya, K.; Ohsumi, K.; Komatsu, M.; Mikouchi, T.; Zolensky, M. E.; Hirata, A.; Yamaguchi, S.; Kurokawa, A.

    2016-08-01

    Crystallographic study of Itokawa particle, RA-QD02-0127 by using new X-ray diffraction method was performed. The purpose of this study is to understand better the metamorphic and impact shock history of asteroid Itokawa, and other S-class asteroids.

  15. Analysis of crystallographic preferred orientations of experimentally deformed Black Hills Quartzite

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Heilbronner, Renée

    2017-10-01

    The crystallographic preferred orientations (textures) of three samples of Black Hills Quartzite (BHQ) deformed experimentally in the dislocation creep regimes 1, 2 and 3 (according to Hirth and Tullis, 1992) have been analyzed using electron backscatter diffraction (EBSD). All samples were deformed to relatively high strain at temperatures of 850 to 915 °C and are almost completely dynamically recrystallized. A texture transition from peripheral [c] axes in regime 1 to a central [c] maximum in regime 3 is observed. Separate pole figures are calculated for different grain sizes, aspect ratios and long-axis trends of grains, and high and low levels of intragranular deformation intensity as measured by the mean grain kernel average misorientation (gKAM). Misorientation relations are analyzed for grains of different texture components (named Y, B, R and σ grains, with reference to previously published prism, basal, rhomb and σ1 grains). Results show that regimes 1 and 3 correspond to clear end-member textures, with regime 2 being transitional. Texture strength and the development of a central [c]-axis maximum from a girdle distribution depend on deformation intensity at the grain scale and on the contribution of dislocation creep, which increases towards regime 3. Adding to this calculations of resolved shear stresses and misorientation analysis, it becomes clear that the peripheral [c]-axis maximum in regime 1 is not due to deformation by basal a slip. Instead, we interpret the texture transition as a result of different texture forming processes, one being more efficient at high stresses (nucleation or growth of grains with peripheral [c] axes), the other depending on strain (dislocation glide involving prism and rhomb a slip systems), and not as a result of temperature-dependent activity of different slip systems.

  16. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  17. Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi

    PubMed Central

    Winter, Benjamin; Butz, Benjamin; Dieker, Christel; Schröder-Turk, Gerd E.; Mecke, Klaus; Spiecker, Erdmann

    2015-01-01

    The wing scales of the Green Hairstreak butterfly Callophrys rubi consist of crystalline domains with sizes of a few micrometers, which exhibit a congenitally handed porous chitin microstructure identified as the chiral triply periodic single-gyroid structure. Here, the chirality and crystallographic texture of these domains are investigated by means of electron tomography. The tomograms unambiguously reveal the coexistence of the two enantiomeric forms of opposite handedness: the left- and right-handed gyroids. These two enantiomers appear with nonequal probabilities, implying that molecularly chiral constituents of the biological formation process presumably invoke a chiral symmetry break, resulting in a preferred enantiomeric form of the gyroid structure. Assuming validity of the formation model proposed by Ghiradella H (1989) J Morphol 202(1):69–88 and Saranathan V, et al. (2010) Proc Natl Acad Sci USA 107(26):11676–11681, where the two enantiomeric labyrinthine domains of the gyroid are connected to the extracellular and intra-SER spaces, our findings imply that the structural chirality of the single gyroid is, however, not caused by the molecular chirality of chitin. Furthermore, the wing scales are found to be highly textured, with a substantial fraction of domains exhibiting the <001> directions of the gyroid crystal aligned parallel to the scale surface normal. Both findings are needed to completely understand the photonic purpose of the single gyroid in gyroid-forming butterflies. More importantly, they show the level of control that morphogenesis exerts over secondary features of biological nanostructures, such as chirality or crystallographic texture, providing inspiration for biomimetic replication strategies for synthetic self-assembly mechanisms. PMID:26438839

  18. Sub-nanometer glass surface dynamics induced by illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Duc; Nienhaus, Lea; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

    2015-06-21

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10{sup 4} s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass formingmore » units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses.« less

  19. Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition.

    PubMed

    Seo, Min-Kyo; Kang, Ju-Hyung; Kim, Myung-Ki; Ahn, Byeong-Hyeon; Kim, Ju-Young; Jeong, Kwang-Yong; Park, Hong-Gyu; Lee, Yong-Hee

    2009-04-13

    A wavelength-scale cavity is generated by printing a carbonaceous nano-block on a photonic-crystal waveguide. The nanometer-size carbonaceous block is grown at a pre-determined region by the electron-beam-induced deposition method. The wavelength-scale photonic-crystal cavity operates as a single mode laser, near 1550 nm with threshold of approximately 100 microW at room temperature. Finite-difference time-domain computations show that a high-quality-factor cavity mode is defined around the nano-block with resonant wavelength slightly longer than the dispersion-edge of the photonic-crystal waveguide. Measured near-field images exhibit photon distribution well-localized in the proximity of the printed nano-block. Linearly-polarized emission along the vertical direction is also observed.

  20. Carbon Nanotubules: Building Blocks for Nanometer-Scale Engineering

    NASA Technical Reports Server (NTRS)

    Sinnott, Susan B.

    1999-01-01

    The proposed work consisted of two projects: the investigation of fluid permeation and diffusion through ultrafiltration membranes composed of carbon nanotubules and the design and study of molecular transistors composed of nanotubules. I will outline the progress made on each project and also discuss additional projects, one of which is a continuation of work supported by an 1995-1996 NASA Ames Computer grant.

  1. Impact of Nanometer Graphite Addition on the Anti-deliquescence and Tribological Properties of Ni/MoS2 Lubricating Coating

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, G. L.; Wang, H. D.; Xu, B. S.; Ma, G. Z.

    In order to improve the long-standing problem of MoS2 coating that lubrication performance drop dramatic after storage in humid air, using nano-composite electro brush plating technology and Ni/MoS2-C combination coating with thinness of 100 μm was succeed deposited on GCr15 substrate. Microstructure, surface morphology and elements of this composite coating were analyzed using SEM, XPS and TEM while phase structure was tested by XRD. The tribological properties of this composite coating were tested by MSTS-1; Test the preceding tribological properties of Ni/MoS2-C composite coatings to the pure Ni/MoS2 after different period storage at room temperature and 100% relative humidity atmosphere of 12 h, 24 h, and 48 h as well as the element of the chemical changes. Research shows that there is a small amount of MoS2 in pure MoS2 coatings behind a 12 hours storage in humid air became MoO3 and the tribological performance decreased significantly followed, in the same conditions composite coating with nanometer graphite addition get a preferably tribological properties while the hardness of this coating was improved by the nanometer graphite addition and combination plating showed a well duration tribological properties as a result.

  2. Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis

    PubMed Central

    Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.

    2016-01-01

    A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221

  3. Anisotropic constitutive modeling for nickel base single crystal superalloys using a crystallographic approach

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Sheh, M. Y.

    1988-01-01

    A micromechanical model based on crystallographic slip theory was formulated for nickel-base single crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the effect of back stress in single crystals. The results showed that (1) the back stress is orientation dependent; and (2) the back stress state variable in the inelastic flow equation is necessary for predicting anelastic behavior of the material. The model also demonstrated improved fatigue predictive capability. Model predictions and experimental data are presented for single crystal superalloy Rene N4 at 982 C.

  4. Arginine Kinase. Joint Crystallographic & NMR RDC Analyses link Substrate-Associated Motions to Intrinsic Flexibility

    PubMed Central

    Niu, Xiaogang; Brüschweiler-Li, Lei; Davulcu, Omar; Skalicky, Jack J.; Brüschweiler, Rafael; Chapman, Michael S.

    2010-01-01

    The phosphagen kinase family, including creatine and arginine kinases, catalyze the reversible transfer of a “high energy” phosphate between ATP and a phospho-guanidino substrate. They have become a model for the study of both substrate-induced conformational change and intrinsic protein dynamics. Prior crystallographic studies indicated large substrate-induced domain rotations, but differences among a recent set of arginine kinase structures was interpreted as a plastic deformation. Here, the structure of Limulus substrate-free arginine kinase is refined against high resolution crystallographic data and compared quantitatively with NMR chemical shifts and residual dipolar couplings (RDCs). This demonstrates the feasibility of this type of RDC analysis of proteins that are large by NMR standards (42 kDa), and illuminates the solution structure, free from crystal-packing constraints. Detailed comparison of the 1.7 Å resolution substrate-free crystal structure against the 1.2 Å transition state analog complex shows large substrate-induced domain motions which can be broken down into movements of smaller quasi-rigid bodies. The solution state structure of substrate-free arginine kinase is most consistent with an equilibrium of substrate-free and –bound structures, with the substrate-free form dominating, but with varying displacements of the quasi-rigid groups. Rigid-group rotations evident from the crystal structures are about axes previously associated with intrinsic millisecond dynamics using NMR relaxation dispersion. Thus, “substrate-induced” motions are along modes that are intrinsically flexible in the substrate-free enzyme, and likely involve some degree of conformational selection. PMID:21075117

  5. SUN: A fully automated interferometric test bench aimed at measuring photolithographic grade lenses with a sub nanometer accuracy

    NASA Astrophysics Data System (ADS)

    Bourgois, R.; Hamy, A. L.; Pourcelot, P.

    2017-10-01

    SUN is a test bench developed by Safran Reosc to measure spherical or aspherical surface errors of litho-grade lenses with sub-nanometer accuracy. SUN provides full aperture high resolution interferometric measurements. Measurements are performed at the center of curvature using high precision transmission sphere (TS), and Computer Generated Holograms (CGH) for aspheres, in order to light the surface at normal incidence. SUN can measure lenses with diameter up to 350mm and a radius of curvature varying from 60 to 3000 mm.

  6. SPM investigation of local aging effects in glassy polymers

    NASA Astrophysics Data System (ADS)

    Crider, Philip

    2005-03-01

    We investigate the cooperative and heterogeneous nature of glassy dynamics by nanometer-scale probing in a glassy polymer, Polyvinyl-Actetate (PVAc), with a Scanning Force Microscope (SFM). Using ultra-high-vacuum (UHV) Scanning Capacitive Force Microscopy techniques, nanometer-scale capacitive responses are probed. Dielectric relaxation near the glass transition is investigated, and scanning capabilities are utilized to analyze spatial response on a nanometer scale. The results of these studies may yield insight into the understanding of temperature-dependent cooperative length scales, local aging properties, and energy landscape properties of evolving dipole clusters on a mesoscopic scale. Results are used to test the validity and relevance of current models of glassy dynamics.

