Sample records for nanometer sized clusters

  1. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt n/SiO 2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O 2 exposure and annealing in H 2. Here, the clusters are found tomore » be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L 3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  2. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  3. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  4. Chirally directed formation of nanometer-scale proline clusters.

    PubMed

    Myung, Sunnie; Fioroni, Marco; Julian, Ryan R; Koeniger, Stormy L; Baik, Mu-Hyun; Clemmer, David E

    2006-08-23

    Ion mobility measurements, combined with molecular mechanics simulations, are used to study enantiopure and racemic proline clusters formed by electrospray ionization. Broad distributions of cluster sizes and charge states are observed, ranging from clusters containing only a few proline units to clusters that contain more than 100 proline units (i.e., protonated clusters of the form [xPro + nH](n+) with x = 1 to >100 and n = 1-7). As the sizes of clusters increase, there is direct evidence for nanometer scale, chirally induced organization into specific structures. For n = 4 and 5, enantiopure clusters of approximately 50 to 100 prolines assemble into structures that are more elongated than the most compact structure that is observed from the racemic proline clusters. A molecular analogue, cis-4-hydroxy-proline, displays significantly different behavior, indicating that in addition to the rigidity of the side chain ring, intermolecular interactions are important in the formation of chirally directed clusters. This is the first case in which assemblies of chirally selective elongated structures are observed in this size range of amino acid clusters. Relationships between enantiopurity, cluster shape, and overall energetics are discussed.

  5. Melting behavior of nanometer sized gold isomers

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Ascencio, J. A.; Perez-Alvarez, M.; Yacaman, M. J.

    2001-09-01

    In the present work, the melting behavior of nanometer sized gold isomers was studied using a tight-binding potential with a second momentum approximation. The cases of cuboctahedra, icosahedra, Bagley decahedra, Marks decahedra and star-like decahedra were considered. We calculated the temperature dependence of the total energy and volume during melting and the melting point for different types and sizes of clusters. In addition, the structural evolutions of the nanosized clusters during the melting transition were monitored and revealed. It is found that the melting process has three characteristic time periods for the intermediate nanosized clusters. The whole process includes surface disordering and reordering, followed by surface melting and a final rapid overall melting. This is a new observation, which it is in contrast with previous reports where surface melting is the dominant step.

  6. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.

    PubMed

    Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J

    2016-11-15

    Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k 0 , of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale

  7. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negreiros, Fabio R.; Halder, Avik; Yin, Chunrong

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, inmore » which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.« less

  8. A theoretical consideration of ion size effects on the electric double layer and voltammetry of nanometer-sized disk electrodes.

    PubMed

    Gao, Yu; Liu, Yuwen; Chen, Shengli

    2016-12-12

    Considering that an electric-double-layer (EDL) structure may significantly impact on the mass transport and charge transfer kinetics at the interfaces of nanometer-sized electrodes, while EDL structures could be altered by the finite sizes of electrolyte and redox ions, the possible effects of ion sizes on EDL structures and voltammetric responses of nanometer-sized disk (nanodisk) electrodes are investigated. Modified Boltzmann and Nernst-Planck (NP) equations, which include the influence of the finite ion volumes, are combined with the Poisson equation and modified Butler-Volmer equation to gain knowledge on how the finite sizes of ions and the nanometer sizes of electrodes may couple with each other to affect the structures and reactivities of a nanoscale electrochemical interface. Two typical ion radii, 0.38 nm and 0.68 nm, which could represent the sizes of the commonly used aqueous electrolyte ions (e.g., the solvated K + ) and the organic electrolyte ions (e.g., the solvated TEA + ) respectively, are considered. The finite size of ions can result in decreased screening of electrode charges, therefore magnifying EDL effects on the ion transport and the electron transfer at electrochemical interfaces. This finite size effect of ions becomes more pronounced for larger ions and at smaller electrodes as the electrode radii is larger than 10 nm. For electrodes with radii smaller than 10 nm, however, the ion size effect may be less pronounced with decreasing the electrode size. This can be explained in terms of the increased edge effect of disk electrodes at nanometer scales, which could relax the ion crowding at/near the outer Helmholtz plane. The conditions and situations under which the ion sizes may have a significant effect on the voltammetry of electrodes are discussed.

  9. Critical current densities of powder-in-tube MgB2 tapes fabricated with nanometer-size Mg powder

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Hirakawa, M.; Kumakura, H.; Matsumoto, A.; Kitaguchi, H.

    2004-03-01

    We fabricated powder-in-tube MgB2/Fe tapes using a powder mixture of nanometer-size Mg and commercial amorphous B and investigated the transport properties. High-purity nanometer-size Mg powder was fabricated by applying the thermal plasma method. 5-10 mol % SiC powder doping was tried to enhance the Jc properties. We found that the use of nanometer-size Mg powder was effective to increase the Jc values. The transport Jc values of the nondoped and 10 mol % SiC-doped tapes prepared with nanometer-size Mg powder reached 90 and 250 A/mm2 at 4.2 K and 10 T, respectively. These values were about five times higher than those of the tapes prepared with commercial Mg powder.

  10. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    PubMed

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rates of ligand exchange between >FeIII-OH2 functional groups on a nanometer-sized aqueous cluster and bulk solution.

    PubMed

    Balogh, Edina; Todea, Ana Maria; Müller, Achim; Casey, William H

    2007-08-20

    Variable-temperature 17O NMR experiments were conducted on the nanometer-sized Keplerate Mo72Fe30 cluster, with the stoichiometry [Mo72Fe30O252(CH3COO)12[Mo2O7(H2O)]2[H2Mo2O8(H2O)](H2O)91]. approximately 150H2O. This molecule contains on its surface 30 Fe(H2O) groups forming a well-defined icosidodecahedron, and we estimated the rates of exchange of the isolated >FeIII-OH2 waters with bulk aqueous solution. Both longitudinal and transverse 17O-relaxation times were measured, as well as chemical shifts, and these parameters were then fit to the Swift-Connick equations in order to obtain the rate parameters. Correspondingly, we estimate: k(ex)298 = 6.7(+/-0.8) x 106 s-1, which is about a factor of approximately 4 x 104 times larger than the corresponding rate coefficient for the Fe(OH2)63+ ion of k(ex)298 = 1.6 x 102 s-1 (Grant and Jordan, 1981; Inorg. Chem. 20, 55-60) and DeltaH and DeltaS are 26.3 +/- 0.6 kJ mol-1 and -26 +/- 0.9 J mol-1 K-1, respectively. High-pressure 17O NMR experiments were also conducted, but the cluster decomposed slightly under pressure, which precluded confident quantitative estimation of the DeltaV. However, the increase in the reduced transverse-relaxation time with pressure suggests a dissociative character, such as a D or Id mechanism. The enhanced reactivity of waters on the Mo72Fe30 cluster is associated with an increase in the FeIII-OH2 bond length in the solid state of approximately 0.1 A relative to the Fe(OH2)63+ ion, suggesting that a correlation exists between the FeIII-OH2 bond length and k(ex)298. Although there are only few high-spin Fe(III) complexes where both exchange rates and structural data are available, these few seem to support a general correlation.

  12. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew, E-mail: amugler@purdue.edu

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations ofmore » the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.« less

  13. Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.

    PubMed

    You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary

    2011-02-01

    The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure

  14. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    NASA Astrophysics Data System (ADS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2000-03-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po210), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below.

  15. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  16. Micrometer- and nanometer-sized platinum group nuggets in micrometeorites from deep-sea sediments of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Parashar, K.; Shyam Prasad, M.

    2011-03-01

    We examined 378 micrometeorites collected from deep-sea sediments of the Indian Ocean of which 175, 180, and 23 are I-type, S-type, and G-type, respectively. Of the 175 I-type spherules, 13 contained platinum group element nuggets (PGNs). The nuggets occur in two distinct sizes and have distinctly different elemental compositions: micrometer (μm)-sized nuggets that are >3 μm contain dominantly Ir, Os, and Ru (iridium-platinum group element or IPGE) and sub-μm (or nanometer)-sized (<1 μm) nuggets, which contain dominantly Pt, Rh, and Pd (palladium—PGE or PPGE). The μm-sized nuggets are found only one per spherule in the cross section observed and are usually found at the edge of the spherule. By contrast, there are hundreds of nanometer-sized nuggets distributed dominantly in the magnetite phases of the spherules, and rarely in the wüstite phases. Both the nugget types are found as separate entities in the same spherule and apparently, nugget formation is a common phenomenon among I-type micrometeorites. However, the μm-sized nuggets are seen in fewer specimens (˜2.5% of the observed I-type spherules). In all, we analyzed four nuggets of μm size and 213 nanometer-sized nuggets from 13 I-type spherules for platinum group elements. Chemically, the μm-sized PGNs contain chondritic ratios of Os/Ir, but are depleted in the more volatile PGE (Pt, Rh, and Pd) relative to chondritic ratios. On the other hand, the nanometer-sized nuggets contain dominantly Pt and Rh. Importantly, the refractory PGEs are conspicuous by their absence in these nanometer nuggets. Palladium, the most volatile PGE is highly depleted (<1.1%) with respect to chondritic ratios in the μm-sized PGNs, and is observed in only 17 of 213 nanometer nuggets with concentrations that are just above the detection limit (≥0.2%). Distinct fractionation of the PGE into IPGE (Ir, Os, Ru) and PPGE seems to take place during the short span of atmospheric entry. These observations suggest several

  17. Direct observation of terahertz surface modes in nanometer-sized liquid water pools.

    PubMed

    Boyd, J E; Briskman, A; Colvin, V L; Mittleman, D M

    2001-10-01

    The far-infrared absorption spectrum of nanometer-sized water pools at the core of AOT micelles exhibits a pronounced resonance which is absent in bulk water. The amplitude and spectral position of this resonance are sensitive to the size of the confined water core. This resonance results from size-dependent modifications in the vibrational density of states, and thus has far-reaching implications for chemical processes which involve water sequestered within small cavities. These data represent the first study of the terahertz dielectric properties of confined liquids.

  18. Digital image processing of nanometer-size metal particles on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  19. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    NASA Astrophysics Data System (ADS)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  20. On the validity of the Poisson assumption in sampling nanometer-sized aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damit, Brian E; Wu, Dr. Chang-Yu; Cheng, Mengdawn

    2014-01-01

    A Poisson process is traditionally believed to apply to the sampling of aerosols. For a constant aerosol concentration, it is assumed that a Poisson process describes the fluctuation in the measured concentration because aerosols are stochastically distributed in space. Recent studies, however, have shown that sampling of micrometer-sized aerosols has non-Poissonian behavior with positive correlations. The validity of the Poisson assumption for nanometer-sized aerosols has not been examined and thus was tested in this study. Its validity was tested for four particle sizes - 10 nm, 25 nm, 50 nm and 100 nm - by sampling from indoor air withmore » a DMA- CPC setup to obtain a time series of particle counts. Five metrics were calculated from the data: pair-correlation function (PCF), time-averaged PCF, coefficient of variation, probability of measuring a concentration at least 25% greater than average, and posterior distributions from Bayesian inference. To identify departures from Poissonian behavior, these metrics were also calculated for 1,000 computer-generated Poisson time series with the same mean as the experimental data. For nearly all comparisons, the experimental data fell within the range of 80% of the Poisson-simulation values. Essentially, the metrics for the experimental data were indistinguishable from a simulated Poisson process. The greater influence of Brownian motion for nanometer-sized aerosols may explain the Poissonian behavior observed for smaller aerosols. Although the Poisson assumption was found to be valid in this study, it must be carefully applied as the results here do not definitively prove applicability in all sampling situations.« less

  1. Optical field enhancement of nanometer-sized gaps at near-infrared frequencies.

    PubMed

    Ahn, Jae Sung; Kang, Taehee; Singh, Dilip K; Bahk, Young-Mi; Lee, Hyunhwa; Choi, Soo Bong; Kim, Dai-Sik

    2015-02-23

    We report near-field and far-field measurements of transmission through nanometer-sized gaps at near-infrared frequencies with varying the gap size from 1 nm to 10 nm. In the far-field measurements, we excluded direct transmission on the metal film surface via interferometric method. Kirchhoff integral formalism was used to relate the far-field intensity to the electric field at the nanogaps. In near-field measurements, field enhancement factors of the nanogaps were quantified by measuring transmission of the nanogaps using near-field scanning optical microscopy. All the measurements produce similar field enhancements of about ten, which we put in the context of comparing with the giant field enhancements in the terahertz regime.

  2. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  3. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  4. Nanometer-Sized Diamond Particle as a Probe for Biolabeling

    PubMed Central

    Chao, Jui-I.; Perevedentseva, Elena; Chung, Pei-Hua; Liu, Kuang-Kai; Cheng, Chih-Yuan; Chang, Chia-Ching; Cheng, Chia-Liang

    2007-01-01

    A novel method is proposed using nanometer-sized diamond particles as detection probes for biolabeling. The advantages of nanodiamond's unique properties were demonstrated in its biocompatibility, nontoxicity, easily detected Raman signal, and intrinsic fluorescence from its natural defects without complicated pretreatments. Carboxylated nanodiamond's (cND's) penetration ability, noncytotoxicity, and visualization of cND-cell interactions are demonstrated on A549 human lung epithelial cells. Protein-targeted cell interaction visualization was demonstrated with cND-lysozyme complex interaction with bacteria Escherichia coli. It is shown that the developed biomolecule-cND complex preserves the original functions of the test protein. The easily detected natural fluorescent and Raman intrinsic signals, penetration ability, and low cytotoxicity of cNDs render them promising agents in multiple medical applications. PMID:17513352

  5. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOEpatents

    Musket, Ronald G.; Felter, Thomas E.

    2002-01-01

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  6. Nanometer-sized materials for solid-phase extraction of trace elements.

    PubMed

    Hu, Bin; He, Man; Chen, Beibei

    2015-04-01

    This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.

  7. Nanometer scale atomic structure of zirconium based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo

    We have studied the nanometer scale structure of bulk metallic glass (BMG) using fluctuation electron microscopy (FEM). The nanometer scale medium range order (MRO) in BMG is of significant interest because of its possible relationship to the properties, but the experimental study of the MRO is difficult because conventional diffraction techniques are not sensitive to the MRO scale. FEM is a quantitative transmission electron microscopy technique which measures the nanoscale structural fluctuation associated with MRO in amorphous materials, and provides information about the size, distribution, and internal structure of MRO. In this work, we developed an improved method for FEM using energy-filtered STEM nanodiffraction with highly coherent probes with size up to 11nm in a state-of-the-art Cs- corrected STEM. We also developed an effective way to eliminate the effect of sample thickness variation to the FEM data by using Z-contrast images as references. To study the detailed structure of MRO, we developed a hybrid reverse Monte Carlo (H-RMC) simulation which combines an empirical atomic potential and the FEM data. H-RMC generated model structures that match the experimental data at short and medium range. In addition, the subtle rotational symmetries in the FEM nanodiffraction patterns were analyzed by angular correlation function to reveal more details of the internal structure of MRO. Our experiments and simulations show that Zr-based BMG contains pseudo-planar, crystal-like MRO as well as icosahedral clusters in its nanoscale structure. We found that some icosahedral clusters may be connected, and that structural relaxation by annealing increases the population of icosahedral clusters.

  8. Depositing nanometer-sized particles of metals onto carbon allotropes

    NASA Technical Reports Server (NTRS)

    Delozier, Donavon M. (Inventor); Fallbach, Michael J. (Inventor); Smith, Joseph G. (Inventor); Watson, Kent A. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  9. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation

    PubMed Central

    2010-01-01

    Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132

  10. Unequal cluster sizes in stepped-wedge cluster randomised trials: a systematic review.

    PubMed

    Kristunas, Caroline; Morris, Tom; Gray, Laura

    2017-11-15

    To investigate the extent to which cluster sizes vary in stepped-wedge cluster randomised trials (SW-CRT) and whether any variability is accounted for during the sample size calculation and analysis of these trials. Any, not limited to healthcare settings. Any taking part in an SW-CRT published up to March 2016. The primary outcome is the variability in cluster sizes, measured by the coefficient of variation (CV) in cluster size. Secondary outcomes include the difference between the cluster sizes assumed during the sample size calculation and those observed during the trial, any reported variability in cluster sizes and whether the methods of sample size calculation and methods of analysis accounted for any variability in cluster sizes. Of the 101 included SW-CRTs, 48% mentioned that the included clusters were known to vary in size, yet only 13% of these accounted for this during the calculation of the sample size. However, 69% of the trials did use a method of analysis appropriate for when clusters vary in size. Full trial reports were available for 53 trials. The CV was calculated for 23 of these: the median CV was 0.41 (IQR: 0.22-0.52). Actual cluster sizes could be compared with those assumed during the sample size calculation for 14 (26%) of the trial reports; the cluster sizes were between 29% and 480% of that which had been assumed. Cluster sizes often vary in SW-CRTs. Reporting of SW-CRTs also remains suboptimal. The effect of unequal cluster sizes on the statistical power of SW-CRTs needs further exploration and methods appropriate to studies with unequal cluster sizes need to be employed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Unequal cluster sizes in stepped-wedge cluster randomised trials: a systematic review

    PubMed Central

    Morris, Tom; Gray, Laura

    2017-01-01

    Objectives To investigate the extent to which cluster sizes vary in stepped-wedge cluster randomised trials (SW-CRT) and whether any variability is accounted for during the sample size calculation and analysis of these trials. Setting Any, not limited to healthcare settings. Participants Any taking part in an SW-CRT published up to March 2016. Primary and secondary outcome measures The primary outcome is the variability in cluster sizes, measured by the coefficient of variation (CV) in cluster size. Secondary outcomes include the difference between the cluster sizes assumed during the sample size calculation and those observed during the trial, any reported variability in cluster sizes and whether the methods of sample size calculation and methods of analysis accounted for any variability in cluster sizes. Results Of the 101 included SW-CRTs, 48% mentioned that the included clusters were known to vary in size, yet only 13% of these accounted for this during the calculation of the sample size. However, 69% of the trials did use a method of analysis appropriate for when clusters vary in size. Full trial reports were available for 53 trials. The CV was calculated for 23 of these: the median CV was 0.41 (IQR: 0.22–0.52). Actual cluster sizes could be compared with those assumed during the sample size calculation for 14 (26%) of the trial reports; the cluster sizes were between 29% and 480% of that which had been assumed. Conclusions Cluster sizes often vary in SW-CRTs. Reporting of SW-CRTs also remains suboptimal. The effect of unequal cluster sizes on the statistical power of SW-CRTs needs further exploration and methods appropriate to studies with unequal cluster sizes need to be employed. PMID:29146637

  12. Boron Nitride-supported Sub-nanometer Pd 6 Clusters for Formic Acid Decomposition: A DFT Study

    DOE PAGES

    Schimmenti, Roberto; Cortese, Remedios; Duca, Dario; ...

    2017-04-25

    A periodic, self-consistent planewave DFT study was carried out to explore the potential use of Pd 6 clusters supported on a boron nitride sheet as a catalyst for the selective decomposition of formic acid (HCOOH) to CO 2 and H 2. The competition between formate (HCOO) and carboxyl (COOH) paths on catalytic sites, with different proximities to the support, was studied. Based on energetics alone, the reaction may mainly follow the HCOO route. Slightly lower activation energies were found at the lateral sites of the cluster as compared to top face sites. This is particularly true for the bidentate tomore » monodentate HCOO conversion. Through comparison of results with similar studies on HCOOH decomposition on extended Pd surfaces, it was demonstrated that the existence of undercoordinated sites in the sub-nanometer cluster could play a key role in preferentially stabilizing HCOO over COOH, which is a common CO precursor in this reaction. A hydrogen spillover mechanism was also investigated; migration toward the boron nitride support is not favorable, at least in the early stages of the reaction. However, hydrogen diffusion on the cluster has low barriers compared to those involved in formic acid decomposition.« less

  13. Boron Nitride-supported Sub-nanometer Pd 6 Clusters for Formic Acid Decomposition: A DFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimmenti, Roberto; Cortese, Remedios; Duca, Dario

    A periodic, self-consistent planewave DFT study was carried out to explore the potential use of Pd 6 clusters supported on a boron nitride sheet as a catalyst for the selective decomposition of formic acid (HCOOH) to CO 2 and H 2. The competition between formate (HCOO) and carboxyl (COOH) paths on catalytic sites, with different proximities to the support, was studied. Based on energetics alone, the reaction may mainly follow the HCOO route. Slightly lower activation energies were found at the lateral sites of the cluster as compared to top face sites. This is particularly true for the bidentate tomore » monodentate HCOO conversion. Through comparison of results with similar studies on HCOOH decomposition on extended Pd surfaces, it was demonstrated that the existence of undercoordinated sites in the sub-nanometer cluster could play a key role in preferentially stabilizing HCOO over COOH, which is a common CO precursor in this reaction. A hydrogen spillover mechanism was also investigated; migration toward the boron nitride support is not favorable, at least in the early stages of the reaction. However, hydrogen diffusion on the cluster has low barriers compared to those involved in formic acid decomposition.« less

  14. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    PubMed

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  15. Hierarchical modeling of cluster size in wildlife surveys

    USGS Publications Warehouse

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  16. Ethical implications of excessive cluster sizes in cluster randomised trials.

    PubMed

    Hemming, Karla; Taljaard, Monica; Forbes, Gordon; Eldridge, Sandra M; Weijer, Charles

    2018-02-20

    The cluster randomised trial (CRT) is commonly used in healthcare research. It is the gold-standard study design for evaluating healthcare policy interventions. A key characteristic of this design is that as more participants are included, in a fixed number of clusters, the increase in achievable power will level off. CRTs with cluster sizes that exceed the point of levelling-off will have excessive numbers of participants, even if they do not achieve nominal levels of power. Excessively large cluster sizes may have ethical implications due to exposing trial participants unnecessarily to the burdens of both participating in the trial and the potential risks of harm associated with the intervention. We explore these issues through the use of two case studies. Where data are routinely collected, available at minimum cost and the intervention poses low risk, the ethical implications of excessively large cluster sizes are likely to be low (case study 1). However, to maximise the social benefit of the study, identification of excessive cluster sizes can allow for prespecified and fully powered secondary analyses. In the second case study, while there is no burden through trial participation (because the outcome data are routinely collected and non-identifiable), the intervention might be considered to pose some indirect risk to patients and risks to the healthcare workers. In this case study it is therefore important that the inclusion of excessively large cluster sizes is justifiable on other grounds (perhaps to show sustainability). In any randomised controlled trial, including evaluations of health policy interventions, it is important to minimise the burdens and risks to participants. Funders, researchers and research ethics committees should be aware of the ethical issues of excessively large cluster sizes in cluster trials. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is

  17. Understanding the effect of size and shape of gold nanomaterials on nanometal surface energy transfer.

    PubMed

    Rakshit, Soumyadipta; Moulik, Satya Priya; Bhattacharya, Subhash Chandra

    2017-04-01

    Gold Nanomaterials (GNMs) interact with fluorophores via electromagnetic coupling under excitation. In this particular work we carried out (to the best of our knowledge for the first time) a comprehensive study of systematic quenching of a blue emitter 2-Anthracene Sulfonate (2-AS) in the presence of gold nanoparticles of different size and shape. We synthesized gold nanomaterials of four different dimensions [nanoparticle (0D), nanorod (1D), nanotriangle (2D) and nanobipyramids (3D)] and realized the underlying effect on the emitting dipole in terms of steady and time resolved fluorescence. Nanometal Surface Energy Transfer (NSET) has already been proved to be the best long range spectroscopic ruler so far. Many attempts have been made to understand the interaction between a fluorescent molecule and gold nanomaterials. But not a single model can interpret alone the interaction phenomena. We have opted three different models to compare the experimental and theoretical data. Due to the presence of size dependent absorptivity and dielectric function, modified CPS-Kuhn model was proved to be the worthiest to comprehend variance of behavior of an emitting dipole in close proximity to nanometal surface by coupling with the image dipole of gold nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    NASA Astrophysics Data System (ADS)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  19. Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    2006-12-01

    Measuring of charged nanometer particles in atmospheric air is a routine task in research on atmospheric electricity, where these particles are called the atmospheric ions. An aspiration condenser is the most popular instrument for measuring atmospheric ions. Continuous scanning of a mobility distribution is possible when the aspiration condenser is connected as an arm of a balanced bridge. Transfer function of an aspiration condenser is calculated according to the measurements of geometric dimensions, air flow rate, driving voltage, and electric current. The most complicated phase of the calibration is the estimation of the inlet loss of ions due to the Brownian deposition. The available models of ion deposition on the protective inlet screen and the inlet control electrofilter have the uncertainty of about 20%. To keep the uncertainty of measurements low the adsorption should not exceed a few tens of percent. The online conversion of the mobility distribution to the size distribution and a correct reduction of inlet losses are possible when air temperature and pressure are measured simultaneously with the mobility distribution. Two instruments called the Balanced Scanning Mobility Analyzers (BSMA) were manufactured and tested in routine atmospheric measurements. The concentration of atmospheric ions of the size of about a few nanometers is very low and a high air flow rate is required to collect enough of ion current. The air flow of 52 l/s exceeds the air flow in usual aerosol instruments by 2-3 orders of magnitude. The high flow rate reduces the time of ion passage to 60 ms and the heating of air in an analyzer to 0.2 K, which suppresses a possible transformation of ions inside the instrument. The mobility range of the BSMA of 0.032-3.2 cm 2 V - 1 s - 1 is logarithmically uniformly divided into 16 fractions. The size distribution is presented by 12 fractions in the diameter range of 0.4-7.5 nm. The measurement noise of a fraction concentration is typically

  20. Critical oxide cluster size on Si(111)

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Aono, M.; Suzuki, T.

    1999-03-01

    The initial stage of oxide growth and subsequent oxide decomposition on Si(111)-7×7 at temperatures between 350 and 720°C are studied with the optical second harmonic generation for O 2 pressures ( Pox) between 5×10 -9 and 4×10 -6 Torr. The obtained pressure dependencies of the initial oxide growth rate ( Rgr) and the subsequent oxide decomposition rate are associated with the cluster-forming nature of the oxidation process. For the model of oxide cluster nucleation and growth, a scaling relationship is derived among the critical oxide cluster size, i, and the experimentally measurable values of Rgr and Pox. The critical oxide cluster size, i, thus obtained from the kinetic data increases with temperature. This correlates with an increase of desorption channels and their rates in that the competition between growth and decomposition requires more stable oxide clusters, i.e. clusters with a larger critical size, for oxide to grow at higher temperatures. The increase of i with decreasing Pox is related with a decrease of Rgr: a decreased Rgr requires critical clusters with a longer lifetime, i.e. clusters with a larger size.

  1. Winding single-molecule double-stranded DNA on a nanometer-sized reel

    PubMed Central

    You, Huijuan; Iino, Ryota; Watanabe, Rikiya; Noji, Hiroyuki

    2012-01-01

    A molecular system of a nanometer-sized reel was developed from F1–ATPase, a rotary motor protein. By combination with magnetic tweezers and optical tweezers, single-molecule double-stranded DNA (dsDNA) was wound around the molecular reel. The bending stiffness of dsDNA was determined from the winding tension (0.9–6.0 pN) and the diameter of the wound loop (21.4–8.5 nm). Our results were in good agreement with the conventional worm-like chain model and a persistence length of 54 ± 9 nm was estimated. This molecular reel system offers a new platform for single-molecule study of micromechanics of sharply bent DNA molecules and is expected to be applicable to the elucidation of the molecular mechanism of DNA-associating proteins on sharply bent DNA strands. PMID:22772992

  2. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  3. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy

    PubMed Central

    2009-01-01

    An important part of characterizing any protein molecule is to determine its size and shape. Sedimentation and gel filtration are hydrodynamic techniques that can be used for this medium resolution structural analysis. This review collects a number of simple calculations that are useful for thinking about protein structure at the nanometer level. Readers are reminded that the Perrin equation is generally not a valid approach to determine the shape of proteins. Instead, a simple guideline is presented, based on the measured sedimentation coefficient and a calculated maximum S, to estimate if a protein is globular or elongated. It is recalled that a gel filtration column fractionates proteins on the basis of their Stokes radius, not molecular weight. The molecular weight can be determined by combining gradient sedimentation and gel filtration, techniques available in most biochemistry laboratories, as originally proposed by Siegel and Monte. Finally, rotary shadowing and negative stain electron microscopy are powerful techniques for resolving the size and shape of single protein molecules and complexes at the nanometer level. A combination of hydrodynamics and electron microscopy is especially powerful. PMID:19495910

  4. Uniform deposition of size-selected clusters using Lissajous scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Hirata, Hirohito

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonalmore » directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.« less

  5. CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de

    2016-09-01

    To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the diskmore » size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.« less

  6. Catalysis applications of size-selected cluster deposition

    DOE PAGES

    Vajda, Stefan; White, Michael G.

    2015-10-23

    In this Perspective, we review recent studies of size-selected cluster deposition for catalysis applications performed at the U.S. DOE National Laboratories, with emphasis on work at Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL). The focus is on the preparation of model supported catalysts in which the number of atoms in the deposited clusters is precisely controlled using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques. This approach is particularly effective for investigations of small nanoclusters, 0.5-2 nm (<200 atoms), where the rapid evolution of the atomic and electronic structure makes it essential to havemore » precise control over cluster size. Cluster deposition allows for independent control of cluster size, coverage, and stoichiometry (e.g., the metal-to-oxygen ratio in an oxide cluster) and can be used to deposit on any substrate without constraints of nucleation and growth. Examples are presented for metal, metal oxide, and metal sulfide cluster deposition on a variety of supports (metals, oxides, carbon/diamond) where the reactivity, cluster-support electronic interactions, and cluster stability and morphology are investigated. Both UHV and in situ/operando studies are presented that also make use of surface-sensitive X-ray characterization tools from synchrotron radiation facilities. Novel applications of cluster deposition to electrochemistry and batteries are also presented. This review also highlights the application of modern ab initio electronic structure calculations (density functional theory), which can essentially model the exact experimental system used in the laboratory (i.e., cluster and support) to provide insight on atomic and electronic structure, reaction energetics, and mechanisms. As amply demonstrated in this review, the powerful combination of atomically precise cluster deposition and theory is able to address fundamental aspects of size

  7. Reverse-transformation austenite structure control with micro/nanometer size

    NASA Astrophysics Data System (ADS)

    Wu, Hui-bin; Niu, Gang; Wu, Feng-juan; Tang, Di

    2017-05-01

    To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870°C for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850°C, where grains with a diameter ≤ 500 nm accounted for 30% and those with a diameter > 0.5 μm accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.

  8. Perspective: Size selected clusters for catalysis and electrochemistry

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan

    2018-03-01

    Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.

  9. Sample size adjustments for varying cluster sizes in cluster randomized trials with binary outcomes analyzed with second-order PQL mixed logistic regression.

    PubMed

    Candel, Math J J M; Van Breukelen, Gerard J P

    2010-06-30

    Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second-order penalized quasi-likelihood estimation (PQL). Starting from first-order marginal quasi-likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second-order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed-form formulas for sample size calculation are based on first-order MQL, planning a trial also requires a conversion factor to obtain the variance of the second-order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. (c) 2010 John Wiley & Sons, Ltd.

  10. Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials

    NASA Astrophysics Data System (ADS)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Yoon, Bokwon; Schweinberger, Florian F.; Landman, Uzi; Heiz, Ueli

    2016-10-01

    The nature of the nano-catalyzed hydrogenation of ethylene, yielding benchmark information pertaining to the concept of structure sensitivity/insensitivity and its applicability at the bottom of the catalyst particle size-range, is explored with experiments on size-selected Ptn (n = 7-40) clusters soft-landed on MgO, in conjunction with first-principles simulations. As in the case of larger particles both the direct ethylene hydrogenation channel and the parallel hydrogenation-dehydrogenation ethylidyne-producing route must be considered, with the fundamental uncovering that at the < 1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to the structure insensitivity found for larger particles. In this size-regime, the chemical properties can be modulated and tuned by a single atom, reflected by the onset of low temperature hydrogenation at T > 150 K catalyzed by Ptn (n ≥ 10) clusters, with maximum room temperature reactivity observed for Pt13 using a pulsed molecular beam technique. Structure insensitive behavior, inherent for specific cluster sizes at ambient temperatures, can be induced in the more active sizes, e.g. Pt13, by a temperature increase, up to 400 K, which opens dehydrogenation channels leading to ethylidyne formation. This reaction channel was, however found to be attenuated on Pt20, as catalyst activity remained elevated after the 400 K step. Pt30 displayed behavior which can be understood from extrapolating bulk properties to this size range; in particular the calculated d-band center. In the non-scalable sub-nanometer size regime, however, precise control of particle size may be used for atom-by-atom tuning and manipulation of catalyzed hydrogenation activity and selectivity.

  11. Perspective: Size selected clusters for catalysis and electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro

    We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less

  12. Perspective: Size selected clusters for catalysis and electrochemistry

    DOE PAGES

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; ...

    2018-03-15

    We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less

  13. Osteomyelitis Treatment with Nanometer-Sized Hydroxyapatite Particles as a Delivery Vehicle for a Ciprofloxacin- Bisphosphonate Conjugate; New Fluoroquinolone-Bisphosphonate Derivatives Show Similar Binding Affinity to Hydroxyapatite and Improved Antibacterial Activity Against Drug-Resistant Pathogens

    DTIC Science & Technology

    2008-12-01

    1 OSTEOMYELITIS TREATMENT WITH NANOMETER-SIZED HYDROXYAPATITE PARTICLES AS A DELIVERY VEHICLE FOR A CIPROFLOXACIN- BISPHOSPHONATE CONJUGATE; NEW...FLUOROQUINOLONE-BISPHOSPHONATE DERIVATIVES SHOW SIMILAR BINDING AFFINITY TO HYDROXYAPATITE AND IMPROVED ANTIBACTERIAL ACTIVITY AGAINST DRUG-RESISTANT...vivo OM model. Current studies contrast two CP homeostatic bone-substitute particles, nanometer-sized hydroxyapatite NanOss™ (Nan), and µ-sized

  14. Cluster size dependence of high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Hagmeijer, R.; Bastiaens, H. M. J.; Goh, S. J.; van der Slot, P. J. M.; Biedron, S. G.; Milton, S. V.; Boller, K.-J.

    2017-08-01

    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3×1016 to 3 × 1018 {{cm}}-3) at two different reservoir temperatures (303 and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 100 for very small average cluster size (∼200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighboring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (∼200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.

  15. Re-estimating sample size in cluster randomised trials with active recruitment within clusters.

    PubMed

    van Schie, S; Moerbeek, M

    2014-08-30

    Often only a limited number of clusters can be obtained in cluster randomised trials, although many potential participants can be recruited within each cluster. Thus, active recruitment is feasible within the clusters. To obtain an efficient sample size in a cluster randomised trial, the cluster level and individual level variance should be known before the study starts, but this is often not the case. We suggest using an internal pilot study design to address this problem of unknown variances. A pilot can be useful to re-estimate the variances and re-calculate the sample size during the trial. Using simulated data, it is shown that an initially low or high power can be adjusted using an internal pilot with the type I error rate remaining within an acceptable range. The intracluster correlation coefficient can be re-estimated with more precision, which has a positive effect on the sample size. We conclude that an internal pilot study design may be used if active recruitment is feasible within a limited number of clusters. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Effect Sizes in Cluster-Randomized Designs

    ERIC Educational Resources Information Center

    Hedges, Larry V.

    2007-01-01

    Multisite research designs involving cluster randomization are becoming increasingly important in educational and behavioral research. Researchers would like to compute effect size indexes based on the standardized mean difference to compare the results of cluster-randomized studies (and corresponding quasi-experiments) with other studies and to…

  17. Reproducible Crystallite Size of Mono-Dispersed and Scalable Biologically Produced Metal-Substituted Nanometer-Sized Magnetites

    NASA Astrophysics Data System (ADS)

    Moon, J.; Rawn, C.; Rondinone, A.; Love, L.; Roh, Y.; Lauf, R.; Phelps, T.

    2008-12-01

    Our previous research demonstrated that biosynthesized magnetite (biomagnetite) exhibited similar properties as chemically synthesized magnetite. To complement uses of the traditional chemically synthesized magnetite (chem-magnetite) biomagnetite must be exhibit highly reproducible sizes and be available in scalable qualities. Here we emphasize potentially advantageous properties of biomagnetite regarding size, reproducibility and scaling availability. Average crystallite size (ACS) of biomagnetites ranging from 10-100 nm was determined after varied 1) incubation times, 2) substitution of metal and lanthanide species, 3) degrees of congruent incorporation or retardation of substitution elements, 4) bacterial species with their varied ability to substitute elemental species, and 6) incubation temperature that can influence coalescence. The microbial production of biomagnetite has demonstrated capacity to make highly crystalline nanoscale particles of metal-substituted ferrites including compounds of Co, Ni, Cr, Mn, Zn and the rare earths in large quantity. Selected Zn-substituted magnetite (nominal composition of Zn0.6Fe2.4O4) has been recovered at over 1 kg (wet weight) in batches from 30 L fermentations. The massively produced extracellular magnetites were confirmed to exhibit good mono- dispersity via transmission electron microscopy (TEM). TEM also validated highly reproducible ACS of 13.1±0.8 nm size as determined through X-ray diffraction (N=7) at a 99 % confidence level. Based on the scale-up experiments performed using the 35 L reactor, the reduction in ACS variability and shorted incubation times of several days may be attributed to increases of electron donor input, and availability of divalent ions of the substitution metal with less ferrous ions in the case of doped magnetite, or a combination of the above. While costs of commercial nanometer sized magnetite (25-50 nm) may vary from 500/kg to > 1,000/kg, microbial mass production is likely capable of

  18. Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Ilton, Eugene S.; Bowden, Mark E.

    Olivines are divalent orthosilicates with important geologic, biological, and industrial significance and are typically comprised of mixtures of Mg2+ and Fe2+ ranging from forsterite (Mg2SiO4) to fayalite (Fe2SiO4). Investigating the role of Fe(II) in olivine reactivity requires the ability to synthesize olivines that are nanometer-sized, have different percentages of Mg2+ and Fe2+, and have good bulk and surface purity. This article demonstrates a new method for synthesizing nanosized fayalite and Mg-Fe mixture olivines. First, carbonaceous precursors are generated from sucrose, PVA, colloidal silica, Mg2+, and Fe3+. Second, these precursors are calcined in air to burn carbon and create mixtures ofmore » Fe(III)-oxides, forsterite, and SiO2. Finally, calcination in reducing CO-CO2 gas buffer leads to Fe(II)-rich olivines. XRD, Mössbauer, and IR analyses verify good bulk purity and composition. XPS indicates that surface iron is in its reduced Fe(II) form, and surface Si is consistent with olivine. SEM shows particle sizes predominately between 50 and 450 nm, and BET surface areas are 2.8-4.2 m2/g. STEM HAADF analysis demonstrates even distributions of Mg and Fe among the available M1 and M2 sites of the olivine crystals. These nanosized Fe(II)-rich olivines are suitable for laboratory studies with in situ probes that require mineral samples with high reactivity at short timescales.« less

  19. Surface effects on ionic Coulomb blockade in nanometer-size pores

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  20. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    PubMed

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  1. Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters.

    PubMed

    Parnis, J Mark; Escobar-Cabrera, Eric; Thompson, Matthew G K; Jacula, J Paul; Lafleur, Rick D; Guevara-García, Alfredo; Martínez, Ana; Rayner, David M

    2005-08-18

    Ethene reactions with niobium atoms and clusters containing up to 25 constituent atoms have been studied in a fast-flow metal cluster reactor. The clusters react with ethene at about the gas-kinetic collision rate, indicating a barrierless association process as the cluster removal step. Exceptions are Nb8 and Nb10, for which a significantly diminished rate is observed, reflecting some cluster size selectivity. Analysis of the experimental primary product masses indicates dehydrogenation of ethene for all clusters save Nb10, yielding either Nb(n)C2H2 or Nb(n)C2. Over the range Nb-Nb6, the extent of dehydrogenation increases with cluster size, then decreases for larger clusters. For many clusters, secondary and tertiary product masses are also observed, showing varying degrees of dehydrogenation corresponding to net addition of C2H4, C2H2, or C2. With Nb atoms and several small clusters, formal addition of at least six ethene molecules is observed, suggesting a polymerization process may be active. Kinetic analysis of the Nb atom and several Nb(n) cluster reactions with ethene shows that the process is consistent with sequential addition of ethene units at rates corresponding approximately to the gas-kinetic collision frequency for several consecutive reacting ethene molecules. Some variation in the rate of ethene pick up is found, which likely reflects small energy barriers or steric constraints associated with individual mechanistic steps. Density functional calculations of structures of Nb clusters up to Nb(6), and the reaction products Nb(n)C2H2 and Nb(n)C2 (n = 1...6) are presented. Investigation of the thermochemistry for the dehydrogenation of ethene to form molecular hydrogen, for the Nb atom and clusters up to Nb6, demonstrates that the exergonicity of the formation of Nb(n)C2 species increases with cluster size over this range, which supports the proposal that the extent of dehydrogenation is determined primarily by thermodynamic constraints. Analysis of

  2. Morphology of size-selected Ptn clusters on CeO2(111)

    NASA Astrophysics Data System (ADS)

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-01

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO2(111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Ptn (n = 5-13) clusters on a CeO2(111) surface using scanning tunneling microscopy at room temperature. Ptn clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Ptn clusters on the CeO2(111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO2(111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Ptn clusters on a CeO2(111) surface.

  3. Morphology of size-selected Ptn clusters on CeO2(111).

    PubMed

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-21

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO 2 (111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Pt n (n = 5-13) clusters on a CeO 2 (111) surface using scanning tunneling microscopy at room temperature. Pt n clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Pt n clusters on the CeO 2 (111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO 2 (111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Pt n clusters on a CeO 2 (111) surface.

  4. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  5. The Size Distribution Of Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Kuchner, U.; Ziegler, B.; Bamford, S.; Verdugo, M.; Haeussler, B.

    2017-06-01

    We establish a sample of 560 spectroscopically confirmed cluster members of MACS J1206.2- 0847 at z = 0.45 and utilize multi-wavelength and multi-component Sersic profile fitting to provide luminosities and sizes for the key structural components bulge and disk. While the difference between field and cluster galaxy properties are mostly due to a preference for cluster members to be early-type (quiescent, bulge-dominated), we see evidence for an outer disk fading and a sharp rise in the number of red disks with smaller effective radii at the tidally active cluster region around R200. Even though red disks are already virialized according to their velocity distribution, they are clearly not part of the old population found in the innermost region; they represent an important population of transitional objects in clusters.

  6. Micron-size hydrogen cluster target for laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Jinno, S.; Kanasaki, M.; Uno, M.; Matsui, R.; Uesaka, M.; Kishimoto, Y.; Fukuda, Y.

    2018-04-01

    As a new laser-driven ion acceleration technique, we proposed a way to produce impurity-free, highly reproducible, and robust proton beams exceeding 100 MeV using a Coulomb explosion of micron-size hydrogen clusters. In this study, micron-size hydrogen clusters were generated by expanding the cooled high-pressure hydrogen gas into a vacuum via a conical nozzle connected to a solenoid valve cooled by a mechanical cryostat. The size distributions of the hydrogen clusters were evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed mathematically based on the Mie scattering theory combined with the Tikhonov regularization method. The maximum size of the hydrogen cluster at 25 K and 6 MPa in the stagnation state was recognized to be 2.15 ± 0.10 μm. The mean cluster size decreased with increasing temperature, and was found to be much larger than that given by Hagena’s formula. This discrepancy suggests that the micron-size hydrogen clusters were formed by the atomization (spallation) of the liquid or supercritical fluid phase of hydrogen. In addition, the density profiles of the gas phase were evaluated for 25 to 80 K at 6 MPa using a Nomarski interferometer. Based on the measurement results and the equation of state for hydrogen, the cluster mass fraction was obtained. 3D particles-in-cell (PIC) simulations concerning the interaction processes of micron-size hydrogen clusters with high power laser pulses predicted the generation of protons exceeding 100 MeV and accelerating in a laser propagation direction via an anisotropic Coulomb explosion mechanism, thus demonstrating a future candidate in laser-driven proton sources for upcoming multi-petawatt lasers.

  7. Methods for sample size determination in cluster randomized trials

    PubMed Central

    Rutterford, Clare; Copas, Andrew; Eldridge, Sandra

    2015-01-01

    Background: The use of cluster randomized trials (CRTs) is increasing, along with the variety in their design and analysis. The simplest approach for their sample size calculation is to calculate the sample size assuming individual randomization and inflate this by a design effect to account for randomization by cluster. The assumptions of a simple design effect may not always be met; alternative or more complicated approaches are required. Methods: We summarise a wide range of sample size methods available for cluster randomized trials. For those familiar with sample size calculations for individually randomized trials but with less experience in the clustered case, this manuscript provides formulae for a wide range of scenarios with associated explanation and recommendations. For those with more experience, comprehensive summaries are provided that allow quick identification of methods for a given design, outcome and analysis method. Results: We present first those methods applicable to the simplest two-arm, parallel group, completely randomized design followed by methods that incorporate deviations from this design such as: variability in cluster sizes; attrition; non-compliance; or the inclusion of baseline covariates or repeated measures. The paper concludes with methods for alternative designs. Conclusions: There is a large amount of methodology available for sample size calculations in CRTs. This paper gives the most comprehensive description of published methodology for sample size calculation and provides an important resource for those designing these trials. PMID:26174515

  8. Fabrications of insulator-protected nanometer-sized electrode gaps

    NASA Astrophysics Data System (ADS)

    Arima, Akihide; Tsutsui, Makusu; Morikawa, Takanori; Yokota, Kazumichi; Taniguchi, Masateru

    2014-03-01

    We developed SiO2-coated mechanically controllable break junctions for accurate tunneling current measurements in an ionic solution. By breaking the junction, we created dielectric-protected Au nanoprobes with nanometer separation. We demonstrated that the insulator protection was capable to suppress the ionic contribution to the charge transport through the electrode gap, thereby enabled reliable characterizations of liquid-mediated exponential decay of the tunneling conductance in an electrolyte solution. From this, we found distinct roles of charge points such as molecular dipoles and ion species on the tunneling decay constant, which was attributed to local structures of molecules and ions in the confined space between the sensing electrodes. The device described here would provide improved biomolecular sensing capability of tunneling current sensors.

  9. Relative efficiency of unequal versus equal cluster sizes in cluster randomized trials using generalized estimating equation models.

