Sample records for nanometric water menisci

  1. Big and small: menisci in soil pores affect water pressures, dynamics of groundwater levels, and catchment-scale average matric potentials

    NASA Astrophysics Data System (ADS)

    de Rooij, G. H.

    2010-09-01

    Soil water is confined behind the menisci of its water-air interface. Catchment-scale fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect the matric potential, and thereby the interface curvature and the configuration of the phases. In turn, these affect the fluxes (except precipitation), creating feedbacks between pore-scale and catchment-scale processes. Tracking pore-scale processes beyond the Darcy scale is not feasible. Instead, for a simplified system based on the classical Darcy's Law and Laplace-Young Law we i) clarify how menisci transfer pressure from the atmosphere to the soil water, ii) examine large-scale phenomena arising from pore-scale processes, and iii) analyze the relationship between average meniscus curvature and average matric potential. In stagnant water, changing the gravitational potential or the curvature of the air-water interface changes the pressure throughout the water. Adding small amounts of water can thus profoundly affect water pressures in a much larger volume. The pressure-regulating effect of the interface curvature showcases the meniscus as a pressure port that transfers the atmospheric pressure to the water with an offset directly proportional to its curvature. This property causes an extremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil surface and the menisci flatten. For large bodies of subsurface water, the curvature and vertical position of any meniscus quantify the uniform hydraulic potential under hydrostatic equilibrium. During unit-gradient flow, the matric potential corresponding to the mean curvature of the menisci should provide a good approximation of the intrinsic phase average of the matric potential.

  2. Cautious surgery for discoid menisci

    NASA Astrophysics Data System (ADS)

    Smith, Chadwick F.; Van Dyk, Eda; Jurgutis, John; Vangsness, C. Thomas

    1995-05-01

    Thirty patients were surgically treated for discoid menisci at our institution from 1972 to 1987. All developed Fairbank's changes if followed more than 5 years. Between 1980 and 1987 we saw 25 patients with menisci over 50% of the size of the femoral condyle by magnetic resonance imaging or arthrographic examination. Surgical criteria have been anteroposterior hypermobility and arthroscopic evidence of rupture in patients with disabling symptoms. Of the 21 patients undergoing surgery since 1980, 99 (43%) have developed Fairbank's changes, all having been treated by partial meniscectomy or meniscectomy plus posterior repair. Follow-up arthroscopy in five patients revealed distinctly abnormal but relatively stable menisci. Partial meniscectomy for discoid menisci by the Watanabe classification is recommended if symptoms are disabling and the menisci is significantly torn. Repair must be added if the posterior horn is unstable.

  3. Medial and Lateral Discoid Menisci of Both Knees

    PubMed Central

    Kan, Hiroyuki; Arai, Yuji; Nakagawa, Shuji; Inoue, Hiroaki; Minami, Ginjiro; Ikoma, Kazuya; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2016-01-01

    Discoid menisci on both the medial and lateral sides are rare, and there are very few reports on cases involving both sides. We report a case of a 52-year-old female with medial and lateral discoid menisci in both knees. Arthroscopy revealed the lateral menisci of both knees were complete discoid menisci, and partial meniscectomy was performed. The medial menisci were incomplete discoid menisci, but there were no findings of abnormal mobility or injury; therefore, the medial menisci were observed without treatment. At six months postoperatively, her pain and range of motion restrictions disappeared. PMID:27894182

  4. Tie-fibre structure and organization in the knee menisci

    PubMed Central

    Andrews, Stephen H J; Rattner, Jerome B; Abusara, Ziad; Adesida, Adetola; Shrive, Nigel G; Ronsky, Janet L

    2014-01-01

    The collagenous structure of the knee menisci is integral to the mechanical integrity of the tissue and the knee joint. The tie-fibre structure of the tissue has largely been neglected, despite previous studies demonstrating its correlation with radial stiffness. This study has evaluated the structure of the tie-fibres of bovine menisci using 2D and 3D microscopy techniques. Standard collagen and proteoglycan (PG) staining and 2D light microscopy techniques were conducted. For the first time, the collagenous structure of the menisci was evaluated using 3D, second harmonic generation (SHG) microscopy. This technique facilitated the imaging of collagen structure in thick sections (50–100 μm). Imaging identified that tie-fibres of the menisci arborize from the outer margin of the meniscus toward the inner tip. This arborization is associated with the structural arrangement of the circumferential fibres. SHG microscopy has definitively demonstrated the 3D organization of tie-fibres in both sheets and bundles. The hierarchy of the structure is related to the organization of circumferential fascicles. Large tie-fibre sheets bifurcate into smaller sheets to surround circumferential fascicles of decreasing size. The tie-fibres emanate from the lamellar layer that appears to surround the entire meniscus. At the tibial and femoral surfaces these tie-fibre sheets branch perpendicularly into the meniscal body. The relationship between tie-fibres and blood vessels in the menisci was also observed in this study. Tie-fibre sheets surround the blood vessels and an associated PG-rich region. This subunit of the menisci has not previously been described. The size of tie-fibre sheets surrounding the vessels appeared to be associated with the size of blood vessel. These structural findings have implications in understanding the mechanics of the menisci. Further, refinement of the complex structure of the tie-fibres is important in understanding the consequences of injury and

  5. Universal Long-Range Nanometric Bending of Water by Light.

    PubMed

    Verma, Gopal; Singh, Kamal P

    2015-10-02

    Resolving mechanical effects of light on fluids has fundamental importance with wide applications. Most experiments to date on optofluidic interface deformation exploited radiation forces exerted by normally incident lasers. However, the intriguing effects of photon momentum for any configuration, including the unique total internal reflection regime, where an evanescent wave leaks above the interface, remain largely unexplored. A major difficulty in resolving nanomechanical effects has been the lack of a sensitive detection technique. Here, we devise a simple setup whereby a probe laser produces high-contrast Newton-ring-like fringes from a sessile water drop. The mechanical action of the photon momentum of a pump beam modulates the fringes, thus allowing us to perform a direct noninvasive measurement of a nanometric bulge with sub-5-nm precision. Remarkably, a <10  nm difference in the height of the bulge due to different laser polarizations and nonlinear enhancement in the bulge near total internal reflection is isolated. In addition, the nanometric bulge is shown to extend far longer, 100 times beyond the pump spot. Our high precision data validate the century-old Minkowski theory for a general angle and offer potential for novel optofluidic devices and noncontact nanomanipulation strategies.

  6. The basic science of human knee menisci: structure, composition, and function.

    PubMed

    Fox, Alice J S; Bedi, Asheesh; Rodeo, Scott A

    2012-07-01

    Information regarding the structure, composition, and function of the knee menisci has been scattered across multiple sources and fields. This review contains a concise, detailed description of the knee menisci-including anatomy, etymology, phylogeny, ultrastructure and biochemistry, vascular anatomy and neuroanatomy, biomechanical function, maturation and aging, and imaging modalities. A literature search was performed by a review of PubMed and OVID articles published from 1858 to 2011. This study highlights the structural, compositional, and functional characteristics of the menisci, which may be relevant to clinical presentations, diagnosis, and surgical repairs. An understanding of the normal anatomy and biomechanics of the menisci is a necessary prerequisite to understanding the pathogenesis of disorders involving the knee.

  7. Structure—Function relationships of equine menisci

    PubMed Central

    Peham, Christian; Ade, Nicole; Dürr, Julia; Handschuh, Stephan; Schramel, Johannes Peter; Vogl, Claus; Walles, Heike

    2018-01-01

    Meniscal pathologies are among the most common injuries of the femorotibial joint in both human and equine patients. Pathological forces and ensuing injuries of the cranial horn of the equine medial meniscus are considered analogous to those observed in the human posterior medial horn. Biomechanical properties of human menisci are site- and depth- specific. However, the influence of equine meniscus topography and composition on its biomechanical properties is yet unknown. A better understanding of equine meniscus composition and biomechanics could advance not only veterinary therapies for meniscus degeneration or injuries, but also further substantiate the horse as suitable translational animal model for (human) meniscus tissue engineering. Therefore, the aim of this study was to investigate the composition and structure of the equine knee meniscus in a site- and age-specific manner and their relationship with potential site-specific biomechanical properties. The meniscus architecture was investigated histologically. Biomechanical testing included evaluation of the shore hardness (SH), stiffness and energy loss of the menisci. The SH was found to be subjected to both age and site-specific changes, with an overall higher SH of the tibial meniscus surface and increase in SH with age. Stiffness and energy loss showed neither site nor age related significant differences. The macroscopic and histologic similarities between equine and human menisci described in this study, support continued research in this field. PMID:29522550

  8. Enhanced cellular infiltration of human adipose-derived stem cells in allograft menisci using a needle-punch method.

    PubMed

    Nordberg, Rachel C; Charoenpanich, Adisri; Vaughn, Christopher E; Griffith, Emily H; Fisher, Matthew B; Cole, Jacqueline H; Spang, Jeffrey T; Loboa, Elizabeth G

    2016-10-28

    The meniscus plays a crucial role in knee joint stability, load transmission, and stress distribution. Meniscal tears are the most common reported knee injuries, and the current standard treatment for meniscal deficiency is meniscal allograft transplantation. A major limitation of this approach is that meniscal allografts do not have the capacity to remodel and maintain tissue homeostasis due to a lack of cellular infiltration. The purpose of this study was to provide a new method for enhanced cellular infiltration in meniscal allografts. Twenty medial menisci were collected from cadaveric human sources and split into five experimental groups: (1) control native menisci, (2) decellularized menisci, (3) decellularized menisci seeded with human adipose-derived stem cells (hASC), (4) decellularized needle-punched menisci, and (5) decellularized needle-punched menisci seeded with hASC. All experimental allografts were decellularized using a combined method with trypsin EDTA and peracetic acid. Needle punching (1-mm spacing, 28 G microneedle) was utilized to improve porosity of the allograft. Samples were recellularized with hASC at a density of 250 k/g of tissue. After 28 days of in vitro culture, menisci were analyzed for mechanical, biochemical, and histological characteristics. Menisci maintained structural integrity and material properties (compressive equilibrium and dynamic moduli) throughout preparations. Increased DNA content was observed in the needle-punched menisci but not in the samples without needle punching. Histology confirmed these results, showing enhanced cellular infiltration in needle-punched samples. The enhanced infiltration achieved in this study could help meniscal allografts better remodel post-surgery. The integration of autologous adipose-derived stem cells could improve long-term efficacy of meniscal transplantation procedures by helping to maintain the meniscus in vivo.

  9. Risk factors for lesions of the knee menisci among workers in South Korea's national parks.

    PubMed

    Shin, Donghee; Youn, Kanwoo; Lee, Eunja; Lee, Myeongjun; Chung, Hweemin; Kim, Deokweon

    2016-01-01

    This study was designed to investigate the prevalence of the menisci lesions in national park workers and work factors affecting this prevalence. The study subjects were 698 workers who worked in 20 Korean national parks in 2014. An orthopedist visited each national park and performed physical examinations. Knee MRI was performed if the McMurray test or Apley test was positive and there was a complaint of pain in knee area. An orthopedist and a radiologist respectively read these images of the menisci using a grading system based on the MRI signals. To calculate the cumulative intensity of trekking of the workers, the mean trail distance, the difficulty of the trail, the tenure at each national parks, and the number of treks per month for each worker from the start of work until the present were investigated. Chi-square tests was performed to see if there were differences in the menisci lesions grade according to the variables. The variables used in the Chi-square test were evaluated using simple logistic regression analysis to get crude odds ratios, and adjusted odds ratios and 95 % confidence intervals were calculated using multivariate logistic regression analysis after establishing three different models according to the adjusted variables. According to the MRI signal grades of menisci, 29 % were grade 0, 11.3 % were grade 1, 46.0 % were grade 2, and 13.7 % were grade 3. The differences in the MRI signal grades of menisci according to age and the intensity of trekking as calculated by the three different methods were statistically significant. Multiple logistic regression analysis was performed for three models. In model 1, there was no statistically significant factor affecting the menisci lesions. In model 2, among the factors affecting the menisci lesions, the OR of a high cumulative intensity of trekking was 4.08 (95 % CI 1.00-16.61), and in model 3, the OR of a high cumulative intensity of trekking was 5.84 (95 % CI 1.09-31.26). The factor that most

  10. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    PubMed

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  11. Asymptotic formulae for flow in superhydrophobic channels with longitudinal ridges and protruding menisci

    NASA Astrophysics Data System (ADS)

    Kirk, Toby L.

    2018-03-01

    This paper presents new analytical formulae for flow in a channel with one or both walls patterned with a longitudinal array of ridges and arbitrarily protruding menisci. Derived from a matched asymptotic expansion, they extend results by Crowdy (J. Fluid Mech., vol. 791, 2016, R7) for shear flow, and thus make no restriction on the protrusion into or out of the liquid. The slip length formula is compared against full numerical solutions and, despite the assumption of small ridge period in its derivation, is found to have a very large range of validity; relative errors are small even for periods large enough for the protruding menisci to degrade the flow and touch the opposing wall.

  12. Menisci of the rabbit knee require mechanical loading to maintain homeostasis: cyclic hydrostatic compression in vitro prevents derepression of catabolic genes.

    PubMed

    Natsu-Ume, Takashi; Majima, Tokifumi; Reno, Carol; Shrive, Nigel G; Frank, Cyril B; Hart, David A

    2005-07-01

    The purpose of this study was to examine the influence of removing menisci from their in vivo loading environment on gene expression patterns and to determine whether in vitro loading can maintain the tissues in their in vivo phenotype. Lateral and medial rabbit meniscal explants from one leg were cultured in vitro and subjected to intermittent cyclic hydrostatic pressure (CHP) of 1 MPa at 0.5 Hz for 1 min and a rest period of 14 min (4 h of culture). The contralateral menisci were incubated at atmospheric pressure for 4 h. Menisci from both legs of another set of rabbits were frozen immediately to yield time zero values reflective of in vivo mRNA levels. Total RNA was isolated from all groups and processed for reverse transcription-polymerase chain reaction analysis for a subset of relevant genes (matrix molecules, cytokines, proteinases and inhibitors, enzymes). It was found that mRNA levels for MMP-1, MMP-3, TIMPs, iNOS, COX-2, interleukin-1beta in both menisci, and interleukin-6 in medial menisci were significantly elevated in tissues cultured under nonloading conditions compared to the time zero controls. Subjecting menisci to CHP significantly prevented these increases in mRNA levels for nearly all of the indicated molecules. In contrast, there were no significant differences in mRNA levels for collagens, biglycan, MMP-13, or TIMP-4 between the time zero values and those cultured under either nonloading or loading conditions. These studies demonstrate that removing rabbit menisci from their normal in vivo mechanical environment leads to an apparent up-regulation of a subset of potent effector molecules that could mediate catabolic activities, and that in vitro CHP can largely prevent this apparent up-regulation.

  13. Enhancing Water Evaporation with Floating Synthetic Leaves

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei

    2017-11-01

    When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).

  14. The biological response to nanometre-sized polymer particles.

    PubMed

    Liu, Aiqin; Richards, Laura; Bladen, Catherine L; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2015-09-01

    Recently, nanometre-sized UHMWPE particles generated from hip and knee replacements have been identified in vitro and in vivo. UHMWPE particles in the 0.1-1.0μm size range have been shown to be more biologically active than larger particles, provoking an inflammatory response implicated in late aseptic loosening of total joint replacements. The biological activity of nanometre-sized particles has not previously been studied. The biological response to clinically-relevant UHMWPE wear particles including nanometre-sized and micrometre-sized, along with polystyrene particles (FluoSpheres 20nm, 60nm, 200nm and 1.0μm), and nanometre-sized model polyethylene particles (Ceridust 3615®), was determined in terms of osteolytic cytokine release from primary human peripheral blood mononuclear cells (PBMNCs). Nanometre-sized UHMWPE wear particles, nanometre-sized Ceridust 3615® and 20nm FluoSpheres had no significant effect on TNF-α, IL-1β, IL-6 and IL-8 release from PBMNCs at a concentration of 100μm(3) particles per cell after 12 and 24h. The micrometre-size UHMWPE wear particles (0.1-1.0μm) and 60nm, 200nm and 1.0μm FluoSpheres caused significantly elevated osteolytic cytokine release from PBMNCs. These results indicated that particles below circa 50nm fail to activate PBMNCs and that particle size, composition and morphology played a crucial role in cytokine release by particle stimulated macrophages. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. The biological response to nanometre-sized polymer particles

    PubMed Central

    Liu, Aiqin; Richards, Laura; Bladen, Catherine L.; Ingham, Eileen; Fisher, John; Tipper, Joanne L.

    2015-01-01

    Recently, nanometre-sized UHMWPE particles generated from hip and knee replacements have been identified in vitro and in vivo. UHMWPE particles in the 0.1–1.0 μm size range have been shown to be more biologically active than larger particles, provoking an inflammatory response implicated in late aseptic loosening of total joint replacements. The biological activity of nanometre-sized particles has not previously been studied. The biological response to clinically-relevant UHMWPE wear particles including nanometre-sized and micrometre-sized, along with polystyrene particles (FluoSpheres 20 nm, 60 nm, 200 nm and 1.0 μm), and nanometre-sized model polyethylene particles (Ceridust 3615®), was determined in terms of osteolytic cytokine release from primary human peripheral blood mononuclear cells (PBMNCs). Nanometre-sized UHMWPE wear particles, nanometre-sized Ceridust 3615® and 20 nm FluoSpheres had no significant effect on TNF-α, IL-1β, IL-6 and IL-8 release from PBMNCs at a concentration of 100 μm3 particles per cell after 12 and 24 h. The micrometre-size UHMWPE wear particles (0.1–1.0 μm) and 60 nm, 200 nm and 1.0 μm FluoSpheres caused significantly elevated osteolytic cytokine release from PBMNCs. These results indicated that particles below circa 50 nm fail to activate PBMNCs and that particle size, composition and morphology played a crucial role in cytokine release by particle stimulated macrophages. PMID:26004221

  16. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering

    PubMed Central

    Chen, Ying-Chen; Chen, Ray-Neng; Jhan, Hua-Jing; Liu, Der-Zen; Ho, Hsiu-O; Mao, Yong; Kohn, Joachim

    2015-01-01

    Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair. PMID:25919905

  17. Mapping surface tension induced menisci with application to tensiometry and refractometry.

    PubMed

    Mishra, Avanish; Kulkarni, Varun; Khor, Jian-Wei; Wereley, Steve

    2015-07-28

    In this work, we discuss an optical method for measuring surface tension induced menisci. The principle of measurement is based upon the change in the background pattern produced by the curvature of the meniscus acting as a lens. We measure the meniscus profile over an inclined glass plate and utilize the measured meniscus for estimation of surface tension and refractive index.

  18. Experimental Investigation of Rotating Menisci

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael E.

    2014-07-01

    In upper stages of spacecrafts, Propellant Management Devices (PMD's) can be used to position liquid propellant over the outlet in the absence of gravity. Centrifugal forces due to spin of the upper stage can drive the liquid away from the desired location resulting in malfunction of the stage. In this study, a simplified model consisting of two parallel, segmented and unsegmented disks and a central tube assembled at the center of the upper disk is analyzed experimentally during rotation in microgravity. For each drop tower experiment, the angular speed caused by a centrifugal stage in the drop capsule is kept constant. Steady-states for the menisci between the disks are observed for moderate rotation. For larger angular speeds, a stable shape of the free surfaces fail to sustain and the liquid is driven away. Additionally, tests were performed without rotation to quantify two effects: the removal of a metallic cylinder around the model to establish the liquid column and the determination of the the settling time from terrestrial to microgravity conditions.

  19. The absent bow tie sign in bucket-handle tears of the menisci in the knee.

    PubMed

    Helms, C A; Laorr, A; Cannon, W D

    1998-01-01

    Bucket-handle tears of the menisci are one of the most frequently missed diagnoses in MR examinations of the knee. This article describes the "absent bow tie sign," which can be used to identify bucket-handle tears on routine MR examinations of the knee. The arthroscopic surgical reports (n = 350) from a single orthopedic surgeon's practice during a 24-month period were examined for patients who had a diagnosis of bucket-handle tear and who underwent MR imaging before surgery (n = 32). The MR examinations were retrospectively evaluated for the presence of a bow tie sign. The bow tie sign was considered normal when two sagittal images showed the body segment (a bow tie appearance). The bow tie sign was considered abnormal, consistent with a bucket-handle tear, when only one or no body segment was seen (the absent bow tie sign). Coronal images were evaluated for a truncated meniscus. Also, each MR examination was scrutinized for a displaced fragment and a double posterior cruciate ligament (PCL) sign. Thirty-three bucket-handle tears were found at arthroscopy in 32 patients. One patient had tears of the medial and lateral menisci. The absent bow tie sign was seen in 32 of the 33 cases (sensitivity, 97%) and correlated with the medial or lateral meniscus that was reported torn at arthroscopy. The single false-negative result occurred in a patient with a nondisplaced bucket-handle tear. The findings in 31 contralateral normal menisci were all negative for an absent bow tie sign (specificity, 100%). A displaced fragment was found in 30 (94%) of 32 cases. The coronal images showed a truncated meniscus in 21 (64%) of 33 cases. A double PCL sign was seen in 10 (30%) of 33 cases. The absent bow tie sign is an easily applied finding that can be used with good sensitivity to diagnose bucket-handle tears of the menisci on MR imaging. This sign has a higher accuracy rate than other findings common with bucket-handle tears, such as displaced fragments, a truncated appearance of

  20. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  1. Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images--data from the Osteoarthritis Initiative.

    PubMed

    Paproki, A; Engstrom, C; Chandra, S S; Neubert, A; Fripp, J; Crozier, S

    2014-09-01

    To validate an automatic scheme for the segmentation and quantitative analysis of the medial meniscus (MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee. We analysed sagittal water-excited double-echo steady-state MR images of the knee from a subset of the Osteoarthritis Initiative (OAI) cohort. The MM and LM were automatically segmented in the MR images based on a deformable model approach. Quantitative parameters including volume, subluxation and tibial-coverage were automatically calculated for comparison (Wilcoxon tests) between knees with variable radiographic osteoarthritis (rOA), medial and lateral joint space narrowing (mJSN, lJSN) and pain. Automatic segmentations and estimated parameters were evaluated for accuracy using manual delineations of the menisci in 88 pathological knee MR examinations at baseline and 12 months time-points. The median (95% confidence-interval (CI)) Dice similarity index (DSI) (2 ∗|Auto ∩ Manual|/(|Auto|+|Manual|)∗ 100) between manual and automated segmentations for the MM and LM volumes were 78.3% (75.0-78.7), 83.9% (82.1-83.9) at baseline and 75.3% (72.8-76.9), 83.0% (81.6-83.5) at 12 months. Pearson coefficients between automatic and manual segmentation parameters ranged from r = 0.70 to r = 0.92. MM in rOA/mJSN knees had significantly greater subluxation and smaller tibial-coverage than no-rOA/no-mJSN knees. LM in rOA knees had significantly greater volumes and tibial-coverage than no-rOA knees. Our automated method successfully segmented the menisci in normal and osteoarthritic knee MR images and detected meaningful morphological differences with respect to rOA and joint space narrowing (JSN). Our approach will facilitate analyses of the menisci in prospective MR cohorts such as the OAI for investigations into pathophysiological changes occurring in early osteoarthritis (OA) development. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights

  2. Next Generation Qualification: Nanometrics T120PH Seismometer Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.; Slad, George William

    2017-10-01

    Sandia National Laboratories has tested and evaluated three seismometers, the Trillium 120PH, manufactured by Nanometrics. These seismometers measure broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self- noise, dynamic range, and self-calibration ability. The Nanometrics Trillium 120PH seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.

  3. Energy dependent track structure parametrisations for protons and carbon ions based on nanometric simulations

    NASA Astrophysics Data System (ADS)

    Alexander, Frauke; Villagrasa, Carmen; Rabus, Hans; Wilkens, Jan J.

    2015-09-01

    The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant 4 Monte Carlo toolkit with the Geant4-DNA processes. Based on the energy transfer points - recorded with nanometre resolution - we investigated parametrisations of overall properties of ion track structure. Three different track structure parametrisations have been developed using the distances to the 10 next neighbouring ionisations, the radial energy distribution and ionisation cluster size distributions. These parametrisations of nanometric track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  4. Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Bon, Pierre; Bourg, Nicolas; Lécart, Sandrine; Monneret, Serge; Fort, Emmanuel; Wenger, Jérôme; Lévêque-Fort, Sandrine

    2015-07-01

    Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.

  5. Synthesis of Nanometric-Sized Barium Titanate Powders Using Acetylacetone as the Chelating Agent in a Sol-Precipitation Process

    NASA Astrophysics Data System (ADS)

    Hung, Kun Ming; Hsieh, Ching Shieh; Yang, Wein Duo; Tsai, Hui Ju

    2007-03-01

    Nanometric-sized barium titanate powders were prepared by using titanium isopropoxid as the raw material and acetylacetone as a chelating agent, in a strong alkaline solution (pH > 13) through the sol-precipitation method. The preparatory variables affect the extent of cross-linking in the structure, change the mode of condensation of the gels, and even control the particle size of the powder. The reaction rate of forming powder, at a higher temperature such as 100°C and more water content (the molar ratio of water to titanium isopropoxide is 25) or fewer acetylacetone (the molar ratio of acetylacetone to titanium isopropoxide is 1), is rapid and the particle size formed is finer at 60 80 nm. On the contrary, that of forming powder, at lower temperature (40°C) and less water content (molar ratio of water/titanium isopropoxide = 5) or higher acetylacetone (acetylacetone/titanium isopropoxide = 7), is slow and the particle size of the powder is larger. The optimal preparatory conditions were obtained by using the experimental statistical method; as a result, nanometric-sized BaTiO3 powder with an average particle size of about 50 nm was prepared.

  6. Three-month performance evaluation of the Nanometrics, Inc., Libra Satellite Seismograph System in the northern California Seismic Network

    USGS Publications Warehouse

    Oppenheimer, David H.

    2000-01-01

    In 1999 the Northern California Seismic Network (NCSN) purchased a Libra satellite seismograph system from Nanometrics, Inc to assess whether this technology was a cost-effective and robust replacement for their analog microwave system. The system was purchased subject to it meeting the requirements, criteria and tests described in Appendix A. In early 2000, Nanometrics began delivery of various components of the system, such as the hub and remote satellite dish and mounting hardware, and the NCSN installed and assembled most equipment in advance of the arrival of Nanometrics engineers to facilitate the configuration of the system. The hub was installed in its permanent location, but for logistical reasons the "remote" satellite hardware was initially configured at the NCSN for testing. During the first week of April Nanometrics engineers came to Menlo Park to configure the system and train NCSN staff. The two dishes were aligned with the satellite, and the system was fully operational in 2 days with little problem. Nanometrics engineers spent the remaining 3 days providing hands-on training to NCSN staff in hardware/software operation, configuration, and maintenance. During the second week of April 2000, NCSN staff moved the entire remote system of digitizers, dish assembly, and mounting hardware to Mammoth Lakes, California. The system was reinstalled at the Mammoth Lakes water treatment plant and communications successfully reestablished with the hub via the satellite on 14 April 2000. The system has been in continuous operation since then. This report reviews the performance of the Libra system for the three-month period 20 April 2000 through 20 July 2000. The purpose of the report is to assess whether the system passed the acceptance tests described in Appendix A. We examine all data gaps reported by NCSN "gap list" software and discuss their cause.

  7. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    PubMed

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  8. The Morphological Anatomy of the Menisci of the Knee Joint in Human Fetuses

    PubMed Central

    Koyuncu, Esra; Özgüner, Gülnur; Öztürk, Kenan; Bilkay, Cemil; Dursun, Ahmet; Sulak, Osman

    2017-01-01

    Background: Development of the foetal period of the meniscus has been reported in different studies. Aims: Evaluation of lateral and medial meniscus development, typing and the relationship of the tibia during the foetal period. Study Design: Anatomical dissection. Methods: We evaluated 210 knee menisci obtained from 105 human foetuses ranging in age from 9 to 40 weeks’ gestation. Foetuses were divided into four groups, and the intra-articular structure was exposed. We subsequently acquired images (Samsung WB 100 26X Optical Zoom Wide, Beijing, China) of the intra-articular structures with the aid of a millimetric ruler. The images were digitized for morphometric analyses and analysed by using Netcad 5.1 Software (Ak Mühendislik, Ankara, Turkey). Results: The lateral and medial meniscal areas as well as the lateral and the medial articular surface areas of the tibia increased throughout gestation. We found that the medial articular surface areas were larger than the lateral articular surface areas, and the difference was statistically significant. The ratios of the mean lateral and medial meniscal areas to the lateral and medial articular surface areas, respectively, of the tibia decreased gradually from the first trimester to full term. The most common shape of the medial meniscus was crescentic (50%), and that of the lateral meniscus was C-shaped (61%). Conclusion: This study reveals the development of morphological changes and morphometric measurements of the menisci. PMID:28832324

  9. Computation of three-phase capillary entry pressures and arc menisci configurations in pore geometries from 2D rock images: A combinatorial approach

    NASA Astrophysics Data System (ADS)

    Zhou, Yingfang; Helland, Johan Olav; Hatzignatiou, Dimitrios G.

    2014-07-01

    We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe - Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are

  10. Nanometric holograms based on a topological insulator material.

    PubMed

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-05-18

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.

  11. Anatomy and physical examination of the knee menisci: a narrative review of the orthopedic literature.

    PubMed

    Chivers, Michael D; Howitt, Scott D

    2009-12-01

    The objective of this study was to review the physical examination tests available to a practitioner in order to arrive at a clinical diagnosis or suspicion of a meniscal lesion. The menisci transmit weight bearing forces and increase stability of the knee. The menisci also facilitate nutrition, provide lubrication and shock absorption for the articular cartilage and promote knee proprioception. The combinations of torsional and axial loading appear to be the cause of most meniscal injuries. Diagnosis of acute knee injuries has long been a topic for discussion throughout the orthopedic literature. Many clinical tests and diagnostic studies have been developed to increase the clinician's ability to accurately diagnose these types of disorders of the knee. The accuracy of all diagnostic tests is thought to be dependant upon the skill of the examiner, and the severity and location of the injury. The multitude of tests described to assess meniscal lesions suggests that none are consistently reliable. However, recent research has focused on a composite score to accurately predict meniscus lesions. The combination of a comprehensive history, multiple physical tests and diagnostic imaging for confirmation is typical for a clinical meniscal lesion diagnosis while the gold standard remains the arthroscopic procedure itself.

  12. The triple PCL sign: bucket handle tears of both medial and lateral menisci in a chronically ACL-deficient knee.

    PubMed

    Kakel, Rafid; Russell, Robert; VanHeerden, Pieter

    2010-10-11

    Bucket handle tears of both menisci in the setting of acute or chronic anterior cruciate ligament (ACL) tears of the same knee have rarely been reported in the literature. This article presents a case of a bucket handle tear affecting both the medial and lateral menisci in a patient with chronic ACL rupture. Both bucket handle tears were displaced and locked in the intercondylar notch. A new magnetic resonance image (MRI) sign suggested on sagittal view is called the triple PCL sign, comprising the intact posterior cruciate ligament (PCL) and the 2 displaced fragments in the intercondylar notch from the two bucket handle tears. The precise diagnosis of this condition is of obvious importance for optimal operative planning. While finding the displaced fragment from the medial meniscus is expected to cause the double PCL sign, the torn ACL may have made it easier to visualize the bucket handle tear of the lateral meniscus in the same sagittal plane as the PCL. Only 5 other reports mention bimeniscal bucket handle tears of both the medial and lateral menisci in association with an ACL tear. None have shown the suggested triple PCL sign because of lack of overlap between the 2 bucket handle tears in the coronal plane while lying in the intercondylar notch causing them not to fall in the same sagittal plane. Our patient showed some overlap between the 2 meniscal fragments while lying in the notch to create the triple PCL sign on sagittal MRI. Copyright 2010, SLACK Incorporated.