  7. Catalytic, Enantioselective Sulfenofunctionalisation of Alkenes: Mechanistic, Crystallographic, and Computational Studies

    PubMed Central

    Denmark, Scott E.; Hartmann, Eduard; Kornfilt, David J. P.; Wang, Hao

    2015-01-01

    The stereocontrolled introduction of vicinal heteroatomic substituents into organic molecules is one of the most powerful ways of adding value and function. Whereas many methods exist for the introduction of oxygen- and nitrogen-containing substituents, the number stereocontrolled methods for the introduction of sulfur-containing substituents pales by comparison. Previous reports from these laboratories have described the sulfenofunctionalization of alkenes that construct vicinal carbon-sulfur and carbon-oxygen, carbon-nitrogen as well as carbon-carbon bonds with high levels of diastereospecificity and enantioselectivity. This process is enabled by the concept of Lewis base activation of Lewis acids that provides activation of Group 16 electrophiles. To provide a foundation for expansion of substrate scope and improved selectivities, we have undertaken a comprehensive study of the catalytically active species. Insights gleaned from kinetic, crystallographic and computational methods have led to the introduction of a new family of sulfenylating agents that provide significantly enhanced selectivities. PMID:25411883

  8. Reproducible Crystallite Size of Mono-Dispersed and Scalable Biologically Produced Metal-Substituted Nanometer-Sized Magnetites

    NASA Astrophysics Data System (ADS)

    Moon, J.; Rawn, C.; Rondinone, A.; Love, L.; Roh, Y.; Lauf, R.; Phelps, T.

    2008-12-01

    Our previous research demonstrated that biosynthesized magnetite (biomagnetite) exhibited similar properties as chemically synthesized magnetite. To complement uses of the traditional chemically synthesized magnetite (chem-magnetite) biomagnetite must be exhibit highly reproducible sizes and be available in scalable qualities. Here we emphasize potentially advantageous properties of biomagnetite regarding size, reproducibility and scaling availability. Average crystallite size (ACS) of biomagnetites ranging from 10-100 nm was determined after varied 1) incubation times, 2) substitution of metal and lanthanide species, 3) degrees of congruent incorporation or retardation of substitution elements, 4) bacterial species with their varied ability to substitute elemental species, and 6) incubation temperature that can influence coalescence. The microbial production of biomagnetite has demonstrated capacity to make highly crystalline nanoscale particles of metal-substituted ferrites including compounds of Co, Ni, Cr, Mn, Zn and the rare earths in large quantity. Selected Zn-substituted magnetite (nominal composition of Zn0.6Fe2.4O4) has been recovered at over 1 kg (wet weight) in batches from 30 L fermentations. The massively produced extracellular magnetites were confirmed to exhibit good mono- dispersity via transmission electron microscopy (TEM). TEM also validated highly reproducible ACS of 13.1±0.8 nm size as determined through X-ray diffraction (N=7) at a 99 % confidence level. Based on the scale-up experiments performed using the 35 L reactor, the reduction in ACS variability and shorted incubation times of several days may be attributed to increases of electron donor input, and availability of divalent ions of the substitution metal with less ferrous ions in the case of doped magnetite, or a combination of the above. While costs of commercial nanometer sized magnetite (25-50 nm) may vary from 500/kg to > 1,000/kg, microbial mass production is likely capable of

  9. Crystallographic control of surface structure on the sectoral zoning of iron in a diopside from Orford nickel mine (Quebec), Canada

    NASA Astrophysics Data System (ADS)

    Paquette, J.; Zangooi, A.; Thornton, K.

    2004-05-01

    The influence of surface structure on partitioning between mineral and melt (or solution) has been noted by other workers in a handful of minerals, including calcite, dolomite, apatite, topaz and diamond. Each one of these minerals displays at least one crystallographic face where steps present during crystal growth are not equivalent by symmetry. When this is the case, sectors grown at the edge of these steps commonly show differential incorporation of minor or trace elements. In the diopside investigated here, electron probe microanalyses performed on the as-grown (100) surface of several crystals show concentric and sectoral zoning defined by variations in Fe content. Atomic force microscopy (AFM) was used to study the surfaces of the three crystallographic forms present on the diopside crystals, with the goal of relating the compositional zoning to the surface structure of the faces. The dominant {100} faces are covered with growth hillocks consisting of four vicinal faces defined by steps parallel to [010] and [001]. The steps are often bunched into macrosteps and the resulting hillocks are visible optically. The steps along the two crystallographic directions show significant differences in straightness and smoothness that indicate non-equivalent kinetics. The wavier steps correspond to Fe-enriched areas within the {100} sectors. The {010} faces, next in morphological importance, are dominated by a single step orientation and show no differential incorporation. They display topography related to polysynthetic twinning. The {110} faces are much smaller and very few show resolvable steps. Sector zoning (i.e. diffential partitioning among non-equivalent crystallographic faces) has been described in the past from pyroxenes. Explanations have invoked either differences in surface structure among non-equivalent faces or their unequal growth rates. This particular occurrence indicates that trace element incorporation is, in fact, highly site-specific and that

  10. Soft Actuators for Small-Scale Robotics.

    PubMed

    Hines, Lindsey; Petersen, Kirstin; Lum, Guo Zhan; Sitti, Metin

    2017-04-01

    This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Grain-scale investigations of deformation heterogeneities in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Güler, Baran; Şimşek, Ülke; Yalçınkaya, Tuncay; Efe, Mert

    2018-05-01

    The anisotropic deformation of Aluminum alloys at micron scale exhibits localized deformation, which has negative implications on the macroscale mechanical and forming behavior. The scope of this work is twofold. Firstly, micro-scale deformation heterogeneities affecting forming behavior of aluminum alloys is investigated through experimental microstructure analysis at large strains and various strain paths. The effects of initial texture, local grain misorientation, and strain paths on the strain localizations are established. In addition to uniaxial tension condition, deformation heterogeneities are also investigated under equibiaxial tension condition to determine the strain path effects on the localization behavior. Secondly, the morphology and the crystallographic data obtained from the experiments is transferred to Abaqus software, in order to predict both macroscopic response and the microstructure evolution though crystal plasticity finite element simulations. The model parameters are identified through the comparison with experiments and the capability of the model to capture real material response is discussed as well.

  12. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    NASA Astrophysics Data System (ADS)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  13. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    PubMed

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  14. Crystallographic structure and superconductive properties of Nb-Ti films with an artificially layered structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, N.

    1990-06-15

    Artificially layered niobium-titanium (Nb-Ti) films with various thickness ratios (3/1--1/3) and periodicities (2--100 A) are made in an argon or in a mixed argon/nitrogen atmosphere by a dc magnetron sputtering method. Films with small periodicities (less than 30 A) have an artificial superlattice structure (ASL) with crystallographic coherence between constituent layers, where Nb and Ti grow epitaxially on the closest planes. The crystallographic structures of films are bcc with the (110) plane parallel to the film for films with the same or a thicker Nb layer than a Ti layer, and hcp with the (001) plane parallel to the filmmore » for films with a thinner Nb layer than a Ti layer. Films with large periodicities have an artificial superstructure (ASS) with only periodic stacking of constituent layers. Films deposited in the Ar/N atmosphere also have the artificially layered structures of ASL or ASS. The artificially layered structure is thermally stable at temperatures up to 500 {degree}C. The superconducting properties of the films depend strongly on the periodicity and thickness ratio of Nb and Ti layers. The dependence of the transition temperature on the periodicity and thickness ratio is qualitatively explained by a proximity effect with a three-region model. Films with periodicities less than 20 A, composed of the same or a thicker Nb layer than a Ti layer, show high transition temperatures (above 9.3 K). The highest {ital T}{sub {ital c}} of about 13.6 K is obtained in the film composed of monatomic layers of constituents deposited in an Ar atmosphere including 30 vol % N.« less

  15. Nanometer scale fabrication and optical response of InGaN/GaN quantum disks

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Chun; Higo, Akio; Kiba, Takayuki; Thomas, Cedric; Chen, Shula; Lee, Chang Yong; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Shojiki, Kanako; Takayama, Junichi; Yamashita, Ichiro; Murayama, Akihiro; Chi, Gou-Chung; Yu, Peichen; Samukawa, Seiji

    2016-10-01

    In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 1011 cm-2, embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

  16. Recent Design Development in Molecular Imaging for Breast Cancer Detection Using Nanometer CMOS Based Sensors.

    PubMed

    Nguyen, Dung C; Ma, Dongsheng Brian; Roveda, Janet M W

    2012-01-01

    As one of the key clinical imaging methods, the computed X-ray tomography can be further improved using new nanometer CMOS sensors. This will enhance the current technique's ability in terms of cancer detection size, position, and detection accuracy on the anatomical structures. The current paper reviewed designs of SOI-based CMOS sensors and their architectural design in mammography systems. Based on the existing experimental results, using the SOI technology can provide a low-noise (SNR around 87.8 db) and high-gain (30 v/v) CMOS imager. It is also expected that, together with the fast data acquisition designs, the new type of imagers may play important roles in the near-future high-dimensional images in additional to today's 2D imagers.

  17. Nano-scale topography of bearing surface in advanced alumina/zirconia hip joint before and after severe exposure in water vapor environment.

    PubMed

    Pezzotti, Giuseppe; Saito, Takuma; Padeletti, Giuseppina; Cossari, Pierluigi; Yamamoto, Kengo

    2010-06-01

    The aim of this study was to perform a surface morphology assessment with nanometer scale resolution on femoral heads made of an advanced zirconia toughened alumina (ZTA) composite. Femoral heads were characterized to a degree of statistical accuracy in the as-received state and after exposures up to 100 h in severe vapor-moist environment. Surface screening was made using an atomic force microscope (AFM). Scanning was systematically repeated on portions of surface as large as several tens of micrometers, randomly selected on the head surface, to achieve sufficient statistical reliability without lowering the nanometer-scale spatial resolution of the roughness measurement. No significant difference was found in the recorded values of surface roughness after environmental exposure (at 134 degrees C, under 2 bar), which was always comparable to that of the as-received head. Surface roughness safely lay <10 nm after environmental exposures up to 100 h, which corresponded to an exposure time in vivo of several human lifetimes (i.e., according to an experimentally derived thermal activation energy). In addition, the roughness results were significantly (about one order of magnitude) lower as compared to those recorded on femoral heads made of monolithic zirconia tested under the same conditions. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening.