    PubMed

    Liu, Jingxia; Colditz, Graham A

    2018-05-01

    There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the "working correlation structure" is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two-group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs-exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 7 CFR 52.1851 - Sizes of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sizes of raisins with seeds-layer or cluster. 52.1851...-Raisins with Seeds § 52.1851 Sizes of raisins with seeds—layer or cluster. The size of Layer or Cluster... measurement as applicable to layer or cluster raisins with seeds are: (a) 3 Crown size or larger. “3 Crown...

  11. Polymorphism in magic-sized Au144(SR)60 clusters

    NASA Astrophysics Data System (ADS)

    Jensen, Kirsten M. Ø.; Juhas, Pavol; Tofanelli, Marcus A.; Heinecke, Christine L.; Vaughan, Gavin; Ackerson, Christopher J.; Billinge, Simon J. L.

    2016-06-01

    Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. Here we present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. The study reveals structural polymorphism in these archetypal nanoclusters. In addition to confirming the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. The discovery of polymorphism may open up a new dimension in nanoscale engineering.

  12. Synthesis of nanometer-size inorganic materials for the examination of particle size effects on heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Emerson, Sean Christian

    The effect of acoustic and hydrodynamic cavitation on the precipitation of inorganic catalytic materials, specifically titania supported gold, was investigated. The overall objective was to understand the fundamental factors involved in synthesizing nanometer-size catalytic materials in the 1--10 nm range in a cavitating field. Materials with grain sizes in this range have been associated with enhanced catalytic activity compared to larger grain size materials. A new chemical approach was used to produce titania supported gold by co-precipitation with higher gold yields compared to other synthesis methods. Using this approach, it was determined that acoustic cavitation was unable to influence the gold mean crystallite size compared to non-sonicated catalysts. However, gold concentration on the catalysts was found to be very important for CO oxidation activity. By decreasing the gold concentration from a weight loading of 0.50% down to approximately 0.05%, the rate of reaction per mole of gold was found to increase by a factor of 19. Hydrodynamic cavitation at low pressures (6.9--48 bar) was determined to have no effect on gold crystallite size at a fixed gold content for the same precipitation technique used in the acoustic cavitation studies. By changing the chemistry of the precipitation system, however, it was found that a synergy existed between the dilution of the gold precursor solution, the orifice diameter, and the reducing agent addition rate. Individually, these factors were found to have little effect and only their interaction allowed gold grain size control in the range of 8--80 nm. Further modification of the system chemistry and the use of hydrodynamic cavitation at pressures in excess of 690 bar allowed the systematic control of gold crystallite size in the range of 2--9 nm for catalysts containing 2.27 +/- 0.17% gold. In addition, it was shown that the enhanced mixing due to cavitation led to larger gold yields compared to classical syntheses. The

  13. Characterization of micron-size hydrogen clusters using Mie scattering.

    PubMed

    Jinno, S; Tanaka, H; Matsui, R; Kanasaki, M; Sakaki, H; Kando, M; Kondo, K; Sugiyama, A; Uesaka, M; Kishimoto, Y; Fukuda, Y

    2017-08-07

    Hydrogen clusters with diameters of a few micrometer range, composed of 10 8-10 hydrogen molecules, have been produced for the first time in an expansion of supercooled, high-pressure hydrogen gas into a vacuum through a conical nozzle connected to a cryogenic pulsed solenoid valve. The size distribution of the clusters has been evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed based on the Mie scattering theory combined with the Tikhonov regularization method including the instrumental functions, the validity of which was assessed by performing a calibration study using a reference target consisting of standard micro-particles with two different sizes. The size distribution of the clusters was found discrete peaked at 0.33 ± 0.03, 0.65 ± 0.05, 0.81 ± 0.06, 1.40 ± 0.06 and 2.00 ± 0.13 µm in diameter. The highly reproducible and impurity-free nature of the micron-size hydrogen clusters can be a promising target for laser-driven multi-MeV proton sources with the currently available high power lasers.

  14. Water Oxidation Catalysis via Size-Selected Iridium Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Liu, Cong; LIU, ZHUN

    The detailed mechanism and efficacy of four electron electrochemical water oxidation depend critically upon the detailed atomic structure of each catalytic site, which are numerous and diverse in most metal oxides anodes. In order to limit the diversity of sites, arrays of discrete iridium clusters with identical metal atom number (Ir-2, Ir-4, or Ir-8) were deposited in submonolayer coverage on conductive oxide supports, and the electrochemical properties and activity of each was evaluated. Exceptional electroactivity for the oxygen evolving reaction (OER) was observed for all cluster samples in acidic electrolyte. Reproducible cluster-size-dependent trends in redox behavior were also resolved. First-principlesmore » computational models of the individual discrete-size clusters allow correlation of catalytic-site structure and multiplicity with redox behavior.« less

  15. Regression analysis of clustered failure time data with informative cluster size under the additive transformation models.

    PubMed

    Chen, Ling; Feng, Yanqin; Sun, Jianguo

    2017-10-01

    This paper discusses regression analysis of clustered failure time data, which occur when the failure times of interest are collected from clusters. In particular, we consider the situation where the correlated failure times of interest may be related to cluster sizes. For inference, we present two estimation procedures, the weighted estimating equation-based method and the within-cluster resampling-based method, when the correlated failure times of interest arise from a class of additive transformation models. The former makes use of the inverse of cluster sizes as weights in the estimating equations, while the latter can be easily implemented by using the existing software packages for right-censored failure time data. An extensive simulation study is conducted and indicates that the proposed approaches work well in both the situations with and without informative cluster size. They are applied to a dental study that motivated this study.

  16. Low-energy collisions of helium clusters with size-selected cobalt cluster ions

    NASA Astrophysics Data System (ADS)

    Odaka, Hideho; Ichihashi, Masahiko

    2017-04-01

    Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102-4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80015-0

  17. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials.

    PubMed

    Hooper, Richard; Teerenstra, Steven; de Hoop, Esther; Eldridge, Sandra

    2016-11-20

    The sample size required for a cluster randomised trial is inflated compared with an individually randomised trial because outcomes of participants from the same cluster are correlated. Sample size calculations for longitudinal cluster randomised trials (including stepped wedge trials) need to take account of at least two levels of clustering: the clusters themselves and times within clusters. We derive formulae for sample size for repeated cross-section and closed cohort cluster randomised trials with normally distributed outcome measures, under a multilevel model allowing for variation between clusters and between times within clusters. Our formulae agree with those previously described for special cases such as crossover and analysis of covariance designs, although simulation suggests that the formulae could underestimate required sample size when the number of clusters is small. Whether using a formula or simulation, a sample size calculation requires estimates of nuisance parameters, which in our model include the intracluster correlation, cluster autocorrelation, and individual autocorrelation. A cluster autocorrelation less than 1 reflects a situation where individuals sampled from the same cluster at different times have less correlated outcomes than individuals sampled from the same cluster at the same time. Nuisance parameters could be estimated from time series obtained in similarly clustered settings with the same outcome measure, using analysis of variance to estimate variance components. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Polymorphism in magic-sized Au144(SR)60 clusters

    DOE PAGES

    Jensen, Kirsten M. O.; Juhas, Pavol; Tofanelli, Marcus A.; ...

    2016-06-14

    Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. We present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. Our study reveals structural polymorphism in these archetypal nanoclusters. Additionally, in order to confirm the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. Finally,more » the discovery of polymorphism may open up a new dimension in nanoscale engineering.« less

  19. Room temperature deposition of silicon nanodot clusters by plasma-enhanced chemical vapor deposition.

    PubMed

    Kim, Jae-Kwan; Kim, Jun Young; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-10-01

    The formation of nanometer-scale (ns)-Si dots and clusters on p-GaN layers has been studied by controlling the early stage of growth during plasma-enhanced chemical vapor deposition (PECVD) at room temperature. We found that ns-Si dots and clusters formed on the p-GaN surface, indicating that growth was the Volmer-Weber mode. The deposition parameters such as radio frequency (RF) power and processing time mainly influenced the size of the ns-Si dots (40 nm-160 nm) and the density of the ns-Si dot clusters.

  20. Cluster dynamics and cluster size distributions in systems of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Peruani, F.; Schimansky-Geier, L.; Bär, M.

    2010-12-01

    Systems of self-propelled particles (SPP) interacting by a velocity alignment mechanism in the presence of noise exhibit rich clustering dynamics. Often, clusters are responsible for the distribution of (local) information in these systems. Here, we investigate the properties of individual clusters in SPP systems, in particular the asymmetric spreading behavior of clusters with respect to their direction of motion. In addition, we formulate a Smoluchowski-type kinetic model to describe the evolution of the cluster size distribution (CSD). This model predicts the emergence of steady-state CSDs in SPP systems. We test our theoretical predictions in simulations of SPP with nematic interactions and find that our simple kinetic model reproduces qualitatively the transition to aggregation observed in simulations.

  1. Cluster Size Optimization in Sensor Networks with Decentralized Cluster-Based Protocols

    PubMed Central

    Amini, Navid; Vahdatpour, Alireza; Xu, Wenyao; Gerla, Mario; Sarrafzadeh, Majid

    2011-01-01

    Network lifetime and energy-efficiency are viewed as the dominating considerations in designing cluster-based communication protocols for wireless sensor networks. This paper analytically provides the optimal cluster size that minimizes the total energy expenditure in such networks, where all sensors communicate data through their elected cluster heads to the base station in a decentralized fashion. LEACH, LEACH-Coverage, and DBS comprise three cluster-based protocols investigated in this paper that do not require any centralized support from a certain node. The analytical outcomes are given in the form of closed-form expressions for various widely-used network configurations. Extensive simulations on different networks are used to confirm the expectations based on the analytical results. To obtain a thorough understanding of the results, cluster number variability problem is identified and inspected from the energy consumption point of view. PMID:22267882

  2. Low work function, stable compound clusters and generation process

    DOEpatents

    Dinh, Long N.; Balooch, Mehdi; Schildbach, Marcus A.; Hamza, Alex V.; McLean, II, William

    2000-01-01

    Low work function, stable compound clusters are generated by co-evaporation of a solid semiconductor (i.e., Si) and alkali metal (i.e., Cs) elements in an oxygen environment. The compound clusters are easily patterned during deposition on substrate surfaces using a conventional photo-resist technique. The cluster size distribution is narrow, with a peak range of angstroms to nanometers depending on the oxygen pressure and the Si source temperature. Tests have shown that compound clusters when deposited on a carbon substrate contain the desired low work function property and are stable up to 600.degree. C. Using the patterned cluster containing plate as a cathode baseplate and a faceplate covered with phosphor as an anode, one can apply a positive bias to the faceplate to easily extract electrons and obtain illumination.

  3. Hydrodynamic fractionation of finite size gold nanoparticle clusters.

    PubMed

    Tsai, De-Hao; Cho, Tae Joon; DelRio, Frank W; Taurozzi, Julian; Zachariah, Michael R; Hackley, Vincent A

    2011-06-15

    We demonstrate a high-resolution in situ experimental method for performing simultaneous size classification and characterization of functional gold nanoparticle clusters (GNCs) based on asymmetric-flow field flow fractionation (AFFF). Field emission scanning electron microscopy, atomic force microscopy, multi-angle light scattering (MALS), and in situ ultraviolet-visible optical spectroscopy provide complementary data and imagery confirming the cluster state (e.g., dimer, trimer, tetramer), packing structure, and purity of fractionated populations. An orthogonal analysis of GNC size distributions is obtained using electrospray-differential mobility analysis (ES-DMA). We find a linear correlation between the normalized MALS intensity (measured during AFFF elution) and the corresponding number concentration (measured by ES-DMA), establishing the capacity for AFFF to quantify the absolute number concentration of GNCs. The results and corresponding methodology summarized here provide the proof of concept for general applications involving the formation, isolation, and in situ analysis of both functional and adventitious nanoparticle clusters of finite size. © 2011 American Chemical Society

  4. Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (~50 nm)

    NASA Astrophysics Data System (ADS)

    Bacciochini, Antoine; Montavon, Ghislain; Ilavsky, Jan; Denoirjean, Alain; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is a fairly recent technology that is able to process sub-micrometer-sized or nanometer-sized feedstock particles and permits the deposition of coatings thinner (from 20 to 100 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists of mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm. Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick nanometer- or sub-micrometer-sized coatings exhibit better properties than conventional micrometer-sized ones (e.g., higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, particularly for energy production, energy saving, etc. Coatings structured at the nanometer scale exhibit nanometer-sized voids. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers, from connected to non-connected network. Nevertheless, the discrimination of porosity in different classes of criteria such as size, shape, orientation, specific surface area, etc., is essential to describe the coating architecture. Moreover, the primary steps of the coating manufacturing process affect significantly the coating porous architecture. These steps need to be further understood. Different types of imaging experiments were performed to understand, describe and quantify the pore level of thick finely structured ceramics coatings.

  5. Size-guided multi-seed heuristic method for geometry optimization of clusters: Application to benzene clusters.

    PubMed

    Takeuchi, Hiroshi

    2018-05-08

    Since searching for the global minimum on the potential energy surface of a cluster is very difficult, many geometry optimization methods have been proposed, in which initial geometries are randomly generated and subsequently improved with different algorithms. In this study, a size-guided multi-seed heuristic method is developed and applied to benzene clusters. It produces initial configurations of the cluster with n molecules from the lowest-energy configurations of the cluster with n - 1 molecules (seeds). The initial geometries are further optimized with the geometrical perturbations previously used for molecular clusters. These steps are repeated until the size n satisfies a predefined one. The method locates putative global minima of benzene clusters with up to 65 molecules. The performance of the method is discussed using the computational cost, rates to locate the global minima, and energies of initial geometries. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael L.; Wiscombe, Warren J.

    2005-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion paper that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)), where 0 less than or equals D(r) less than or equals 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and a Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed cloud drop size is generally larger than that measured in situ.

  7. Cluster Adjusted Regression for Displaced Subject Data (CARDS): Marginal Inference under Potentially Informative Temporal Cluster Size Profiles

    PubMed Central

    Bible, Joe; Beck, James D.; Datta, Somnath

    2016-01-01

    Summary Ignorance of the mechanisms responsible for the availability of information presents an unusual problem for analysts. It is often the case that the availability of information is dependent on the outcome. In the analysis of cluster data we say that a condition for informative cluster size (ICS) exists when the inference drawn from analysis of hypothetical balanced data varies from that of inference drawn on observed data. Much work has been done in order to address the analysis of clustered data with informative cluster size; examples include Inverse Probability Weighting (IPW), Cluster Weighted Generalized Estimating Equations (CWGEE), and Doubly Weighted Generalized Estimating Equations (DWGEE). When cluster size changes with time, i.e., the data set possess temporally varying cluster sizes (TVCS), these methods may produce biased inference for the underlying marginal distribution of interest. We propose a new marginalization that may be appropriate for addressing clustered longitudinal data with TVCS. The principal motivation for our present work is to analyze the periodontal data collected by Beck et al. (1997, Journal of Periodontal Research 6, 497–505). Longitudinal periodontal data often exhibits both ICS and TVCS as the number of teeth possessed by participants at the onset of study is not constant and teeth as well as individuals may be displaced throughout the study. PMID:26682911

  8. Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

    PubMed Central

    Rao, Shasha; Song, Yunmei; Peddie, Frank; Evans, Allan M

    2011-01-01

    Poorly water-soluble drugs, such as phenylephrine, offer challenging problems for buccal drug delivery. In order to overcome these problems, particle size reduction (to the nanometer range) and cyclodextrin complexation were investigated for permeability enhancement. The apparent solubility in water and the buccal permeation of the original phenylephrine coarse powder, a phenylephrine–cyclodextrin complex and phenylephrine nanosuspensions were characterized. The particle size and particle surface properties of phenylephrine nanosuspensions were used to optimize the size reduction process. The optimized phenylephrine nanosuspension was then freeze dried and incorporated into a multi-layered buccal patch, consisting of a small tablet adhered to a mucoadhesive film, yielding a phenylephrine buccal product with good dosage accuracy and improved mucosal permeability. The design of the buccal patch allows for drug incorporation without the need to change the mucoadhesive component, and is potentially suited to a range of poorly water-soluble compounds. PMID:21753876

  9. Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs.

    PubMed

    Rao, Shasha; Song, Yunmei; Peddie, Frank; Evans, Allan M

    2011-01-01

    Poorly water-soluble drugs, such as phenylephrine, offer challenging problems for buccal drug delivery. In order to overcome these problems, particle size reduction (to the nanometer range) and cyclodextrin complexation were investigated for permeability enhancement. The apparent solubility in water and the buccal permeation of the original phenylephrine coarse powder, a phenylephrine-cyclodextrin complex and phenylephrine nanosuspensions were characterized. The particle size and particle surface properties of phenylephrine nanosuspensions were used to optimize the size reduction process. The optimized phenylephrine nanosuspension was then freeze dried and incorporated into a multi-layered buccal patch, consisting of a small tablet adhered to a mucoadhesive film, yielding a phenylephrine buccal product with good dosage accuracy and improved mucosal permeability. The design of the buccal patch allows for drug incorporation without the need to change the mucoadhesive component, and is potentially suited to a range of poorly water-soluble compounds.

  10. Effect Sizes in Three-Level Cluster-Randomized Experiments

    ERIC Educational Resources Information Center

    Hedges, Larry V.

    2011-01-01

    Research designs involving cluster randomization are becoming increasingly important in educational and behavioral research. Many of these designs involve two levels of clustering or nesting (students within classes and classes within schools). Researchers would like to compute effect size indexes based on the standardized mean difference to…

  11. The Scale Sizes of Globular Clusters: Tidal Limits, Evolution, and the Outer Halo

    NASA Astrophysics Data System (ADS)

    Harris, William

    2011-10-01

    The physical factors that determine the linear sizes of massive star clusters are not well understood. Their scale sizes were long thought to be governed by the tidal field of the parent galaxy, but major questions are now emerging. Globular clusters, for example, have mean sizes nearly independent of location in the halo. Paradoxically, the recently discovered "anomalous extended clusters" in M31 and elsewhere have scale sizes that fit much better with tidal theory, but they are puzzlingly rare. Lastly, the persistent size difference between metal-poor and metal-rich clusters still lacks a quantitative explanation. Many aspects of these observations call for better modelling of dynamical evolution in the outskirts of clusters, and also their conditions of formation including the early rapid mass loss phase of protoclusters. A new set of accurate measurements of scale sizes and structural parameters, for a large and homogeneous set of globular clusters, would represent a major advance in this subject. We propose to carry out a {WFC3+ACS} imaging survey of the globular clusters in the supergiant Virgo elliptical M87 to cover the complete run of the halo. M87 is an optimum target system because of its huge numbers of clusters and HST's ability to resolve the cluster profiles accurately. We will derive cluster effective radii, central concentrations, luminosities, and colors for more than 4000 clusters using PSF-convolved King-model profile fitting. In parallel, we are developing theoretical tools to model the expected distribution of cluster sizes versus galactocentric distance as functions of cluster mass, concentration, and orbital anisotropy.

  12. Cluster randomised crossover trials with binary data and unbalanced cluster sizes: application to studies of near-universal interventions in intensive care.

    PubMed

    Forbes, Andrew B; Akram, Muhammad; Pilcher, David; Cooper, Jamie; Bellomo, Rinaldo

    2015-02-01

    Cluster randomised crossover trials have been utilised in recent years in the health and social sciences. Methods for analysis have been proposed; however, for binary outcomes, these have received little assessment of their appropriateness. In addition, methods for determination of sample size are currently limited to balanced cluster sizes both between clusters and between periods within clusters. This article aims to extend this work to unbalanced situations and to evaluate the properties of a variety of methods for analysis of binary data, with a particular focus on the setting of potential trials of near-universal interventions in intensive care to reduce in-hospital mortality. We derive a formula for sample size estimation for unbalanced cluster sizes, and apply it to the intensive care setting to demonstrate the utility of the cluster crossover design. We conduct a numerical simulation of the design in the intensive care setting and for more general configurations, and we assess the performance of three cluster summary estimators and an individual-data estimator based on binomial-identity-link regression. For settings similar to the intensive care scenario involving large cluster sizes and small intra-cluster correlations, the sample size formulae developed and analysis methods investigated are found to be appropriate, with the unweighted cluster summary method performing well relative to the more optimal but more complex inverse-variance weighted method. More generally, we find that the unweighted and cluster-size-weighted summary methods perform well, with the relative efficiency of each largely determined systematically from the study design parameters. Performance of individual-data regression is adequate with small cluster sizes but becomes inefficient for large, unbalanced cluster sizes. When outcome prevalences are 6% or less and the within-cluster-within-period correlation is 0.05 or larger, all methods display sub-nominal confidence interval coverage

  13. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-means Cluster Analysis.

    PubMed

    Craen, Saskia de; Commandeur, Jacques J F; Frank, Laurence E; Heiser, Willem J

    2006-06-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these populations showed a significant effect of lack of sphericity and group size. This effect was, however, not as large as expected, with still a recovery index of more than 0.5 in the "worst case scenario." An interaction effect between the two data aspects was also found. The decreasing trend in the recovery of clusters for increasing departures from sphericity is different for equal and unequal group sizes.

  14. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    PubMed

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  15. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic

    PubMed Central

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters. PMID:26820646

  16. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-Means Cluster Analysis

    ERIC Educational Resources Information Center

    de Craen, Saskia; Commandeur, Jacques J. F.; Frank, Laurence E.; Heiser, Willem J.

    2006-01-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these…

  17. Modeling of correlated data with informative cluster sizes: An evaluation of joint modeling and within-cluster resampling approaches.

    PubMed

    Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S

    2017-08-01

    Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.

  18. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  19. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience

    PubMed Central

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature. PMID:22312454

  20. Accounting for One-Group Clustering in Effect-Size Estimation

    ERIC Educational Resources Information Center

    Citkowicz, Martyna; Hedges, Larry V.

    2013-01-01

    In some instances, intentionally or not, study designs are such that there is clustering in one group but not in the other. This paper describes methods for computing effect size estimates and their variances when there is clustering in only one group and the analysis has not taken that clustering into account. The authors provide the effect size…

  1. Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti–Mo microalloyed steels during continuous cooling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chih-Yuan, E-mail: chen6563@gmail.com; Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Yang, Jer-Ren, E-mail: jryang@ntu.edu.tw

    Nanometer-sized carbides that precipitated in a Ti–Mo bearing steel after interrupted continuous cooling in a temperature range of 620–700 °C with or without hot deformation were investigated by field-emission-gun transmission electron microscopy. The nanometer-sized carbides were identified as randomly homogeneous precipitation carbides and interphase precipitation carbides coexisting in the ferrite matrix. It is found that this dual precipitation morphology of carbides in the steel leads to the non-uniform mechanical properties of individual ferrite grains. Vickers hardness data mainly revealed that, in the specimens cooled at a rate of 0.5 °C/s without hot deformation, the range of Vickers hardness distribution wasmore » 230–340 HV 0.1 when cooling was interrupted at 680 °C, and 220–360 HV 0.1 when cooling was interrupted at 650 °C. For the specimens cooled at a rate of 0.5 °C/s with hot deformation, the range of Vickers hardness distribution was 290–360 HV 0.1 when cooling was interrupted at 680 °C, and 280–340 HV 0.1 when cooling was interrupted at 650 °C. Therefore, a narrower range of hardness distribution occurred in the specimens that underwent hot deformation and were then cooled with a lower interrupted cooling temperature. The uniform precipitation status in each ferrite grain can lead to ferrite grains with a narrower Vickers hardness distribution. On the other hand, interrupted cooling produced a maximum Vickers hardness of 320–330 HV 0.1 for the hot deformed specimens and 290–310 HV 0.1 for the non-deformed specimens with cooling interrupted in the temperature range of 660–670 °C. The maximum Vickers hardness obtained in such a temperature range can be ascribed to the full precipitation of the microalloying elements in the supersaturated ferrite matrix with a tiny size (~ 4–7 nm). - Highlight: • The interrupted continuous cooling temperatures were 620 °C to 700 °C. • Precipitation carbides with dual dispersed

  2. High Temperature Mechanical Behavior of Polycrystalline Alumina from Mixed Nanometer and Micrometer Powders

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Sintered aluminum oxide materials were formed using commercial methods from mechanically mixed powders of nano-and micrometer alumina. The powders were consolidated at 1500 and 1600 C with 3.2 and 7.2 ksi applied stress in argon. The conventional micrometer sized powders failed to consolidate. While 100 percent nanometer-sized alumina and its mixture with the micrometer powders achieved less than 99 percent density. Preliminary high temperature creep behavior indicates no super-plastic strains. However high strains (less than 0.65 percent) were generated in the nanometer powder, due to cracks and linked voids initiated by cavitation.

  3. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative.

    PubMed

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-09-01

    Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence.The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster.Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501-507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients.

  4. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    PubMed

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  5. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data

    PubMed Central

    Kim, Sehwi

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns. PMID:28753674

  6. Solutions of Smoluchowski's coagulation equation at large cluster sizes

    NASA Astrophysics Data System (ADS)

    Van Dongen, P. G. J.

    1987-09-01

    In this paper we determine the behavior of solutions ck( t) of Smoluchowski's coagulation equation for cluster sizes much larger than the mean cluster size s( t). We consider in general the homogeneous rate constants K( i, j), behaving as K( i, j) ∼ iμjv as j → ∞, where special attention is paid to models with an exponent v = 1. The behavior of ck( t) is studied in three different limits: (i) the short-time limit ( t ↓ 0), with k ≫ 1, (ii) the limit k → ∞, with t > 0 fixed, and (iii) the scaling limit, with k ≫ s( t). The two most important conclusions of this paper are, first, that the detailed behavior of ck( t) at large cluster sizes ( k ≫ s( t)) may be drastically different for different rate constants K( i, j) and, secondly, that the results for ck( t), obtained in the limits (i), (ii) and (iii), are closely related.

  7. Copper cluster size effect in methanol synthesis from CO 2

    DOE PAGES

    Yang, Bing; Liu, Cong; Halder, Avik; ...

    2017-05-08

    Here, size-selected Cu n catalysts ( n = 3, 4, 20) were synthesized on Al 2O 3 thin films using mass-selected cluster deposition. A systematic study of size and support effects was carried out for CO 2 hydrogenation at atmospheric pressure using a combination of in situ grazing incidence X-ray absorption spectroscopy, catalytic activity measurement, and first-principles calculations. The catalytic activity for methanol synthesis is found to strongly vary as a function of the cluster size; the Cu 4/Al 2O 3 catalyst shows the highest turnover rate for CH 3OH production. With only one atom less than Cu 4, Cumore » 3 showed less than 50% activity. Density functional theory calculations predict that the activities of the gas-phase Cu clusters increase as the cluster size decreases; however, the stronger charge transfer interaction with Al 2O 3 support for Cu 3 than for Cu 4 leads to remarkably reduced binding strength between the adsorbed intermediates and supported Cu 3, which subsequently results in a less favorable energetic pathway to transform carbon dioxide to methanol.« less

  8. The Nanometer-Sized Eutectic Structure of Si/CrSi2 Thermoelectric Materials Fabricated by Rapid Solidification

    NASA Astrophysics Data System (ADS)

    Norizan, Mohd Natashah; Miyazaki, Yoshinobu; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2018-04-01

    Nanostructuring is known to be an effective method to improve thermoelectric performance but, generally, it requires complex procedures and much labor. In the present study, self-assembled nanometer-sized composite structures of silicon (Si) and chromium disilicide (CrSi2) were easily fabricated by the rapid solidification of a melt with a eutectic composition. Ribbon-like samples were obtained with a dominant nanostructure of fine aligned lamellae with a spacing range of 20-35 nm. The thermoelectric power factor of the ribbon was observed to be 1.2 mW/mK2 at room temperature and reached 3.0 mW/mK2 at 773 K. The thermal conductivity was 65% lower than that of a bulk eutectic sample. The results suggest that this method is promising for fabricating an effective nanostructure for thermoelectric performance.

  9. Sizing the star cluster population of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-04-01

    The number of star clusters that populate the Large Magellanic Cloud (LMC) at deprojected distances <4 deg has been recently found to be nearly double the known size of the system. Because of the unprecedented consequences of this outcome in our knowledge of the LMC cluster formation and dissolution histories, we closely revisited such a compilation of objects and found that only ˜35 per cent of the previously known catalogued clusters have been included. The remaining entries are likely related to stellar overdensities of the LMC composite star field, because there is a remarkable enhancement of objects with assigned ages older than log(t yr-1) ˜ 9.4, which contrasts with the existence of the LMC cluster age gap; the assumption of a cluster formation rate similar to that of the LMC star field does not help to conciliate so large amount of clusters either; and nearly 50 per cent of them come from cluster search procedures known to produce more than 90 per cent of false detections. The lack of further analyses to confirm the physical reality as genuine star clusters of the identified overdensities also glooms those results. We support that the actual size of the LMC main body cluster population is close to that previously known.

  10. A new method to prepare colloids of size-controlled clusters from a matrix assembly cluster source

    NASA Astrophysics Data System (ADS)

    Cai, Rongsheng; Jian, Nan; Murphy, Shane; Bauer, Karl; Palmer, Richard E.

    2017-05-01

    A new method for the production of colloidal suspensions of physically deposited clusters is demonstrated. A cluster source has been used to deposit size-controlled clusters onto water-soluble polymer films, which are then dissolved to produce colloidal suspensions of clusters encapsulated with polymer molecules. This process has been demonstrated using different cluster materials (Au and Ag) and polymers (polyvinylpyrrolidone, polyvinyl alcohol, and polyethylene glycol). Scanning transmission electron microscopy of the clusters before and after colloidal dispersion confirms that the polymers act as stabilizing agents. We propose that this method is suitable for the production of biocompatible colloids of ultraprecise clusters.

  11. Modulation aware cluster size optimisation in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sriram Naik, M.; Kumar, Vinay

    2017-07-01

    Wireless sensor networks (WSNs) play a great role because of their numerous advantages to the mankind. The main challenge with WSNs is the energy efficiency. In this paper, we have focused on the energy minimisation with the help of cluster size optimisation along with consideration of modulation effect when the nodes are not able to communicate using baseband communication technique. Cluster size optimisations is important technique to improve the performance of WSNs. It provides improvement in energy efficiency, network scalability, network lifetime and latency. We have proposed analytical expression for cluster size optimisation using traditional sensing model of nodes for square sensing field with consideration of modulation effects. Energy minimisation can be achieved by changing the modulation schemes such as BPSK, 16-QAM, QPSK, 64-QAM, etc., so we are considering the effect of different modulation techniques in the cluster formation. The nodes in the sensing fields are random and uniformly deployed. It is also observed that placement of base station at centre of scenario enables very less number of modulation schemes to work in energy efficient manner but when base station placed at the corner of the sensing field, it enable large number of modulation schemes to work in energy efficient manner.

  12. Dynamic Cluster Size Effects on the Glass Transition of Thin Films

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2013-03-01

    During cooling from the melt of amorphous materials, it has been shown experimentally that dynamic rigid clusters form in equilibrium with the liquid and their relaxation behavior determines the kinetic nature of Tg [Stanzione et al, J. Non Cryst Solids 357(2): 311-319 2011]. The fractal clusters of size R ~ 5-60 nm (polystyrene) have relaxation times τ ~ R1.8 (solid-to-liquid). They are analogous to sub critical size embryos during crystallization as the amorphous material tries to crystallize due to the strong intermolecular forces at T < Tm ; they are not related to density fluctuations or surface capillary waves. In free-standing thin films of thickness h, several important events occur: (a) The large clusters with R > h are excluded and the thin films have an average faster relaxation time compared to the bulk; consequently Tg decreases as h decreases. (b) The segmental dynamics at the 1 nm scale are largely not affected by nanoconfinement since Tg is determined only by the cluster dynamics with R >> 1 nm. (c) The mobile layer on the surface of free standing films is due to the presence of smaller clusters on the surface which will disappear with increasing rate of testing. (d) With adhesion to a solid substrate, the surface mobile layer disappears as the surface clusters size grow and the change in Tg is suppressed. (e) Physical aging is controlled by the relaxation of the rigid fractal clusters and in thin films, physical aging will occur more rapidly compared to the bulk. (f) The large effect of molecular weight M on Tg appears to be related to the effect on the cluster size distribution giving smaller clusters and faster relation times with increasing M. These results are in accord with the Twinkling Fractal theory of the glass transition.

  13. Model selection for semiparametric marginal mean regression accounting for within-cluster subsampling variability and informative cluster size.

    PubMed

    Shen, Chung-Wei; Chen, Yi-Hau

    2018-03-13

    We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. © 2018, The International Biometric Society.

  14. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections

    PubMed Central

    Smith, Alex J.; Verkman, Alan S.

    2015-01-01

    The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4−/− astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution. PMID:26682810

  15. A General Class of Signed Rank Tests for Clustered Data when the Cluster Size is Potentially Informative

    PubMed Central

    Datta, Somnath; Nevalainen, Jaakko; Oja, Hannu

    2012-01-01

    SUMMARY Rank based tests are alternatives to likelihood based tests popularized by their relative robustness and underlying elegant mathematical theory. There has been a serge in research activities in this area in recent years since a number of researchers are working to develop and extend rank based procedures to clustered dependent data which include situations with known correlation structures (e.g., as in mixed effects models) as well as more general form of dependence. The purpose of this paper is to test the symmetry of a marginal distribution under clustered data. However, unlike most other papers in the area, we consider the possibility that the cluster size is a random variable whose distribution is dependent on the distribution of the variable of interest within a cluster. This situation typically arises when the clusters are defined in a natural way (e.g., not controlled by the experimenter or statistician) and in which the size of the cluster may carry information about the distribution of data values within a cluster. Under the scenario of an informative cluster size, attempts to use some form of variance adjusted sign or signed rank tests would fail since they would not maintain the correct size under the distribution of marginal symmetry. To overcome this difficulty Datta and Satten (2008; Biometrics, 64, 501–507) proposed a Wilcoxon type signed rank test based on the principle of within cluster resampling. In this paper we study this problem in more generality by introducing a class of valid tests employing a general score function. Asymptotic null distribution of these tests is obtained. A simulation study shows that a more general choice of the score function can sometimes result in greater power than the Datta and Satten test; furthermore, this development offers the user a wider choice. We illustrate our tests using a real data example on spinal cord injury patients. PMID:23074359

  16. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21-Ge29

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Zeng, X. C.

    2006-05-01

    We performed a constrained search for the geometries of low-lying neutral germanium clusters GeN in the size range of 21⩽N⩽29. The basin-hopping global optimization method is employed for the search. The potential-energy surface is computed based on the plane-wave pseudopotential density functional theory. A new series of low-lying clusters is found on the basis of several generic structural motifs identified previously for silicon clusters [S. Yoo and X. C. Zeng, J. Chem. Phys. 124, 054304 (2006)] as well as for smaller-sized germanium clusters [S. Bulusu et al., J. Chem. Phys. 122, 164305 (2005)]. Among the generic motifs examined, we found that two motifs stand out in producing most low-lying clusters, namely, the six/nine motif, a puckered-hexagonal-ring Ge6 unit attached to a tricapped trigonal prism Ge9, and the six/ten motif, a puckered-hexagonal-ring Ge6 unit attached to a bicapped antiprism Ge10. The low-lying clusters obtained are all prolate in shape and their energies are appreciably lower than the near-spherical low-energy clusters. This result is consistent with the ion-mobility measurement in that medium-sized germanium clusters detected are all prolate in shape until the size N ˜65.

  17. Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale

    PubMed Central

    Das, Kalipada; Dasgupta, P.; Poddar, A.; Das, I.

    2016-01-01

    The Physics of materials with large magnetoresistance (MR), defined as the percentage change of electrical resistance with the application of external magnetic field, has been an active field of research for quite some times. In addition to the fundamental interest, large MR has widespread application that includes the field of magnetic field sensor technology. New materials with large MR is interesting. However it is more appealing to vast scientific community if a method describe to achieve many fold enhancement of MR of already known materials. Our study on several manganite samples [La1−xCaxMnO3 (x = 0.52, 0.54, 0.55)] illustrates the method of significant enhancement of MR with the reduction of the particle size in nanometer scale. Our experimentally observed results are explained by considering model consisted of a charge ordered antiferromagnetic core and a shell having short range ferromagnetic correlation between the uncompensated surface spins in nanoscale regime. The ferromagnetic fractions obtained theoretically in the nanoparticles has been shown to be in the good agreement with the experimental results. The method of several orders of magnitude improvement of the magnetoresistive property will have enormous potential for magnetic field sensor technology. PMID:26837285

  18. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    PubMed

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  19. An imbalance in cluster sizes does not lead to notable loss of power in cross-sectional, stepped-wedge cluster randomised trials with a continuous outcome.

    PubMed

    Kristunas, Caroline A; Smith, Karen L; Gray, Laura J

    2017-03-07

    The current methodology for sample size calculations for stepped-wedge cluster randomised trials (SW-CRTs) is based on the assumption of equal cluster sizes. However, as is often the case in cluster randomised trials (CRTs), the clusters in SW-CRTs are likely to vary in size, which in other designs of CRT leads to a reduction in power. The effect of an imbalance in cluster size on the power of SW-CRTs has not previously been reported, nor what an appropriate adjustment to the sample size calculation should be to allow for any imbalance. We aimed to assess the impact of an imbalance in cluster size on the power of a cross-sectional SW-CRT and recommend a method for calculating the sample size of a SW-CRT when there is an imbalance in cluster size. The effect of varying degrees of imbalance in cluster size on the power of SW-CRTs was investigated using simulations. The sample size was calculated using both the standard method and two proposed adjusted design effects (DEs), based on those suggested for CRTs with unequal cluster sizes. The data were analysed using generalised estimating equations with an exchangeable correlation matrix and robust standard errors. An imbalance in cluster size was not found to have a notable effect on the power of SW-CRTs. The two proposed adjusted DEs resulted in trials that were generally considerably over-powered. We recommend that the standard method of sample size calculation for SW-CRTs be used, provided that the assumptions of the method hold. However, it would be beneficial to investigate, through simulation, what effect the maximum likely amount of inequality in cluster sizes would be on the power of the trial and whether any inflation of the sample size would be required.

  20. Melting of size-selected gallium clusters with 60-183 atoms.

    PubMed

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F

    2014-07-10

    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  1. Review of methods for handling confounding by cluster and informative cluster size in clustered data

    PubMed Central

    Seaman, Shaun; Pavlou, Menelaos; Copas, Andrew

    2014-01-01

    Clustered data are common in medical research. Typically, one is interested in a regression model for the association between an outcome and covariates. Two complications that can arise when analysing clustered data are informative cluster size (ICS) and confounding by cluster (CBC). ICS and CBC mean that the outcome of a member given its covariates is associated with, respectively, the number of members in the cluster and the covariate values of other members in the cluster. Standard generalised linear mixed models for cluster-specific inference and standard generalised estimating equations for population-average inference assume, in general, the absence of ICS and CBC. Modifications of these approaches have been proposed to account for CBC or ICS. This article is a review of these methods. We express their assumptions in a common format, thus providing greater clarity about the assumptions that methods proposed for handling CBC make about ICS and vice versa, and about when different methods can be used in practice. We report relative efficiencies of methods where available, describe how methods are related, identify a previously unreported equivalence between two key methods, and propose some simple additional methods. Unnecessarily using a method that allows for ICS/CBC has an efficiency cost when ICS and CBC are absent. We review tools for identifying ICS/CBC. A strategy for analysis when CBC and ICS are suspected is demonstrated by examining the association between socio-economic deprivation and preterm neonatal death in Scotland. PMID:25087978

  2. Sub-nanometer glass surface dynamics induced by illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Duc; Nienhaus, Lea; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

    2015-06-21

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10{sup 4} s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass formingmore » units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses.« less

  3. Understanding ligand effects in gold clusters using mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Laskin, Julia

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation ofmore » numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on

  4. Optical Materials with a Genome: Nanophotonics with DNA-Stabilized Silver Clusters

    NASA Astrophysics Data System (ADS)

    Copp, Stacy M.

    Fluorescent silver clusters with unique rod-like geometries are stabilized by DNA. The sizes and colors of these clusters, or AgN-DNA, are selected by DNA base sequence, which can tune peak emission from blue-green into the near-infrared. Combined with DNA nanostructures, AgN-DNA promise exciting applications in nanophotonics and sensing. Until recently, however, a lack of understanding of the mechanisms controlling AgN-DNA fluorescence has challenged such applications. This dissertation discusses progress toward understanding the role of DNA as a "genome" for silver clusters and toward using DNA to achieve atomic-scale precision of silver cluster size and nanometer-scale precision of silver cluster position on a DNA breadboard. We also investigate sensitivity of AgN-DNA to local solvent environment, with an eye toward applications in chemical and biochemical sensing. Using robotic techniques to generate large data sets, we show that fluorescent silver clusters are templated by certain DNA base motifs that select "magic-sized" cluster cores of enhanced stabilities. The linear arrangement of bases on the phosphate backbone imposes a unique rod-like geometry on the clusters. Harnessing machine learning and bioinformatics techniques, we also demonstrate that sequences of DNA templates can be selected to stabilize silver clusters with desired optical properties, including high fluorescence intensity and specific fluorescence wavelengths, with much higher rates of success as compared to current strategies. The discovered base motifs can be also used to design modular DNA host strands that enable individual silver clusters with atomically precise sizes to bind at specific programmed locations on a DNA nanostructure. We show that DNA-mediated nanoscale arrangement enables near-field coupling of distinct clusters, demonstrated by dual-color cluster assemblies exhibiting resonant energy transfer. These results demonstrate a new degree of control over the optical properties

  5. Coarsening of protein clusters on subcellular drops exhibits strong and sudden size selectivity

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Rutenberg, Andrew

    2015-03-01

    Autophagy is an important process for the degradation of cellular components, with receptor proteins targeting substrates to downstream autophagy machinery. An important question is how receptor protein interactions lead to their selective accumulation on autophagy substrates. Receptor proteins have recently been observed in clusters, raising the possibility that clustering could affect autophagy selectivity. We investigate the clustering dynamics of the autophagy receptor protein NBR1. In addition to standard receptor protein domains, NBR1 has a ``J'' domain that anchors it to membranes, and a coiled-coil domain that enhances self-interaction. We model coarsening clusters of NBR1 on the surfaces of a polydisperse collection of drops, representing organelles. Despite the disconnected nature of the drop surfaces, we recover dynamical scaling of cluster sizes. Significantly, we find that at a well-defined time after coarsening begins, clusters evaporate from smaller drops and grow on larger drops. Thus, coarsening-driven size selection will localize protein clusters to larger substrates, leaving smaller substrates without clusters. This provides a possible physical mechanism for autophagy selectivity, and can explain reports of size selection during peroxisome degradation.

  6. 3D nanometer images of biological fibers by directed motion of gold nanoparticles.

    PubMed

    Estrada, Laura C; Gratton, Enrico

    2011-11-09

    Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.

  7. Clusters of circulating tumor cells traverse capillary-sized vessels

    PubMed Central

    Au, Sam H.; Storey, Brian D.; Moore, John C.; Tang, Qin; Chen, Yeng-Long; Javaid, Sarah; Sarioglu, A. Fatih; Sullivan, Ryan; Madden, Marissa W.; O’Keefe, Ryan; Haber, Daniel A.; Maheswaran, Shyamala; Langenau, David M.; Stott, Shannon L.; Toner, Mehmet

    2016-01-01

    Multicellular aggregates of circulating tumor cells (CTC clusters) are potent initiators of distant organ metastasis. However, it is currently assumed that CTC clusters are too large to pass through narrow vessels to reach these organs. Here, we present evidence that challenges this assumption through the use of microfluidic devices designed to mimic human capillary constrictions and CTC clusters obtained from patient and cancer cell origins. Over 90% of clusters containing up to 20 cells successfully traversed 5- to 10-μm constrictions even in whole blood. Clusters rapidly and reversibly reorganized into single-file chain-like geometries that substantially reduced their hydrodynamic resistances. Xenotransplantation of human CTC clusters into zebrafish showed similar reorganization and transit through capillary-sized vessels in vivo. Preliminary experiments demonstrated that clusters could be disrupted during transit using drugs that affected cellular interaction energies. These findings suggest that CTC clusters may contribute a greater role to tumor dissemination than previously believed and may point to strategies for combating CTC cluster-initiated metastasis. PMID:27091969

  8. Electrochemistry at Nanometer-Scaled Electrodes

    ERIC Educational Resources Information Center

    Watkins, John J.; Bo Zhang; White, Henry S.

    2005-01-01

    Electrochemical studies using nanometer-scaled electrodes are leading to better insights into electrochemical kinetics, interfacial structure, and chemical analysis. Various methods of preparing electrodes of nanometer dimensions are discussed and a few examples of their behavior and applications in relatively simple electrochemical experiments…

  9. Sample size calculations for stepped wedge and cluster randomised trials: a unified approach

    PubMed Central

    Hemming, Karla; Taljaard, Monica

    2016-01-01

    Objectives To clarify and illustrate sample size calculations for the cross-sectional stepped wedge cluster randomized trial (SW-CRT) and to present a simple approach for comparing the efficiencies of competing designs within a unified framework. Study Design and Setting We summarize design effects for the SW-CRT, the parallel cluster randomized trial (CRT), and the parallel cluster randomized trial with before and after observations (CRT-BA), assuming cross-sectional samples are selected over time. We present new formulas that enable trialists to determine the required cluster size for a given number of clusters. We illustrate by example how to implement the presented design effects and give practical guidance on the design of stepped wedge studies. Results For a fixed total cluster size, the choice of study design that provides the greatest power depends on the intracluster correlation coefficient (ICC) and the cluster size. When the ICC is small, the CRT tends to be more efficient; when the ICC is large, the SW-CRT tends to be more efficient and can serve as an alternative design when the CRT is an infeasible design. Conclusion Our unified approach allows trialists to easily compare the efficiencies of three competing designs to inform the decision about the most efficient design in a given scenario. PMID:26344808

  10. Sample size calculation in cost-effectiveness cluster randomized trials: optimal and maximin approaches.

    PubMed

    Manju, Md Abu; Candel, Math J J M; Berger, Martijn P F

    2014-07-10

    In this paper, the optimal sample sizes at the cluster and person levels for each of two treatment arms are obtained for cluster randomized trials where the cost-effectiveness of treatments on a continuous scale is studied. The optimal sample sizes maximize the efficiency or power for a given budget or minimize the budget for a given efficiency or power. Optimal sample sizes require information on the intra-cluster correlations (ICCs) for effects and costs, the correlations between costs and effects at individual and cluster levels, the ratio of the variance of effects translated into costs to the variance of the costs (the variance ratio), sampling and measuring costs, and the budget. When planning, a study information on the model parameters usually is not available. To overcome this local optimality problem, the current paper also presents maximin sample sizes. The maximin sample sizes turn out to be rather robust against misspecifying the correlation between costs and effects at the cluster and individual levels but may lose much efficiency when misspecifying the variance ratio. The robustness of the maximin sample sizes against misspecifying the ICCs depends on the variance ratio. The maximin sample sizes are robust under misspecification of the ICC for costs for realistic values of the variance ratio greater than one but not robust under misspecification of the ICC for effects. Finally, we show how to calculate optimal or maximin sample sizes that yield sufficient power for a test on the cost-effectiveness of an intervention.