  13. Nanometric holograms based on a topological insulator material

    PubMed Central

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-01-01

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security. PMID:28516906

  14. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.

    2017-01-01

    Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.

  15. Nanometre-scale thermometry in a living cell

    NASA Astrophysics Data System (ADS)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2013-08-01

    Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz-1/2) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.

  16. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    PubMed Central

    Le, Xuan; Poinern, Gérrard Eddy Jai; Ali, Nurshahidah; Berry, Cassandra M.; Fawcett, Derek

    2013-01-01

    Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales. PMID:23533416

  17. Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.

    PubMed

    Huang, Yanhua; Zong, Wenjun

    2014-01-01

    In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature.

  18. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    PubMed

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  19. Study of radiative heat transfer in Ångström- and nanometre-sized gaps

    DOE PAGES

    Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; ...

    2017-02-15

    Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here in this paper we report studies of radiative heat transfer in few Å to 5nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushingmore » the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones—below the detection limit of our probe—as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps.« less

  20. The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling.

    PubMed

    Shah, Jay; Williams, Wyn; Almeida, Trevor P; Nagy, Lesleis; Muxworthy, Adrian R; Kovács, András; Valdez-Grijalva, Miguel A; Fabian, Karl; Russell, Sara S; Genge, Matthew J; Dunin-Borkowski, Rafal E

    2018-03-21

    Recordings of magnetic fields, thought to be crucial to our solar system's rapid accretion, are potentially retained in unaltered nanometric low-Ni kamacite (~ metallic Fe) grains encased within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However, most of these kamacite grains are magnetically non-uniform, so their ability to retain four-billion-year-old magnetic recordings cannot be estimated by previous theories, which assume only uniform magnetization. Here, we demonstrate that non-uniformly magnetized nanometric kamacite grains are stable over solar system timescales and likely the primary carrier of remanence in dusty olivine. By performing in-situ temperature-dependent nanometric magnetic measurements using off-axis electron holography, we demonstrate the thermal stability of multi-vortex kamacite grains from the chondritic Bishunpur meteorite. Combined with numerical micromagnetic modeling, we determine the stability of the magnetization of these grains. Our study shows that dusty olivine kamacite grains are capable of retaining magnetic recordings from the accreting solar system.

  1. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime

    NASA Astrophysics Data System (ADS)

    Du, Bujie; Jiang, Xingya; Das, Anindita; Zhou, Qinhan; Yu, Mengxiao; Jin, Rongchao; Zheng, Jie

    2017-11-01

    The glomerular filtration barrier is known as a 'size cutoff' slit, which retains nanoparticles or proteins larger than 6-8 nm in the body and rapidly excretes smaller ones through the kidneys. However, in the sub-nanometre size regime, we have found that this barrier behaves as an atomically precise 'bandpass' filter to significantly slow down renal clearance of few-atom gold nanoclusters (AuNCs) with the same surface ligands but different sizes (Au18, Au15 and Au10-11). Compared to Au25 (∼1.0 nm), just few-atom decreases in size result in four- to ninefold reductions in renal clearance efficiency in the early elimination stage, because the smaller AuNCs are more readily trapped by the glomerular glycocalyx than larger ones. This unique in vivo nano-bio interaction in the sub-nanometre regime also slows down the extravasation of sub-nanometre AuNCs from normal blood vessels and enhances their passive targeting to cancerous tissues through an enhanced permeability and retention effect. This discovery highlights the size precision in the body's response to nanoparticles and opens a new pathway to develop nanomedicines for many diseases associated with glycocalyx dysfunction.

  2. Transition from stripe-like patterns to a particulate film using driven evaporating menisci.

    PubMed

    Noguera-Marín, Diego; Moraila-Martínez, Carmen L; Cabrerizo-Vílchez, Miguel A; Rodríguez-Valverde, Miguel A

    2014-07-01

    Better control of colloidal assembly by convective deposition is particularly helpful in particle templating. However, knowledge of the different factors that can alter colloidal patterning mechanisms is still insufficient. Deposit morphology is strongly ruled by contact line dynamics, but the wettability properties of the substrate can alter it drastically. In this work, we experimentally examined the roles of substrate contact angle hysteresis and receding contact angle using driven evaporating menisci similar to the dip-coating technique but at a low capillary number. We used smooth substrates with very different wettability properties and nanoparticles of different sizes. For fixed withdrawal velocity, evaporation conditions, and nanoparticle concentration, we analyzed the morphology of the deposits formed on each substrate. A gradual transition from stripe-like patterns to a film was observed as the contact angle hysteresis and receding contact angle were lowered.

  3. Properties of Diamond and Diamond-Like Clusters in Nanometric Dimensions

    NASA Technical Reports Server (NTRS)

    Halicioglu, Timur; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Variations in materials properties of small clusters of nanometric dimensions were investigated. Investigations were carried out for diamond and diamond-like particles in spherical shapes. Calculations were performed for clusters containing over 1000 carbon atoms. Results indicate that as the cluster size diminishes, (i) the average cohesive energy becomes weaker, (ii) the excess surface energy increases, and (iii) the value for stiffness decreases.

  4. A novel avalanche-confinement TEPC for microdosimetry at nanometric level

    NASA Astrophysics Data System (ADS)

    Bortot, D.; Agosteo, S.; Colautti, P.; Conte, V.; Introini, M. V.; Lorenzoli, M.; Pasquato, S.; Pola, A.

    2017-09-01

    The tissue equivalent proportional counter (TEPC) is the most accurate device for measuring the microdosimetric properties of a particle beam, showing to properly assess the relative biological effectiveness by linking the physical parameters of the radiation with the corresponding biological response. Nevertheless no detailed information on the track structure of the impinging particles can be obtained, since the lower operation limit of the common TEPCs is about 0.3 ?m. On the other hand, the pattern of particle interactions at the nanometer level, which demonstrated to have a strong correlation with radiation-induced damages to the DNA, is directly measured by only three different nanodosimeters worldwide: practical instruments are not yet available. The gap between microdosimetry and track-nanodosimetry can be filled partially by extending the TEPC response down to the nanometric region. A feasibility study of a novel TEPC designed to simulate biological sites in the nanometric domain was performed. The present paper aims at describing the design, the development and the characterization of this avalanche-confinement TEPC. Irradiations with photons, fast neutrons and low-energy carbon ions demonstrated the capability of this TEPC of measuring in the range 0.3 μm - 25 nm.

  5. What holds paper together: Nanometre scale exploration of bonding between paper fibres

    PubMed Central

    Schmied, Franz J.; Teichert, Christian; Kappel, Lisbeth; Hirn, Ulrich; Bauer, Wolfgang; Schennach, Robert

    2013-01-01

    Paper, a man-made material that has been used for hundreds of years, is a network of natural cellulosic fibres. To a large extent, it is the strength of bonding between these individual fibres that controls the strength of paper. Using atomic force microscopy, we explore here the mechanical properties of individual fibre-fibre bonds on the nanometre scale. A single fibre-fibre bond is loaded with a calibrated cantilever statically and dynamically until the bond breaks. Besides the calculation of the total energy input, time dependent processes such as creep and relaxation are studied. Through the nanometre scale investigation of the formerly bonded area, we show that fibrils or fibril bundles play a crucial role in fibre-fibre bonding because they act as bridging elements. With this knowledge, new fabrication routes can be deduced to increase the strength of an ancient product that is in fact an overlooked high-tech material. PMID:23969946

  6. Radiographic identification of the anterior and posterior root attachments of the medial and lateral menisci.

    PubMed

    James, Evan W; LaPrade, Christopher M; Ellman, Michael B; Wijdicks, Coen A; Engebretsen, Lars; LaPrade, Robert F

    2014-11-01

    Anatomic root placement is necessary to restore native meniscal function during meniscal root repair. Radiographic guidelines for anatomic root placement are essential to improve the accuracy and consistency of anatomic root repair and to optimize outcomes after surgery. To define quantitative radiographic guidelines for identification of the anterior and posterior root attachments of the medial and lateral menisci on anteroposterior (AP) and lateral radiographic views. Descriptive laboratory study. The anterior and posterior roots of the medial and lateral menisci were identified in 12 human cadaveric specimens (average age, 51.3 years; age range, 39-65 years) and labeled using 2-mm radiopaque spheres. True AP and lateral radiographs were obtained, and 2 raters independently measured blinded radiographs in relation to pertinent landmarks and radiographic reference lines. On AP radiographs, the anteromedial and posteromedial roots were, on average, 31.9 ± 5.0 mm and 36.3 ± 3.5 mm lateral to the edge of the medial tibial plateau, respectively. The anterolateral and posterolateral roots were, on average, 37.9 ± 5.2 mm and 39.3 ± 3.8 mm medial to the edge of the lateral tibial plateau, respectively. On lateral radiographs, the anteromedial and anterolateral roots were, on average, 4.8 ± 3.7 mm and 20.5 ± 4.3 mm posterior to the anterior margin of the tibial plateau, respectively. The posteromedial and posterolateral roots were, on average, 18.0 ± 2.8 mm and 19.8 ± 3.5 mm anterior to the posterior margin of the tibial plateau, respectively. The intrarater and interrater intraclass correlation coefficients (ICCs) were >0.958, demonstrating excellent reliability. The meniscal root attachment sites were quantitatively and reproducibly defined with respect to anatomic landmarks and superimposed radiographic reference lines. The high ICCs indicate that the measured radiographic relationships are a consistent means for evaluating meniscal root positions. This study

  7. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses

    PubMed Central

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-01-01

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation. PMID:28788010

  8. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    PubMed

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  9. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting.

    PubMed

    Goel, Saurav; Luo, Xichun; Reuben, Robert L; Rashid, Waleed Bin

    2011-11-11

    Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.

  10. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

    PubMed Central

    Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-01-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  11. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.

  12. Raster microdiffraction with synchrotron radiation of hydrated biopolymers with nanometre step-resolution: case study of starch granules

    PubMed Central

    Riekel, C.; Burghammer, M.; Davies, R. J.; Di Cola, E.; König, C.; Lemke, H.T.; Putaux, J.-L.; Schöder, S.

    2010-01-01

    X-ray radiation damage propagation is explored for hydrated starch granules in order to reduce the step resolution in raster-microdiffraction experiments to the nanometre range. Radiation damage was induced by synchrotron radiation microbeams of 5, 1 and 0.3 µm size with ∼0.1 nm wavelength in B-type potato, Canna edulis and Phajus grandifolius starch granules. A total loss of crystallinity of granules immersed in water was found at a dose of ∼1.3 photons nm−3. The temperature dependence of radiation damage suggests that primary radiation damage prevails up to about 120 K while secondary radiation damage becomes effective at higher temperatures. Primary radiation damage remains confined to the beam track at 100 K. Propagation of radiation damage beyond the beam track at room temperature is assumed to be due to reactive species generated principally by water radiolysis induced by photoelectrons. By careful dose selection during data collection, raster scans with 500 nm step-resolution could be performed for granules immersed in water. PMID:20975219

  13. Dynamic changes in ocular Zernike aberrations and tear menisci measured with a wavefront sensor and an anterior segment OCT.

    PubMed

    Xu, Jingjing; Bao, Jinhua; Deng, Jun; Lu, Fan; He, Ji C

    2011-07-29

    To measure dynamic change characteristics of spatial and temporal variations in the post-blink tear film of normal eyes. A wavefront sensor was used to measure dynamic changes in wavefront aberrations, up to the seventh order, for 10 seconds in a group of 33 normal young adults. Tear menisci were imaged with an anterior segment optical coherence tomography (AS-OCT) system and tear film break-up times (TFBUTs) were determined. Systematic changes in main axis astigmatism (R(2) = 0.933, P < 0.0001), vertical coma (R(2) = 0.935, P < 0.0001) and spherical aberrations (R(2) = 0.879, P = 0.0002) occurred during the 10-second post-blink period. Both lower tear meniscus height and area increased by 10 seconds compared with the initial levels (P < 0.0001 for each). The change of vertical coma had significant correlation with the increase of lower tear meniscus areas during the 10-second post-blink period (R(2) = 0.181, P = 0.014). Subjects with TFBUTs < 15 seconds had significantly increased main axis astigmatism, vertical coma, and spherical aberrations by 10 seconds. Subjects with longer TFBUTs did not have any significant wavefront aberrations during that period. Systematic changes in some Zernike aberrations after blinking are associated with the changes in tear menisci and TFBUT. There was a substantial individual variation in dynamic changes of Zernike aberrations, suggesting the necessity to explore individual differences in tear quality and tear performance. Dynamic wavefront measurement combined with anterior segment optical coherence tomography could provide a useful tool to understand spatial and temporal processes of the tear film in clinical practice.

  14. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting

    PubMed Central

    2011-01-01

    Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear. PMID:22078069

  15. Coherent Diffractive Imaging: From Nanometric Down to Picometric Resolution

    NASA Astrophysics Data System (ADS)

    De Caro, Liberato; Carlino, Elvio; Siliqi, Dritan; Giannini, Cinzia

    Coherent diffractive imaging (CDI) is a novel technique for inspecting (crystalline and non-crystalline) matter from nanometric down to picometric resolution. It was used originally with X-rays and, more recently, with electrons (so-called electron diffractive imaging, or EDI). This chapter introduces basic concepts concerning CDI and addresses the different types of X-ray CDI experiments that have been conducted, namely plane wave CDI from isolated objects in forward scattering, focused-beam Fresnel CDI from isolated objects in forward scattering, Bragg CDI from nanocrystals, and keyhole CDI and ptychography from extended objects. A CDI experiment with a transmission electron microscope, alternatively named an EDI experiment, is also introduced.

  16. Nanometric summation architecture based on optical near-field interaction between quantum dots.

    PubMed

    Naruse, Makoto; Miyazaki, Tetsuya; Kubota, Fumito; Kawazoe, Tadashi; Kobayashi, Kiyoshi; Sangu, Suguru; Ohtsu, Motoichi

    2005-01-15

    A nanoscale data summation architecture is proposed and experimentally demonstrated based on the optical near-field interaction between quantum dots. Based on local electromagnetic interactions between a few nanometric elements via optical near fields, we can combine multiple excitations at a certain quantum dot, which allows construction of a summation architecture. Summation plays a key role for content-addressable memory, which is one of the most important functions in optical networks.

  17. Capacitance-voltage characteristics of sub-nanometric Al2O3 / TiO2 laminates: dielectric and interface charge densities.

    PubMed

    Kahouli, Abdelkader; Elbahri, Marwa Ben; Lebedev, Oleg; Lüders, Ulrike

    2017-07-12

    Advanced amorphous sub-nanometric laminates based on TiO 2 and Al 2 O 3 were deposited by atomic layer deposition at low temperature. Low densities of 'slow' and 'fast' interface states are achieved with values of 3.96 · 10 10 cm -2 and 4.85 · 10 -9 eV -1 cm -2 , respectively, by using a 40 nm laminate constituted of 0.7 nm TiO 2 and 0.8 nm Al 2 O 3 . The sub-nanometric laminate shows a low hysteresis width of 20 mV due to the low oxide charge density of about 3.72 · 10 11 cm -2 . Interestingly, such properties are required for stable and reliable performance of MOS capacitors and transistor operation. Thus, decreasing the individual layer thickness to the sub-nanometric range and combining two dielectric materials with oppositely charged defects may play a major role in the electrical response, highly promising for the application in future micro and nano-electronics applications.

  18. The morphology of cometary dust: Subunit size distributions down to tens of nanometres

    NASA Astrophysics Data System (ADS)

    Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus

    2017-04-01

    The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M

  19. Automated T2-mapping of the Menisci From Magnetic Resonance Images in Patients with Acute Knee Injury.

    PubMed

    Paproki, Anthony; Engstrom, Craig; Strudwick, Mark; Wilson, Katharine J; Surowiec, Rachel K; Ho, Charles; Crozier, Stuart; Fripp, Jurgen

    2017-10-01

    This study aimed to evaluate the accuracy of an automated method for segmentation and T2 mapping of the medial meniscus (MM) and lateral meniscus (LM) in clinical magnetic resonance images from patients with acute knee injury. Eighty patients scheduled for surgery of an anterior cruciate ligament or meniscal injury underwent magnetic resonance imaging of the knee (multiplanar two-dimensional [2D] turbo spin echo [TSE] or three-dimensional [3D]-TSE examinations, T2 mapping). Each meniscus was automatically segmented from the 2D-TSE (composite volume) or 3D-TSE images, auto-partitioned into anterior, mid, and posterior regions, and co-registered onto the T2 maps. The Dice similarity index (spatial overlap) was calculated between automated and manual segmentations of 2D-TSE (15 patients), 3D-TSE (16 patients), and corresponding T2 maps (31 patients). Pearson and intraclass correlation coefficients (ICC) were calculated between automated and manual T2 values. T2 values were compared (Wilcoxon rank sum tests) between torn and non-torn menisci for the subset of patients with both manual and automated segmentations to compare statistical outcomes of both methods. The Dice similarity index values for the 2D-TSE, 3D-TSE, and T2 map volumes, respectively, were 76.4%, 84.3%, and 75.2% for the MM and 76.4%, 85.1%, and 76.1% for the LM. There were strong correlations between automated and manual T2 values (r MM  = 0.95, ICC MM  = 0.94; r LM  = 0.97, ICC LM  = 0.97). For both the manual and the automated methods, T2 values were significantly higher in torn than in non-torn MM for the full meniscus and its subregions (P < .05). Non-torn LM had higher T2 values than non-torn MM (P < .05). The present automated method offers a promising alternative to manual T2 mapping analyses of the menisci and a considerable advance for integration into clinical workflows. Copyright © 2017 The Association of University Radiologists. All rights reserved.

  20. Nanometric Surface Oscillation Spectroscopy of Water-Poor Microemulsions.

    PubMed

    Corti, Mario; Raudino, Antonio; Cantù, Laura; Theisen, Johannes; Pleines, Maximilian; Zemb, Thomas N

    2018-06-18

    Selectively exchanging metal complexes between emulsified water-poor microemulsions and concentrated solutions of mixed electrolytes is the core technology for strategic metal recycling. Nanostructuration triggered by solutes present in the organic phase is understood, but little is known about fluctuations of the microemulsion-water interface. We use here a modified version of an opto-electric device initially designed for air bubbles, in order to evidence resonant electrically induced surface waves of an oily droplet suspended in an aqueous phase. Resonant waves of nanometer amplitude of a millimeter-sized microemulsion droplet containing a common ion-specific extractant diluted by dodecane and suspended in a solution of rare earth nitrate are evidenced for the first time with low excitation fields (5 V/cm). From variation of the surface wave spectrum with rare earth concentration, we evidence up-take of rare-earth ions at the interface and at higher concentration the formation of a thin "crust" of liquid crystal forming at unusually low concentration, indicative of a surface induced phase transition. The effect of the liquid crystal structure on the resonance spectrum is backed up by a model, which is used to estimate crust thickness.

  1. Engineering nanometre-scale coherence in soft matter

    NASA Astrophysics Data System (ADS)

    Liu, Chaoren; Xiang, Limin; Zhang, Yuqi; Zhang, Peng; Beratan, David N.; Li, Yueqi; Tao, Nongjian

    2016-10-01

    Electronic delocalization in redox-active polymers may be disrupted by the heterogeneity of the environment that surrounds each monomer. When the differences in monomer redox-potential induced by the environment are small (as compared with the monomer-monomer electronic interactions), delocalization persists. Here we show that guanine (G) runs in double-stranded DNA support delocalization over 4-5 guanine bases. The weak interaction between delocalized G blocks on opposite DNA strands is known to support partially coherent long-range charge transport. The molecular-resolution model developed here finds that the coherence among these G blocks follows an even-odd orbital-symmetry rule and predicts that weakening the interaction between G blocks exaggerates the resistance oscillations. These findings indicate how sequence can be exploited to change the balance between coherent and incoherent transport. The predictions are tested and confirmed using break-junction experiments. Thus, tailored orbital symmetry and structural fluctuations may be used to produce coherent transport with a length scale of multiple nanometres in soft-matter assemblies, a length scale comparable to that of small proteins.

  2. Contact mechanics at nanometric scale using nanoindentation technique for brittle and ductile materials.

    PubMed

    Roa, J J; Rayon, E; Morales, M; Segarra, M

    2012-06-01

    In the last years, Nanoindentation or Instrumented Indentation Technique has become a powerful tool to study the mechanical properties at micro/nanometric scale (commonly known as hardness, elastic modulus and the stress-strain curve). In this review, the different contact mechanisms (elastic and elasto-plastic) are discussed, the recent patents for each mechanism (elastic and elasto-plastic) are summarized in detail, and the basic equations employed to know the mechanical behaviour for brittle and ductile materials are described.

  3. Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries.

    PubMed

    Trzeciak, Tomasz; Richter, Magdalena; Suchorska, Wiktoria; Augustyniak, Ewelina; Lach, Michał; Kaczmarek, Małgorzata; Kaczmarczyk, Jacek

    2016-03-01

    Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.

  4. Synthesis and characterization of nanometric zinc oxide for a stationary phase in liquid chromatography

    NASA Astrophysics Data System (ADS)

    Gordillo-Delgado, F.; Soto-Barrera, C. C.; Plazas-Saldaña, J.

    2017-01-01

    The increasing demand for equipment to remove organic compounds in industry and research activity has led to evaluate nanometric zinc oxide (ZnO). In this work, we present the ZnO nanoparticles synthesis for reusing of discarded columns, as a low-cost alternative. The compound was obtained by sol-gel technique using zinc chloride and sodium hydroxide as precursors and a drying temperature of 169°C. An X-ray diffractometer was used to estimate the average particle size at 20.3±0.2nm the adsorption capacity was 0.0144L/g and the chemical resistance was tested with HCl and NaOH. The ZnO nanopowder was packed with 100psi pressure in an empty C-18 column cavity. The column packing resolution was evaluated using a high performance liquid chromatographer (HPLC-Thermo Scientific Dionex UltiMate 3000); using a caffeine standard, the following parameters were established: solvent flow: 1.2mL/min, average column temperature: 40°C, running time: 10 minutes, mobile phase acetonitrile-water composition (9:1). These results validate the potential of ZnO nanopowder as a column packing material in HPLC technique.

  5. Heterodyne interferometric technique for displacement control at the nanometric scale

    NASA Astrophysics Data System (ADS)

    Topcu, Suat; Chassagne, Luc; Haddad, Darine; Alayli, Yasser; Juncar, Patrick

    2003-11-01

    We propose a method of displacement control that addresses the measurement requirements of the nanotechnology community and provide a traceability to the definition of the mèter at the nanometric scale. The method is based on the use of both a heterodyne Michelson's interferometer and a homemade high frequency electronic circuit. The system so established allows us to control the displacement of a translation stage with a known step of 4.945 nm. Intrinsic relative uncertainty on the step value is 1.6×10-9. Controls of the period of repetition of these steps with a high-stability quartz oscillator permits to impose an uniform speed to the translation stage with the same accuracy. This property will be used for the watt balance project of the Bureau National de Métrologie of France.

  6. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2010-07-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  7. A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometry.

    PubMed

    Peggs, G N; Yacoot, A

    2002-05-15

    This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.

  8. Nanometric depth resolution from multi-focal images in microscopy.

    PubMed

    Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H

    2011-07-06

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.

  9. Environmentally benign nanometric neem-laced urea emulsion for controlling mosquito population in environment.

    PubMed

    Mishra, Prabhakar; Samuel, Merlyn Keziah; Reddy, Ruchishya; Tyagi, Brij Kishore; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2018-01-01

    The increasing risk of vector-borne diseases and the environmental pollution in the day-to-day life due to the usage of the conventional pesticides makes the role of nanotechnology to come into the action. The current study deals with one of the applications of nanotechnology through the formulation of neem urea nanoemulsion (NUNE). NUNE was formulated using neem oil, Tween 20, and urea using the microfluidization method. Prior to the development of nanoemulsion, the ratio of oil/surfactant/urea was optimized using the response surface modeling method. The mean droplet size of the nanoemulsion was found to be 19.3 ± 1.34 nm. The nanoemulsion was found to be stable for the period of 4 days in the field conditions which aids to its mosquitocidal activity. The nanoemulsion exhibited a potent ovicidal and larvicidal activity against A. aegypti and C. tritaeniorhynchus vectors. This result was corroborated with the histopathological analysis of the NUNE-treated larvae. Further, the effect of NUNE on the biochemical profile of the target host was assessed and was found to be efficacious compared to the bulk counterpart. The nanoemulsion was then checked for its biosafety towards the non-target species like plant beneficial bacterium (E. ludwigii), and phytotoxicity was assessed towards the paddy plant (O. sativa). Nanometric emulsion at the concentration used for the mosquitocidal application was found to be potentially safe towards the environment. Therefore, the nanometric neem-laced urea emulsion tends to be an efficient mosquito control agent with an environmentally benign property.

  10. Tear menisci after laser in situ keratomileusis with mechanical microkeratome and femtosecond laser.

    PubMed

    Xie, Wenjia; Zhang, Dong; Chen, Jia; Liu, Jing; Yu, Ye; Hu, Liang

    2014-08-21

    To investigate the effect on tear menisci after laser in situ keratomileusis (LASIK) with flap creation by either microkeratome or femtosecond laser. Sixty eyes of 30 myopes were analyzed. Fifteen patients underwent LASIK with Moria II microkeratome, and the other 15 patients with 60-KHz IntraLase femtosecond laser. Upper and lower tear meniscus parameters of height (UTMH, LTMH) and area (UTMA, LTMA) were measured by SD-OCT preoperatively and 1 week, 1 month, and 3 months postoperatively. Compared with the baseline values, all tear meniscus parameters decreased significantly at each postoperative time point (all P < 0.01) in both groups. LTMH increased significantly between 1 week and 1 month and between 1 and 3 months after surgery in the microkeratome (both P < 0.01) and femtosecond laser groups (P < 0.01, P = 0.012, respectively). There were significant increases in LTMA between 1 week and 1 month after surgery in the microkeratome group (P < 0.01) and in the femtosecond laser group (P = 0.028). There were no significant differences in UTMH, UTMA, LTMH, or LTMA between two groups. The depth of ablation was negatively correlated with the LTMA at 1 week after surgery (R = -0.256, P = 0.049) for all patients. There were no significant differences in the tear meniscus parameters between the microkeratome and femtosecond laser groups. The depth of ablation was significantly correlated with the LTMA only at 1 week after surgery. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  11. Some Considerations on the Dynamics of Nanometric Suspensions in Fluid Media

    NASA Astrophysics Data System (ADS)

    Lungu, Mihai; Neculae, Adrian; Bunoiu, Madalin

    2009-05-01

    Nano-sized particles received considerable interest in the last decade. The manipulation of nanoparticles is becoming an important issue as they are more and more produced as a result of material synthesis and combustion emission. The nanometric particles represent a very important threat for human health because they can readily enter the human body through inhalation and their toxicity is relatively high due to the large specific surface area. The separation of the nano-sized particles into distinct bands, spatially separated one of each other had also brought recently considerable attention in many scientific areas; the usages of nanoparticles are very promising for the new technologies. The behavior of a suspension of sub-micronic particles under the action of dielectrophoretic force is numerically investigated and a theoretical model is proposed.

  12. Evolutionary grinding model for nanometric control of surface roughness for aspheric optical surfaces.

    PubMed

    Han, Jeong-Yeol; Kim, Sug-Whan; Han, Inwoo; Kim, Geon-Hee

    2008-03-17

    A new evolutionary grinding process model has been developed for nanometric control of material removal from an aspheric surface of Zerodur substrate. The model incorporates novel control features such as i) a growing database; ii) an evolving, multi-variable regression equation; and iii) an adaptive correction factor for target surface roughness (Ra) for the next machine run. This process model demonstrated a unique evolutionary controllability of machining performance resulting in the final grinding accuracy (i.e. averaged difference between target and measured surface roughness) of -0.2+/-2.3(sigma) nm Ra over seven trial machine runs for the target surface roughness ranging from 115 nm to 64 nm Ra.

  13. Nanometric depth resolution from multi-focal images in microscopy

    PubMed Central

    Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.

    2011-01-01

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948

  14. Application of a parallel genetic algorithm to the global optimization of medium-sized Au-Pd sub-nanometre clusters

    NASA Astrophysics Data System (ADS)

    Hussein, Heider A.; Demiroglu, Ilker; Johnston, Roy L.

    2018-02-01

    To contribute to the discussion of the high activity and reactivity of Au-Pd system, we have adopted the BPGA-DFT approach to study the structural and energetic properties of medium-sized Au-Pd sub-nanometre clusters with 11-18 atoms. We have examined the structural behaviour and stability as a function of cluster size and composition. The study suggests 2D-3D crossover points for pure Au clusters at 14 and 16 atoms, whereas pure Pd clusters are all found to be 3D. For Au-Pd nanoalloys, the role of cluster size and the influence of doping were found to be extensive and non-monotonic in altering cluster structures. Various stability criteria (e.g. binding energies, second differences in energy, and mixing energies) are used to evaluate the energetics, structures, and tendency of segregation in sub-nanometre Au-Pd clusters. HOMO-LUMO gaps were calculated to give additional information on cluster stability and a systematic homotop search was used to evaluate the energies of the generated global minima of mono-substituted clusters and the preferred doping sites, as well as confirming the validity of the BPGA-DFT approach.

  15. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.

    PubMed

    Zhang, Yanjun; Clausmeyer, Jan; Babakinejad, Babak; Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V; Korchev, Yuri

    2016-03-22

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.

  16. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis

    PubMed Central

    Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R. Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V.; Korchev, Yuri

    2016-01-01

    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. PMID:26816294

  17. Analysis about diamond tool wear in nano-metric cutting of single crystal silicon using molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Liang, Yingchun; Chen, Mingjun; Tong, Zhen; Chen, Jiaxuan

    2010-10-01

    Tool wear not only changes its geometry accuracy and integrity, but also decrease machining precision and surface integrity of workpiece that affect using performance and service life of workpiece in ultra-precision machining. Scholars made a lot of experimental researches and stimulant analyses, but there is a great difference on the wear mechanism, especially on the nano-scale wear mechanism. In this paper, the three-dimensional simulation model is built to simulate nano-metric cutting of a single crystal silicon with a non-rigid right-angle diamond tool with 0 rake angle and 0 clearance angle by the molecular dynamics (MD) simulation approach, which is used to investigate the diamond tool wear during the nano-metric cutting process. A Tersoff potential is employed for the interaction between carbon-carbon atoms, silicon-silicon atoms and carbon-silicon atoms. The tool gets the high alternating shear stress, the tool wear firstly presents at the cutting edge where intension is low. At the corner the tool is splitted along the {1 1 1} crystal plane, which forms the tipping. The wear at the flank face is the structure transformation of diamond that the diamond structure transforms into the sheet graphite structure. Owing to the tool wear the cutting force increases.

  18. In vivo assessing of nanometric changes on the surface of whole tomatoes that have been inoculated with Candida guilliermondii yeast.