    PubMed

    Amano, Yasushi; Tanabe, Eiki; Yamaguchi, Tomohiko

    2015-05-15

    Soluble epoxide hydrolase (sEH) is a potential target for the treatment of inflammation and hypertension. X-ray crystallographic fragment screening was used to identify fragment hits and their binding modes. Eight fragment hits were identified via soaking of sEH crystals with fragment cocktails, and the co-crystal structures of these hits were determined via individual soaking. Based on the binding mode, N-ethylmethylamine was identified as a promising scaffold that forms hydrogen bonds with the catalytic residues of sEH, Asp335, Tyr383, and Tyr466. Compounds containing this scaffold were selected from an in-house chemical library and assayed. Although the starting fragment had a weak inhibitory activity (IC50: 800μM), we identified potent inhibitors including 2-({[2-(adamantan-1-yl)ethyl]amino}methyl)phenol exhibiting the highest inhibitory activity (IC50: 0.51μM). This corresponded to a more than 1500-fold increase in inhibitory activity compared to the starting fragment. Co-crystal structures of the hit compounds demonstrate that the binding of N-ethylmethylamine to catalytic residues is similar to that of the starting fragment. We therefore consider crystallographic fragment screening to be appropriate for the identification of weak but promising fragment hits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins.

    PubMed

    Pang, Yuan-Ping

    2016-09-01

    Predicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.1 ± 0.2-9 ± 1 Å 2 for Cα and 7.3 ± 0.9-9.6 ± 0.2 Å 2 for Cγ, when the sampling was done for each of these proteins over 20 distinct, independent, and 50-picosecond high-mass molecular dynamics simulations with AMBER forcefield FF12MC or FF14SB. These results suggest that sampling the atomic positional fluctuations in multiple picosecond high-mass molecular dynamics simulations may be conducive to a priori prediction of crystallographic B-factors of a folded globular protein.

  20. Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination

    NASA Astrophysics Data System (ADS)

    Al-Jabr, Haytham M.

    The effects of microstructure and crystallographic texture in four commercially-produced API X70 pipeline steels and their relation to planar anisotropy of toughness and delamination were evaluated. The experimental steels were processed through either a hot strip mill, a Steckel mill, or a compact strip mill. Different processing routes were selected to obtain plates with potential variations in the microstructure and anisotropic characteristics. Tensile and Charpy impact testing were used to evaluate the mechanical properties in three orientations: longitudinal (L), transverse (T) and diagonal (D) with respect to the rolling direction to evaluate mechanical property anisotropy. The yield and tensile strengths were higher in the T orientation and toughness was lower in the D orientation for all plates. Delamination was observed in some of the ductile fracture surfaces of the impact samples. To further study the splitting behavior and effects on impact toughness, a modified impact test (MCVN) specimen with side grooves was designed to intensify induced stresses parallel to the notch root and thus facilitate evaluation of delamination. Scanning electron microscopy combined with electron backscattered diffraction (EBSD) were used to evaluate the grain size, microstructural constituents, and crystallographic texture to determine the factors leading to delamination and the anisotropy in toughness. The ferrite grain size is mainly responsible for the differences in DBTTs between the L and T orientations. The higher DBTT in the D orientation observed in pipeline steels is attributed to crystallographic texture. The higher DBTT in the D direction is due to the higher volume fraction of grains having their {100} planes parallel or close to the primary fracture plane for the D orientation. An equation based on a new "brittleness parameter," based on an assessment of grain orientations based on EBSD data, was developed to predict the changes in DBTTs with respect to sample

  1. Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr2FeMoO6 using electron energy-loss magnetic chiral dichroism.

    PubMed

    Wang, Z C; Zhong, X Y; Jin, L; Chen, X F; Moritomo, Y; Mayer, J

    2017-05-01

    Electron energy-loss magnetic chiral dichroism (EMCD) spectroscopy, which is similar to the well-established X-ray magnetic circular dichroism spectroscopy (XMCD), can determine the quantitative magnetic parameters of materials with high spatial resolution. One of the major obstacles in quantitative analysis using the EMCD technique is the relatively poor signal-to-noise ratio (SNR), compared to XMCD. Here, in the example of a double perovskite Sr 2 FeMoO 6 , we predicted the optimal dynamical diffraction conditions such as sample thickness, crystallographic orientation and detection aperture position by theoretical simulations. By using the optimized conditions, we showed that the SNR of experimental EMCD spectra can be significantly improved and the error of quantitative magnetic parameter determined by EMCD technique can be remarkably lowered. Our results demonstrate that, with enhanced SNR, the EMCD technique can be a unique tool to understand the structure-property relationship of magnetic materials particularly in the high-density magnetic recording and spintronic devices by quantitatively determining magnetic structure and properties at the nanometer scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. AAO-based nanoreservoir arrays: A quick and easy support for TEM characterization

    NASA Astrophysics Data System (ADS)

    Mace, M.; Sahaf, H.; Moyen, E.; Bedu, F.; Masson, L.; Hanbücken, M.

    2010-12-01

    Large-scale arrays of calibrated, nanometer sized reservoirs are prepared by adapting the well-established electrochemical method used so far for the preparation of anodic aluminium oxide (AAO) membranes. The bottom plane of the assembly is prepared to be transparent for high-energy electrons, enabling their use as a universal sample support for transmission electron microscopy studies of nanoparticles. The nanoreservoir substrates can be cleaned under ultra-high-vacuum conditions and filled, by evaporating different materials. Filled nanoreservoirs can locally be sealed with a thin carbon layer using focused-ion-beam-induced deposition (FIBID). Nanoparticles, grow at various adsorption places on the walls and bottom planes inside the nanoreservoirs. They can be characterized by transmission electron microscopy (TEM) without further sample preparation in different crystallographic directions. Due to the dense array-arrangement of the reservoirs, very good statistics can already be obtained on one single sample. The controlled fabrication of the nanoreservoir array and first TEM results obtained on Au nanoparticles before and after sealing of the reservoirs, are presented.

  3. Giant voltage-controlled magnetic anisotropy effect in a crystallographically strained CoFe system

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Yoda, Hiroaki; Saito, Yoshiaki; Oikawa, Soichi; Fujii, Keiko; Yoshiki, Masahiko; Koi, Katsuhiko; Sugiyama, Hideyuki; Ishikawa, Mizue; Inokuchi, Tomoaki; Shimomura, Naoharu; Shimizu, Mariko; Shirotori, Satoshi; Altansargai, Buyandalai; Ohsawa, Yuichi; Ikegami, Kazutaka; Tiwari, Ajay; Kurobe, Atsushi

    2018-05-01

    We experimentally demonstrate a giant voltage-controlled magnetic anisotropy (VCMA) coefficient in a crystallographically strained CoFe layer (∼15 monolayers in thickness) in a MgO/CoFe/Ir system. We observed a strong applied voltage dependence of saturation field and an asymmetric concave behavior with giant VCMA coefficients of ‑758 and 1043 fJ V‑1 m‑1. The result of structural analysis reveals epitaxial growth in MgO/CoFe/Ir layers and the orientation relationship MgO(001)[110] ∥ CoFe(001)[100] ∥ Ir(001)[110]. The CoFe layer has a bcc structure and a tetragonal distortion due to the lattice mismatch; therefore, the CoFe layer has a large perpendicular magnetic anisotropy.

  4. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    PubMed Central

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-01-01

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering. PMID:25286839

  5. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data.

    PubMed

    Terwilliger, Thomas C; Bricogne, Gerard

    2014-10-01

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.

  6. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    DOE PAGES

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-09-30

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when itmore » was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less

  7. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas C.; Bricogne, Gerard

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when itmore » was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less

  8. Process metallurgy simulation for metal drawing process optimization by using two-scale finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamachi, Eiji; Yoshida, Takashi; Yamaguchi, Toshihiko

    2014-10-06

    We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture andmore » hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.« less

  9. Process metallurgy simulation for metal drawing process optimization by using two-scale finite element method

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Yoshida, Takashi; Kuramae, Hiroyuki; Morimoto, Hideo; Yamaguchi, Toshihiko; Morita, Yusuke

    2014-10-01

    We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.

  10. Multiscale Porosity and Mechanical Properties of Mancos Shale: Evaluation of REV and Scale Separation

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; Yoon, H.; Mozley, P.

    2016-12-01

    Heterogeneity from the nanometer to core and larger length scales is a major challenge to understanding coupled processes in shale. To develop methods to address this challenge, we present application of high throughput multi-beam scanning electron microscopy (mSEM) and nano-to-micro-scale mechanics to the Mancos Shale. We use a 61-beam mSEM to collect 6 nm resolution SEM images at the scale of several square millimeters. These images are analyzed for pore size and shape characteristics including spatial correlation and structure. Nano-indentation, micropillar compression, and axisymmetric testing at multiple length scales allows for examining the influence of sampling size on mechanical response. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images) for the Mancos Shale; determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Size and Crystallographic Orientation Effects on the Mechanical Behavior of 4H-SiC Micro-/nano-pillars

    NASA Astrophysics Data System (ADS)

    Guo, Xiaolei; Guo, Qiang; Li, Zhiqiang; Fan, Genlian; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Tan, Zhanqiu; Guo, Cuiping; Zhang, Di

    2018-02-01

    Single crystalline 4H-SiC micro-/nano-pillars of various sizes and different crystallographic orientations were fabricated and tested by uniaxial compression. The pillars with zero shear stress resolved on the basal slip system were found to fracture in a brittle manner without showing significant size dependence, while the pillars with non-zero resolved shear stress showed a "smaller is stronger" behavior and a jerky plastic flow. These observations were interpreted by homogeneous dislocation nucleation and dislocation glide on the basal plane.

  12. Crystallographic and magnetic structure of UCu{sub 1.5}Sn{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwanto, A.; Robinson, R.A.; Nakotte, H.

    1996-04-01

    We report on the crystallographic and magnetic structures of the antiferromagnet UCu{sub 1.5}Sn{sub 2}, as determined by x-ray and neutron powder diffraction. It crystallizes in the tetragonal CaBe{sub 2}Ge{sub 2} structure type, with space group P/4nmm, and we find no site disorder between two different Sn2{ital c} sites, in contrast with a previous report. UCu{sub 1.5}Sn{sub 2} orders antiferromagnetically with a N{acute e}el temperature of about 110 K. This is unusually high among uranium intermetallics. The uranium moments align along the {ital c} axis in a collinear arrangement but alternating along the {ital c} axis. The low-temperature uranium moment ismore » 2.01{mu}{sub {ital B}}. {copyright} {ital 1996 American Institute of Physics.}« less

  13. Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding.