  11. Is the Size Evolution of Massive Galaxies Accelerated in Cluster Environments?

    NASA Astrophysics Data System (ADS)

    Wilson, Gillian

    2013-10-01

    At z 1.6 the main progenitors of present-day massive clusters are undergoing rapid collapse, and have the highest rates of galaxy merging and assembly. Recent observational studies have hinted at accelerated galaxy evolution in dense environments at this epoch, including increased merger rates and rapid growth in galaxy size relative to the field. We propose WFC3 G102 spectroscopy and F125W {Broad J} imaging of a sample of four massive spectroscopically-confirmed clusters at z = 1.6. Our primary scientific goal is to leverage the CANDELS Wide Legacy dataset to carry out a head-to-head comparison of the sizes of cluster members relative to the field {as a function of stellar mass and Sersic index}, and quantify the role of environment in the observed rapid evolution in galaxy sizes since z = 2. These clusters are four of the highest significance overdensities in the 50 square degree SWIRE fields, and will evolve over time to have present-day masses similar to Coma. They were detected using IRAC [3.6]-[4.5] color, which identifies galaxy overdensities regardless of optically red or blue color. A heroic ground-based spectroscopic campaign has resulted in 44 spectroscopically-confirmed members. However this sample is heavily biased toward star-forming {SF} galaxies, and WFC3 spectroscopy is essential to definitively determine cluster membership for 200 members, without bias with respect to quiescent or SF type. The F125W {rest-frame V-band} imaging is necessary to measure the sizes and morphologies of cluster members. 17-passband broadband imaging spanning UV, optical, near-IR, Spitzer IR and Herschel far-IR is already in hand.

  12. Changes in tropical precipitation cluster size distributions under global warming

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.; Quinn, K. M.

    2016-12-01

    The total amount of precipitation integrated across a tropical storm or other precipitation feature (contiguous clusters of precipitation exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance. To establish baseline behavior in current climate, the probability distribution of cluster sizes from multiple satellite retrievals and National Center for Environmental Prediction (NCEP) reanalysis is compared to those from Coupled Model Intercomparison Project (CMIP5) models and the Geophysical Fluid Dynamics Laboratory high-resolution atmospheric model (HIRAM-360 and -180). With the caveat that a minimum rain rate threshold is important in the models (which tend to overproduce low rain rates), the models agree well with observations in leading properties. In particular, scale-free power law ranges in which the probability drops slowly with increasing cluster size are well modeled, followed by a rapid drop in probability of the largest clusters above a cutoff scale. Under the RCP 8.5 global warming scenario, the models indicate substantial increases in probability (up to an order of magnitude) of the largest clusters by the end of century. For models with continuous time series of high resolution output, there is substantial spread on when these probability increases for the largest precipitation clusters should be detectable, ranging from detectable within the observational period to statistically significant trends emerging only in the second half of the century. Examination of NCEP reanalysis and SSMI/SSMIS series of satellite retrievals from 1979 to present does not yield reliable evidence of trends at this time. The results suggest improvements in inter-satellite calibration of the SSMI/SSMIS retrievals could aid future detection.

  13. Metastability of the atomic structures of size-selected gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wells, Dawn M.; Rossi, Giulia; Ferrando, Riccardo; Palmer, Richard E.

    2015-04-01

    All nanostructures are metastable - but some are more metastable than others. Here we employ aberration-corrected electron microscopy and atomistic computer simulations to demonstrate the hierarchy of metastability in deposited, size-selected gold nanoparticles (clusters), an archetypal class of nanomaterials well known for the catalytic activity which only appears on the nanometer-scale. We show that the atomic structures presented by ``magic number'' Au561, Au742 and Au923 clusters are ``locked''. They are in fact determined by the solidification which occurs from the liquid state early in their growth (by assembly from atoms in the gas phase) followed by template growth. It is quite likely that transitions from a locked, metastable configuration to a more stable (but still metastable) structure, as observed here under the electron beam, will occur during catalytic reactions, for example.All nanostructures are metastable - but some are more metastable than others. Here we employ aberration-corrected electron microscopy and atomistic computer simulations to demonstrate the hierarchy of metastability in deposited, size-selected gold nanoparticles (clusters), an archetypal class of nanomaterials well known for the catalytic activity which only appears on the nanometer-scale. We show that the atomic structures presented by ``magic number'' Au561, Au742 and Au923 clusters are ``locked''. They are in fact determined by the solidification which occurs from the liquid state early in their growth (by assembly from atoms in the gas phase) followed by template growth. It is quite likely that transitions from a locked, metastable configuration to a more stable (but still metastable) structure, as observed here under the electron beam, will occur during catalytic reactions, for example. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05811a

  14. Sample size calculations for the design of cluster randomized trials: A summary of methodology.

    PubMed

    Gao, Fei; Earnest, Arul; Matchar, David B; Campbell, Michael J; Machin, David

    2015-05-01

    Cluster randomized trial designs are growing in popularity in, for example, cardiovascular medicine research and other clinical areas and parallel statistical developments concerned with the design and analysis of these trials have been stimulated. Nevertheless, reviews suggest that design issues associated with cluster randomized trials are often poorly appreciated and there remain inadequacies in, for example, describing how the trial size is determined and the associated results are presented. In this paper, our aim is to provide pragmatic guidance for researchers on the methods of calculating sample sizes. We focus attention on designs with the primary purpose of comparing two interventions with respect to continuous, binary, ordered categorical, incidence rate and time-to-event outcome variables. Issues of aggregate and non-aggregate cluster trials, adjustment for variation in cluster size and the effect size are detailed. The problem of establishing the anticipated magnitude of between- and within-cluster variation to enable planning values of the intra-cluster correlation coefficient and the coefficient of variation are also described. Illustrative examples of calculations of trial sizes for each endpoint type are included. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Nano-sized and micro-sized polystyrene particles affect phagocyte function

    PubMed Central

    Prietl, B.; Meindl, C.; Roblegg, E.; Pieber, T. R.; Lanzer, G.; Fröhlich, E.

    2015-01-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes. PMID:24292270

  16. Nano-sized and micro-sized polystyrene particles affect phagocyte function.

    PubMed

    Prietl, B; Meindl, C; Roblegg, E; Pieber, T R; Lanzer, G; Fröhlich, E

    2014-02-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.

  17. Size Effects in Dye-Sensitized TiO2 Clusters

    NASA Astrophysics Data System (ADS)

    Marom, Noa; Körzdörfer, Thomas; Ren, Xinguo; Tkatchenko, Alexandre; Chelikowsky, James

    2014-03-01

    The development of solar cells is driven by the need for clean and sustainable energy. Organic and dye sensitized cells are considered as promising technologies, particularly for large area, low cost applications. However, the efficiency of such cells is still far from the theoretical limit. Ab initio simulations may be used for computer-aided design of new materials and nano-structures for more efficient solar cells. It is essential to obtain an accurate description of the electronic structure, including the fundamental gaps and energy level alignment at the interfaces in the device active region. This requires going beyond ground-state DFT to the GW approximation. A recently developed GW method [PRB 86, 041110R (2012)] is applied to dye-sensitized TiO2 clusters [PRB 84, 245115 (2011)]. The effect of cluster size on the energy level alignment at the dye-TiO2 interface is discussed. With the increase in the TiO2 cluster size its gap narrows. The gap of the molecule attached to the cluster subsequently narrows due to screening. As a result, the energy level alignment at the interface changes in an unexpected way [Marom, Körzdörfer, Ren, Tkatchenko, Chelikowsky, to be published].

  18. Production of Au clusters by plasma gas condensation and their incorporation in oxide matrixes by sputtering

    NASA Astrophysics Data System (ADS)

    Figueiredo, N. M.; Serra, R.; Manninen, N. K.; Cavaleiro, A.

    2018-05-01

    Gold clusters were produced by plasma gas condensation method and studied in great detail for the first time. The influence of argon flow, discharge power applied to the Au target and aggregation chamber length on the size distribution and deposition rate of Au clusters was evaluated. Au clusters with sizes between 5 and 65 nm were deposited with varying deposition rates and size dispersion curves. Nanocomposite Au-TiO2 and Au-Al2O3 coatings were then deposited by alternating sputtering. These coatings were hydrophobic and showed strong colorations due to the surface plasmon resonance effect. By simulating the optical properties of the nanocomposites it was possible to identify each individual contribution to the overall surface plasmon resonance signal. These coatings show great potential to be used as high performance localized surface plasmon resonance sensors or as robust self-cleaning decorative protective layers. The hybrid method used for depositing the nanocomposites offers several advantages over co-sputtering or thermal evaporation processes, since a broader range of particle sizes can be obtained (up to tens of nanometers) without the application of any thermal annealing treatments and the properties of clusters and matrix can be controlled separately.

  19. Complex biomembrane mimetics on the sub-nanometer scale

    DOE PAGES

    Heberle, Frederick A.; Pabst, Georg

    2017-07-17

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  20. Complex biomembrane mimetics on the sub-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, Frederick A.; Pabst, Georg

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  1. Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions

    PubMed Central

    Vagne, Quentin; Turner, Matthew S.; Sens, Pierre

    2015-01-01

    The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912

  2. Reexamine structures and relative stability of medium-sized silicon clusters: Low-lying endohedral fullerene-like clusters Si 30-Si 38

    NASA Astrophysics Data System (ADS)

    Yoo, Soohaeng; Shao, Nan; Zeng, X. C.

    2009-10-01

    We report improved results of lowest-lying silicon clusters Si 30-Si 38. A large population of low-energy clusters are collected from previous searches by several research groups and the binding energies of these clusters are computed using density-functional theory (DFT) methods. Best candidates (isomers with high binding energies) are identified from the screening calculations. Additional constrained search is then performed for the best candidates using the basin-hopping method combined with DFT geometry optimization. The obtained low-lying clusters are classified according to binding energies computed using either the Perdew-Burke-Ernzerhof (PBE) functional or the Becke exchange and Lee-Yang-Parr correlation (BLYP) functional. We propose to rank low-lying clusters according to the mean PBE/BLYP binding energies in view that the PBE functional tends to give greater binding energies for more compact clusters whereas the BLYP functional tends to give greater binding energies for less compact clusters or clusters composed of small-sized magic-number clusters. Except for Si 30, the new search confirms again that medium-size silicon clusters Si 31-Si 38 constructed with proper fullerene cage motifs are most promising to be the lowest-energy structures.

  3. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications.

    PubMed

    Uchida, Noriyuki; Sivaraman, Srikanth; Amoroso, Nicholas J; Wagner, William R; Nishiguchi, Akihiro; Matsusaki, Michiya; Akashi, Mitsuru; Nagatomi, Jiro

    2016-01-01

    Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications. © 2015 Wiley Periodicals, Inc.

  4. Electron impact ionization of size selected hydrogen clusters (H2)N: ion fragment and neutral size distributions.

    PubMed

    Kornilov, Oleg; Toennies, J Peter

    2008-05-21

    Clusters consisting of normal H2 molecules, produced in a free jet expansion, are size selected by diffraction from a transmission nanograting prior to electron impact ionization. For each neutral cluster (H2)(N) (N=2-40), the relative intensities of the ion fragments Hn+ are measured with a mass spectrometer. H3+ is found to be the most abundant fragment up to N=17. With a further increase in N, the abundances of H3+, H5+, H7+, and H9+ first increase and, after passing through a maximum, approach each other. At N=40, they are about the same and more than a factor of 2 and 3 larger than for H11+ and H13+, respectively. For a given neutral cluster size, the intensities of the ion fragments follow a Poisson distribution. The fragmentation probabilities are used to determine the neutral cluster size distribution produced in the expansion at a source temperature of 30.1 K and a source pressure of 1.50 bar. The distribution shows no clear evidence of a magic number N=13 as predicted by theory and found in experiments with pure para-H2 clusters. The ion fragment distributions are also used to extract information on the internal energy distribution of the H3+ ions produced in the reaction H2+ + H2-->H3+ +H, which is initiated upon ionization of the cluster. The internal energy is assumed to be rapidly equilibrated and to determine the number of molecules subsequently evaporated. The internal energy distribution found in this way is in good agreement with data obtained in an earlier independent merged beam scattering experiment.

  5. Growth and properties of silicon heterostructures with buried nanosize Mg2Si clusters

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Galkin, K. N.

    2005-06-01

    The technology of solid-phase growth of nanosize islands of magnesium suicide on Si (111) 7x7 with narrow distributions of lateral size and height (60 - 80 and 5 - 7 nanometers, respectively) and density of up to 2x 109 sm-2 is proposed. A 20-50 nm thick Si layer has been grown upon these islands. Basing on the data of AES, EELS, AFM and JR spectroscopy, a conclusion is made that the Mg2Si islands remain in depth of the Si layer. The suggestion is made that sizes, density and crystal structure of the buried magnesium suicide clusters preserves. It is shown, that the system of three as-grown layers of buried clusters has smoother surface than the one layer system. The contribution of the Mg2Si clusters into the dielectric function is observed at the energy 0.8-1.2 eV, it is maximal if the clusters are localized on the silicon surface. It is shown, that with increase of the number of Mg2Si cluster layers their contribution increases into the effective number of electrons per a unit cell and effective dielectric function of the sample.

  6. Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Higaki, Tatsuya; Kitazawa, Hirokazu; Yamazoe, Seiji; Tsukuda, Tatsuya

    2016-06-01

    Iridium clusters nominally composed of 15, 30 or 60 atoms were size-selectively synthesized within OH-terminated poly(amidoamine) dendrimers of generation 6. Spectroscopic characterization revealed that the Ir clusters were partially oxidized. All the Ir clusters efficiently converted 2-nitrobenzaldehyde to anthranil and 2-aminobenzaldehyde under atmospheric hydrogen at room temperature in toluene via selective hydrogenation of the NO2 group. The selectivity toward 2-aminobenzaldehyde over anthranil was improved with the reduction of the cluster size. The improved selectivity is ascribed to more efficient reduction than intramolecular heterocyclization of a hydroxylamine intermediate on smaller clusters that have a higher Ir(0)-phase population on the surface.Iridium clusters nominally composed of 15, 30 or 60 atoms were size-selectively synthesized within OH-terminated poly(amidoamine) dendrimers of generation 6. Spectroscopic characterization revealed that the Ir clusters were partially oxidized. All the Ir clusters efficiently converted 2-nitrobenzaldehyde to anthranil and 2-aminobenzaldehyde under atmospheric hydrogen at room temperature in toluene via selective hydrogenation of the NO2 group. The selectivity toward 2-aminobenzaldehyde over anthranil was improved with the reduction of the cluster size. The improved selectivity is ascribed to more efficient reduction than intramolecular heterocyclization of a hydroxylamine intermediate on smaller clusters that have a higher Ir(0)-phase population on the surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01460g

  7. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizesmore » of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.« less

  8. Fabrication, characterization, and potential application of carbon fiber cone nanometer-size electrodes.

    PubMed

    Zhang, X; Zhang, W; Zhou, X; Ogorevc, B

    1996-10-01

    A novel method has been developed for the fabrication of carbon fiber cone nanometer-size ultramicroelectrodes (nanoelectrodes) with overall tip dimensions as small as 50 nm in diameter. In this method, carbon fibers were initially etched by an argon ion beam thinner. Afterward, a single etched carbon fiber was inserted into a glass capillary, which was then sealed by heating the glass/fiber interface in a vacuum; thus, no epoxy resin is involved. The success rate of our fabrication route for the electrodes with overall tip diameters of up to 500 nm was about 80%; for those with tip diameters of up to 100 nm, it was about 50%. The fabricated carbon fiber cone nanoelectrodes (CFCNEs) were inspected by optical and scanning electron microscopy. Their electrochemical behavior was examined by cyclic and linear sweep voltammetric measurements of ferricyanide and ferrocene ions in aqueous and nonaqueous media. The potential analytical applicability of the CFCNEs was tested by differential pulse voltammetric measurements of two well-known neurotransmitters, dopamine (DA) and 5-hydroxytryptamine (5-HT), and the results achieved were highly satisfactory. The calibration plots obtained were linear over the ranges from 5.0 × 10(-7) to 1.0 × 10(-4) and from 2.0 × 10(-6) to 1.0 × 10(-4) mol/L, with limits of detection of 1.0 × 10(-7) and 5.0 × 10(-7) mol/L for DA and 5-HT, respectively. Some advantages and improvements of the proposed CFCNE fabrication method, especially with respect to smoothness of the fiber (electrode) surface, strength, and control over the fiber tip dimensions, are also discussed.

  9. Mechanisms behind overshoots in mean cluster size profiles in aggregation-breakup processes.

    PubMed

    Sadegh-Vaziri, Ramiar; Ludwig, Kristin; Sundmacher, Kai; Babler, Matthaus U

    2018-05-26

    Aggregation and breakup of small particles in stirred suspensions often shows an overshoot in the time evolution of the mean cluster size: Starting from a suspension of primary particles the mean cluster size first increases before going through a maximum beyond which a slow relaxation sets in. Such behavior was observed in various systems, including polymeric latices, inorganic colloids, asphaltenes, proteins, and, as shown by independent experiments in this work, in the flocculation of microalgae. This work aims at investigating possible mechanism to explain this phenomenon using detailed population balance modeling that incorporates refined rate models for aggregation and breakup of small particles in turbulence. Four mechanisms are considered: (1) restructuring, (2) decay of aggregate strength, (3) deposition of large clusters, and (4) primary particle aggregation where only aggregation events between clusters and primary particles are permitted. We show that all four mechanisms can lead to an overshoot in the mean size profile, while in contrast, aggregation and breakup alone lead to a monotonic, "S"-shaped size evolution profile. In order to distinguish between the different mechanisms simple protocols based on variations of the shear rate during the aggregation-breakup process are proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. [Study of relationship between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite powder].

    PubMed

    Chai, Feng; Xu, Ling; Liao, Yun-mao; Chao, Yong-lie

    2003-07-01

    The fabrication of all-ceramic dental restorations is challenged by ceramics' relatively low flexural strength and intrinsic poor resistance to fracture. This paper aimed at investigating the relationships between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite (Al(2)O(3)-nZrO(2)). Al(2)O(3)-nZrO(2) ceramics powder (W) was processed by combination methods of chemical co-precipitation and ball milling with addition of different powder-sized ZrO(2). Field-emission scanning electron microscopy was used to determine the particle size distribution and characterize the particle morphology of powders. The matrix compacts were made by slip-casting technique and sintered to 1,450 degrees C and flexural strength and the fracture toughness of them were measured. 1. The particle distribution of Al(2)O(3)-nZrO(2) ceramics powder ranges from 0.02 - 3.5 micro m and among them the superfine particles almost accounted for 20%. 2. The ceramic matrix samples with addition of nZrO(2) (W) showed much higher flexural strength (115.434 +/- 5.319) MPa and fracture toughness (2.04 +/- 0.10) MPa m(1/2) than those of pure Al(2)O(3) ceramics (62.763 +/- 7.220 MPa; 1.16 +/- 0.02 MPa m(1/2)). The particle size of additive ZrO(2) may impose influences on mechanical properties of Al(2)O(3)-nZrO(2) ceramics matrix. Good homogeneity and reasonable powder-size gradation of ceramic powder can improve the mechanical properties of material.

  11. Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach.

    PubMed

    Ullah, Sami; Daud, Hanita; Dass, Sarat C; Khan, Habib Nawaz; Khalil, Alamgir

    2017-11-06

    Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space-time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.

  12. Towards Cluster-Assembled Materials of True Monodispersity in Size and Chemical Environment: Synthesis, Dynamics and Activity

    DTIC Science & Technology

    2016-10-27

    AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis, dynamics and activity 5a.  CONTRACT NUMBER 5b...report Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and Activity Ulrich Heiz

  13. Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics.

    PubMed

    Vorontsova, Maria A; Chan, Ho Yin; Lubchenko, Vassiliy; Vekilov, Peter G

    2015-11-03

    Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, S.; Chung, C.; Fitsos, P.

    2007-04-24

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Acceleratormore » Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.« less

  15. Nanometer-sized alumina packed microcolumn solid-phase extraction combined with field-amplified sample stacking-capillary electrophoresis for the speciation analysis of inorganic selenium in environmental water samples.

    PubMed

    Duan, Jiankuan; Hu, Bin; He, Man

    2012-10-01

    In this paper, a new method of nanometer-sized alumina packed microcolumn SPE combined with field-amplified sample stacking (FASS)-CE-UV detection was developed for the speciation analysis of inorganic selenium in environmental water samples. Self-synthesized nanometer-sized alumina was packed in a microcolumn as the SPE adsorbent to retain Se(IV) and Se(VI) simultaneously at pH 6 and the retained inorganic selenium was eluted by concentrated ammonia. The eluent was used for FASS-CE-UV analysis after NH₃ evaporation. The factors affecting the preconcentration of both Se(IV) and Se(VI) by SPE and FASS were studied and the optimal CE separation conditions for Se(IV) and Se(VI) were obtained. Under the optimal conditions, the LODs of 57 ng L⁻¹ (Se(IV)) and 71 ng L⁻¹ (Se(VI)) were obtained, respectively. The developed method was validated by the analysis of a certified reference material of GBW(E)080395 environmental water and the determined value was in a good agreement with the certified value. It was also successfully applied to the speciation analysis of inorganic selenium in environmental water samples, including Yangtze River water, spring water, and tap water. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The size-evolution of circumstellar disks in the Trapezium cluster

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.; Concha-Ramírez, F.

    We compare the observed size distribution of circum stellar disks in the Orion Trapezium cluster with the results of N-body simulations in which we incorporated a heuristic prescription for the evolution of these disks. In our simulations, the sizes of stellar disks are affected by close encounters with other stars (with disks). In the second series of simulations, we also take the viscous evolution of the disks into account. We find that the observed distribution of disk sizes in the Orion Trapezium cluster is satisfactorily reproduced by truncation due to dynamical encounters alone. Although in that case, the number of disks in the observed range is only about 10% of all the stars. If we take the viscous evolution of the disks into account, this fraction grows to about 80%, but the age range in which a satisfactory match is realized shifts from 0.2--0.5 Myr to about ≲ 0.2 Myr. Based on our simulations we argue that when the viscous evolution of the circumstellar disks is important, the arrive at a best comparison with the observations of a cluster of about 1500 to 2500 stars in virial equilibrium that are distributed in a scale-free fashion with a fractal dimension of 1.5 to 1.9.

  17. Variability in body size and shape of UK offshore workers: A cluster analysis approach.

    PubMed

    Stewart, Arthur; Ledingham, Robert; Williams, Hector

    2017-01-01

    Male UK offshore workers have enlarged dimensions compared with UK norms and knowledge of specific sizes and shapes typifying their physiques will assist a range of functions related to health and ergonomics. A representative sample of the UK offshore workforce (n = 588) underwent 3D photonic scanning, from which 19 extracted dimensional measures were used in k-means cluster analysis to characterise physique groups. Of the 11 resulting clusters four somatotype groups were expressed: one cluster was muscular and lean, four had greater muscularity than adiposity, three had equal adiposity and muscularity and three had greater adiposity than muscularity. Some clusters appeared constitutionally similar to others, differing only in absolute size. These cluster centroids represent an evidence-base for future designs in apparel and other applications where body size and proportions affect functional performance. They also constitute phenotypic evidence providing insight into the 'offshore culture' which may underpin the enlarged dimensions of offshore workers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Wide size range fast integrated mobility spectrometer

    DOEpatents

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  19. Sample size determination for GEE analyses of stepped wedge cluster randomized trials.

    PubMed

    Li, Fan; Turner, Elizabeth L; Preisser, John S

    2018-06-19

    In stepped wedge cluster randomized trials, intact clusters of individuals switch from control to intervention from a randomly assigned period onwards. Such trials are becoming increasingly popular in health services research. When a closed cohort is recruited from each cluster for longitudinal follow-up, proper sample size calculation should account for three distinct types of intraclass correlations: the within-period, the inter-period, and the within-individual correlations. Setting the latter two correlation parameters to be equal accommodates cross-sectional designs. We propose sample size procedures for continuous and binary responses within the framework of generalized estimating equations that employ a block exchangeable within-cluster correlation structure defined from the distinct correlation types. For continuous responses, we show that the intraclass correlations affect power only through two eigenvalues of the correlation matrix. We demonstrate that analytical power agrees well with simulated power for as few as eight clusters, when data are analyzed using bias-corrected estimating equations for the correlation parameters concurrently with a bias-corrected sandwich variance estimator. © 2018, The International Biometric Society.

  20. Progress on glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Weber, Peter; Westerhoff, Thomas

    2016-03-01

    The Semiconductor Industry is making continuous progress in shrinking feature size developing technologies and process to achieve < 10 nm feature size. The required Overlay specification for successful production is in the range one nanometer or even smaller. Consequently, materials designed into metrology systems of exposure or inspection tools need to fulfill ever tighter specification on the coefficient of thermal expansion (CTE). The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion, the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR®. This paper is focusing on the "Advanced Dilatometer" for determination of the CTE developed at SCHOTT in the recent years and introduced into production in Q1 2015. The achievement for improving the absolute CTE measurement accuracy and the reproducibility are described in detail. Those achievements are compared to the CTE measurement accuracy reported by the Physikalische Technische Bundesanstalt (PTB), the National Metrology Institute of Germany. The CTE homogeneity is of highest importance to achieve nanometer precision on larger scales. Additionally, the paper presents data on the short scale CTE homogeneity and its improvement in the last two years. The data presented in this paper will explain the capability of ZERODUR® to enable the extreme precision required for future generation of lithography equipment and processes.

  1. Pore-scale micro-computed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition

    NASA Astrophysics Data System (ADS)

    Georgiadis, A.; Berg, S.; Makurat, A.; Maitland, G.; Ott, H.

    2013-09-01

    We investigated the cluster-size distribution of the residual nonwetting phase in a sintered glass-bead porous medium at two-phase flow conditions, by means of micro-computed-tomography (μCT) imaging with pore-scale resolution. Cluster-size distribution functions and cluster volumes were obtained by image analysis for a range of injected pore volumes under both imbibition and drainage conditions; the field of view was larger than the porosity-based representative elementary volume (REV). We did not attempt to make a definition for a two-phase REV but used the nonwetting-phase cluster-size distribution as an indicator. Most of the nonwetting-phase total volume was found to be contained in clusters that were one to two orders of magnitude larger than the porosity-based REV. The largest observed clusters in fact ranged in volume from 65% to 99% of the entire nonwetting phase in the field of view. As a consequence, the largest clusters observed were statistically not represented and were found to be smaller than the estimated maximum cluster length. The results indicate that the two-phase REV is larger than the field of view attainable by μCT scanning, at a resolution which allows for the accurate determination of cluster connectivity.

  2. A Binary System in the Hyades Cluster Hosting a Neptune-Sized Planet

    NASA Astrophysics Data System (ADS)

    Feinstein, Adina; Ciardi, David; Crossfield, Ian; Schlieder, Joshua; Petigura, Erik; David, Trevor J.; Bristow, Makennah; Patel, Rahul; Arnold, Lauren; Benneke, Björn; Christiansen, Jessie; Dressing, Courtney; Fulton, Benjamin; Howard, Andrew; Isaacson, Howard; Sinukoff, Evan; Thackeray, Beverly

    2018-01-01

    We report the discovery of a Neptune-size planet (Rp = 3.0Rearth) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. The planet is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set contraints on the formation and evolution of planetary systems.

  3. The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.

    2012-03-01

    A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.

  4. Tuning Precursor Reactivity toward Nanometer-Size Control in Palladium Nanoparticles Studied by in Situ Small Angle X-ray Scattering

    DOE PAGES

    Wu, Liheng; Lian, Huada; Willis, Joshua J.; ...

    2018-01-03

    Synthesis of monodisperse nanoparticles (NPs) with precisely controlled size is critical for understanding their size-dependent properties. Although significant synthetic developments have been achieved, it is still challenging to synthesize well-defined NPs in a predictive way due to a lack of in-depth mechanistic understanding of reaction kinetics. Here we use synchrotron-based small-angle X-ray scattering (SAXS) to monitor in situ the formation of palladium (Pd) NPs through thermal decomposition of Pd–TOP (TOP: trioctylphosphine) complex via the “heat-up” method. We systematically study the effects of different ligands, including oleylamine, TOP, and oleic acid, on the formation kinetics of Pd NPs. Through quantitative analysismore » of the real-time SAXS data, we are able to obtain a detailed picture of the size, size distribution, and concentration of Pd NPs during the syntheses, and these results show that different ligands strongly affect the precursor reactivity. We find that oleylamine does not change the reactivity of the Pd–TOP complex but promote the formation of nuclei due to strong ligand–NP binding. On the other hand, TOP and oleic acid substantially change the precursor reactivity over more than an order of magnitude, which controls the nucleation kinetics and determines the final particle size. A theoretical model is used to demonstrate that the nucleation and growth kinetics are dependent on both precursor reactivity and ligand–NP binding affinity, thus providing a framework to explain the synthesis process and the effect of the reaction conditions. Quantitative understanding of the impacts of different ligands enables the successful synthesis of a series of monodisperse Pd NPs in the broad size range from 3 to 11 nm with nanometer-size control, which serve as a model system to study their size-dependent catalytic properties. Furthermore, the in situ SAXS probing can be readily extended to other functional NPs to greatly advance

  5. Tuning Precursor Reactivity toward Nanometer-Size Control in Palladium Nanoparticles Studied by in Situ Small Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liheng; Lian, Huada; Willis, Joshua J.

    Synthesis of monodisperse nanoparticles (NPs) with precisely controlled size is critical for understanding their size-dependent properties. Although significant synthetic developments have been achieved, it is still challenging to synthesize well-defined NPs in a predictive way due to a lack of in-depth mechanistic understanding of reaction kinetics. Here we use synchrotron-based small-angle X-ray scattering (SAXS) to monitor in situ the formation of palladium (Pd) NPs through thermal decomposition of Pd–TOP (TOP: trioctylphosphine) complex via the “heat-up” method. We systematically study the effects of different ligands, including oleylamine, TOP, and oleic acid, on the formation kinetics of Pd NPs. Through quantitative analysismore » of the real-time SAXS data, we are able to obtain a detailed picture of the size, size distribution, and concentration of Pd NPs during the syntheses, and these results show that different ligands strongly affect the precursor reactivity. We find that oleylamine does not change the reactivity of the Pd–TOP complex but promote the formation of nuclei due to strong ligand–NP binding. On the other hand, TOP and oleic acid substantially change the precursor reactivity over more than an order of magnitude, which controls the nucleation kinetics and determines the final particle size. A theoretical model is used to demonstrate that the nucleation and growth kinetics are dependent on both precursor reactivity and ligand–NP binding affinity, thus providing a framework to explain the synthesis process and the effect of the reaction conditions. Quantitative understanding of the impacts of different ligands enables the successful synthesis of a series of monodisperse Pd NPs in the broad size range from 3 to 11 nm with nanometer-size control, which serve as a model system to study their size-dependent catalytic properties. Furthermore, the in situ SAXS probing can be readily extended to other functional NPs to greatly advance

  6. Alumina-supported sub-nanometer Pt 10 clusters: Amorphization and role of the support material in a highly active CO oxidation catalyst

    DOE PAGES

    Yin, Chunrong; Negreiros, Fabio R.; Barcaro, Giovanni; ...

    2017-02-03

    Catalytic CO oxidation is unveiled on size-selected Pt 10 clusters deposited on two very different ultrathin (≈0.5–0.7 nm thick) alumina films: (i) a highly ordered alumina obtained under ultra-high vacuum (UHV) by oxidation of the NiAl(110) surface and (ii) amorphous alumina obtained by atomic layer deposition (ALD) on a silicon chip that is a close model of real-world supports. Notably, when exposed to realistic reaction conditions, the Pt 10/UHV-alumina system undergoes a morphological transition in both the clusters and the substrate, and becomes closely akin to Pt 10/ALD-alumina, thus reconciling UHV-type surface-science and real-world experiments. The Pt 10 clusters, thoroughlymore » characterized via combined experimental techniques and theoretical analysis, exhibit among the highest CO oxidation activity per Pt atom reported for CO oxidation catalysts, due to the interplay of ultra-small size and support effects. Lastly, a coherent interdisciplinary picture then emerges for this catalytic system.« less

  7. Fischer–Tropsch Synthesis at a Low Pressure on Subnanometer Cobalt Oxide Clusters: The Effect of Cluster Size and Support on Activity and Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Sönke

    2015-05-21

    In this study, the catalytic activity and changes in the oxidation state during the Fischer Tropsch (FT) reaction was investigated on subnanometer size-selected cobalt clusters deposited on oxide (Al2O3, MgO) and carbon-based (ultrananocrystalline diamond UNCD) supports by temperature programmed reaction (TPRx) combined with in-situ grazing-incidence X-ray absorption characterization (GIXAS). The activity and selectivity of ultrasmall cobalt clusters exhibits a very strong dependence on cluster size and support. The evolution of the oxidation state of metal cluster during the reaction reveals that metal-support interaction plays a key role in the reaction.

  8. Size-restricted proton transfer within toluene-methanol cluster ions.

    PubMed

    Chiang, Chi-Tung; Shores, Kevin S; Freindorf, Marek; Furlani, Thomas; DeLeon, Robert L; Garvey, James F

    2008-11-20

    To understand the interaction between toluene and methanol, the chemical reactivity of [(C6H5CH3)(CH3OH) n=1-7](+) cluster ions has been investigated via tandem quadrupole mass spectrometry and through calculations. Collision Induced Dissociation (CID) experiments show that the dissociated intracluster proton transfer reaction from the toluene cation to methanol clusters, forming protonated methanol clusters, only occurs for n = 2-4. For n = 5-7, CID spectra reveal that these larger clusters have to sequentially lose methanol monomers until they reach n = 4 to initiate the deprotonation of the toluene cation. Metastable decay data indicate that for n = 3 and n = 4 (CH3OH)3H(+) is the preferred fragment ion. The calculational results reveal that both the gross proton affinity of the methanol subcluster and the structure of the cluster itself play an important role in driving this proton transfer reaction. When n = 3, the cooperative effect of the methanols in the subcluster provides the most important contribution to allow the intracluster proton transfer reaction to occur with little or no energy barrier. As n >or= 4, the methanol subcluster is able to form ring structures to stabilize the cluster structures so that direct proton transfer is not a favored process. The preferred reaction product, the (CH3OH)3H(+) cluster ion, indicates that this size-restricted reaction is driven by both the proton affinity and the enhanced stability of the resulting product.

  9. A model of autophagy size selectivity by receptor clustering on peroxisomes

    NASA Astrophysics Data System (ADS)

    Brown, Aidan I.; Rutenberg, Andrew D.

    2017-05-01

    Selective autophagy must not only select the correct type of organelle, but also must discriminate between individual organelles of the same kind so that some but not all of the organelles are removed. We propose that physical clustering of autophagy receptor proteins on the organelle surface can provide an appropriate all-or-none signal for organelle degradation. We explore this proposal using a computational model restricted to peroxisomes and the relatively well characterized pexophagy receptor proteins NBR1 and p62. We find that larger peroxisomes nucleate NBR1 clusters first and lose them last through competitive coarsening. This results in significant size-selectivity that favors large peroxisomes, and can explain the increased catalase signal that results from siRNA inhibition of p62. Excess ubiquitin, resulting from damaged organelles, suppresses size-selectivity but not cluster formation. Our proposed selectivity mechanism thus allows all damaged organelles to be degraded, while otherwise selecting only a portion of organelles for degradation.

  10. Ion-Size-Dependent Formation of Mixed Titanium/Lanthanide Oxo Clusters.

    PubMed

    Artner, Christine; Kronister, Stefan; Czakler, Matthias; Schubert, Ulrich

    2014-11-01

    The mixed-metal oxo clusters LnTi 4 O 3 (O i Pr) 2 (OMc) 11 (Ln = La, Ce; OMc = methacrylate), Ln 2 Ti 6 O 6 (OMc) 18 (HO i Pr) (Ln = La, Ce, Nd, Sm) and Ln 2 Ti 4 O 4 (OMc) 14 (HOMc) 2 (Ln = Sm, Eu, Gd, Ho) have been synthesized from titanium isopropoxide, the corresponding lanthanide acetate and methacrylic acid. The type of cluster obtained strongly depends on the size of the lanthanide ion.

  11. Tests for informative cluster size using a novel balanced bootstrap scheme.

    PubMed

    Nevalainen, Jaakko; Oja, Hannu; Datta, Somnath

    2017-07-20

    Clustered data are often encountered in biomedical studies, and to date, a number of approaches have been proposed to analyze such data. However, the phenomenon of informative cluster size (ICS) is a challenging problem, and its presence has an impact on the choice of a correct analysis methodology. For example, Dutta and Datta (2015, Biometrics) presented a number of marginal distributions that could be tested. Depending on the nature and degree of informativeness of the cluster size, these marginal distributions may differ, as do the choices of the appropriate test. In particular, they applied their new test to a periodontal data set where the plausibility of the informativeness was mentioned, but no formal test for the same was conducted. We propose bootstrap tests for testing the presence of ICS. A balanced bootstrap method is developed to successfully estimate the null distribution by merging the re-sampled observations with closely matching counterparts. Relying on the assumption of exchangeability within clusters, the proposed procedure performs well in simulations even with a small number of clusters, at different distributions and against different alternative hypotheses, thus making it an omnibus test. We also explain how to extend the ICS test to a regression setting and thereby enhancing its practical utility. The methodologies are illustrated using the periodontal data set mentioned earlier. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Ultrahigh-power supercapacitors based on highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon frameworks.

    PubMed

    Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun

    2018-06-22

    In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s -1 to 20 V s -1 , and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s -1 , suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.

  13. Ultrahigh-power supercapacitors based on highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon frameworks

    NASA Astrophysics Data System (ADS)

    Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun

    2018-06-01

    In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s‑1 to 20 V s‑1, and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s‑1, suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.

  14. First Principles Studies of Electronic and Optical Excitations in Noble Metal and Titania Clusters

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol

    Clusters are metastable structures that form a bridge between the atomic and the bulk phase. Due to their small size, quantum confinement effects are very important in clusters. They also have large surface to volume ratio, and as such, surface effects are also important. Due to these effects the properties of clusters are quite different from those of the bulk. When the size of a cluster is increased, its properties change from atomic to bulk values usually in nontrivial ways, often displaying interesting effects. By studying the evolution of cluster properties as a function of size one can try to understand the evolution and origin of bulk properties. This thesis concentrates on two main topics, noble-metal clusters of Ag and Cu, and TiO2 nanocrystals. I present my study of the optical properties of these systems calculated using first principles methods. Noble metal clusters have intriguing physical and chemical properties due to their electronic structure that contains a fully filled and localized d orbital energetically and spatially very close to the half filled s orbital. In Chapters 3 and 4 of this thesis, I present a detailed study of the role of d electrons on the optical properties of Ag and Cu clusters. I also show that the optical spectra of these clusters can be explained remarkably well by the classical Mie-Gans theory which uses the bulk dielectric constant of the material to predict their optical absorption spectra. The fact that the concept of the bulk dielectric constant survives up to the sub-nanometer size range is one of the main findings of this thesis. TiO2 is arguably the most studied single-crystalline material in the field of surface science of metal oxides. In chapter 5 of this thesis I present results and analyses on the electronic and optical excitations in rutile TiO2 nanocrystals. The motivation for this study stems from the following observation: In modeling optical prooperties of DSSC configurations with various organic molecules

  15. Energetic proton generation from intense Coulomb explosion of large-size ethane clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Song; Zhou Zili; Tian Ye

    An experimental investigation is performed on the interaction of intense femtosecond laser pulses at the intensity of 6 Multiplication-Sign 10{sup 17} W/cm{sup 2} (55 fs, 160 mJ at 800 nm) with ethane cluster (C{sub 2}H{sub 6}){sub N} jets prepared under the backing pressure of 30 bars at room temperature (298 K). The experiment results indicate the generation of energetic protons, whose average and maximum kinetic energies are 12.2 and 138.1 keV, respectively, by Coulomb explosion of (C{sub 2}H{sub 6}){sub N} clusters. (C{sub 2}H{sub 6}){sub N} clusters of 5 nm in radius are generated in the experiment, which are 1.7 timesmore » larger than that of (CH{sub 4}){sub N} clusters prepared in the same conditions. Empirical estimation suggests that (C{sub 2}H{sub 6}){sub N} clusters with radius of about 9.6 nm can be prepared at 80-bars backing pressure at 308 K. While (C{sub 2}H{sub 6}){sub N} clusters of so large size are irradiated by sufficiently intense laser pulses, the average energy of protons will be increased up to 50 keV. It is inferred that such large-size deuterated ethane clusters (C{sub 2}D{sub 6}){sub N} will favor more efficient neutron generation due to the significant increase of the D-D nuclear reaction cross section in laser-driven cluster nuclear fusion.« less

  16. On the Analysis of Clustering in an Irradiated Low Alloy Reactor Pressure Vessel Steel Weld.

    PubMed

    Lindgren, Kristina; Stiller, Krystyna; Efsing, Pål; Thuvander, Mattias

    2017-04-01

    Radiation induced clustering affects the mechanical properties, that is the ductile to brittle transition temperature (DBTT), of reactor pressure vessel (RPV) steel of nuclear power plants. The combination of low Cu and high Ni used in some RPV welds is known to further enhance the DBTT shift during long time operation. In this study, RPV weld samples containing 0.04 at% Cu and 1.6 at% Ni were irradiated to 2.0 and 6.4×1023 n/m2 in the Halden test reactor. Atom probe tomography (APT) was applied to study clustering of Ni, Mn, Si, and Cu. As the clusters are in the nanometer-range, APT is a very suitable technique for this type of study. From APT analyses information about size distribution, number density, and composition of the clusters can be obtained. However, the quantification of these attributes is not trivial. The maximum separation method (MSM) has been used to characterize the clusters and a detailed study about the influence of the choice of MSM cluster parameters, primarily on the cluster number density, has been undertaken.

  17. Observing Optical Plasmons on a Single Nanometer Scale

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2014-01-01

    The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light - matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous potential applications. However, imaging optical plasmonic waves on a single nanometer scale is yet a substantial challenge mainly due to size and energy considerations. Here, for the first time, we use Kelvin Probe Force Microscopy (KPFM) under optical illumination to image and characterize plasmonic modes. We experimentally demonstrate unprecedented spatial resolution and measurement sensitivity both on the order of a single nanometer. By comparing experimentally obtained images with theoretical calculation results, we show that KPFM maps may provide valuable information on the phase of the optical near field. Additionally, we propose a theoretical model for the relation between surface plasmons and the material workfunction measured by KPFM. Our findings provide the path for using KPFM for high resolution measurements of optical plasmons, prompting the scientific frontier towards quantum plasmonic imaging on submolecular scales. PMID:24556874

  18. Understanding batteries on the micro- and nanometer scale

    ScienceCinema

    None

    2018-01-16

    In order to understand performance limitations and failure mechanisms of batteries, one has to investigate processes on the micro- and nanometer scale. A typical failure mechanism in lithium metal batteries is dendritic growth. During discharge, lithium is stripped of the anode surface and migrates to the cathode. During charge, lithium is deposited back on the anode. Repeated cycling can result in stripping and re-deposition that roughens the surface. The roughening of the surface changes the electric field and draws more metal to spikes that are beginning to grow. These can grow with tremendous mechanical force, puncture the separator, and directly connect the anode with the cathode which can create an internal short circuit. This can lead to an uncontrolled discharge reaction, which heats the cell and causes additional exothermic reactions leading to what is called thermal runaway. ORNL has developed a new technology called liquid electron microscopy. In a specially designed sample holder micro-chamber with electron-transparent windows, researchers can hold a liquid and take images of structures and particles at nanometer size. It's the first microscope holder of its kind used to investigate the inside of a battery while cycled.

  19. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison, E-mail: webbjj@mcmaster.ca

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and bluemore » sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.« less

  20. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberreit, Derek; Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110; Rawat, Vivek K.

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for eachmore » ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.« less

  1. Communication: Finite size correction in periodic coupled cluster theory calculations of solids.

    PubMed

    Liao, Ke; Grüneis, Andreas

    2016-10-14

    We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.

  2. Glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  3. Nanometer-sized ceria-coated silica-iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES.

    PubMed

    Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D

    2014-04-01

    A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, V; Hayano, H; Honda, Y

    2005-10-14

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics.more » A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.« less

  5. Laser damage of free-standing nanometer membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Roland, Iännis; Rennesson, Stéphanie; Semond, Fabrice; Boucaud, Philippe; Baum, Peter

    2017-12-01

    Many high-field/attosecond and ultrafast electron diffraction/microscopy experiments on condensed matter require samples in the form of free-standing membranes with nanometer thickness. Here, we report the measurement of the laser-induced damage threshold of 11 different free-standing nanometer-thin membranes of metallic, semiconducting, and insulating materials for 1-ps, 1030-nm laser pulses at 50 kHz repetition rate. We find a laser damage threshold that is very similar to each corresponding bulk material. The measurements also reveal a band gap dependence of the damage threshold as a consequence of different ionization rates. These results establish the suitability of free-standing nanometer membranes for high-field pump-probe experiments.

  6. First principles investigations of small bimetallic PdGa clusters as catalysts for hydrogen dissociation

    NASA Astrophysics Data System (ADS)

    Kaul, Indu; Ghosh, Prasenjit

    2017-04-01

    Using first principles density functional theory based calculations, we have studied hydrogen dissociation on sub nanometer bimetallic clusters formed from d-block (Pd) and p-block (Ga) elements in gas phase to explore the feasibility of using them as cheap catalysts for hydrogen dissociation. Our calculations show that the dimers, trimers and tetramers of these clusters are thermodynamically more stable than the pure ones for all Ga concentrations. For a given cluster size, we find that the clusters containing equal amount of Pd and Ga are the most stable ones. In contrast to bulk PdGa, the contribution of Pd-d states to the highest occupied molecular orbitals of the bimetallic clusters are either very small or absent. Study of adsorption of hydrogen molecule on these clusters show that hydrogen binds in an activated form only on the Pd rich clusters. From the calculations of hydrogen dissociation barriers on tetramers of pure Pd, 25% Ga (Pd3Ga) and 50% Ga (Pd2Ga2) we find that Pd3Ga is the most efficient catalyst for hydrogen dissociation with barriers even lower than that on the PdGa surfaces.