    PubMed

    Infante, Esperanza Del Pilar

    2014-08-01

    The cuticle of plants that covers the epidermis of cells, an interface between the fruit and the environment, has an important role to play in fruit quality because it prevents water loss and mechanical damage while simultaneously forming a barrier as it prevents phytopathogens from entering the fruit. All these factors give rise to flaws in the appearance of the fruit, thus contributing to marketing problems in the form of financial loss. In the search for solutions to some of these problems, certain biocontrolling yeasts have been introduced in the last few years. In the study described here, the changes observed on the surface of the whole tomato were evaluated in vivo during the first 72 h after inoculation by spraying Candida guilliermondii yeast onto the fruit's surface. The measurements were taken on a nanometric scale using atomic force microscopy; images were created in both contact and tapping modes. The results showed diminished roughness of the surface, which could contribute to reduced phytopathogen adherence due to the thinner contact area. These results furthermore showed that a yeast biofilm was formed on the fruit which probably helps to improve water retention inside the fruit. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. K-Ar dating and delta O-18-delta D characterization of nanometric illite from Ordovician K-bentonites of the Appalachians: illitization and the Acadian-Alleghenian tectonic activity

    USGS Publications Warehouse

    Clauer, Norbert; Fallick, Anthony E.; Eberl, Dennis D.; Honty, Miroslav; Huff, Warren D.; Auberti, Amelie

    2013-01-01

    Nanometric (2 diagram that illitization occurred in all fractions by simultaneous nucleation and crystal growth, except for one sample. In that sample, a period of growth without nucleation was detected on top of the nucleation and growth episode. The K-Ar ages organize into two isochrons, the first at 319.9 ± 2.0 Ma with an initial 40Ar/36Ar ratio of 271 ± 66 Ma, and the second at 284.9 ± 1.2 Ma with an initial 40Ar/36Ar ratio of 310 ± 44. One data point above the older isochron and three between the two isochrons suggest a detrital contamination for the former separate and a possible further generation of nanoparticles for the three others. The samples with the older crystallization age consist of illite and illite-rich mixed-layers, and those with the younger age contain smectite-rich mixed-layers without illite, or illite-enriched illite-smectite mixed-layers. The K-Ar ages fit the age trends published previously for similar K-bentonites with regional age patterns between 240 and 270 Ma in the southwestern region, between 270 and 300 Ma in the central zone and the southern Appalachians, and between 315 and 370 Ma in the northernmost. Each of the two generations of illite crystals yields very consistent δ18O (V-SMOW) values at 17 ± 1‰ for the older and at 21 ± 1‰ for the younger. If crystallization temperatures of the nanometric illite were between 100 and 200 °C, as suggested by microthermometric determinations, the hydrothermal fluids had δ18O values of 4 ± 1‰ in the Dalton district and of 8 ± 1‰ in the Lafayette, Trenton, and Dirtseller districts at 100 °C, and of 11 ± 1 and 15 ± 1‰ in the same locations at 200 °C, probably because the water-rock isotope exchanges at elevated temperature occurred in rock-dominated systems. The δ18O of the fluids remained unchanged during local crystal growth, but varied depending on the geographic location of the samples and timing of illitization. The δD (V-SMOW) values of the different size

  20. In-depth analysis and modelling of self-heating effects in nanometric DGMOSFETs

    NASA Astrophysics Data System (ADS)

    Roldán, J. B.; González, B.; Iñiguez, B.; Roldán, A. M.; Lázaro, A.; Cerdeira, A.

    2013-01-01

    Self-heating effects (SHEs) in nanometric symmetrical double-gate MOSFETs (DGMOSFETs) have been analysed. An equivalent thermal circuit for the transistors has been developed to characterise thermal effects, where the temperature and thickness dependency of the thermal conductivity of the silicon and oxide layers within the devices has been included. The equivalent thermal circuit is consistent with simulations using a commercial technology computer-aided design (TCAD) tool (Sentaurus by Synopsys). In addition, a model for DGMOSFETs has been developed where SHEs have been considered in detail, taking into account the temperature dependence of the low-field mobility, saturation velocity, and inversion charge. The model correctly reproduces Sentaurus simulation data for the typical bias range used in integrated circuits. Lattice temperatures predicted by simulation are coherently reproduced by the model for varying silicon layer geometry.

  1. Synthesis and characterization of nanometric magnetite coated by oleic acid and the surfactant CTAB. Surfactant coated nanometric magnetite/maghemite

    NASA Astrophysics Data System (ADS)

    Celis, J. Almazán; Olea Mejía, O. F.; Cabral-Prieto, A.; García-Sosa, I.; Derat-Escudero, R.; Baggio Saitovitch, E. M.; Alzamora Camarena, M.

    2017-11-01

    Nanometric magnetite ( nm-Fe3O4) particles were prepared by the reverse co-precipitation synthesis method, obtaining particle sizes that ranged from 4 to 8.5 nm. In their synthesis, the concentration of iron salts of ferric nitrate, Fe(NO3)3ṡ9H2O, and ferrous sulfate, FeSO4ṡ7H2O, were varied relative to the chemical reaction volume and by using different surfactants such as oleic acid (OA) and hexadecyltrimethylammonium bromide (CTAB). The nm-Fe3O4 particles were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), magnetic and X-ray diffraction (XRD) measurements. Typical asymmetrical and/or broad lines shapes appeared in all Mössbauer spectra of the as prepared samples suggesting strong magnetic inter-particle interactions, reducing these interactions to some extent by gentle mechanical grinding. For the smallest particles, maghemite instead of magnetite was the main preparation product as low temperature Mössbauer and magnetic measurements indicated. For the intermediate and largest particles a mixture of magnetite and maghemite phases were produced as the saturation magnetization values of MS ˜ 60 emu/g indicated; these values were measured for most samples, independently of the coating surfactant concentration, and according to the ZFC-FC curves the blocking temperatures were 225K and 275K for the smallest and largest magnetite nanoparticles, respectively. The synthesis method was highly reproducible.

  2. Dynamical behavior of a single polymer chain under nanometric confinement

    NASA Astrophysics Data System (ADS)

    Lagrené, K.; Zanotti, J.-M.; Daoud, M.; Farago, B.; Judeinstein, P.

    2010-10-01

    We address the dynamical behavior of a single polymer chain under nanometric confinement. We consider a polymer melt made of a mixture of hydrogenated and deuterated high molecular mass Poly(Ethylene Oxide) (PEO). The confining material is a membrane of Anodic Aluminum Oxide (AAO), a macroscopically highly ordered confining system made of parallel cylindrical channels. We use Neutron Spin-Echo (NSE) under the Zero Average Contrast (ZAC) condition to, all at once, i) match the intense porous AAO detrimental elastic SANS (Small Angle Neutron Scattering) contribution to the total intermediate scattering function I(Q,t) and ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The polymer dynamics is probed on an extremely broad spacial ([2.2 10-2 Å-1, 0.2 Å-1]) and temporal ([0.1 ns, 600 ns]) ranges. We do not detect any influence of confinement on the polymer dynamics. This result is discussed in the framework of the debate on the existence of a "corset effect" recently suggested by NMR relaxometry data.

  3. Enrichment of ODMR-active nitrogen-vacancy centres in five-nanometre-sized detonation-synthesized nanodiamonds: Nanoprobes for temperature, angle and position.

    PubMed

    Sotoma, Shingo; Terada, Daiki; Segawa, Takuya F; Igarashi, Ryuji; Harada, Yoshie; Shirakawa, Masahiro

    2018-04-03

    The development of sensors to estimate physical properties, and their temporal and spatial variation, has been a central driving force in scientific breakthroughs. In recent years, nanosensors based on quantum measurements, such as nitrogen-vacancy centres (NVCs) in nanodiamonds, have been attracting much attention as ultrastable, sensitive, accurate and versatile physical sensors for quantitative cellular measurements. However, the nanodiamonds currently available for use as sensors have diameters of several tens of nanometres, much larger than the usual size of a protein. Therefore, their actual applications remain limited. Here we show that NVCs in an aggregation of 5-nm-sized detonation-synthesized nanodiamond treated by Krüger's surface reduction (termed DND-OH) retains the same characteristics as observed in larger diamonds. We show that the negative charge at the NVC are stabilized, have a relatively long T 2 spin relaxation time of up to 4 μs, and are applicable to thermosensing, one-degree orientation determination and nanometric super-resolution imaging. Our results clearly demonstrate the significant potential of DND-OH as a physical sensor. Thus, DND-OH will raise new possibilities for spatiotemporal monitoring of live cells and dynamic biomolecules in individual cells at single-molecule resolution.

  4. New understanding of the complex structure of knee menisci: implications for injury risk and repair potential for athletes.

    PubMed

    Rattner, J B; Matyas, J R; Barclay, L; Holowaychuk, S; Sciore, P; Lo, I K Y; Shrive, N G; Frank, C B; Achari, Y; Hart, D A

    2011-08-01

    Menisci help maintain the structural integrity of the knee. However, the poor healing potential of the meniscus following a knee injury can not only end a career in sports but lead to osteoarthritis later in life. Complete understanding of meniscal structure is essential for evaluating its risk for injury and subsequent successful repair. This study used novel approaches to elucidate meniscal architecture. The radial and circumferential collagen fibrils in the meniscus were investigated using novel tissue-preparative techniques for light and electron microscopic studies. The results demonstrate a unique architecture based on differences in the packaging of the fundamental collagen fibrils. For radial arrays, the collagen fibrils are arranged in parallel into ∼10 μm bundles, which associate laterally to form flat sheets of varying dimensions that bifurcate and come together to form a honeycomb network within the body of the meniscus. In contrast, the circumferential arrays display a complex network of collagen fibrils arranged into ∼5 μm bundles. Interestingly, both types of architectural organization of collagen fibrils in meniscus are conserved across mammalian species and are age and sex independent. These findings imply that disruptions in meniscal architecture following an injury contribute to poor prognosis for functional repair. © 2010 John Wiley & Sons A/S.

  5. Amorphous sub-nanometre Tb-doped SiO(x)N(y)/SiO2 superlattices for optoelectronics.

    PubMed

    Ramírez, Joan Manel; Wojcik, Jacek; Berencén, Yonder; Ruiz-Caridad, Alícia; Estradé, Sònia; Peiró, Francesca; Mascher, Peter; Garrido, Blas

    2015-02-27

    Amorphous sub-nanometre Tb-doped SiOxNy/SiO2 superlattices were fabricated by means of alternating deposition of 0.7 nm thick Tb-doped SiOxNy layers and of 0.9 nm thick SiO2 barrier layers in an electron-cyclotron-resonance plasma enhanced chemical vapour deposition system with in situ Tb-doping capability. High resolution transmission electron microscopy images showed a well-preserved superlattice morphology after annealing at a high temperature of 1000 °C. In addition, transparent indium tin oxide (ITO) electrodes were deposited by electron beam evaporation using a shadow mask approach to allow for the optoelectronic characterization of superlattices. Tb(3+) luminescent spectral features were obtained using three different excitation sources: UV laser excitation (photoluminescence (PL)), under a bias voltage (electroluminescence (EL)) and under a highly energetic electron beam (cathodoluminescence (CL)). All techniques displayed Tb(3+) inner transitions belonging to (5)D4 levels except for the CL spectrum, in which (5)D3 transition levels were also observed. Two competing mechanisms were proposed to explain the spectral differences observed between PL (or EL) and CL excitation: the population rate of the (5)D3 state and the non-radiative relaxation rate of the (5)D3-(5)D4 transition due to a resonant OH-mode. Moreover, the large number of interfaces (trapping sites) that electrons have to get through was identified as the main reason for observing a bulk-limited charge transport mechanism governed by Poole-Frenkel conduction in the J-V characteristic. Finally, a linear EL-J dependence was measured, with independent spectral shape and an EL onset voltage as low as 6.7 V. These amorphous sub-nanometre superlattices are meant to provide low-cost solutions in different areas including sensing, photovoltaics or photonics.

  6. Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method

    NASA Astrophysics Data System (ADS)

    Lugo, J. M.; Oliva, A. I.

    2017-02-01

    The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films' thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.

  7. Measuring nanometre-scale electric fields in scanning transmission electron microscopy using segmented detectors.

    PubMed

    Brown, H G; Shibata, N; Sasaki, H; Petersen, T C; Paganin, D M; Morgan, M J; Findlay, S D

    2017-11-01

    Electric field mapping using segmented detectors in the scanning transmission electron microscope has recently been achieved at the nanometre scale. However, converting these results to quantitative field measurements involves assumptions whose validity is unclear for thick specimens. We consider three approaches to quantitative reconstruction of the projected electric potential using segmented detectors: a segmented detector approximation to differential phase contrast and two variants on ptychographical reconstruction. Limitations to these approaches are also studied, particularly errors arising from detector segment size, inelastic scattering, and non-periodic boundary conditions. A simple calibration experiment is described which corrects the differential phase contrast reconstruction to give reliable quantitative results despite the finite detector segment size and the effects of plasmon scattering in thick specimens. A plasmon scattering correction to the segmented detector ptychography approaches is also given. Avoiding the imposition of periodic boundary conditions on the reconstructed projected electric potential leads to more realistic reconstructions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sub-nanometre resolution imaging of polymer–fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    PubMed Central

    Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia

    2015-01-01

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738

  9. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy.

    PubMed

    Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia

    2015-04-24

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.

  10. Study on the dielectric properties of Al2O3/TiO2 sub-nanometric laminates: effect of the bottom electrode and the total thickness

    NASA Astrophysics Data System (ADS)

    Ben Elbahri, M.; Kahouli, A.; Mercey, B.; Lebedev, O.; Donner, W.; Lüders, U.

    2018-02-01

    Dielectrics based on amorphous sub-nanometric laminates of TiO2 and Al2O3 are subject to elevated dielectric losses and leakage currents, in large parts due to the extremely thin individual layer thickness chosen for the creation of the Maxwell-Wagner relaxation and therefore the high apparent dielectric constants. The optimization of performances of the laminate itself being strongly limited by this contradiction concerning its internal structure, we will show in this study that modifications of the dielectric stack of capacitors based on these sub-nanometric laminates can positively influence the dielectric losses and the leakage, as for example the nature of the electrodes, the introduction of thick insulating layers at the laminate/electrode interfaces and the modification of the total laminate thickness. The optimization of the dielectric stack leads to the demonstration of a capacitor with an apparent dielectric constant of 90, combined with low dielectric loss (tan δ) of 7 · 10-2 and with leakage currents smaller than 1  ×  10-6 A cm-2 at 10 MV m-1.

  11. Electrochemical behaviour of naked sub-nanometre sized copper clusters and effect of CO 2

    DOE PAGES

    Passalacqua, Rosalba; Parathoner, Siglinda; Centi, Gabriele; ...

    2016-08-04

    The study of the electrochemical behavior (in the presence of N 2 or CO 2) of size-controlled naked Cu 5 and Cu 20 nanoclusters, prepared using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques, evidences some relevant results regarding the redox behavior of these sub-nanometre sized copper particles and the effect of CO 2 on them. Cu 20 nanoclusters show anodic redox processes occurring at much lower potential with respect to Cu 5 nanoclusters, which behave relatively similar to much larger Cu particles. However, Cu 5 nanoclusters coordinate effectively CO 2 (hydrogen carbonate) in solution, differentmore » from Cu 20 nanoclusters and larger Cu particles. This effect, rather than the redox behavior, is apparently connected to the ability of Cu 5 nanoclusters to reduce CO 2 under cathodic conditions at low overpotential. In conclusion, although preliminary, these results provide rather exciting indications on the possibility of realizing low overpotential electrocatalytic conversion of CO 2.« less

  12. Electrochemical behaviour of naked sub-nanometre sized copper clusters and effect of CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passalacqua, Rosalba; Parathoner, Siglinda; Centi, Gabriele

    The study of the electrochemical behavior (in the presence of N 2 or CO 2) of size-controlled naked Cu 5 and Cu 20 nanoclusters, prepared using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques, evidences some relevant results regarding the redox behavior of these sub-nanometre sized copper particles and the effect of CO 2 on them. Cu 20 nanoclusters show anodic redox processes occurring at much lower potential with respect to Cu 5 nanoclusters, which behave relatively similar to much larger Cu particles. However, Cu 5 nanoclusters coordinate effectively CO 2 (hydrogen carbonate) in solution, differentmore » from Cu 20 nanoclusters and larger Cu particles. This effect, rather than the redox behavior, is apparently connected to the ability of Cu 5 nanoclusters to reduce CO 2 under cathodic conditions at low overpotential. In conclusion, although preliminary, these results provide rather exciting indications on the possibility of realizing low overpotential electrocatalytic conversion of CO 2.« less

  13. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets.

    PubMed

    Liu, Xiaofei; Xu, Tao; Wu, Xing; Zhang, Zhuhua; Yu, Jin; Qiu, Hao; Hong, Jin-Hua; Jin, Chuan-Hong; Li, Ji-Xue; Wang, Xin-Ran; Sun, Li-Tao; Guo, Wanlin

    2013-01-01

    Developments in semiconductor technology are propelling the dimensions of devices down to 10 nm, but facing great challenges in manufacture at the sub-10 nm scale. Nanotechnology can fabricate nanoribbons from two-dimensional atomic crystals, such as graphene, with widths below the 10 nm threshold, but their geometries and properties have been hard to control at this scale. Here we find that robust ultrafine molybdenum-sulfide ribbons with a uniform width of 0.35 nm can be widely formed between holes created in a MoS2 sheet under electron irradiation. In situ high-resolution transmission electron microscope characterization, combined with first-principles calculations, identifies the sub-1 nm ribbon as a Mo5S4 crystal derived from MoS2, through a spontaneous phase transition. Further first-principles investigations show that the Mo5S4 ribbon has a band gap of 0.77 eV, a Young's modulus of 300GPa and can demonstrate 9% tensile strain before fracture. The results show a novel top-down route for controllable fabrication of functional building blocks for sub-nanometre electronics.

  14. DESIGN NOTE: From nanometre to millimetre: a feasibility study of the combination of scanning probe microscopy and combined optical and x-ray interferometry

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger

    2003-09-01

    This feasibility study investigates the potential combination of an x-ray interferometer and optical interferometer as a one-dimensional long range high resolution scanning stage for an atomic force microscope (AFM) in order to overcome the problems of non-linearity associated with conventional AFMs and interferometers. Preliminary results of measurements of the uniformity of the period of a grating used as a transfer standards show variations in period at the nanometre level.

  15. Nanometre-thick single-crystalline nanosheets grown at the water-air interface

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Seo, Jung-Hun; Luo, Guangfu; Starr, Matthew B.; Li, Zhaodong; Geng, Dalong; Yin, Xin; Wang, Shaoyang; Fraser, Douglas G.; Morgan, Dane; Ma, Zhenqiang; Wang, Xudong

    2016-01-01

    To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we demonstrate that surfactant monolayers can serve as soft templates guiding the nucleation and growth of 2D nanomaterials in large area beyond the limitation of van der Waals solids. One- to 2-nm-thick, single-crystalline free-standing ZnO nanosheets with sizes up to tens of micrometres are synthesized at the water-air interface. In this process, the packing density of surfactant monolayers adapts to the sub-phase metal ions and guides the epitaxial growth of nanosheets. It is thus named adaptive ionic layer epitaxy (AILE). The electronic properties of ZnO nanosheets and AILE of other materials are also investigated.

  16. Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets

    PubMed Central

    Liu, Xiaofei; Xu, Tao; Wu, Xing; Zhang, Zhuhua; Yu, Jin; Qiu, Hao; Hong, Jin-Hua; Jin, Chuan-Hong; Li, Ji-Xue; Wang, Xin-Ran; Sun, Li-Tao; Guo, Wanlin

    2013-01-01

    Developments in semiconductor technology are propelling the dimensions of devices down to 10 nm, but facing great challenges in manufacture at the sub-10 nm scale. Nanotechnology can fabricate nanoribbons from two-dimensional atomic crystals, such as graphene, with widths below the 10 nm threshold, but their geometries and properties have been hard to control at this scale. Here we find that robust ultrafine molybdenum-sulfide ribbons with a uniform width of 0.35 nm can be widely formed between holes created in a MoS2 sheet under electron irradiation. In situ high-resolution transmission electron microscope characterization, combined with first-principles calculations, identifies the sub-1 nm ribbon as a Mo5S4 crystal derived from MoS2, through a spontaneous phase transition. Further first-principles investigations show that the Mo5S4 ribbon has a band gap of 0.77 eV, a Young’s modulus of 300GPa and can demonstrate 9% tensile strain before fracture. The results show a novel top–down route for controllable fabrication of functional building blocks for sub-nanometre electronics. PMID:23653188

  17. Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses

    PubMed Central

    Monaco, Giulio; Giordano, Valentina M.

    2009-01-01

    On the macroscopic scale, the wavelengths of sound waves in glasses are large enough that the details of the disordered microscopic structure are usually irrelevant, and the medium can be considered as a continuum. On decreasing the wavelength this approximation must of course fail at one point. We show here that this takes place unexpectedly on the mesoscopic scale characteristic of the medium range order of glasses, where it still works well for the corresponding crystalline phases. Specifically, we find that the acoustic excitations with nanometric wavelengths show the clear signature of being strongly scattered, indicating the existence of a cross-over between well-defined acoustic modes for larger wavelengths and ill-defined ones for smaller wavelengths. This cross-over region is accompanied by a softening of the sound velocity that quantitatively accounts for the excess observed in the vibrational density of states of glasses over the Debye level at energies of a few milli-electronvolts. These findings thus highlight the acoustic contribution to the well-known universal low-temperature anomalies found in the specific heat of glasses. PMID:19240211

  18. Dynamic behaviour of nanometre-sized defect clusters emitted from an atomic displacement cascade in Au at 50 K

    NASA Astrophysics Data System (ADS)

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.

    2017-09-01

    We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.

  19. Time scales of supercooled water and implications for reversible polyamorphism

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2015-09-01

    Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.

  20. Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates.

    PubMed

    Baumgartner, Jens; Morin, Guillaume; Menguy, Nicolas; Perez Gonzalez, Teresa; Widdrat, Marc; Cosmidis, Julie; Faivre, Damien

    2013-09-10

    The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within the so-called magnetosomes has remained a matter of debate. Here we used X-ray absorption spectroscopy at cryogenic temperatures and transmission electron microscopic imaging techniques to chemically characterize and spatially resolve the mechanism of biomineralization in those microorganisms. We show that magnetite forms through phase transformation from a highly disordered phosphate-rich ferric hydroxide phase, consistent with prokaryotic ferritins, via transient nanometric ferric (oxyhydr)oxide intermediates within the magnetosome organelle. This pathway remarkably resembles recent results on synthetic magnetite formation and bears a high similarity to suggested mineralization mechanisms in higher organisms.

  1. Anatomy of the anterior root attachments of the medial and lateral menisci: a quantitative analysis.

    PubMed

    LaPrade, Christopher M; Ellman, Michael B; Rasmussen, Matthew T; James, Evan W; Wijdicks, Coen A; Engebretsen, Lars; LaPrade, Robert F

    2014-10-01

    and pertinent surgical landmarks. In addition, the supplemental attachments of both menisci may contribute to native meniscal function, and further investigation is recommended. © 2014 The Author(s).

  2. Alignment hierarchies: engineering architecture from the nanometre to the micrometre scale.

    PubMed

    Kureshi, Alvena; Cheema, Umber; Alekseeva, Tijna; Cambrey, Alison; Brown, Robert

    2010-12-06

    Natural tissues are built of metabolites, soluble proteins and solid extracellular matrix components (largely fibrils) together with cells. These are configured in highly organized hierarchies of structure across length scales from nanometre to millimetre, with alignments that are dominated by anisotropies in their fibrillar matrix. If we are to successfully engineer tissues, these hierarchies need to be mimicked with an understanding of the interaction between them. In particular, the movement of different elements of the tissue (e.g. molecules, cells and bulk fluids) is controlled by matrix structures at distinct scales. We present three novel systems to introduce alignment of collagen fibrils, cells and growth factor gradients within a three-dimensional collagen scaffold using fluid flow, embossing and layering of construct. Importantly, these can be seen as different parts of the same hierarchy of three-dimensional structure, as they are all formed into dense collagen gels. Fluid flow aligns collagen fibrils at the nanoscale, embossed topographical features provide alignment cues at the microscale and introducing layered configuration to three-dimensional collagen scaffolds provides microscale- and mesoscale-aligned pathways for protein factor delivery as well as barriers to confine protein diffusion to specific spatial directions. These seemingly separate methods can be employed to increase complexity of simple extracellular matrix scaffolds, providing insight into new approaches to directly fabricate complex physical and chemical cues at different hierarchical scales, similar to those in natural tissues.

  3. Pore-scale distribution of mucilage affecting water repellency in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Zarebanadkouki, Mohsen; Hedwig, Clemens; Holz, Maire; Ahmed, Mutez; Carminati, Andrea

    2017-04-01

    The hydraulic properties of the rhizosphere are altered by plants, fungi and microorganism. Plant roots release different compounds into the soil. One of these substances is mucilage, a gel which turns water repellent upon drying. We introduce a conceptual model of mucilage deposition during soil drying and its impact on the soil wettability. As the soil dries, water menisci recede and draw mucilage towards the contact region between particles where it is deposited. At high mucilage content, mucilage deposits expand into the open pore space and finally block water infiltration when a critical fraction of the pore space is blocked. To test this hypothesis, we mixed mucilage and particles of different grain size, we let them dry and measured the contact angle using the sessile drop method. Mucilage deposition was visualized by light microscopy imaging. Contact angle measurements showed a distinct threshold-like behavior with a sudden increase in apparent contact angle at high mucilage concentrations. Particle roughness induced a more uniform distribution of mucilage. The observed threshold corresponds to the concentration when mucilage deposition occupies a critical fraction of the pore space, as visualized with the microscope images. In conclusion, water repellency is critically affected by the distribution of mucilage on the pore-scale. This microscopic heterogeneity has to be taken into account in the description of macroscopic processes, like water infiltration or rewetting of water repellent soil.

  4. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review.

    PubMed

    Lei, Wenwen; Rigozzi, Michelle K; McKenzie, David R

    2016-02-01

    This review assesses the current state of understanding of the calculation of the rate of flow of gases, vapours and liquids confined in channels, in porous media and in permeable materials with an emphasis on the flow of water and its vapour. One motivation is to investigate the relation between the permeation rate of moisture and that of a noncondensable test gas such as helium, another is to assist in unifying theory and experiment across disparate fields. Available theories of single component ideal gas flows in channels of defined geometry (cylindrical, rectangular and elliptical) are described and their predictions compared with measurement over a wide range of conditions defined by the Knudsen number. Theory for two phase flows is assembled in order to understand the behaviour of four standard water leak configurations: vapour, slug, Washburn and liquid flow, distinguished by the number and location of phase boundaries (menisci). Air may or may not be present as a background gas. Slip length is an important parameter that greatly affects leak rates. Measurements of water vapour flows confirm that water vapour shows ideal gas behaviour. Results on carbon nanotubes show that smooth walls may lead to anomalously high slip lengths arising from the properties of 'confined' water. In porous media, behaviour can be matched to the four standard leaks. Traditional membrane permeation models consider that the permeant dissolves, diffuses and evaporates at the outlet side, ideas we align with those from channel flow. Recent results on graphite oxide membranes show examples where helium which does not permeate while at the same time moisture is almost unimpeded, again a result of confined water. We conclude that while there is no a priori relation between a noncondensable gas flow and a moisture flow, measurements using helium will give results within two orders of magnitude of the moisture flow rate, except in the case where there is anomalous slip or confined water

  5. Testing of Streckeisen STS-5A and Nanometrics Trillium 120PH Sensors for the Alaska Transportable Array

    NASA Astrophysics Data System (ADS)

    Abbasi Baghbadorani, A.; Aderhold, K.; Bloomquist, D.; Frassetto, A.; Miller, P. E.; Busby, R. W.

    2017-12-01

    Starting in 2014, the IRIS Transportable Array facility began to install and operate seismic stations in Alaska and western Canada. By the end of the project, the full deployment of the array will cover a grid of 280 stations spaced about 85 km apart covering all of mainland Alaska and parts of the Yukon, British Columbia, and the Northwest Territories. Approximately 200 stations will be operated directly by IRIS through at least 2019. A key aspect of the Alaska TA is the need for stations to operate autonomously, on account of the high cost of installation and potential subsequent visits to remote field-sites to repair equipment. The TA is using newly developed broadband seismometers Streckeisen STS-5A and Nanometrics Trillium-120PH, designed for installation in shallow posthole emplacements. These new instruments were extensively vetted beforehand, but they are still relatively new to the TA inventory. Here we will assess their performance under deployment conditions and after repeated commercial shipping and travel to the field. Our objective is to provide a thorough accounting of the identified failures of the existing inventory of posthole instruments. We will assess the practices and results of instrument testing by the PASSCAL Instrument Center/Array Operations Facility (PIC/AOF), Alaska Operations Center (AOC), and broadband seismic sensor manufacturers (Streckeisen, Nanometrics) in order to document potential factors in and stages during the process for instrument failures. This will help to quantify the overall reliability of the TA seismic sensors and quality of TA practices and data collection, and identify potential considerations in future TA operations. Our results show that the overall rate of failure of all posthole instruments is <4% out of 260. This is lower than the rates seen for vault sensor failures in the operation of the Lower 48 Transportable Array. For telemetered stations such as these installed in the TA Alaska array, we also show that

  6. Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes

    NASA Astrophysics Data System (ADS)

    Chianese, F.; Candini, A.; Affronte, M.; Mishra, N.; Coletti, C.; Cassinese, A.

    2018-05-01

    In this work, we test graphene electrodes in nanometric channel n-type Organic Field Effect Transistors (OFETs) based on thermally evaporated thin films of the perylene-3,4,9,10-tetracarboxylic acid diimide derivative. By a thorough comparison with short channel transistors made with reference gold electrodes, we found that the output characteristics of the graphene-based devices respond linearly to the applied bias, in contrast with the supralinear trend of gold-based transistors. Moreover, short channel effects are considerably suppressed in graphene electrode devices. More specifically, current on/off ratios independent of the channel length (L) and enhanced response for high longitudinal biases are demonstrated for L down to ˜140 nm. These results are rationalized taking into account the morphological and electronic characteristics of graphene, showing that the use of graphene electrodes may help to overcome the problem of Space Charge Limited Current in short channel OFETs.

  7. The Influence of Chitosan Substrate and Its Nanometric Form Toward the Green Power Generation in Sediment Microbial Fuel Cell.

    PubMed

    Karthikeyan, C; Sathishkumar, Y; Lee, Yang Soo; Kim, Ae Rhan; Yoo, Dong Jin; Kumar, G Gnana

    2017-01-01

    A simple, environmental friendly and biologically important sediment interfaced fuel cell was developed for the green energy generation. The soil sediment used for the study is enriched of rich anthropogenic free organic carbon, sufficient manganese and high level potassium contents as evidenced from the geochemical characterizations. The saccharides produced by the catalytic reaction of substrate chitosan were utilized for the growth of microorganisms and electron shuttling processes. Chitosan substrate influenced sediment microbial fuel cells exhibited the nearly two fold power increment over the substrate free fuel cells. The fuel cell efficiencies were further increased by bringing the substrate chitosan at nanometric level, which is nearly three and two fold higher than that of substrate free and chitosan influenced sediment microbial fuel cells, respectively, and the influential parameters involved in the power and longevity issues were addressed with different perspectives.