    PubMed

    Ryan, Daniel Patrick Obelenis; Fais, Laiza Maria Grassi; Antonio, Selma Gutierrez; Hatanaka, Gabriel Rodrigues; Candido, Lucas Miguel; Pinelli, Ligia Antunes Pereira

    2017-07-26

    This study evaluated microstructural and crystallographic phase changes after grinding (G) and regeneration firing/anneling (R) of Y-TZP ceramics. Thirty five bars (Lava TM and Ice Zirkon) were divided: Y-TZP pre-sintered, control (C), regeneration firing (R), dry grinding (DG), dry grinding+regeneration firing (DGR), wet grinding (WG) and wet grinding+regeneration firing (WGR). Grinding was conducted using a diamond bur and annealing at 1,000°C. The microstructure was analyzed by SEM and the crystalline phases by X-ray diffraction (XRD). XRD showed that pre-sintered specimens contained tetragonal and monoclinic phases, while groups C and R showed tetragonal, cubic and monoclinic phases. After grinding, the cubic phase was eliminated in all groups. Annealing (DGR and WGR) resulted in only tetragonal phase. SEM showed semi-circular cracks after grinding and homogenization of particles after annealing. After grinding, surfaces show tetragonal and monoclinic phases and R can be assumed to be necessary prior to porcelain layering when grinding is performed.

  14. Scaled CMOS Technology Reliability Users Guide

    NASA Technical Reports Server (NTRS)

    White, Mark

    2010-01-01

    The desire to assess the reliability of emerging scaled microelectronics technologies through faster reliability trials and more accurate acceleration models is the precursor for further research and experimentation in this relevant field. The effect of semiconductor scaling on microelectronics product reliability is an important aspect to the high reliability application user. From the perspective of a customer or user, who in many cases must deal with very limited, if any, manufacturer's reliability data to assess the product for a highly-reliable application, product-level testing is critical in the characterization and reliability assessment of advanced nanometer semiconductor scaling effects on microelectronics reliability. A methodology on how to accomplish this and techniques for deriving the expected product-level reliability on commercial memory products are provided.Competing mechanism theory and the multiple failure mechanism model are applied to the experimental results of scaled SDRAM products. Accelerated stress testing at multiple conditions is applied at the product level of several scaled memory products to assess the performance degradation and product reliability. Acceleration models are derived for each case. For several scaled SDRAM products, retention time degradation is studied and two distinct soft error populations are observed with each technology generation: early breakdown, characterized by randomly distributed weak bits with Weibull slope (beta)=1, and a main population breakdown with an increasing failure rate. Retention time soft error rates are calculated and a multiple failure mechanism acceleration model with parameters is derived for each technology. Defect densities are calculated and reflect a decreasing trend in the percentage of random defective bits for each successive product generation. A normalized soft error failure rate of the memory data retention time in FIT/Gb and FIT/cm2 for several scaled SDRAM generations is

  15. Nanometer-scale displacement sensing using self-mixing interferometry with a correlation-based signal processing technique

    NASA Astrophysics Data System (ADS)

    Hast, J.; Okkonen, M.; Heikkinen, H.; Krehut, L.; Myllylä, R.

    2006-06-01

    A self-mixing interferometer is proposed to measure nanometre-scale optical path length changes in the interferometer's external cavity. As light source, the developed technique uses a blue emitting GaN laser diode. An external reflector, a silicon mirror, driven by a piezo nanopositioner is used to produce an interference signal which is detected with the monitor photodiode of the laser diode. Changing the optical path length of the external cavity introduces a phase difference to the interference signal. This phase difference is detected using a signal processing algorithm based on Pearson's correlation coefficient and cubic spline interpolation techniques. The results show that the average deviation between the measured and actual displacements of the silicon mirror is 3.1 nm in the 0-110 nm displacement range. Moreover, the measured displacements follow linearly the actual displacement of the silicon mirror. Finally, the paper considers the effects produced by the temperature and current stability of the laser diode as well as dispersion effects in the external cavity of the interferometer. These reduce the sensor's measurement accuracy especially in long-term measurements.

  16. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ahmad, Zeeshan; Aryanfar, Asghar; Viswanathan, Venkatasubramanian; Greer, Julia R.

    2017-01-01

    Most next-generation Li ion battery chemistries require a functioning lithium metal (Li) anode. However, its application in secondary batteries has been inhibited because of uncontrollable dendrite growth during cycling. Mechanical suppression of dendrite growth through solid polymer electrolytes (SPEs) or through robust separators has shown the most potential for alleviating this problem. Studies of the mechanical behavior of Li at any length scale and temperature are limited because of its extreme reactivity, which renders sample preparation, transfer, microstructure characterization, and mechanical testing extremely challenging. We conduct nanomechanical experiments in an in situ scanning electron microscope and show that micrometer-sized Li attains extremely high strengths of 105 MPa at room temperature and of 35 MPa at 90 °C. We demonstrate that single-crystalline Li exhibits a power-law size effect at the micrometer and submicrometer length scales, with the strengthening exponent of -0.68 at room temperature and of -1.00 at 90 °C. We also report the elastic and shear moduli as a function of crystallographic orientation gleaned from experiments and first-principles calculations, which show a high level of anisotropy up to the melting point, where the elastic and shear moduli vary by a factor of ˜4 between the stiffest and most compliant orientations. The emergence of such high strengths in small-scale Li and sensitivity of this metal’s stiffness to crystallographic orientation help explain why the existing methods of dendrite suppression have been mainly unsuccessful and have significant implications for practical design of future-generation batteries.

  17. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negreiros, Fabio R.; Halder, Avik; Yin, Chunrong

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, inmore » which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.« less

  18. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    NASA Astrophysics Data System (ADS)

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-12-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  19. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution.

    PubMed

    Joens, Matthew S; Huynh, Chuong; Kasuboski, James M; Ferranti, David; Sigal, Yury J; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J; Curran, Kevin P; Chalasani, Sreekanth H; Stern, Lewis A; Goetze, Bernhard; Fitzpatrick, James A J

    2013-12-17

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  20. Crystallographic features of poly(vinylidene fluoride) film upon an attractive substrate of KBr.

    PubMed

    Huang, Rui; Wang, Gang; Guo, Shuo; Wang, Ke; Fu, Qiang

    2017-10-18

    Among all the polymorphs of poly(vinylidene fluoride) (PVDF), the polar γ-form possesses the highest melting point and electrical breakdown strength as well as the strongest solvent and irradiation resistance, which are beneficial for the durability of PVDF products. Since the γ-form is neither kinetically favorable nor the most thermodynamically stable, it is still difficult to attain the exclusive γ-polymorph, particularly in the case of neat PVDF. In this study, the melt isothermal crystallization of PVDF films was carried out between two KBr wafers. Owing to the characteristics of KBr wafer, including no IR absorbance and high optical transmittance, the crystallographic features originating from the KBr substrate can be conveniently elucidated through the in situ inspected techniques of FTIR and PLM. The KBr wafers significantly accelerated the crystallization kinetics of α-crystals, and then readily triggered the solid-state α- to γ-transformation of the pre-formed α-spherulites, resulting in a 10 μm-thick, neat PVDF film with an absolute crystallinity of 35% and a relative γ fraction as high as 94%. When the film thickness was increased to 40 μm, the crystallization rate of the α-form was still rapid, but the solid-state transformation was not appreciable. These interesting crystallographic phenomena are attributed to the existence of ion-dipole interaction between the -CF 2 or -CH 2 of PVDF chains and the surface of KBr wafer. Unlike most traditional substrate-dominated crystallizations that prevail in a surface epitaxy manner, in which the target films are of ultra-thin thickness (of the order of 10 nm), the ion-dipole interaction promotes the effective thickness to a ten micron level, which enables its production and application at scalable level. Moreover, the triggering of α- to γ-transformation via external fields could be an alternative for achieving the γ-dominant PVDF products, particularly when the introduction of external additives is

  1. Crystallographic studies of the Anthrax lethal toxin. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, C.A.

    1996-07-01

    The lethal form of Anthrax results from the inhalation of anthrax spores. Death is primarily due to the effects of the lethal toxin (Protective Antigen (PA) + Lethal Factor) from the causative agent, Bacillus anthracis. All the Anthrax vaccines currently in use or under development contain or produce PA, the major antigenic component of anthrax toxin, and there is a clear need for an improved vaccine for human use. In the previous report we described the first atomic resolution structure of PA, revealing that the molecule is composed largely of beta-sheets organized into four domains. This information can be usedmore » in the design. of recombinant PA vaccines. In this report we describe additional features of the full-length PA molecule derived from further crystallographic refinement and careful examination of the structure. We compare two crystal forms of PA grown at different pH values and discuss the functional implications. A complete definition of the function of each domain must await the crystal structure of the PA63 heptamer. We have grown crystals of the heptamer under both detergent and detergent-free conditions, and made substantial progress towards the crystal structure. The mechanism of anthrax intoxication in the light of our results is reviewed.« less

  2. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem

    PubMed Central

    2012-01-01

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al. PMID:22338640

  3. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem.

    PubMed

    Berti, Claudio; Gillespie, Dirk; Eisenberg, Robert S; Fiegna, Claudio

    2012-02-16

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al.

  4. A numerical investigation of grain shape and crystallographic texture effects on the plastic strain localization in friction stir weld zones

    NASA Astrophysics Data System (ADS)

    Romanova, V.; Balokhonov, R.; Batukhtina, E.; Shakhidjanov, V.

    2015-10-01

    Crystal plasticity approaches were adopted to build models accounting for the microstructure and texture observed in different friction stir weld zones. To this end, a numerical investigation of crystallographic texture and grain shape effects on the plastic strain localization in a friction stir weld of an aluminum-base alloy was performed. The presence of texture was found to give rise to pronounced mesoscale plastic strain localization.

  5. Fabrication of nanometer- and micrometer-scale protein structures by site-specific immobilization of histidine-tagged proteins to aminosiloxane films with photoremovable protein-resistant protecting groups

    DOE PAGES

    Xia, Sijing; Cartron, Michael; Morby, James; ...

    2016-01-28

    The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni 2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scalemore » patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. As a result, this simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces.« less

  6. Photo-Carrier Multi-Dynamical Imaging at the Nanometer Scale in Organic and Inorganic Solar Cells.

    PubMed

    Fernández Garrillo, Pablo A; Borowik, Łukasz; Caffy, Florent; Demadrille, Renaud; Grévin, Benjamin

    2016-11-16

    Investigating the photocarrier dynamics in nanostructured and heterogeneous energy materials is of crucial importance from both fundamental and technological points of view. Here, we demonstrate how noncontact atomic force microscopy combined with Kelvin probe force microscopy under frequency-modulated illumination can be used to simultaneously image the surface photopotential dynamics at different time scales with a sub-10 nm lateral resolution. The basic principle of the method consists in the acquisition of spectroscopic curves of the surface potential as a function of the illumination frequency modulation on a two-dimensional grid. We show how this frequency-spectroscopy can be used to probe simultaneously the charging rate and several decay processes involving short-lived and long-lived carriers. With this approach, dynamical images of the trap-filling, trap-delayed recombination and nongeminate recombination processes have been acquired in nanophase segregated organic donor-acceptor bulk heterojunction thin films. Furthermore, the spatial variation of the minority carrier lifetime has been imaged in polycrystalline silicon thin films. These results establish two-dimensional multidynamical photovoltage imaging as a universal tool for local investigations of the photocarrier dynamics in photoactive materials and devices.