  7. The effect of defect cluster size and interpolation on radiographic image quality

    NASA Astrophysics Data System (ADS)

    Töpfer, Karin; Yip, Kwok L.

    2011-03-01

    For digital X-ray detectors, the need to control factory yield and cost invariably leads to the presence of some defective pixels. Recently, a standard procedure was developed to identify such pixels for industrial applications. However, no quality standards exist in medical or industrial imaging regarding the maximum allowable number and size of detector defects. While the answer may be application specific, the minimum requirement for any defect specification is that the diagnostic quality of the images be maintained. A more stringent criterion is to keep any changes in the images due to defects below the visual threshold. Two highly sensitive image simulation and evaluation methods were employed to specify the fraction of allowable defects as a function of defect cluster size in general radiography. First, the most critical situation of the defect being located in the center of the disease feature was explored using image simulation tools and a previously verified human observer model, incorporating a channelized Hotelling observer. Detectability index d' was obtained as a function of defect cluster size for three different disease features on clinical lung and extremity backgrounds. Second, four concentrations of defects of four different sizes were added to clinical images with subtle disease features and then interpolated. Twenty observers evaluated the images against the original on a single display using a 2-AFC method, which was highly sensitive to small changes in image detail. Based on a 50% just-noticeable difference, the fraction of allowed defects was specified vs. cluster size.

  8. Nucleation and growth in cluster dynamics: A quantitative test of the classical kinetic approach

    NASA Astrophysics Data System (ADS)

    Gránásy, László; James, Peter F.

    2000-12-01

    Nucleation and size dependent growth of nanometer sized crystalline particles in glassy media have been studied by numerically solving the Turnbull-Fisher master equations that describe the time evolution of cluster population. Time dependencies of the formation rate and number density are determined for large clusters (built of up to 2×105 formula units, containing 1.8×106 atoms). We demonstrate that the formation rate and number density of such clusters are well approximated by Shneidman's asymptotically exact analytical solution. A quantitative test of the kinetic Turnbull-Fisher model has been performed: Evaluating the kinetic coefficients and interfacial parameters from the transient time and steady-state nucleation rates measured on six stoichiometric oxide glass compositions (lithium-disilicate, barium-disilicate, lithium-diborate, wollastonite, 1:2:3 and 2:1:3 soda-lime-silica glass compositions), we calculated the macroscopic growth rates and compared with experiments. For wollastonite, lithium-diborate and the 1:2:3 soda-lime-silica glass, differences of 2 to 4 orders of magnitude have been observed between theory and experiment. This inadequacy of the microscopic kinetic parameters in describing macroscopic growth cannot be explained by either the curvature effect on the interfacial free energy or the self-consistency correction for the cluster free energy. The origin of the discrepancy is discussed.

  9. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    NASA Astrophysics Data System (ADS)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (<10 nm) possess advantages for surface enhanced Raman scattering (SERS) via the synergic effects of nanogaps and efficient decoupling from the substrate through an elevated three-dimensional (3D) design. In this work, we demonstrate a pattern-transfer-free process to reliably define elevated nanometer-separated mushroom-shaped dimers directly from 3D resist patterns based on the gap-narrowing effect during the metallic film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  10. Reporting and methodological quality of sample size calculations in cluster randomized trials could be improved: a review.

    PubMed

    Rutterford, Clare; Taljaard, Monica; Dixon, Stephanie; Copas, Andrew; Eldridge, Sandra

    2015-06-01

    To assess the quality of reporting and accuracy of a priori estimates used in sample size calculations for cluster randomized trials (CRTs). We reviewed 300 CRTs published between 2000 and 2008. The prevalence of reporting sample size elements from the 2004 CONSORT recommendations was evaluated and a priori estimates compared with those observed in the trial. Of the 300 trials, 166 (55%) reported a sample size calculation. Only 36 of 166 (22%) reported all recommended descriptive elements. Elements specific to CRTs were the worst reported: a measure of within-cluster correlation was specified in only 58 of 166 (35%). Only 18 of 166 articles (11%) reported both a priori and observed within-cluster correlation values. Except in two cases, observed within-cluster correlation values were either close to or less than a priori values. Even with the CONSORT extension for cluster randomization, the reporting of sample size elements specific to these trials remains below that necessary for transparent reporting. Journal editors and peer reviewers should implement stricter requirements for authors to follow CONSORT recommendations. Authors should report observed and a priori within-cluster correlation values to enable comparisons between these over a wider range of trials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Application of a parallel genetic algorithm to the global optimization of medium-sized Au-Pd sub-nanometre clusters

    NASA Astrophysics Data System (ADS)

    Hussein, Heider A.; Demiroglu, Ilker; Johnston, Roy L.

    2018-02-01

    To contribute to the discussion of the high activity and reactivity of Au-Pd system, we have adopted the BPGA-DFT approach to study the structural and energetic properties of medium-sized Au-Pd sub-nanometre clusters with 11-18 atoms. We have examined the structural behaviour and stability as a function of cluster size and composition. The study suggests 2D-3D crossover points for pure Au clusters at 14 and 16 atoms, whereas pure Pd clusters are all found to be 3D. For Au-Pd nanoalloys, the role of cluster size and the influence of doping were found to be extensive and non-monotonic in altering cluster structures. Various stability criteria (e.g. binding energies, second differences in energy, and mixing energies) are used to evaluate the energetics, structures, and tendency of segregation in sub-nanometre Au-Pd clusters. HOMO-LUMO gaps were calculated to give additional information on cluster stability and a systematic homotop search was used to evaluate the energies of the generated global minima of mono-substituted clusters and the preferred doping sites, as well as confirming the validity of the BPGA-DFT approach.

  12. Reduced response cluster size in early visual areas explains the acuity deficit in amblyopia.

    PubMed

    Huang, Yufeng; Feng, Lixia; Zhou, Yifeng

    2017-05-03

    Focal visual stimulation typically results in the activation of a large portion of the early visual cortex. This spread of activity is attributed to long-range lateral interactions. Such long-range interactions may serve to stabilize a visual representation or to simply modulate incoming signals, and any associated dysfunction in long-range activation may reduce sensitivity to visual information in conditions such as amblyopia. We sought to measure the dispersion of cortical activity following local visual stimulation in a group of patients with amblyopia and matched normal. Twenty adult anisometropic amblyopes and 10 normal controls participated in this study. Using a multifocal stimulation, we simultaneously measured cluster sizes to multiple stimulation points in the visual field. We found that the functional MRI (fMRI) response cluster size that corresponded to the fellow eye was significantly larger as opposed to that corresponding to the amblyopic eye and that the fMRI response cluster size at the two more central retinotopic locations correlated with amblyopia acuity deficit. Our results suggest that the amblyopic visual cortex has a diminished long-range communication as evidenced by significantly smaller cluster of activity as measured with fMRI. These results have important implications for models of amblyopia and approaches to treatment.

  13. Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters

    NASA Astrophysics Data System (ADS)

    Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.

    2015-10-01

    Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.

  14. Artificial submicron or nanometer speckle fabricating technique and electron microscope speckle photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhanwei; Xie Huimin; Fang Daining

    2007-03-15

    In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less

  15. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    DOE PAGES

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2017-12-01

    Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less

  16. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    NASA Astrophysics Data System (ADS)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2018-03-01

    Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.

  17. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less

  18. A scanning tunneling microscope with a scanning range from hundreds of micrometers down to nanometer resolution.

    PubMed

    Kalkan, Fatih; Zaum, Christopher; Morgenstern, Karina

    2012-10-01

    A beetle type stage and a flexure scanning stage are combined to form a two stages scanning tunneling microscope (STM). It operates at room temperature in ultrahigh vacuum and is capable of scanning areas up to 300 μm × 450 μm down to resolution on the nanometer scale. This multi-scale STM has been designed and constructed in order to investigate prestructured metallic or semiconducting micro- and nano-structures in real space from atomic-sized structures up to the large-scale environment. The principle of the instrument is demonstrated on two different systems. Gallium nitride based micropillars demonstrate scan areas up to hundreds of micrometers; a Au(111) surface demonstrates nanometer resolution.

  19. Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment

    PubMed Central

    Arkill, Kenton P.; Mantell, Judith M.; Plant, Simon R.; Verkade, Paul; Palmer, Richard E.

    2015-01-01

    A three-dimensional reconstruction of a nano-scale aqueous object can be achieved by taking a series of transmission electron micrographs tilted at different angles in vitreous ice: cryo-Transmission Electron Tomography. Presented here is a novel method of fine alignment for the tilt series. Size-selected gold clusters of ~2.7 nm (Au561 ± 14), ~3.2 nm (Au923 ± 22), and ~4.3 nm (Au2057 ± 45) in diameter were deposited onto separate graphene oxide films overlaying holes on amorphous carbon grids. After plunge freezing and subsequent transfer to cryo-Transmission Electron Tomography, the resulting tomograms have excellent (de-)focus and alignment properties during automatic acquisition. Fine alignment is accurate when the evenly distributed 3.2 nm gold particles are used as fiducial markers, demonstrated with a reconstruction of a tobacco mosaic virus. Using a graphene oxide film means the fiducial markers are not interfering with the ice bound sample and that automated collection is consistent. The use of pre-deposited size-selected clusters means there is no aggregation and a user defined concentration. The size-selected clusters are mono-dispersed and can be produced in a wide size range including 2–5 nm in diameter. The use of size-selected clusters on a graphene oxide films represents a significant technical advance for 3D cryo-electron microscopy. PMID:25783049

  20. Understanding the cluster randomised crossover design: a graphical illustraton of the components of variation and a sample size tutorial.

    PubMed

    Arnup, Sarah J; McKenzie, Joanne E; Hemming, Karla; Pilcher, David; Forbes, Andrew B

    2017-08-15

    In a cluster randomised crossover (CRXO) design, a sequence of interventions is assigned to a group, or 'cluster' of individuals. Each cluster receives each intervention in a separate period of time, forming 'cluster-periods'. Sample size calculations for CRXO trials need to account for both the cluster randomisation and crossover aspects of the design. Formulae are available for the two-period, two-intervention, cross-sectional CRXO design, however implementation of these formulae is known to be suboptimal. The aims of this tutorial are to illustrate the intuition behind the design; and provide guidance on performing sample size calculations. Graphical illustrations are used to describe the effect of the cluster randomisation and crossover aspects of the design on the correlation between individual responses in a CRXO trial. Sample size calculations for binary and continuous outcomes are illustrated using parameters estimated from the Australia and New Zealand Intensive Care Society - Adult Patient Database (ANZICS-APD) for patient mortality and length(s) of stay (LOS). The similarity between individual responses in a CRXO trial can be understood in terms of three components of variation: variation in cluster mean response; variation in the cluster-period mean response; and variation between individual responses within a cluster-period; or equivalently in terms of the correlation between individual responses in the same cluster-period (within-cluster within-period correlation, WPC), and between individual responses in the same cluster, but in different periods (within-cluster between-period correlation, BPC). The BPC lies between zero and the WPC. When the WPC and BPC are equal the precision gained by crossover aspect of the CRXO design equals the precision lost by cluster randomisation. When the BPC is zero there is no advantage in a CRXO over a parallel-group cluster randomised trial. Sample size calculations illustrate that small changes in the specification of

  1. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries

    DOE PAGES

    Lu, Jun; Cheng, Lei; Lau, Kah Chun; ...

    2014-09-12

    Lithium–oxygen batteries have the potential needed for long-range electric vehicles, but the charge and discharge chemistries are complex and not well understood. The active sites on cathode surfaces and their role in electrochemical reactions in aprotic lithium–oxygen cells are difficult to ascertain because the exact nature of the sites is unknown. In this paper, we report the deposition of subnanometre silver clusters of exact size and number of atoms on passivated carbon to study the discharge process in lithium–oxygen cells. The results reveal dramatically different morphologies of the electrochemically grown lithium peroxide dependent on the size of the clusters. Thismore » dependence is found to be due to the influence of the cluster size on the formation mechanism, which also affects the charge process. Finally, the results of this study suggest that precise control of subnanometre surface structure on cathodes can be used as a means to improve the performance of lithium–oxygen cells.« less

  2. Evolution of the properties of Al(n)N(n) clusters with size.

    PubMed

    Costales, Aurora; Blanco, M A; Francisco, E; Pandey, Ravindra; Martín Pendás, A

    2005-12-29

    A global optimization of stoichiometric (AlN)(n) clusters (n = 1-25, 30, 35, ..., 95, 100) has been performed using the basin-hopping (BH) method and describing the interactions with simple and yet realistic interatomic potentials. The results for the smaller isomers agree with those of previous electronic structure calculations, thus validating the present scheme. The lowest-energy isomers found can be classified in three different categories according to their structural motifs: (i) small clusters (n = 2-5), with planar ring structures and 2-fold coordination, (ii) medium clusters (n = 6-40), where a competition between stacked rings and globular-like empty cages exists, and (iii) large clusters (n > 40), large enough to mix different elements of the previous stage. All the atoms in small and medium-sized clusters are in the surface, while large clusters start to display interior atoms. Large clusters display a competition between tetrahedral and octahedral-like features: the former lead to a lower energy interior in the cluster, while the latter allow for surface terminations with a lower energy. All of the properties studied present different regimes according to the above classification. It is of particular interest that the local properties of the interior atoms do converge to the bulk limit. The isomers with n = 6 and 12 are specially stable with respect to the gain or loss of AlN molecules.

  3. Standardized Effect Size Measures for Mediation Analysis in Cluster-Randomized Trials

    ERIC Educational Resources Information Center

    Stapleton, Laura M.; Pituch, Keenan A.; Dion, Eric

    2015-01-01

    This article presents 3 standardized effect size measures to use when sharing results of an analysis of mediation of treatment effects for cluster-randomized trials. The authors discuss 3 examples of mediation analysis (upper-level mediation, cross-level mediation, and cross-level mediation with a contextual effect) with demonstration of the…

  4. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size

    PubMed Central

    Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier

    2017-01-01

    Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size. PMID:28496449

  5. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size.

    PubMed

    Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier

    2017-01-01

    Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size.

  6. Novel size-dependent chemistry within ionized van der Waals clusters of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coolbaugh, M.T.; Peifer, W.R.; Garvey, J.F.

    1990-02-22

    The authors present in this paper evidence for size-dependent cluster chemistry occurring in van der Waals clusters of 1,1-difluoroethane. Clusters of C{sub 2}H{sub 4}F{sub 2} are produced from a neat adiabatic expansion and are ionized via electron impact. In addition to the anticipated fragment ions, we observe ions with the general empirical formula of M{sub n}H{sup +} (where n {ge} 4). The reactive process that generates this species cannot be rationalized in terms of intramolecular analogues of known gas-phase bimolecular ion-molecular reactions. Hence, we fell the production of this product cluster ion represents an additional example of a brand newmore » class of ion-molecule reactions that can only occur within the unique solvated environment of the cluster.« less

  7. Stability and minimum size of colloidal clusters on a liquid-air interface.

    PubMed

    Pergamenshchik, V M

    2012-02-01

    A vertical force applied to each of two colloids, trapped at a liquid-air interface, induces their logarithmic pairwise attraction. I recently showed [Phys. Rev. E 79, 011407 (2009)] that in clusters of size R much larger than the capillary length λ, the attraction changes to that of a power law and is much stronger due to a many-body effect, and I derived two equations that describe the equilibrium coarse-grained meniscus profile and colloid density in such clusters. In this paper, this theory is shown also to describe small clusters with R≪ λ provided the number N of colloids therein is sufficiently large. An analytical solution for a small circular cluster with an arbitrary short-range power-law pairwise repulsion is found. The energy of a cluster is obtained as a function of its radius R and colloid number N. As in large clusters, the attraction force and energy universally scale with the distance L between colloids as L(-3) and L(-2), respectively, for any repulsion forces. The states of an equilibrium cluster, predicted by the theory, are shown to be stable with respect to small perturbations of the meniscus profile and colloid density. The minimum number of colloids in a circular cluster, which sustains the thermal motion, is estimated. For standard parameters, it can be very modest, e.g., in the range 20-200, which is in line with experimental findings on reversible clusterization on a liquid-air interface. © 2012 American Physical Society

  8. Size dependent fragmentation of argon clusters in the soft x-ray ionization regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gisselbrecht, Mathieu; Lindgren, Andreas; Burmeister, Florian

    Photofragmentation of argon clusters of average size ranging from 10 up to 1000 atoms is studied using soft x-ray radiation below the 2p threshold and multicoincidence mass spectroscopy technique. For small clusters (=10), ionization induces fast fragmentation with neutral emission imparting a large amount of energy. While the primary dissociation takes place on a picosecond time scale, the fragments undergo slow degradation in the spectrometer on a microsecond time scale. For larger clusters ({>=}100) we believe that we observe the fragmentation pattern of multiply charged species on a time-scale which lasts a few hundred nanoseconds. The reason for these slowermore » processes is the large number of neutral atoms which act as an efficient cooling bath where the excess energy ('heat') dissipates among all degrees of freedom. Further degradation of the photoionic cluster in spectrometer then takes place on the microsecond time scale, similar to small clusters.« less

  9. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    NASA Astrophysics Data System (ADS)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  10. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling.

    PubMed

    Kornilov, Oleg; Toennies, J Peter

    2015-02-21

    The size distribution of para-H2 (pH2) clusters produced in free jet expansions at a source temperature of T0 = 29.5 K and pressures of P0 = 0.9-1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, Nk = A k(a) e(-bk), shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH2)k magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b(-(a+1)) on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ11 with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.

  11. Size and clustering of ethnic groups and rates of psychiatric admission in England.

    PubMed

    Venkatesan, Gayathri; Weich, Scott; McBride, Orla; Twigg, Liz; Parsons, Helen; Scott, Jan; Bhui, Kamaldeep; Keown, Patrick

    2018-05-11

    Aims and methodTo compare rates of admission for different types of severe mental illness between ethnic groups, and to test the hypothesis that larger and more clustered ethnic groups will have lower admission rates. This was a descriptive study of routinely collected data from the National Health Service in England. There was an eightfold difference in admission rates between ethnic groups for schizophreniform and mania admissions, and a fivefold variation in depression admissions. On average, Black and minority ethnic (BME) groups had higher rates of admission for schizophreniform and mania admissions but not for depression. This increased rate was greatest in the teenage years and early adulthood. Larger ethnic group size was associated with lower admission rates. However, greater clustering was associated with higher admission rates.Clinical implicationsOur findings support the hypothesis that larger ethnic groups have lower rates of admission. This was a between-group comparison rather than within each group. Our findings do not support the hypothesis that more clustered groups have lower rates of admission. In fact, they suggest the opposite: groups with low clustering had lower admission rates. The BME population in the UK is increasing in size and becoming less clustered. Our results suggest that both of these factors should ameliorate the overrepresentation of BME groups among psychiatric in-patients. However, this overrepresentation continues, and our results suggest a possible explanation, namely, changes in the delivery of mental health services, particularly the marked reduction in admissions for depression.Declaration of interestNone.

  12. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    PubMed

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  13. Sample Size Estimation in Cluster Randomized Educational Trials: An Empirical Bayes Approach

    ERIC Educational Resources Information Center

    Rotondi, Michael A.; Donner, Allan

    2009-01-01

    The educational field has now accumulated an extensive literature reporting on values of the intraclass correlation coefficient, a parameter essential to determining the required size of a planned cluster randomized trial. We propose here a simple simulation-based approach including all relevant information that can facilitate this task. An…

  14. The preparation and characterization of novel Pt/C electrocatalysts with controlled porosity and cluster size

    DOE PAGES

    Coker, Eric N.; Steen, William A.; Miller, Jeffrey T.; ...

    2007-05-23

    Small platinum clusters have been prepared in zeolite hosts through ion exchange and controlled calcination/reduction processes. In order to enable electrochemical application, the pores of the Pt-zeolite were filled with electrically conductive carbon via infiltration with carbon precursors, polymerization, and pyrolysis. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. The electrocatalysts were characterized by TEM, XRD, EXAFS, nitrogen adsorption and electrochemical techniques. Depending on the synthesis conditions, average Pt cluster sizes in the Pt/C catalysts ranged from 1.3 to 2.0 nm. The presence of orderedmore » porosity/structure in the catalysts was evident in TEM images as lattice fringes, and in XRD as a low-angle diffraction peak with d-spacing similar to the parent zeolite. The catalysts possess micro- and meso-porosity, with pore size distributions that depend upon synthesis variables. Finally, electroactive surface areas as high as 112 m 2 g Pt -1 have been achieved in Pt/C electrocatalysts which show oxygen reduction performance comparable to standard industrial catalysts.« less

  15. 7 CFR 52.1851 - Sizes of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sizes of raisins with seeds-layer or cluster. 52.1851 Section 52.1851 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...

  16. 7 CFR 52.1851 - Sizes of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sizes of raisins with seeds-layer or cluster. 52.1851 Section 52.1851 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...

  17. 7 CFR 52.1851 - Sizes of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sizes of raisins with seeds-layer or cluster. 52.1851 Section 52.1851 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...

  18. 7 CFR 52.1851 - Sizes of raisins with seeds-layer or cluster.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sizes of raisins with seeds-layer or cluster. 52.1851 Section 52.1851 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946...

  19. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.

    B–/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors’ laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.« less

  20. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.

    PubMed

    Sergeeva, Alina P; Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng; Boldyrev, Alexander I

    2014-04-15

    believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors' laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.

  1. Systematic review finds major deficiencies in sample size methodology and reporting for stepped-wedge cluster randomised trials

    PubMed Central

    Martin, James; Taljaard, Monica; Girling, Alan; Hemming, Karla

    2016-01-01

    Background Stepped-wedge cluster randomised trials (SW-CRT) are increasingly being used in health policy and services research, but unless they are conducted and reported to the highest methodological standards, they are unlikely to be useful to decision-makers. Sample size calculations for these designs require allowance for clustering, time effects and repeated measures. Methods We carried out a methodological review of SW-CRTs up to October 2014. We assessed adherence to reporting each of the 9 sample size calculation items recommended in the 2012 extension of the CONSORT statement to cluster trials. Results We identified 32 completed trials and 28 independent protocols published between 1987 and 2014. Of these, 45 (75%) reported a sample size calculation, with a median of 5.0 (IQR 2.5–6.0) of the 9 CONSORT items reported. Of those that reported a sample size calculation, the majority, 33 (73%), allowed for clustering, but just 15 (33%) allowed for time effects. There was a small increase in the proportions reporting a sample size calculation (from 64% before to 84% after publication of the CONSORT extension, p=0.07). The type of design (cohort or cross-sectional) was not reported clearly in the majority of studies, but cohort designs seemed to be most prevalent. Sample size calculations in cohort designs were particularly poor with only 3 out of 24 (13%) of these studies allowing for repeated measures. Discussion The quality of reporting of sample size items in stepped-wedge trials is suboptimal. There is an urgent need for dissemination of the appropriate guidelines for reporting and methodological development to match the proliferation of the use of this design in practice. Time effects and repeated measures should be considered in all SW-CRT power calculations, and there should be clarity in reporting trials as cohort or cross-sectional designs. PMID:26846897

  2. Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media

    NASA Astrophysics Data System (ADS)

    Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  3. Cluster-size entropy in the Axelrod model of social influence: small-world networks and mass media.

    PubMed

    Gandica, Y; Charmell, A; Villegas-Febres, J; Bonalde, I

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy S(c), which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the S(c)(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait q(c) and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  4. Development of single nanometer-sized ultrafine oxygen bubbles to overcome the hypoxia-induced resistance to radiation therapy via the suppression of hypoxia-inducible factor-1α

    PubMed Central

    Honma, Kyoko; Nakano, Takashi; Asao, Takayuki; Kuwahara, Ryusuke; Aoyama, Kazuhiro; Yasuda, Hidehiro; Kelly, Matthew; Kuwano, Hiroyuki

    2018-01-01

    Radiation therapy can result in severe side-effects, including the development of radiation resistance. The aim of this study was to validate the use of oxygen nanobubble water to overcome resistance to radiation in cancer cell lines via the suppression of the hypoxia-inducible factor 1-α (HIF-1α) subunit. Oxygen nanobubble water was created using a newly developed method to produce nanobubbles in the single-nanometer range with the ΣPM-5 device. The size and concentration of the oxygen nanobubbles in the water was examined using a cryo-transmission electron microscope. The nanobubble size was ranged from 2 to 3 nm, and the concentration of the nanobubbles was calculated at 2×1018 particles/ml. Cell viability and HIF-1α levels were evaluated in EBC-1 lung cancer and MDA-MB-231 breast cancer cells treated with or without the nanobubble water and radiation under normoxic and hypoxic conditions in vitro. The cancer cells grown in oxygen nanobubble-containing media exhibited a clear suppression of hypoxia-induced HIF-1α expression compared to the cells grown in media made with distilled water. Under hypoxic conditions, the EBC-1 and MDA-MB231 cells displayed resistance to radiation compared to the cells cultured under normoxic cells. The use of oxygen nanobubble medium significantly suppressed the hypoxia-induced resistance to radiation compared to the use of normal medium at 2, 6, 10 and 14 Gy doses. Importantly, the use of nanobubble media did not affect the viability and radiation sensitivity of the cancer cell lines, or the non-cancerous cell line, BEAS-2B, under normoxic conditions. This newly created single-nanometer range oxygen nanobubble water, without any additives, may thus prove to be a promising agent which may be used to overcome the hypoxia-induced resistance of cancer cells to radiation via the suppression of HIF-1α. PMID:29393397

  5. Remarkable Second-Order Optical Nonlinearity of Nano-Sized Au Cluster: A TDDFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kechen; Li, Jun; Lin, Chensheng

    2004-04-21

    The dipole polarizability, static first hyperpolarizability, and UV-vis spectrum of the recently identified nano-sized tetrahedral cluster of Au have been investigated by using time-dependent density functional response theory. We have discovered that the Au cluster possesses remarkably large molecular second-order optical nonlinearity with the first hyperpolarizabilty (xyz) calculated to be 14.3 x 10 electrostatic unit (esu). The analysis of the low-energy absorption band suggests that the charge transfer from the edged gold atoms to the vertex ones plays the key role in nonlinear optical (NLO) response of Au.

  6. Impact of non-uniform correlation structure on sample size and power in multiple-period cluster randomised trials.

    PubMed

    Kasza, J; Hemming, K; Hooper, R; Matthews, Jns; Forbes, A B

    2017-01-01

    Stepped wedge and cluster randomised crossover trials are examples of cluster randomised designs conducted over multiple time periods that are being used with increasing frequency in health research. Recent systematic reviews of both of these designs indicate that the within-cluster correlation is typically taken account of in the analysis of data using a random intercept mixed model, implying a constant correlation between any two individuals in the same cluster no matter how far apart in time they are measured: within-period and between-period intra-cluster correlations are assumed to be identical. Recently proposed extensions allow the within- and between-period intra-cluster correlations to differ, although these methods require that all between-period intra-cluster correlations are identical, which may not be appropriate in all situations. Motivated by a proposed intensive care cluster randomised trial, we propose an alternative correlation structure for repeated cross-sectional multiple-period cluster randomised trials in which the between-period intra-cluster correlation is allowed to decay depending on the distance between measurements. We present results for the variance of treatment effect estimators for varying amounts of decay, investigating the consequences of the variation in decay on sample size planning for stepped wedge, cluster crossover and multiple-period parallel-arm cluster randomised trials. We also investigate the impact of assuming constant between-period intra-cluster correlations instead of decaying between-period intra-cluster correlations. Our results indicate that in certain design configurations, including the one corresponding to the proposed trial, a correlation decay can have an important impact on variances of treatment effect estimators, and hence on sample size and power. An R Shiny app allows readers to interactively explore the impact of correlation decay.

  7. Thermodynamic Behavior of Nano-sized Gold Clusters on the (001) Surface

    NASA Technical Reports Server (NTRS)

    Paik, Sun M.; Yoo, Sung M.; Namkung, Min; Wincheski, Russell A.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We have studied thermal expansion of the surface layers of the hexagonally reconstructed Au (001) surface using a classical Molecular Dynamics (MD) simulation technique with an Embedded Atomic Method (EAM) type many-body potential. We find that the top-most hexagonal layer contracts as temperature increases, whereas the second layer expands or contracts depending on the system size. The magnitude of expansion coefficient of the top layer is much larger than that of the other layers. The calculated thermal expansion coefficients of the top-most layer are about -4.93 x 10(exp -5)Angstroms/Kelvin for the (262 x 227)Angstrom cluster and -3.05 x 10(exp -5)Angstroms/Kelvin for (101 x 87)Angstrom cluster. The Fast Fourier Transform (FFT) image of the atomic density shows that there exists a rotated domain of the top-most hexagonal cluster with rotation angle close to 1 degree at temperature T less than 1000Kelvin. As the temperature increases this domain undergoes a surface orientational phase transition. These predictions are in good agreement with previous phenomenological theories and experimental studies.

  8. Low-velocity collision behaviour of clusters composed of sub-millimetre sized dust aggregates

    NASA Astrophysics Data System (ADS)

    Brisset, J.; Heißelmann, D.; Kothe, S.; Weidling, R.; Blum, J.

    2017-07-01

    Context. The experiment results presented apply to the very first stages of planet formation, when small dust aggregates collide in the protoplanetary disc and grow into bigger clusters. In 2011, before flying on the REXUS 12 suborbital rocket in 2012, the Suborbital Particle and Aggregation Experiment (SPACE) performed drop tower flights. We present the results of this first microgravity campaign. Aims: The experiments presented aim to measure the outcome of collisions between sub-mm sized protoplanetary dust aggregate analogues. We also observed the clusters formed from these aggregates and their collision behaviour. Methods: The experiments were performed at the drop tower in Bremen. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2 particles prepared into aggregates with sizes between 120 μm and 250 μm. One of the dust samples contained aggregates that were previously compacted through repeated bouncing. During three flights of 9 s of microgravity each, individual collisions between aggregates and the formation of clusters of up to a few millimetres in size were observed. In addition, the collisions of clusters with the experiment cell walls leading to compaction or fragmentation were recorded. Results: We observed collisions amongst dust aggregates and collisions between dust clusters and the cell aluminium walls at speeds ranging from about 0.1 cm s-1 to 20 cm s-1. The velocities at which sticking occurred ranged from 0.18 to 5.0 cm s-1 for aggregates composed of monodisperse dust, with an average value of 2.1 ± 0.9 cm s-1 for reduced masses ranging from 1.2 × 10-6 to 1.8 × 10-3 g with an average value of 2.2+16-2.1 × 10-4 g. The velocities at which bouncing occurred ranged from 1.9 to 11.9 cm s-1 for the same aggregates with an average of 5.9 ± 3.2 cm s-1 for reduced masses ranging from 2.1 × 10-6 to 2.4 × 10-4 with an average of 7.8 ± 2.4 × 10-5 g. The velocities at which fragmentation occurred

  9. Defect formation energy in pyrochlore: the effect of crystal size

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Ewing, Rodney C.; Becker, Udo

    2014-09-01

    Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.

  10. Para-hydrogen and helium cluster size distributions in free jet expansions based on Smoluchowski theory with kernel scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornilov, Oleg; Toennies, J. Peter

    The size distribution of para-H{sub 2} (pH{sub 2}) clusters produced in free jet expansions at a source temperature of T{sub 0} = 29.5 K and pressures of P{sub 0} = 0.9–1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, N{sub k} = A k{sup a} e{sup −bk}, shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH{submore » 2}){sub k} magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b{sup −(a+1)} on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ{sub 11} with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.« less

  11. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  12. Tick size reduction and price clustering in a FX order book

    NASA Astrophysics Data System (ADS)

    Lallouache, Mehdi; Abergel, Frédéric

    2014-12-01

    We investigate the statistical properties of the EBS order book for the EUR/USD and USD/JPY currency pairs and the impact of a ten-fold tick size reduction on its dynamics. A large fraction of limit orders are still placed right at or halfway between the old allowed prices. This generates price barriers where the best quotes lie for much of the time, which causes the emergence of distinct peaks in the average shape of the book at round distances. Furthermore, we argue that this clustering is mainly due to manual traders who remained set to the old price resolution. Automatic traders easily take price priority by submitting limit orders one tick ahead of clusters, as shown by the prominence of buy (sell) limit orders posted with rightmost digit one (nine).

  13. Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect

    NASA Astrophysics Data System (ADS)

    Seidl, Michael; Perdew, John P.; Brajczewska, Marta; Fiolhais, Carlos

    1997-05-01

    The ionization energy of a large spherical metal cluster of radius R is I(R)=W+(+c)/R, where W is the bulk work function and c~-0.1 is a material-dependent quantum correction to the electrostatic size effect. We present 'Koopmans' and 'displaced-profile change-in-self-consistent-field' expressions for W and c within the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the 'displaced-profile' expressions are the more accurate ones. This profile insensitivity is important, because it is not practical to extract c from solutions of the Kohn-Sham equations for small metal clusters.

  14. Oxidation-induced structural changes in sub-nanometer platinum supported on alumina

    DOE PAGES

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; ...

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al 2O 3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, wemore » find that sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  15. The effect of clustering on lot quality assurance sampling: a probabilistic model to calculate sample sizes for quality assessments

    PubMed Central

    2013-01-01

    Background Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda. Results To determine sample size and decision rules for C-LQAS, we use the beta-binomial distribution to account for inflated risk of errors introduced by sampling clusters at the first stage. We present general theory and code for sample size calculations. The C-LQAS sample sizes provided in this paper constrain misclassification risks below user-specified limits. Multiple C-LQAS systems meet the specified risk requirements, but numerous considerations, including per-cluster versus per-individual sampling costs, help identify optimal systems for distinct applications. Conclusions We show the utility of C-LQAS for data quality assessments, but the method generalizes to numerous applications. This paper provides the necessary technical detail and supplemental code to support the design of C-LQAS for specific programs. PMID:24160725

  16. The effect of clustering on lot quality assurance sampling: a probabilistic model to calculate sample sizes for quality assessments.

    PubMed

    Hedt-Gauthier, Bethany L; Mitsunaga, Tisha; Hund, Lauren; Olives, Casey; Pagano, Marcello

    2013-10-26

    Traditional Lot Quality Assurance Sampling (LQAS) designs assume observations are collected using simple random sampling. Alternatively, randomly sampling clusters of observations and then individuals within clusters reduces costs but decreases the precision of the classifications. In this paper, we develop a general framework for designing the cluster(C)-LQAS system and illustrate the method with the design of data quality assessments for the community health worker program in Rwanda. To determine sample size and decision rules for C-LQAS, we use the beta-binomial distribution to account for inflated risk of errors introduced by sampling clusters at the first stage. We present general theory and code for sample size calculations.The C-LQAS sample sizes provided in this paper constrain misclassification risks below user-specified limits. Multiple C-LQAS systems meet the specified risk requirements, but numerous considerations, including per-cluster versus per-individual sampling costs, help identify optimal systems for distinct applications. We show the utility of C-LQAS for data quality assessments, but the method generalizes to numerous applications. This paper provides the necessary technical detail and supplemental code to support the design of C-LQAS for specific programs.

  17. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    PubMed

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

  18. Size-selective reactivity of subnanometer Ag 4 and Ag 16 clusters on a TiO 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Po-Tuan; Tyo, Eric C.; Hayashi, Michitoshi

    Size-selected Ag 4 and Ag 16 clusters on a titania surface have been studied for their potential in CO oxidation using theoretical calculations and X-ray absorption near edge spectroscopy. The first peak at the measured Ag K-edge of Ag 16@TiO 2 is more prominent in air than in carbon monoxide environment, but no variation was found between the spectra of Ag 4@TiO 2 in air and in carbon monoxide environments. Density functional theory calculations show a preference for molecular oxygen adsorption for Ag 4@TiO 2 and that for a dissociative one on Ag 16@TiO 2, while carbon monoxide reactions withmore » adsorbed oxygen reduced the Ag 16@TiO 2 cluster. The dissociated oxygen atoms increased the oxidation state of Ag 16 cluster and resulted in the prominent first peak in Ag K-edge spectrum in quasi-particle theory calculations, with the subsequent carbon monoxide oxidation reversing the character of Ag K-edge spectrum associated with the reduction of the cluster. Finally, the results provide insight into the size selectivity of supported subnanometer silver clusters in their interactions with oxygen and carbon monoxide, with implications on the cluster catalytic properties in oxidative reactions.« less

  19. Size-selective reactivity of subnanometer Ag 4 and Ag 16 clusters on a TiO 2 surface

    DOE PAGES

    Chen, Po-Tuan; Tyo, Eric C.; Hayashi, Michitoshi; ...

    2017-03-08

    Size-selected Ag 4 and Ag 16 clusters on a titania surface have been studied for their potential in CO oxidation using theoretical calculations and X-ray absorption near edge spectroscopy. The first peak at the measured Ag K-edge of Ag 16@TiO 2 is more prominent in air than in carbon monoxide environment, but no variation was found between the spectra of Ag 4@TiO 2 in air and in carbon monoxide environments. Density functional theory calculations show a preference for molecular oxygen adsorption for Ag 4@TiO 2 and that for a dissociative one on Ag 16@TiO 2, while carbon monoxide reactions withmore » adsorbed oxygen reduced the Ag 16@TiO 2 cluster. The dissociated oxygen atoms increased the oxidation state of Ag 16 cluster and resulted in the prominent first peak in Ag K-edge spectrum in quasi-particle theory calculations, with the subsequent carbon monoxide oxidation reversing the character of Ag K-edge spectrum associated with the reduction of the cluster. Finally, the results provide insight into the size selectivity of supported subnanometer silver clusters in their interactions with oxygen and carbon monoxide, with implications on the cluster catalytic properties in oxidative reactions.« less

  20. Mass and size growth of early-type galaxies by dry mergers in cluster environments

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki

    2016-02-01

    We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.

  1. Effects of manganese doping on the structure evolution of small-sized boron clusters

    NASA Astrophysics Data System (ADS)

    Zhao, Lingquan; Qu, Xin; Wang, Yanchao; Lv, Jian; Zhang, Lijun; Hu, Ziyu; Gu, Guangrui; Ma, Yanming

    2017-07-01

    Atomic doping of clusters is known as an effective approach to stabilize or modify the structures and properties of resulting doped clusters. We herein report the effect of manganese (Mn) doping on the structure evolution of small-sized boron (B) clusters. The global minimum structures of both neutral and charged Mn doped B cluster \\text{MnB}nQ (n  =  10-20 and Q  =  0, ±1) have been proposed through extensive first-principles swarm-intelligence based structure searches. It is found that Mn doping has significantly modified the grow behaviors of B clusters, leading to two novel structural transitions from planar to tubular and then to cage-like B structures in both neutral and charged species. Half-sandwich-type structures are most favorable for small \\text{MnB}n-/0/+ (n  ⩽  13) clusters and gradually transform to Mn-centered double-ring tubular structures at \\text{MnB}16-/0/+ clusters with superior thermodynamic stabilities compared with their neighbors. Most strikingly, endohedral cages become the ground-state structures for larger \\text{MnB}n-/0/+ (n  ⩾  19) clusters, among which \\text{MnB}20+ adopts a highly symmetric structure with superior thermodynamic stability and a large HOMO-LUMO gap of 4.53 eV. The unique stability of the endohedral \\text{MnB}\\text{20}+ cage is attributed to the geometric fit and formation of 18-electron closed-shell configuration. The results significantly advance our understanding about the structure and bonding of B-based clusters and strongly suggest transition-metal doping as a viable route to synthesize intriguing B-based nanomaterials.

  2. Prediction of the size distributions of methanol-ethanol clusters detected in VUV laser/time-of-flight mass spectrometry.

    PubMed

    Liu, Yi; Consta, Styliani; Shi, Yujun; Lipson, R H; Goddard, William A

    2009-06-25

    The size distributions and geometries of vapor clusters equilibrated with methanol-ethanol (Me-Et) liquid mixtures were recently studied by vacuum ultraviolet (VUV) laser time-of-flight (TOF) mass spectrometry and density functional theory (DFT) calculations (Liu, Y.; Consta, S.; Ogeer, F.; Shi, Y. J.; Lipson, R. H. Can. J. Chem. 2007, 85, 843-852). On the basis of the mass spectra recorded, it was concluded that the formation of neutral tetramers is particularly prominent. Here we develop grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) frameworks to compute cluster size distributions in vapor mixtures that allow a direct comparison with experimental mass spectra. Using the all-atom optimized potential for liquid simulations (OPLS-AA) force field, we systematically examined the neutral cluster size distributions as functions of pressure and temperature. These neutral cluster distributions were then used to derive ionized cluster distributions to compare directly with the experiments. The simulations suggest that supersaturation at 12 to 16 times the equilibrium vapor pressure at 298 K or supercooling at temperature 240 to 260 K at the equilibrium vapor pressure can lead to the relatively abundant tetramer population observed in the experiments. Our simulations capture the most distinct features observed in the experimental TOF mass spectra: Et(3)H(+) at m/z = 139 in the vapor corresponding to 10:90% Me-Et liquid mixture and Me(3)H(+) at m/z = 97 in the vapors corresponding to 50:50% and 90:10% Me-Et liquid mixtures. The hybrid GCMC scheme developed in this work extends the capability of studying the size distributions of neat clusters to mixed species and provides a useful tool for studying environmentally important systems such as atmospheric aerosols.

  3. First principles study of neutral and anionic (medium-size) aluminum nitride clusters: AlnNn, n=7-16.

    PubMed

    Costales, Aurora; Blanco, M A; Francisco, E; Pendas, A Martín; Pandey, Ravindra

    2006-03-09

    We report the results of a theoretical study of AlnNn (n=7-16) clusters that is based on density functional theory. We will focus on the evolution of structural and electronic properties with the cluster size in the stoichiometric AlN clusters considered. The results reveal that the structural and electronic properties tend to evolve toward their respective bulk limits. The rate of evolution is, however, slow due to the hollow globular shape exhibited by the clusters, which introduces large surface effects that dominate the properties studied. We will also discuss the changes induced upon addition of an extra electron to the respective neutral clusters.

  4. Size and Site Dependence of the Catalytic Activity of Iridium Clusters toward Ethane Dehydrogenation.

    PubMed

    Ge, Yingbin; Jiang, Hao; Kato, Russell; Gummagatta, Prasuna

    2016-12-01

    This research focuses on optimizing transition metal nanocatalyst immobilization and activity to enhance ethane dehydrogenation. Ethane dehydrogenation, catalyzed by thermally stable Ir n (n = 8, 12, 18) atomic clusters that exhibit a cuboid structure, was studied using the B3LYP method with triple-ζ basis sets. Relativistic effects and dispersion corrections were included in the calculations. In the dehydrogenation reaction Ir n + C 2 H 6 → H-Ir n -C 2 H 5 → (H) 2 -Ir n -C 2 H 4 , the first H-elimination is the rate-limiting step, primarily because the reaction releases sufficient heat to facilitate the second H-elimination. The catalytic activity of the Ir clusters strongly depends on the Ir cluster size and the specific catalytic site. Cubic Ir 8 is the least reactive toward H-elimination in ethane: Ir 8 + C 2 H 6 → H-Ir 8 -C 2 H 5 has a large (65 kJ/mol) energy barrier, whereas Ir 12 (3 × 2 × 2 cuboid) and Ir 18 (3 × 3 × 2 cuboid) lower this energy barrier to 22 and 3 kJ/mol, respectively. The site dependence is as prominent as the size effect. For example, the energy barrier for the Ir 18 + C 2 H 6 → H-Ir 18 -C 2 H 5 reaction is 3, 48, and 71 kJ/mol at the corner, edge, or face-center sites of the Ir 18 cuboid, respectively. Energy release due to Ir cluster insertion into an ethane C-H bond facilitates hydrogen migration on the Ir cluster surface, and the second H-elimination of ethane. In an oxygen-rich environment, oxygen molecules may be absorbed on the Ir cluster surface. The oxygen atoms bonded to the Ir cluster surface may slightly increase the energy barrier for H-elimination in ethane. However, the adsorption of oxygen and its reaction with H atoms on the Ir cluster releases sufficient heat to yield an overall thermodynamically favored reaction: Ir n + C 2 H 6 + 1 / 2 O 2 → Ir n + C 2 H 4 + H 2 O. These results will be useful toward reducing the energy cost of ethane dehydrogenation in industry.

  5. Risk factors associated with cluster size of Mycobacterium tuberculosis (Mtb) of different RFLP lineages in Brazil.

    PubMed

    Peres, Renata Lyrio; Vinhas, Solange Alves; Ribeiro, Fabíola Karla Correa; Palaci, Moisés; do Prado, Thiago Nascimento; Reis-Santos, Bárbara; Zandonade, Eliana; Suffys, Philip Noel; Golub, Jonathan E; Riley, Lee W; Maciel, Ethel Leonor

    2018-02-08

    Tuberculosis (TB) transmission is influenced by patient-related risk, environment and bacteriological factors. We determined the risk factors associated with cluster size of IS6110 RFLP based genotypes of Mycobacterium tuberculosis (Mtb) isolates from Vitoria, Espirito Santo, Brazil. Cross-sectional study of new TB cases identified in the metropolitan area of Vitoria, Brazil between 2000 and 2010. Mtb isolates were genotyped by the IS6110 RFLP, spoligotyping and RD Rio . The isolates were classified according to genotype cluster sizes by three genotyping methods and associated patient epidemiologic characteristics. Regression Model was performed to identify factors associated with cluster size. Among 959 Mtb isolates, 461 (48%) cases had an isolate that belonged to an RFLP cluster, and six clusters with ten or more isolates were identified. Of the isolates spoligotyped, 448 (52%) were classified as LAM and 412 (48%) as non-LAM. Our regression model found that 6-9 isolates/RFLP cluster were more likely belong to the LAM family, having the RD Rio genotype and to be smear-positive (adjusted OR = 1.17, 95% CI 1.08-1.26; adjusted OR = 1.25, 95% CI 1.14-1.37; crude OR = 2.68, 95% IC 1.13-6.34; respectively) and living in a Serra city neighborhood decrease the risk of being in the 6-9 isolates/RFLP cluster (adjusted OR = 0.29, 95% CI, 0.10-0.84), than in the others groups. Individuals aged 21 to 30, 31 to 40 and > 50 years were less likely of belonging the 2-5 isolates/RFLP cluster than unique patterns compared to individuals < 20 years of age (adjusted OR = 0.49, 95% CI 0.28-0.85, OR = 0.43 95% CI 0.24-0.77and OR = 0. 49, 95% CI 0.26-0.91), respectively. The extrapulmonary disease was less likely to occur in those infected with strains in the 2-5 isolates/cluster group (adjustment OR = 0.45, 95% CI 0.24-0.85) than unique patterns. We found that a large proportion of new TB infections in Vitoria is caused by prevalent Mtb genotypes

  6. 7 CFR 52.1850 - Sizes of raisins with seeds-except layer or cluster.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sizes of raisins with seeds-except layer or cluster. 52.1850 Section 52.1850 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  7. 7 CFR 52.1850 - Sizes of raisins with seeds-except layer or cluster.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sizes of raisins with seeds-except layer or cluster. 52.1850 Section 52.1850 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  8. 7 CFR 52.1850 - Sizes of raisins with seeds-except layer or cluster.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sizes of raisins with seeds-except layer or cluster. 52.1850 Section 52.1850 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  9. 7 CFR 52.1850 - Sizes of raisins with seeds-except layer or cluster.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sizes of raisins with seeds-except layer or cluster. 52.1850 Section 52.1850 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  10. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Gournay, Jonas P.; Kirkland, Brenda L.; Folk, Robert L.; Lynch, F. Leo

    1999-07-01

    Scanning electron microscopy reveals an association between early dolomite in the Pennsylvanian Desert Creek (Paradox Fm.) and small (approximately 0.1 μm) nanometer-scale textures, termed `nannobacteria'. Three diagenetically distinct dolomites are present: early dolomite, limpid dolomite, and baroque dolomite. In this study, only the early dolomite contained nanometer-scale features. These textures occur as discrete balls and rods, clumps of balls, and chains of balls. Precipitation experiments demonstrate that these textures may be the result of precipitation in an organic-rich micro-environment. The presence of these nanometer-scale textures in Pennsylvanian rocks suggests that these early dolomites precipitated in organic-rich, bacterial environments.