  8. Nanometre-scale 3D defects in Cr2AlC thin films.

    PubMed

    Chen, Y T; Music, D; Shang, L; Mayer, J; Schneider, J M

    2017-04-20

    MAX-phase Cr 2 AlC containing thin films were synthesized by magnetron sputtering in an industrial system. Nanometre-scale 3D defects are observed near the boundary between regions of Cr 2 AlC and of the disordered solid solution (CrAl) x C y . Shrinkage of the Cr-Cr interplanar distance and elongation of the Cr-Al distance in the vicinity of the defects are detected using transmission electron microscopy. The here observed deformation surrounding the defects was described using density functional theory by comparing the DOS of bulk Cr 2 AlC with the DOS of a strained and unstrained Cr 2 AlC(0001) surface. From the partial density of states analysis, it can be learned that Cr-C bonds are stronger than Cr-Al bonds in bulk Cr 2 AlC. Upon Cr 2 AlC(0001) surface formation, both bonds are weakened. While the Cr-C bonds recover their bulk strength as Cr 2 AlC(0001) is strained, the Cr-Al bonds experience only a partial recovery, still being weaker than their bulk counterparts. Hence, the strain induced bond strengthening in Cr 2 AlC(0001) is larger for Cr d - C p bonds than for Cr d - Al p bonds. The here observed changes in bonding due to the formation of a strained surface are consistent with the experimentally observed elongation of the Cr-Al distance in the vicinity of nm-scale 3D defects in Cr 2 AlC thin films.

  9. Chemical synthesis, characterisation, and biocompatibility of nanometre scale porous anodic aluminium oxide membranes for use as a cell culture substrate for the vero cell line: a preliminary study.

    PubMed

    Poinern, Gérrard Eddy Jai; Le, Xuan Thi; O'Dea, Mark; Becker, Thomas; Fawcett, Derek

    2014-01-01

    In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72 h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells.

  10. Chemical Synthesis, Characterisation, and Biocompatibility of Nanometre Scale Porous Anodic Aluminium Oxide Membranes for Use as a Cell Culture Substrate for the Vero Cell Line: A Preliminary Study

    PubMed Central

    Poinern, Gérrard Eddy Jai; Le, Xuan Thi; Becker, Thomas; Fawcett, Derek

    2014-01-01

    In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72 h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells. PMID:24579077

  11. Formation and enhanced biocidal activity of water-dispersable organic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Haifei; Wang, Dong; Butler, Rachel; Campbell, Neil L.; Long, James; Tan, Bien; Duncalf, David J.; Foster, Alison J.; Hopkinson, Andrew; Taylor, David; Angus, Doris; Cooper, Andrew I.; Rannard, Steven P.

    2008-08-01

    Water-insoluble organic compounds are often used in aqueous environments in various pharmaceutical and consumer products. To overcome insolubility, the particles are dispersed in a medium during product formation, but large particles that are formed may affect product performance and safety. Many techniques have been used to produce nanodispersions-dispersions with nanometre-scale dimensions-that have properties similar to solutions. However, making nanodispersions requires complex processing, and it is difficult to achieve stability over long periods. Here we report a generic method for producing organic nanoparticles with a combination of modified emulsion-templating and freeze-drying. The dry powder composites formed using this method are highly porous, stable and form nanodispersions upon simple addition of water. Aqueous nanodispersions of Triclosan (a commercial antimicrobial agent) produced with this approach show greater activity than organic/aqueous solutions of Triclosan.

  12. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings.

    PubMed

    Wooles, Ashley J; Mills, David P; Tuna, Floriana; McInnes, Eric J L; Law, Gareth T W; Fuller, Adam J; Kremer, Felipe; Ridgway, Mark; Lewis, William; Gagliardi, Laura; Vlaisavljevich, Bess; Liddle, Stephen T

    2018-05-29

    Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.

  13. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups.

    PubMed

    Gittins, D I; Bethell, D; Schiffrin, D J; Nichols, R J

    2000-11-02

    So-called bottom-up fabrication methods aim to assemble and integrate molecular components exhibiting specific functions into electronic devices that are orders of magnitude smaller than can be fabricated by lithographic techniques. Fundamental to the success of the bottom-up approach is the ability to control electron transport across molecular components. Organic molecules containing redox centres-chemical species whose oxidation number, and hence electronic structure, can be changed reversibly-support resonant tunnelling and display promising functional behaviour when sandwiched as molecular layers between electrical contacts, but their integration into more complex assemblies remains challenging. For this reason, functionalized metal nanoparticles have attracted much interest: they exhibit single-electron characteristics (such as quantized capacitance charging) and can be organized through simple self-assembly methods into well ordered structures, with the nanoparticles at controlled locations. Here we report scanning tunnelling microscopy measurements showing that organic molecules containing redox centres can be used to attach metal nanoparticles to electrode surfaces and so control the electron transport between them. Our system consists of gold nanoclusters a few nanometres across and functionalized with polymethylene chains that carry a central, reversibly reducible bipyridinium moiety. We expect that the ability to electronically contact metal nanoparticles via redox-active molecules, and to alter profoundly their tunnelling properties by charge injection into these molecules, can form the basis for a range of nanoscale electronic switches.

  14. Double PCL sign does not always indicate a bucket-handle tear of medial meniscus.

    PubMed

    Liu, Chen; Zheng, Hua Yong; Huang, Yan; Li, Hai Peng; Wu, Han; Sun, Tian Sheng; Yao, Jian Hua

    2016-09-01

    The discoid medial meniscus is an extremely rare anomaly. Bilateral discoid medial menisci are much more rare but intermittently reported. We report the first case of bilateral discoid medial menisci with positive double PCL sign, which typically indicates a bucket-handle tear of medial meniscus. A literature review was also conducted on bilateral discoid medial menisci.

  15. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface

  16. Tibiofemoral loss of contact area but no changes in peak pressures after meniscectomy in a Lapine in vivo quadriceps force transfer model.

    PubMed

    Leumann, Andre; Fortuna, Rafael; Leonard, Tim; Valderrabano, Victor; Herzog, Walter

    2015-01-01

    The menisci are thought to modulate load transfer and to absorb shocks in the knee joint. No study has experimentally measured the meniscal functions in the intact, in vivo joint loaded by physiologically relevant muscular contractions. Right knee joints of seven New Zealand white rabbits were loaded using isometric contractions of the quadriceps femoris muscles controlled by femoral nerve stimulation. Isometric knee extensor torques at the maximal and two submaximal force levels were performed at knee angles of 70°, 90°, 110°, and 130°. Patellofemoral and tibiofemoral contact areas and pressure distributions were measured using Fuji Presensor film inserted above and below the menisci and also with the menisci removed. Meniscectomy was associated with a decrease in tibiofemoral contact area ranging from 30 to 70% and a corresponding increase in average contact pressures. Contact areas measured below the menisci were consistently larger than those measured on top of the menisci. Contact areas in the patellofemoral joint (PFJ), and peak pressures in tibiofemoral and PFJs, were not affected by meniscectomy. Contact areas and peak pressures in all joints depended crucially on knee joint angle and quadriceps force: The more flexed the knee joint was, the larger were the contact areas and the higher were the peak pressures. In agreement with the literature, removal of the menisci was associated with significant decreases in tibiofemoral contact area and corresponding increases in average contact pressures, but surprisingly, peak pressures remained unaffected, indicating that the function of the menisci is to distribute loads across a greater contact area.

  17. Porous graphene-based membranes for water purification from metal ions at low differential pressures.

    PubMed

    Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni

    2016-05-14

    A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.

  18. Porous graphene-based membranes for water purification from metal ions at low differential pressures

    NASA Astrophysics Data System (ADS)

    Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni

    2016-05-01

    A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.

  19. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sai, Ranajit, E-mail: ranajit@ecei.tohoku.ac.jp; Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore; Endo, Yasushi

    2015-05-07

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f{sub FMR}) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess highmore » degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f{sub FMR} has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.« less

  20. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging.

    PubMed

    Cang, Hu; Labno, Anna; Lu, Changgui; Yin, Xiaobo; Liu, Ming; Gladden, Christopher; Liu, Yongmin; Zhang, Xiang

    2011-01-20

    When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.

  1. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    PubMed Central

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  2. New insights into the mechanisms of water-stress-induced cavitation in conifers.

    PubMed

    Cochard, Hervé; Hölttä, Teemu; Herbette, Stéphane; Delzon, Sylvain; Mencuccini, Maurizio

    2009-10-01

    Cavitation resistance is a key parameter to understand tree drought tolerance but little is known about the mechanisms of air entry into xylem conduits. For conifers three mechanisms have been proposed: (1) a rupture of pit margo microfibrils, (2) a displacement of the pit torus from its normal sealing position over the pit aperture, and (3) a rupture of an air-water menisci in a pore of the pit margo. In this article, we report experimental results on three coniferous species suggesting additional mechanisms. First, when xylem segments were injected with a fluid at a pressure sufficient to aspirate pit tori and well above the pressure for cavitation induction we failed to detect the increase in sample conductance that should have been caused by torus displacement from blocking the pit aperture or by membrane rupture. Second, by injecting xylem samples with different surfactant solutions, we found a linear relation between sample vulnerability to cavitation and fluid surface tension. This suggests that cavitation in conifers could also be provoked by the capillary failure of an air-water meniscus in coherence with the prediction of Young-Laplace's equation. Within the bordered pit membrane, the exact position of this capillary seeding is unknown. The possible Achilles' heel could be the seal between tori and pit walls or holes in the torus. The mechanism of water-stress-induced cavitation in conifers could then be relatively similar to the one currently proposed for angiosperms.

  3. Water nanoelectrolysis: A simple model

    NASA Astrophysics Data System (ADS)

    Olives, Juan; Hammadi, Zoubida; Morin, Roger; Lapena, Laurent

    2017-12-01

    A simple model of water nanoelectrolysis—defined as the nanolocalization at a single point of any electrolysis phenomenon—is presented. It is based on the electron tunneling assisted by the electric field through the thin film of water molecules (˜0.3 nm thick) at the surface of a tip-shaped nanoelectrode (micrometric to nanometric curvature radius at the apex). By applying, e.g., an electric potential V1 during a finite time t1, and then the potential -V1 during the same time t1, we show that there are three distinct regions in the plane (t1, V1): one for the nanolocalization (at the apex of the nanoelectrode) of the electrolysis oxidation reaction, the second one for the nanolocalization of the reduction reaction, and the third one for the nanolocalization of the production of bubbles. These parameters t1 and V1 completely control the time at which the electrolysis reaction (of oxidation or reduction) begins, the duration of this reaction, the electrolysis current intensity (i.e., the tunneling current), the number of produced O2 or H2 molecules, and the radius of the nanolocalized bubbles. The model is in good agreement with our experiments.

  4. Heat treatment influence on the superconducting properties of nanometric-scale Nb3Sn wires with Cu-Sn artificial pinning centers

    NASA Astrophysics Data System (ADS)

    Da Silva, L. B. S.; Rodrigues, C. A.; Oliveira, N. F., Jr.; Bormio-Nunes, C.; Rodrigues, D., Jr.

    2010-11-01

    Since the discovery of Nb3Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb3Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb3Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb3Sn wires reported up to now.

  5. Optical detection of nanometric thermal fluctuations to measure the stiffness of rigid superparamagnetic microrods

    PubMed Central

    Wang, Yuan

    2017-01-01

    The rigidity of numerous biological filaments and crafted microrods has been conveniently deduced from the analysis of their thermal fluctuations. However, the difficulty of measuring nanometric displacements with an optical microscope has so far limited such studies to sufficiently flexible rods, of which the persistence length (Lp) rarely exceeds 1 m at room temperature. Here, we demonstrate the possibility to probe 10-fold stiffer rods by a combination of superresolutive optical methods and a statistical analysis of the data based on a recent theoretical model that predicts the amplitude of the fluctuations at any location of the rod [Benetatos P, Frey E (2003) Phys Rev E Stat Nonlin Soft Matter Phys 67(5):051108]. Using this approach, we report measures of Lp up to 0.5 km. We obtained these measurements on recently designed superparamagnetic ∼40-μm-long microrods containing iron-oxide nanoparticles connected by a polymer mesh. Using their magnetic properties, we provide an alternative proof of validity of these thermal measurements: For each individual studied rod, we performed a second measure of its rigidity by deflecting it with a uniform magnetic field. The agreement between the thermal and the magnetoelastic measures was realized with more than a decade of values of Lp from 5.1 m to 129 m, corresponding to a bending modulus ranging from 2.2 to 54 (×10−20 Jm). Despite the apparent homogeneity of the analyzed microrods, their Young modulus follows a broad distribution from 1.9 MPa to 59 MPa and up to 200 MPa, depending on the size of the nanoparticles. PMID:28228530

  6. Meniscal tears, repairs and replacement: their relevance to osteoarthritis of the knee.

    PubMed

    McDermott, Ian

    2011-04-01

    The menisci of the knee are important load sharers and shock absorbers in the joint. Meniscal tears are common, and whenever possible meniscal tears should be surgically repaired. Meniscectomy leads to a significant increased risk of osteoarthritis, and various options now exist for replacing missing menisci, including the use of meniscal scaffolds or the replacement of the entire meniscus by meniscal allograft transplantation. The field of meniscal surgery continues to develop apace, and the future may lie in growing new menisci by tissue engineering techniques.

  7. EUV-angle resolved scatter (EUV-ARS): a new tool for the characterization of nanometre structures

    NASA Astrophysics Data System (ADS)

    Fernández Herrero, Analía.; Mentzel, Heiko; Soltwisch, Victor; Jaroslawzew, Sina; Laubis, Christian; Scholze, Frank

    2018-03-01

    The advance of the semiconductor industry requires new metrology methods, which can deal with smaller and more complex nanostructures. Particularly for inline metrology a rapid, sensitive and non destructive method is needed. Small angle X-ray scattering under grazing incidence has already been investigated for this application and delivers significant statistical information which tracks the profile parameters as well as their variations, i.e. roughness. However, it suffers from the elongated footprint at the sample. The advantage of EUV radiation, with its longer wavelengths, is that larger incidence angles can be used, resulting in a significant reduction of the beam footprint. Targets with field sizes of 100 μm and smaller are accessible with our experimental set-up. We present a new experimental tool for the measurement of small structures based on the capabilities of soft X-ray and EUV scatterometry at the PTB soft X-ray beamline at the electron storage ring BESSY II. PTB's soft X-ray radiometry beamline uses a plane grating monochromator, which covers the spectral range from 0.7 nm to 25 nm and was especially designed to provide highly collimated radiation. An area detector covers the scattered radiation from a grazing exit angle up to an angle of 30° above the sample horizon and the fluorescence emission can be detected with an energy dispersive X-ray silicon drift detector. In addition, the sample can be rotated and linearly moved in vacuum. This new set-up will be used to explore the capabilities of EUV-scatterometry for the characterization of nanometre-sized structures.

  8. Electrodeless direct current dielectrophoresis using reconfigurable field-shaping oil barriers.

    PubMed

    Thwar, Prasanna K; Linderman, Jennifer J; Burns, Mark A

    2007-12-01

    We demonstrate dielectrophoretic (DEP) potential wells using pairs of insulating oil menisci to shape the DC electric field. These oil menisci are arranged in a configuration similar to the quadrupolar electrodes, typically used in DEP, and are shown to produce similar field gradients. While the one-pair well produces a focusing effect on particles in flow, the two-pair well results in creating spatial traps against crossflows. Uncharged polystyrene particles were used to map the DEP force fields and the experimental observations were compared against the field profiles obtained by numerically solving Maxwell's equations. We demonstrate trapping of a single particle due to negative DEP against a pressure-driven crossflow. This can be easily extended to trap and hold cells and other objects against flow for a longer time. We also show the results of particle trapping experiments performed to observe the effect of adjusting the oil menisci and the gap between two pairs of menisci in a four-menisci configuration on the nature of the DEP well formed at the center. A design parameter, Theta, capturing the dimensions of the DEP energy well, is defined and simulations exploring the effects of different geometric features on Theta are presented.

  9. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES.

    PubMed

    Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos

    2010-04-01

    An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.

  10. Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro.

    PubMed

    Leclerc, L; Rima, W; Boudard, D; Pourchez, J; Forest, V; Bin, V; Mowat, P; Perriat, P; Tillement, O; Grosseau, P; Bernache-Assollant, D; Cottier, M

    2012-08-01

    Micrometric and nanometric particles are increasingly used in different fields and may exhibit variable toxicity levels depending on their physicochemical characteristics. The aim of this study was to determine the impact of the size parameter on cellular uptake and biological activity, working with well-characterized fluorescent particles. We focused our attention on macrophages, the main target cells of the respiratory system responsible for the phagocytosis of the particles. FITC fluorescent silica particles of variable submicronic sizes (850, 500, 250 and 150 nm) but with similar surface coating (COOH) were tailored and physico-chemically characterized. These particles were then incubated with the RAW 264.7 macrophage cell line. After microscopic observations (SEM, TEM, confocal), a quantitative evaluation of the uptake was carried out. Fluorescence detected after a quenching with trypan blue allows us to distinguish and quantify entirely engulfed fluorescent particles from those just adhering to the cell membrane. Finally, these data were compared to the in vitro toxicity assessed in terms of cell damage, inflammation and oxidative stress (evaluated by LDH release, TNF-α and ROS production respectively). Particles were well characterized (fluorescence, size distribution, zeta potential, agglomeration and surface groups) and easily visualized after cellular uptake using confocal and electron microscopy. The number of internalized particles was precisely evaluated. Size was found to be an important parameter regarding particles uptake and in vitro toxicity but this latter strongly depends on the particles doses employed.

  11. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure

    PubMed Central

    Alexander, Benjamin; Daulton, Tyrone L.; Genin, Guy M.; Lipner, Justin; Pasteris, Jill D.; Wopenka, Brigitte; Thomopoulos, Stavros

    2012-01-01

    The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral (‘bioapatite’) is present predominantly inside collagen fibrils: in ‘gap channels’ between abutting collagen molecules, and in ‘intermolecular spaces’ between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues. PMID:22345156

  12. Insights into structural and dynamical features of water at halloysite interfaces probed by DFT and classical molecular dynamics simulations.

    PubMed

    Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo

    2016-01-21

    Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.

  13. Glassy dynamics of polymethylphenylsiloxane in one- and two-dimensional nanometric confinement—A comparison

    NASA Astrophysics Data System (ADS)

    Kipnusu, Wycliffe K.; Elsayed, Mohamed; Krause-Rehberg, Reinhard; Kremer, Friedrich

    2017-05-01

    Glassy dynamics of polymethylphenylsiloxane (PMPS) is studied by broadband dielectric spectroscopy in one-dimensional (1D) and two-dimensional (2D) nanometric confinement; the former is realized in thin polymer layers having thicknesses down to 5 nm, and the latter in unidirectional (thickness 50 μm) nanopores with diameters varying between 4 and 8 nm. Based on the dielectric measurements carried out in a broad spectral range at widely varying temperatures, glassy dynamics is analyzed in detail in 1D and in 2D confinements with the following results: (i) the segmental dynamics (dynamic glass transition) of PMPS in 1D confinement down to thicknesses of 5 nm is identical to the bulk in the mean relaxation rate and the width of the relaxation time distribution function; (ii) additionally a well separated surface induced relaxation is observed, being assigned to adsorption and desorption processes of polymer segments with the solid interface; (iii) in 2D confinement with native inner pore walls, the segmental dynamics shows a confinement effect, i.e., the smaller the pores are, the faster the segmental dynamics; on silanization, this dependence on the pore diameter vanishes, but the mean relaxation rate is still faster than in 1D confinement; (iv) in a 2D confinement, a pronounced surface induced relaxation process is found, the strength of which increases with the decreasing pore diameter; it can be fully removed by silanization of the inner pore walls; (v) the surface induced relaxation depends on its spectral position only negligibly on the pore diameter; (vi) comparing 1D and 2D confinements, the segmental dynamics in the latter is by about two orders of magnitude faster. All these findings can be comprehended by considering the density of the polymer; in 1D it is assumed to be the same as in the bulk, hence the dynamic glass transition is not altered; in 2D it is reduced due to a frustration of packaging resulting in a higher free volume, as proven by ortho

  14. Biological energy sources: the surface energy and the physical chemistry of water. Examples from studies on muscle contraction.

    PubMed

    Widdas, W F; Baker, G F

    2004-01-01

    The physical chemistry of water at nanometre dimensions was used to explain the conformational changes and water breaking properties of the glucose transporter protein (GLUTI) in human erythrocytes more than ten years ago. The energy for this hidden work arises from cycles of evaporation and condensation of water within the cells but was several times larger than resting metabolism. Physical chemical principles can quantify the hidden work done and demonstrate that a significant source of energy is available, which is free of the metabolic energy derived from the hydrolysis of ATP. Therefore, a more widespread biological use of this "free" energy source was probable and a working hypothesis, which applied this energy to supplement the work derived from ATP hydrolysis in muscle, was proposed. The scheme gives a complete explanation for the unexpected and novel findings in skeletal muscle reported from Italy. The problem of using two energy sources and the novel properties of water at nanometer dimensions as they would apply in muscle are briefly discussed but they merit further interdisciplinary studies.

  15. Self-assembly of organic monolayers as protective and conductive bridges for nanometric surface-mount applications.

    PubMed

    Platzman, Ilia; Haick, Hossam; Tannenbaum, Rina

    2010-09-01

    In this work, we present a novel surface-mount placement process that could potentially overcome the inadequacies of the currently used stencil-printing technology, when applied to devices in which either their lateral and/or their horizontal dimensions approach the nanometric scale. Our novel process is based on the "bottom-up" design of an adhesive layer, operative in the molecular/nanoscale level, through the use of self-assembled monolayers (SAMs) that could form protective and conductive bridges between pads and components. On the basis of previous results, 1,4-phenylene diisocyanide (PDI) and terephthalic acid (TPA) were chosen to serve as the best candidates for the achievement of this goal. The quality and stability of these SAMs on annealed Cu surfaces (Rrms=0.15-1.1 nm) were examined in detail. Measurements showed that the SAMs of TPA and PDI molecules formed on top of Cu substrates created thermally stable organic monolayers with high surface coverage (∼90%), in which the molecules were closely packed and well-ordered. Moreover, the molecules assumed a standing-up phase conformation, in which the molecules bonded to the Cu substrate through one terminal functional group, with the other terminal group residing away from the substrate. To examine the ability of these monolayers to serve as "molecular wires," i.e., the capability to provide electrical conductivity, we developed a novel fabrication method of a parallel plate junction (PPJ) in order to create symmetric Cu-SAM-Cu electrical junctions. The current-bias measurements of these junctions indicated high tunneling efficiency. These achievements imply that the SAMs used in this study can serve as conductive molecular bridges that can potentially bind circuital pads/components.

  16. Nanometre-scale investigations by atomic force microscopy into the effect of different treatments on the surface structure of hair.

    PubMed

    Durkan, C; Wang, N

    2014-12-01

    To investigate the effect of different washing regimes on the surface of human hair at the nanometre scale - comparable to the size of typical deposits left behind by commercial products. Atomic force microscopy (AFM) and related techniques. It can be directly seen that washing hair using commercial hair care products removes deposits that naturally form on the shaft, revealing the underlying structure of the hair, whereas in many cases leaving new deposits behind. The spatial distribution of these deposits is explored and quantified. The spatial distribution of the surface charge of pristine hair is mapped, and the electrical screening effect of deposits is directly observed. We also show that the roughness of the treated hair depends directly on the type of product used, with a marked difference between shampoo and conditioner. Some products leave isolated deposits behind, whereas others leave layers of material behind which wet the hair surface. Atomic force microscopy and the related techniques we have employed in a forensic approach is able to distinguish between different hair care products on the basis of the deposits they leave behind. This opens up the capability of further analysis tools to complement already existing techniques. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Ongoing hydrothermal activities within Enceladus

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-Iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-01

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical `footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

  18. The Use of Blood Vessel–Derived Stem Cells for Meniscal Regeneration and Repair

    PubMed Central

    OSAWA, AKI; HARNER, CHRISTOPHER D.; GHARAIBEH, BURHAN; MATSUMOTO, TOMOYUKI; MIFUNE, YUTAKA; KOPF, SEBASTIAN; INGHAM, SHEILA J. M.; SCHREIBER, VERENA; USAS, ARVYDAS; HUARD, JOHNNY

    2015-01-01

    Purpose Surgical repairs of tears in the vascular region of the meniscus usually heal better than repairs performed in the avascular region; thus, we hypothesized that this region might possess a richer supply of vascular-derived stem cells than the avascular region. Methods In this study, we analyzed 6 menisci extracted from aborted human fetuses and 12 human lateral menisci extracted from adult human subjects undergoing total knee arthroplasty. Menisci were immunostained for CD34 (a stem cell marker) and CD146 (a pericyte marker) in situ, whereas other menisci were dissected into two regions (peripheral and inner) and used to isolate meniscus-derived cells by flow cytometry. Cell populations expressing CD34 and CD146 were tested for their multi-lineage differentiation potentials, including chondrogenic, osteogenic, and adipogenic lineages. Fetal peripheral meniscus cells were transplanted by intracapsular injection into the knee joints of an athymic rat meniscal tear model. Rat menisci were extracted and histologically evaluated after 4 wk posttransplantation. Results Immunohistochemistry and flow cytometric analyses demonstrated that a higher number of CD34- and CD146-positive cells were found in the peripheral region compared with the inner region. The CD34- and CD146-positive cells isolated from the vascular region of both fetal and adult menisci demonstrated multilineage differentiation capacities and were more potent than cells isolated from the inner (avascular) region. Fetal CD34- and CD146-positive cells transplanted into the athymic rat knee joint were recruited into the meniscal tear sites and contributed to meniscus repair. Conclusions The vascularized region of the meniscus contains more stem cells than the avascular region. These meniscal-derived stem cells were multi-potent and contributed to meniscal regeneration. PMID:23247715

  19. Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology.

    PubMed

    Marki, Alex; Ermilov, Eugeny; Zakrzewicz, Andreas; Koller, Akos; Secomb, Timothy W; Pries, Axel R

    2014-04-01

    The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical conditions with particular application to microcirculatory flow dynamics and cell biology. Images of fluorescent particles were obtained with a standard fluorescence microscope equipped with a piezo positioner for the objective. Whole pattern (WP) comparison with a PSF recorded for the specific set-up and measurement of the outermost ring radius (ORR) were used for analysis. Images of fluorescent particles were recorded over a large range (about 7μm) of vertical positions, with and without distortion by overlapping particles as well as in the presence of cultured endothelial cells. For a vertical range of 6.5μm the standard deviation (SD) from the predicted value, indicating validity, was 9.3/8.7 nm (WP/ORR) in the vertical and 8.2/11.7 nm in the horizontal direction. The precision, determined by repeated measurements, was 5.1/3.8 nm in the vertical and 2.9/3.7 nm in the horizontal direction. WP was more robust with respect to underexposure or overlapping images. On the surface of cultured endothelial cells, a layer with 2.5 times increased viscosity and a thickness of about 0.8μm was detected. With a validity in the range of 10 nm and a precision down to about 3-5 nm obtained by standard fluorescent microscopy, the PSF approach offers a valuable tool for a variety of experimental investigations of particle localizations, including the assessment of endothelial cell microenvironment.

  20. Capillary descent.

    PubMed

    Delannoy, Joachim; de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2018-05-31

    A superhydrophobic capillary tube immersed in water and brought in contact with the bath surface will be invaded by air, owing to its aerophilicity. We discuss this phenomenon where the ingredients of classical capillary rise are inverted, which leads to noticeable dynamical features. (1) The main regime of air invasion is linear in time, due to the viscous resistance of water. (2) Menisci in tubes with millimetre-size radii strongly oscillate before reaching their equilibrium depth, a consequence of inertia. On the whole, capillary descent provides a broad variety of dynamics where capillary effects, viscous friction and liquid inertia all play a role.

  1. Influence of meniscus shape in the cross sectional plane on the knee contact mechanics.

    PubMed

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Zarzycki, Witold

    2015-06-01

    We present a three dimensional finite element analysis of stress distribution and menisci deformation in the human knee joint. The study is based on the Open Knee model with the geometry of the lateral meniscus which shows some degenerative disorders. The nonlinear analysis of the knee joint under compressive axial load is performed. We present results for intact knee, knee with complete radial posterior meniscus root tear and knee with total meniscectomy of medial or lateral meniscus. We investigate how the meniscus shape in the cross sectional plane influences knee-joint mechanics by comparing the results for flat (degenerated) lateral and normal medial meniscus. Specifically, the deformation of the menisci in the coronal plane and the corresponding stress values in cartilages are studied. By analysing contact resultant force acting on the menisci in axial plane we have shown that restricted extrusion of the torn lateral meniscus can be attributed to small slope of its cross section in the coronal plane. Additionally, the change of the contact area and the resultant force acting on the menisci as the function of compressive load are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Clinical and Radiographic Outcomes of Meniscus Surgery and Future Targets for Biologic Intervention: A review of data from the MOON Group

    PubMed Central

    Westermann, Robert W.; Jones, Morgan; Wasserstein, David; Spindler, Kurt P.

    2017-01-01

    Meniscus injury and treatment occurred with the majority of anterior cruciate ligament reconstructions (ACLR) in the multicenter orthopaedic outcomes (MOON) cohort. We describe the patient reported outcomes, radiographic outcomes and predictors of pain from meniscus injuries and treatment in the setting of ACLR. Patient reported outcomes improve significantly following meniscus repair with ACLR, but differences exist based on the meniscus injury laterally (medial or lateral). Patients undergoing medial meniscus repair have worse patient-reported outcomes and more pain compared to those with uninjured menisci. However, lateral meniscal tears can be repaired with similar outcomes as uninjured menisci. Medial meniscal treatment (meniscectomy or repair) results in a significant loss of joint space at 2 years compared to uninjured menisci. Menisci treated with excision had a greater degree of joint space loss compared to those treated with repair. Clinically significant knee pain is more common following injuries to the medial meniscus and increased in patients who undergo early re-operation after initial ACLR. Future research efforts aimed at improving outcomes after combined ACLR and meniscus treatment should focus on optimizing biologic and mechanical environments that promote healing of medial meniscal tears sustained during ACL injury. PMID:28282214

  3. Background-Free 3D Nanometric Localization and Sub-nm Asymmetry Detection of Single Plasmonic Nanoparticles by Four-Wave Mixing Interferometry with Optical Vortices

    NASA Astrophysics Data System (ADS)

    Zoriniants, George; Masia, Francesco; Giannakopoulou, Naya; Langbein, Wolfgang; Borri, Paola

    2017-10-01

    Single nanoparticle tracking using optical microscopy is a powerful technique with many applications in biology, chemistry, and material sciences. Despite significant advances, localizing objects with nanometric position precision in a scattering environment remains challenging. Applied methods to achieve contrast are dominantly fluorescence based, with fundamental limits in the emitted photon fluxes arising from the excited-state lifetime as well as photobleaching. Here, we show a new four-wave-mixing interferometry technique, whereby the position of a single nonfluorescing gold nanoparticle of 25-nm radius is determined with 16 nm precision in plane and 3 nm axially from rapid single-point measurements at 1-ms acquisition time by exploiting optical vortices. The precision in plane is consistent with the photon shot-noise, while axially it is limited by the nano-positioning sample stage, with an estimated photon shot-noise limit of 0.5 nm. The detection is background-free even inside biological cells. The technique is also uniquely sensitive to particle asymmetries of only 0.5% ellipticity, corresponding to a single atomic layer of gold, as well as particle orientation. This method opens new ways of unraveling single-particle trafficking within complex 3D architectures.

  4. Measurement of track structure parameters of low and medium energy helium and carbon ions in nanometric volumes

    NASA Astrophysics Data System (ADS)

    Hilgers, G.; Bug, M. U.; Rabus, H.