  7. Static and Dynamic Electron Microscopy Investigations at the Atomic and Ultrafast Scales

    NASA Astrophysics Data System (ADS)

    Suri, Pranav Kumar

    Advancements in the electron microscopy capabilities - aberration-corrected imaging, monochromatic spectroscopy, direct-electron detectors - have enabled routine visualization of atomic-scale processes with millisecond temporal resolutions in this decade. This, combined with progress in the transmission electron microscopy (TEM) specimen holder technology and nanofabrication techniques, allows comprehensive experiments on a wide range of materials in various phases via in situ methods. The development of ultrafast (sub-nanosecond) time-resolved TEM with ultrafast electron microscopy (UEM) has further pushed the envelope of in situ TEM to sub-nanosecond temporal resolution while maintaining sub-nanometer spatial resolution. A plethora of materials phenomena - including electron-phonon coupling, phonon transport, first-order phase transitions, bond rotation, plasmon dynamics, melting, and dopant atoms arrangement - are not yet clearly understood and could be benefitted with the current in situ TEM capabilities having atomic-level and ultrafast precision. Better understanding of these phenomena and intrinsic material dynamics (e.g. how phonons propagate in a material, what time-scales are involved in a first-order phase transition, how fast a material melts, where dopant atoms sit in a crystal) in new-generation and technologically important materials (e.g. two-dimensional layered materials, semiconductor and magnetic devices, rare-earth-element-free permanent magnets, unconventional superconductors) could bring a paradigm shift in their electronic, structural, magnetic, thermal and optical applications. Present research efforts, employing cutting-edge static and dynamic in situ electron microscopy resources at the University of Minnesota, are directed towards understanding the atomic-scale crystallographic structural transition and phonon transport in an iron-pnictide parent compound LaFeAsO, studying the mechanical stability of fast moving hard-drive heads in heat

  8. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  9. Jet engine applications for materials with nanometer-scale dimensions

    NASA Technical Reports Server (NTRS)

    Appleby, J. W., Jr.

    1995-01-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  10. Jet engine applications for materials with nanometer-scale dimensions

    NASA Technical Reports Server (NTRS)

    Appleby, J. W., Jr.

    1995-01-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and material with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  11. Direct Printing of Organic Electronics at the Nanometer Scale

    DTIC Science & Technology

    2006-02-01

    patterning as seen in Figure 3. Also, a flat film OVJP grown Alq3 NPD OLED was shown to be competitive with VTE with quantum efficiencies of 0.84%. 0 0...a tris(8-hydroxyquinoline)- aluminum ( Alq3 ) electron transport and emitting layer. The OLEDs exhibited an external 8 quantum efficiency of (0.84...parameter analyzer and a Newport Model 2932-C dual-channel power meter. An OLED having the layer structure: ITO/60nm NPD/60nm Alq3 /LiF:Al was deposited

  12. Using Carbon Nanotubes for Nanometer-Scale Energy Transfer Microscopy

    NASA Astrophysics Data System (ADS)

    Johnston, Jessica; Shafran, Eyal; Mangum, Ben; Mu, Chun; Gerton, Jordan

    2009-10-01

    We investigate optical energy transfer between fluorophores and carbon nanotubes (CNTs). CNTs are grown on Si-oxide wafers by chemical vapor deposition (CVD), lifted off substrates by atomic force microscope (AFM) tips via Van der Waals forces, then shortened by electrical pulses. The tip-attached CNTs are scanned over fluorescent CdSe-ZnS quantum dots (QDs) with sub-nm precision while recording the fluorescence rate. A novel photon counting technique enables us to produce 3D maps of the QD-CNT coupling, revealing nanoscale lateral and vertical features. All CNTs tested (>50) strongly quenched the QD fluorescence, apparently independent of chirality. In some data, a delay in the recovery of QD fluorescence following CNT-QD contact was observed, suggesting possible charge transfer in this system. In the future, we will perform time-resolved studies to quantify the rate of energy and charge transfer processes and study the possible differences in fluorescence quenching and nanotube-QD energy transfer when comparing single-walled (SW) versus multi-walled (MW) CNTs, attempting to grow substrates consisting primarily of SW or MWCNTs and characterizing the structure of tip-attached CNTs using optical spectroscopy.

  13. Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution.

    PubMed

    Martínez-Criado, Gema; Segura-Ruiz, Jaime; Chu, Manh-Hung; Tucoulou, Remi; López, Iñaki; Nogales, Emilio; Mendez, Bianchi; Piqueras, Javier

    2014-10-08

    Crossed nanowire structures are the basis for high-density integration of a variety of nanodevices. Owing to the critical role of nanowires intersections in creating hybrid architectures, it has become a challenge to investigate the local structure in crossing points in metal oxide nanowires. Thus, if intentionally grown crossed nanowires are well-patterned, an ideal model to study the junction is formed. By combining electron and synchrotron beam nanoprobes, we show here experimental evidence of the role of impurities in the coupling formation, structural modifications, and atomic site configuration based on crossed Ga2O3/SnO2 nanowires. Our experiment opens new avenues for further local structure studies with both nanometer resolution and elemental sensitivity.

  14. Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    PubMed Central

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161

  15. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    PubMed

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-04-01

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  16. An analytical model for calculating microdosimetric distributions from heavy ions in nanometer site targets.

    PubMed

    Czopyk, L; Olko, P

    2006-01-01

    The analytical model of Xapsos used for calculating microdosimetric spectra is based on the observation that straggling of energy loss can be approximated by a log-normal distribution of energy deposition. The model was applied to calculate microdosimetric spectra in spherical targets of nanometer dimensions from heavy ions at energies between 0.3 and 500 MeV amu(-1). We recalculated the originally assumed 1/E(2) initial delta electrons spectrum by applying the Continuous Slowing Down Approximation for secondary electrons. We also modified the energy deposition from electrons of energy below 100 keV, taking into account the effective path length of the scattered electrons. Results of our model calculations agree favourably with results of Monte Carlo track structure simulations using MOCA-14 for light ions (Z = 1-8) of energy ranging from E = 0.3 to 10.0 MeV amu(-1) as well as with results of Nikjoo for a wall-less proportional counter (Z = 18).

  17. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    NASA Astrophysics Data System (ADS)

    Berkels, Benjamin; Wirth, Benedikt

    2017-09-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.

  18. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }< 110rangle and bar{B} { {bar{1}1bar{2}} }< bar{1}bar{1}0rangle simple shear texture components, where the bainite phase textures formed on cooling were inherited from the shear textures of the austenite phase with relatively strong variant selection. The ferrite portion of the stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D1 { {bar{1}bar{1}2} }< 111rangle and D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  19. Surface structure, crystallographic and ice-nucleating properties of cellulose

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest

  20. Melt Transport and Mantle Assimilation at Atlantis Massif (IODP Site U1309): Evidence from Chemical Profiles along Olivine Crystallographic Axes

    NASA Astrophysics Data System (ADS)

    Ferrando, C.; Godard, M.; Ildefonse, B.; Rampone, E.

    2017-12-01

    Olivine-rich troctolites (Ol > 70%, Ol T) indicate that extensive melt impregnation of preexisting Ol rich lithologies participate to the building of slow spread crust. To constrain their origin and their impact on the structure and geochemistry of oceanic crust, we realized a multi-scale petro-structural, geochemical, and numerical modelling study of Ol T drilled at IODP Hole U1309D (Atlantis Massif, Exp. 304/305). Ol T display deformed (high temperature imprint) corroded coarse grained to undeformed fine grained Ol embayed in poikilitic Cpx and Plg. Ol crystallographic preferred orientations show [001] cluster suggesting formation after impregnation and assimilation of a deformed Ol rich matrix at high melt/rock ratios. Ol have variable major and minor element compositions, but similar fractionated REE (DyN/YbN = 0.04 - 0.11). Chemical traverses along principal crystallographic axes of Ol are flat suggesting local equilibrium between Ol and neighboring phases. 3 types of Ol T were distinguished. Ol T 1 - 2 display sharp contacts. Ol T 1 has Ol <75% (single grains) and primitive compositions (Mg# = 85-86; Ni = 1870-2840 ppm, Mn = 1570-1950 ppm; Li = 1.2 - 2.7 ppm). Ol T 2 have high Ol ( > 75%, dominantly aggregates) yet more evolved composition (Mg# = 83-84, Ni = 1790 - 2510 ppm, Mn = 1760 - 1990 ppm, Li = 1.5 - 3.9 ppm) in contrast to modal and composition trends predicted by MORB crystallization. Ol T 3 has diffusive contacts with gabbroic veins, variable modal Ol with the most evolved compositions and record late stages of Ol-T formation. Ol T compositions are best modelled assuming percolation of primitive MORB melts into Hole U1309B harzburgite, triggering Opx dissolution, followed by Ol assimilation and Plg + Cpx crystallization. Modelling shows that Ol Ni variations at constant Mg# in Ol T are mantle inherited. Ol T 1 compositions were fitted assuming higher Ol assimilation (Ma = 0.06 - 0.13) in contrast to Ol T 2 -3 (Ma = 0.01 - 0.02). Ol T 3 was `buffered

  1. Effect of the sample annealing temperature and sample crystallographic orientation on the charge kinetics of MgO single crystals subjected to keV electron irradiation.

    PubMed

    Boughariou, A; Damamme, G; Kallel, A

    2015-04-01

    This paper focuses on the effect of sample annealing temperature and crystallographic orientation on the secondary electron yield of MgO during charging by a defocused electron beam irradiation. The experimental results show that there are two regimes during the charging process that are better identified by plotting the logarithm of the secondary electron emission yield, lnσ, as function of the total trapped charge in the material QT. The impact of the annealing temperature and crystallographic orientation on the evolution of lnσ is presented here. The slope of the asymptotic regime of the curve lnσ as function of QT, expressed in cm(2) per trapped charge, is probably linked to the elementary cross section of electron-hole recombination, σhole, which controls the trapping evolution in the reach of the stationary flow regime. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  2. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study

    PubMed Central

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-01-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689

  3. Dissolution of quartz in aqueous basic solution, 106-236 C - Surface kinetics of 'perfect' crystallographic faces

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Bird, Peter; Quiro, Glenn B.

    1990-01-01

    A highly accurate method, called the negative crystal method, for determining the rate of dissolution on specific crystallographic faces of crystals was developed, in which the dissolution rates of nominally perfect crystal faces are obtained by measuring the size of individual negative crystals during a sequence of dissolution steps. The method was applied to determine the apparent activation energy and rate constants for the dissolution of quartz in 0.01 M KOH solutions at temperatures from 106 to 236 C. Also investigated were the effects of hydroxyl activity and ionic strength. The apparent activation energies for the dissolution of the prism and of the rhomb were determined.