  11. Synthesis of nanometer-sized sodalite without adding organic additives.

    PubMed

    Fan, Wei; Morozumi, Kazumasa; Kimura, Riichiro; Yokoi, Toshiyuki; Okubo, Tatsuya

    2008-06-01

    Aggregates (80 nm) of sodalite nanocrystals with crystallite sizes ranging from 20 to 40 nm have been synthesized from a sodium aluminosilicate solution at low temperature, without adding any organic additives, while paying attention to the key factors for the synthesis of nanosized zeolite crystals. The physical properties of nanosized sodalite crystals were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, 29Si solid-state magic-angle spinning (MAS) NMR, and N2 adsorption. As expected, the external surface area of nanosized sodalite crystals is significantly increased compared with that of microsized sodalite crystals. The size of synthesized sodalite crystals can be controlled from 20 nm to 10 microm. It is found that the preparation of a homogeneous aluminosilicate solution followed by the formation of an aluminosilicate hard gel by adjusting the initial composition, for example, SiO2/Al2O3 and Na2O/H2O ratios, is critical for synthesis.

  12. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  13. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    NASA Astrophysics Data System (ADS)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki; Young Jeong, Hu; Galeano, Carolina; Schüth, Ferdi; Terasaki, Osamu

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  14. Quantum-Size Dependence of the Energy for Vacancy Formation in Charged Small Metal Clusters. Drop Model

    NASA Astrophysics Data System (ADS)

    Pogosov, V. V.; Reva, V. I.

    2018-04-01

    Self-consistent computations of the monovacancy formation energy are performed for Na N , Mg N , and Al N (12 < N ≤ 168) spherical clusters in the drop model for stable jelly. Scenarios of the Schottky vacancy formation and "bubble vacancy blowing" are considered. It is shown that the asymptotic behavior of the size dependences of the energy for the vacancy formation by these two mechanisms is different and the difference between the characteristics of a charged and neutral cluster is entirely determined by the difference between the ionization potentials of clusters and the energies of electron attachment to them.

  15. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.

    PubMed

    van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W

    2006-03-09

    The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T(g)), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam solid dispersions prepared by fusion for all drug loads tested (10-80 wt.%). The T(g) of these solid dispersions gradually changed with composition and decreased from 177 degrees C for pure PVP to 46 degrees C for diazepam. These observations indicate that diazepam was dispersed in PVP on a molecular level. However, in PVP-diazepam solid dispersions prepared by freeze drying, two T(g)'s were observed for drug loads above 35 wt.% indicating phase separation. One T(g) indicated the presence of amorphous diazepam clusters, the other T(g) was attributed to a PVP-rich phase in which diazepam was dispersed on a molecular level. With both the value of the latter T(g) and the DeltaC(p) of the diazepam glass transition the concentrations of molecular dispersed diazepam could be calculated (27-35 wt.%). Both methods gave similar results. Water vapour sorption (DVS) experiments revealed that the PVP-matrix was hydrophobised by the incorporated diazepam. TMDSC and DVS results were used to estimate the size of diazepam clusters in freeze dried PVP-diazepam solid dispersions, which appeared to be in the nano-meter range. The inulin-diazepam solid dispersions prepared by spray freeze drying showed one T(g) for drug loads up to 35 wt.% indicating homogeneous distribution on a molecular level. However, this T(g) was independent of the drug load, which is unexpected because diazepam has a lower T(g) than inulin (46 and 155 degrees C, respectively). For higher drug loads, a T(g) of diazepam as well as a T(g) of the inulin-rich phase was observed, indicating the formation of amorphous diazepam clusters. From the DeltaC(p) of the diazepam glass transition the amount of molecularly dispersed

  16. Assessment and application of clustering techniques to atmospheric particle number size distribution for the purpose of source apportionment

    NASA Astrophysics Data System (ADS)

    Salimi, F.; Ristovski, Z.; Mazaheri, M.; Laiman, R.; Crilley, L. R.; He, C.; Clifford, S.; Morawska, L.

    2014-06-01

    Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help

  17. Assessment and application of clustering techniques to atmospheric particle number size distribution for the purpose of source apportionment

    NASA Astrophysics Data System (ADS)

    Salimi, F.; Ristovski, Z.; Mazaheri, M.; Laiman, R.; Crilley, L. R.; He, C.; Clifford, S.; Morawska, L.

    2014-11-01

    Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods that have been recently employed to analyse PNSD data; however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectrum to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help

  18. Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots.

    PubMed

    Seo, Min-Kyo; Park, Hong-Gyu; Yang, Jin-Kyu; Kim, Ju-Young; Kim, Se-Heon; Lee, Yong-Hee

    2008-06-23

    We propose and demonstrate a scheme that enables spectral tuning of a photonic crystal high-quality resonant mode, in steps finer than 0.2 nm, via electron beam induced deposition of carbonaceous nano-dots. The position and size of a nano-dot with a diameter of <100 nm are controlled to an accuracy on the order of nanometers. The possibility of selective modal tuning is also demonstrated by placing nano-dots at locations pre-determined by theoretical computation. The lasing threshold of a photonic crystal mode tends to increase when a nano-dot is grown at the point of strong electric field, showing the absorptive nature of the nano-dot.

  19. Quantum size effects in the size-temperature phase diagram of gallium: structural characterization of shape-shifting clusters.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2015-02-09

    Finite temperature analysis of cluster structures is used to identify signatures of the low-temperature polymorphs of gallium, based on the results of first-principle Born-Oppenheimer molecular dynamics simulations. Pre-melting structural transitions proceed from either the β- and/or the δ-phase to the γ- or δ-phase, with a size- dependent phase progression. We relate the stability of each isomer to the electronic structures of the different phases, giving new insight into the origin of polymorphism in this complicated element. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dynamic behaviour of nanometre-sized defect clusters emitted from an atomic displacement cascade in Au at 50 K

    NASA Astrophysics Data System (ADS)

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.

    2017-09-01

    We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.

  1. Properties of antibacterial polypropylene/nanometal composite fibers

    USDA-ARS?s Scientific Manuscript database

    Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted...

  2. Sample size calculations for cluster randomised crossover trials in Australian and New Zealand intensive care research.

    PubMed

    Arnup, Sarah J; McKenzie, Joanne E; Pilcher, David; Bellomo, Rinaldo; Forbes, Andrew B

    2018-06-01

    The cluster randomised crossover (CRXO) design provides an opportunity to conduct randomised controlled trials to evaluate low risk interventions in the intensive care setting. Our aim is to provide a tutorial on how to perform a sample size calculation for a CRXO trial, focusing on the meaning of the elements required for the calculations, with application to intensive care trials. We use all-cause in-hospital mortality from the Australian and New Zealand Intensive Care Society Adult Patient Database clinical registry to illustrate the sample size calculations. We show sample size calculations for a two-intervention, two 12-month period, cross-sectional CRXO trial. We provide the formulae, and examples of their use, to determine the number of intensive care units required to detect a risk ratio (RR) with a designated level of power between two interventions for trials in which the elements required for sample size calculations remain constant across all ICUs (unstratified design); and in which there are distinct groups (strata) of ICUs that differ importantly in the elements required for sample size calculations (stratified design). The CRXO design markedly reduces the sample size requirement compared with the parallel-group, cluster randomised design for the example cases. The stratified design further reduces the sample size requirement compared with the unstratified design. The CRXO design enables the evaluation of routinely used interventions that can bring about small, but important, improvements in patient care in the intensive care setting.

  3. Size and Structure of Clusters Formed by Shear Induced Coagulation: Modeling by Discrete Element Method.

    PubMed

    Kroupa, Martin; Vonka, Michal; Soos, Miroslav; Kosek, Juraj

    2015-07-21

    The coagulation process has a dramatic impact on the properties of dispersions of colloidal particles including the change of optical, rheological, as well as texture properties. We model the behavior of a colloidal dispersion with moderate particle volume fraction, that is, 5 wt %, subjected to high shear rates employing the time-dependent Discrete Element Method (DEM) in three spatial dimensions. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to model noncontact interparticle interactions, while contact mechanics was described by the Johnson-Kendall-Roberts (JKR) theory of adhesion. The obtained results demonstrate that the steady-state size of the produced clusters is a strong function of the applied shear rate, primary particle size, and the surface energy of the particles. Furthermore, it was found that the cluster size is determined by the maximum adhesion force between the primary particles and not the adhesion energy. This observation is in agreement with several simulation studies and is valid for the case when the particle-particle contact is elastic and no plastic deformation occurs. These results are of major importance, especially for the emulsion polymerization process, during which the fouling of reactors and piping causes significant financial losses.

  4. Vibrational spectra and fragmentation pathways of size-selected, D2-tagged ammonium/methylammonium bisulfate clusters.

    PubMed

    Johnson, Christopher J; Johnson, Mark A

    2013-12-19

    Particles consisting of ammonia and sulfuric acid are widely regarded as seeds for atmospheric aerosol nucleation, and incorporation of alkylamines has been suggested to substantially accelerate their growth. Despite significant efforts, little direct experimental evidence exists for the structures and chemical processes underlying multicomponent particle nucleation. Here we are concerned with the positively charged clusters of ammonia and sulfuric acid with compositions H(+)(NH3)m(H2SO4)n (2 ≤ m ≤ 5, 1 ≤ n ≤ 4), for which equilibrium geometry structures have been reported in recent computational searches. The computed harmonic vibrational spectra of such minimum energy structures can be directly compared with the experimental spectra of each cluster composition isolated in the laboratory using cryogenic ion chemistry methods. We present one-photon (i.e., linear) infrared action spectra of the isolated gas phase ions cryogenically cooled to 10 K, allowing us to resolve the characteristic vibrational signatures of these clusters. Because the available calculated spectra for different structural candidates have been obtained using different levels of theory, we reoptimized the previously reported structures with several common electronic structure methods and find excellent agreement can be achieved for the (m = 3, n = 2) cluster using CAM-B3LYP with only minor structural differences from the previously identified geometries. At the larger sizes, the experimental spectra strongly resemble that observed for 180 nm ammonium bisulfate particles. The characteristic ammonium- and bisulfate-localized bands are clearly evident at all sizes studied, indicating that the cluster structures are indeed ionic in nature. With the likely (3,2) structure in hand, we then explore the spectral and structural changes caused when methylamine is substituted for ammonia. This process is found to occur with minimal perturbation of the unsubstituted cluster. The thermal

  5. PREDICTED SIZES OF PRESSURE-SUPPORTED HI CLOUDS IN THE OUTSKIRTS OF THE VIRGO CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, Blakesley; Loeb, Abraham

    Using data from the ALFALFA AGES Arecibo HI survey of galaxies and the Virgo cluster X-ray pressure profiles from XMM-Newton , we investigate the possibility that starless dark HI clumps, also known as “dark galaxies,” are supported by external pressure in the surrounding intercluster medium. We find that the starless HI clump masses, velocity dispersions, and positions allow these clumps to be in pressure equilibrium with the X-ray gas near the virial radius of the Virgo cluster. We predict the sizes of these clumps to range from 1 to 10 kpc, in agreement with the range of sizes found formore » spatially resolved HI starless clumps outside of Virgo. Based on the predicted HI surface density of the Virgo sources, as well as a sample of other similar resolved ALFALFA HI dark clumps with follow-up optical/radio observations, we predict that most of the HI dark clumps are on the cusp of forming stars. These HI sources therefore mark the transition between starless HI clouds and dwarf galaxies with stars.« less

  6. Vapor-liquid-solid mechanisms: Challenges for nanosized quantum cluster/dot/wire materials

    NASA Astrophysics Data System (ADS)

    Cheyssac, P.; Sacilotti, M.; Patriarche, G.

    2006-08-01

    The growth mechanism model of a nanoscaled material is a critical step that has to be refined for a better understanding of a nanostructure's dot/wire fabrication. To do so, the growth mechanism will be discussed in this paper and the influence of the size of the metallic nanocluster starting point, referred to later as "size effect," will be studied. Among many of the so-called size effects, a tremendous decrease of the melting point of the metallic nanocluster changes the physical properties as well as the physical/mechanical interactions inside the growing structure composed of a metallic dot on top of a column. The thermodynamic size effect is related to the bending or curvature of chains of atoms, giving rise to the weakening of bonds between them; this size or curvature effect is described and approached to crystal nanodot/wire growth. We will describe this effect as that of a "cooking machine" when the number of atoms decreases from ˜1023at./cm3 for a bulk material to a few tens of them in a 1-2nm diameter sphere. The decrease of the number of atoms in a metallic cluster from such an enormous quantity is accompanied by a lowering of the melting temperature that extends from 200 up to 1000K, depending on the metallic material and its size under study. In this respect, the vapor-liquid-solid (VLS) model, which is the most utilized growth mechanism for quantum nanowires and nanodots, is critically exposed to size or curvature effects (CEs). More precisely, interactions in the vicinity of the growth regions should be reexamined. Some results illustrating the growth of micrometer-/nanometer-sized materials are presented in order to corroborate the CE/VLS models utilized by many research groups in today's nanosciences world. Examples of metallic clusters and semiconducting wires will be presented. The results and comments presented in this paper can be seen as a challenge to be overcome. From them, we expect that in a near future an improved model can be exposed

  7. Programmable nanometer-scale electrolytic metal deposition and depletion

    DOEpatents

    Lee, James Weifu [Oak Ridge, TN; Greenbaum, Elias [Oak Ridge, TN

    2002-09-10

    A method of nanometer-scale deposition of a metal onto a nanostructure includes the steps of: providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart; and depositing metal on at least one of the nanostructures by electric field-directed, programmable, pulsed electrolytic metal deposition. Moreover, a method of nanometer-scale depletion of a metal from a nanostructure includes the steps of providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart, at least one of the nanostructures having a metal disposed thereon; and depleting at least a portion of the metal from the nanostructure by electric field-directed, programmable, pulsed electrolytic metal depletion. A bypass circuit enables ultra-finely controlled deposition.

  8. Lowest-energy cage structures of medium-sized ( ZnO )n clusters with n = 15 - 24

    NASA Astrophysics Data System (ADS)

    Tang, Lingli; Sai, Linwei; Zhao, Jijun; Qiu, Ruifeng

    2015-01-01

    Fullerene-like cage structures of medium-sized ( ZnO )n clusters with n = 15 - 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of ( ZnO )n (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.

  9. TEM Study of Intergranular Fluid Distributions in Rocks at a Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Hiraga, T.; Anderson, I. M.; Kohlstedt, D. L.

    2002-12-01

    The distribution of intergranular fluids in rocks plays an essential role in fluid migration and rock rheology. Structural and chemical analyses with sub-nanometer resolution is possible with transmission and scanning-transmission electron microscopy; therefore, it is possible to perform the fine-scale structural analyses required to determine the presence or absence of very thin fluid films along grain boundaries. For aqueous fluids in crustal rocks, Hiraga et al. (2001) observed a fluid morphology controlled by the relative values of the solid-solid and solid-fluid interfacial energies, which resulted in well-defined dihedral angles. Their high-resolution transmission electron microscopy (TEM) observations demonstrate that grain boundaries are tight even at a nanometer scale, consistent with the absence of aqueous fluid films. For partially molten ultra-mafic rocks, two conflicting conclusions have been reached: nanometer-thick melt films wet grain boundaries (Drury and Fitz Gerald 1996; De Kloe et al. 2000) versus essentially all grain boundaries are melt-free (Vaughan et al. 1982; Kohlstedt 1990). To resolve this conflict, Hiraga et al. (2002) examined grain boundaries in quenched partially molten peridotites. Their observations demonstrate the following: (i) Although a small fraction of the grains are separated by relatively thick (~1 μm) layers of melt, lattice fringe images obtained with a high-resolution TEM reveal that most of the remaining boundaries do not contain a thin amorphous phase. (ii) In addition, the composition of olivine-olivine grain boundaries was analyzed with a nano-beam analytical scanning TEM with a probe size of <2 nm. Although the grain boundaries contained no melt film, the concentration of Ca, Al and Ti were enhanced near the boundaries. The segregation of these elements to the grain boundaries formed enriched regions <7 nm wide. A similar pattern of chemical segregation was detected in subsolidus systems. Creep experiments on the

  10. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    NASA Astrophysics Data System (ADS)

    Lai, King C.; Liu, Da-Jiang; Evans, James W.

    2017-12-01

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN˜ N-β with β =3 /2 . However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N <9 ; (ii) slow nucleation-mediated diffusion with small β <1 for "perfect" sizes N = Np= L2 or L (L +1 ) , for L =3 ,4 , ... having unique ground-state shapes, for moderate sizes 9 ≤N ≤O (102) ; the same also applies for N =Np+3 , Np+ 4 , ... (iii) facile diffusion but with large β >2 for N =Np+1 and Np+2 also for moderate sizes 9 ≤N ≤O (102) ; (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲β <3 /2 , reflecting the quasifacetted structure of clusters, for larger N =O (102) to N =O (103) ; (v) classic scaling with β =3 /2 for very large N =O (103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where we show that diffusivity cycles quasiperiodically from the slowest branch for Np+3 (not Np) to the fastest branch for Np+1 . Behavior is quantified by kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and low-lying excited state cluster configurations, and also of kink populations.

  11. Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters.

    PubMed

    Knoppe, Stefan; Boudon, Julien; Dolamic, Igor; Dass, Amala; Bürgi, Thomas

    2011-07-01

    Size exclusion chromatography (SEC) on a semipreparative scale (10 mg and more) was used to size-select ultrasmall gold nanoclusters (<2 nm) from polydisperse mixtures. In particular, the ubiquitous byproducts of the etching process toward Au(38)(SR)(24) (SR, thiolate) clusters were separated and gained in high monodispersity (based on mass spectrometry). The isolated fractions were characterized by UV-vis spectroscopy, MALDI mass spectrometry, HPLC, and electron microscopy. Most notably, the separation of Au(38)(SR)(24) and Au(40)(SR)(24) clusters is demonstrated.

  12. Conformationally averaged vertical detachment energy of finite size NO3(-)·nH2O clusters: a route connecting few to many.

    PubMed

    Pathak, Arup Kumar; Samanta, Alok Kumar; Maity, Dilip Kumar

    2011-04-07

    We report conformationally averaged VDEs (VDE(w)(n)) for different sizes of NO(3)(-)·nH(2)O clusters calculated by using uncorrelated HF, correlated hybrid density functional (B3LYP, BHHLYP) and correlated ab intio (MP2 and CCSD(T)) theory. It is observed that the VDE(w)(n) at the B3LYP/6-311++G(d,p), B3LYP/Aug-cc-Pvtz and CCSD(T)/6-311++G(d,p) levels is very close to the experimentally measured VDE. It is shown that the use of calculated results of the conformationally averaged VDE for small-sized solvated negatively-charged clusters and a microscopic theory-based general expression for the same provides a route to obtain the VDE for a wide range of cluster sizes, including bulk.

  13. Water oxidation by size selected Co 27 clusters supported on Fe 2O 3

    DOE PAGES

    Pellin, Michael J.; Riha, Shannon C.; Tyo, Eric C.; ...

    2016-09-22

    The complexity of the water oxidation reaction makes understanding the role of individual catalytic sites critical to improving the process. Here, size-selected 27-atom cobalt clusters (Co 27) deposited on hematite (Fe 2O 3) anodes were tested for water oxidation activity. The uniformity of these anodes allows measurement of the activity of catalytic sites of well-defined nuclearity and known density. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) characterization of the anodes before and after electrochemical cycling demonstrates that these Co 27 clusters are stable to dissolution even in the harsh water oxidation electrochemical environment. They are also stable under illumination atmore » the equivalent of 0.4suns irradiation. The clusters show turnover rates for water oxidation that are comparable or higher than those reported for Pd- and Co-based materials or for hematite. The support for the Co 27 clusters is Fe 2O 3 grown by atomic layer deposition on a Si chip. We have chosen to deposit a Fe2O3 layer that is only a few unit cells thick (2nm), to remove complications related to exciton diffusion. We find that the electrocatalytic and the photoelectrocatalytic activity of the Co 27/Fe 2O 3 material is significantly improved when the samples are annealed (with the clusters already deposited). Lastly, given that the support is thin and that the cluster deposition density is equivalent to approximately 5% of an atomic monolayer, we suggest that annealing may significantly improve the exciton diffusion from the support to the catalytic moiety.« less

  14. Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arunachalam, V.; Marlow, W.H.; Lu, J.X.

    1998-09-01

    The importance of the long-range Lifshitz{endash}van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters aremore » compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters{close_quote} circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. {copyright} {ital 1998} {ital The

  15. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  16. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  17. Controllable surface-plasmon resonance in engineered nanometer epitaxial silicide particles embedded in silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Ksendzov, A.; Iannelli, J. M.; George, T.

    1991-01-01

    Epitaxial CoSi2 particles in a single-crystal silicon matrix are grown by molecular-beam epitaxy using a technique that allows nanometer control over particle size in three dimensions. These composite layers exhibit resonant absorption predicted by effective-medium theory. Selection of the height and diameter of disklike particles through a choice of growth conditions allows tailoring of the depolarization factor and hence of the surface-plasmon resonance energy. Resonant absorption from 0.49 to 1.04 eV (2.5 to 1.2 micron) is demonstrated and shown to agree well with values predicted by the Garnett (1904, 1906) theory using the bulk dielectric constants for CoSi2 and Si.

  18. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  19. Nanometer-Scale Dissection of Chromosomes by Atomic Force Microscopy Combined with Heat-Denaturing Treatment

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru

    2006-03-01

    We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.

  20. Changing cluster composition in cluster randomised controlled trials: design and analysis considerations

    PubMed Central

    2014-01-01

    Background There are many methodological challenges in the conduct and analysis of cluster randomised controlled trials, but one that has received little attention is that of post-randomisation changes to cluster composition. To illustrate this, we focus on the issue of cluster merging, considering the impact on the design, analysis and interpretation of trial outcomes. Methods We explored the effects of merging clusters on study power using standard methods of power calculation. We assessed the potential impacts on study findings of both homogeneous cluster merges (involving clusters randomised to the same arm of a trial) and heterogeneous merges (involving clusters randomised to different arms of a trial) by simulation. To determine the impact on bias and precision of treatment effect estimates, we applied standard methods of analysis to different populations under analysis. Results Cluster merging produced a systematic reduction in study power. This effect depended on the number of merges and was most pronounced when variability in cluster size was at its greatest. Simulations demonstrate that the impact on analysis was minimal when cluster merges were homogeneous, with impact on study power being balanced by a change in observed intracluster correlation coefficient (ICC). We found a decrease in study power when cluster merges were heterogeneous, and the estimate of treatment effect was attenuated. Conclusions Examples of cluster merges found in previously published reports of cluster randomised trials were typically homogeneous rather than heterogeneous. Simulations demonstrated that trial findings in such cases would be unbiased. However, simulations also showed that any heterogeneous cluster merges would introduce bias that would be hard to quantify, as well as having negative impacts on the precision of estimates obtained. Further methodological development is warranted to better determine how to analyse such trials appropriately. Interim recommendations

  1. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, King C.; Liu, Da -Jiang; Evans, James W.

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2); the samemore » also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2) to N = O(10 3); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.« less

  2. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    DOE PAGES

    Lai, King C.; Liu, Da -Jiang; Evans, James W.

    2017-12-05

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2); the samemore » also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2) to N = O(10 3); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.« less

  3. Nanogeochemistry: Size-dependent mineral-fluid interface chemistry

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2012-12-01

    Nanostructures and nanometer mineral phases, both widely present in geologic materials, can potentially affect many geochemical processes. It is known that at nanometer scales a material tends to exhibit chemical properties distinct from the corresponding bulk phase. Understanding of this size-dependent property change will help us to bridge the existing knowledge gap between the molecular level understanding and the macro-scale laboratory/field observations of a geochemical process. In this presentation, I will review of the recent progresses in nanoscience and provide a perspective on how these progresses can potentially impact geochemical studies. My presentation will be focused the following areas: (1) the characterization of nanostructures in natural systems, (2) the study of fluids and chemical species in nanoconfinement, (3) the effects of nanopores on geochemical reaction and mass transfers, and (4) the use nanostructured materials for environmental management. I will demonstrate that the nanopore confinement can significantly modify geochemical reactions in porous geologic media. As the pore size is reduced to a few nanometers, the difference between surface acidity constants of a mineral (pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined mineral-water interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on nanopore surfaces. This effect causes preferential enrichment of trace elements in nanopores. I will then discuss the implications of this emergent nanometer-scale property to radionuclide transport and carbon dioxide storage in geologic media. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  4. An ``Alternating-Curvature'' Model for the Nanometer-scale Structure of the Nafion Ionomer, Based on Backbone Properties Detected by NMR

    NASA Astrophysics Data System (ADS)

    Schmidt-Rohr, Klaus; Chen, Q.

    2006-03-01

    The perfluorinated ionomer, Nafion, which consists of a (-CF2-)n backbone and charged side branches, is useful as a proton exchange membrane in H2/O2 fuel cells. A modified model of the nanometer-scale structure of hydrated Nafion will be presented. It features hydrated ionic clusters familiar from some previous models, but is based most prominently on pronounced backbone rigidity between branch points and limited orientational correlation of local chain axes. These features have been revealed by solid-state NMR measurements, which take advantage of fast rotations of the backbones around their local axes. The resulting alternating curvature of the backbones towards the hydrated clusters also better satisfies the requirement of dense space filling in solids. Simulations based on this ``alternating curvature'' model reproduce orientational correlation data from NMR, as well as scattering features such as the ionomer peak and the I(q) ˜ 1/q power law at small q values, which can be attributed to modulated cylinders resulting from the chain stiffness. The shortcomings of previous models, including Gierke's cluster model and more recent lamellar or bundle models, in matching all requirements imposed by the experimental data will be discussed.

  5. Triangulating the source of tunneling resonances in a point contact with nanometer scale sensitivity

    NASA Astrophysics Data System (ADS)

    Bishop, N. C.; Boras Pinilla, C.; Stalford, H. L.; Young, R. W.; Ten Eyck, G. A.; Wendt, J. R.; Eng, K.; Lilly, M. P.; Carroll, M. S.

    2011-03-01

    We observe resonant tunneling in split gate point contacts defined in a double gate enhancement mode Si-MOS device structure. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position [Stalford et al., IEEE Nanotechnology], identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Cluster Size Statistic and Cluster Mass Statistic: Two Novel Methods for Identifying Changes in Functional Connectivity Between Groups or Conditions

    PubMed Central

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods – the cluster size statistic (CSS) and cluster mass statistic (CMS) – are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity. PMID:24906136

  7. Cluster size statistic and cluster mass statistic: two novel methods for identifying changes in functional connectivity between groups or conditions.

    PubMed

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods--the cluster size statistic (CSS) and cluster mass statistic (CMS)--are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity.

  8. Biosafety of the application of biogenic nanometal powders in husbandry

    NASA Astrophysics Data System (ADS)

    Anatolievna Nazarova, Anna; Dmitrievna Polischuk, Svetlana; Anatolievna Stepanova, Irina; Ivanovich Churilov, Gennady; Chau Nguyen, Hoai; Buu Ngo, Quoc

    2014-03-01

    Effects of iron and copper nanopowders (particle size of 20-40 nm) were investigated on rabbits of 1 month age and heifers of 6 months. For introduction of nanometals into the animal's ration, the mixed fodder was treated with the nanometal powder suspension in such a way: 0.08 mg of nanoiron per kg of animal's body weight and 0.04 mg kg-1 for nanocopper. The weight gain of the heifers who received nanoiron and nanocopper after 8 months was 22.4 and 10.7% higher than that of the control, respectively. For the rabbits who received nano Fe and Cu after 3 months, the weight gain was 11.7 and 7.3% compared to the control, respectively. Under the action of metal nanopowders morphological indices of blood were changed in comparison with the control: after 8 months the quantity of erythrocytes increased by 19.6%, hemoglobin by 17.1% and leukocytes by 7.6%. There was a realignment in leukocytic formula: the quantity of lymphocytes increased by 9% compared to the control. Biogenic metals in superdispersive state were able to stimulate immune, enzymatic and humoral systems of the animal's organism, promoting metabolism. Adding Co and Cu metal nanopowders to the bull-calves’ fodder rations increased content of Ca by 31.8 and 0%, Fe by 38.8 and 37.5%, K by 19.2 and 15.3%, Mg by 17.6 and 23.5%, Mn by 9.8 and 45% and Na by 20.5 and 8.8%, respectively, compared to control. Metal nanopowders improved the quality indices and meat productivity of black-white bull-calves, expressed in intensive growth of muscle, tissue and more nutritious meat. The conducted veterinary-sanitary expertise showed that the supplements based on iron, cobalt and copper nanopowders can be used as safe bioactive supplements in animal husbandry.

  9. Comparing cluster-level dynamic treatment regimens using sequential, multiple assignment, randomized trials: Regression estimation and sample size considerations.

    PubMed

    NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel

    2017-08-01

    Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.

  10. Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges

    DOE PAGES

    Yan, Hanfei; Huang, Xiaojing; Bouet, Nathalie; ...

    2017-10-16

    In this article, we discuss misalignment-induced aberrations in a pair of crossed multilayer Laue lenses used for achieving a nanometer-scale x-ray point focus. We thoroughly investigate the impacts of two most important contributions, the orthogonality and the separation distance between two lenses. We find that misalignment in the orthogonality results in astigmatism at 45º and other inclination angles when coupled with a separation distance error. Theoretical explanation and experimental verification are provided. We show that to achieve a diffraction-limited point focus, accurate alignment of the azimuthal angle is required to ensure orthogonality between two lenses, and the required accuracy ismore » scaled with the ratio of the focus size to the aperture size.« less

  11. Substrate comprising a nanometer-scale projection array

    DOEpatents

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George

    2012-11-27

    A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.

  12. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE PAGES

    Xue, Meng; Nakayama, Miki; Liu, Ping; ...

    2017-09-13

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  13. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Meng; Nakayama, Miki; Liu, Ping

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  14. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.

    PubMed

    Kardash, Maria E; Dzuba, Sergei A

    2017-05-25

    The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3β-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.

  15. Hybrid Assembly of Different-Sized Supertetrahedral Clusters into a Unique Non-Interpenetrated Mn-In-S Open Framework with Large Cavity.

    PubMed

    Wang, Hongxiang; Wang, Wei; Hu, Dandan; Luo, Min; Xue, Chaozhuang; Li, Dongsheng; Wu, Tao

    2018-06-04

    Reported here is a unique crystalline semiconductor open-framework material built from the large-sized supertetrahedral T4 and T5 clusters with the Mn-In-S compositions. The hybrid assembly between T4 and T5 clusters by sharing terminal μ 2 -S 2- is for the first time observed among the cluster-based chalcogenide open frameworks. Such three-dimensional structure displays non-interpenetrated diamond-type topology with extra-large nonframework volume of 82%. Moreover, ion exchange, CO 2 adsorption, as well as photoluminescence properties of the title compound are also investigated.

  16. Low-temperature cluster catalysis.

    PubMed

    Judai, Ken; Abbet, Stéphane; Wörz, Anke S; Heiz, Ulrich; Henry, Claude R

    2004-03-10

    Free and supported metal clusters reveal unique chemical and physical properties, which vary as a function of size as each cluster possesses a characteristic electron confinement. Several previous experimental results showed that the outcome of a given chemical reaction can be controlled by tuning the cluster size. However, none of the examples indicate that clusters prepared in the gas phase and then deposited on a support material are indeed catalytically active over several reaction cycles nor that their catalytic properties remain constant during such a catalytic process. In this work we report turn-over frequencies (TOF) for Pd(n) (n = 4, 8, 30) clusters using pulsed molecular beam experiments. The obtained results illustrate that the catalytic reactivity for the NO reduction by CO (CO + NO --> 1/2N(2) + CO(2)) is indeed a function of cluster size and that the measured TOF remain constant at a given temperature. More interestingly, the temperature of maximal reactivity is at least 100 K lower than observed for palladium nanoparticles or single crystals. One reason for this surprising observation is the character of the binding sites of these small clusters: N(2) forms already at relatively low temperatures (400 and 450 K) and therefore poisoning by adsorbed nitrogen adatoms is prevented. Thus, small clusters not only open the possibility of tuning a catalytic process by changing cluster size, but also of catalyzing chemical reactions at low temperatures.

  17. Determining the size dependence of structural properties of clusters

    NASA Astrophysics Data System (ADS)

    Dong, Yi; Springborg, Michael

    2012-12-01

    Problems related to the determination of the structure of the global total-energy minimum for clusters are discussed through three examples. For isolated gold clusters it is shown that low-symmetry structures result due to covalent bonding. Subsequently, SiNGeN and (HAlO)N clusters are treated for which the occurrence of so called homotops leads to additional computational complexity. For the former it is found that the structures are not directly related to those of the pure monatomic clusters, and for the latter the results are shown to be in agreement with available experimental information on nanostructured HAlO. In order to illustrate and analyze the results, various descriptors are introduced and applied.

  18. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    NASA Astrophysics Data System (ADS)

    Hamrin, M.; Norqvist, P.; Marghitu, O.; Vaivads, A.; Klecker, B.; Kistler, L. M.; Dandouras, I.

    2009-11-01

    In this article, and in a companion paper by Hamrin et al. (2009) [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data) at the altitude of about 15-20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs) and 35 Concentrated Generator Regions (CGRs). By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1-10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005). The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1-10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  19. STABILITY OF SMALL SELF-INTERSTITIAL CLUSTERS IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2015-12-31

    Density functional theory was employed to explore the stability of interstitial clusters in W up to size seven. For each cluster size, the most stable configuration consists of parallel dumbbells. For clusters larger than size three, parallel dumbbells prefer to form in a multilayer fashion, instead of a planar structure. For size-7 clusters, the most stable configuration is a complete octahedron. The binding energy of a [111] dumbbell to the most stable cluster increases with cluster size, namely 2.49, 3.68, 4.76, 4.82, 5.47, and 6.85 eV for clusters of size 1, 2, 3, 4, 5, and 6, respectively. For amore » size-2 cluster, collinear dumbbells are still repulsive at the maximum allowable distance of 13.8 Å (the fifth neighbor along [111]). On the other hand, parallel dumbbells are strongly bound together. Two parallel dumbbells in which the axis-to-axis distance is within a cylindrical radius of 5.2 Å still exhibit a considerable binding of 0.28 eV. The most stable cluster in each size will be used to explore interactions with transmutation products.« less

  20. Photosensitizing effects of nanometer TiO2 on chlorothalonil photodegradation in aqueous solution and on the surface of pepper.

    PubMed

    Tan, Yong Qiang; Xiong, Hai Xia; Shi, Tao Zhong; Hua, Ri Mao; Wu, Xiang Wei; Cao, Hai Qun; Li, Xue De; Tang, Jun

    2013-05-29

    The present study examined the effects of anatase nanometer TiO2 on photochemical degradation of chlorothalonil in aqueous solution and on the plant surface. Results showed that nanometer TiO2 exhibited a strong photosensitizing effect on the degradation of chlorothalonil both in aqueous solution and on the surface of green pepper. The photosensitization rate was the highest in the sunlight compared to illumination under high-pressure mercury and UV lamps. Use of distinct hydroxyl radical scavengers indicated that nanometer TiO2 acted by producing hydroxyl radicals with strong oxidizing capacity. Notably, nanometer TiO2 facilitated complete photodegradation of chlorothalonil with no detectable accumulation of the intermediate chlorothalonil-4-hydroxy. Nanometer TiO2 was also active on the surface of green pepper under natural sunlight both inside and outside of plastic greenhouse. These results together suggest that nanometer TiO2 can be used as a photosensitizer to accelerate degradation of the pesticides under greenhouse conditions.

  1. Nanodosimetry of (125)I Auger electrons.

    PubMed

    Bantsar, Aliaksandr; Pszona, Stanislaw

    2012-12-01

    The nanodosimetric description of the radiation action of Auger electrons on nitrogen targets of nanometric size is presented. Experimental microdosimetry at nanometer scale for Auger electrons has been accomplished with the set-up called Jet Counter. This consists of a pulse-operated valve which injects an expanding nitrogen jet into an interaction chamber where a gaseous sensitive volume of cylindrical shape is created. The ionization cluster size distributions (ICSD) created by Auger electrons emitted by (125)I while crossing a nanometer-sized volume have been measured. The ICSD for the sensitive volumes corresponding to 3 and 12 nm in diameter (in unit density 1 g/cm(3)) irradiated by electrons emitted by a (125)I source were collected and compared with the corresponding Monte Carlo (MC) simulation. The preliminary results of the experiments with Auger electrons of (125)I interacting with a nitrogen jet having nanometric size comparable to a deoxyribonucleic acid (DNA) and nucleosome, showing the discrete spectrum of ICSD with extended cluster size, are described. The presented paper describes for the first time the nanodosimetric experiments with Auger electrons emitted by (125)I. A set of the new descriptors of the radiation quality describing the radiation effect at nanometer level is proposed. The ICSD were determined for the first time for an Auger emitter of (125)I.

  2. A general approach to homogeneous sub-nanometer metallic particle/graphene composites by S-coordinator

    NASA Astrophysics Data System (ADS)

    Wang, Senhao; Wang, Wei; Gu, Shangzhi; Zhang, Guoxin; Song, Ningning

    2018-05-01

    In this study, sulphur-modified reduced graphene oxide (S-rGO) was employed as substrate to investigate the growth mechanism of metal and metallic nanoparticles (NPs). It is observed that the monodispersed Au, SnO2, FeO(OH) and Co3S4 NPs in sub-nanometer (sub-nm) with narrow size distribution were successfully anchored on S-rGO, respectively. The results indicate that the S contained radicals, viz. the Cdbnd S and Csbnd Ssbnd C functional groups play an important role in determining the homogeneous distribution of NPs on S-rGO by providing active sites for the NPs anchoring and nucleation. In additional, as anode materials for lithium ion batteries (LIBs), the as-synthesized sub-nm sized Co3S4/S-rGO and SnO2/S-rGO composites show excellent Li storage performance. It could be stabilized at ca. 600 mAh/g after formation cycle with the coulombic efficiency of 98%. It is expected that the strategy of growing sub-nm sized metallic component onto graphene by applying sulphur functionalities could be utilized as a general method to prepare monodispersed graphene-based NPs with other metals, especially with transition metals in sub-nm sizes.

  3. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, James F.; Furuya, Frederic R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.

  4. Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2015-02-01

    "Back to Nature" is a promising way to solve the problems that we face today, such as air pollution and shortage of energy supply based on conventional fossil fuels. A Mn cluster inside photosystem II catalyzes light-induced water-splitting leading to the generation of protons, electrons and oxygen in photosynthetic organisms, and has been considered as a good model for the synthesis of new artificial water-oxidizing catalysts. Herein, we surveyed the structural and functional details of this cluster and its surrounding environment. Then, we review the mechanistic findings concerning the cluster and compare this biological catalyst with nano-sized Mn oxides, which are among the best artificial Mn-based water-oxidizing catalysts. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water.

    PubMed

    Shen, Mengyan; Carey, James E; Crouch, Catherine H; Kandyla, Maria; Stone, Howard A; Mazur, Eric

    2008-07-01

    We report on the formation of high-density regular arrays of nanometer-scale rods using femtosecond laser irradiation of a silicon surface immersed in water. The resulting surface exhibits both micrometer-scale and nanometer-scale structures. The micrometer-scale structure consists of spikes of 5-10 mum width, which are entirely covered by nanometer-scale rods that are roughly 50 nm wide and normal to the surface of the micrometer-scale spikes. The formation of the nanometer-scale rods involves several processes: refraction of laser light in highly excited silicon, interference of scattered and refracted light, rapid cooling in water, roughness-enhanced optical absorptance, and capillary instabilities.

  6. Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection

    PubMed Central

    Liu, Wenfen

    2017-01-01

    Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447

  7. Lowest-energy cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lingli; Sai, Linwei; Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn

    2015-01-22

    Fullerene-like cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of (ZnO){sub n} (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.

  8. Fission of Polyanionic Metal Clusters

    NASA Astrophysics Data System (ADS)

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  9. H{sub 2} MOLECULAR CLUSTERS WITH EMBEDDED MOLECULES AND ATOMS AS THE SOURCE OF THE DIFFUSE INTERSTELLAR BANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K., E-mail: larry@spectral.com, E-mail: dave@thulescientific.com

    2013-05-01

    We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectralmore » profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.« less

  10. Computational Nanotribology of Nanometer Confined Liquid Films

    DTIC Science & Technology

    2012-02-29

    Nanotribology of Nanometer Confined Liquid Films 5b. GRANT NUMBER FA9550-08-1-0214 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...NUMBER Yongsheng Leng & Peter T. Cummings 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES...NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) Joycelyn Harrison AFOSR/RSA 875 North Randolph Street 11. SPONSOR/MONITOR’S REPORT

  11. HF in clusters of molecular hydrogen. I. Size evolution of quantum solvation by parahydrogen molecules.

    PubMed

    Jiang, Hao; Bacić, Zlatko

    2005-06-22

    We present a theoretical study of the quantum solvation of the HF molecule by a small number of parahydrogen molecules, having n = 1-13 solvent particles. The minimum-energy cluster structures determined for n = 1-12 have all of the H(2) molecules in the first solvent shell. The first solvent shell closes at n = 12 and its geometry is icosahedral, with the HF molecule at the center. The quantum-mechanical ground-state properties of the clusters are calculated exactly using the diffusion Monte Carlo method. The zero-point energy of (p-H(2))(n)HF clusters is unusually large, amounting to 86% of the potential well depth for n > 7. The radial probability distribution functions (PDFs) confirm that the first solvent shell is complete for n = 12, and that the 13th p-H(2) molecule begins to fill the second solvent shell. The p-H(2) molecules execute large-amplitude motions and are highly mobile, making the solvent cage exceptionally fluxional. The anisotropy of the solvent, very pronounced for small clusters, decreases rapidly with increasing n, so that for n approximately 8-9 the solvent environment is practically isotropic. The analysis of the pair angular PDF reveals that for a given n, the parahydrogen solvent density around the HF is modulated in a pattern which clearly reflects the lowest-energy cluster configuration. The rigidity of the solvent clusters displays an interesting size dependence, increasing from n = 6 to 9, becoming floppier for n = 10, and increasing again up to n = 12, as the solvent shell is filled. The rigidity of the solvent cage appears to reach its maximum for n = 12, the point at which the first solvent shell is closed.

  12. Water cluster fragmentation probed by pickup experiments

    NASA Astrophysics Data System (ADS)

    Huang, Chuanfu; Kresin, Vitaly V.; Pysanenko, Andriy; Fárník, Michal

    2016-09-01

    Electron ionization is a common tool for the mass spectrometry of atomic and molecular clusters. Any cluster can be ionized efficiently by sufficiently energetic electrons, but concomitant fragmentation can seriously obstruct the goal of size-resolved detection. We present a new general method to assess the original neutral population of the cluster beam. Clusters undergo a sticking collision with a molecule from a crossed beam, and the velocities of neat and doped cluster ion peaks are measured and compared. By making use of longitudinal momentum conservation, one can reconstruct the sizes of the neutral precursors. Here this method is applied to H2O and D2O clusters in the detected ion size range of 3-10. It is found that water clusters do fragment significantly upon electron impact: the deduced neutral precursor size is ˜3-5 times larger than the observed cluster ions. This conclusion agrees with beam size characterization by another experimental technique: photoionization after Na-doping. Abundant post-ionization fragmentation of water clusters must therefore be an important factor in the interpretation of experimental data; interestingly, there is at present no detailed microscopic understanding of the underlying fragmentation dynamics.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olawoyin, L.

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research,more » a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.« less

  14. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.; Furuya, F.R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.

  15. Constant phycobilisome size in chromatically adapted cells of the cyanobacterium Tolypothrix tenuis, and variation in Nostoc sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohki, K.; Gantt, E.; Lipschultz, C.A.

    1985-12-01

    Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a physocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, andmore » size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.« less

  16. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  17. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, Glenn D.; Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  18. Cluster mass profile reconstruction with size and flux magnification on the HST STAGES survey.

    PubMed

    Duncan, Christopher A J; Heymans, Catherine; Heavens, Alan F; Joachimi, Benjamin

    2016-03-21

    We present the first measurement of individual cluster mass estimates using weak lensing size and flux magnification. Using data from the HST STAGES (Space Telescope A901/902 Galaxy Evolution Survey) survey of the A901/902 supercluster we detect the four known groups in the supercluster at high significance using magnification alone. We discuss the application of a fully Bayesian inference analysis, and investigate a broad range of potential systematics in the application of the method. We compare our results to a previous weak lensing shear analysis of the same field finding the recovered signal-to-noise of our magnification-only analysis to range from 45 to 110 per cent of the signal-to-noise in the shear-only analysis. On a case-by-case basis we find consistent magnification and shear constraints on cluster virial radius, and finding that for the full sample, magnification constraints to be a factor 0.77 ± 0.18 lower than the shear measurements.