    2017-10-01

    Ionization cluster size distributions produced in the sensitive volume of an ion-counting wall-less nanodosimeter by monoenergetic carbon ions with energies between 45 MeV and 150 MeV were measured at the TANDEM-ALPI ion accelerator facility complex of the LNL-INFN in Legnaro. Those produced by monoenergetic helium ions with energies between 2 MeV and 20 MeV were measured at the accelerator facilities of PTB and with a 241Am alpha particle source. C3H8 was used as the target gas. The ionization cluster size distributions were measured in narrow beam geometry with the primary beam passing the target volume at specified distances from its centre, and in broad beam geometry with a fan-like primary beam. By applying a suitable drift time window, the effective size of the target volume was adjusted to match the size of a DNA segment. The measured data were compared with the results of simulations obtained with the PTB Monte Carlo code PTra. Before the comparison, the simulated cluster size distributions were corrected with respect to the background of additional ionizations produced in the transport system of the ionized target gas molecules. Measured and simulated characteristics of the particle track structure are in good agreement for both types of primary particles and for both types of the irradiation geometry. As the range in tissue of the ions investigated is within the typical extension of a spread-out Bragg peak, these data are useful for benchmarking not only ‘general purpose’ track structure simulation codes, but also treatment planning codes used in hadron therapy. Additionally, these data sets may serve as a data base for codes modelling the induction of radiation damages at the DNA-level as they almost completely characterize the ionization component of the nanometric track structure.

  5. A high resolution water soluble fullerene molecular resist for electron beam lithography.

    PubMed

    Chen, X; Palmer, R E; Robinson, A P G

    2008-07-09

    Traditionally, many lithography resists have used hazardous, environmentally damaging or flammable chemicals as casting solvent and developer. There is now a strong drive towards processes that are safer and more environmentally friendly. We report nanometre-scale patterning of a fullerene molecular resist film with electron beam lithography, using water as casting solvent and developer. Negative tone behaviour is demonstrated after exposure and development. The sensitivity of this resist to 20 keV electrons is 1.5 × 10(-2) C cm(-2). Arrays of lines with a width of 30-35 nm and pitches of 200 and 400 nm, and arrays of dots with a diameter of 40 nm and a pitch of 200 nm have been patterned at 30 keV. The etch durability of this resist was found to be ∼2 times that of a standard novolac based resist. Initial results of the chemical amplification of this material for enhanced sensitivity are also presented.

  6. Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, L.; Messina, F.; Camarda, P.

    2016-07-14

    Oxidized Silicon nanomaterials produced by 1064 nm pulsed laser ablation in deionized water are investigated. High-resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy allows to characterize the structural and chemical properties at a sub-nanometric scale. This analysis clarifies that laser ablation induces both self-limiting and complete oxidation processes which produce polycrystalline Si surrounded by a layer of SiO{sub 2} and amorphous fully oxidized SiO{sub 2}, respectively. These nanostructures exhibit a composite luminescence spectrum which is investigated by time-resolved spectroscopy with a tunable laser excitation. The origin of the observed luminescence bands agrees with the two structural typologies: Si nanocrystalsmore » emit a μs-decaying red band; defects of SiO{sub 2} give rise to a ns-decaying UV band and two overlapping blue bands with lifetime in the ns and ms timescale.« less

  7. Acute torn meniscus combined with acute cruciate ligament injury. Second look arthroscopy after 3-month conservative treatment.

    PubMed

    Ihara, H; Miwa, M; Takayanagi, K; Nakayama, A

    1994-10-01

    The purpose of this study was to evaluate arthroscopically the natural healing of an acute torn meniscus combined with an acute cruciate ligament injury treated nonoperatively. There were 30 lateral and 10 medial meniscus tears associated with 25 acute anterior cruciate ligament and 7 posterior cruciate ligament injuries in 32 patients. There was more than 1 tear on some menisci for a total of 51 tear sites. Injuries to the menisci and ligaments were allowed to heal without surgery, but were given protective mobilization immediately in order to stimulate stress oriented healing of injured collagen fibers and promote circulation of synovial fluid to the meniscus and ligament. A Kyuro knee brace with a coil spring traction system was used to add adequate but not excessive stress to the associated injured cruciate ligament. All knees were examined and arthroscoped before and after a 3-month treatment period. Results indicated that 69% of the lateral menisci healed completely and 18% healed partially, whereas 58% of the medial menisci healed completely and none healed partially. Twenty of 25 anterior cruciate ligaments and 3 of 7 posterior cruciate ligaments healed satisfactorily. This study indicated that acute tears of the meniscus, even when they occur in association with a cruciate ligament injury, can heal morphologically with nonsurgical treatment.

  8. In vivo Visualization of the Water-refilling Process in Xylem Vessels Using X-ray Micro-imaging

    PubMed Central

    Lee, Sang-Joon; Kim, Yangmin

    2008-01-01

    Background and Aims Xylem vessels containing gases (embolized) must be refilled with water if they are to resume transport of water through the plant, so refilling is of great importance for the maintenance of water balance in plants. However, the refilling process is poorly understood because of inadequate examination methods. Simultaneous measurements of plant anatomy and vessel refilling are essential to elucidate the mechanisms involved. In the present work, a new technique based on phase-contrast X-ray imaging is presented that visualizes, in vivo and in real time, both xylem anatomy and refilling of embolized vessels. Methods With the synchrotron X-ray micro-imaging technique, the refilling of xylem vessels of leaves and a stem of Phyllostachys bambusoides with water is demonstrated under different conditions. The technique employs phase contrast imaging of X-ray beams, which are transformed into visible light and are photographed by a charge coupled device camera. X-ray images were captured consecutively at every 0·5 s with an exposure time of 10 ms. Key Results The interface (meniscus) between the water and gas phases in refilling the xylem vessels is displayed. During refilling, the rising menisci in embolized vessels showed repetitive flow, i.e. they temporarily stopped at the end walls of the vessel elements while gas bubbles were removed. The meniscus then passed through the end wall at a faster rate than the speed of flow in the main vessels. In the light, the speed of refilling in a specific vessel was slower than that in the dark, but this rate increased again after repeated periods in darkness. Conclusions Real-time, non-destructive X-ray micro-imaging is an important, useful and novel technique to study the relationship between xylem structure and the refilling of embolized vessels in intact plants. It provides new insight into understanding the mechanisms of water transport and the refilling of embolized vessels, which are not understood well

  9. Resistance of Type 5 chemical protective clothing against nanometric airborne particles: Behavior of seams and zipper.

    PubMed

    Vinches, Ludwig; Hallé, Stéphane

    2017-12-01

    In the field of dermal protection, the use of chemical protective clothing (CPC) (including coveralls) are considered as the last barrier against airborne engineered nanomaterials (ENM). In the majority of cases, Type 5 CPC, used against solid particles (ISO 13982-1), perform well against ENM. But in a recent study, a penetration level (PL) of up to 8.5% of polydisperse sodium chloride airborne nanoparticles has been measured. Moreover, in all the previous studies, tests were performed on a sample of protective clothing material without seams or zippers. Thus, the potential for permeation through a zipper or seams has not yet been determined, even though these areas would be privileged entry points for airborne ENM. This work was designed to evaluate the PL of airborne ENM through coveralls and specifically the PL through the seams on different parts of the CPC and the zipper. Eight current models of CPC (Type 5) were selected. The samples were taken from places with and without seams and with a zipper. In some cases, a cover strip can be added to the zipper to enhance its sealing. Polydisperse nanoparticles were generated by nebulization of a sodium chloride solution. A penetration cell was developed to expose the sample to airborne nanometric particles. The NaCl particle concentration in number was measured with an ultrafine particle counter and the PL was defined as the downstream concentration divided by the upstream concentration. The results obtained show that the PL increased significantly in the presence of seams and could reach up to 90% depending on the seam's design. Moreover, this study classifies the different types of seams by their resistance against airborne ENM. As for the penetration of airborne NaCl particles through the zipper, the PL was greatly attenuated by the presence of a cover strip, but only for certain models of coveralls. Finally, the values of the pressure drop were directly linked to the type of seam. All of these conclusions provide

  10. Technical Note: Nanometric organic photovoltaic thin film detectors for dose monitoring in diagnostic x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elshahat, Bassem; Gill, Hardeep Singh; Kumar, Jayant

    2015-07-15

    Purpose: To fabricate organic photovoltaic (OPV) cells with nanometric active layers sensitive to ionizing radiation and measure their dosimetric characteristics in clinical x-ray beams in the diagnostic tube potential range of 60–150 kVp. Methods: Experiments were designed to optimize the detector’s x-ray response and find the best parameter combination by changing the active layer thickness and the area of the electrode. The OPV cell consisted of poly (3-hexylthiophene-2,5-diyl): [6,6]-phenyl C{sub 61} butyric acid methyl ester photoactive donor and acceptor semiconducting organic materials sandwiched between an aluminum electrode as an anode and an indium tin oxide electrode as a cathode. Themore » authors measured the radiation-induced electric current at zero bias voltage in all fabricated OPV cells. Results: The net OPV current as a function of beam potential (kVp) was proportional to kVp{sup −0.5} when normalized to x-ray tube output, which varies with kVp. Of the tested configurations, the best combination of parameters was 270 nm active layer thicknesses with 0.7 cm{sup 2} electrode area, which provided the highest signal per electrode area. For this cell, the measured current ranged from approximately 0.7 to 2.4 nA/cm{sup 2} for 60–150 kVp, corresponding to about 0.09 nA–0.06 nA/mGy air kerma, respectively. When compared to commercial amorphous silicon thin film photovoltaic cells irradiated under the same conditions, this represents 2.5 times greater sensitivity. An additional 40% signal enhancement was observed when a 1 mm layer of plastic scintillator was attached to the cells’ beam-facing side. Conclusions: Since both OPVs can be produced as flexible devices and they do not require external bias voltage, they open the possibility for use as thin film in vivo detectors for dose monitoring in diagnostic x-ray imaging.« less

  11. Diagnosis and Treatment of Discoid Meniscus

    PubMed Central

    Kim, Jae-Gyoon; Han, Seung-Woo; Lee, Dae-Hee

    2016-01-01

    There is a greater incidence of discoid meniscus in Asian countries than in Western countries, and bilateral discoid menisci are also common. The discoid meniscus may be a congenital anomaly, and genetics or family history may play a role in the development of discoid menisci. Because the histology of discoid meniscus is different from that of normal meniscus, it is prone to tearing. Individuals with a discoid meniscus can be asymptomatic or symptomatic. Asymptomatic discoid menisci do not require treatment. However, operative treatment is necessary if there are symptoms. Total meniscectomy leads to an increased risk of osteoarthritis. Therefore, total meniscectomy is generally reserved for rare unsalvageable cases. Partial meniscectomy (saucerization) with preservation of a stable peripheral rim combined with or without peripheral repair is effective, and good short-, mid-, and long-term clinical results have been reported. PMID:27894171

  12. Evaporation-induced cavitation in nanofluidic channels

    PubMed Central

    Duan, Chuanhua; Karnik, Rohit; Lu, Ming-Chang; Majumdar, Arun

    2012-01-01

    Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. Although widely studied in bulk and microscale-confined liquids, cavitation in the nanoscale is generally believed to be energetically unfavorable and has never been experimentally demonstrated. Here we report evaporation-induced cavitation in water-filled hydrophilic nanochannels under enormous negative pressures up to -7 MPa. As opposed to receding menisci observed in microchannel evaporation, the menisci in nanochannels are pinned at the entrance while vapor bubbles form and expand inside. Evaporation in the channels is found to be aided by advective liquid transport, which leads to an evaporation rate that is an order of magnitude higher than that governed by Fickian vapor diffusion in macro- and microscale evaporation. The vapor bubbles also exhibit unusual motion as well as translational stability and symmetry, which occur because of a balance between two competing mass fluxes driven by thermocapillarity and evaporation. Our studies expand our understanding of cavitation and provide new insights for phase-change phenomena at the nanoscale. PMID:22343530

  13. Suture versus FasT-Fix all-inside meniscus repair at time of anterior cruciate ligament reconstruction.

    PubMed

    Choi, Nam-Hong; Kim, Byeong-Yeon; Hwang Bo, Byung-Hun; Victoroff, Brian N

    2014-10-01

    To compare meniscal healing and functional outcomes after all-inside meniscal repair between sutures and meniscal fixation devices. Sixty patients with a tear within the red-red or red-white zones of the posterior horn of the medial or lateral meniscus in conjunction with an anterior cruciate ligament (ACL) tear were included in this study. Meniscal repairs were performed with sutures in 35 patients and the FasT-Fix device (Smith & Nephew Endoscopy, Andover, MA) in 25 patients concomitantly with hamstring ACL reconstruction. Postoperative evaluations included Lysholm knee score, Tegner activity scale, Lachman and pivot-shift tests, and KT-1000 arthrometer (MEDmetric, San Diego, CA) testing. Follow-up magnetic resonance imaging (MRI) scans were obtained postoperatively for all patients to evaluate meniscal healing. The mean follow-up period was 47.2 months. In the suture group, 31 patients (86.1%) were asymptomatic and 4 (13.9%) were symptomatic. In the FasT-Fix group, 20 patients (80%) were asymptomatic and 5 (20%) were symptomatic. Postoperative functional evaluation and knee stability showed no statistically significant difference between the 2 groups. Follow-up MRI showed that 26 menisci (74.3%) were healed, 3 menisci (8.6%) were partially healed, and 6 menisci (17.1%) were not healed in the suture group. In the FasT-Fix group, 15 menisci (64%) were healed, 7 menisci (24%) were partially healed, and 3 menisci (12%) were not healed. Follow-up MRI showed no statistically significant difference between the 2 groups. In the FasT-Fix group, follow-up MRI showed a newly developed cyst posterior to the medial meniscus in 2 patients. A new tear anterior to the previous tear was found in 1 patient. In the suture group, follow-up MRI showed no cysts or new tears. All-inside meniscal repairs using either sutures or the FasT-Fix device showed satisfactory results in patients with concomitant hamstring ACL reconstruction. There was no statistically significant difference in

  14. X-ray microtomography-based measurements of meniscal allografts.

    PubMed

    Mickiewicz, P; Binkowski, M; Bursig, H; Wróbel, Z

    2015-05-01

    X-ray microcomputed tomography (XMT) is a technique widely used to image hard and soft tissues. Meniscal allografts as collagen structures can be imaged and analyzed using XMT. The aim of this study was to present an XMT scanning protocol that can be used to obtain the 3D geometry of menisci. It was further applied to compare two methods of meniscal allograft measurement: traditional (based on manual measurement) and novel (based on digital measurement of 3D models of menisci obtained with use of XMT scanner). The XMT-based menisci measurement is a reliable method for assessing the geometry of a meniscal allograft by measuring the basic meniscal dimensions known from traditional protocol. Thirteen dissected menisci were measured according the same principles traditionally applied in a tissue bank. Next, the same specimens were scanned by a laboratory scanner in the XMT Lab. The images were processed to obtain a 3D mesh. 3D models of allograft geometry were then measured using a novel protocol enhanced by computer software. Then, both measurements were compared using statistical tests. The results showed significant differences (P<0.05) between the lengths of the medial and lateral menisci measured in the tissue bank and the XMT Lab. Also, medial meniscal widths were significantly different (P<0.05). Differences in meniscal lengths may result from difficulties in dissected meniscus measurements in tissue banks, and may be related to the elastic structure of the dissected meniscus. Errors may also be caused by the lack of highlighted landmarks on the meniscal surface in this study. The XMT may be a good technique for assessing meniscal dimensions without actually touching the specimen. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Arthroscopic Treatment of Discoid Lateral Meniscus Tears in Children With Achondroplasia.

    PubMed

    Atanda, Alfred; Wallace, Maegen; Bober, Michael B; Mackenzie, William

    2016-01-01

    Achondroplasia is the most common form of skeletal dysplasia that presents to the pediatric orthopaedist. More than half of achondroplasia patients are affected with knee pain. It is thought that the majority of this pain may be due to spinal stenosis, hip pathology, or knee malalignment. Discoid menisci can be a source of lateral knee joint pain in skeletally immature patients in general. We present the first case series of patients with achondroplasia who had symptomatic discoid lateral menisci treated with arthroscopic knee surgery. The charts of 6 patients (8 knees) with achondroplasia who underwent arthroscopic knee surgery for symptomatic discoid lateral menisci were collected. History and physical examination data, magnetic resonance imaging findings, and operative reports were reviewed. Meniscal tear configuration and treatment type (meniscectomy vs. repair) were noted. Each patient was found to have a tear of the discoid meniscus. All menisci were treated with saucerization. In addition, meniscal repair was performed in 2 cases, partial meniscectomy in 3 cases, and subtotal meniscectomy in 3 cases. Two patients had bilateral discoid meniscal tears which were treated. Average follow-up was 2.4 years (range, 1 to 4.5 y) and the average pediatric International Knee Documentation Committee (pedi-IKDC) score was 85.3% (range, 75% to 95.4%). At final follow-up, all patients were pain free and able to return to full activities. Discoid meniscus tears may be a source of lateral joint line pain in patients with achondroplasia. These injuries can be successfully treated with arthroscopic surgery in this patient population. Future studies need to be done to determine the exact incidence of discoid menisci in achondroplasia patients and also to determine whether there is a genetic relationship between the 2 conditions. Level IV-case series.

  16. Failure strength of a new meniscus arrow repair technique: biomechanical comparison with horizontal suture.

    PubMed

    Albrecht-Olsen, P; Lind, T; Kristensen, G; Falkenberg, B

    1997-04-01

    A new method for arthroscopic all-inside repair of vertical meniscus lesions by use of a biodegradable fixation device ("meniscus arrow") has been developed, including a set of cannulas for easy insertion via standard arthroscopic portals. The technique is described. A study to test the fixation properties was performed in the laboratory. Twenty-four fresh frozen bovine medial menisci were defreezed and divided into three groups. In all menisci an artificial vertical lesion was created with a scalpel 3mm from the peripheral rim. Repair in group I was done with a single horizontal Maxon-O suture using an Acufex double-barrel cannula (Acufex Meniscal Stitcher; Acufex Microsurgical, Norwood, MA). A knot was tied on the capsular side. Repair in group II was made with one 13 mm Biofix Meniscus arrow (Bioscience Ltd, Tampere, Finland). In group III repair was performed like in group II but the menisci were incubated in isotonic saline at 21 degrees C for 24 hours before testing. Menisci in group I and II were tested within 3 hours after defreezing. Prior to testing total separation of central and peripheral part of meniscus was performed. Thus only the repair site was tested. Pull-out tests to failure were made in a computer-based Nene M5 testing machine with a cross-head speed of 5 mm/min. Median failure load in group I: 49 N (range 43 to 77 N), in group II: 53 N (range 42 to 65 N) and in group III: 54 N (range 35 to 74 N). No statistically significant differences in failure load was found between the groups. Thus initial failure strength for arrow-repaired bovine menisci is comparable to that of a horizontal suture.

  17. SU-E-CAMPUS-I-01: Nanometric Organic Photovoltaic Thin Film X-Ray Detectors for Clinical KVp Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elshahat, Bassem; Gill, Hardeep; Kumar, Jayant

    2014-06-15

    Purpose: To fabricate and test nanometric organic photovoltaic (OPV) cells made of various active-layer/electrode thicknesses and sizes; to determine the optimal material combinations and geometries suitable for dose measurements in clinical kilovoltage x-ray beams. Methods: The OPV consisted of P3HT:PCBM photoactive materials sandwiched between aluminum and Indium Tin Oxide (ITO) electrodes. Direct conversion of xrays in the active layer composed of donor and acceptor semiconducting organic materials generated signal in photovoltaic mode (without external voltage bias). OPV cells were fabricated with different active layer thicknesses (150, 270, 370 nm) and electrode areas (0.4, 0.7, 0.9, 1.4, 2.6 cm{sup 2}). Amore » series of experiments were preformed in the energy range of 60–150 kVp. The net current per unit area (nA/cm{sup 2}) was measured using 200 mAs time-integrated beam current. Results: The net OPV current as function of beam energy (kVp) was proportional to ∼E{sup 0,4} {sup 5} when adjusted for beam output. The best combination of parameters for these cells was 270 nm active layer thicknesses for 0.7 cm{sup 2} electrode area. The measured current ranged from 0.69 to 2.43 nA/cm{sup 2} as a function of x-ray energy between 60 and 150 kVp, corresponding to 0.09 – 0.06 nA/cm{sup 2}/mGy, respectively, when adjusted for the beam output. Conclusion: The experiments indicate that OPV detectors possessing 270 nm active layer and 0.7 cm{sup 2} Al electrode areas have sensitivity by a factor of 2.5 greater than commercial aSi thin film PV. Because OPV can be made flexible and they do not require highvoltage bias supply, they open the possibility for using as in-vivo detectors in radiation safety in x-ray imaging beams.« less

  18. Immune-Enhancing Effect of Nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a Mouse Model of Cyclophosphamide-Induced Immunosuppression.

    PubMed

    Choi, Dae-Woon; Jung, Sun Young; Kang, Jisu; Nam, Young-Do; Lim, Seong-Il; Kim, Ki Tae; Shin, Hee Soon

    2018-02-28

    Nanometric Lactobacillus plantarum nF1 (nLp-nF1) is a biogenics consisting of dead L. plantarum cells pretreated with heat and a nanodispersion process. In this study, we investigated the immune-enhancing effects of nLp-nF1 in vivo and in vitro. To evaluate the immunostimulatory effects of nLp-nF1, mice immunosuppressed by cyclophosphamide (CPP) treatment were administered with nLp-nF1. As expected, CPP restricted the immune response of mice, whereas oral administration of nLp-nF1 significantly increased the total IgG in the serum, and cytokine production (interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α)) in bone marrow cells. Furthermore, nLp-nF1 enhanced the production of splenic cytokines such as IL-12, TNF-α, and interferon gamma (IFN-γ). In vitro, nLp-nF1 stimulated the immune response by enhancing the production of cytokines such as IL-12, TNF-α, and IFN-γ. Moreover, nLp-nF1 given a food additive enhanced the immune responses when combined with various food materials in vitro. These results suggest that nLp-nF1 could be used to strengthen the immune system and recover normal immunity in people with a weak immune system, such as children, the elderly, and patients.

  19. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach

    NASA Astrophysics Data System (ADS)

    Raeesi, Behrooz; Piri, Mohammad

    2009-10-01

    SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area

  20. Direct measurement of hoop strains in the intact and torn human medial meniscus.

    PubMed

    Jones, R Spencer; Keene, G C R; Learmonth, D J A; Bickerstaff, D; Nawana, N S; Costi, J J; Pearcy, M J

    1996-07-01

    OBJECTIVE: To measure the circumferential or hoop strains generated in the medial meniscus during loading of the knee joint and to examine the effect of longitudinal and radial tears in the meniscus on these strain values. DESIGN: An in vitro investigation measuring the circumferential strains in the medial menisci of cadaveric human knees as they were loaded in a materials testing machine. BACKGROUND: The menisci transmit approximately 50% of the load through the knee, the rest being transmitted by direct contact of the articular cartilage. Damage to the menisci will alter the pattern of load transmission as will meniscectomy. This study examined the changes in the mechanics of the meniscus in situ as a result of simulated tears to assess the effect of its load carrying capacity and the implications of surgery to remove part or all of a damaged meniscus. METHODS: Nineteen human cadaveric knees were tested. Windows were made in the joint capsule and strain gauges inserted into the anterior, middle and posterior sections of the medial meniscus. The knees were then loaded to three times body weight at speeds of 50 and 500 mm/min, with the knee joint at 0 degrees and 30 degrees of flexion. The tests were repeated following the creation of a longitudinal or a radial tear in the meniscus. RESULTS: The intact menisci showed significantly less strain in the posterior section compared to the anterior and middle sections (P < 0.003, with strains of 1.54%, 2.86% and 2.65% respectively). With a longitudinal tear this pattern changed with strains decreasing anteriorly and increasing posteriorly. There were also significant differences at different angles of knee joint flexion not seen in the intact meniscus. 50% radial tears reduced the strains anteriorly whilst a complete radial tear completely defunctioned the meniscus. CONCLUSIONS: This study has shown that there are significantly different hoop strains produced in different sections of the medial meniscus under load and

  1. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    PubMed

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  2. Microdosimetry of low-energy electrons.

    PubMed

    Liamsuwan, Thiansin; Emfietzoglou, Dimitris; Uehara, Shuzo; Nikjoo, Hooshang

    2012-12-01

    To investigate differences in energy depositions and microdosimetric parameters of low-energy electrons in liquid and gaseous water using Monte Carlo track structure simulations. KURBUC-liq (Kyushu University and Radiobiology Unit Code for liquid water) was used for simulating electron tracks in liquid water. The inelastic scattering cross sections of liquid water were obtained from the dielectric response model of Emfietzoglou et al. (Radiation Research 2005;164:202-211). Frequencies of energy deposited in nanometre-size cylindrical targets per unit absorbed dose and associated lineal energies were calculated for 100-5000 eV monoenergetic electrons and the electron spectrum of carbon K edge X-rays. The results for liquid water were compared with those for water vapour. Regardless of electron energy, there is a limit how much energy electron tracks can deposit in a target. Phase effects on the frequencies of energy depositions are largely visible for the targets with diameters and heights smaller than 30 nm. For the target of 2.3 nm by 2.3 nm (similar to dimension of DNA segments), the calculated frequency- and dose-mean lineal energies for liquid water are up to 40% smaller than those for water vapour. The corresponding difference is less than 12% for the targets with diameters ≥ 30 nm. Condensed-phase effects are non-negligible for microdosimetry of low-energy electrons for targets with sizes smaller than a few tens of nanometres, similar to dimensions of DNA molecular structures and nucleosomes.

  3. Nanometric organisation in blends of gellan/xyloglucan hydrogels.

    PubMed

    de Souza, Clayton F; Riegel-Vidotti, Izabel C; Cardoso, Mateus B; Ono, Lucy; Lucyszyn, Neoli; Lubambo, Adriana F; Sens, Camila V; Grein-Iankovski, Aline; Sierakowski, Maria Rita

    2014-12-19

    Mixtures of gellan gum (GL) and a xyloglucan (XGJ) extracted from Hymenaea courbaril seeds were prepared in a solution of 0.15 mol L(-1) NaCl. Rheology measurements revealed that 2.4 g L(-1) pure GL formed a brittle hydrogel, and GL-XGJ blends showed improved pseudoplastic character with higher XGJ contents. SAXS analyses showed that the Rg dimensions ranged from 1.3 to 4.9 nm, with larger values occurring as the amount of XGJ increased, and diffusion tests indicated that better diffusion of methylene blue dye was obtained in the network with a higher XGJ content. AFM topographic images of the films deposited onto mica revealed fewer heterogeneous surfaces with increased XGJ contents. The water contact angle revealed more hydrophobic character on all of the films, and the wettability decreased with increasing amounts of XGJ. Therefore, the demonstrated benefit of using XGJ blends is the production of a soft material with improved interface properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A mean curvature model for capillary flows in asymmetric containers and conduits

    NASA Astrophysics Data System (ADS)

    Chen, Yongkang; Tavan, Noël; Weislogel, Mark M.

    2012-08-01

    Capillarity-driven flows resulting from critical geometric wetting criterion are observed to yield significant shifts of the bulk fluid from one side of the container to the other during "zero gravity" experiments. For wetting fluids, such bulk shift flows consist of advancing and receding menisci sometimes separated by secondary capillary flows such as rivulet-like flows along gaps. Here we study the mean curvature of an advancing meniscus in hopes of approximating a critical boundary condition for fluid dynamics solutions. It is found that the bulk shift flows behave as if the bulk menisci are either "connected" or "disconnected." For the connected case, an analytic method is developed to calculate the mean curvature of the advancing meniscus in an asymptotic sense. In contrast, for the disconnected case the method to calculate the mean curvature of the advancing and receding menisci uses a well-established procedure. Both disconnected and connected bulk shifts can occur as the first tier flow of more complex compound capillary flows. Preliminary comparisons between the analytic method and the results of drop tower experiments are encouraging.

  5. An allogenic cell-based implant for meniscal lesions.

    PubMed

    Weinand, Christian; Peretti, Giuseppe M; Adams, Samuel B; Bonassar, Lawrence J; Randolph, Mark A; Gill, Thomas J

    2006-11-01

    Meniscal tears in the avascular zones do not heal. Although tissue-engineering approaches using cells seeded onto scaffolds could expand the indication for meniscal repair, harvesting autologous cells could cause additional trauma to the patient. Allogenic cells, however, could provide an unlimited amount of cells. Allogenic cells from 2 anatomical sources can repair lesions in the avascular region of the meniscus. Controlled laboratory study. Both autologous and allogenic chondrocytes were seeded onto a Vicryl mesh scaffold and sutured into a bucket-handle lesion created in the medial menisci of 17 swine. Controls consisted of 3 swine knees treated with unseeded implants and controls from a previous experiment in which 4 swine were treated with suture only and 4 with no treatment. Menisci were harvested after 12 weeks and evaluated histologically for new tissue and percentage of interface healing surface; they were also evaluated statistically. The lesions were closed in 15 of 17 menisci. None of the control samples demonstrated healing. Histologic analysis of sequential cuts through the lesion showed formation of new scar-like tissue in all experimental samples. One of 8 menisci was completely healed in the allogenic group and 2 of 9 in the autologous group; the remaining samples were partially healed in both groups. No statistically significant differences in the percentage of healing were observed between the autologous and allogenic cell-based implants. Use of autologous and allogenic chondrocytes delivered via a biodegradable mesh enhanced healing of avascular meniscal lesions. This study demonstrates the potential of a tissue-engineered cellular repair of the meniscus using autologous and allogenic chondrocytes.

  6. Preparation of improved catalytic materials for water purification

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Tsvetkov, M.; Kunev, B.; Milanova, M.; Petrov, N.; Mitov, I.

    2014-04-01

    The aim of presented paper was to study preparation of catalytic materials for water purification. Iron oxide (Fe3O4) samples supported on activated carbon were prepared by wet impregnation method and low temperature heating in an inert atmosphere. The as-prepared, activated and samples after catalytic test were characterized by Mössbauer spectroscopy and X-ray diffraction. The obtained X-ray diffraction patterns of prepared samples show broad and low-intensity peaks of magnetite phase and the characteristic peaks of the activated carbon. The average crystallite size of magnetite particles was calculated below 20 nm. The registered Mössbauer spectra of prepared materials show a superposition of doublet lines or doublet and sextet components. The calculated hyperfine parameters after spectra evaluation reveal the presence of magnetite phase with nanosize particles. Relaxation phenomena were registered in both cases, i.e. superparamagnetism or collective magnetic excitation behavior, respectively. Low temperature Mössbauer spectra confirm this observation. Application of materials as photo-Fenton catalysts for organic pollutions degradation was studied. It was obtained high adsorption degree of dye, extremely high reaction rate and fast dye degradation. Photocatalytic behaviour of a more active sample was enhanced using mechanochemical activation (MCA). The nanometric size and high dispersion of photocatalyst particles influence both the adsorption and degradation mechanism of reaction. The results showed that all studied photocatalysts effectively decompose the organic pollutants under UV light irradiation. Partial oxidation of samples after catalytic tests was registered. Combination of magnetic particles with high photocatalytic activity meets both the requirements of photocatalytic degradation of water contaminants and that of recovery for cyclic utilization of material.

  7. Arthroscopic Medial Meniscus Posterior Root Reconstruction Using Auto-Gracilis Tendon.

    PubMed

    Lee, Dhong Won; Haque, Russel; Chung, Kyu Sung; Kim, Jin Goo

    2017-08-01

    There have been several techniques to repair the medial meniscus posterior root tears (MMPRTs) with the goal of restoring the anatomic and firm fixation of the meniscal root to bone. Many anatomic studies about the menisci also have been developed, so a better understanding of the anatomy could help surgeons perform correct fixation of the MMPRTs. The meniscal roots have ligament-like structures that firmly attach the menisci to the tibial plateau, and this structural concept is important to restore normal biomechanics after anatomic root repair. We present arthroscopic transtibial medial meniscus posterior root reconstruction using auto-gracilis tendon.