  4. A crystallographic model for the tensile and fatigue response for Rene N4 at 982 C

    NASA Technical Reports Server (NTRS)

    Sheh, M. Y.; Stouffer, D. C.

    1990-01-01

    An anisotropic constitutive model based on crystallographic slip theory was formulated for nickel-base single-crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the existence of back stress in single crystals. The results showed that the back stress effect of reverse inelastic flow on the unloading stress is orientation-dependent, and a back stress state variable in the inelastic flow equation is necessary for predicting inelastic behavior. Model correlations and predictions of experimental data are presented for the single crystal superalloy Rene N4 at 982 C.

  5. Production, Purification and Preliminary X-ray Crystallographic Studies of Adeno-Associated Virus Serotype 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, M.; Nam, H; Carter, A

    2009-01-01

    Adeno-associated virus (AAV) serotype 9, which is under development for gene-delivery applications, shows significantly enhanced capsid-associated transduction efficiency in muscle compared with other AAV serotypes. With the aim of characterizing the structural determinants of this property, the purification, crystallization and preliminary X-ray crystallographic analyses of the AAV9 viral capsid are reported. The crystals diffracted X-rays to 2.8 A resolution using synchrotron radiation and belonged to the trigonal space group P32, with unit-cell parameters a = b = 251.0, c = 640.0 A. There are three complete viral capsids in the crystal unit cell. The orientation and position of the asymmetricmore » unit capsid have been determined by molecular-replacement methods and structure determination is in progress.« less

  6. Direct Observation of Interfacial Dzyaloshinskii-Moriya Interaction from Asymmetric Spin-wave Propagation in W/CoFeB/SiO2 Heterostructures Down to Sub-nanometer CoFeB Thickness

    PubMed Central

    Chaurasiya, Avinash Kumar; Banerjee, Chandrima; Pan, Santanu; Sahoo, Sourav; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan

    2016-01-01

    Interfacial Dzyaloshinskii-Moriya interaction (IDMI) is important for its roles in stabilizing the skyrmionic lattice as well as soliton-like domain wall motion leading towards new generation spintronic devices. However, achievement and detection of IDMI is often hindered by various spurious effects. Here, we demonstrate the occurrence of IDMI originating primarily from W/CoFeB interface in technologically important W/CoFeB/SiO2 heterostructures using Brillouin light scattering technique. Due to the presence of IDMI, we observe asymmetry in the peak frequency and linewidth of the spin-wave spectra in the Damon-Eshbach (DE) geometry at finite k wave-vectors. The DMI constant is found to scale as the inverse of CoFeB thickness, over the whole studied thickness range, confirming the presence of IDMI in our system without any extrinsic effects. Importantly, the W/CoFeB interface shows no degradation down to sub-nanometer CoFeB thickness, which would be useful for devices that aim to use pronounced interface effects. PMID:27586260

  7. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors.

    PubMed

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2015-01-14

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.

  8. Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae

    NASA Astrophysics Data System (ADS)

    Handley, Kim M.; Turner, Sue J.; Campbell, Kathleen A.; Mountain, Bruce W.

    2008-08-01

    Exopolymeric substances (EPS) are an integral component of microbial biofilms; however, few studies have addressed their silicification and preservation in hot-spring deposits. Through comparative analyses with the use of a range of microscopy techniques, we identified abundant EPS significant to the textural development of spicular, microstromatolitic, siliceous sinter at Champagne Pool, Waiotapu, New Zealand. Examination of biofilms coating sinter surfaces by confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM), cryo-scanning electron microscopy (cryo-SEM), and transmission electron microscopy (TEM) revealed contraction of the gelatinous EPS matrix into films (approximately 10 nm thick) or fibrillar structures, which is common in conventional SEM analyses and analogous to products of naturally occurring desiccation. Silicification of fibrillar EPS contributed to the formation of filamentous sinter. Matrix surfaces or dehydrated films templated sinter laminae (nanometers to microns thick) that, in places, preserved fenestral voids beneath. Laminae of similar thickness are, in general, common to spicular geyserites. This is the first report to demonstrate EPS templation of siliceous stromatolite laminae. Considering the ubiquity of biofilms on surfaces in hot-spring environments, EPS silicification studies are likely to be important to a better understanding of the origins of laminae in other modern and ancient stromatolitic sinters, and EPS potentially may serve as biosignatures in extraterrestrial rocks.

  9. On the formation and stability of nanometer scale precipitates in ferritic alloys during processing and high temperature service

    NASA Astrophysics Data System (ADS)

    Alinger, Matthew J.

    Iron powders containing ≈14wt%Cr and smaller amounts of W and Ti were mechanically alloyed (MA) by ball milling with Y2O3 and subsequently either hot consolidated by hot extrusion or isostatic pressing, or powder annealed, producing very high densities of nm-scale coherent transition phase precipitates, or Y-Ti-O nano-clusters (NCs), along with fine-scale grains. These so-called nanostructured ferritic alloys (NFAs) manifest very high strength (static and creep) and corrosion-oxidation resistance up to temperatures in excess of 800°C. We used a carefully designed matrix of model MA powders and consolidated alloys to systematically assess the NC evolutions during each processing step, and to explore the combined effects of alloy composition and a number of processing variables, including the milling energy, consolidation method and the time and temperature of annealing of the as-milled powders. The stability of the NCs was also characterized during high-temperate post-consolidation annealing of a commercial NFA, MA957. The micro-nanostructural evolutions, and their effects on the alloy strength, were characterized by a combination of techniques, including XRD, TEM, atom-probe tomography (APT) and positron annihilation spectroscopy (PAS). However, small angle neutron scattering (SANS) was the primary tool used to characterize the nm-scale precipitates. The effect of the micro-nanostructure on the alloy strength was assessed by microhardness measurements. The studies revealed the critical sequence-of-events in forming the NCs, involves dissolution of Y, Ti and O during ball milling. The supersaturated solutes then precipitate during hot consolidation or powder annealing. The precipitate volume fraction increases with both the milling energy and Ti additions at lower consolidation and annealing temperatures (850°C), and at higher processing temperatures (1150°C) both are needed to produce NCs. The non-equilibrium kinetics of NC formation are nucleation controlled

  10. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations.

    PubMed

    Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2015-05-01

    The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.

  11. Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications.

    PubMed

    Su, Xianli; Wei, Ping; Li, Han; Liu, Wei; Yan, Yonggao; Li, Peng; Su, Chuqi; Xie, Changjun; Zhao, Wenyu; Zhai, Pengcheng; Zhang, Qingjie; Tang, Xinfeng; Uher, Ctirad

    2017-05-01

    Considering only about one third of the world's energy consumption is effectively utilized for functional uses, and the remaining is dissipated as waste heat, thermoelectric (TE) materials, which offer a direct and clean thermal-to-electric conversion pathway, have generated a tremendous worldwide interest. The last two decades have witnessed a remarkable development in TE materials. This Review summarizes the efforts devoted to the study of non-equilibrium synthesis of TE materials with multi-scale structures, their transport behavior, and areas of applications. Studies that work towards the ultimate goal of developing highly efficient TE materials possessing multi-scale architectures are highlighted, encompassing the optimization of TE performance via engineering the structures with different dimensional aspects spanning from the atomic and molecular scales, to nanometer sizes, and to the mesoscale. In consideration of the practical applications of high-performance TE materials, the non-equilibrium approaches offer a fast and controllable fabrication of multi-scale microstructures, and their scale up to industrial-size manufacturing is emphasized here. Finally, the design of two integrated power generating TE systems are described-a solar thermoelectric-photovoltaic hybrid system and a vehicle waste heat harvesting system-that represent perhaps the most important applications of thermoelectricity in the energy conversion area. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Nanometer-Sized Eutectic Structure of Si/CrSi2 Thermoelectric Materials Fabricated by Rapid Solidification

    NASA Astrophysics Data System (ADS)

    Norizan, Mohd Natashah; Miyazaki, Yoshinobu; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2018-04-01

    Nanostructuring is known to be an effective method to improve thermoelectric performance but, generally, it requires complex procedures and much labor. In the present study, self-assembled nanometer-sized composite structures of silicon (Si) and chromium disilicide (CrSi2) were easily fabricated by the rapid solidification of a melt with a eutectic composition. Ribbon-like samples were obtained with a dominant nanostructure of fine aligned lamellae with a spacing range of 20-35 nm. The thermoelectric power factor of the ribbon was observed to be 1.2 mW/mK2 at room temperature and reached 3.0 mW/mK2 at 773 K. The thermal conductivity was 65% lower than that of a bulk eutectic sample. The results suggest that this method is promising for fabricating an effective nanostructure for thermoelectric performance.

  13. Molecular density functional theory of water describing hydrophobicity at short and long length scales

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2013-10-01

    We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619 (2013)] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields: the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely, the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast, the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density, and making the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.

  14. Multiple scales and phases in discrete chains with application to folded proteins

    NASA Astrophysics Data System (ADS)

    Sinelnikova, A.; Niemi, A. J.; Nilsson, Johan; Ulybyshev, M.

    2018-05-01

    Chiral heteropolymers such as large globular proteins can simultaneously support multiple length scales. The interplay between the different scales brings about conformational diversity, determines the phase properties of the polymer chain, and governs the structure of the energy landscape. Most importantly, multiple scales produce complex dynamics that enable proteins to sustain live matter. However, at the moment there is incomplete understanding of how to identify and distinguish the various scales that determine the structure and dynamics of a complex protein. Here we address this impending problem. We develop a methodology with the potential to systematically identify different length scales, in the general case of a linear polymer chain. For this we introduce and analyze the properties of an order parameter that can both reveal the presence of different length scales and can also probe the phase structure. We first develop our concepts in the case of chiral homopolymers. We introduce a variant of Kadanoff's block-spin transformation to coarse grain piecewise linear chains, such as the C α backbone of a protein. We derive analytically, and then verify numerically, a number of properties that the order parameter can display, in the case of a chiral polymer chain. In particular, we propose that in the case of a chiral heteropolymer the order parameter can reveal traits of several different phases, contingent on the length scale at which it is scrutinized. We confirm that this is the case with crystallographic protein structures in the Protein Data Bank. Thus our results suggest relations between the scales, the phases, and the complexity of folding pathways.