  19. Alternative Parameterizations for Cluster Editing

    NASA Astrophysics Data System (ADS)

    Komusiewicz, Christian; Uhlmann, Johannes

    Given an undirected graph G and a nonnegative integer k, the NP-hard Cluster Editing problem asks whether G can be transformed into a disjoint union of cliques by applying at most k edge modifications. In the field of parameterized algorithmics, Cluster Editing has almost exclusively been studied parameterized by the solution size k. Contrastingly, in many real-world instances it can be observed that the parameter k is not really small. This observation motivates our investigation of parameterizations of Cluster Editing different from the solution size k. Our results are as follows. Cluster Editing is fixed-parameter tractable with respect to the parameter "size of a minimum cluster vertex deletion set of G", a typically much smaller parameter than k. Cluster Editing remains NP-hard on graphs with maximum degree six. A restricted but practically relevant version of Cluster Editing is fixed-parameter tractable with respect to the combined parameter "number of clusters in the target graph" and "maximum number of modified edges incident to any vertex in G". Many of our results also transfer to the NP-hard Cluster Deletion problem, where only edge deletions are allowed.

  20. The Au(n) cluster probe in secondary ion mass spectrometry: influence of the projectile size and energy on the desorption/ionization rate from biomolecular solids.

    PubMed

    Novikov, Alexey; Caroff, Martine; Della-Negra, Serge; Depauw, Joël; Fallavier, Mireille; Le Beyec, Yvon; Pautrat, Michèle; Schultz, J Albert; Tempez, Agnès; Woods, Amina S

    2005-01-01

    A Au-Si liquid metal ion source which produces Au(n) clusters over a large range of sizes was used to study the dependence of both the molecular ion desorption yield and the damage cross-section on the size (n = 1 to 400) and on the kinetic energy (E = 10 to 500 keV) of the clusters used to bombard bioorganic surfaces. Three pure peptides with molecular masses between 750 and 1200 Da were used without matrix. [M+H](+) and [M+cation](+) ion emission yields were enhanced by as much as three orders of magnitude when bombarding with Au(400) (4+) instead of monatomic Au(+), yet very little damage was induced in the samples. A 100-fold increase in the molecular ion yield was observed when the incident energy of Au(9) (+) was varied from 10 to 180 keV. Values of emission yields and damage cross-sections are presented as a function of cluster size and energy. The possibility to adjust both cluster size and energy, depending on the application, makes the analysis of biomolecules by secondary ion mass spectrometry an extremely powerful and flexible technique, particularly when combined with orthogonal time-of-flight mass spectrometry that then allows fast measurements using small primary ion beam currents. Copyright (c) 2005 John Wiley & Sons, Ltd.

  1. Application of maximum-likelihood estimation in optical coherence tomography for nanometer-class thickness estimation

    NASA Astrophysics Data System (ADS)

    Huang, Jinxin; Yuan, Qun; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew; Hindman, Holly B.; Aquavella, James V.; Rolland, Jannick P.

    2015-03-01

    In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 μm axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.

  2. FORTY-SEVEN MILKY WAY-SIZED, EXTREMELY DIFFUSE GALAXIES IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dokkum, Pieter G.; Merritt, Allison; Geha, Marla

    2015-01-10

    We report the discovery of 47 low surface brightness objects in deep images of a 3° × 3° field centered on the Coma cluster, obtained with the Dragonfly Telephoto Array. The objects have central surface brightness μ(g, 0) ranging from 24-26 mag arcsec{sup –2} and effective radii r {sub eff} = 3''-10'', as measured from archival Canada-France-Hawaii Telescope images. From their spatial distribution we infer that most or all of the objects are galaxies in the Coma cluster. This relatively large distance is surprising as it implies that the galaxies are very large: with r {sub eff} = 1.5-4.6 kpcmore » their sizes are similar to those of L {sub *} galaxies even though their median stellar mass is only ∼6 × 10{sup 7} M {sub ☉}. The galaxies are relatively red and round, with (g – i) = 0.8 and (b/a) = 0.74. One of the 47 galaxies is fortuitously covered by a deep Hubble Space Telescope Advanced Camera for Surveys (ACS) observation. The ACS imaging shows a large spheroidal object with a central surface brightness μ{sub 475} = 25.8 mag arcsec{sup –2}, a Sérsic index n = 0.6, and an effective radius of 7'', corresponding to 3.4 kpc at the distance of Coma. The galaxy is not resolved into stars, consistent with expectations for a Coma cluster object. We speculate that these ''ultra-diffuse galaxies'' may have lost their gas supply at early times, possibly resulting in very high dark matter fractions.« less

  3. Positron Annihilation Spectroscopy Characterization of Nanostructural Features in Reactor Steels

    NASA Astrophysics Data System (ADS)

    Glade, Stephen; Wirth, Brian; Asoka-Kumar, Palakkal; Sterne, Philip; Alinger, Matthew; Odette, George

    2004-03-01

    Irradiation embrittlement in nuclear reactor pressure vessel steels results from the formation of a high number density of nanometer sized copper rich precipitates and sub-nanometer defect-solute clusters. We present results of study to characterize the size and compositions of simple binary and ternary Fe-Cu-Mn model alloys and more representative Fe-Cu-Mn-Ni-Si-Mo-C reactor pressure vessel steels using positron annihilation spectroscopy (PAS). Using a recently developed spin-polarized PAS technique, we have also measured the magnetic properties of the nanometer-sized copper rich precipitates. Mn retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion. The spin-polarized PAS measurements reveal the non-magnetic nature of the copper precipitates, discounting the notion that the precipitates contain significant quantities of Fe and providing an upper limit of at most a few percent Fe in the precipitates. PAS results on oxide dispersion-strengthened steel for use in fusion reactors will also be presented. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract No. W-7405-ENG-48 with partial support provided from Basic Energy Sciences, Division of Materials Science.

  4. Rapid Water Permeation Through Carbon Nanomembranes with Sub-Nanometer Channels.

    PubMed

    Yang, Yang; Dementyev, Petr; Biere, Niklas; Emmrich, Daniel; Stohmann, Patrick; Korzetz, Riko; Zhang, Xianghui; Beyer, André; Koch, Sascha; Anselmetti, Dario; Gölzhäuser, Armin

    2018-05-22

    The provision of clean water is a global challenge, and membrane filtration is a key technology to address it. Conventional filtration membranes are constrained by a trade-off between permeance and selectivity. Recently, some nanostructured membranes demonstrated the ability to overcome this limitation by utilizing well-defined carbon nanoconduits that allow a coordinated passage of water molecules. The fabrication of these materials is still very challenging, but their performance inspires research toward nanofabricated membranes. This study reports on molecularly thin membranes with sub-nanometer channels that combine high water selectivity with an exceptionally high permeance. Carbon nanomembranes (CNMs) of ∼1.2 nm thickness are fabricated from terphenylthiol (TPT) monolayers. Scanning probe microscopy and transport measurements reveal that TPT CNMs consist of a dense network of sub-nanometer channels that efficiently block the passage of most gases and liquids. However, water passes through with an extremely high permeance of ∼1.1 × 10 -4 mol·m -2 ·s -1 ·Pa -1 , as does helium, but with a ∼ 2500 times lower flux. Assuming all channels in a TPT CNM are active in mass transport, we find a single-channel permeation of ∼66 water molecules·s -1 ·Pa -1 . This suggests that water molecules translocate fast and cooperatively through the sub-nanometer channels, similar to carbon nanotubes and membrane proteins (aquaporins). CNMs are thus scalable two-dimensional sieves that can be utilized toward energy-efficient water purification.

  5. Enhancement of local surface plasmon resonance (LSPR) effect by biocompatible metal clustering based on ZnO nanorods in Raman measurements.

    PubMed

    Lee, Sanghwa; Lee, Seung Ho; Paulson, Bjorn; Lee, Jae-Chul; Kim, Jun Ki

    2018-06-20

    The development of size-selective and non-destructive detection techniques for nanosized biomarkers has many reasons, including the study of living cells and diagnostic applications. We present an approach for Raman signal enhancement on biocompatible sensing chips based on surface enhancement Raman spectroscopy (SERS). A sensing chip was fabricated by forming a ZnO-based nanorod structure so that the Raman enhancement occurred at a gap of several tens to several hundred nanometers. The effect of coffee-ring formation was eliminated by introducing the porous ZnO nanorods for the bio-liquid sample. A peculiarity of this approach is that the gold sputtered on the ZnO nanorods initially grows at their heads forming clusters, as confirmed by secondary electron microscopy. This clustering was verified by finite element analysis to be the main factor for enhancement of local surface plasmon resonance (LSPR). This clustering property and the ability to adjust the size of the nanorods enabled the signal acquisition points to be refined using confocal based Raman spectroscopy, which could be applied directly to the sensor chip based on the optimization process in this experiment. It was demonstrated by using common cancer cell lines that cell growth was high on these gold-clad ZnO nanorod-based surface-enhanced Raman substrates. The porosity of the sensing chip, the improved structure for signal enhancement, and the cell assay make these gold-coated ZnO nanorods substrates promising biosensing chips with excellent potential for detecting nanometric biomarkers secreted by cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Size resolved infrared spectroscopy of Na(CH3OH)n (n = 4-7) clusters in the OH stretching region: unravelling the interaction of methanol clusters with a sodium atom and the emergence of the solvated electron.

    PubMed

    Forck, Richard M; Pradzynski, Christoph C; Wolff, Sabine; Ončák, Milan; Slavíček, Petr; Zeuch, Thomas

    2012-03-07

    Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.

  8. Influence of cluster–support interactions on reactivity of size-selected Nb xO y clusters

    DOE PAGES

    Nakayama, Miki; Xue, Meng; An, Wei; ...

    2015-04-17

    Size-selected niobium oxide nanoclusters (Nb 3O 5, Nb 3O 7, Nb 4O 7, and Nb 4O 10) were deposited at room temperature onto a Cu(111) surface and a thin film of Cu 2O on Cu(111), and their interfacial electronic interactions and reactivity toward water dissociation were examined. These clusters were specifically chosen to elucidate the effects of the oxidation state of the metal centers; Nb 3O 5 and Nb 4O 7 are the reduced counterparts of Nb 3O 7 and Nb 4O 10, respectively. From two-photon photoemission spectroscopy (2PPE) measurements, we found that the work function increases upon cluster adsorptionmore » in all cases, indicating a negative interfacial dipole moment with the positive end pointing into the surface. The amount of increase was greater for the clusters with more metal centers and higher oxidation state. Additional analysis with DFT calculations of the clusters on Cu(111) indicated that the reduced clusters donate electrons to the substrate, indicating that the intrinsic cluster dipole moment makes a larger contribution to the overall interfacial dipole moment than charge transfer. X-ray photoelectron spectroscopy (XPS) measurements showed that the Nb atoms of Nb 3O 7 and Nb 4O 10 are primarily Nb 5+ on Cu(111), while for the reduced Nb 3O 5 and Nb 4O 7 clusters, a mixture of oxidation states was observed on Cu(111). Temperature-programmed desorption (TPD) experiments with D 2O showed that water dissociation occurred on all systems except for the oxidized Nb 3O 7 and Nb 4O 10 clusters on the Cu 2O film. A comparison of our XPS and TPD results suggests that Nb 5+ cations associated with Nb=O terminal groups act as Lewis acid sites which are key for water binding and subsequent dissociation. TPD measurements of 2-propanol dehydration also show that the clusters active toward water dissociation are indeed acidic. DFT calculations of water dissociation on Nb 3O 7 support our TPD results, but the use of bulk Cu 2O(111) as a model for the Cu 2O film merits

  9. Autophagy selectivity through receptor clustering

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Brown, Aidan

    Substrate selectivity in autophagy requires an all-or-none cellular response. We focus on peroxisomes, for which autophagy receptor proteins NBR1 and p62 are well characterized. Using computational models, we explore the hypothesis that physical clustering of autophagy receptor proteins on the peroxisome surface provides an appropriate all-or-none response. We find that larger peroxisomes nucleate NBR1 clusters first, and lose them due to competitive coarsening last, resulting in significant size-selectivity. We then consider a secondary hypothesis that p62 inhibits NBR1 cluster formation. We find that p62 inhibition enhances size-selectivity enough that, even if there is no change of the pexophagy rate, the volume of remaining peroxisomes can significantly decrease. We find that enhanced ubiquitin levels suppress size-selectivity, and that this effect is more pronounced for individual peroxisomes. Sufficient ubiquitin allows receptor clusters to form on even the smallest peroxisomes. We conclude that NBR1 cluster formation provides a viable physical mechanism for all-or-none substrate selectivity in pexophagy. We predict that cluster formation is associated with significant size-selectivity. Now at Simon Fraser University.

  10. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis.

    PubMed

    Meng, Xianguang; Liu, Lequan; Ouyang, Shuxin; Xu, Hua; Wang, Defa; Zhao, Naiqin; Ye, Jinhua

    2016-08-01

    Nanometal materials play very important roles in solar-to-chemical energy conversion due to their unique catalytic and optical characteristics. They have found wide applications from semiconductor photocatalysis to rapidly growing surface plasmon-mediated heterogeneous catalysis. The recent research achievements of nanometals are reviewed here, with regard to applications in semiconductor photocatalysis, plasmonic photocatalysis, and plasmonic photo-thermocatalysis. As the first important topic discussed here, the latest progress in the design of nanometal cocatalysts and their applications in semiconductor photocatalysis are introduced. Then, plasmonic photocatalysis and plasmonic photo-thermocatalysis are discussed. A better understanding of electron-driven and temperature-driven catalytic behaviors over plasmonic nanometals is helpful to bridge the present gap between the communities of photocatalysis and conventional catalysis controlled by temperature. The objective here is to provide instructive information on how to take the advantages of the unique functions of nanometals in different types of catalytic processes to improve the efficiency of solar-energy utilization for more practical artificial photosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Surface enhanced Raman spectroscopy (SERS) from a molecule adsorbed on a nanoscale silver particle cluster in a holographic plate

    NASA Astrophysics Data System (ADS)

    Jusinski, Leonard E.; Bahuguna, Ramen; Das, Amrita; Arya, Karamjeet

    2006-02-01

    Surface enhanced Raman spectroscopy has become a viable technique for the detection of single molecules. This highly sensitive technique is due to the very large (up to 14 orders in magnitude) enhancement in the Raman cross section when the molecule is adsorbed on a metal nanoparticle cluster. We report here SERS (Surface Enhanced Raman Spectroscopy) experiments performed by adsorbing analyte molecules on nanoscale silver particle clusters within the gelatin layer of commercially available holographic plates which have been developed and fixed. The Ag particles range in size between 5 - 30 nanometers (nm). Sample preparation was performed by immersing the prepared holographic plate in an analyte solution for a few minutes. We report here the production of SERS signals from Rhodamine 6G (R6G) molecules of nanomolar concentration. These measurements demonstrate a fast, low cost, reproducible technique of producing SERS substrates in a matter of minutes compared to the conventional procedure of preparing Ag clusters from colloidal solutions. SERS active colloidal solutions require up to a full day to prepare. In addition, the preparations of colloidal aggregates are not consistent in shape, contain additional interfering chemicals, and do not generate consistent SERS enhancement. Colloidal solutions require the addition of KCl or NaCl to increase the ionic strength to allow aggregation and cluster formation. We find no need to add KCl or NaCl to create SERS active clusters in the holographic gelatin matrix. These holographic plates, prepared using simple, conventional procedures, can be stored in an inert environment and preserve SERS activity after several weeks subsequent to preparation.

  12. Photoionization of rare gas clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhen

    This thesis concentrates on the study of photoionization of van der Waals clusters with different cluster sizes. The goal of the experimental investigation is to understand the electronic structure of van der Waals clusters and the electronic dynamics. These studies are fundamental to understand the interaction between UV-X rays and clusters. The experiments were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The experimental method employs angle-resolved time-of-flight photoelectron spectrometry, one of the most powerful methods for probing the electronic structure of atoms, molecules, clusters and solids. The van der Waals cluster photoionization studies are focused on probing the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. The angular distribution has been known to be a sensitive probe of the electronic structure in atoms and molecules. However, it has not been used in the case of van der Waals clusters. We carried out outer-valence levels, inner-valence levels and core-levels cluster photoionization experiments. Specifically, this work reports on the first quantitative measurements of the angular distribution parameters of rare gas clusters as a function of average cluster sizes. Our findings for xenon clusters is that the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the corresponding free atoms. However, distinct differences in the angular distribution point at cluster-size-dependent effects were found. For krypton clusters, in the photon energy range where atomic photoelectrons have a high angular anisotropy, our measurements show considerably more isotropic angular distributions for the cluster photoelectrons, especially right above the 3d and 4p thresholds. For the valence electrons, a surprising difference between the two spin-orbit components was found. For argon clusters, we found that the

  13. Isotope exchange in reactions between D2O and size-selected ionic water clusters containing pyridine, H+ (pyridine)m(H2O)n.

    PubMed

    Ryding, Mauritz Johan; Zatula, Alexey S; Andersson, Patrik Urban; Uggerud, Einar

    2011-01-28

    Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.

  14. Fractography of glass at the nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilloteau, E.; Arribart, H.; Creuzet, F.

    1996-12-01

    The authors present a nanometer scale description of the fracture surface of soda-lime glass. This is achieved by the use of Atomic Force Microscopy. The mirror zone is shown to be built with elementary entities, the density of which increases continuously while the mist and hackle zones are approached. Moreover, the overall picture leads to some kind of self-similarity, in the sense that small regions of the hackle zone exhibit the full set of mirror, mist and hackle areas.

  15. Low-Cost Sensors Deliver Nanometer-Accurate Measurements

    NASA Technical Reports Server (NTRS)

    2015-01-01

    As part of a unique partnership program, Kennedy Space Center collaborated with a nearby business school to allow MBA students to examine and analyze the market potential for a selection of NASA-patented technologies. Following the semester, a group of students decided to form Winter Park, Florida-based Juntura Group Inc. to license and sell a technology they had worked with: a sensor capable of detecting position changes as small as 10 nanometers-approximately the thickness of a cell wall.

  16. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    PubMed

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  17. Recent Design Development in Molecular Imaging for Breast Cancer Detection Using Nanometer CMOS Based Sensors.

    PubMed

    Nguyen, Dung C; Ma, Dongsheng Brian; Roveda, Janet M W

    2012-01-01

    As one of the key clinical imaging methods, the computed X-ray tomography can be further improved using new nanometer CMOS sensors. This will enhance the current technique's ability in terms of cancer detection size, position, and detection accuracy on the anatomical structures. The current paper reviewed designs of SOI-based CMOS sensors and their architectural design in mammography systems. Based on the existing experimental results, using the SOI technology can provide a low-noise (SNR around 87.8 db) and high-gain (30 v/v) CMOS imager. It is also expected that, together with the fast data acquisition designs, the new type of imagers may play important roles in the near-future high-dimensional images in additional to today's 2D imagers.

  18. Rhenium Complexes and Clusters Supported on c-Al2O3: Effects of Rhenium Oxidation State and Rhenium Cluster Size on Catalytic Activity for n-butane Hydrogenolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobo Lapidus, R.; Gates, B

    2009-01-01

    Supported metals prepared from H{sub 3}Re{sub 3}(CO){sub 12} on {gamma}-Al{sub 2}O{sub 3} were treated under conditions that led to various rhenium structures on the support and were tested as catalysts for n-butane conversion in the presence of H{sub 2} in a flow reactor at 533 K and 1 atm. After use, two samples were characterized by X-ray absorption edge positions of approximately 5.6 eV (relative to rhenium metal), indicating that the rhenium was cationic and essentially in the same average oxidation state in each. But the Re-Re coordination numbers found by extended X-ray absorption fine structure spectroscopy (2.2 and 5.1)more » show that the clusters in the two samples were significantly different in average nuclearity despite their indistinguishable rhenium oxidation states. Spectra of a third sample after catalysis indicate approximately Re{sub 3} clusters, on average, and an edge position of 4.5 eV. Thus, two samples contained clusters approximated as Re{sub 3} (on the basis of the Re-Re coordination number), on average, with different average rhenium oxidation states. The data allow resolution of the effects of rhenium oxidation state and cluster size, both of which affect the catalytic activity; larger clusters and a greater degree of reduction lead to increased activity.« less

  19. Peptide protected gold clusters: chemical synthesis and biomedical applications

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Wang, Yaling; Zhao, Lina; Liu, Ru; Gao, Fuping; Gao, Liang; Gao, Xueyun

    2016-06-01

    Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.

  20. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  1. Properties of highly clustered networks

    NASA Astrophysics Data System (ADS)

    Newman, M. E.

    2003-08-01

    We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in the size of the giant component of the network. We also study susceptible/infective/recovered type epidemic processes within the model and find that clustering decreases the size of epidemics, but also decreases the epidemic threshold, making it easier for diseases to spread. In addition, clustering causes epidemics to saturate sooner, meaning that they infect a near-maximal fraction of the network for quite low transmission rates.

  2. Fluctuating micro-heterogeneity in water-tert-butyl alcohol mixtures and lambda-type divergence of the mean cluster size with phase transition-like multiple anomalies

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman

    2014-05-01

    Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with xTBA ≈ 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at xTBA ≈ 0.05. We note that "islands" of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, xTBA ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.

  3. Fluctuating micro-heterogeneity in water-tert-butyl alcohol mixtures and lambda-type divergence of the mean cluster size with phase transition-like multiple anomalies.

    PubMed

    Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman

    2014-05-21

    Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x(TBA) ≈ 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x(TBA) ≈ 0.05. We note that "islands" of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x(TBA) ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.

  4. INTERACTION OF INTERSTITIAL CLUSTERS WITH RHENIUM, OSMIUM, AND TANTALUM IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2016-09-01

    In the previous semi annual report, we explored the stability of interstitial clusters in W up to size seven. In this report, we study the binding of those clusters to Re, Os, and Ta atoms. For each cluster size, the three most stable configurations are considered to average the binding property. The average binding energy to a Re decreases from 0.79 eV for a size-1 cluster (a [111] dumbbell) to 0.65 eV for a size-7 cluster. For Os, the binding decreases from 1.61 eV for a [111] dumbbell to 1.34 eV for a size-7 cluster. Tantalum is repulsive to interstitialmore » clusters with binding energy ranges from -0.61 eV for a [111] dumbbell to -0.5 eV for a size-7 cluster.« less

  5. Cluster sizes in a classical Lennard-Jones chain

    NASA Astrophysics Data System (ADS)

    Lee-Dadswell, G. R.; Barrett, Nicholas; Power, Michael

    2017-09-01

    The definitions of breaks and clusters in a one-dimensional chain in equilibrium are discussed. Analytical expressions are obtained for the expected cluster length, 〈K 〉 , as a function of temperature and pressure in a one-dimensional Lennard-Jones chain. These expressions are compared with results from molecular dynamics simulations. It is found that 〈K 〉 increases exponentially with β =1 /kBT and with pressure, P in agreement with previous results in the literature. A method is illustrated for using 〈K 〉(β ,P ) to generate a "phase diagram" for the Lennard-Jones chain. Some implications for the study of heat transport in Lennard-Jones chains are discussed.

  6. Electrochemical behaviour of naked sub-nanometre sized copper clusters and effect of CO 2

    DOE PAGES

    Passalacqua, Rosalba; Parathoner, Siglinda; Centi, Gabriele; ...

    2016-08-04

    The study of the electrochemical behavior (in the presence of N 2 or CO 2) of size-controlled naked Cu 5 and Cu 20 nanoclusters, prepared using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques, evidences some relevant results regarding the redox behavior of these sub-nanometre sized copper particles and the effect of CO 2 on them. Cu 20 nanoclusters show anodic redox processes occurring at much lower potential with respect to Cu 5 nanoclusters, which behave relatively similar to much larger Cu particles. However, Cu 5 nanoclusters coordinate effectively CO 2 (hydrogen carbonate) in solution, differentmore » from Cu 20 nanoclusters and larger Cu particles. This effect, rather than the redox behavior, is apparently connected to the ability of Cu 5 nanoclusters to reduce CO 2 under cathodic conditions at low overpotential. In conclusion, although preliminary, these results provide rather exciting indications on the possibility of realizing low overpotential electrocatalytic conversion of CO 2.« less

  7. Electrochemical behaviour of naked sub-nanometre sized copper clusters and effect of CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passalacqua, Rosalba; Parathoner, Siglinda; Centi, Gabriele

    The study of the electrochemical behavior (in the presence of N 2 or CO 2) of size-controlled naked Cu 5 and Cu 20 nanoclusters, prepared using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques, evidences some relevant results regarding the redox behavior of these sub-nanometre sized copper particles and the effect of CO 2 on them. Cu 20 nanoclusters show anodic redox processes occurring at much lower potential with respect to Cu 5 nanoclusters, which behave relatively similar to much larger Cu particles. However, Cu 5 nanoclusters coordinate effectively CO 2 (hydrogen carbonate) in solution, differentmore » from Cu 20 nanoclusters and larger Cu particles. This effect, rather than the redox behavior, is apparently connected to the ability of Cu 5 nanoclusters to reduce CO 2 under cathodic conditions at low overpotential. In conclusion, although preliminary, these results provide rather exciting indications on the possibility of realizing low overpotential electrocatalytic conversion of CO 2.« less

  8. Modeling tensional homeostasis in multicellular clusters.

    PubMed

    Tam, Sze Nok; Smith, Michael L; Stamenović, Dimitrije

    2017-03-01

    Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    NASA Astrophysics Data System (ADS)

    Alves, S. G.; Martins, M. L.

    2010-09-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture.

  10. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic

    PubMed Central

    Poinern, GJE; Brundavanam, R; Le, X Thi; Djordjevic, S; Prokic, M; Fawcett, D

    2011-01-01

    Hydroxyapatite (HAP) is a widely used biocompatible ceramic in many biomedical applications and devices. Currently nanometer-scale forms of HAP are being intensely investigated due to their close similarity to the inorganic mineral component of the natural bone matrix. In this study nano-HAP was prepared via a wet precipitation method using Ca(NO3)2 and KH2PO4 as the main reactants and NH4OH as the precipitator under ultrasonic irradiation. The Ca/P ratio was set at 1.67 and the pH was maintained at 9 during the synthesis process. The influence of the thermal treatment was investigated by using two thermal treatment processes to produce ultrafine nano-HAP powders. In the first heat treatment, a conventional radiant tube furnace was used to produce nano-particles with an average size of approximately 30 nm in diameter, while the second thermal treatment used a microwave-based technique to produce particles with an average diameter of 36 nm. The crystalline structure and morphology of all nanoparticle powders produced were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Both thermal techniques effectively produced ultrafine powders with similar crystalline structure, morphology and particle sizes. PMID:22114473

  11. Lipoproteins: When size really matters

    PubMed Central

    German, J. Bruce; Smilowitz, Jennifer T.; Zivkovic, Angela M.

    2010-01-01

    The field of nanoscience is extending the applications of physics, chemistry and biology into previously unapproached infinitesimal length scales. Understanding the behavior and manipulating the positions and properties of single atoms and molecules hold great potential to improve areas of science as disparate as medicine and computation, and communication and orbiting satellites. Yet, in the race to develop novel, previously unavailable nanoparticles, there is an opportunity for scientists in this field to digress and to apply their growing understanding of nanoscience and the tools of nanotechnology to one of the most pressing problems in all of human biology—diseases related to lipoproteins. Although not appreciated outside the field of lipoprotein biology, variations in the compositions, structures and properties of these nanoscale-sized, blood-borne particles are responsible for most of the variations in health, morbidity and mortality in the Western world. If the lipoproteins could be understood at the nanometer length scale with precise details of their structures and functions, scientists could understand a wide range of perplexing physiological processes and also address the dysfunctions in normal lipoprotein biology that lead to such diseases as hypercholesterolemia, heart disease, stroke and neurodegenerative diseases. Furthermore, if the capabilities of nanoscience to assemble and manipulate nanometer-sized particles could be recruited to studies of lipoproteins, these biological particles would provide a new dimension to therapeutic agents, and these natural particles could be designed to carry out many specialized beneficial tasks. PMID:20592953

  12. ENHANCEMENT OF LEARNING ON SAMPLE SIZE CALCULATION WITH A SMARTPHONE APPLICATION: A CLUSTER-RANDOMIZED CONTROLLED TRIAL.

    PubMed

    Ngamjarus, Chetta; Chongsuvivatwong, Virasakdi; McNeil, Edward; Holling, Heinz

    2017-01-01

    Sample size determination usually is taught based on theory and is difficult to understand. Using a smartphone application to teach sample size calculation ought to be more attractive to students than using lectures only. This study compared levels of understanding of sample size calculations for research studies between participants attending a lecture only versus lecture combined with using a smartphone application to calculate sample sizes, to explore factors affecting level of post-test score after training sample size calculation, and to investigate participants’ attitude toward a sample size application. A cluster-randomized controlled trial involving a number of health institutes in Thailand was carried out from October 2014 to March 2015. A total of 673 professional participants were enrolled and randomly allocated to one of two groups, namely, 341 participants in 10 workshops to control group and 332 participants in 9 workshops to intervention group. Lectures on sample size calculation were given in the control group, while lectures using a smartphone application were supplied to the test group. Participants in the intervention group had better learning of sample size calculation (2.7 points out of maximnum 10 points, 95% CI: 24 - 2.9) than the participants in the control group (1.6 points, 95% CI: 1.4 - 1.8). Participants doing research projects had a higher post-test score than those who did not have a plan to conduct research projects (0.9 point, 95% CI: 0.5 - 1.4). The majority of the participants had a positive attitude towards the use of smartphone application for learning sample size calculation.

  13. A Versatile Methodology Using Sol-Gel, Supercritical Extraction, and Etching to Fabricate a Nitramine Explosive: Nanometer HNIW

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Song, Xiaolan; Song, Dan; Jiang, Wei; Liu, Hongying; Li, Fengsheng

    2013-01-01

    A combinative method with three steps was developed to fabricate HNIW (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtziane) nanoexplosives with the gas anti-solvent (GAS) method improved by introducing a gel frame to limit the overgrowth of recrystallized particles and an acid-assistant to remove the used frame. Forming the mixed gel, by locking the explosive solution into a wet gel whose volume was divided by the networks, was the key for the fabrication. As demonstrated by scanning electron microscopy (SEM) analysis, a log-normal size distribution of nano-HNIW indicated that about 74.4% of the particles had sizes <120 nm and maximum particle size was ∼300 nm. Energy-dispersive X-ray spectroscopy (EDS) and infrared (IR) characterizations showed that the aerogel embedded with nanoexplosive particles was dissolved in hydrochloric acid solution, and the raw ɛ-HNIW was mostly transformed into the α phase (nano-HNIW) during recrystallization. Nano-HNIW exhibited impact and friction sensitivity almost equal to those of raw HNIW, within experimental error. Thermal analysis showed that the decomposition peak temperature decreased by more than 10°C and that the heat release increased by 42.5% when the particle size of HNIW was at the nanometer scale.

  14. In situ trapping of As, Sb and Se hydrides on nanometer-sized ceria-coated iron oxide-silica and slurry suspension introduction to ICP-OES.

    PubMed

    Dados, A; Kartsiouli, E; Chatzimitakos, Th; Papastephanou, C; Stalikas, C D

    2014-12-01

    A procedure is developed for the analysis of sub-μg L(-1) levels of arsenic, antimony and selenium after preconcentration of their hydrides. The study highlights the capability of an aqueous suspension of a nanometer-sized magnetic ceria, in the presence of iodide, to function as a sorbent for the in situ trapping and preconcentration of the hydrides of certain metalloids. After extraction, the material is magnetically separated from the trapping solution and analyzed. A slurry suspension sampling approach with inductively coupled plasma-optical emission spectrometry (ICP-OES) is employed for measurements, as the quantitative elution of the adsorbed metalloids is not feasible. The whole analytical procedure consists of five steps: (i) pre-reduction of As, Sb and Se, (ii) generation of the hydrides AsH3, SbH3 and SeH2, (iii) in situ collection in the trapping suspension of magnetic ceria, (iv) isolation of the particles by applying a magnetic field, and (v) measurement of As, Sb and Se concentrations using ICP-OES. Under the established experimental conditions, the efficiency of trapping accounted for 94 ± 2%, 89 ± 2% and 98 ± 3% for As, Sb and Se, respectively, signifying the effective implementation of the overall procedure. The applicability of the procedure has been demonstrated by analyzing tap and lake water and a reference material (soft drinking water). The obtained analytical figures of merit were satisfactory for the analysis of the above metalloids in natural waters by ICP-OES. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Cryogenic colocalization microscopy for nanometer-distance measurements.

    PubMed

    Weisenburger, Siegfried; Jing, Bo; Hänni, Dominik; Reymond, Luc; Schuler, Benjamin; Renn, Alois; Sandoghdar, Vahid

    2014-03-17

    The main limiting factor in spatial resolution of localization microscopy is the number of detected photons. Recently we showed that cryogenic measurements improve the photostability of fluorophores, giving access to Angstrom precision in localization of single molecules. Here, we extend this method to colocalize two fluorophores attached to well-defined positions of a double-stranded DNA. By measuring the separations of the fluorophore pairs prepared at different design positions, we verify the feasibility of cryogenic distance measurement with sub-nanometer accuracy. We discuss the important challenges of our method as well as its potential for further improvement and various applications.

  16. A rank-sum test for clustered data when the number of subjects in a group within a cluster is informative.

    PubMed

    Dutta, Sandipan; Datta, Somnath

    2016-06-01

    The Wilcoxon rank-sum test is a popular nonparametric test for comparing two independent populations (groups). In recent years, there have been renewed attempts in extending the Wilcoxon rank sum test for clustered data, one of which (Datta and Satten, 2005, Journal of the American Statistical Association 100, 908-915) addresses the issue of informative cluster size, i.e., when the outcomes and the cluster size are correlated. We are faced with a situation where the group specific marginal distribution in a cluster depends on the number of observations in that group (i.e., the intra-cluster group size). We develop a novel extension of the rank-sum test for handling this situation. We compare the performance of our test with the Datta-Satten test, as well as the naive Wilcoxon rank sum test. Using a naturally occurring simulation model of informative intra-cluster group size, we show that only our test maintains the correct size. We also compare our test with a classical signed rank test based on averages of the outcome values in each group paired by the cluster membership. While this test maintains the size, it has lower power than our test. Extensions to multiple group comparisons and the case of clusters not having samples from all groups are also discussed. We apply our test to determine whether there are differences in the attachment loss between the upper and lower teeth and between mesial and buccal sites of periodontal patients. © 2015, The International Biometric Society.

  17. Aggregation in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Meyer, Abigail

    Organic light emitting diode (OLED) technology has great potential for becoming a solid state lighting source. However, there are inefficiencies in OLED devices that need to be understood. Since these inefficiencies occur on a nanometer scale there is a need for structural data on this length scale in three dimensions which has been unattainable until now. Local Electron Atom Probe (LEAP), a specific implementation of Atom Probe Tomography (APT), is used in this work to acquire morphology data in three dimensions on a nanometer scale with much better chemical resolution than is previously seen. Before analyzing LEAP data, simulations were used to investigate how detector efficiency, sample size and cluster size affect data analysis which is done using radial distribution functions (RDFs). Data is reconstructed using the LEAP software which provides mass and position data. Two samples were then analyzed, 3% DCM2 in C60 and 2% DCM2 in Alq3. Analysis of both samples indicated little to no clustering was present in this system.

  18. Dynamic clustering threshold reduces conformer ensemble size while maintaining a biologically relevant ensemble

    NASA Astrophysics Data System (ADS)

    Yongye, Austin B.; Bender, Andreas; Martínez-Mayorga, Karina

    2010-08-01

    Representing the 3D structures of ligands in virtual screenings via multi-conformer ensembles can be computationally intensive, especially for compounds with a large number of rotatable bonds. Thus, reducing the size of multi-conformer databases and the number of query conformers, while simultaneously reproducing the bioactive conformer with good accuracy, is of crucial interest. While clustering and RMSD filtering methods are employed in existing conformer generators, the novelty of this work is the inclusion of a clustering scheme (NMRCLUST) that does not require a user-defined cut-off value. This algorithm simultaneously optimizes the number and the average spread of the clusters. Here we describe and test four inter-dependent approaches for selecting computer-generated conformers, namely: OMEGA, NMRCLUST, RMS filtering and averaged- RMS filtering. The bioactive conformations of 65 selected ligands were extracted from the corresponding protein:ligand complexes from the Protein Data Bank, including eight ligands that adopted dissimilar bound conformations within different receptors. We show that NMRCLUST can be employed to further filter OMEGA-generated conformers while maintaining biological relevance of the ensemble. It was observed that NMRCLUST (containing on average 10 times fewer conformers per compound) performed nearly as well as OMEGA, and both outperformed RMS filtering and averaged- RMS filtering in terms of identifying the bioactive conformations with excellent and good matches (0.5 < RMSD < 1.0 Å). Furthermore, we propose thresholds for OMEGA root-mean square filtering depending on the number of rotors in a compound: 0.8, 1.0 and 1.4 for structures with low (1-4), medium (5-9) and high (10-15) numbers of rotatable bonds, respectively. The protocol employed is general and can be applied to reduce the number of conformers in multi-conformer compound collections and alleviate the complexity of downstream data processing in virtual screening experiments.

  19. Structure of overheated metal clusters: MD simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  20. Preparation of high-strength nanometer scale twinned coating and foil

    DOEpatents

    Zhang, Xinghang [Los Alamos, NM; Misra, Amit [Los Alamos, NM; Nastasi, Michael A [Santa Fe, NM; Hoagland, Richard G [Santa Fe, NM

    2006-07-18

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

  1. Method of preparing size-selected metal clusters

    DOEpatents

    Elam, Jeffrey W.; Pellin, Michael J.; Stair, Peter C.

    2010-05-11

    The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.

  2. New atlas of open star clusters

    NASA Astrophysics Data System (ADS)

    Seleznev, Anton F.; Avvakumova, Ekaterina; Kulesh, Maxim; Filina, Julia; Tsaregorodtseva, Polina; Kvashnina, Alvira

    2017-11-01

    Due to numerous new discoveries of open star clusters in the last two decades, astronomers need an easy-touse resource to get visual information on the relative position of clusters in the sky. Therefore we propose a new atlas of open star clusters. It is based on a table compiled from the largest modern cluster catalogues. The atlas shows the positions and sizes of 3291 clusters and associations, and consists of two parts. The first contains 108 maps of 12 by 12 degrees with an overlapping of 2 degrees in three strips along the Galactic equator. The second one is an online web application, which shows a square field of an arbitrary size, either in equatorial coordinates or in galactic coordinates by request. The atlas is proposed for the sampling of clusters and cluster stars for further investigation. Another use is the identification of clusters among overdensities in stellar density maps or among stellar groups in images of the sky.

  3. [Microwave sintering of nanometer powder of alumina and zirconia-based dental ceramics].

    PubMed

    Chen, Yi-Fan; Lu, Dong-Mei; Wan, Qian-Bing; Jin, Yong; Zhu, Ju-Mu

    2006-02-01

    The objective of the present study was to investigate the feasibility and reliability of sintering alumina and zirconia-based all-ceramic materials through a recently introduced microwave heating technique. The variation of crystal phases, the growth of grain sizes and microstructural features of these materials were evaluated after sintering. Four different groups of powder (l00%Al2O3, 60%Al2O3+40%ZrO2, 40% Al2O3+60%ZrO2, 100% ZrO2) were respectively press-compacted to fabricate green disk samples, 5 specimen of each group were prepared. All the samples were surrounded by refractory materials for heat containment and processed at 1 600 degrees C in a domestic microwave oven (850 W, 2 450 MHz), 1 600 degrees C/5 min for heating rate, 10 min for holding time. After sintering, the phase composition and average grain size of these ceramics were examined using X-ray diffraction (XRD). Their microstructure characteristics were studied by scanning electron microscopy (SEM). All the specimens were successfully sintered with the application of microwave heating system in combination with a suitable thermal insulator. No phase change was found in alumina while monoclinic-zirconia was found to be transformed to tetragonal-zirconia. A little grain size growth of Al2O3 and ZrO2 has been observed with Al2O3 24.1 nm/before and 51.8 nm/after; ZrO2 25.3 nm/before and 29.7 nm/after. The SEM photos indicated that the microwave-sintered Al2O3-ZrO2 ceramics had a uniform crystal distribution and their crystal sizes could be maintained within the range of nanometers. It is expected that in the near future microwave heating system could be a promising substitute for conventional processing methods due to its unparalled advantages, including more rapid heating rate, shortened sintering time, superfine grain size, improved microstructure and much less expensive equipment.

  4. Structural study of gold clusters.

    PubMed

    Xiao, Li; Tollberg, Bethany; Hu, Xiankui; Wang, Lichang

    2006-03-21

    Density functional theory (DFT) calculations were carried out to study gold clusters of up to 55 atoms. Between the linear and zigzag monoatomic Au nanowires, the zigzag nanowires were found to be more stable. Furthermore, the linear Au nanowires of up to 2 nm are formed by slightly stretched Au dimers. These suggest that a substantial Peierls distortion exists in those structures. Planar geometries of Au clusters were found to be the global minima till the cluster size of 13. A quantitative correlation is provided between various properties of Au clusters and the structure and size. The relative stability of selected clusters was also estimated by the Sutton-Chen potential, and the result disagrees with that obtained from the DFT calculations. This suggests that a modification of the Sutton-Chen potential has to be made, such as obtaining new parameters, in order to use it to search the global minima for bigger Au clusters.

  5. Cluster Dynamical Mass from Magellan Multi-Object Spectroscopy for SGAS Clusters

    NASA Astrophysics Data System (ADS)

    Murray, Katherine; Sharon, Keren; Johnson, Traci; Gifford, Daniel; Gladders, Michael; Bayliss, Matthew; Florian, Michael; Rigby, Jane R.; Miller, Christopher J.

    2016-01-01

    Galaxy clusters are giant structures in space consisting of hundreds or thousands of galaxies, interstellar matter, and dark matter, all bound together by gravity. We analyze the spectra of the cluster members of several strong lensing clusters from a large program, the Sloan Giant Arcs Survey, to determine the total mass of the lensing clusters. From spectra obtained with the LDSS3 and IMACS cameras on the Magellan 6.5m telescopes, we measure the spectroscopic redshifts of about 50 galaxies in each cluster, and calculate the velocity distributions within the galaxy clusters, as well as their projected cluster-centric radii. From these two pieces of information, we measure the size and total dynamical mass of each cluster. We can combine this calculation with other measurements of mass of the same galaxy clusters (like measurements from strong lensing or X-ray) to determine the spatial distribution of luminous and dark matter out to the virial radius of the cluster.

  6. Delineation of gravel-bed clusters via factorial kriging

    NASA Astrophysics Data System (ADS)

    Wu, Fu-Chun; Wang, Chi-Kuei; Huang, Guo-Hao

    2018-05-01

    Gravel-bed clusters are the most prevalent microforms that affect local flows and sediment transport. A growing consensus is that the practice of cluster delineation should be based primarily on bed topography rather than grain sizes. Here we present a novel approach for cluster delineation using patch-scale high-resolution digital elevation models (DEMs). We use a geostatistical interpolation method, i.e., factorial kriging, to decompose the short- and long-range (grain- and microform-scale) DEMs. The required parameters are determined directly from the scales of the nested variograms. The short-range DEM exhibits a flat bed topography, yet individual grains are sharply outlined, making the short-range DEM a useful aid for grain segmentation. The long-range DEM exhibits a smoother topography than the original full DEM, yet groupings of particles emerge as small-scale bedforms, making the contour percentile levels of the long-range DEM a useful tool for cluster identification. Individual clusters are delineated using the segmented grains and identified clusters via a range of contour percentile levels. Our results reveal that the density and total area of delineated clusters decrease with increasing contour percentile level, while the mean grain size of clusters and average size of anchor clast (i.e., the largest particle in a cluster) increase with the contour percentile level. These results support the interpretation that larger particles group as clusters and protrude higher above the bed than other smaller grains. A striking feature of the delineated clusters is that anchor clasts are invariably greater than the D90 of the grain sizes even though a threshold anchor size was not adopted herein. The average areal fractal dimensions (Hausdorff-Besicovich dimensions of the projected areas) of individual clusters, however, demonstrate that clusters delineated with different contour percentile levels exhibit similar planform morphologies. Comparisons with a

  7. Clustering of low-valence particles: structure and kinetics.

    PubMed

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  8. Sizing and Discovery of Nanosized Polyoxometalate Clusters by Mass Spectrometry

    PubMed Central

    2016-01-01

    Ion mobility-mass spectrometry (IM-MS) is a powerful technique for structural characterization, e.g., sizing and conformation, particularly when combined with quantitative modeling and comparison to theoretical values. Traveling wave IM-MS (TW-IM-MS) has recently become commercially available to nonspecialist groups and has been exploited in the structural study of large biomolecules, however reliable calibrants for large anions have not been available. Polyoxometalate (POM) species—nanoscale inorganic anions—share many of the facets of large biomolecules, however, the full potential of IM-MS in their study has yet to be realized due to a lack of suitable calibration data or validated theoretical models. Herein we address these limitations by reporting DT-IM (drift tube) data for a set of POM clusters {M12} Keggin 1, {M18} Dawson 2, and two {M7} Anderson derivatives 3 and 4 which demonstrate their use as a TW-IM-MS calibrant set to facilitate characterization of very large (ca. 1–4 nm) anionic species. The data was also used to assess the validity of standard techniques to model the collision cross sections of large inorganic anions using the nanoscale family of compounds based upon the {Se2W29} unit including the trimer, {Se8W86O299} A, tetramer, {Se8W116O408} B, and hexamer {Se12W174O612} C, including their relative sizing in solution. Furthermore, using this data set, we demonstrated how IM-MS can be used to conveniently characterize and identify the synthesis of two new, i.e., previously unreported POM species, {P8W116}, unknown D, and {Te8W116}, unknown E, which are not amenable to analysis by other means with the approximate formulation of [H34W118X8M2O416]44–, where X = P and M = Co for D and X = Te and M = Mn for E. This work establishes a new type of inorganic calibrant for IM-MS allowing sizing, structural analysis, and discovery of molecular nanostructures directly from solution. PMID:26906879

  9. Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale

    DOE PAGES

    Manfrinato, Vitor R.; Stein, Aaron; Zhang, Lihua; ...

    2017-04-18

    Patterning materials efficiently at the smallest length scales has been a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) andmore » the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.« less

  10. The Reactivity and Structure of Size Selected VxO y Clusters on a TiO2 (110)-(1 X 1) Surface of Variable Oxidation State

    NASA Astrophysics Data System (ADS)

    Neilson, Hunter L.