  8. Meniscal Preservation is Important for the Knee Joint

    PubMed Central

    Patil, Shantanu Sudhakar; Shekhar, Anshu; Tapasvi, Sachin Ramchandra

    2017-01-01

    Native joint preservation has gained importance in recent years. This is mostly to find solutions for limitations of arthroplasty. In the knee joint, the menisci perform critical functions, adding stability during range of motion and efficiently transferring load across the tibiofemoral articulation while protecting the cartilage. The menisci are the most common injury seen by orthopedicians, especially in the younger active patients. Advances in technology and our knowledge on functioning of the knee joint have made meniscus repair an important mode of treatment. This review summarizes the various techniques of meniscus tear repair and also describes biological enhancements of healing. PMID:28966381

  9. Ultra-sensitive flow measurement in individual nanopores through pressure--driven particle translocation.

    PubMed

    Gadaleta, Alessandro; Biance, Anne-Laure; Siria, Alessandro; Bocquet, Lyderic

    2015-05-07

    A challenge for the development of nanofluidics is to develop new instrumentation tools, able to probe the extremely small mass transport across individual nanochannels. Such tools are a prerequisite for the fundamental exploration of the breakdown of continuum transport in nanometric confinement. In this letter, we propose a novel method for the measurement of the hydrodynamic permeability of nanometric pores, by diverting the classical technique of Coulter counting to characterize a pressure-driven flow across an individual nanopore. Both the analysis of the translocation rate, as well as the detailed statistics of the dwell time of nanoparticles flowing across a single nanopore, allow us to evaluate the permeability of the system. We reach a sensitivity for the water flow down to a few femtoliters per second, which is more than two orders of magnitude better than state-of-the-art alternative methods.

  10. Evaluation of Meniscal Mechanics and Proteoglycan Content in a Modified Anterior Cruciate Ligament Transection Model

    PubMed Central

    Fischenich, Kristine M.; Coatney, Garrett A.; Haverkamp, John H.; Button, Keith D.; DeCamp, Charlie; Haut, Roger C.; Haut Donahue, Tammy L.

    2014-01-01

    Post-traumatic osteoarthritis (PTOA) develops as a result of traumatic loading that causes tears of the soft tissues in the knee. A modified transection model, where the anterior cruciate ligament (ACL) and both menisci were transected, was used on skeletally mature Flemish Giant rabbits. Gross morphological assessments, elastic moduli, and glycosaminoglycan (GAG) coverage of the menisci were determined to quantify the amount of tissue damage 12 weeks post injury. This study is one of the first to monitor meniscal changes after inducing combined meniscal and ACL transections. A decrease in elastic moduli as well as a decrease in GAG coverage was seen. PMID:24749144

  11. Nanobubbles: a new paradigm for air-seeding in xylem.

    PubMed

    Schenk, H Jochen; Steppe, Kathy; Jansen, Steven

    2015-04-01

    Long-distance water transport in plants relies on a system that typically operates under negative pressure and is prone to hydraulic failure due to gas bubble formation. One primary mechanism of bubble formation takes place at nanoporous pit membranes between neighboring conduits. We argue that this process is likely to snap off nanobubbles because the local increase in liquid pressure caused by entry of air-water menisci into the complex pit membrane pores would energetically favor nanobubble formation over instant cavitation. Nanobubbles would be stabilized by surfactants and by gas supersaturation of the sap, may dissolve, fragment into smaller bubbles, or create embolisms. The hypothesis that safe and stable nanobubbles occur in plants adds a new component supporting the cohesion-tension theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bilateral discoid medial menisci: a rare phenomenon

    PubMed Central

    Samal, Puspak; Bhagwat, Kishan; Panigrahi, Tapas; Gopinathan, Nirmalraj

    2014-01-01

    Discoid medial meniscus is a relatively rare pathology of the knee joint, with bilateral cases even rarer. Herein, we report the case of a 25-year-old man diagnosed with discoid medial meniscus in the right knee with a horizontal tear. Increased cupping of the medial condyle of the tibia, widening of the medial joint space and the presence of discoid meniscus in the right knee prompted investigation of the asymptomatic left knee with magnetic resonance imaging. The contralateral asymptomatic knee also showed evidence of discoid medial meniscus. The symptomatic knee was successfully treated by arthroscopic partial meniscectomy, with excellent functional outcome. PMID:25273941

  13. Experiments and Modeling of Evaporating/Condensing Menisci

    NASA Technical Reports Server (NTRS)

    Plawsky, Joel; Wayner, Peter C., Jr.

    2013-01-01

    Discuss the Constrained Vapor Bubble (CVB) experiment and how it aims to achieve a better understanding of the physics of evaporation and condensation and how they affect cooling processes in microgravity using a remotely controlled microscope and a small cooling device.

  14. UTE-T2* mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear

    PubMed Central

    Williams, A.; Qian, Y.; Golla, S.; Chu, C.R.

    2018-01-01

    SUMMARY Objective Meniscus tear is a known risk factor for osteoarthritis (OA). Quantitative assessment of meniscus degeneration, prior to surface break-down, is important to identification of early disease potentially amenable to therapeutic interventions. This work examines the diagnostic potential of ultrashort echo time-enhanced T2* (UTE-T2*) mapping to detect human meniscus degeneration in vitro and in vivo in subjects at risk of developing OA. Design UTE-T2* maps of 16 human cadaver menisci were compared to histological evaluations of meniscal structural integrity and clinical magnetic resonance imaging (MRI) assessment by a musculoskeletal radiologist. In vivo UTE-T2* maps were compared in 10 asymptomatic subjects and 25 ACL-injured patients with and without concomitant meniscal tear. Results In vitro, UTE-T2* values tended to be lower in histologically and clinically normal meniscus tissue and higher in torn or degenerate tissue. UTE-T2* map heterogeneity reflected collagen disorganization. In vivo, asymptomatic meniscus UTE-T2* values were repeatable within 9% (root-mean-square average coefficient of variation). Posteromedial meniscus UTE-T2* values in ACL-injured subjects with clinically diagnosed medial meniscus tear (n = 10) were 87% higher than asymptomatics (n = 10, P < 0.001). Posteromedial menisci UTE-T2* values of ACL-injured subjects without concomitant medial meniscal tear (n = 15) were 33% higher than asymptomatics (P = 0.001). Posterolateral menisci UTE-T2* values also varied significantly with degree of joint pathology (P = 0.001). Conclusion Significant elevations of UTE-T2* values in the menisci of ACL-injured subjects without clinical evidence of subsurface meniscal abnormality suggest that UTE-T2* mapping is sensitive to subclinical meniscus degeneration. Further study is needed to determine whether elevated subsurface meniscus UTE-T2* values predict progression of meniscal degeneration and development of OA. PMID:22306000

  15. Regional and depth variability of porcine meniscal mechanical properties through biaxial testing.

    PubMed

    Kahlon, A; Hurtig, M B; Gordon, K D

    2015-01-01

    The menisci in the knee joint undergo complex loading in-vivo resulting in a multidirectional stress distribution. Extensive mechanical testing has been conducted to investigate the tissue properties of the knee meniscus, but the testing conditions do not replicate this complex loading regime. Biaxial testing involves loading tissue along two different directions simultaneously, which more accurately simulates physiologic loading conditions. The purpose of this study was to report mechanical properties of meniscal tissue resulting from biaxial testing, while simultaneously investigating regional variations in properties. Ten left, fresh porcine joints were obtained, and the medial and lateral menisci were harvested from each joint (twenty menisci total). Each menisci was divided into an anterior, middle and posterior region; and three slices (femoral, deep and tibial layers) were obtained from each region. Biaxial and constrained uniaxial testing was performed on each specimen, and Young's moduli were calculated from the resulting stress strain curves. Results illustrated significant differences in regional mechanical properties, with the medial anterior (Young's modulus (E)=11.14 ± 1.10 MPa), lateral anterior (E=11.54 ± 1.10 MPa) and lateral posterior (E=9.0 ± 1.2 MPa) regions exhibiting the highest properties compared to the medial central (E=5.0 ± 1.22 MPa), medial posterior (E=4.16 ± 1.13 MPa) and lateral central (E=5.6 ± 1.20 MPa) regions. Differences with depth were also significant on the lateral meniscus, with the femoral (E=12.7 ± 1.22 MPa) and tibial (E=8.6 ± 1.22 MPa) layers exhibiting the highest Young's moduli. This data may form the basis for future modeling of meniscal tissue, or may aid in the design of synthetic replacement alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Dynamic compression of human and ovine meniscal tissue compared with a potential thermoplastic elastomer hydrogel replacement.

    PubMed

    Fischenich, Kristine M; Boncella, Katie; Lewis, Jackson T; Bailey, Travis S; Haut Donahue, Tammy L

    2017-10-01

    Understanding how human meniscal tissue responds to loading regimes mimetic of daily life as well as how it compares to larger animal models is critical in the development of a functionally accurate synthetic surrogate. Seven human and eight ovine cadaveric meniscal specimens were regionally sectioned into cylinders 5 mm in diameter and 3 mm thick along with 10 polystyrene-b-polyethylene oxide block copolymer-based thermoplastic elastomer (TPE) hydrogels. Samples were compressed to 12% strain at 1 Hz for 5000 cycles, unloaded for 24 h, and then retested. No differences were found within each group between test one and test two. Human and ovine tissue exhibited no regional dependency (p < 0.05). Human samples relaxed quicker than ovine tissue or the TPE hydrogel with modulus values at cycle 50 not significantly different from cycle 5000. Ovine menisci were found to be similar to human menisci in relaxation profile but had significantly higher modulus values (3.44 MPa instantaneous and 0.61 MPa after 5000 cycles compared with 1.97 and 0.11 MPa found for human tissue) and significantly different power law fit coefficients. The TPE hydrogel had an initial modulus of 0.58 MPa and experienced less than a 20% total relaxation over the 5000. Significant differences in the magnitude of compressive modulus between human and ovine menisci were observed, however the relaxation profiles were similar. Although statistically different than the native tissues, modulus values of the TPE hydrogel material were similar to those of the human and ovine menisci, making it a material worth further investigation for use as a synthetic replacement. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2722-2728, 2017. © 2017 Wiley Periodicals, Inc.

  17. Humidity influence on atomic force microscopy electrostatic nanolithography

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei; Juhl, Shane; Vaia, Richard

    2006-03-01

    The formation and sustainability of water menisci and bridges between solid dielectric surface and nano-asperity under external electrostatic potential is a mystery, which must be adequately explained. The goal of our study is twofold: (i) To address the influence of an ambient humidity through the water meniscus formation on the nanostructure formation in soften polymeric surfaces; (ii) Estimate an electric charge generation and transport inside the water meniscus in vicinity of nanoscale asperity taking into consideration an induced water ionization in strong non-uniform electric field of magnitude up to 10^10 Vm-1. It is suspected that strong electric field inside a polymer matrix activates the hoping mechanism of conductivity. The electrons are supplied by tunneling of conductive tip, and also through water ionization. Electric current associated with these free carriers produces Jule heating of a small volume of polymer film heating it above the glass transition temperature. Nanostructures are created by mass transport of visco-elastic polymer melt enabling high structure densities on polymer film.

  18. Adsorbed water and thin liquid films on Mars

    NASA Astrophysics Data System (ADS)

    Boxe, C. S.; Hand, K. P.; Nealson, K. H.; Yung, Y. L.; Yen, A. S.; Saiz-Lopez, A.

    2012-07-01

    -6-8.0×10-4%, respectively, of the Martian atmospheric water vapour inventory. Thin liquid film thicknesses on/in subsurface ice were investigated via two scenarios: (i) under the idealistic case where it is assumed that the diurnal thermal wave is equal to the temperature of ice tens of centimetres below the surface, allowing for such ice to experience temperatures close to 273 K and (ii) under the, likely, realistic scenario where the diurnal thermal wave allows for the maximum subsurface ice temperature of 235 K at 1 m depth between 30°N and 30°S. Scenario 1 yields thin liquid film thicknesses ranging from 11 to 90 nm; these amounts represent 4×106-3.0×107 litres of water. For pure water ice, Scenario 2 reveals that the thickness of thin liquid films contained on/within Martian subsurface is less than 1.2 nm, several molecular layers thick. Conversely, via the effect of impurities at 235 K allows for a thin liquid film thickness on/within subsurface ice of 0.5 nm, corresponding to 6.0×104 litres of water. The existence of thin films on Mars is supported by data from the Mars Exploration Rovers (MERs) Spirit and Opportunity's Alpha Proton X-ray Spectrometer instrumentation, which have detected increased levels of bromine beneath the immediate surface, suggestive of the mobilization of soluble salts by thin films of liquid water towards local cold traps. These findings show that biological activity on the Martian surface and subsurface is not limited by nanometre dimensions of available water.

  19. MCM-41 support for ultrasmall γ-Fe 2O 3 nanoparticles for H 2S removal

    DOE PAGES

    Cara, C.; Rombi, E.; Musinu, A.; ...

    2017-07-08

    In this paper, MCM-41 is proposed to build mesostructured Fe 2O 3-based sorbents as an alternative to other silica or alumina supports for mid-temperature H 2S removal. MCM-41 was synthesized as micrometric (MCM41_M) and nanometric (MCM41_N) particles and impregnated through an efficient two-solvent (hexane–water) procedure to obtain the corresponding γ-Fe 2O 3@MCM-41 composites. The active phase is homogeneously dispersed within the 2 nm channels in the form of ultrasmall maghemite nanoparticles assuring a high active phase reactivity. The final micrometric (Fe_MCM41_M) and nanometric (Fe_MCM41_N) composites were tested as sorbents for hydrogen sulphide removal at 300 °C and the results weremore » compared with a reference sorbent (commercial unsupported ZnO) and an analogous silica-based sorbent (Fe_SBA15). MCM-41 based sorbents, having the highest surface areas, showed superior performances that were retained after the first sulphidation cycle. Specifically, the micrometric sorbent (Fe_MCM41_M) showed a higher SRC value than the nanometric one (Fe_MCM41_N), due to the low stability of the nanosized particles over time caused by their high reactivity. Finally and furthermore, the low regeneration temperature (300–350 °C), besides the high removal capacity, renders MCM41-based systems an alternative class of regenerable sorbents for thermally efficient cleaning up processes in Integrated Gasification Combined Cycles (IGCC) systems.« less

  20. MCM-41 support for ultrasmall γ-Fe 2O 3 nanoparticles for H 2S removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cara, C.; Rombi, E.; Musinu, A.

    In this paper, MCM-41 is proposed to build mesostructured Fe 2O 3-based sorbents as an alternative to other silica or alumina supports for mid-temperature H 2S removal. MCM-41 was synthesized as micrometric (MCM41_M) and nanometric (MCM41_N) particles and impregnated through an efficient two-solvent (hexane–water) procedure to obtain the corresponding γ-Fe 2O 3@MCM-41 composites. The active phase is homogeneously dispersed within the 2 nm channels in the form of ultrasmall maghemite nanoparticles assuring a high active phase reactivity. The final micrometric (Fe_MCM41_M) and nanometric (Fe_MCM41_N) composites were tested as sorbents for hydrogen sulphide removal at 300 °C and the results weremore » compared with a reference sorbent (commercial unsupported ZnO) and an analogous silica-based sorbent (Fe_SBA15). MCM-41 based sorbents, having the highest surface areas, showed superior performances that were retained after the first sulphidation cycle. Specifically, the micrometric sorbent (Fe_MCM41_M) showed a higher SRC value than the nanometric one (Fe_MCM41_N), due to the low stability of the nanosized particles over time caused by their high reactivity. Finally and furthermore, the low regeneration temperature (300–350 °C), besides the high removal capacity, renders MCM41-based systems an alternative class of regenerable sorbents for thermally efficient cleaning up processes in Integrated Gasification Combined Cycles (IGCC) systems.« less

  1. Characterization of water based nanofluid for quench medium

    NASA Astrophysics Data System (ADS)

    Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.

    2018-04-01

    Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub

  2. Incidence and patterns of meniscal tears accompanying the anterior cruciate ligament injury: possible local and generalized risk factors.

    PubMed

    Mansori, Ashraf El; Lording, Timothy; Schneider, Antoine; Dumas, Raphael; Servien, Elvire; Lustig, Sebastien

    2018-05-26

    Injury to the anterior cruciate ligament (ACL) is frequently accompanied by tears of the menisci. Some of these tears occur at the time of injury, but others develop over time in the ACL-deficient knee. The aim of this study was to evaluate the effects of the patient characteristics, time from injury (TFI), and posterior tibial slope (PTS) on meniscal tear patterns. Our hypothesis was that meniscal tears would occur more frequently in ACL-deficient knees with increasing age, weight, TFI, PTS, and in male patients. Of the ACL-injured patients, 362 were analyzed, and details of meniscal lesions were collected. The medial and lateral tibial slopes (MTS, LTS) were measured via computed tomography. Patient demographics, TFI, MTS, and LTS were correlated with the diagnosed meniscal tears. Of the patients, 113 had a medial meniscus (MM) tear, 54 patients had a lateral meniscus (LM) tear, 34 patients had tears of both menisci, and 161 patients had no meniscal tear. The most common tear location was the posterior horn (PH) of the MM, followed by tear involving the whole MM. Patient age, BMI, and TFI were significantly associated with the incidence of MM tear. Female patients had a higher incidence of injury than males in all tear sites except in the body and PH. Male patients had more vertical and peripheral tears. The median MTS and LTS for patients with MM tears were 7.0°and 8.7°, respectively, while those of patients with LM tears were 6.9° and 8.1°. Steeper LTS was significantly associated with tears of LM and of both menisci. Older age, male sex, increased BMI, and prolonged TFI were significant factors for the development of MM tears. An increase in the tibial slope, especially of the lateral plateau, seems to increase the risk of tear of the LM and of both menisci. Level III.

  3. Knee Injuries

    MedlinePlus

    ... when bending, extending, or lifting a leg. Meniscus Tears Damage to the menisci is a really common ... side-to-side movements can cause them to tear. Meniscus injuries often occur together with severe sprains, ...

  4. Potential use of mesenchymal stem cells in human meniscal repair: current insights

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Jeon, Jeong Ho; Lee, Sang Hee

    2017-01-01

    The menisci of the human knee play an important role in maintaining normal functions to provide stability and nutrition to the articular cartilage, and to absorb shock. Once injured, these important structures have very limited natural healing potential. Unfortunately, the traditional arthroscopic meniscectomy performed on these damaged menisci may predispose the joint toward early development of osteoarthritis. Although a very limited number of studies are available, mesenchymal stem cells (MSCs) have been investigated as an alternative therapeutic modality to repair human knee meniscal tears. This review summarizes the results of published applications of MSCs in human patients, which showed that the patients who received MSCs (autologous adipose tissue-derived stem cells or culture-expanded bone marrow-derived stem cells) presented symptomatic improvements, along with magnetic resonance imaging evidences of the meniscal repair. PMID:28356779

  5. Meniscus maturation in the swine model: changes occurring along with anterior to posterior and medial to lateral aspect during growth

    PubMed Central

    Di Giancamillo, Alessia; Deponti, Daniela; Addis, Alessandro; Domeneghini, Cinzia; Peretti, Giuseppe M

    2014-01-01

    The meniscus plays important roles in knee function and mechanics and is characterized by a heterogeneous matrix composition. The changes in meniscus vascularization observed during growth suggest that the tissue-specific composition may be the result of a maturation process. This study has the aim to characterize the structural and biochemical variations that occur in the swine meniscus with age. To this purpose, menisci were collected from young and adult pigs and divided into different zones. In study 1, both lateral and medial menisci were divided into the anterior horn, the body and the posterior horn for the evaluation of glycosaminoglycans (GAGs), collagen 1 and 2 content. In study 2, the menisci were sectioned into the inner, the intermediate and the outer zones to determine the variations in the cell phenotype along with the inner–outer direction, through gene expression analysis. According to the results, the swine meniscus is characterized by an increasing enrichment in the cartilaginous component with age, with an increasing deposition in the anterior horn (GAGs and collagen 2; P < 0.01 both); moreover, this cartilaginous matrix strongly increases in the inner avascular and intermediate zone, as a consequence of a specific differentiation of meniscal cells towards a cartilaginous phenotype (collagen 2, P < 0.01). The obtained data add new information on the changes that accompany meniscus maturation, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. PMID:25216283

  6. Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: Analysis of the lateral meniscus.

    PubMed

    Madry, Henning; Ziegler, Raphaela; Orth, Patrick; Goebel, Lars; Ong, Mei Fang; Kohn, Dieter; Cucchiarini, Magali; Pape, Dietrich

    2013-01-01

    To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural and biochemical changes in the lateral meniscus in adult sheep. Three experimental groups with biplanar osteotomies of the right proximal tibiae were tested: (a) closing wedge HTO resulting in 4.5° of tibial varus, (b) open wedge HTO resulting in 4.5° of tibial valgus (standard correction) and (c) open wedge HTO resulting in 9.5° of valgus (overcorrection), each of which was compared to the contralateral knees with normal limb axes. After 6 months, the lateral menisci were macroscopically and microscopically evaluated. The proteoglycan and DNA contents of the red-red and white-white zones of the anterior, middle and posterior third were determined. Semiquantitative macroscopic and microscopic grading revealed no structural differences between groups. The red-red zone of the middle third of the lateral menisci of animals that underwent overcorrection exhibited a significant 0.7-fold decrease in mean DNA contents compared with the control knee without HTO (P = 0.012). Comparative estimation of the DNA and proteoglycan contents and proteoglycan/DNA ratios of all other parts and zones of the lateral menisci did not reveal significant differences between groups. Open wedge HTO does not lead to significant macroscopic and microscopic structural changes in the lateral meniscus after 6 months in vivo. Overcorrection significantly decreases the proliferative activity of the cells in the red-red zone of the middle third in the sheep model.

  7. The role of suture cutout in the failure of meniscal root repair during the early post-operative period: a biomechanical study.

    PubMed

    Perez-Blanca, Ana; Prado Nóvoa, María; Lombardo Torre, Maximiano; Espejo-Reina, Alejandro; Ezquerro Juanco, Francisco; Espejo-Baena, Alejandro

    2018-04-01

    To assess the role of suture cutout in the mechanics of failure of the repaired posterior meniscal root during the early post-operative period when using sutures of different shape. Twenty medial porcine menisci were randomized in two groups depending on the suture shape used to repair the posterior root: thread or tape. The sutured menisci were subjected to cyclic loading (1000 cycles, (10, 30) N) followed by load-to-failure testing. Residual displacements, stiffness, and ultimate failure load were determined. During tests, the tissue-suture interface was recorded using a high-resolution camera. In cyclic tests, cutout progression at the suture insertion points was not observed for any specimen of either group and no differences in residual displacements were found between use of thread or tape. In load-to-failure tests, suture cutout started in all menisci at a load close to the ultimate failure and all specimens failed by suture pullout. Suture tape had a greater ultimate load with no other differences. In a porcine model of a repaired posterior meniscal root subjected to cyclic loads representative of current rehabilitation protocols in the early post-operative period under restricted loading conditions, suture cutout was not found as a main source of permanent root displacement when using suture thread or tape. Suture cutout progression started at high loading levels close to the ultimate load of the construct. Tape, with a meniscus-suture contact area larger than thread, produced higher ultimate load.

  8. Edge contact angle and modified Kelvin equation for condensation in open pores.

    PubMed

    Malijevský, Alexandr; Parry, Andrew O; Pospíšil, Martin

    2017-08-01

    We consider capillary condensation transitions occurring in open slits of width L and finite height H immersed in a reservoir of vapor. In this case the pressure at which condensation occurs is closer to saturation compared to that occurring in an infinite slit (H=∞) due to the presence of two menisci that are pinned near the open ends. Using macroscopic arguments, we derive a modified Kelvin equation for the pressure p_{cc}(L;H) at which condensation occurs and show that the two menisci are characterized by an edge contact angle θ_{e} that is always larger than the equilibrium contact angle θ, only equal to it in the limit of macroscopic H. For walls that are completely wet (θ=0) the edge contact angle depends only on the aspect ratio of the capillary and is well described by θ_{e}≈sqrt[πL/2H] for large H. Similar results apply for condensation in cylindrical pores of finite length. We test these predictions against numerical results obtained using a microscopic density-functional model where the presence of an edge contact angle characterizing the shape of the menisci is clearly visible from the density profiles. Below the wetting temperature T_{w} we find very good agreement for slit pores of widths of just a few tens of molecular diameters, while above T_{w} the modified Kelvin equation only becomes accurate for much larger systems.

  9. Piercing the water surface with a blade: Singularities of the contact line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alimov, Mars M.; Kornev, Konstantin G.

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contactmore » line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade.« less

  10. Meniscus maturation in the swine model: changes occurring along with anterior to posterior and medial to lateral aspect during growth.

    PubMed

    Di Giancamillo, Alessia; Deponti, Daniela; Addis, Alessandro; Domeneghini, Cinzia; Peretti, Giuseppe M

    2014-10-01

    The meniscus plays important roles in knee function and mechanics and is characterized by a heterogeneous matrix composition. The changes in meniscus vascularization observed during growth suggest that the tissue-specific composition may be the result of a maturation process. This study has the aim to characterize the structural and biochemical variations that occur in the swine meniscus with age. To this purpose, menisci were collected from young and adult pigs and divided into different zones. In study 1, both lateral and medial menisci were divided into the anterior horn, the body and the posterior horn for the evaluation of glycosaminoglycans (GAGs), collagen 1 and 2 content. In study 2, the menisci were sectioned into the inner, the intermediate and the outer zones to determine the variations in the cell phenotype along with the inner-outer direction, through gene expression analysis. According to the results, the swine meniscus is characterized by an increasing enrichment in the cartilaginous component with age, with an increasing deposition in the anterior horn (GAGs and collagen 2; P < 0.01 both); moreover, this cartilaginous matrix strongly increases in the inner avascular and intermediate zone, as a consequence of a specific differentiation of meniscal cells towards a cartilaginous phenotype (collagen 2, P < 0.01). The obtained data add new information on the changes that accompany meniscus maturation, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Biomechanical Properties of Murine Meniscus Surface via AFM-based Nanoindentation

    PubMed Central

    Li, Qing; Doyran, Basak; Gamer, Laura W.; Lu, X. Lucas; Qin, Ling; Ortiz, Christine; Grodzinsky, Alan J.; Rosen, Vicki; Han, Lin

    2015-01-01

    This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip ≈ 5 μm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction observed on 12-week old menisci. The indentation resistance was calculated as both the effective stiffness, Sind = dF/dD, and the effective modulus, Eind, via the isotropic Hertz model. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1 ± 0.8 MPa for 12 weeks of age, mean ± SEM, n = 13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4 ± 0.1 MPa, n = 6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models. PMID:25817332

  12. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  13. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Yuan, Zhiguo; Xi, Tingfei; Wei, Xiaojuan; Guo, Quanyi

    2016-06-01

    Menisci are fundamental fibrocartilaginous organs in knee joints. The injury in meniscus can impair normal knee function and predisposes patients to osteoarthritis. This study prepared decellularized meniscus scaffolds using a 1% (w/w) sodium dodecyl sulfate solution and sufficient rinsing steps. Complete cell removal was verified by hematoxylin and eosin staining and DNA content assay. Decellularized menisci had accordant tension properties to intact ones, but with declined compression properties. This occurred because the collagen fiber was not damaged but glycosaminoglycans was significantly lost during the decellularization process, which was confirmed by biochemical assay and histology staining. In vitro cytotoxicity assay demonstrated that decellularized meniscus scaffolds have no toxicity on L929 murine fibroblasts and porcine chondrocytes. Further experiment showed that porcine chondrocytes could adhere and proliferate on the scaffold surface, and some cells even could infiltrate into the scaffold. All results showed the potential of this decellularized meniscus to be the scaffolds in tissue engineering.

  14. Molecular transport through capillaries made with atomic-scale precision

    NASA Astrophysics Data System (ADS)

    Radha, B.; Esfandiar, A.; Wang, F. C.; Rooney, A. P.; Gopinadhan, K.; Keerthi, A.; Mishchenko, A.; Janardanan, A.; Blake, P.; Fumagalli, L.; Lozada-Hidalgo, M.; Garaj, S.; Haigh, S. J.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.

    2016-10-01

    Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.

  15. The potential of optical coherence tomography in meniscal tear characterization

    NASA Astrophysics Data System (ADS)

    Ling, Hang-yin; Guo, Shuguang; Thieman, Kelley M.; Wise, Brent T.; Pozzi, Antonio; Xie, Huikai; Horodyski, MaryBeth

    2009-02-01

    Meniscal tear is one of the most common knee injuries leading to pain and discomfort. Partial and total meniscectomies have been widely used to treat the avascular meniscal injuries in which tears do not heal spontaneously. However, the meniscectomies would cause an alteration of the tibiofemoral contact mechanics resulting in progressive osteoarthritis (OA). To mitigate the progression of OA, maximal preservation of meniscal tissue is recommended. The clinical challenge is deciding which meniscal tears are amenable to repair and which part of damaged tissues should be removed. Current diagnosis techniques such as arthroscopy and magnetic resonance imaging can provide macrostructural information of menisci, but the microstructural changes that occur prior to the observable meniscal tears cannot be identified by these techniques. Serving as a nondestructive optical biopsy, optical coherence tomography (OCT), a newly developed imaging modality, can provide high resolution, cross-sectional images of tissues and has been shown its capabilty in arthroscopic evaulation of articular cartilage. Our research was to demonstrate the potential of using OCT for nondestructive characterization of the histopathology of different types of meniscal tears from clinical cases in dogs, providing a fundamental understanding of the failure mechanism of meniscal tears. First, cross-sectional images of torn canine menisci obtained from the OCT and scanning electronic microscopy (SEM) were be compared. By studying the organization of collegan fibrils in torn menisci from the SEM images, the feasibility of using OCT to characterize the organization of collegan fibrils was elucidated. Moreover, the crack size of meniscal tears was quantatitively measured from the OCT images. Changes in the crack size of the tear may be useful for understanding the failure mechanism of meniscal tears.

  16. Optical distortion correction of a liquid-gas interface and contact angle in cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Darzi, Milad; Park, Chanwoo

    2017-05-01

    Objects inside cylindrical tubes appear distorted as seen outside the tube due to the refraction of the light passing through different media. Such an optical distortion may cause significant errors in geometrical measurements using optical observations of objects (e.g., liquid-gas interfaces, solid particles, gas bubbles) inside the tubes. In this study, an analytical method using a point-by-point correction of the optical distortion was developed. For an experimental validation, the method was used to correct the apparent profiles of the water-air interfaces (menisci) in cylindrical glass tubes with different tube diameters and wall thicknesses. Then, the corrected meniscus profiles were used to calculate the corrected static contact angles. The corrected contact angle shows an excellent agreement with the reference contact angles as compared to the conventional contact angle measurement using apparent meniscus profiles.

  17. Percolation study for the capillary ascent of a liquid through a granular soil

    NASA Astrophysics Data System (ADS)

    Cárdenas-Barrantes, Manuel Antonio; Muñoz, José Daniel; Araujo, Nuno Machado

    2017-06-01

    Capillary rise plays a crucial role in the construction of road embankments in flood zones, where hydrophobic compounds are added to the soil to suppress the rising of water and avoid possible damage of the pavement. Water rises through liquid bridges, menisci and trimers, whose width and connectivity depends on the maximal half-length λ of the capillary bridges among grains. Low λs generate a disconnect structure, with small clusters everywhere. On the contrary, for high λ, create a percolating cluster of trimers and enclosed volumes that form a natural path for capillary rise. Hereby, we study the percolation transition of this geometric structure as a function of λ on a granular media of monodisperse spheres in a random close packing. We determine both the percolating threshold λc = (0.049 ± 0.004)R (with R the radius of the granular spheres), and the critical exponent of the correlation length v = 0.830 ± 0.051, suggesting that the percolation transition falls into the universality class of ordinary percolation.