  15. Research and design on orthogonal diffraction grating-based 3D nanometer displacement sensor

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuai; Yuan, Yibao; Yin, Zhehao

    2017-10-01

    This study concerns an orthogonal diffraction grating-based nanometer displacement sensor. In this study, we performed calculation of displacements in the XYZ directions. In the optical measured path part, we used a two-dimensional orthogonal motion grating and a two-dimensional orthogonal reference grating with the pitch of 0.5um to measure the displacement of XYZ in three directions by detecting ±1st diffraction fringes. The self-collimated structure of the grating greatly extended the Z-axis range. We also simulated the optical path of the sensor with ZEMAX software and verified the feasibility of the scheme. For signal subdivision and processing, we combined large number counting (completed grating line) with small number counting (digital subdivision), realizing high multiples of subdivision of grating interference signals. We used PC to process the interference fringes and greatly improved the processing speed. In the scheme, the theoretical multiples of subdivision could reach 1024 with 10-bit AD conversion, but the actual multiples of subdivision was limited by the quality of the grating interference signals. So we introduced an orthogonal compensation circuit and a filter circuit to improve the signal quality.

  16. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov; Bricogne, Gerard, E-mail: terwilliger@lanl.gov; Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87507

    Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray datamore » continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures

  17. Light Controlling at Subwavelength Scales in Nanophotonic Systems: Physics and Applications

    NASA Astrophysics Data System (ADS)

    Shen, Yuecheng

    The capability of controlling light at scales that are much smaller than the operating wave-length enables new optical functionalities, and opens up a wide range of applications. Such a capability is out of the realm of conventional optical approaches. This dissertation aims to explore the light-matter interactions at nanometer scale, and to investigate the novel scien-tific and industrial applications. In particular, we will explain how to detect nanoparticles using an ultra-sensitive nano-sensor; we will also describe a photonic diode which gener-ates a unidirectional flow of single photons; Moreover, in an one-dimensional waveguide QED system where the fermionic degree of freedom is present, we will show that strong photon-photon interactions can be generated through scattering means, leading to photonic bunching and anti-bunching with various applications. Finally, we will introduce a mecha-nism to achieve super-resolution to discern fine features that are orders of magnitude smaller than the illuminating wavelength. These research projects incorporate recent advances in quantum nanophotonics, nanotechnologies, imaging reconstruction techniques, and rigorous numerical simulations.

  18. Scaling relation of the anomalous Hall effect in (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Glunk, M.; Daeubler, J.; Schoch, W.; Sauer, R.; Limmer, W.

    2009-09-01

    We present magnetotransport studies performed on an extended set of (Ga,Mn)As samples at 4.2 K with longitudinal conductivities σxx ranging from the low-conductivity to the high-conductivity regime. The anomalous Hall conductivity σxy(AH) is extracted from the measured longitudinal and Hall resistivities. A transition from σxy(AH)=20Ω-1cm-1 due to the Berry phase effect in the high-conductivity regime to a scaling relation σxy(AH)∝σxx1.6 for low-conductivity samples is observed. This scaling relation is consistent with a recently developed unified theory of the anomalous Hall effect in the framework of the Keldysh formalism. It turns out to be independent of crystallographic orientation, growth conditions, Mn concentration, and strain, and can therefore be considered universal for low-conductivity (Ga,Mn)As. The relation plays a crucial role when deriving values of the hole concentration from magnetotransport measurements in low-conductivity (Ga,Mn)As. In addition, the hole diffusion constants for the high-conductivity samples are determined from the measured longitudinal conductivities.

  19. Marine environmental protection: An application of the nanometer photo catalyst method on decomposition of benzene.

    PubMed

    Lin, Mu-Chien; Kao, Jui-Chung

    2016-04-15

    Bioremediation is currently extensively employed in the elimination of coastal oil pollution, but it is not very effective as the process takes several months to degrade oil. Among the components of oil, benzene degradation is difficult due to its stable characteristics. This paper describes an experimental study on the decomposition of benzene by titanium dioxide (TiO2) nanometer photocatalysis. The photocatalyst is illuminated with 360-nm ultraviolet light for generation of peroxide ions. This results in complete decomposition of benzene, thus yielding CO2 and H2O. In this study, a nonwoven fabric is coated with the photocatalyst and benzene. Using the Double-Shot Py-GC system on the residual component, complete decomposition of the benzene was verified by 4h of exposure to ultraviolet light. The method proposed in this study can be directly applied to elimination of marine oil pollution. Further studies will be conducted on coastal oil pollution in situ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synthesis of Highly Active Sub-Nanometer Pt@Rh Core-Shell Nanocatalyst via a Photochemical Route: Porous Titania Nanoplates as a Superior Photoactive Support.

    PubMed

    Zhan, Wen-Wen; Zhu, Qi-Long; Dang, Song; Liu, Zheng; Kitta, Mitsunori; Suenaga, Kazutomo; Zheng, Lan-Sun; Xu, Qiang

    2017-04-01

    Sub-nanometer Pt@Rh nanoparticles highly dispersed on MIL-125-derived porous TiO 2 nanoplates are successfully prepared for the first time by a photochemical route, where the porous TiO 2 nanoplates with a relatively high specific surface area play a dual role as both effective photoreductant and catalyst support. The resulting Pt@Rh/p-TiO 2 can be utilized as a highly active catalyst. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Energetic basis for the molecular-scale organization of bone.

    PubMed

    Tao, Jinhui; Battle, Keith C; Pan, Haihua; Salter, E Alan; Chien, Yung-Ching; Wierzbicki, Andrzej; De Yoreo, James J

    2015-01-13

    The remarkable properties of bone derive from a highly organized arrangement of coaligned nanometer-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the nonmineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and atomic force microscopy (AFM) observations of collagen adsorption on single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and transmission electron microscopy (TEM) analyses of native tissues shows that only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations, and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular-scale organization of bone.

  2. Inherent flexibility of CLIC6 revealed by crystallographic and solution studies.

    PubMed

    Ferofontov, Alisa; Strulovich, Roi; Marom, Milit; Giladi, Moshe; Haitin, Yoni

    2018-05-02

    Chloride intracellular channels (CLICs) are a family of unique proteins, that were suggested to adopt both soluble and membrane-associated forms. Moreover, following this unusual metamorphic change, CLICs were shown to incorporate into membranes and mediate ion conduction in vitro, suggesting multimerization upon membrane insertion. Here, we present a 1.8 Å resolution crystal structure of the CLIC domain of mouse CLIC6 (mCLIC6). The structure reveals a monomeric arrangement and shows a high degree of structural conservation with other CLICs. Small-angle X-ray scattering (SAXS) analysis of mCLIC6 demonstrated that the overall solution structure is similar to the crystallographic conformation. Strikingly, further analysis of the SAXS data using ensemble optimization method unveiled additional elongated conformations, elucidating high structural plasticity as an inherent property of the protein. Moreover, structure-guided perturbation of the inter-domain interface by mutagenesis resulted in a population shift towards elongated conformations of mCLIC6. Additionally, we demonstrate that oxidative conditions induce an increase in mCLIC6 hydrophobicity along with mild oligomerization, which was enhanced by the presence of membrane mimetics. Together, these results provide mechanistic insights into the metamorphic nature of mCLIC6.

  3. Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Ilton, Eugene S.; Bowden, Mark E.

    Olivines are divalent orthosilicates with important geologic, biological, and industrial significance and are typically comprised of mixtures of Mg2+ and Fe2+ ranging from forsterite (Mg2SiO4) to fayalite (Fe2SiO4). Investigating the role of Fe(II) in olivine reactivity requires the ability to synthesize olivines that are nanometer-sized, have different percentages of Mg2+ and Fe2+, and have good bulk and surface purity. This article demonstrates a new method for synthesizing nanosized fayalite and Mg-Fe mixture olivines. First, carbonaceous precursors are generated from sucrose, PVA, colloidal silica, Mg2+, and Fe3+. Second, these precursors are calcined in air to burn carbon and create mixtures ofmore » Fe(III)-oxides, forsterite, and SiO2. Finally, calcination in reducing CO-CO2 gas buffer leads to Fe(II)-rich olivines. XRD, Mössbauer, and IR analyses verify good bulk purity and composition. XPS indicates that surface iron is in its reduced Fe(II) form, and surface Si is consistent with olivine. SEM shows particle sizes predominately between 50 and 450 nm, and BET surface areas are 2.8-4.2 m2/g. STEM HAADF analysis demonstrates even distributions of Mg and Fe among the available M1 and M2 sites of the olivine crystals. These nanosized Fe(II)-rich olivines are suitable for laboratory studies with in situ probes that require mineral samples with high reactivity at short timescales.« less

  4. Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system

    PubMed Central

    Johnson, Steven; Roversi, Pietro; Espina, Marianela; Deane, Janet E.; Birket, Susan; Picking, William D.; Blocker, Ariel; Picking, Wendy L.; Lea, Susan M.

    2006-01-01

    IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P212121, with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit. PMID:16946465

  5. Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system.

    PubMed

    Johnson, Steven; Roversi, Pietro; Espina, Marianela; Deane, Janet E; Birket, Susan; Picking, William D; Blocker, Ariel; Picking, Wendy L; Lea, Susan M

    2006-09-01

    IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2(1)2(1)2(1), with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 A, and data were collected to 2.9 A resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 A resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 A, beta = 107.9 degrees . An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit.

  6. The Crystallographic Structure of Panicum Mosaic Virus (PMV)

    PubMed Central

    Makino, Debora L.; Larson, Steven B.; McPherson, Alexander

    2012-01-01

    The structure of Panicum Mosaic Virus (PMV) was determined by X-ray diffraction analysis to 2.9 Å resolution. The crystals were of pseudo symmetry F23; the true crystallographic unit cell was of space group P21 with a=411.7 Å, b=403.9 Å and c=412.5 Å, with β=89.7°. The asymmetric unit was two entire T=3 virus particles, or 360 protein subunits. The structure was solved by conventional molecular replacement from two distant homologues, Cocksfoot Mottle Virus (CfMV) and Tobacco Necrosis Virus (TNV), of ~20% sequence identity followed by phase extension. The model was initially refined with exact icosahedral constraints and then with icosahedral restraints. The virus has Ca++ ions octahedrally coordinated by six aspartic acid residues on quasi threefold axes, which is completely different than for either CfMV or TNV. Amino terminal residues 1–53, 1–49 and 1-21 of the A, B and C subunits, respectively, and the four C-terminal residues (239-242) are not visible in electron density maps. The additional ordered residues of the C chain form a prominent “arm” that intertwines with symmetry equivalent “arms” at icosahedral threefold axes, as was seen in both CfMV and TNV. A 17 nucleotide hairpin segment of genomic RNA is icosahedrally ordered and bound at 60 equivalent sites at quasi twofold A–B subunit interfaces at the interior surface of the capsid. This segment of RNA may serve as a conformational switch for coat protein subunits, as has been proposed for similar RNA segments in other viruses. PMID:23123270

  7. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.