    The Reactivity and Structure of Size Selected VxOy Clusters on a TiO2 (110) Surface of Variable Oxidation State by Hunter L Neilson The selective oxidative dehydrogenation of methanol by vanadium oxide/TiO2 model systems has received a great deal of interest in the surface science community. Previous studies using temperature programmed desorption and reaction (TPD/R) to probe the oxidation of methanol to formaldehyde by vanadia/TiO2 model catalysts have shown that the activity of these systems vary considerably based on the way in which the model system is prepared with formaldehyde desorption temperatures observed anywhere from room temperature to 660 K. The principle reason for this variation is that the preparation of sub-monolayer films of vanadia on TiO2 produces clusters with a multitude of VxOy structures and a mixture of vanadium oxidation states. As a result the stoichiometry of the active vanadium oxide catalyst as well as the oxidation state of vanadium in the active catalyst remain unknown. To better understand this system, our group has probed the reactivity and structure of size-selected Vx, VOy and VxOy clusters on a reduced TiO2 (110) support in ultra-high vacuum (UHV) via TPD/R and scanning tunneling microscopy (STM). Ex situ preparation of these clusters in the gas phase prior to deposition has allowed us to systematically vary the stoichiometry of the vanadia clusters; a layer of control not available via the usual routes to vanadium oxide. The most active catalysts are shown to have (VO3)n stoichiometry in agreement with the theoretical models of the Metiu group. We have shown that both the activity and selectivity of V2O6 and V3O9 cluster catalysts depend sensitively on the oxidation state of the TiO2 (110) support. For example, V2O6 on a reduced surface is selective for the oxidation of methanol to formaldehyde while the selectivity shifts to favor methyl formate as the surface becomes increasingly oxidized. STM studies show that the

  11. Elimination-Fusion Self-Assembly of a Nanometer-Scale 72-Nucleus Silver Cluster Caging a Pair of [EuW10 O36 ]9- Polyoxometalates.

    PubMed

    Zhang, Shan-Shan; Su, Hai-Feng; Wang, Zhi; Wang, Xing-Po; Chen, Wen-Xian; Zhao, Quan-Qin; Tung, Chen-Ho; Sun, Di; Zheng, Lan-Sun

    2018-02-06

    The largest known polyoxometalate (POM)-templated silver-alkynyl cluster, [(EuW 10 O 36 ) 2 @Ag 72 (tBuC≡C) 48 Cl 2 ⋅4 BF 4 ] (SD/Ag20), was isolated under solvothermal conditions and structurally characterized. It was confirmed by single-crystal X-ray diffraction (SCXRD) as a {EuW 10 } 2 -in-{Ag 72 } clusters-in-cluster rod-like compound. The high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) shows that such a double anion-templated cluster is assembled from a crucial single anion-templated Ag 42 intermediate in the solution. The crystallization of Ag 42 species (SD/Ag21), followed by SCXRD, gave an important clue about the assembly route of SD/Ag20 in solution: the Ag 42 cluster eliminates six silver atoms laterally, then fuses together at the vacant face to form the final Ag 72 cluster (elimination-fusion mechanism). The characteristic emission of [EuW 10 O 36 ] 9- is well maintained in SD/Ag20. This work not only provides a new method for the synthesis of larger silver clusters as well as the functional integration of the silver cluster and POMs, but also gives deep insights about the high-nuclear silver cluster assembly mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sub-Optical Lithography With Nanometer Definition Masks

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Malek, Chantal Khan; Neogi, Jayant

    2000-01-01

    Nanometer feature size lithography represents a major paradigm shift for the electronics and micro-electro-mechanical industries. In this paper, we discuss the capacity of dynamic focused reactive ion beam (FIB) etching systems to undertake direct and highly anisotropic erosion of thick evaporated gold coatings on boron-doped silicon X-ray mask membranes. FIB offers a new level of flexibility in micro fabrication, allowing for fast fabrication of X-ray masks, where pattern definition and surface alteration are combined in the same step which eliminates the whole lithographic process, in particular resist, resist development, electro-deposition and resist removal. Focused ion beam diameters as small as 7 nm can be obtained enabling fabrication well into the sub-20 nm regime. In preliminary demonstrations of this X-ray mask fabrication technique 22 nm width lines were milled directly through 0.9 microns of gold and a miniature mass spectrometer pattern was milled through over 0.5 microns of gold. Also presented are the results of the shadow printing, using the large depth of field of synchrotron high energy parallel X-ray beam, of these and other sub-optical defined patterns in photoresist conformally coated over surfaces of extreme topographical variation. Assuming that electronic circuits and/or micro devices scale proportionally, the surface area of devices processed with X-ray lithography and 20 nm critical dimension X-ray masks would be 0.5% that of contemporary devices (350 nm CD). The 20 CD mask fabrication represents an initial effort - a further factor of three reduction is anticipated which represents a further order-of-magnitude reduction in die area.

  13. Interlaced coarse-graining for the dynamical cluster approximation

    NASA Astrophysics Data System (ADS)

    Haehner, Urs; Staar, Peter; Jiang, Mi; Maier, Thomas; Schulthess, Thomas

    The negative sign problem remains a challenging limiting factor in quantum Monte Carlo simulations of strongly correlated fermionic many-body systems. The dynamical cluster approximation (DCA) makes this problem less severe by coarse-graining the momentum space to map the bulk lattice to a cluster embedded in a dynamical mean-field host. Here, we introduce a new form of an interlaced coarse-graining and compare it with the traditional coarse-graining. We show that it leads to more controlled results with weaker cluster shape and smoother cluster size dependence, which with increasing cluster size converge to the results obtained using the standard coarse-graining. In addition, the new coarse-graining reduces the severity of the fermionic sign problem. Therefore, it enables calculations on much larger clusters and can allow the evaluation of the exact infinite cluster size result via finite size scaling. To demonstrate this, we study the hole-doped two-dimensional Hubbard model and show that the interlaced coarse-graining in combination with the DCA+ algorithm permits the determination of the superconducting Tc on cluster sizes, for which the results can be fitted with the Kosterlitz-Thouless scaling law. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) awarded by the INCITE program, and of the Swiss National Supercomputing Center. OLCF is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  14. Three-dimensional single-molecule localization with nanometer accuracy using Metal-Induced Energy Transfer (MIET) imaging

    NASA Astrophysics Data System (ADS)

    Karedla, Narain; Chizhik, Anna M.; Stein, Simon C.; Ruhlandt, Daja; Gregor, Ingo; Chizhik, Alexey I.; Enderlein, Jörg

    2018-05-01

    Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films.

  15. Interaction of micron and nano-sized particles with cells of the dura mater.

    PubMed

    Papageorgiou, Iraklis; Marsh, Rainy; Tipper, Joanne L; Hall, Richard M; Fisher, John; Ingham, Eileen

    2014-10-01

    Intervertebral total disc replacements (TDR) are used in the treatment of degenerative spinal disc disease. There are, however, concerns that they may be subject to long-term failure due to wear. The adverse effects of TDR wear have the potential to manifest in the dura mater and surrounding tissues. The aim of this study was to investigate the physiological structure of the dura mater, isolate the resident dural epithelial and stromal cells and analyse the capacity of these cells to internalise model polymer particles. The porcine dura mater was a collagen-rich structure encompassing regularly arranged fibroblastic cells within an outermost epithelial cell layer. The isolated dural epithelial cells had endothelial cell characteristics (positive for von Willebrand factor, CD31, E-cadherin and desmoplakin) and barrier functionality whereas the fibroblastic cells were positive for collagen I and III, tenascin and actin. The capacity of the dural cells to take up model particles was dependent on particle size. Nanometer sized particles readily penetrated both types of cells. However, dural fibroblasts engulfed micron-sized particles at a much higher rate than dural epithelial cells. The study suggested that dural epithelial cells may offer some barrier to the penetration of micron-sized particles but not nanometer sized particles. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  16. Antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.

    1988-06-28

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.

  17. Energetics of charged metal clusters containing vacancies

    NASA Astrophysics Data System (ADS)

    Pogosov, Valentin V.; Reva, Vitalii I.

    2018-01-01

    We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.

  18. Relaxation and collective excitations of cluster nano-plasmas

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Röpke, Gerd; Broda, Ingrid; Morozov, Igor; Bystryi, Roman; Lavrinenko, Yaroslav

    2018-01-01

    Nano-plasmas produced, for example, in clusters after short-pulse laser irradiation, can show collective excitations, as derived from the time evolution of fluctuations in thermodynamic equilibrium. Molecular dynamical simulations are performed for various cluster sizes. New data are obtained for the minimum value of the stationary cluster charge. The bi-local autocorrelation function gives the spatial structure of the eigenmodes, for which energy eigenvalues are obtained. By varying the cluster size, starting from a few-particle cluster, the emergence of macroscopic properties such as collective excitations is shown.

  19. Biophysics: Breaking the Nanometer Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, Steven

    2006-03-20

    A new field of scientific exploration – single molecule biophysics – is currently reshaping and redefining our understanding of the mechanochemistry of life. The development of laser-based optical traps, or ‘optical tweezers,’ has allowed for physiological assessments of such precision that bio-molecules can now be measured and studied one at a time. In this colloquium, Professor Block will present findings based on his group’s construction of optical trapping instrumentation that has broken the nanometer barrier, allowing researchers to study single-molecule displacements on the Angstrom level. Focusing on RNA polymerase, the motor enzyme responsible for transcribing the genetic code contained inmore » DNA, Block’s group has been able to measure, in real time, the motion of a single molecule of RNA polymerase as it moves from base to base along the DNA template. A remarkable opportunity to gain insight into one of the most fundamental biological processes of life, this colloquium can not be missed!« less

  20. Scaling of cluster growth for coagulating active particles

    NASA Astrophysics Data System (ADS)

    Cremer, Peet; Löwen, Hartmut

    2014-02-01

    Cluster growth in a coagulating system of active particles (such as microswimmers in a solvent) is studied by theory and simulation. In contrast to passive systems, the net velocity of a cluster can have various scalings dependent on the propulsion mechanism and alignment of individual particles. Additionally, the persistence length of the cluster trajectory typically increases with size. As a consequence, a growing cluster collects neighboring particles in a very efficient way and thus amplifies its growth further. This results in unusual large growth exponents for the scaling of the cluster size with time and, for certain conditions, even leads to "explosive" cluster growth where the cluster becomes macroscopic in a finite amount of time.

  1. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, S. Y.

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  2. Experimental nanocalorimetry of protonated and deprotonated water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulon, Julien; Braud, Isabelle; Zamith, Sébastien

    2014-04-28

    An experimental nanocalorimetric study of mass selected protonated (H{sub 2}O){sub n}H{sup +} and deprotonated (H{sub 2}O){sub n−1}OH{sup −} water clusters is reported in the size range n = 20–118. Water cluster's heat capacities exhibit a change of slope at size dependent temperatures varying from 90 to 140 K, which is ascribed to phase or structural transition. For both anionic and cationic species, these transition temperatures strongly vary at small sizes, with higher amplitude for protonated than for deprotonated clusters, and change more smoothly above roughly n ≈ 35. There is a correlation between bonding energies and transition temperatures, which ismore » split in two components for protonated clusters while only one component is observed for deprotonated clusters. These features are tentatively interpreted in terms of structural properties of water clusters.« less

  3. Fabrication of large size alginate beads for three-dimensional cell-cluster culture

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengtao; Ruan, Meilin; Liu, Hongni; Cao, Yiping; He, Rongxiang

    2017-08-01

    We fabricated large size alginate beads using a simple microfluidic device under a co-axial injection regime. This device was made by PDMS casting with a mold formed by small diameter metal and polytetrafluorothylene tubes. Droplets of 2% sodium alginate were generated in soybean oil through the device and then cross-linked in a 2% CaCl2 solution, which was mixed tween80 with at a concentration of 0.4 to 40% (w/v). Our results showed that the morphology of the produced alginate beads strongly depends on the tween80 concentration. With the increase of concentration of tween80, the shape of the alginate beads varied from semi-spherical to tailed-spherical, due to the decrease of interface tension between oil and cross-link solution. To access the biocompatibility of the approach, MCF-7 cells were cultured with the alginate beads, showing the formation of cancer cells clusters which might be useful for future studies.

  4. Manipulation of Microbubble Clusters Using Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Hironobu; Osaki, Taichi; Kawaguchi, Kei; Unga, Johan; Ichiyanagi, Mitsuhisa; Azuma, Takashi; Suzuki, Ryo; Maruyama, Kazuo; Takagi, Shu

    2017-11-01

    In recent years, microbubbles (MBs) are expected to be utilized for the ultrasound drug delivery system (DDS). For the MB-DDS, it is important to establish a method of controlling bubbles and bubble clusters using ultrasound field. The objective of this study is to clarify behaviors of bubble clusters with various physical conditions. MBs in the ultrasound field are subjected to the primary Bjerknes force. The force traps MBs at the focal region of the focused ultrasound field. The trapped MBs form a bubble cluster at the region. A bubble cluster continues growing with absorbing surrounding bubbles until it reaches a maximum size beyond which it disappears from the focal region. In the present study, two kinds of MBs are used for the experiment. One is Sonazoid with average diameter of 2.6 um and resonant frequency of 5 MHz. The other is developed by Teikyo Univ., with average diameter of 1.5 um and presumed resonant frequency of 4 MHz. The bubble cluster's behaviors are analyzed using the high-speed camera. Sonazoid clusters have larger critical size than the other in every frequency, and its cluster size is inversely proportional to the ultrasound frequency, while Teikyo-bubble clusters have different tendency. These results are discussed in the presentation.

  5. Zodiacal Exoplanets in Time (ZEIT). VI. A Three-planet System in the Hyades Cluster Including an Earth-sized Planet

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Vanderburg, Andrew; Rizzuto, Aaron C.; Kraus, Adam L.; Berlind, Perry; Bieryla, Allyson; Calkins, Michael L.; Esquerdo, Gilbert A.; Latham, David W.; Mace, Gregory N.; Morris, Nathan R.; Quinn, Samuel N.; Sokal, Kimberly R.; Stefanik, Robert P.

    2018-01-01

    Planets in young clusters are powerful probes of the evolution of planetary systems. Here we report the discovery of three planets transiting EPIC 247589423, a late-K dwarf in the Hyades (≃800 Myr) cluster, and robust detection limits for additional planets in the system. The planets were identified from their K2 light curves as part of our survey of young clusters and star-forming regions. The smallest planet has a radius comparable to Earth ({0.99}-0.04+0.06{R}\\oplus ), making it one of the few Earth-sized planets with a known, young age. The two larger planets are likely a mini-Neptune and a super-Earth, with radii of {2.91}-0.10+0.11{R}\\oplus and {1.45}-0.08+0.11{R}\\oplus , respectively. The predicted radial velocity signals from these planets are between 0.4 and 2 m s-1, achievable with modern precision RV spectrographs. Because the target star is bright (V = 11.2) and has relatively low-amplitude stellar variability for a young star (2-6 mmag), EPIC 247589423 hosts the best known planets in a young open cluster for precise radial velocity follow-up, enabling a robust test of earlier claims that young planets are less dense than their older counterparts.

  6. All-optical lithography process for contacting nanometer precision donor devices

    NASA Astrophysics Data System (ADS)

    Ward, D. R.; Marshall, M. T.; Campbell, D. M.; Lu, T. M.; Koepke, J. C.; Scrymgeour, D. A.; Bussmann, E.; Misra, S.

    2017-11-01

    We describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  7. Angle-Resolved Photoemission of Solvated Electrons in Sodium-Doped Clusters.

    PubMed

    West, Adam H C; Yoder, Bruce L; Luckhaus, David; Saak, Clara-Magdalena; Doppelbauer, Maximilian; Signorell, Ruth

    2015-04-16

    Angle-resolved photoelectron spectroscopy of the unpaired electron in sodium-doped water, methanol, ammonia, and dimethyl ether clusters is presented. The experimental observations and the complementary calculations are consistent with surface electrons for the cluster size range studied. Evidence against internally solvated electrons is provided by the photoelectron angular distribution. The trends in the ionization energies seem to be mainly determined by the degree of hydrogen bonding in the solvent and the solvation of the ion core. The onset ionization energies of water and methanol clusters do not level off at small cluster sizes but decrease slightly with increasing cluster size.

  8. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE PAGES

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; ...

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  9. Dynamic clustering threshold reduces conformer ensemble size while maintaining a biologically relevant ensemble

    PubMed Central

    Yongye, Austin B.; Bender, Andreas

    2010-01-01

    Representing the 3D structures of ligands in virtual screenings via multi-conformer ensembles can be computationally intensive, especially for compounds with a large number of rotatable bonds. Thus, reducing the size of multi-conformer databases and the number of query conformers, while simultaneously reproducing the bioactive conformer with good accuracy, is of crucial interest. While clustering and RMSD filtering methods are employed in existing conformer generators, the novelty of this work is the inclusion of a clustering scheme (NMRCLUST) that does not require a user-defined cut-off value. This algorithm simultaneously optimizes the number and the average spread of the clusters. Here we describe and test four inter-dependent approaches for selecting computer-generated conformers, namely: OMEGA, NMRCLUST, RMS filtering and averaged-RMS filtering. The bioactive conformations of 65 selected ligands were extracted from the corresponding protein:ligand complexes from the Protein Data Bank, including eight ligands that adopted dissimilar bound conformations within different receptors. We show that NMRCLUST can be employed to further filter OMEGA-generated conformers while maintaining biological relevance of the ensemble. It was observed that NMRCLUST (containing on average 10 times fewer conformers per compound) performed nearly as well as OMEGA, and both outperformed RMS filtering and averaged-RMS filtering in terms of identifying the bioactive conformations with excellent and good matches (0.5 < RMSD < 1.0 Å). Furthermore, we propose thresholds for OMEGA root-mean square filtering depending on the number of rotors in a compound: 0.8, 1.0 and 1.4 for structures with low (1–4), medium (5–9) and high (10–15) numbers of rotatable bonds, respectively. The protocol employed is general and can be applied to reduce the number of conformers in multi-conformer compound collections and alleviate the complexity of downstream data processing in virtual screening

  10. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    NASA Astrophysics Data System (ADS)

    Lai, King C.; Evans, James W.; Liu, Da-Jiang

    2017-11-01

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, DN ˜ N-β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for "perfect" sizes Np = L2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for Np+3, Np+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes Np+1 and Np+2. DN versus N oscillates strongly between the slowest branch (for Np+3) and the fastest branch (for Np+1). All branches merge for N = O(102), but macroscale behavior is only achieved for much larger N = O(103). This analysis reveals the unprecedented diversity of behavior on the nanoscale.

  11. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  12. Selective Nanoscale Mass Transport across Atomically Thin Single Crystalline Graphene Membranes.

    PubMed

    Kidambi, Piran R; Boutilier, Michael S H; Wang, Luda; Jang, Doojoon; Kim, Jeehwan; Karnik, Rohit

    2017-05-01

    Atomically thin single crystals, without grain boundaries and associated defect clusters, represent ideal systems to study and understand intrinsic defects in materials, but probing them collectively over large area remains nontrivial. In this study, the authors probe nanoscale mass transport across large-area (≈0.2 cm 2 ) single-crystalline graphene membranes. A novel, polymer-free picture frame assisted technique, coupled with a stress-inducing nickel layer is used to transfer single crystalline graphene grown on silicon carbide substrates to flexible polycarbonate track etched supports with well-defined cylindrical ≈200 nm pores. Diffusion-driven flow shows selective transport of ≈0.66 nm hydrated K + and Cl - ions over ≈1 nm sized small molecules, indicating the presence of selective sub-nanometer to nanometer sized defects. This work presents a framework to test the barrier properties and intrinsic quality of atomically thin materials at the sub-nanometer to nanometer scale over technologically relevant large areas, and suggests the potential use of intrinsic defects in atomically thin materials for molecular separations or desalting. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Using Cluster Bootstrapping to Analyze Nested Data With a Few Clusters.

    PubMed

    Huang, Francis L

    2018-04-01

    Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials are performed with a low number of clusters (~20 groups). Although multilevel models are often used to analyze nested data, researchers may be concerned of potentially biased results due to having only a few groups under study. Cluster bootstrapping has been suggested as an alternative procedure when analyzing clustered data though it has seen very little use in educational and psychological studies. Using a Monte Carlo simulation that varied the number of clusters, average cluster size, and intraclass correlations, we compared standard errors using cluster bootstrapping with those derived using ordinary least squares regression and multilevel models. Results indicate that cluster bootstrapping, though more computationally demanding, can be used as an alternative procedure for the analysis of clustered data when treatment effects at the group level are of primary interest. Supplementary material showing how to perform cluster bootstrapped regressions using R is also provided.

  14. Support effects and reaction mechanism of acetylene trimerization over silica-supported Cu4 clusters: A DFT study

    NASA Astrophysics Data System (ADS)

    Maleki, Farahnaz; Schlexer, Philomena; Pacchioni, Gianfranco

    2018-02-01

    Oxide-supported Cu nanoparticles and clusters catalyze a variety of important reactions, such as CO/CO2 hydrogenation to methanol. Recent studies demonstrate that also sub-nanometer clusters consisting of only a few atoms can actively catalyze chemical reactions. In this study, we investigate the interaction between Cu4 clusters and silica-surfaces, considering the de-hydroxylated and the fully hydroxylated α-quartz surfaces. We also considered various dopants such as Ti- and Nb-ions substitutional to Si, respectively, in order to see if an electronic change of the support has an effect on the reaction of the supported cluster. We find that hydroxyl groups can enhance the adsorption energy of the cluster, whereas the dopants have only little effects on the adsorption mode of the Cu cluster. On the fully hydroxylated surface, the cluster may react with the hydroxyl groups via reverse hydrogen spillover. Finally, we explore the reactivity of the silica-supported Cu4 cluster in terms of acetylene trimerization, for which extended Cu surfaces have shown catalytic activity. We find that this reaction should occur with activation barriers below 0.8 eV; Nb-doping of the support does not seem to produce any direct effect on the reactivity of the Cu tetramer.

  15. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates

    PubMed Central

    Xu, Lizhong

    2018-01-01

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively. PMID:29373546

  16. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates.

    PubMed

    Fu, Xiaorui; Xu, Lizhong

    2018-01-26

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively.

  17. All-optical lithography process for contacting nanometer precision donor devices

    DOE PAGES

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie; ...

    2017-11-06

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  18. All-optical lithography process for contacting nanometer precision donor devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  19. AMOEBA clustering revisited. [cluster analysis, classification, and image display program

    NASA Technical Reports Server (NTRS)

    Bryant, Jack

    1990-01-01

    A description of the clustering, classification, and image display program AMOEBA is presented. Using a difficult high resolution aircraft-acquired MSS image, the steps the program takes in forming clusters are traced. A number of new features are described here for the first time. Usage of the program is discussed. The theoretical foundation (the underlying mathematical model) is briefly presented. The program can handle images of any size and dimensionality.

  20. GDPC: Gravitation-based Density Peaks Clustering algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin

    2018-07-01

    The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.

  1. Cluster formation by allelomimesis in real-world complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Juanico, Dranreb Earl; Monterola, Christopher; Saloma, Caesar

    2005-04-01

    Animal and human clusters are complex adaptive systems and many organize in cluster sizes s that obey the frequency distribution D(s)∝s-τ . The exponent τ describes the relative abundance of the cluster sizes in a given system. Data analyses reveal that real-world clusters exhibit a broad spectrum of τ values, 0.7 (tuna fish schools) ⩽τ⩽4.61 (T4 bacteriophage gene family sizes). Allelomimesis is proposed as an underlying mechanism for adaptation that explains the observed broad τ spectrum. Allelomimesis is the tendency of an individual to imitate the actions of others and two cluster systems have different τ values when their component agents display unequal degrees of allelomimetic tendencies. Cluster formation by allelomimesis is shown to be of three general types: namely, blind copying, information-use copying, and noncopying. Allelomimetic adaptation also reveals that the most stable cluster size is formed by three strongly allelomimetic individuals. Our finding is consistent with available field data taken from killer whales and marmots.

  2. Interaction of micron and nano-sized particles with cells of the dura mater

    PubMed Central

    Papageorgiou, Iraklis; Marsh, Rainy; Tipper, Joanne L; Hall, Richard M; Fisher, John; Ingham, Eileen

    2014-01-01

    Intervertebral total disc replacements (TDR) are used in the treatment of degenerative spinal disc disease. There are, however, concerns that they may be subject to long-term failure due to wear. The adverse effects of TDR wear have the potential to manifest in the dura mater and surrounding tissues. The aim of this study was to investigate the physiological structure of the dura mater, isolate the resident dural epithelial and stromal cells and analyse the capacity of these cells to internalise model polymer particles. The porcine dura mater was a collagen-rich structure encompassing regularly arranged fibroblastic cells within an outermost epithelial cell layer. The isolated dural epithelial cells had endothelial cell characteristics (positive for von Willebrand factor, CD31, E-cadherin and desmoplakin) and barrier functionality whereas the fibroblastic cells were positive for collagen I and III, tenascin and actin. The capacity of the dural cells to take up model particles was dependent on particle size. Nanometer sized particles readily penetrated both types of cells. However, dural fibroblasts engulfed micron-sized particles at a much higher rate than dural epithelial cells. The study suggested that dural epithelial cells may offer some barrier to the penetration of micron-sized particles but not nanometer sized particles. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1496–1505, 2014. PMID:24604838

  3. Fabrication of Controllable Pore and Particle Size of Mesoporous Silica Nanoparticles via a Liquid-phase Synthesis Method and Its Absorption Characteristics

    NASA Astrophysics Data System (ADS)

    Nandiyanto, Asep Bayu Dani; Iskandar, Ferry; Okuyama, Kikuo

    2011-12-01

    Monodisperse spherical mesoporous silica nanoparticles were successfully synthesized using a liquid-phase synthesis method. The result showed particles with controllable pore size from several to tens nanometers with outer diameter of several tens nanometers. The ability in the control of pore size and outer diameter was altered by adjusting the precursor solution ratios. In addition, we have conducted the adsorption ability of the prepared particles. The result showed that large organic molecules were well-absorbed to the prepared silica porous particles, in which this result was not obtained when using commercial dense silica particle and/or hollow silica particle. With this result, the prepared mesoporous silica particles may be used efficiently in various applications, such as sensors, pharmaceuticals, environmentally sensitive pursuits, etc.

  4. Three-dimensional nanometer scale analyses of precipitate structures and local compositions in titanium aluminide engineering alloys

    NASA Astrophysics Data System (ADS)

    Gerstl, Stephan S. A.

    Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.

  5. Relating the microscopic rules in coalescence-fragmentation models to the cluster-size distribution

    NASA Astrophysics Data System (ADS)

    Ruszczycki, B.; Burnett, B.; Zhao, Z.; Johnson, N. F.

    2009-11-01

    Coalescence-fragmentation problems are now of great interest across the physical, biological, and social sciences. They are typically studied from the perspective of rate equations, at the heart of which are the rules used for coalescence and fragmentation. Here we discuss how changes in these microscopic rules affect the macroscopic cluster-size distribution which emerges from the solution to the rate equation. Our analysis elucidates the crucial role that the fragmentation rule can play in such dynamical grouping models. We focus our discussion on two well-known models whose fragmentation rules lie at opposite extremes. In particular, we provide a range of generalizations and new analytic results for the well-known model of social group formation developed by Eguíluz and Zimmermann, [Phys. Rev. Lett. 85, 5659 (2000)]. We develop analytic perturbation treatments of this original model, and extend the analytic analysis to the treatment of growing and declining populations.

  6. Catalysis by clusters with precise numbers of atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyo, Eric C.; Vajda, Stefan

    2015-07-03

    Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition – such as the addition or removal of a single atom – can have a substantial influence on the activity and selectivity of a reaction. Here we review recent progress in the synthesis, characterization and catalysis of well-defined sub-nanometre clusters. We examine work on size-selected supported clusters in ultra-high vacuum environments and under realistic reaction conditions, and explore the use ofmore » computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems.« less

  7. RX J0848.6+4453: The evolution of galaxy sizes and stellar populations in A z = 1.27 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Inger; Chiboucas, Kristin; Schiavon, Ricardo P.

    2014-12-01

    RX J0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. We present an analysis of the stellar populations and star formation history for a sample of 24 members of the cluster. Our study is based on deep optical spectroscopy obtained with Gemini North combined with imaging data from Hubble Space Telescope. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution with redshift of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. Our data show that themore » galaxies in RX J0848.6+4453 populate the fundamental plane (FP) similar to that found for lower-redshift clusters. The zero-point offset for the FP is smaller than expected if the cluster's galaxies are to evolve passively through the location of the FP we established in our previous work for z = 0.8-0.9 cluster galaxies and then to the present-day FP. The FP zero point for RX J0848.6+4453 corresponds to an epoch of last star formation at z{sub form}=1.95{sub −0.15}{sup +0.22}. Further, we find that the spectra of the galaxies in RX J0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low-level ongoing star formation. The average age of the young stellar populations as estimated from the strength of the high-order Balmer line Hζ is consistent with a major star formation episode 1-2 Gyr prior, which in turn agrees with z {sub form} = 1.95. These galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low-level star formation has not yet been fully quenched in the center of this cluster, possibly because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little ongoing star formation in their centers. The mixture in RX J0848.6+4453 of passive galaxies with young

  8. Neutrons measure phase behavior in pores at Angstrom size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardoel, Agatha A; Melnichenko, Yuri B

    Researchers have measured the phase behavior of green house gases in pores at the Angstrom-level, using small angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General Purpose Small Angle Neutron Scattering (GP SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators Nidia Gallego and Cristian Contescu from the Material Sciences Division (ORNL) were engaged in the work. They were studying nanoporous carbons to assess their attractiveness as storage media for hydrogen, with a view to potential use for on-board hydrogen storagemore » for transportation applications. Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in a carbon nanoporous material for hydrogen storage is less than one nanometer. In a paper recently published by the Journal of the American Chemical Society, the collaborators used small angle neutron scattering to study how hydrogen condenses in small pores at ambient temperature. They discovered that the surface-molecule interactions create internal pressures in pores that may exceed the external gas pressure by a factor of up to 50. 'This is an exciting result,' Melnichenko said, 'as you achieve extreme densification in pores 'for free', i.e. without spending any energy. These results can be used to guide the development of new carbon adsorbents tailored to maximize hydrogen storage capacities.' Another important factor that defines the adsorption capacity of sub-nanometer pores is their shape. In order to get accurate structural information and maximize sorption capacity, it is important that pores are small and of approximately uniform size. In collaboration with Drexel University's Yury Gogotsi who supplied the samples, Melnichenko and his collaborators used the GP SANS

  9. The quantum structure of anionic hydrogen clusters

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Yurtsever, E.

    2018-03-01

    A flexible and polarizable interatomic potential has been developed to model hydrogen clusters interacting with one hydrogen anion, (H2)nH-, in a broad range of sizes n = 1-54 and parametrized against coupled cluster quantum chemical calculations. Using path-integral molecular dynamics simulations at 1 K initiated from the putative classical global minima, the equilibrium structures are found to generally rely on icosahedral shells with the hydrogen molecules pointing toward the anion, producing geometric magic numbers at sizes n = 12, 32, and 44 that are in agreement with recent mass spectrometry measurements. The energetic stability of the clusters is also connected with the extent of vibrational delocalization, measured here by the fluctuations among inherent structures hidden in the vibrational wave function. As the clusters grow, the outer molecules become increasingly free to rotate, and strong finite size effects are also found between magic numbers, associated with more prominent vibrational delocalization. The effective icosahedral structure of the 44-molecule cluster is found to originate from quantum nuclear effects as well, the classical structure showing no particular symmetry.

  10. Biased phylodynamic inferences from analysing clusters of viral sequences

    PubMed Central

    Xiang, Fei; Frost, Simon D. W.

    2017-01-01

    Abstract Phylogenetic methods are being increasingly used to help understand the transmission dynamics of measurably evolving viruses, including HIV. Clusters of highly similar sequences are often observed, which appear to follow a ‘power law’ behaviour, with a small number of very large clusters. These clusters may help to identify subpopulations in an epidemic, and inform where intervention strategies should be implemented. However, clustering of samples does not necessarily imply the presence of a subpopulation with high transmission rates, as groups of closely related viruses can also occur due to non-epidemiological effects such as over-sampling. It is important to ensure that observed phylogenetic clustering reflects true heterogeneity in the transmitting population, and is not being driven by non-epidemiological effects. We qualify the effect of using a falsely identified ‘transmission cluster’ of sequences to estimate phylodynamic parameters including the effective population size and exponential growth rate under several demographic scenarios. Our simulation studies show that taking the maximum size cluster to re-estimate parameters from trees simulated under a randomly mixing, constant population size coalescent process systematically underestimates the overall effective population size. In addition, the transmission cluster wrongly resembles an exponential or logistic growth model 99% of the time. We also illustrate the consequences of false clusters in exponentially growing coalescent and birth-death trees, where again, the growth rate is skewed upwards. This has clear implications for identifying clusters in large viral databases, where a false cluster could result in wasted intervention resources. PMID:28852573

  11. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, King C.; Evans, James W.; Liu, Da -Jiang

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less

  12. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    DOE PAGES

    Lai, King C.; Evans, James W.; Liu, Da -Jiang

    2017-11-27

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less

  13. Carbon Nanotubules: Building Blocks for Nanometer-Scale Engineering

    NASA Technical Reports Server (NTRS)

    Sinnott, Susan B.

    1999-01-01

    The proposed work consisted of two projects: the investigation of fluid permeation and diffusion through ultrafiltration membranes composed of carbon nanotubules and the design and study of molecular transistors composed of nanotubules. The progress made on each project is summarized and also discussion about additional projects, one of which is a continuation of work supported by another grant, is included. The first project was Liquid Interactions within a Nanotubule Membrane. The second was the design of nanometer-scale hydrocarbon electronic devices. The third was the investigation of Mechanical properties of Nanotubules and Nanotubule bundles. The fourth project was to investigate the growth mechanisms of Carbon Nanotubules.

  14. Giant Electric Field Enhancement in Split Ring Resonators Featuring Nanometer-Sized Gaps

    NASA Astrophysics Data System (ADS)

    Bagiante, S.; Enderli, F.; Fabiańska, J.; Sigg, H.; Feurer, T.

    2015-01-01

    Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm-1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.

  15. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  16. Competitive cluster growth in complex networks.

    PubMed

    Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S

    2006-06-01

    In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.

  17. Non-DSB clustered DNA lesions. Does theory colocalize with the experiment?

    NASA Astrophysics Data System (ADS)

    Nikitaki, Zacharenia; Nikolov, Vladimir; Mavragani, Ifigeneia V.; Plante, Ianik; Emfietzoglou, Dimitris; Iliakis, George; Georgakilas, Alexandros G.

    2016-11-01

    Ionizing radiation results in various kinds of DNA lesions such as double strand breaks (DSBs) and other non-DSB base lesions. These lesions may be formed in close proximity (i.e., within a few nanometers) resulting in clustered types of DNA lesions. These damage clusters are considered the fingerprint of ionizing radiation, notably charged particles of high linear energy transfer (LET). Accumulating theoretical and experimental evidence suggests that the induction of these clustered lesions appears under various irradiation conditions but also as a result of high levels of oxidative stress. The biological significance of these clustered DNA lesions pertains to the inability of cells to process them efficiently compared to isolated DNA lesions. The results in the case of unsuccessful or erroneous repair can vary from mutations up to chromosomal instability. In this mini review, we discuss of several Monte Carlo simulations codes and experimental evidence regarding the induction and repair of radiation-induced non-DSB complex DNA lesions. We also critically present the most widely used methodologies (i.e., gel electrophoresis and fluorescence microscopy [in situ colocalization assays]). Based on the comparison of different approaches, we provide examples and suggestions for the improved detection of these lesions in situ. Based on the current status of knowledge, we conclude that there is a great need for improvement of the detection techniques at the cellular or tissue level, which will provide valuable information for understanding the mechanisms used by the cell to process clustered DNA lesions.

  18. Thermal effects in nano-sized adsorbate islands growth processes at vapor deposition

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Dvornichenko, Alina V.

    2016-02-01

    We study a model of pattern formation in adsorptive systems with a local change in the surface temperature due to adsorption/desorption processes. It is found that thermal effects shrink the domain of main system parameters, when pattern formation is possible. It is shown that an increase in a surface reheat efficiency delays ordering processes. We have found that a distribution of adsorbate islands over sizes depends on relaxation and reheat processes. We have shown that the mean linear size of stationary adsorbate islands is of nano-meter range.

  19. The Nature and Origin of UCDs in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Tully, R. Brent; Madrid, Juan; Phillipps, Steven; Carter, David; Peng, Eric

    2018-01-01

    UCDs are super massive star clusters found largely in dense regions but have also been found around individual galaxies and in smaller groups. Their origin is still under debate but currently favored scenarios include formation as giant star clusters, either as the brightest globular clusters or through mergers of super star clusters, themselves formed during major galaxy mergers, or as remnant nuclei from tidal stripping of nucleated dwarf ellipticals. Establishing the nature of these enigmatic objects has important implications for our understanding of star formation, star cluster formation, the missing satellite problem, and galaxy evolution. We are attempting to disentangle these competing formation scenarios with a large survey of UCDs in the Coma cluster. Using ACS two-passband imaging from the HST/ACS Coma Cluster Treasury Survey, we are using colors and sizes to identify the UCD cluster members. With a large size limited sample of the UCD population within the core region of the Coma cluster, we are investigating the population size, properties, and spatial distribution, and comparing that with the Coma globular cluster and nuclear star cluster populations to discriminate between the threshing and globular cluster scenarios. In previous work, we had found a possible correlation of UCD colors with host galaxy and a possible excess of UCDs around a non-central giant galaxy with an unusually large globular cluster population, both suggestive of a globular cluster origin. With a larger sample size and additional imaging fields that encompass the regions around these giant galaxies, we have found that the color correlation with host persists and the giant galaxy with unusually large globular cluster population does appear to host a large UCD population as well. We present the current status of the survey.

  20. Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000.

    PubMed

    Platero-Prats, Ana E; Li, Zhanyong; Gallington, Leighanne C; Peters, Aaron W; Hupp, Joseph T; Farha, Omar K; Chapman, Karena W

    2017-09-01

    We explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis of in situ synchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. These analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °C produces metallic Cu 0 of two distinct particle sizes: ∼4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0 -NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2 O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systems in situ.

  1. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice.

    PubMed

    Wu, Yongzhen; Fu, Yongcai; Zhao, Shuangshuang; Gu, Ping; Zhu, Zuofeng; Sun, Chuanqing; Tan, Lubin

    2016-01-01

    Panicle architecture and seed size are important agronomic traits that directly determine grain yield in rice (Oryza sativa L.). Although a number of key genes controlling panicle architecture and seed size have been cloned and characterized in recent years, their genetic and molecular mechanisms remain unclear. In this study, we identified a mutant that produced panicles with fascicled primary branching and reduced seeds in size. We isolated the underlying CLUSTERED PRIMARY BRANCH 1 (CPB1) gene, a new allele of DWARF11 (D11) encoding a cytochrome P450 protein involved in brassinosteroid (BR) biosynthesis pathway. Genetic transformation experiments confirmed that a His360Leu amino acid substitution residing in the highly conserved region of CPB1/D11 was responsible for the panicle architecture and seed size changes in the cpb1 mutants. Overexpression of CPB1/D11 under the background of cpb1 mutant not only rescued normal panicle architecture and plant height, but also had a larger leaf angle and seed size than the controls. Furthermore, the CPB1/D11 transgenic plants driven by panicle-specific promoters can enlarge seed size and enhance grain yield without affecting other favourable agronomic traits. These results demonstrated that the specific mutation in CPB1/D11 influenced development of panicle architecture and seed size, and manipulation of CPB1/D11 expression using the panicle-specific promoter could be used to increase seed size, leading to grain yield improvement in rice. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Particle characteristics of different materials after ultra-short pulsed laser (USPL) irradiation

    NASA Astrophysics Data System (ADS)

    Meister, Joerg; Schelle, Florian; Kowalczyk, Philip; Frentzen, Matthias

    2012-01-01

    The exposition of nanoparticles caused by laser application in dental health care is an open discussion. Based on the fact that nanoparticles can penetrate through the mucosa, the knowledge about particle characteristics after irradiation with an USPL is of high importance. Therefore, the aim of this study was to investigate the particle characteristics, especially the size of the ablated debris after USPL irradiation. The irradiation was carried out with an USP Nd:YVO4 laser with a center wavelength of 1064 nm. Based on the pulse duration of 8 ps and a pulse repetition rate of 500 kHz the laser emits an average power of 9 W. The materials investigated were dental tissues and dental restorative materials (composite and amalgam), ceramic and different metals (gold and aluminium). The samples were irradiated with a power density in the order of 300 GW/cm2 at distances of 5, 10, 15, and 20 mm. The debris was collected on an object plate. SEM pictures were used for analysis of the ablation debris. Depending on the irradiated material, we observed different kinds of structures: vitreous, flocculent, and pellet-like. The mean particle sizes were 10 x 10 up to 30 x 30 μm2. In addition, a cluster of ablated matter (nanometer range) distributed over the whole irradiated area was found. With increasing distances the cluster structure reduced from multi-layer to mono-layer clusters. Particle sizes in the micrometer and nanometer range were found after irradiation with an USPL. The nanoparticles create a cluster structure which is influenced by increasing distances.

  3. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.

    PubMed

    Xu, Shengyong; Tian, Mingliang; Wang, Jinguo; Xu, Jian; Redwing, Joan M; Chan, Moses H W

    2005-12-01

    We demonstrate that a high-intensity electron beam can be applied to create holes, gaps, and other patterns of atomic and nanometer dimensions on a single nanowire, to weld individual nanowires to form metal-metal or metal-semiconductor junctions, and to remove the oxide shell from a crystalline nanowire. In single-crystalline Si nanowires, the beam induces instant local vaporization and local amorphization. In metallic Au, Ag, Cu, and Sn nanowires, the beam induces rapid local surface melting and enhanced surface diffusion, in addition to local vaporization. These studies open up a novel approach for patterning and connecting nanomaterials in devices and circuits at the nanometer scale.

  4. Nanometer-scale sizing accuracy of particle suspensions on an unmodified cell phone using elastic light scattering.

    PubMed

    Smith, Zachary J; Chu, Kaiqin; Wachsmann-Hogiu, Sebastian

    2012-01-01

    We report on the construction of a Fourier plane imaging system attached to a cell phone. By illuminating particle suspensions with a collimated beam from an inexpensive diode laser, angularly resolved scattering patterns are imaged by the phone's camera. Analyzing these patterns with Mie theory results in predictions of size distributions of the particles in suspension. Despite using consumer grade electronics, we extracted size distributions of sphere suspensions with better than 20 nm accuracy in determining the mean size. We also show results from milk, yeast, and blood cells. Performing these measurements on a portable device presents opportunities for field-testing of food quality, process monitoring, and medical diagnosis.

  5. Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hua; Bai, Hai Yang; Zhang, Ming; Zhao, J. H.; Zhang, X. Y.; Wang, W. K.

    1999-04-01

    An in situ low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena in various metal-metal and metal-amorphous Si nanometer-scale compositionally modulated multilayers (ML's). The temperature-dependent interdiffusivities are obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. Activation enthalpies and preexponential factors for the interdiffusion in the Fe-Ti, Ag-Bi, Fe-Mo, Mo-Si, Ni-Si, Nb-Si, and Ag-Si ML's are determined. Activation enthalpies and preexponential factors for the interdiffusion in the ML's are very small compared with that in amorphous alloys and crystalline solids. The relation between the atomic-size difference and interdiffusion in the ML's are investigated. The observed interdiffusion characteristics are compared with that in amorphous alloys and crystalline α-Zr, α-Ti, and Si. The experimental results suggest that a collective atomic-jumping mechanism govern the interdiffusion in the ML's, the collective proposal involving 8-15 atoms moving between extended nonequilibrium defects by thermal activation. The role of the interdiffusion in the solid-state reaction in the ML's is also discussed.

  6. Electron attenuation in free, neutral ethane clusters.

    PubMed

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  7. DSPI technique for nanometer vibration mode measurement

    NASA Astrophysics Data System (ADS)

    Yue, Kaiduan; Jia, Shuhai; Tan, Yushan

    2000-05-01

    A time-average DSPI method for nanometer vibration mode measurement is presented in this paper. The phase continuous scan technique is combined with the Bessel fringe-shifting technique to quantitatively analyze the vibration mode by time-average DSPI is used in measurement system. Through the phase continuous scan, the background and speckle items are completely eliminated, which improves the fringe quality and enhances the signal-to-noise ratio of interferogram. There is no need to calibrate the optical phase-shifter exactly in this method. The anti-disturbance capability of this method is higher than that of the phase-stepping technique, so it is robust and easy to be used. In the vibration measurement system, the speckle average technology is used, so the high quality measuring results are obtained.

  8. Somatotyping using 3D anthropometry: a cluster analysis.

    PubMed

    Olds, Tim; Daniell, Nathan; Petkov, John; David Stewart, Arthur

    2013-01-01

    Somatotyping is the quantification of human body shape, independent of body size. Hitherto, somatotyping (including the most popular method, the Heath-Carter system) has been based on subjective visual ratings, sometimes supported by surface anthropometry. This study used data derived from three-dimensional (3D) whole-body scans as inputs for cluster analysis to objectively derive clusters of similar body shapes. Twenty-nine dimensions normalised for body size were measured on a purposive sample of 301 adults aged 17-56 years who had been scanned using a Vitus Smart laser scanner. K-means Cluster Analysis with v-fold cross-validation was used to determine shape clusters. Three male and three female clusters emerged, and were visualised using those scans closest to the cluster centroid and a caricature defined by doubling the difference between the average scan and the cluster centroid. The male clusters were decidedly endomorphic (high fatness), ectomorphic (high linearity), and endo-mesomorphic (a mixture of fatness and muscularity). The female clusters were clearly endomorphic, ectomorphic, and the ecto-mesomorphic (a mixture of linearity and muscularity). An objective shape quantification procedure combining 3D scanning and cluster analysis yielded shape clusters strikingly similar to traditional somatotyping.

  9. Geometric structure of percolation clusters.

    PubMed

    Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin

    2014-01-01

    We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).