  18. Quantitative analysis of the difference between an intact complete discoid lateral meniscus and a torn complete discoid meniscus on MR imaging: a feasibility study for a new classification.

    PubMed

    Lee, Mi Hee; Choi, Sang-Hee; Woo, Sook Young

    2010-12-01

    To determine the quantitative difference between an intact complete discoid lateral meniscus (CDLM) and a torn CDLM on MR imaging. Between May 2005 to November 2009, 137 patients with a CDLM (107 intact CDLM and 30 torn CDLM) and 92 patients with a normal meniscus were included in this study. The evaluated parameters were the height of the posterior horn of the lateral and medial menisci on the sagittal images and their ratio as assessed by two observers twice at an interval of 1 month. Each parameter was analyzed based on the Kruskal Wallis test, and the analysis using the mixed model. Intraclass correlation coefficient (ICC) was used to determine the interobserver reliabilities at session 2. The mean heights of the posterior horn of the lateral and medial menisci on the sagittal images for an intact CDLM, a torn CLDM, and a normal meniscus were 6.5, 7.3, 5.7 and 6.6, 6.4, 6.7 mm at session 1, respectively. The mean heights of the posterior horn of the lateral and medial menisci on the sagittal images for an intact CDLM, a torn CDLM, and a normal meniscus for both observers were 6.5, 7.2, 5.7 and 6.6, 6.3, 6.8 mm at session 2, respectively. The ratio of the height of the lateral to the height of the medial meniscus for an intact CDLM at both sessions for both observers was 1.0. The ratios were 1.2 and 0.8 for a torn CDLM and for a normal meniscus, respectively, at both sessions for observer 1. The ratios were 1.2 and 0.9 for a torn CDLM and for a normal meniscus, respectively, at session 2 for observer 2. The heights of the posterior horn of the lateral meniscus on the sagittal images and the ratios of the heights of the lateral to the medial menisci in all three groups were statistically significantly different for both sessions (p < 0.0001). The interobserver ICCs for each parameter of both an intact CDLM and a torn CDLM at session 2 showed high correlations (p < 0.0001). The height of the lateral meniscus and the ratio of the height of the lateral to

  19. Can a single isotropic 3D fast spin echo sequence replace three-plane standard proton density fat-saturated knee MRI at 1.5 T?

    PubMed Central

    Robinson, P; Hodgson, R; Grainger, A J

    2015-01-01

    Objective: To assess whether a single isotropic three-dimensional (3D) fast spin echo (FSE) proton density fat-saturated (PD FS) sequence reconstructed in three planes could replace the three PD (FS) sequences in our standard protocol at 1.5 T (Siemens Avanto, Erlangen, Germany). Methods: A 3D FSE PD water excitation sequence was included in the protocol for 95 consecutive patients referred for routine knee MRI. This was used to produce offline reconstructions in axial, sagittal and coronal planes. Two radiologists independently assessed each case twice, once using the standard MRI protocol and once replacing the standard PD (FS) sequences with reconstructions from the 3D data set. Following scoring, the observer reviewed the 3D data set and performed multiplanar reformats to see if this altered confidence. The menisci, ligaments and cartilage were assessed, and statistical analysis was performed using the standard sequence as the reference standard. Results: The reporting accuracy was as follows: medial meniscus (MM) = 90.9%, lateral meniscus (LM) = 93.7%, anterior cruciate ligament (ACL) = 98.9% and cartilage surfaces = 85.8%. Agreement among the readers was for the standard protocol: MM kappa = 0.91, LM = 0.89, ACL = 0.98 and cartilage = 0.84; and for the 3D protocol: MM = 0.86, LM = 0.77, ACL = 0.94 and cartilage = 0.64. Conclusion: A 3D PD FSE sequence reconstructed in three planes gives reduced accuracy and decreased concordance among readers compared with conventional sequences when evaluating the menisci and cartilage with a 1.5-T MRI scanner. Advances in knowledge: Using the existing 1.5-T MR systems, a 3D FSE sequence should not replace two-dimensional sequences. PMID:26067920

  20. Microstructural effects on ignition sensitivity in Ni/Al systems subjected to high strain rate impacts

    NASA Astrophysics Data System (ADS)

    Reeves, Robert; Mukasyan, Alexander; Son, Steven

    2011-06-01

    The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 at%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones occur in shear bands formed during the impact event.

  1. Microstructural effects on ignition sensitivity in Ni/Al systems subjected to high strain rate impacts

    NASA Astrophysics Data System (ADS)

    Reeves, Robert V.; Mukasyan, Alexander S.; Son, Steven

    2012-03-01

    The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 mol%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones shear bands formed during the impact event are observed.

  2. Quantitative characterization of nanoscale polycrystalline magnets with electron magnetic circular dichroism.

    PubMed

    Muto, Shunsuke; Rusz, Ján; Tatsumi, Kazuyoshi; Adam, Roman; Arai, Shigeo; Kocevski, Vancho; Oppeneer, Peter M; Bürgler, Daniel E; Schneider, Claus M

    2014-01-01

    Electron magnetic circular dichroism (EMCD) allows the quantitative, element-selective determination of spin and orbital magnetic moments, similar to its well-established X-ray counterpart, X-ray magnetic circular dichroism (XMCD). As an advantage over XMCD, EMCD measurements are made using transmission electron microscopes, which are routinely operated at sub-nanometre resolution, thereby potentially allowing nanometre magnetic characterization. However, because of the low intensity of the EMCD signal, it has not yet been possible to obtain quantitative information from EMCD signals at the nanoscale. Here we demonstrate a new approach to EMCD measurements that considerably enhances the outreach of the technique. The statistical analysis introduced here yields robust quantitative EMCD signals. Moreover, we demonstrate that quantitative magnetic information can be routinely obtained using electron beams of only a few nanometres in diameter without imposing any restriction regarding the crystalline order of the specimen.

  3. Multistate empirical valence bond study of temperature and confinement effects on proton transfer in water inside hydrophobic nanochannels.

    PubMed

    Tahat, Amani; Martí, Jordi

    2016-07-01

    Microscopic characteristics of an aqueous excess proton in a wide range of thermodynamic states, from low density amorphous ices (down to 100 K) to high temperature liquids under the critical point (up to 600 K), placed inside hydrophobic graphene slabs at the nanometric scale (with interplate distances between 3.1 and 0.7 nm wide) have been analyzed by means of molecular dynamics simulations. Water-proton and carbon-proton forces were modeled with a multistate empirical valence bond method. Densities between 0.07 and 0.02 Å(-3) have been considered. As a general trend, we observed a competition between effects of confinement and temperature on structure and dynamical properties of the lone proton. Confinement has strong influence on the local structure of the proton, whereas the main effect of temperature on proton properties is observed on its dynamics, with significant variation of proton transfer rates, proton diffusion coefficients, and characteristic frequencies of vibrational motions. Proton transfer is an activated process with energy barriers between 1 and 10 kJ/mol for both proton transfer and diffusion, depending of the temperature range considered and also on the interplate distance. Arrhenius-like behavior of the transfer rates and of proton diffusion are clearly observed for states above 100 K. Spectral densities of proton species indicated that in all states Zundel-like and Eigen-like complexes survive at some extent. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Existence, stability, and nonlinear dynamics of detached Bridgman growth states under zero gravity

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2011-01-01

    A thermocapillary model is used to study the existence, stability, and nonlinear dynamics of detached melt crystal growth in a vertical Bridgman system under zero gravity conditions. The model incorporates time-dependent heat, mass, and momentum transport, and accounts for temperature-dependent surface tension effects at the menisci bounding the melt. The positions of the menisci and phase-change boundary are computed to satisfy the conservation laws rigorously. A rich bifurcation structure in gap width versus pressure difference is uncovered, demarcating conditions under which growth with a stable gap is feasible. Thermal effects shift the bifurcation diagram to a slightly different pressure range, but do not alter its general structure. Necking and freeze-off are shown to be two different manifestations of the same instability mechanism. Supercooling of melt at the meniscus and low thermal gradients in the melt ahead of the crystal-melt-gas triple phase line, either of which may be destabilizing, are both observed under some conditions. The role of wetting and growth angles in dynamic shape stability is clarified.

  5. Paradoxical phenomena of the McMurray test. An arthroscopic investigation.

    PubMed

    Kim, S J; Min, B H; Han, D Y

    1996-01-01

    We evaluated 200 patients who had a positive McMurray test and found atypical McMurray test results in 24 patients (12%). These patients revealed pain or clicking or both either in the medial compartment of the knee when the leg was internally rotated or in the lateral compartment of the knee when the leg was externally rotated. The authors analyzed these paradoxical findings at arthroscopic examination to identify the relationship between the type of meniscal tear and the direction of leg rotation that elicited the catching and displacement of the torn meniscal portion during the McMurray test. Contrary to conventional McMurray test findings, three different types of meniscal tears were found on the side of the knee where pain or a clicking sound occurred. The three types were 1) anteriorly based posterior oblique tears with anterior displacement of the meniscus, 2) bucket-handle tears in the posterior half of the menisci, and 3) peripheral detachment of discoid menisci in the posterior half of the torn portions.

  6. Meniscal injuries in the young, athletically active patient.

    PubMed

    Poulsen, Matthew R; Johnson, Darren L

    2011-02-01

    Meniscal injuries are common in young physically active individuals, particularly those who are involved in contact level 1 sports that involve frequent pivoting, such as soccer and American football. This is a unique population because of their high physical activity at a young age, and it is important that correct diagnosis and appropriate treatment are provided, as the medial and lateral menisci are essential for normal knee function. In this article, we review the anatomy and function of the meniscus, the epidemiology of meniscal tears, and mechanism(s) of injury. Important concomitant injuries are also discussed. When making a diagnosis, relevant patient history, physical examination, and appropriate imaging studies are required. Nonoperative treatment is rarely successful for treating meniscal tears in young athletes, and therefore repair of the torn menisci is often required. We also discuss partial resection (which should only be performed when repair is not possible), as well as rehabilitation protocols after repair has been performed. All of these factors associated with meniscal injuries are important for a physician when diagnosing and treating these often complex injuries.

  7. Polysaccharide-Based Nanobiomaterials as Controlled Release Systems for Tissue Engineering Applications.

    PubMed

    Rodriguez-Velazquez, Eustolia; Alatorre-Meda, Manuel; Mano, Joao F

    2015-01-01

    Polysaccharides belong to a special class of biopolymers that has been used in different areas of research and technology for some years now. They present distinctive features attractive for the biomedical field. Among others, as extracted from natural sources, these materials are usually biocompatible and possess a significant ability to absorb water. Moreover, they can be conveniently modified by chemical means so as to display improved biological and physicochemical properties. The last but not the least, they are abundant in the natural Extracellular Matrix (ECM) and have a tremendous affinity for different endogenous macromolecules. Accordingly, these particular materials constitute outstanding candidates for a variety of biomimetic approaches entailing the entrapment/stabilization of bioactive molecules (e.g. growth factors, siRNA, and DNA) that could be delivered and have an effect on relevant cellular mechanisms, such as gene expression and cell viability, -proliferation, and -differentiation. This review will explore the current status of nano-scale drug delivery devices based on polysaccharides that could be used in tissue engineering and regenerative medicine (TERM). Aiming to contextualize the topics here discussed, especially for non-experts in the field, section 1 (Introduction) will present a brief overview of TERM and the principal polysaccharides herein employed. In order to get a broader perspective on both issues, this section will include a brief description of non-nanometric systems with relevant characteristics for TERM, such as injectable microparticles and macroscopic hydrogels, just to cite a few. Section 2 will illustrate the contributions of nanotechnology to the development of TERM, in particular to the development of biomimetic systems capable of replicating the natural, endogenous ECMs. Next, sections 3 to 6 will describe representative systems in the nanometric scale presenting 0D (nanoparticles), 1D (nanorods and nanowires), 2D (thin

  8. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.

    PubMed

    Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki

    2006-05-18

    Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.

  10. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yujia; Lu, Yiqing; Yang, Xusan; Zheng, Xianlin; Wen, Shihui; Wang, Fan; Vidal, Xavier; Zhao, Jiangbo; Liu, Deming; Zhou, Zhiguang; Ma, Chenshuo; Zhou, Jiajia; Piper, James A.; Xi, Peng; Jin, Dayong

    2017-02-01

    Lanthanide-doped glasses and crystals are attractive for laser applications because the metastable energy levels of the trivalent lanthanide ions facilitate the establishment of population inversion and amplified stimulated emission at relatively low pump power. At the nanometre scale, lanthanide-doped upconversion nanoparticles (UCNPs) can now be made with precisely controlled phase, dimension and doping level. When excited in the near-infrared, these UCNPs emit stable, bright visible luminescence at a variety of selectable wavelengths, with single-nanoparticle sensitivity, which makes them suitable for advanced luminescence microscopy applications. Here we show that UCNPs doped with high concentrations of thulium ions (Tm3+), excited at a wavelength of 980 nanometres, can readily establish a population inversion on their intermediate metastable 3H4 level: the reduced inter-emitter distance at high Tm3+ doping concentration leads to intense cross-relaxation, inducing a photon-avalanche-like effect that rapidly populates the metastable 3H4 level, resulting in population inversion relative to the 3H6 ground level within a single nanoparticle. As a result, illumination by a laser at 808 nanometres, matching the upconversion band of the 3H4 → 3H6 transition, can trigger amplified stimulated emission to discharge the 3H4 intermediate level, so that the upconversion pathway to generate blue luminescence can be optically inhibited. We harness these properties to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve nanometre-scale optical resolution (nanoscopy), imaging single UCNPs; the resolution is 28 nanometres, that is, 1/36th of the wavelength. These engineered nanocrystals offer saturation intensity two orders of magnitude lower than those of fluorescent probes currently employed in stimulated emission depletion microscopy, suggesting a new way of alleviating the square-root law that typically limits the

  11. Reconstructing fluid-flow events in Lower-Triassic sandstones of the eastern Paris Basin by elemental tracing and isotopic dating of nanometric illite crystals

    NASA Astrophysics Data System (ADS)

    Blaise, Thomas; Clauer, Norbert; Cathelineau, Michel; Boiron, Marie-Christine; Techer, Isabelle; Boulvais, Philippe

    2016-03-01

    Lower- to Middle-Triassic sandstones from eastern Paris Basin were buried to a maximum depth of 2500 m at a paleo-temperature of about 100 °C. They contain extensive amounts of authigenic platy and filamentous illite particles similar to those reported in reservoirs generally buried at 3000 to -5000 m and subjected to temperatures of 120 to -150 °C. To evaluate this unexpected occurrence, such sandstones were collected from drill cores between 1825 and 2000 m depth, and nanometric-sized sub-fractions were separated. The illite crystals were identified by XRD, observed by SEM and TEM, analyzed for their major, trace, rare-earth elements and oxygen isotope compositions, and dated by K-Ar and Rb-Sr. Illite particles display varied growth features in the rock pore-space and on authigenic quartz and adularia that they postdate. TEM-EDS crystal-chemical in situ data show that the illite lath/fiber and platelet morphologies correspond at least to two populations with varied interlayer charges: between 0.7 and 0.9 for the former and between 0.8 and 1.0 for the latter, the Fe/Fe + Mg ratio being higher in the platelets. Except for the deeper conglomerate, the PAAS-normalized REE patterns of the illite crystals are bell-shaped, enriched in middle REEs. Ca-carbonates and Ca-phosphates were detected together with illite in the separates. These soluble components yield 87Sr/86Sr ratios that are not strictly in chemical equilibrium with the illite crystals, suggesting successive fluids flows with different chemical compositions. The K-Ar data of finer <0.05 μm illite separates confirm two crystallization events at 179.4 ± 4.5 and 149.4 ± 2.5 Ma during the Early and Late Jurassic. The slightly coarser fractions contain also earlier crystallized or detrital K-bearing minerals characterized by lower δ18O values. The δ18O of the finest authigenic illite separates tends to decrease slightly with depth, from 18.2 (±0.2) to 16.3 (±0.2)‰, suggesting different but

  12. Dimensional nanometrology at the National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Leach, Richard; Hughes, Ben; Giusca, Claudiu; Jones, Christopher; Wilson, Alan

    2008-10-01

    The growth in nanotechnology has led to an increased requirement for traceable dimensional measurements of nanometre-sized objects and micrometre-sized objects with nanometre tolerances. To meet this challenge NPL has developed both purpose built instrumentation and added metrology to commercially available equipment. This paper describes the development and use of a selection of these instruments that include: atomic force microscopy, x-ray interferometry, a low force balance, a micro coordinate measuring machine and an areal surface texture measuring instrument.

  13. Combination of grazing incidence x-ray fluorescence with x-ray reflectivity in one table-top spectrometer for improved characterization of thin layer and implants on/in silicon wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingerle, D.; Schiebl, M.; Streli, C.

    2014-08-15

    As Grazing Incidence X-ray Fluorescence (GIXRF) analysis does not provide unambiguous results for the characterization of nanometre layers as well as nanometre depth profiles of implants in silicon wafers by its own, the approach of providing additional information using the signal from X-ray Reflectivity (XRR) was tested. As GIXRF already uses an X-ray beam impinging under grazing incidence and the variation of the angle of incidence, a GIXRF spectrometer was adapted with an XRR unit to obtain data from the angle dependent fluorescence radiation as well as data from the reflected beam. A θ-2θ goniometer was simulated by combining amore » translation and tilt movement of a Silicon Drift detector, which allows detecting the reflected beam over 5 orders of magnitude. HfO{sub 2} layers as well as As implants in Silicon wafers in the nanometre range were characterized using this new setup. A just recently published combined evaluation approach was used for data evaluation.« less

  14. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding.

    PubMed

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-29

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr₇C₃ phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr₇C₃ after PTAW. The above means that welding can obviously improve the surface qualities.

  15. Mechano-regulated surface for manipulating liquid droplets

    NASA Astrophysics Data System (ADS)

    Tang, Xin; Zhu, Pingan; Tian, Ye; Zhou, Xuechang; Kong, Tiantian; Wang, Liqiu

    2017-04-01

    The effective transfer of tiny liquid droplets is vital for a number of processes such as chemical and biological microassays. Inspired by the tarsi of meniscus-climbing insects, which can climb menisci by deforming the water/air interface, we developed a mechano-regulated surface consisting of a background mesh and a movable microfibre array with contrastive wettability. The adhesion of this mechano-regulated surface to liquid droplets can be reversibly switched through mechanical reconfiguration of the microfibre array. The adhesive force can be tuned by varying the number and surface chemistry of the microfibres. The in situ adhesion of the mechano-regulated surface can be used to manoeuvre micro-/nanolitre liquid droplets in a nearly loss-free manner. The mechano-regulated surface can be scaled up to handle multiple droplets in parallel. Our approach offers a miniaturized mechano-device with switchable adhesion for handling micro-/nanolitre droplets, either in air or in a fluid that is immiscible with the droplets.

  16. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    PubMed Central

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-01-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions. PMID:28643782

  17. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    NASA Astrophysics Data System (ADS)

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I.-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-06-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.

  18. Convergent-Filament Nonmechanical Pump

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1989-01-01

    Simple device induces small flow of liquid without help of moving parts, in presence or absence of gravity. Drops of liquid move on filaments from wide end of cone to narrow end. Gradually blend with drops on adjacent filaments to form large drops with menisci. Important use expected to be returning liquid condensate in heat pipes, and collection of samples from clouds or fog.

  19. Self-assembled three-dimensional chiral colloidal architecture

    NASA Astrophysics Data System (ADS)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  20. Biomechanical consequences of a posterior root tear of the lateral meniscus: stabilizing effect of the meniscofemoral ligament.

    PubMed

    Forkel, Philipp; Herbort, Mirco; Schulze, Martin; Rosenbaum, Dieter; Kirstein, Lars; Raschke, Michael; Petersen, Wolf

    2013-05-01

    The purpose of this study was to evaluate the effects of different types of lateral meniscus root tears in terms of tibiofemoral contact stress. Ten porcine knees each underwent five different testing conditions with the menisci intact, a simulated lateral posterior root tear with and without cutting the meniscofemoral ligament and with an artificial tear of the posterior root of the medial meniscus. Biomechanical testing was performed at 30° of flexion with an axial load of 100 N. A pressure sensor (st Sensor Type S2042, Novel, Munich) was used to measure the tibiofemoral contact area and the tibiofemoral contact pressure. Data were analyzed to assess the differences in contact area and tibiofemoral peak contact pressure among the five meniscal conditions. There was no significant difference in mean contact pressure between the state with the menisci intact and an isolated posterior root tear of the lateral meniscus. In case of a root tear and a tear of the meniscofemoral ligament, the contact area decreased in comparison with the intact state of the menisci. After additional cutting of the meniscofemoral ligament, the tibiofemoral contact pressure was significantly higher in comparison with the intact state and the avulsion injury. In the medial compartment, joint compression forces were significantly increased in comparison with the intact state after cutting the posterior root of the medial meniscus (P < 0.05). The consequence of a medial meniscus root tear is well known and was verified by this analysis. The results of the present study show that the biomechanical consequences of a lateral meniscus root tear depend on the state of the meniscofemoral ligament. An increase in tibiofemoral contact pressure is only to be expected in combined injuries of the meniscus root and the meniscofemoral ligaments. Posterior lateral meniscus root tear might have a better prognosis in terms of the development of osteoarthritis when the meniscofemoral ligament is intact.

  1. Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging

    PubMed Central

    2014-01-01

    Objective This work aimed to assess tibial rotations, meniscal movements, and morphological changes during knee flexion and extension using kinematic magnetic resonance imaging (MRI). Methods Thirty volunteers with healthy knees were examined using kinematic MRI. The knees were imaged in the transverse plane with flexion and extension angles from 0° to 40° and 40° to 0°, respectively. The tibial interior and exterior rotation angles were measured, and the meniscal movement range, height change, and side movements were detected. Results The tibia rotated internally (11.55° ± 3.20°) during knee flexion and rotated externally (11.40° ± 3.0°) during knee extension. No significant differences were observed between the internal and external tibial rotation angles (P > 0.05), between males and females (P > 0.05), or between the left and right knee joints (P > 0.05). The tibial rotation angle with a flexion angle of 0° to 24° differed significantly from that with a flexion angle of 24° to 40° (P < 0.01). With knee flexion, the medial and lateral menisci moved backward and the height of the meniscus increased. The movement range was greater in the anterior horn than in the posterior horn and greater in the lateral meniscus than in the medial meniscus (P < 0.01). During backward movements of the menisci, the distance between the anterior and posterior horns decreased, with the decrease more apparent in the lateral meniscus (P < 0.01). The side movements of the medial and lateral menisci were not obvious, and a smaller movement range was found than that of the forward and backward movements. Conclusion Knee flexion and extension facilitated internal and external tibial rotations, which may be related to the ligament and joint capsule structure and femoral condyle geometry. PMID:25142267

  2. High-resolution proton density weighted three-dimensional fast spin echo (3D-FSE) of the knee with IDEAL at 1.5 Tesla: comparison with 3D-FSE and 2D-FSE--initial experience.

    PubMed

    McMahon, Colm J; Madhuranthakam, Ananth J; Wu, Jim S; Yablon, Corrie M; Wei, Jesse L; Rofsky, Neil M; Hochman, Mary G

    2012-02-01

    To assess the feasibility of combining three-dimensional fast spin echo (3D-FSE) and Iterative-decomposition-of water-and-fat-with-echo asymmetry-and-least-squares-estimation (IDEAL) at 1.5 Tesla (T), generating a high-resolution 3D isotropic proton density-weighted image set with and without "fat-suppression" (FS) in a single acquisition, and to compare with 2D-FSE and 3D-FSE (without IDEAL). Ten asymptomatic volunteers prospectively underwent sagittal 3D-FSE-IDEAL, 3D-FSE, and 2D-FSE sequences at 1.5T (slice thickness [ST]: 0.8 mm, 0.8 mm, and 3.5 mm, respectively). 3D-FSE and 2D-FSE were repeated with frequency-selective FS. Fluid, cartilage, and muscle signal-to-noise ratio (SNR) and fluid-cartilage contrast-to-noise ratio (CNR) were compared among sequences. Three blinded reviewers independently scored quality of menisci/cartilage depiction for all sequences. "Fat-suppression" was qualitatively scored and compared among sequences. 3D-FSE-IDEAL fluid-cartilage CNR was higher than in 2D-FSE (P < 0.05), not different from 3D-FSE (P = 0.31). There was no significant difference in fluid SNR among sequences. 2D-FSE cartilage SNR was higher than in 3D FSE-IDEAL (P < 0.05), not different to 3D-FSE (P = 0.059). 2D-FSE muscle SNR was higher than in 3D-FSE-IDEAL (P < 0.05) and 3D-FSE (P < 0.05). Good or excellent depiction of menisci/cartilage was achieved using 3D-FSE-IDEAL in the acquired sagittal and reformatted planes. Excellent, homogeneous "fat-suppression" was achieved using 3D-FSE-IDEAL, superior to FS-3D-FSE and FS-2D-FSE (P < 0.05). 3D FSE-IDEAL is a feasible approach to acquire multiplanar images of diagnostic quality, both with and without homogeneous "fat-suppression" from a single acquisition. Copyright © 2011 Wiley Periodicals, Inc.

  3. Quantitative evaluation of knee cartilage and meniscus destruction in patients with rheumatoid arthritis using T1ρ and T2 mapping.

    PubMed

    Meng, Xiang Hong; Wang, Zhi; Guo, Li; Liu, Xiu Chan; Zhang, Yu Wei; Zhang, Ze Wei; Ma, Xin Long

    2017-11-01

    To calculate T1ρ and T2 values of articular cartilage and menisci in knee joints of patients with RA, and compare the values between RA patients and healthy volunteers, to gain insight into the pathogenesis of cartilage and meniscus degradation in patients with RA. Nine patients with RA and knee joints symptoms were enrolled in the study, twenty healthy volunteers without knee joint diseases were included as controls. Sagittal fat-saturated T1ρ and T2 mapping images were obtained on a 3T MR scanner (GE750, GE Healthcare, Waukesha, WI), using a dedicated 8-channel knee coil. In the T1rho mapping sequence, the amplitude of the spin-lock pulse was 500Hz, spin lock durations=10/20/30/50ms. In the T2 mapping sequence,TR/TE were 1794/6.5, 13.4, 27, 40.7ms. Both sequences were performed with the following parameters: flip angle (FA)=90°, matrix: 320×256, FOV: 16×16cm 2 , slice thickness: 3mm, bandwidth: 62.5kHZ, and a total scan time of 5:11min. T1ρ- and T2-mapping images were used for the segmentation of the articular cartilage of the patella, femoral trochlea, medial and lateral femoral condyle, medial and lateral tibial plateau. These images were also used for the segmentation of the anterior and posterior horns of the medial and lateral menisci with livewire semi-automatic segmentation algorithm of MATLAB. A Mann-Whitney U test was performed to compare the T1ρ and T2 values of the above mentioned regions between the two groups. T1ρ (Z=-3.913 to -2.121, P=0.000-0.034) and T2 (Z=-3.866 to -2.216, P=0.000-0.026) values of knee cartilage in patients with RA were higher than that in healthy volunteers, except the cartilage of the patella (T1ρ: Z=-1.273, P=0.203,T2: Z=-0.236, P=0.814) and lateral tibial plateau (T1ρ:Z=-1.037, P=0.317). The T1ρ (Z=-1.462 to 0.572, P=0.095-0.908) and T2 (Z=-1.461 to 0.278, P=0.153-0.764) values of medial and lateral menisci showed no difference between the two groups. Patients with RA exhibit diffuse knee cartilage destruction in

  4. Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach

    PubMed Central

    Eberhardsteiner, Lukas; Hellmich, Christian; Scheiner, Stefan

    2012-01-01

    Extracellular bone material can be characterised as a nanocomposite where, in a liquid environment, nanometre-sized hydroxyapatite crystals precipitate within as well as between long fibre-like collagen fibrils (with diameters in the 100 nm range), as evidenced from neutron diffraction and transmission electron microscopy. Accordingly, these crystals are referred to as ‘interfibrillar mineral’ and ‘extrafibrillar mineral’, respectively. From a topological viewpoint, it is probable that the mineralisations start on the surfaces of the collagen fibrils (‘mineral-encrusted fibrils’), from where the crystals grow both into the fibril and into the extrafibrillar space. Since the mineral concentration depends on the pore spaces within the fibrils and between the fibrils (there is more space between them), the majority of the crystals (but clearly not all of them) typically lie in the extrafibrillar space. There, larger crystal agglomerations or clusters, spanning tens to hundreds of nanometers, develop in the course of mineralisation, and the micromechanics community has identified the pivotal role, which this extrafibrillar mineral plays for tissue elasticity. In such extrafibrillar crystal agglomerates, single crystals are stuck together, their surfaces being covered with very thin water layers. Recently, the latter have caught our interest regarding strength properties (Fritsch et al. 2009 J Theor Biol. 260(2): 230–252) – we have identified these water layers as weak interfaces in the extrafibrillar mineral of bone. Rate-independent gliding effects of crystals along the aforementioned interfaces, once an elastic threshold is surpassed, can be related to overall elastoplastic material behaviour of the hierarchical material ‘bone’. Extending this idea, the present paper is devoted to viscous gliding along these interfaces, expressing itself, at the macroscale, in the well-known experimentally evidenced phenomenon of bone viscoelasticity. In this

  5. Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach.

    PubMed

    Eberhardsteiner, Lukas; Hellmich, Christian; Scheiner, Stefan

    2014-01-01

    Extracellular bone material can be characterised as a nanocomposite where, in a liquid environment, nanometre-sized hydroxyapatite crystals precipitate within as well as between long fibre-like collagen fibrils (with diameters in the 100 nm range), as evidenced from neutron diffraction and transmission electron microscopy. Accordingly, these crystals are referred to as 'interfibrillar mineral' and 'extrafibrillar mineral', respectively. From a topological viewpoint, it is probable that the mineralisations start on the surfaces of the collagen fibrils ('mineral-encrusted fibrils'), from where the crystals grow both into the fibril and into the extrafibrillar space. Since the mineral concentration depends on the pore spaces within the fibrils and between the fibrils (there is more space between them), the majority of the crystals (but clearly not all of them) typically lie in the extrafibrillar space. There, larger crystal agglomerations or clusters, spanning tens to hundreds of nanometers, develop in the course of mineralisation, and the micromechanics community has identified the pivotal role, which this extrafibrillar mineral plays for tissue elasticity. In such extrafibrillar crystal agglomerates, single crystals are stuck together, their surfaces being covered with very thin water layers. Recently, the latter have caught our interest regarding strength properties (Fritsch et al. 2009 J Theor Biol. 260(2): 230-252) - we have identified these water layers as weak interfaces in the extrafibrillar mineral of bone. Rate-independent gliding effects of crystals along the aforementioned interfaces, once an elastic threshold is surpassed, can be related to overall elastoplastic material behaviour of the hierarchical material 'bone'. Extending this idea, the present paper is devoted to viscous gliding along these interfaces, expressing itself, at the macroscale, in the well-known experimentally evidenced phenomenon of bone viscoelasticity. In this context, a multiscale

  6. Revealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering

    PubMed Central

    Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Gasteau, Damien; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E.