    PubMed

    Lee, Christopher M; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H

    2014-06-14

    This study reports that the noncentrosymmetry and phase synchronization requirements of the sum frequency generation (SFG) process can be used to distinguish the three-dimensional organization of crystalline cellulose distributed in amorphous matrices. Crystalline cellulose is produced as microfibrils with a few nanometer diameters by plants, tunicates, and bacteria. Crystalline cellulose microfibrils are embedded in wall matrix polymers and assembled into hierarchical structures that are precisely designed for specific biological and mechanical functions. The cellulose microfibril assemblies inside cell walls are extremely difficult to probe. The comparison of vibrational SFG spectra of uniaxially-aligned and disordered films of cellulose Iβ nanocrystals revealed that the spectral features cannot be fully explained with the crystallographic unit structure of cellulose. The overall SFG intensity, the alkyl peak shape, and the alkyl/hydroxyl intensity ratio are sensitive to the lateral packing and net directionality of the cellulose microfibrils within the SFG coherence length scale. It was also found that the OH SFG stretch peaks could be deconvoluted to find the polymorphic crystal structures of cellulose (Iα and Iβ). These findings were used to investigate the cellulose crystal structure and mesoscale cellulose microfibril packing in intact plant cell walls, tunicate tests, and bacterial films.

  8. Does Comet WILD-2 contain Gems?

    NASA Technical Reports Server (NTRS)

    Chi, M.; Ishii, H.; Dai, Z. R.; Toppani, A.; Joswiak, D. J.; Leroux, H.; Zolensky, M.; Keller, L. P.; Browning, N. D.

    2007-01-01

    It is expected that Comet Wild-2 dust should resemble anhydrous carbon-rich, chondritic porous (CP) interplanetary dust particles (IDPs) collected in the stratosphere because some CP IDPs are suspected to be from comets. The rarity of carbonaceous grains and presolar silicates, as well as the presence of high-temperature inner solar nebula minerals in the Wild-2 sample (e.g. osbornite and melilite), appear incompatible with most CP IDPs. However, it is premature to draw firm conclusions about the mineralogy of comet Wild-2 because only approx. 1% of the sample has been examined. The most abundant silicates in CP IDPs are GEMS (glass with embedded metal and sulfides). Nonsolar O isotopic compositions confirm that at least some GEMS in IDPs are presolar amorphous silicates. The presence or absence of GEMS in the Wild-2 sample is important because it addresses, (a) the relationship between CP IDPs and comets, and (b) the hypothesis that other GEMS in IDPs formed in the solar nebula. Here we show that most of the GEMSlike materials so far identified in Stardust aerogel were likely impact generated during collection. At the nanometer scale, they are compositionally and crystallographically distinct from GEMS in IDPs.

  9. Effect of crystallographic orientation on the anodic formation of nanoscale pores/tubes in TiO 2 films

    NASA Astrophysics Data System (ADS)

    Kalantar-zadeh, K.; Sadek, A. Z.; Zheng, H.; Partridge, J. G.; McCulloch, D. G.; Li, Y. X.; Yu, X. F.; Wlodarski, W.

    2009-10-01

    Self-organized nanopores and nanotubes have been produced in thin films of titanium (Ti) prepared using filtered cathodic vacuum arc (FCVA), DC- and RF-sputter deposition systems. The anodization process was performed using a neutral electrolyte containing fluoride ions with an applied potential between 2 and 20 V (for clarity the results are only presented for 5 V). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques were used to characterise the films. It was found that the crystallographic orientation of the Ti films played a significant role in determining whether pores or tubes were formed during the anodic etching process.

  10. Correlation between crystallographic anisotropy and dendritic orientation selection of binary magnesium alloys.

    PubMed

    Du, Jinglian; Guo, Zhipeng; Zhang, Ang; Yang, Manhong; Li, Mei; Xiong, Shoumei

    2017-10-19

    Both synchrotron X-ray tomography and EBSD characterization revealed that the preferred growth directions of magnesium alloy dendrite change as the type and amount of solute elements. Such growth behavior was further investigated by evaluating the orientation-dependent surface energy and the subsequent crystallographic anisotropy via ab-initio calculations based on density functional theory and hcp lattice structure. It was found that for most binary magnesium alloys, the preferred growth direction of the α-Mg dendrite in the basal plane is always [Formula: see text], and independent on either the type or concentration of the additional elements. In non-basal planes, however, the preferred growth direction is highly dependent on the solute concentration. In particular, for Mg-Al alloys, this direction changes from [Formula: see text] to [Formula: see text] as the Al-concentration increased, and for Mg-Zn alloys, this direction changes from [Formula: see text] to [Formula: see text] or [Formula: see text] as the Zn-content varied. Our results provide a better understanding on the dendritic orientation selection and morphology transition of magnesium alloys at the atomic level.

  11. Half-heusler alloys with enhanced figure of merit and methods of making

    DOEpatents

    Ren, Zhifeng; Yan, Xiao; Joshi, Giri; Chen, Shuo; Chen, Gang; Poudel, Bed; Caylor, James Christopher

    2015-06-02

    Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.

  12. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM.

    PubMed

    Kobler, A; Kübel, C

    2017-02-01

    Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a '180° ambiguity problem'. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. Copyright © 2017. Published by Elsevier B.V.

  13. Preparation, crystallization and preliminary crystallographic analysis of old yellow enzyme from Trypanosoma cruzi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Shigeru; Tokuoka, Keiji; Uchiyama, Nahoko

    2007-10-01

    Old yellow enzyme from Trypanosoma cruzi, has been crystallized using the hanging-drop vapour-diffusion method. Old yellow enzyme (OYE) is an NADPH oxidoreductase that contains a flavin mononucleotide as a prosthetic group. The OYE from Trypanosoma cruzi, which produces prostaglandin F{sub 2α}, a potent mediator of various physiological and pathological processes, from prostaglandin H2. The protein was recombinantly expressed and purified from Escherichia coli and was crystallized using the hanging-drop vapour-diffusion method. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 56.3, b = 78.8, c = 78.8 Å, β = 93.4° and two moleculesmore » per asymmetric unit. The crystals were suitable for X-ray crystallographic studies and diffracted to 1.70 Å resolution. A Patterson search method is in progress using the structure of OYE from Pseudomonas putida as a starting model.« less

  14. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

    PubMed

    Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T

    2011-04-13

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Application to Neutron Crystallography and DNA Hydration

    PubMed Central

    Fenn, Timothy D.; Schnieders, Michael J.; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S.; Brunger, Axel T.

    2011-01-01

    Summary Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. PMID:21481775

  16. Large magnetoresistance induced by crystallographic defects in FexTaS2 single crystals

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Wei; Morosan, Emilia; Morosan's Group Team

    The search for the materials that show large magnetoresistance and the mechanisms that induce it remains challenging in both experimental and theoretical aspects. The giant magnetoresistance in one class of materials, ferromagnetic conductors, is generally attributed to the misalignments of magnetic moments, which cause spin disorder scattering. Recently, very large magnetoresistance (>60 %) was discovered in the ferromagnetic Fe-intercalated transition metal dichalcogenide, Fe0.28TaS2 [Phys. Rev. B 91, 054426(2015)]. The mechanism that led to this large magnetoresistance was suggested to be due to the deviation of Fe concentration from commensurate values (1/4 or 1/3), which caused magnetic moments' misalignments. Here we report a study of FexTaS2 crystals with x close to the commensurate values. Our results qualitatively demonstrate that crystallographic defects significantly affect magnetoresistance in FexTaS2. This provides a way to search for large magnetoresistance in more intercalated transition metal dichalcogenides. This work is supported by the Department of Defense PECASE.

  17. Nanometal particle reagents for sensitive, MEMS based fiber-optic, multi-analyte, immuno-biosensing

    NASA Astrophysics Data System (ADS)

    Hong, Bin

    Integration of nanotechnology to medical diagnostics has brought a new era to public health practice. An excellent example is the utilization of unique optoelectronic properties of nanoparticles to develop highly sensitive biosensing devices for point-of-care (POC) disease diagnosis/prognosis. Fluorophore mediated, immuno-biosensors are important disease detection tools. The property of intra-molecular fluorescence quenching of most fluorophores, however, limits the sensitivity of this type of sensors. A plasmon-rich nanometal particle (NMP) can transfer the lone pair electrons of a fluorophore, which normally participate in the fluorescence self-quenching, to its surface plasmon field, resulting in artificial fluorescence enhancement. The enhancement was found to depend on the metal type, the particle size, the distance between a particle and a fluorophore, and the quantum yield of a fluorophore. Some biocompatible solvents were also found to increase the fluorescence emission efficiency via effective dipole coupling between the fluorophore and the solvent molecule. The application of solvents in inmuno-sensing could additionally improve the fluorescence light retrieval by the conformational change of the protein complexes in solvent. The mixture of the NMP and the solvent, which we defined as nanometal particle reagent (NMPR), provided even higher enhancements. Cardiovascular diseases (CVDs) kill 1 person in every 6 seconds. Among the CVDs, acute myocardial infarction (AMI; commonly known as heart attack) is the most dangerous and time-sensitive killer. A rapid and accurate AMI diagnosis is crucial for saving many lives. For this purpose, a fluorophore mediated, immuno-reaction based, multi-cardiac-marker sensing device was developed, to quantify four myocardium-specific proteins simultaneously, accurately, rapidly, and user-friendly. The four cardiac markers of our choice were myoglobin (MG), C-reactive protein (CRP), cardiac troponin I (cTnI), and B

  18. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles weremore » prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.« less

  19. The effect of crystallographic misorientation and interfacial separation on jump-to-contact behavior and defect generation in aluminum

    NASA Astrophysics Data System (ADS)

    Khajehvand, Milad; Sepehrband, Panthea

    2018-07-01

    The jump-to-contact (JC) phenomenon for (111)-oriented surfaces in aluminum at room temperature is studied via molecular dynamics simulations. The effect of crystallographic misorientation and interfacial distance on the JC behavior and distribution of the resultant defects at the interface is investigated. The effect of misorientation on the critical distance for JC is found to be negligible. However, when JC occurs, different distribution of defects is observed for various misorientation angles. The density of defects is shown to be a function of interfacial distance for low misorientation angles, but independent of it for misorientation angles of ∼30 ± 10°.

  20. Differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites.

    PubMed

    Zoellner, Andreas; Tan, Si; Saraf, Shailendhar; Alfauwaz, Abdul; DeBra, Dan; Buchman, Sasha; Lipa, John A

    2017-10-16

    We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensors. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam's power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87nm/Hz at 1 Hz and 0.39nm/Hz at 10 Hz. We describe the application of the module to the inertial sensor of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.