  10. Theoretical Analysis of Photoelectron Spectra of Pure and Mixed Metal Clusters: Disentangling Size, Structure, and Composition Effects

    DOE PAGES

    Acioli, Paulo H.; Jellinek, Julius

    2017-07-14

    A theoretical/computational description and analysis of the spectra of electron binding energies of Al 12 -, Al 13 - and Al 12Ni- clusters, which differ in size and/or composition by a single atom yet possess strikingly different measured photoelectron spectra, is presented. It is shown that the measured spectra can not only be reproduced computationally with quantitative fidelity – this is achieved through a combination of state-of-the-art density functional theory with a highly accurate scheme for conversion of the Kohn-Sham eigenenergies into electron binding energies – but also explained in terms of the effects of size, structure/symmetry and composition. Furthermore,more » a new methodology is developed and applied that provides for disentanglement and differential assignment of the separate roles played by size, structure/symmetry and composition in defining the observed differences in the measured spectra. The methodology is general and applicable to any finite system, homogeneous or heterogeneous. Finally, we project that in combination with advances in synthesis techniques this methodology will become an indispensable computation-based aid in the design of controlled synthesis protocols for manufacture of nanosystems and nanodevices with precisely desired electronic and other characteristics.« less

  11. Theoretical Analysis of Photoelectron Spectra of Pure and Mixed Metal Clusters: Disentangling Size, Structure, and Composition Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acioli, Paulo H.; Jellinek, Julius

    A theoretical/computational description and analysis of the spectra of electron binding energies of Al 12 -, Al 13 - and Al 12Ni- clusters, which differ in size and/or composition by a single atom yet possess strikingly different measured photoelectron spectra, is presented. It is shown that the measured spectra can not only be reproduced computationally with quantitative fidelity – this is achieved through a combination of state-of-the-art density functional theory with a highly accurate scheme for conversion of the Kohn-Sham eigenenergies into electron binding energies – but also explained in terms of the effects of size, structure/symmetry and composition. Furthermore,more » a new methodology is developed and applied that provides for disentanglement and differential assignment of the separate roles played by size, structure/symmetry and composition in defining the observed differences in the measured spectra. The methodology is general and applicable to any finite system, homogeneous or heterogeneous. Finally, we project that in combination with advances in synthesis techniques this methodology will become an indispensable computation-based aid in the design of controlled synthesis protocols for manufacture of nanosystems and nanodevices with precisely desired electronic and other characteristics.« less

  12. Nanoparticle heterodimers: The role of size and interparticle gap distance on the optical response

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-05-01

    Composite plasmonic nanostructures with controlled size, shape and relative arrangement is a subject of significant current research interest. Much of this is stimulated by the prospects by generating enormous near-field enhancements of the surface and interparticle gap regions for potential applications in surface-enhanced spectroscopies. In this manuscript, using time-dependent density functional theory (TDDFT) calculations, we investigate how the optical response in size matched homodimers and size mismatched heterodimers composed of Aluminum modify while varying the size and interparticle gap distances in the sub-nanometer range. Both systems show interesting optical response evolution. In particular, the size mismatched heterodimers show even more complex optical response evolution due to a symmetry-breaking in the system.

  13. Comparison of a non-stationary voxelation-corrected cluster-size test with TFCE for group-Level MRI inference.

    PubMed

    Li, Huanjie; Nickerson, Lisa D; Nichols, Thomas E; Gao, Jia-Hong

    2017-03-01

    Two powerful methods for statistical inference on MRI brain images have been proposed recently, a non-stationary voxelation-corrected cluster-size test (CST) based on random field theory and threshold-free cluster enhancement (TFCE) based on calculating the level of local support for a cluster, then using permutation testing for inference. Unlike other statistical approaches, these two methods do not rest on the assumptions of a uniform and high degree of spatial smoothness of the statistic image. Thus, they are strongly recommended for group-level fMRI analysis compared to other statistical methods. In this work, the non-stationary voxelation-corrected CST and TFCE methods for group-level analysis were evaluated for both stationary and non-stationary images under varying smoothness levels, degrees of freedom and signal to noise ratios. Our results suggest that, both methods provide adequate control for the number of voxel-wise statistical tests being performed during inference on fMRI data and they are both superior to current CSTs implemented in popular MRI data analysis software packages. However, TFCE is more sensitive and stable for group-level analysis of VBM data. Thus, the voxelation-corrected CST approach may confer some advantages by being computationally less demanding for fMRI data analysis than TFCE with permutation testing and by also being applicable for single-subject fMRI analyses, while the TFCE approach is advantageous for VBM data. Hum Brain Mapp 38:1269-1280, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    PubMed

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  15. Cluster dynamics transcending chemical dynamics toward nuclear fusion

    PubMed Central

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-01-01

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 1015–1020 W·cm−2). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C4+(D+)4)n and (D+I22+)n at IM = 1018 W·cm−2, that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D2)n, (HT)n, (CD4)n, (DI)n, (CD3I)n, and (CH3I)n clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D2)n clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., 12C(P,γ)13N driven by CE of (CH3I)n clusters, were explored. PMID:16740666

  16. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    PubMed

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  17. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  18. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale.

    PubMed

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öğüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F

    2018-02-02

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS_{2}, MoSe_{2}, WS_{2}, or WSe_{2}, are directly determined and mapped.

  19. A high fat diet containing saturated but not unsaturated fatty acids enhances T cell receptor clustering on the nanoscale.

    PubMed

    Shaikh, Saame Raza; Boyle, Sarah; Edidin, Michael

    2015-09-01

    Cell culture studies show that the nanoscale lateral organization of surface receptors, their clustering or dispersion, can be altered by changing the lipid composition of the membrane bilayer. However, little is known about similar changes in vivo, which can be effected by changing dietary lipids. We describe the use of a newly developed method, k-space image correlation spectroscopy, kICS, for analysis of quantum dot fluorescence to show that a high fat diet can alter the nanometer-scale clustering of the murine T cell receptor, TCR, on the surface of naive CD4(+) T cells. We found that diets enriched primarily in saturated fatty acids increased TCR nanoscale clustering to a level usually seen only on activated cells. Diets enriched in monounsaturated or n-3 polyunsaturated fatty acids had no effect on TCR clustering. Also none of the high fat diets affected TCR clustering on the micrometer scale. Furthermore, the effect of the diets was similar in young and middle aged mice. Our data establish proof-of-principle that TCR nanoscale clustering is sensitive to the composition of dietary fat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Liu, Jiansheng; Wang, Cheng; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan

    2006-08-01

    The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.

  1. Fibrous structure in GaSb surfaces irradiated with fast Cu cluster ions

    NASA Astrophysics Data System (ADS)

    Tsuchida, Hidetsugu; Nitta, Noriko; Yanagida, Yusuke; Okumura, Yuya; Murase, Ryu

    2018-04-01

    The effect of fast cluster irradiation on the formation of fibrous structures is investigated for single crystal GaSb surfaces irradiated by Cun+ ions (n = 1-3) with an energy of 0.4 MeV/atom at ion fluences up to 5 × 1015 cm-2. We study the cluster size dependence on the growth of fibrous network structures. With increasing cluster size, the shape of the fiber changed from rod-like to spherical. To quantitatively evaluate this cluster effect, a fiber diameter d in rod or spherical portion is examined as a function of ion fluence Φ and cluster size n. We find that the fiber diameter nonlinearly increases and follows the relation d ∝nα×Φ , with α≈2 . This evidently implies that the amount of defects generated by n-sized cluster bombardments varies as n2 for n ≤3 . Cluster ion irradiation enhances the defect generation owing to the overlap between cascades of individual cluster constituents and is therefore effective for the growth of nanofibers.

  2. Geometry, packing, and evolutionary paths to increased multicellular size

    NASA Astrophysics Data System (ADS)

    Jacobeen, Shane; Graba, Elyes C.; Brandys, Colin G.; Day, Thomas C.; Ratcliff, William C.; Yunker, Peter J.

    2018-05-01

    The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018), 10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ˜13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.

  3. Physical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting

    PubMed Central

    Telikepalli, Srivalli; Shinogle, Heather E.; Thapa, Prem S.; Kim, Jae Hyun; Deshpande, Meghana; Jawa, Vibha; Middaugh, C. Russell; Narhi, Linda O.; Joubert, Marisa K.; Volkin, David B.

    2015-01-01

    An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size enriched into different size bins by low speed centrifugation or a combination of gravitational sedimentation and Fluorescence-Activated Cell Sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5–10 μm in size displayed elevated cytokine release profiles compared to other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared to controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by Microflow imaging, Transmission Electron Microscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in-vitro PBMC studies to rank order the immunogenic potential of various types of mAb particles is discussed. PMID:25753756

  4. Three-dimensional integrated circuits for lab-on-chip dielectrophoresis of nanometer scale particles

    NASA Astrophysics Data System (ADS)

    Dickerson, Samuel J.; Noyola, Arnaldo J.; Levitan, Steven P.; Chiarulli, Donald M.

    2007-01-01

    In this paper, we present a mixed-technology micro-system for electronically manipulating and optically detecting virusscale particles in fluids that is designed using 3D integrated circuit technology. During the 3D fabrication process, the top-most chip tier is assembled upside down and the substrate material is removed. This places the polysilicon layer, which is used to create geometries with the process' minimum feature size, in close proximity to a fluid channel etched into the top of the stack. By taking advantage of these processing features inherent to "3D chip-stacking" technology, we create electrode arrays that have a gap spacing of 270 nm. Using 3D CMOS technology also provides the ability to densely integrate analog and digital control circuitry for the electrodes by using the additional levels of the chip stack. We show simulations of the system with a physical model of a Kaposi's sarcoma-associated herpes virus, which has a radius of approximately 125 nm, being dielectrophoretically arranged into striped patterns. We also discuss how these striped patterns of trapped nanometer scale particles create an effective diffraction grating which can then be sensed with macro-scale optical techniques.

  5. Deposition of Nanostructured Thin Film from Size-Classified Nanoparticles

    NASA Technical Reports Server (NTRS)

    Camata, Renato P.; Cunningham, Nicholas C.; Seol, Kwang Soo; Okada, Yoshiki; Takeuchi, Kazuo

    2003-01-01

    Materials comprising nanometer-sized grains (approximately 1_50 nm) exhibit properties dramatically different from those of their homogeneous and uniform counterparts. These properties vary with size, shape, and composition of nanoscale grains. Thus, nanoparticles may be used as building blocks to engineer tailor-made artificial materials with desired properties, such as non-linear optical absorption, tunable light emission, charge-storage behavior, selective catalytic activity, and countless other characteristics. This bottom-up engineering approach requires exquisite control over nanoparticle size, shape, and composition. We describe the design and characterization of an aerosol system conceived for the deposition of size classified nanoparticles whose performance is consistent with these strict demands. A nanoparticle aerosol is generated by laser ablation and sorted according to size using a differential mobility analyzer. Nanoparticles within a chosen window of sizes (e.g., (8.0 plus or minus 0.6) nm) are deposited electrostatically on a surface forming a film of the desired material. The system allows the assembly and engineering of thin films using size-classified nanoparticles as building blocks.

  6. Electron-induced chemistry in imidazole clusters embedded in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Kuhn, Martin; Raggl, Stefan; Martini, Paul; Gitzl, Norbert; Darian, Masoomeh Mahmoodi; Goulart, Marcelo; Postler, Johannes; Feketeová, Linda; Scheier, Paul

    2018-02-01

    Electron-induced chemistry in imidazole (IMI) clusters embedded in helium nanodroplets (with an average size of 2 × 105 He atoms) has been investigated with high-resolution time-of-flight mass spectrometry. The formation of both, negative and positive, ions was monitored as a function of the cluster size n. In both ion spectra a clear series of peaks with IMI cluster sizes up to at least 25 are observed. While the anions are formed by collisions of IMI n with He*-, the cations are formed through ionization of IMI n by He+ as the measured onset for the cation formation is observed at 24.6 eV (ionization energy of He). The most abundant series of anions are dehydrogenated anions IMI n-1(IMI-H)-, while other anion series are IMI clusters involving CN and C2H4 moieties. The formation of cations is dominated by the protonated cluster ions IMI n H+, while the intensity of parent cluster cations IMI n + is also observed preferentially for the small cluster size n. The observation of series of cluster cations [IMI n CH3]+ suggests either CH3+ cation to be solvated by n neutral IMI molecules, or the electron-induced chemistry has led to the formation of protonated methyl-imidazole solvated by ( n - 1) neutral IMI molecules.

  7. Mechanical Properties of Materials with Nanometer Scale Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations,more » talks and publications completed on this grant during the past 15 years.« less

  8. Techniques for 3D tracking of single molecules with nanometer accuracy in living cells

    NASA Astrophysics Data System (ADS)

    Gardini, Lucia; Capitanio, Marco; Pavone, Francesco S.

    2013-06-01

    We describe a microscopy technique that, combining wide-field single molecule microscopy, bifocal imaging and Highly Inclined and Laminated Optical sheet (HILO) microscopy, allows a 3D tracking with nanometer accuracy of single fluorescent molecules in vitro and in living cells.

  9. Rapid Polymer Transport in a Single Nanometer-Scale Pore

    NASA Astrophysics Data System (ADS)

    Kasianowicz, J. J.

    1998-03-01

    Protein ion channels are nanometer-scale pores that control the transport of ions and polymers across cell membranes. We compared the ability of charged and nonelectrolyte linear polymers to partition into a single channel reconstituted into a planar lipid bilayer membrane. The entry of each polymer (e.g. monodisperse length single-stranded homopolymeric RNA1 or poly(ethylene glycol)2,3) into the pore caused characteristic transient decreases in the channel's ionic conductance. The ionic current blockades yield detailed information about the physical properties of the polymers and the pore. The biological and technological significance of the results will be discussed.

  10. Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Marimpul, Rinaldo

    High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parametersmore » and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.« less

  11. Universal patterns of equilibrium cluster growth in aqueous sugars observed by dynamic light scattering.

    PubMed

    Sidebottom, D L; Tran, Tri D

    2010-11-01

    Dynamic light scattering performed on aqueous solutions of three sugars (glucose, maltose and sucrose) reveal a common pattern of sugar cluster formation with a narrow cluster size distribution. In each case, equilibrium clusters form whose size increases with increasing sugar content in an identical power law manner in advance of a common, critical-like, percolation threshold near 83 wt % sugar. The critical exponent of the power law divergence of the cluster size varies with temperature, increasing with decreasing temperature, due to changes in the strength of the intermolecular hydrogen bond and appears to vanish for temperatures in excess of 90 °C. Detailed analysis of the cluster growth process suggests a two-stage process: an initial cluster phase formed at low volume fractions, ϕ, consisting of noninteracting, monodisperse sugar clusters whose size increases ϕ(1/3) followed by an aggregation stage, active at concentrations above about ϕ=40%, where cluster-cluster contact first occurs.

  12. Toward in situ x-ray diffraction imaging at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami

    2008-08-01

    We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.

  13. Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongyu; Liu Jiansheng; Wang Cheng

    The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effectsmore » of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.« less

  14. Local Higher-Order Graph Clustering

    PubMed Central

    Yin, Hao; Benson, Austin R.; Leskovec, Jure; Gleich, David F.

    2018-01-01

    Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif conductance, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology. PMID:29770258

  15. Cluster size resolving analysis of CH3F-(ortho-H2)n in solid para-hydrogen using FTIR absorption spectroscopy at 3 μm region.

    PubMed

    Miyamoto, Yuki; Momose, Takamasa; Kanamori, Hideto

    2012-11-21

    Infrared absorption spectra of methyl fluoride with ortho-hydrogen (ortho-H(2)) clusters in a solid para-hydrogen (para-H(2)) crystal at 3.6 K were studied in the C-H stretching fundamental region (~3000 cm(-1)) using an FTIR spectrometer. As shown previously, the ν(3) C-F stretching fundamental band of CH(3)F-(ortho-H(2))(n) (n = 0, 1, 2, ...) clusters at 1040 cm(-1) shows a series of n discrete absorption lines, which correspond to different-sized clusters. We observed three unresolved broad peaks in the C-H stretching region and applied this cluster model to them assuming the same intensity distribution function as the ν(3) band. A fitting analysis successfully gave us the linewidth and lineshift of the components in each vibrational band. It was found that the separately determined linewidth, matrix shift of the band origin, and cluster shift are dependent on the vibrational mode. From the transition intensities of the monomer component derived from the fitting analysis, we discuss the mixing ratio of the vibrational modes due to Fermi resonance.

  16. Optimal design of a plot cluster for monitoring

    Treesearch

    Charles T. Scott

    1993-01-01

    Traveling costs incurred during extensive forest surveys make cluster sampling cost-effective. Clusters are specified by the type of plots, plot size, number of plots, and the distance between plots within the cluster. A method to determine the optimal cluster design when different plot types are used for different forest resource attributes is described. The method...

  17. Melting and Freezing of Metal Clusters

    NASA Astrophysics Data System (ADS)

    Aguado, Andrés; Jarrold, Martin F.

    2011-05-01

    Recent developments allow heat capacities to be measured for size-selected clusters isolated in the gas phase. For clusters with tens to hundreds of atoms, the heat capacities determined as a function of temperature usually have a single peak attributed to a melting transition. The melting temperatures and latent heats show large size-dependent fluctuations. In some cases, the melting temperatures change by hundreds of degrees with the addition of a single atom. Theory has played a critical role in understanding the origin of the size-dependent fluctuations, and in understanding the properties of the liquid-like and solid-like states. In some cases, the heat capacities have extra features (an additional peak or a dip) that reveal a more complex behavior than simple melting. In this article we provide a description of the methods used to measure the heat capacities and provide an overview of the experimental and theoretical results obtained for sodium and aluminum clusters.

  18. Magnetic properties of Co-doped Nb clusters

    NASA Astrophysics Data System (ADS)

    Diaz-Bachs, A.; Peters, L.; Logemann, R.; Chernyy, V.; Bakker, J. M.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    Magnetic deflection experiments on isolated Co-doped Nb clusters demonstrate a strong size dependence of magnetic properties, with large magnetic moments in certain cluster sizes and fully nonmagnetic behavior of others. There are in principle two explanations for this behavior. Either the local moment at the Co site is absent or it is screened by the delocalized electrons of the cluster, i.e., the Kondo effect. In order to reveal the physical origin, first, we established the ground state geometry of the clusters by experimentally obtaining their vibrational spectra and comparing them with a density functional theory study. Then, we performed an analysis based on the Anderson impurity model. It appears that the nonmagnetic clusters are due to the absence of the local Co moment and not due to the Kondo effect. In addition, the magnetic behavior of the clusters can be understood from an inspection of their electronic structure. Here magnetism is favored when the effective hybridization around the chemical potential is small, while the absence of magnetism is signaled by a large effective hybridization around the chemical potential.

  19. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  20. General Framework for Effect Sizes in Cluster Randomized Experiments

    ERIC Educational Resources Information Center

    VanHoudnos, Nathan

    2016-01-01

    Cluster randomized experiments are ubiquitous in modern education research. Although a variety of modeling approaches are used to analyze these data, perhaps the most common methodology is a normal mixed effects model where some effects, such as the treatment effect, are regarded as fixed, and others, such as the effect of group random assignment…

  1. Location and Size Planning of Distributed Photovoltaic Generation in Distribution network System Based on K-means Clustering Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Siqi; Wang, Xiaorong; Wu, Junyong

    2018-01-01

    The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.

  2. Renormalized coupled cluster approaches in the cluster-in-molecule framework: predicting vertical electron binding energies of the anionic water clusters (H2O)(n)(-).

    PubMed

    Xu, Peng; Gordon, Mark S

    2014-09-04

    Anionic water clusters are generally considered to be extremely challenging to model using fragmentation approaches due to the diffuse nature of the excess electron distribution. The local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach combined with the completely renormalized CR-CC(2,3) method [abbreviated CIM/CR-CC(2,3)] is shown to be a viable alternative for computing the vertical electron binding energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter ζ set to 0.001, as a trade-off between accuracy and computational cost, demonstrates the reliability of predicting the VEBE, with an average percentage error of ∼15% compared to the full ab initio calculation at the same level of theory. The errors are predominantly from the electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-box type calculation with few threshold parameters to manipulate. The cluster sizes that can be studied by high-level ab initio methods are significantly increased in comparison with full CC calculations. Therefore, the VEBE computed by the CIM/CR-CC(2,3) method can be used as benchmarks for testing model potential approaches in small-to-intermediate-sized water clusters.

  3. The effects of charge, polymerization, and cluster size on the diffusivity of dissolved Si species in pore water

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tadashi; Sakuma, Hiroshi

    2018-03-01

    Silicon (Si) is the most abundant cation in crustal rocks. The charge and degree of polymerization of dissolved Si significantly change depending on solution pH and Si concentration. We used molecular dynamics (MD) simulations to predict the self-diffusion coefficients of dissolved Si, DSi, for 15 monomeric and polymeric species at ambient temperature. The results showed that DSi decreased with increasing negative charge and increasing degree of polymerization. The relationship between DSi and charge (Z) can be expressed by DSi/10-6 = 2.0 + 9.8e0.47Z, and that between DSi and number of polymerization (NSi) by DSi/10-6 = 9.7/NSi0.56. The results also revealed that multiple Si molecules assembled into a cluster and D decreased as the cluster size increased. Experiments to evaluate the diffusivity of Si in pore water revealed that the diffusion coefficient decreased with increasing Si concentration, a result consistent with the MD simulations. Simulation results can now be used to quantitatively assess water-rock interactions and water-concrete reactions over a wide range of environmentally relevant conditions.

  4. Stellar disc destruction by dynamical interactions in the Orion Trapezium star cluster

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.

    2016-03-01

    We compare the observed size distribution of circumstellar discs in the Orion Trapezium cluster with the results of N-body simulations in which we incorporated an heuristic prescription for the evolution of these discs. In our simulations, the sizes of stellar discs are affected by close encounters with other stars (with discs). We find that the observed distribution of disc sizes in the Orion Trapezium cluster is excellently reproduced by truncation due to dynamical encounters alone. The observed distribution appears to be a sensitive measure of the past dynamical history of the cluster, and therewith on the conditions of the cluster at birth. The best comparison between the observed disc-size distribution and the simulated distribution is realized with a cluster of N = 2500 ± 500 stars with a half-mass radius of about 0.5 pc in virial equilibrium (with a virial ratio of Q = 0.5, or somewhat colder Q ≃ 0.3), and with a density structure according to a fractal dimension of F ≃ 1.6. Simulations with these parameters reproduce the observed distribution of circumstellar discs in about 0.2-0.5 Myr. We conclude that the distribution of disk sizes in the Orion Trapezium cluster is the result of dynamical interactions in the early evolution of the cluster.

  5. Synthesis of size controllable cu-phthalocyanine nanofibers by simple solvent diffusion method and their electrochemical properties.

    PubMed

    Gao, Junshan; Cheng, Chuanwei; Zhou, Xuechao; Li, Yingying; Xu, Xiaoqi; Du, Xiguang; Zhang, Haiqian

    2010-02-15

    Tetra (2-isopropyl-5-methylphenoxy) substituted Cu-phthalocyanine nanofibers were obtained in large scale by a simple solvent diffusion method. The sizes of the fibers can be finely tuned under different solvent temperature. FE-SEM micrographs indicate that the length of the fibers changed from several hundreds micrometers to several hundreds nanometers and the width changed from several micrometers to several decade nanometers. XRD measurement showed a highly long-range ordered lamellar arrangement of the substituted Cu-phthalocyanine molecules in the microfiber and the UV-vis absorption spectrum of the fibers indicated an H-aggregate of the phthalocyanine molecules. The CV curves elucidate the CuPc fibers can be fabricated Faraday pseudocapacitor. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  6. Infrared laser spectroscopy of the linear C13 carbon cluster

    NASA Technical Reports Server (NTRS)

    Giesen, T. F.; Van Orden, A.; Hwang, H. J.; Fellers, R. S.; Provencal, R. A.; Saykally, R. J.

    1994-01-01

    The infrared absorption spectrum of a linear, 13-atom carbon cluster (C13) has been observed by using a supersonic cluster beam-diode laser spectrometer. Seventy-six rovibrational transitions were measured near 1809 wave numbers and assigned to an antisymmetric stretching fundamental in the 1 sigma g+ ground state of C13. This definitive structural characterization of a carbon cluster in the intermediate size range between C10 and C20 is in apparent conflict with theoretical calculations, which predict that clusters of this size should exist as planar monocyclic rings.

  7. Reversible cluster formation in concentrated monoclonal antibody solutions

    NASA Astrophysics Data System (ADS)

    Godfrin, P. Douglas; Porcar, Lionel; Falus, Peter; Zarraga, Isidro; Wagner, Norm; Liu, Yun

    2015-03-01

    Protein cluster formation in solution is of fundamental interest for both academic research and industrial applications. Recently, industrial scientists are also exploring the effect of reversible cluster formation on biopharmaceutical processing and delivery. However, despite of its importance, the understanding of protein clusters at concentrated solutions remains scientifically very challenging. Using the neutron spin echo technique to study the short time dynamics of proteins in solutions, we have recently systematically studied cluster formation in a few monoclonal antibody (mAb) solutions and their relation with solution viscosity. We show that the existence of anisotropic attraction can cause the formation of finite sized clusters, which increases the solution viscosity. Interestingly, once clusters form at relatively low concentrations, the average size of clusters in solutions remains almost constant over a wide range of concentrations similar to that of micelle formation. For a different mAb we have also investigated, the attraction is mostly induced by hydrophobic patches. As a result, these mAbs form large clusters with loosely linked proteins. In both cases, the formation of clusters all increases the solution viscosity substantially. However, due to different physics origins of cluster formation, solutions viscosities for these two different types of mAbs need to be controlled by different ways.

  8. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations.

    PubMed

    Mori, Taizo; Hegmann, Torsten

    2016-01-01

    Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest.

  9. Coevolutionary dynamics with clustering behaviors on cyclic competition

    NASA Astrophysics Data System (ADS)

    Dong, Linrong; Yang, Guangcan

    2012-05-01

    We propose a dynamic model for describing clustering behaviors on a cyclic game, in which the same species form a cluster to compete. The rates of consuming the prey depend not only on the individual competing ability v, but also on the two interacting cluster’s sizes. The fragmentation and coagulation rates of the clusters are related to the cohesive strength among the individuals. A new parameter u is introduced to indicate the uniting degree. We find that the probability distribution of the clustering sizes is almost a power law in a large regime specified by the two parameters, which reflects the scale-free behavior in complex systems. In addition, the exponential magnitudes are mostly in the range of real social systems. Our simulation shows that clustering promotes biodiversity. At steady state, the amounts about the three species evolve tempestuously with asymmetric period; the aggregations about big size’s clusters to compete are obvious and on-off intermittence.

  10. Ab initio structures and polarizabilities of sodium clusters

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Vasiliev, Igor; Jain, Manish; Chelikowsky, James R.

    2001-09-01

    We present quantitative ab initio calculations for Na cluster structures and polarizabilities, for all cluster sizes up to 20 atoms. Our calculations are performed by combining an ab initio core-corrected pseudopotential and a gradient-corrected density functional within a real space approach. We find the cluster bonding to be very floppy and catalog a host of low-energy quasi-degenerate isomers for all second-decade clusters. The existence of these isomers results in a band of polarizability values for each cluster size even at zero temperature. This eliminates any finer structure in the polarizability curve. We further show that the experimental polarizability values are consistently underestimated by calculations at zero temperature. By computing the effects of structure expansion and distortion due to a finite temperature we arrive at a quantitative agreement between theory and experiment.

  11. Size-based emphysema cluster analysis on low attenuation area in 3D volumetric CT: comparison with pulmonary functional test

    NASA Astrophysics Data System (ADS)

    Lee, Minho; Kim, Namkug; Lee, Sang Min; Seo, Joon Beom; Oh, Sang Young

    2015-03-01

    To quantify low attenuation area (LAA) of emphysematous regions according to cluster size in 3D volumetric CT data of chronic obstructive pulmonary disease (COPD) patients and to compare these indices with their pulmonary functional test (PFT). Sixty patients with COPD were scanned by a more than 16-multi detector row CT scanner (Siemens Sensation 16 and 64) within 0.75mm collimation. Based on these LAA masks, a length scale analysis to estimate each emphysema LAA's size was performed as follows. At first, Gaussian low pass filter from 30mm to 1mm kernel size with 1mm interval on the mask was performed from large to small size, iteratively. Centroid voxels resistant to the each filter were selected and dilated by the size of the kernel, which was regarded as the specific size emphysema mask. The slopes of area and number of size based LAA (slope of semi-log plot) were analyzed and compared with PFT. PFT parameters including DLco, FEV1, and FEV1/FVC were significantly (all p-value< 0.002) correlated with the slopes (r-values; -0.73, 0.54, 0.69, respectively) and EI (r-values; -0.84, -0.60, -0.68, respectively). In addition, the D independently contributed regression for FEV1 and FEV1/FVC (adjust R sq. of regression study: EI only, 0.70, 0.45; EI and D, 0.71, 0.51, respectively). By the size based LAA segmentation and analysis, we evaluated the Ds of area, number, and distribution of size based LAA, which would be independent factors for predictor of PFT parameters.

  12. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.

    PubMed

    Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L

    2016-12-16

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  13. The correlation between the sizes of globular cluster systems and their host dark matter haloes

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Robison, Bailey

    2018-07-01

    The sizes of entire systems of globular clusters (GCs) depend not only on the formation and destruction histories of the GCs themselves but also on the assembly, merger, and accretion history of the dark matter (DM) haloes that they inhabit. Recent work has shown a linear relation between total mass of GCs in the GC system and the mass of its host DM halo, calibrated from weak lensing. Here, we extend this to GC system sizes, by studying the radial density profiles of GCs around galaxies in nearby galaxy groups. We find that radial density profiles of the GC systems are well fit with a de Vaucouleurs profile. Combining our results with those from the literature, we find tight relationship (˜0.2 dex scatter) between the effective radius of the GC system and the virial radius (or mass) of its host DM halo, for haloes with masses greater than ˜1012 M⊙. The steep non-linear dependence of this relationship (R_{ {e, GCS}} ∝ R_{200}^{2.5 - 3} ∝ M_{200}^{0.8 - 1}) is currently not well understood, but is an important clue regarding the assembly history of DM haloes and of the GC systems that they host.

  14. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    PubMed

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  15. On evaluating clustering procedures for use in classification

    NASA Technical Reports Server (NTRS)

    Pore, M. D.; Moritz, T. E.; Register, D. T.; Yao, S. S.; Eppler, W. G. (Principal Investigator)

    1979-01-01

    The problem of evaluating clustering algorithms and their respective computer programs for use in a preprocessing step for classification is addressed. In clustering for classification the probability of correct classification is suggested as the ultimate measure of accuracy on training data. A means of implementing this criterion and a measure of cluster purity are discussed. Examples are given. A procedure for cluster labeling that is based on cluster purity and sample size is presented.

  16. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. III. Coulomb explosion of deuterium clusters.

    PubMed

    Last, Isidore; Jortner, Joshua

    2004-08-15

    In this paper we present a theoretical and computational study of the energetics and temporal dynamics of Coulomb explosion of molecular clusters of deuterium (D2)n/2 (n = 480 - 7.6 x 10(4), cluster radius R0 = 13.1 - 70 A) in ultraintense laser fields (laser peak intensity I = 10(15) - 10(20)W cm(-2)). The energetics of Coulomb explosion was inferred from the dependence of the maximal energy EM and the average energy Eav of the product D+ ions on the laser intensity, the laser pulse shape, the cluster radius, and the laser frequency. Electron dynamics of outer cluster ionization and nuclear dynamics of Coulomb explosion were investigated by molecular dynamics simulations. Several distinct laser pulse shape envelopes, involving a rectangular field, a Gaussian field, and a truncated Gaussian field, were employed to determine the validity range of the cluster vertical ionization (CVI) approximation. The CVI predicts that Eav, EM proportional to R0(2) and that the energy distribution is P(E) proportional to E1/2. For a rectangular laser pulse the CVI conditions are satisfied when complete outer ionization is obtained, with the outer ionization time toi being shorter than both the pulse width and the cluster radius doubling time tau2. By increasing toi, due to the increase of R0 or the decrease of I, we have shown that the deviation of Eav from the corresponding CVI value (Eav(CVI)) is (Eav(CVI) - Eav)/Eav(CVI) approximately (toi/2.91tau2)2. The Gaussian pulses trigger outer ionization induced by adiabatic following of the laser field and of the cluster size, providing a pseudo-CVI behavior at sufficiently large laser fields. The energetics manifest the existence of a finite range of CVI size dependence, with the validity range for the applicability of the CVI being R0 < or = (R0)I, with (R0)I representing an intensity dependent boundary radius. Relating electron dynamics of outer ionization to nuclear dynamics for Coulomb explosion induced by a Gaussian pulse, the

  17. Subnanometer to nanometer transition metal CO oxidation catalysts

    DOEpatents

    Vajda, Stefan; Fortunelli, Alessandro; Yasumatsu, Hisato

    2017-12-26

    The present invention provides a catalyst defined in part by a conductive substrate; a film overlaying a surface of the substrate; and a plurality of metal clusters supported by the layer, wherein each cluster comprises between 8 and 11 atoms. Further provided is a catalyst defined in part by a conductive substrate; a layer overlaying a surface of the substrate; and a plurality of metal clusters supported by the layer, wherein each cluster comprises at least two metals.

  18. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-03-17

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermalmore » stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO{sub 2} passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness.« less

  19. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    EPA Science Inventory

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  20. Evaluation of the detachment energy of hydrated phosphate anion over a wide range of cluster size and revisiting solvent-berg model: a theoretical study

    NASA Astrophysics Data System (ADS)

    Pathak, Arup Kumar

    2014-12-01

    An explicit analytical expression has been obtained for vertical detachment energy (VDE) that can be used to calculate the same over a wide range (both stable and unstable regions) of cluster sizes including the bulk from the knowledge of VDE for a finite number of stable clusters (n = 16-23). The calculated VDE for the bulk is found to be very good in agreement (within 1%) with the available experimental result and the domain of instability lies between n = 0 and n = 15 for the hydrated clusters, PO3 -4 . nH2O. The minimum number (n0) of water molecules needed to stabilise the phosphate anion is 16. We are able to explain the origin of solvent-berg model and anomalous conductivity from the knowledge of first stable cluster. We have also provided a scheme to calculate the radius of the solvent-berg for phosphate anion. The calculated conductivity using Stokes-Einstein relation and the radius of solvent-berg is found to be very good in agreement (within 4%) with the available experimental results.

  1. Suppression of vacancy cluster growth in concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...

    2016-12-13

    Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less

  2. Clustering and phase transitions on a neutral landscape

    NASA Astrophysics Data System (ADS)

    Scott, Adam D.; King, Dawn M.; Marić, Nevena; Bahar, Sonya

    2013-06-01

    Recent computational studies have shown that speciation can occur under neutral conditions, i.e., when the simulated organisms all have identical fitness. These works bear comparison with mathematical studies of clustering on neutral landscapes in the context of branching and coalescing random walks. Here, we show that sympatric clustering/speciation can occur on a neutral landscape whose dimensions specify only the simulated organisms’ phenotypes. We demonstrate that clustering occurs not only in the case of assortative mating, but also in the case of asexual fission; it is not observed in the control case of random mating. We find that the population size and the number of clusters undergo a second-order non-equilibrium phase transition as the maximum mutation size is varied.

  3. Three-dimensional cluster formation and structure in heterogeneous dose distribution of intensity modulated radiation therapy.

    PubMed

    Chao, Ming; Wei, Jie; Narayanasamy, Ganesh; Yuan, Yading; Lo, Yeh-Chi; Peñagarícano, José A

    2018-05-01

    To investigate three-dimensional cluster structure and its correlation to clinical endpoint in heterogeneous dose distributions from intensity modulated radiation therapy. Twenty-five clinical plans from twenty-one head and neck (HN) patients were used for a phenomenological study of the cluster structure formed from the dose distributions of organs at risks (OARs) close to the planning target volumes (PTVs). Initially, OAR clusters were searched to examine the pattern consistence among ten HN patients and five clinically similar plans from another HN patient. Second, clusters of the esophagus from another ten HN patients were scrutinized to correlate their sizes to radiobiological parameters. Finally, an extensive Monte Carlo (MC) procedure was implemented to gain deeper insights into the behavioral properties of the cluster formation. Clinical studies showed that OAR clusters had drastic differences despite similar PTV coverage among different patients, and the radiobiological parameters failed to positively correlate with the cluster sizes. MC study demonstrated the inverse relationship between the cluster size and the cluster connectivity, and the nonlinear changes in cluster size with dose thresholds. In addition, the clusters were insensitive to the shape of OARs. The results demonstrated that the cluster size could serve as an insightful index of normal tissue damage. The clinical outcome of the same dose-volume might be potentially different. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. PKMζ is necessary and sufficient for synaptic clustering of PSD-95.

    PubMed

    Shao, Charles Y; Sondhi, Rachna; van de Nes, Paula S; Sacktor, Todd Charlton

    2012-07-01

    The persistent activity of protein kinase Mzeta (PKMζ), a brain-specific, constitutively active protein kinase C isoform, maintains synaptic long-term potentiation (LTP). Structural remodeling of the postsynaptic density is believed to contribute to the expression of LTP. We therefore examined the role of PKMζ in reconfiguring PSD-95, the major postsynaptic scaffolding protein at excitatory synapses. In primary cultures of hippocampal neurons, PKMζ activity was critical for increasing the size of PSD-95 clusters during chemical LTP (cLTP). Increasing PKMζ activity by overexpressing the kinase in hippocampal neurons was sufficient to increase PSD-95 cluster size, spine size, and postsynaptic AMPAR subunit GluA2. Overexpression of an inactive mutant of PKMζ did not increase PSD-95 clustering, and applications of the ζ-pseudosubstrate inhibitor ZIP reversed the PKMζ-mediated increases in PSD-95 clustering, indicating that the activity of PKMζ is necessary to induce and maintain the increased size of PSD-95 clusters. Thus the persistent activity of PKMζ is both necessary and sufficient for maintaining increases of PSD-95 clusters, providing a unified mechanism for long-term functional and structural modifications of synapses. Copyright © 2011 Wiley Periodicals, Inc.

  5. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Elmegreen, B. G.; Calzetti, D.; Adamo, A.; Aloisi, A.; Bright, S. N.; Cook, D. O.; Dale, D. A.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grebel, E. K.; Kahre, L.; Kim, H.; Krumholz, M. R.; Lee, J. C.; Messa, M.; Ryon, J. E.; Ubeda, L.

    2017-06-01

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25-0.6 power, and that the maximum size over which star formation is physically correlated ranges from ˜200 pc to ˜1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  6. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Elmegreen, B. G.

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are closemore » to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.« less

  7. Performance of small cluster surveys and the clustered LQAS design to estimate local-level vaccination coverage in Mali.

    PubMed

    Minetti, Andrea; Riera-Montes, Margarita; Nackers, Fabienne; Roederer, Thomas; Koudika, Marie Hortense; Sekkenes, Johanne; Taconet, Aurore; Fermon, Florence; Touré, Albouhary; Grais, Rebecca F; Checchi, Francesco

    2012-10-12

    Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required. We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A. VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans. Small sample cluster surveys (10 × 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.

  8. Temperature Dependence of Arn+ Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature.

    PubMed

    Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud

    2018-01-01

    In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.

  9. Accounting for twin births in sample size calculations for randomised trials.

    PubMed

    Yelland, Lisa N; Sullivan, Thomas R; Collins, Carmel T; Price, David J; McPhee, Andrew J; Lee, Katherine J

    2018-05-04

    Including twins in randomised trials leads to non-independence or clustering in the data. Clustering has important implications for sample size calculations, yet few trials take this into account. Estimates of the intracluster correlation coefficient (ICC), or the correlation between outcomes of twins, are needed to assist with sample size planning. Our aims were to provide ICC estimates for infant outcomes, describe the information that must be specified in order to account for clustering due to twins in sample size calculations, and develop a simple tool for performing sample size calculations for trials including twins. ICCs were estimated for infant outcomes collected in four randomised trials that included twins. The information required to account for clustering due to twins in sample size calculations is described. A tool that calculates the sample size based on this information was developed in Microsoft Excel and in R as a Shiny web app. ICC estimates ranged between -0.12, indicating a weak negative relationship, and 0.98, indicating a strong positive relationship between outcomes of twins. Example calculations illustrate how the ICC estimates and sample size calculator can be used to determine the target sample size for trials including twins. Clustering among outcomes measured on twins should be taken into account in sample size calculations to obtain the desired power. Our ICC estimates and sample size calculator will be useful for designing future trials that include twins. Publication of additional ICCs is needed to further assist with sample size planning for future trials. © 2018 John Wiley & Sons Ltd.

  10. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness

    PubMed Central

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.

    Here, we explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis ofin situsynchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. Our analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °Cmore » produces metallic Cu 0of two distinct particle sizes: ~4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0–NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systemsin situ.« less

  12. Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000

    DOE PAGES

    Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.; ...

    2017-04-03

    Here, we explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis ofin situsynchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. Our analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °Cmore » produces metallic Cu 0of two distinct particle sizes: ~4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0–NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systemsin situ.« less

  13. Formation of Very Young Massive Clusters and Implications for Globular Clusters

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    How Very Young Massive star Clusters (VYMCs; also known as "starburst" clusters), which typically are of ≳ 104 M ⊙ and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and computational studies provide clues about their formation scenarios and the underlying physical processes involved. This chapter is focused on reviewing the decade-long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modelling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by addressing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date literature, in an integrated fashion, several new insights and discussions are provided.

  14. Dot size effects of nanocrystalline germanium on charging dynamics of memory devices

    PubMed Central

    2013-01-01

    The dot size of nanocrystalline germanium (NC Ge) which impacts on the charging dynamics of memory devices has been theoretically investigated. The calculations demonstrate that the charge stored in the NC Ge layer and the charging current at a given oxide voltage depend on the dot size especially on a few nanometers. They have also been found to obey the tendency of initial increase, then saturation, and lastly, decrease with increasing dot size at any given charging time, which is caused by a compromise between the effects of the lowest conduction states and the capacitance of NC Ge layer on the tunneling. The experimental data from literature have also been used to compare and validate the theoretical analysis. PMID:23305228

  15. Clustering of longitudinal data by using an extended baseline: A new method for treatment efficacy clustering in longitudinal data.

    PubMed

    Schramm, Catherine; Vial, Céline; Bachoud-Lévi, Anne-Catherine; Katsahian, Sandrine

    2018-01-01

    Heterogeneity in treatment efficacy is a major concern in clinical trials. Clustering may help to identify the treatment responders and the non-responders. In the context of longitudinal cluster analyses, sample size and variability of the times of measurements are the main issues with the current methods. Here, we propose a new two-step method for the Clustering of Longitudinal data by using an Extended Baseline. The first step relies on a piecewise linear mixed model for repeated measurements with a treatment-time interaction. The second step clusters the random predictions and considers several parametric (model-based) and non-parametric (partitioning, ascendant hierarchical clustering) algorithms. A simulation study compares all options of the clustering of longitudinal data by using an extended baseline method with the latent-class mixed model. The clustering of longitudinal data by using an extended baseline method with the two model-based algorithms was the more robust model. The clustering of longitudinal data by using an extended baseline method with all the non-parametric algorithms failed when there were unequal variances of treatment effect between clusters or when the subgroups had unbalanced sample sizes. The latent-class mixed model failed when the between-patients slope variability is high. Two real data sets on neurodegenerative disease and on obesity illustrate the clustering of longitudinal data by using an extended baseline method and show how clustering may help to identify the marker(s) of the treatment response. The application of the clustering of longitudinal data by using an extended baseline method in exploratory analysis as the first stage before setting up stratified designs can provide a better estimation of treatment effect in future clinical trials.

  16. Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices.

    PubMed

    Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György

    2015-03-14

    The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.

  17. Micro-flock patterns and macro-clusters in chiral active Brownian disks

    NASA Astrophysics Data System (ADS)

    Levis, Demian; Liebchen, Benno

    2018-02-01

    Chiral active particles (or self-propelled circle swimmers) feature a rich collective behavior, comprising rotating macro-clusters and micro-flock patterns which consist of phase-synchronized rotating clusters with a characteristic self-limited size. These patterns emerge from the competition of alignment interactions and rotations suggesting that they might occur generically in many chiral active matter systems. However, although excluded volume interactions occur naturally among typical circle swimmers, it is not yet clear if macro-clusters and micro-flock patterns survive their presence. The present work shows that both types of pattern do survive but feature strongly enhance fluctuations regarding the size and shape of the individual clusters. Despite these fluctuations, we find that the average micro-flock size still follows the same characteristic scaling law as in the absence of excluded volume interactions, i.e. micro-flock sizes scale linearly with the single-swimmer radius.

  18. In-Plane Multimagnetron Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Laskin, Julia

    2017-04-01

    Nanoparticles (NPs) and sub-nanometer clusters containing controlled amounts of different atoms are of interest for a variety of potential applications including catalysis,1, 2 optics,3, 4 magnetics,5-7 sensors,8, 9 and biotheraputics.10, 11 Alloy NPs may possess enhanced physical and chemical properties compared to single metal species due to the additional interplay between their different elemental components. By reducing the quantity of expensive precious metals in alloy NPs by substituting cheaper base metals, it may also be possible to achieve equivalent or even superior performance to pure noble metal NPs for applications such as heterogeneous catalysis at substantially reduced material costs.12 Inmore » addition, alloying of elements that are immiscible in bulk form is possible in NPs because the enthalpy of mixing decreases and becomes negative at small particle sizes.13, 14 As a result, a substantially broader array of alloy species may be generated in the form of NPs and sub-nanometer clusters.« less

  19. Computational Design of Clusters for Catalysis

    NASA Astrophysics Data System (ADS)

    Jimenez-Izal, Elisa; Alexandrova, Anastassia N.

    2018-04-01

    When small clusters are studied in chemical physics or physical chemistry, one perhaps thinks of the fundamental aspects of cluster electronic structure, or precision spectroscopy in ultracold molecular beams. However, small clusters are also of interest in catalysis, where the cold ground state or an isolated cluster may not even be the right starting point. Instead, the big question is: What happens to cluster-based catalysts under real conditions of catalysis, such as high temperature and coverage with reagents? Myriads of metastable cluster states become accessible, the entire system is dynamic, and catalysis may be driven by rare sites present only under those conditions. Activity, selectivity, and stability are highly dependent on size, composition, shape, support, and environment. To probe and master cluster catalysis, sophisticated tools are being developed for precision synthesis, operando measurements, and multiscale modeling. This review intends to tell the messy story of clusters in catalysis.

  20. Percolation technique for galaxy clustering

    NASA Technical Reports Server (NTRS)

    Klypin, Anatoly; Shandarin, Sergei F.

    1993-01-01

    We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.