    2015-01-01

    The time-domain Brillouin scattering technique, also known as picosecond ultrasonic interferometry, allows monitoring of the propagation of coherent acoustic pulses, having lengths ranging from nanometres to fractions of a micrometre, in samples with dimension of less than a micrometre to tens of micrometres. In this study, we applied this technique to depth-profiling of a polycrystalline aggregate of ice compressed in a diamond anvil cell to megabar pressures. The method allowed examination of the characteristic dimensions of ice texturing in the direction normal to the diamond anvil surfaces with sub-micrometre spatial resolution via time-resolved measurements of the propagation velocity of the acoustic pulses travelling in the compressed sample. The achieved imaging of ice in depth and in one of the lateral directions indicates the feasibility of three-dimensional imaging and quantitative characterisation of the acoustical, optical and acousto-optical properties of transparent polycrystalline aggregates in a diamond anvil cell with tens of nanometres in-depth resolution and a lateral spatial resolution controlled by pump laser pulses focusing, which could approach hundreds of nanometres. PMID:25790808

  7. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding

    PubMed Central

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-01

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr7C3 phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr7C3 after PTAW. The above means that welding can obviously improve the surface qualities. PMID:28787947

  8. Modern steels at atomic and nanometre scales

    DOE PAGES

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-10-10

    Processing bulk nanocrystalline materials for structural applications still poses a difficult challenge, particularly in achieving an industrially viable process. Recent work in ferritic steels has proved that it is possible to move from ultrafine to nanoscale by exploiting the bainite reaction without the use of severe deformation, rapid heat treatment or mechanical processing. This new generation of steels has been designed in which transformation at low temperature leads to a nanoscale structure consisting of extremely fine, 20–40 nm thick plates of bainitic ferrite and films of retained austenite. Finally, a description of the characteristics and significance of this remarkable microstructuremore » is provided here.« less

  9. Water, Water Everywhere

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2009-01-01

    Everybody knows that children love water and how great water play is for children. The author discusses ways to add water to one's playscape that fully comply with health and safety regulations and are still fun for children. He stresses the importance of creating water play that provides children with the opportunity to interact with water.

  10. Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics

    NASA Astrophysics Data System (ADS)

    Paillusson, Fabien; Blossey, Ralf

    2010-11-01

    Polar liquids like water carry a characteristic nanometric length scale, the correlation length of orientation polarizations. Continuum theories that can capture this feature commonly run under the name of “nonlocal” electrostatics since their dielectric response is characterized by a scale-dependent dielectric function ɛ(q) , where q is the wave vector; the Poisson(-Boltzmann) equation then turns into an integro-differential equation. Recently, “local” formulations have been put forward for these theories and applied to water, solvated ions, and proteins. We review the local formalism and show how it can be applied to a structured liquid in slit and plate geometries, and solve the Poisson-Boltzmann theory for a charged plate in a structured solvent with counterions. Our results establish a coherent picture of the local version of nonlocal electrostatics and show its ease of use when compared to the original formulation.

  11. Asymptotic solutions for flow in microchannels with ridged walls and arbitrary meniscus protrusion

    NASA Astrophysics Data System (ADS)

    Kirk, Toby

    2017-11-01

    Flow over structured surfaces exhibiting apparent slip, such as parallel ridges, have received much attention experimentally and numerically, but analytical and asymptotic solutions that account for the microstructure have so far been limited to unbounded geometries such as shear-driven flows. Analysis for channel flows has been limited to (close to) flat interfaces spanning the grooves between ridges, but in applications the interfaces (menisci) can highly protrude and have a significant impact on the apparent slip. In this presentation, we consider pressure-driven flow through a microchannel with longitudinal ridges patterning one or both walls. With no restriction on the meniscus protrusion, we develop explicit formulae for the slip length using a formal matched asymptotic expansion. Assuming the ratio of channel height to ridge period is large, the periodicity is confined to an inner layer close to the ridges, and the expansion is found to all algebraic orders. As a result, the error is exponentially small and, under a further ``diluteness'' assumption, the explicit formulae are compared to finite element solutions. They are found to have a very wide range of validity in channel height (even when the menisci can touch the opposing wall) and so are useful for practitioners.

  12. The natural history of the anterior knee instability by stress radiography

    PubMed Central

    de Rezende, Márcia Uchôa; Hernandez, Arnaldo José; Camanho, Gilberto Luis

    2014-01-01

    OBJECTIVE: To analyze the anteroposterior displacement of the knee by means of stress radiography in individuals with unilateral anterior knee instability and relate to time of instability. METHODS: Sixty individuals with intact knees (control group) and 125 patients with unilateral anterior instability (AI group) agreed to participate in the study. Gender, age, weight, height, age at injury, time between injury and testing, and surgical findings are studied. Both groups are submitted to anterior and posterior stress radiographies of both knees. Anterior (ADD) and posterior displacement difference (PDD) were calculated between sides. RESULTS: In the control group ADD and PDD are in average, zero, whereas in the AI group ADD averaged 9.8mm and PDD, 1.92mm. Gender, age, weight, height, age at trauma and presence of menisci's lesions do not intervene in the values of ADD and PDD. Meniscal injuries increase with time. ADD and PDD do not relate with the presence or absence of associated menisci's lesions. The ADD and the PDD are related to each other and increase with time. CONCLUSION: There is a permanent anterior subluxation of the injured knee that is related to the amount of anterior displacement that increases with time. Level of Evidence III, Study Types Case-control study. PMID:25246846

  13. Outcome of ACL Reconstruction for Chronic ACL Injury in Knees without the Posterior Horn of the Medial Meniscus: Comparison with ACL Reconstructed Knees with An Intact Medial Meniscus.

    PubMed

    Syam, Kevin; Chouhan, Devendra K; Dhillon, Mandeep Singh

    2017-03-01

    Cadaveric studies have shown that deficiency of the posterior horn of the medial meniscus (PHMM) increases strain on the anterior cruciate ligament (ACL) graft. However, its influence on the clinical and radiological outcome after ACL reconstruction is less discussed and hence evaluated in this study. This study included 77 cases of ACL reconstruction with a minimum 18-month follow-up. Of the 77 cases, 41 patients with intact menisci were compared clinically and radiologically with 36 patients with an injury to the PHMM that required various grades of meniscectomy. The knees were evaluated using subjective International Knee Documentation Committee (IKDC) score and Orthopadische Arbeitsgruppe Knie (OAK) score. Cases with intact menisci showed better stability (p=0.004) at an average of 44.51 months after surgery. No significant differences were noted in the overall OAK score, subjective IKDC score, and functional OAK score (p=0.082, p=0.526, and p=0.363, respectively). The incidence of radiological osteoarthrosis was significantly higher in the posterior horn deficient knees (p=0.022). The tendency toward relatively higher objective instability and increased incidence of osteoarthrosis in the group with absent posterior horn reinforces its importance as a secondary stabiliser of the knee.

  14. The potential of optical coherence tomography for diagnosing meniscal pathology

    NASA Astrophysics Data System (ADS)

    Hang-Yin Ling, Carrie; Pozzi, Antonio; Thieman, Kelley M.; Tonks, Catherine A.; Guo, Shuguang; Xie, Huikai; Horodyski, MaryBeth

    2010-04-01

    Meniscal tears are often associated with anterior cruciate ligament (ACL) injury and may lead to pain and discomfort in humans. Maximal preservation of meniscal tissue is highly desirable to mitigate the progression of osteoarthritis. Guidelines of which meniscal tears are amenable to repair and what part of damaged tissues should be removed are elusive and lacking consensus. Images of microstructural changes in meniscus would potentially guide the surgeons to manage the meniscal tears better, but the resolution of current diagnostic techniques is limited for this application. In this study, we demonstrated the feasibility of using optical coherence tomography (OCT) for the diagnosis of meniscal pathology. Torn medial menisci were collected from dogs with ACL insufficiency. The torn meniscus was divided into three tissue samples and scanned by OCT and scanning electron microscopy (SEM). OCT and SEM images of torn menisci were compared. Each sample was evaluated for gross and microstructural abnormalities and reduction or loss of birefringence from the OCT images. The abnormalities detected with OCT were described for each type of tear. OCT holds promise in non-destructive and fast assessment of microstructural changes and tissue birefringence of meniscal tears. Future development of intraoperative OCT may help surgeons in the decision making of meniscal treatment.

  15. Biological aspects of early osteoarthritis.

    PubMed

    Madry, Henning; Luyten, Frank P; Facchini, Andrea

    2012-03-01

    Early OA primarily affects articular cartilage and involves the entire joint, including the subchondral bone, synovial membrane, menisci and periarticular structures. The aim of this review is to highlight the molecular basis and histopathological features of early OA. Selective review of literature. Risk factors for developing early OA include, but are not limited to, a genetic predisposition, mechanical factors such as axial malalignment, and aging. In early OA, the articular cartilage surface is progressively becoming discontinuous, showing fibrillation and vertical fissures that extend not deeper than into the mid-zone of the articular cartilage, reflective of OARSI grades 1.0-3.0. Early changes in the subchondral bone comprise a progressive increase in subchondral plate and subarticular spongiosa thickness. Early OA affects not only the articular cartilage and the subchondral bone but also other structures of the joint, such as the menisci, the synovial membrane, the joint capsule, ligaments, muscles and the infrapatellar fat pad. Genetic markers or marker combinations may become useful in the future to identify early OA and patients at risk. The high socioeconomic impact of OA suggests that a better insight into the mechanisms of early OA may be a key to develop more targeted reconstructive therapies at this first stage of the disease. Systematic review, Level II.

  16. [How good are clinical investigative procedures for diagnosing meniscus lesions?].

    PubMed

    Jerosch, J; Riemer, S

    2004-06-01

    The purpose of this study was to evaluate different clinical meniscus tests. During 13 months we evaluated 64 patients with a suspected meniscus lesion in a prospective study. The age ranged from 16 to 76 years (average: 38.5 years). 66 % were male patients. Between the clinical examination and the arthroscopy there was no additional trauma to the knee. All patients were clinically examined in a standard manner by two independent orthopaedic surgeons. Clinical findings of the menisci were documented according to 12 well-described and commonly used meniscus tests. The arthroscopy was performed by a single surgeon who was not aware of the results of the clinical examination. This surgeon documented the intraarticular findings in a standardized operating report. A meniscus lesion/degeneration was documented when this was evident either by inspection or by palpation. The results showed either clinical meniscus tests with a high specificity and a low sensitivity or tests with a high sensitivity, but only a low specificity. We were not able to identify meniscus tests which showed both a high sensitivity and a high specificity. Even with access to MRI the clinical findings in knee joint with injured menisci still have a high diagnostic value. However, it seems to be necessary to combine different tests.

  17. Rupture of thin liquid films on structured surfaces

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir S.; Gatapova, Elizaveta Ya.; Kabov, Oleg A.

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  18. Timing of Surgery and Rehabilitation to Optimize Outcome for Patients with Multiple Ligament Knee Injuries: A Multicenter Clinical Trial

    DTIC Science & Technology

    2017-10-01

    those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2017 2. REPORT TYPE Annual 3...frequently associated with concomitant injuries to nerves, vessels, tendons, cartilage and menisci. Non -operative management of MLKIs results in poor

  19. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Montavon, G.; Lima, R. S.; Marple, B. R.

    2011-03-01

    From the pioneering works of McPherson in 1973 who identified nanometre-sized features in thermal spray conventional alumina coatings (using sprayed particles in the tens of micrometres size range) to the most recent and most advanced work aimed at manufacturing nanostructured coatings from nanometre-sized feedstock particles, the thermal spray community has been involved with nanometre-sized features and feedstock for more than 30 years. Both the development of feedstock (especially through cryo-milling, and processes able to manufacture coatings structured at the sub-micrometre or nanometre sizes, such as micrometre-sized agglomerates made of nanometre-sized particles for feedstock) and the emergence of thermal spray processes such as suspension and liquid precursor thermal spray techniques have been driven by the need to manufacture coatings with enhanced properties. These techniques result in two different types of coatings: on the one hand, those with a so-called bimodal structure having nanometre-sized zones embedded within micrometre ones, for which the spray process is similar to that of conventional coatings and on the other hand, sub-micrometre or nanostructured coatings achieved by suspension or solution spraying. Compared with suspension spraying, solution precursor spraying uses molecularly mixed precursors as liquids, avoiding a separate processing route for the preparation of powders and enabling the synthesis of a wide range of oxide powders and coatings. Such coatings are intended for use in various applications ranging from improved thermal barrier layers and wear-resistant surfaces to thin solid electrolytes for solid oxide fuel cell systems, among other numerous applications. Meanwhile these processes are more complex to operate since they are more sensitive to parameter variations compared with conventional thermal spray processes. Progress in this area has resulted from the unique combination of modelling activities, the evolution of

  20. Simple fiber-optic confocal microscopy with nanoscale depth resolution beyond the diffraction barrier.

    PubMed

    Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir

    2007-09-01

    A novel fiber-optic confocal approach for ultrahigh depth-resolution (nanometric range below 200 nm is presented. The key idea is based on a simple fiber-optic confocal microscope approach that is compatible with a differential confocal microscope technique. To improve the dynamic range of the resolving laser power and to achieve a high resolution in the nanometric range, we have designed a simple apertureless reflection confocal microscope with a highly sensitive single-mode-fiber confocal output. The fiber-optic design is an effective alternative to conventional pinhole-based confocal systems and offers a number of advantages in terms of spatial resolution, flexibility, miniaturization, and scanning potential. Furthermore, the design is compatible with the differential confocal pinhole microscope based on the use of the sharp diffraction-free slope of the axial confocal response curve rather than the area around the maximum of that curve. Combining the advantages of ultrahigh-resolution fiber-optic confocal microscopy, we can work beyond the diffraction barrier in the subwavelength (below 200 nm) nanometric range exploiting confocal nanobioimaging of single cell and intracellular analytes.

  1. Digital photoelasticity of glass: A comprehensive review

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Ramakrishnan, Vivek

    2016-12-01

    The recent advances in digital photoelasticity have made it possible to use it conveniently for the stress analysis of articles and components made of glass. Depending on the application, the retardation levels to be measured range from a few nanometres to several thousand nanometres, which necessitates different techniques and associated equipments. This paper reviews the recent advances in the photoelasticity of glass with a focus on the techniques/methods developed in the last decade. A brief introduction to the residual stress in glass is provided initially to bring out its tensorial nature. The subsequent sections are organised thematically rather than chronologically, for better readability and easy access of information.

  2. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  3. Drying of polymer films: study of demixing phenomena

    NASA Astrophysics Data System (ADS)

    Fichot, Julie; Heyd, Rodolphe; Saboungi, Marie-Louise; Josserend, Christophe; Combard, Emilie; Tranchant, Jean Francois

    2011-03-01

    Understanding the mechanisms that control the stability of polymeric films is important in beauty care. We have prepared films starting from a water-soluble organic polymer, a preservative and water. We study the drying of these films as a function of several physicochemical parameters that control their interfaces such as temperature, humidity and the nature of the support. The viscoelastic properties of the solutions before spreading out are analyzed with a rheometer in order to adjust the temperature. The topography of the films is observed by optical microscopy and the evolution of the drying is determined with a precision gravimetric balance. The behavior of the films on a nanometric scale is followed by AFM. During the drying process, droplets appear on the surface of the film, made up of water surrounded by a shell of preservative. As the films dries, the water evaporates from the droplets and the preservative spreads on the surface of the film, leading to the formation of craters on the surface of the dried film. The dimensions and numbers of the craters depend strongly on the type and concentration of the preservative employed.

  4. Autologous mesenchymal stem cells or meniscal cells: what is the best cell source for regenerative meniscus treatment in an early osteoarthritis situation?

    PubMed

    Zellner, Johannes; Pattappa, Girish; Koch, Matthias; Lang, Siegmund; Weber, Johannes; Pfeifer, Christian G; Mueller, Michael B; Kujat, Richard; Nerlich, Michael; Angele, Peter

    2017-10-10

    Treatment of meniscus tears within the avascular region represents a significant challenge, particularly in a situation of early osteoarthritis. Cell-based tissue engineering approaches have shown promising results. However, studies have not found a consensus on the appropriate autologous cell source in a clinical situation, specifically in a challenging degenerative environment. The present study sought to evaluate the appropriate cell source for autologous meniscal repair in a demanding setting of early osteoarthritis. A rabbit model was used to test autologous meniscal repair. Bone marrow and medial menisci were harvested 4 weeks prior to surgery. Bone marrow-derived mesenchymal stem cells (MSCs) and meniscal cells were isolated, expanded, and seeded onto collagen-hyaluronan scaffolds before implantation. A punch defect model was performed on the lateral meniscus and then a cell-seeded scaffold was press-fit into the defect. Following 6 or 12 weeks, gross joint morphology and OARSI grade were assessed, and menisci were harvested for macroscopic, histological, and immunohistochemical evaluation using a validated meniscus scoring system. In conjunction, human meniscal cells isolated from non-repairable bucket handle tears and human MSCs were expanded and, using the pellet culture model, assessed for their meniscus-like potential in a translational setting through collagen type I and II immunostaining, collagen type II enzyme-linked immunosorbent assay (ELISA), and gene expression analysis. After resections of the medial menisci, all knees showed early osteoarthritic changes (average OARSI grade 3.1). However, successful repair of meniscus punch defects was performed using either meniscal cells or MSCs. Gross joint assessment demonstrated donor site morbidity for meniscal cell treatment. Furthermore, human MSCs had significantly increased collagen type II gene expression and production compared to meniscal cells (p < 0.05). The regenerative potential of the

  5. Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.

    PubMed

    Rolland, Vivien; Bergstrom, Dana M; Lenné, Thomas; Bryant, Gary; Chen, Hua; Wolfe, Joe; Holbrook, N Michele; Stanton, Daniel E; Ball, Marilyn C

    2015-08-01

    Protoxylem plays an important role in the hydraulic function of vascular systems of both herbaceous and woody plants, but relatively little is known about the processes underlying the maintenance of protoxylem function in long-lived tissues. In this study, embolism repair was investigated in relation to xylem structure in two cushion plant species, Azorella macquariensis and Colobanthus muscoides, in which vascular water transport depends on protoxylem. Their protoxylem vessels consisted of a primary wall with helical thickenings that effectively formed a pit channel, with the primary wall being the pit channel membrane. Stem protoxylem was organized such that the pit channel membranes connected vessels with paratracheal parenchyma or other protoxylem vessels and were not exposed directly to air spaces. Embolism was experimentally induced in excised vascular tissue and detached shoots by exposing them briefly to air. When water was resupplied, embolized vessels refilled within tens of seconds (excised tissue) to a few minutes (detached shoots) with water sourced from either adjacent parenchyma or water-filled vessels. Refilling occurred in two phases: (1) water refilled xylem pit channels, simplifying bubble shape to a rod with two menisci; and (2) the bubble contracted as the resorption front advanced, dissolving air along the way. Physical properties of the protoxylem vessels (namely pit channel membrane porosity, hydrophilic walls, vessel dimensions, and helical thickenings) promoted rapid refilling of embolized conduits independent of root pressure. These results have implications for the maintenance of vascular function in both herbaceous and woody species, because protoxylem plays a major role in the hydraulic systems of leaves, elongating stems, and roots. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Antifogging abilities of model nanotextures

    NASA Astrophysics Data System (ADS)

    Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; Checco, Antonio; Black, Charles T.; Rahman, Atikur; Midavaine, Thierry; Clanet, Christophe; Quéré, David

    2017-06-01

    Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importance of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. This undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.

  7. Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid

    NASA Astrophysics Data System (ADS)

    Martineau, F.; Namur, K.; Mallet, J.; Delavoie, F.; Endres, F.; Troyon, M.; Molinari, M.

    2009-11-01

    The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P1,4) containing SiCl4 as Si source or GeCl4 as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.

  8. Three-dimensional particle tracking via tunable color-encoded multiplexing.

    PubMed

    Duocastella, Martí; Theriault, Christian; Arnold, Craig B

    2016-03-01

    We present a novel 3D tracking approach capable of locating single particles with nanometric precision over wide axial ranges. Our method uses a fast acousto-optic liquid lens implemented in a bright field microscope to multiplex light based on color into different and selectable focal planes. By separating the red, green, and blue channels from an image captured with a color camera, information from up to three focal planes can be retrieved. Multiplane information from the particle diffraction rings enables precisely locating and tracking individual objects up to an axial range about 5 times larger than conventional single-plane approaches. We apply our method to the 3D visualization of the well-known coffee-stain phenomenon in evaporating water droplets.

  9. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs.

    PubMed

    Mann, Ingrid

    2017-07-13

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  10. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid

    2017-05-01

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size. This article is part of the themed issue 'Cometary science after Rosetta'.

  11. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  12. Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone.

    PubMed

    Zellner, Johannes; Hierl, Katja; Mueller, Michael; Pfeifer, Christian; Berner, Arne; Dienstknecht, Thomas; Krutsch, Werner; Geis, Sebastian; Gehmert, Sebastian; Kujat, Richard; Dendorfer, Sebastian; Prantl, Lukas; Nerlich, Michael; Angele, Peter

    2013-10-01

    Meniscal tears in the avascular zone have a poor self-healing potential, however partial meniscectomy predisposes the knee for early osteoarthritis. Tissue engineering with mesenchymal stem cells and a hyaluronan collagen based scaffold is a promising approach to repair meniscal tears in the avascular zone. 4 mm longitudinal meniscal tears in the avascular zone of lateral menisci of New Zealand White Rabbits were performed. The defect was left empty, sutured with a 5-0 suture or filled with a hyaluronan/collagen composite matrix without cells, with platelet rich plasma or with autologous mesenchymal stem cells. Matrices with stem cells were in part precultured in chondrogenic medium for 14 days prior to the implantation. Menisci were harvested at 6 and 12 weeks. The developed repair tissue was analyzed macroscopically, histologically and biomechanically. Untreated defects, defects treated with suture alone, with cell-free or with platelet rich plasma seeded implants showed a muted fibrous healing response. The implantation of stem cell-matrix constructs initiated fibrocartilage-like repair tissue, with better integration and biomechanical properties in the precultured stem cell-matrix group. A hyaluronan-collagen based composite scaffold seeded with mesenchymal stem cells is more effective in the repair avascular meniscal tear with stable meniscus-like tissue and to restore the native meniscus. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  13. Meniscal shear stress for punching.

    PubMed

    Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek

    2009-01-01

    Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.

  14. Self-assembled three-dimensional chiral colloidal architecture.

    PubMed

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C; Sha, Ruojie; Seeman, Nadrian C; Chaikin, Paul M

    2017-11-03

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. High Resolution Fabrication of Interconnection Lines Using Picosecond Laser and Controlled Deposition of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahmoon, Asaf; Strauß, Johnnes; Zafri, Hadar; Schmidt, Michael; Zalevsky, Zeev

    In this paper we present the fabrication procedure as well as the preliminary experimental results of a novel method for construction of high resolution nanometric interconnection lines. The fabrication procedure relies on a self-assembly process of gold nanoparticles at specific predetermined nanostructures. The nanostructures for the self-assembly process are based on the focused ion beam (FIB) or scanning electron beam (SEM) technology. The assembled nanoparticles are being illuminated using a picosecond laser with a wavelength of 532 nm. Different pulse energies have been investigated. The paper aimed at developing a novel and reliable process for fabrication of interconnection lines encompass three different disciplines, self-assembly of nanometric particles, optics and microelectronic.

  16. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  17. Novel Nanometric Superstructures for Radiation and Magnetic Sensing

    DTIC Science & Technology

    2007-05-22

    AAO Anodic aluminum oxide AFM Atomic force microscope AFRL Air...Ni nanowires in a 2 µm AAO film after aluminum oxide was partially dissolved; (c) part of the Bi nanowires in a 25 µm AAO template after aluminum ...conditions [R3]. In this process, after removing the thick aluminum oxide film obtained from the first long anodization , the aluminum surface

  18. Emission of positronium in a nanometric PMMA film

    NASA Astrophysics Data System (ADS)

    Palacio, C. A.; De Baerdemaeker, J.; Van Thourhout, D.; Dauwe, C.

    2008-10-01

    Positron beam experiments have been performed for the first time on a self-supporting polymethyl metacrylate (PMMA) film of 310 nm-thick made by spin coating. The positronium (Ps) emission from the PMMA surface is studied as a function of the positron implantation energy by using Doppler profile spectroscopy and Compton-to-peak ratio analysis. When the sample and the Ge-detector are perpendicular to the positron beam, the emission of para-positronium ( p-Ps) is detected as a narrow central peak. By rotating the sample 45° with respect to the beam, the emission of p-Ps is detected as a blue-shifted fly-away peak. The bulk Ps fraction, the efficiency for the emission of Ps by picking up an electron from the surface, and the diffusion lengths of positrons (thermal and or epithermal), p-Ps and ortho-positronium ( o-Ps) are obtained.

  19. Evaluation of carboxymethyl moringa gum as nanometric carrier.

    PubMed

    Rimpy; Abhishek; Ahuja, Munish

    2017-10-15

    In the present study, carboxymethylation of Moringa oleifera gum was carried out by reacting with monochloroacetic acid. Modified gum was characterised employing Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and Rheology study. The carboxymethyl modification of moringa gum was found to increase its degree of crystallinity, reduce viscosity and swelling, increase the surface roughness and render its more anionic. The interaction between carboxymethyl moringa gum and chitosan was optimised by 2-factor, 3-level central composite experimental design to prepare polyelectrolyte nanoparticle using ofloxacin, as a model drug. The optimal calculated parameters were found to be carboxymethyl moringa gum- 0.016% (w/v), chitosan- 0.012% (w/v) which provided polyelectrolyte nanoparticle of average particle size 231nm and zeta potential 28mV. Carboxymethyl moringa gum-chitosan polyelectrolyte nanoparticles show sustained in vitro release of ofloxacin upto 6h which followed first order kinetics with mechanism of release being erosion of polymer matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synthesis of nanometre-thick MoO3 sheets

    NASA Astrophysics Data System (ADS)

    Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.

    2010-03-01

    The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.

  1. Organization of 'nanocrystal molecules' using DNA

    NASA Astrophysics Data System (ADS)

    Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang; Wilson, Troy E.; Loweth, Colin J.; Bruchez, Marcel P.; Schultz, Peter G.

    1996-08-01

    PATTERNING matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively1. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour2-4. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime5; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1-10 nm in size6-10, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two-and three-dimensional assemblies.

  2. Superparamagnetic enhancement of thermoelectric performance.

    PubMed

    Zhao, Wenyu; Liu, Zhiyuan; Sun, Zhigang; Zhang, Qingjie; Wei, Ping; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; He, Danqi; Ji, Pengxia; Zhu, Wanting; Nie, Xiaolei; Su, Xianli; Tang, Xinfeng; Shen, Baogen; Dong, Xiaoli; Yang, Jihui; Liu, Yong; Shi, Jing

    2017-09-13

    The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles-in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)-lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.

  3. Trillium 360 Seismometer Initial Test Results

    NASA Astrophysics Data System (ADS)

    Bainbridge, Geoffrey; Devanney, Peter; Upadhyaya, Sarvesh

    2017-04-01

    Test results for Trillium 360 show this seismometer can resolve the Peterson New Low Noise Model down to 300 seconds period. This has been confirmed at multiple sites: Pinon Flat (California), Albuquerque Seismological Laboratory (New Mexico) and Nanometrics (Ottawa, Canada). The Pinon Flat deployment captured the March 2, 2016 Mw=7.9 Indonesian event and showed a response coherent with reference sensors including an STS-1 at periods down to 0.0015 Hz. At frequencies below 0.0015 Hz the reference sensors showed a noncoherent spurious response, i.e. noise in the presence of signal, whereas the Trillium 360 was relatively unaffected. Magnetic sensitivity has been measured to be 0.01 m/s^2/T in two independent tests at ASL and Nanometrics. Temperature sensitivity is 3*10^-4 m/s^2/T. This combination of low sensitivity to both magnetic field and temperature is achieved through magnetic shielding which resolves the side effect of magnetic sensitivity in temperature-compensated ferromagnetic spring alloys. The T360 seismometer components are sufficiently miniaturized for deployment in a borehole. This enables low-noise performance even in an urban environment with thick sediments (at Nanometrics, Ottawa) since the seismometer can be emplaced in bedrock below surface sediments and away from surface noise.

  4. Evaluation of meniscus tears of the knee by radionuclide imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marymont, J.V.; Lynch, M.A.; Henning, C.E.

    We compare the accuracy of radionuclide imaging of the knee with Tc99m-pyrophosphate with arthrography for the evaluation of meniscus tears in young athletes with clinically suspected knee injury. All patients had arthroscopy which was used as the standard against which the other two diagnostic procedures were compared. Radionuclide scintigraphy and arthrography were comparable in their ability to detect tears of the medial meniscus. Scintigraphy was superior for the detection of tears of the lateral meniscus and of both menisci.

  5. Both Posterior Root Lateral-Medial Meniscus Tears With Anterior Cruciate Ligament Rupture: The Step-by-Step Systematic Arthroscopic Repair Technique.

    PubMed

    Chernchujit, Bancha; Prasetia, Renaldi

    2017-10-01

    The occurrence of posterior root tear of both the lateral and medial menisci, combined with anterior cruciate ligament rupture, is rare. Problems may be encountered such as the difficulty to access the medial meniscal root tear, the confusing circumstances about which structure to repair first, and the possibility of the tunnel for each repair to become taut inside the tibial bone. We present the arthroscopy technique step by step to overcome the difficulties in an efficient and time-preserving manner.

  6. Wyoming Water Resources Data, Water Year 2002, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2003-01-01

    Water resources data for the 2002 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 156 gaging stations; water quality for 33 gaging stations and 34 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  7. Water Resources Data, Wyoming, Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Swanson, R.B.; Woodruff, R.E.; Laidlaw, G.A.; Watson, K.R.; Clark, M.L.

    2002-01-01

    Water resources data for the 2001 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 151 gaging stations, stage and contents for 12 lakes and reservoirs, and water quality for 33 gaging stations and 32 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  8. Wyoming Water Resources Data, Water Year 2003, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2004-01-01

    Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaged stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  9. Wyoming Water Resources Data, Water Year 2000, Volume 2. Ground Water

    USGS Publications Warehouse

    Mason, J.P.; Swanson, R.B.; Roberts, S.C.

    2001-01-01

    Water resources data for the 2000 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 141 gaging stations; stage and contents for 15 lakes and reservoirs; and water quality for 22 gaging stations and 21 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  10. Water Resources Data, Georgia, 2002--Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2002

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  11. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  12. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  13. Water Resources Data, California, Water Year 1989. Volume 5. Ground-Water Data

    USGS Publications Warehouse

    Lamb, C.E.; Johnson, J.A.; Fogelman, R.P.; Grillo, D.A.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in weils. Volume 5 contains water levels for 1,037 observation wells and water-quality data for 254 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperatine State and Federal agencies in California.

  14. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  15. Target Water Consumption Calculation for Human Water Management based on Water Balance

    NASA Astrophysics Data System (ADS)

    Sang, X.; Zhai, Z.; Ye, Y.; Zhai, J.

    2016-12-01

    Degradation of the regional ecological environment has become increasingly serious due to the rapid increase of water usage. Critical to water consumption management is a good approach to control the growth of water usage. Through the identification and analysis of water consumption for various sectors in the hydrosocial cycle, the method for calculating the regional target water consumption also is derived based on water balance theory. Analysis shows that during 1980 - 2004 in Tianjin City, there were 22 years in which the actual water consumption of Tianjin exceeded its target water consumption, with an average excess of 66 million m3 annually. Moreover, calculations show that the maximum human target water consumption water supply is 1.91 billion m3/a. If water consumption is controlled according to the target, the sustainable development of water resource, economic and social growth, and ecological environment in this region can be expected to be achieved.

  16. Water

    USGS Publications Warehouse

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  17. Predictive of the quantum capacitance effect on the excitation of plasma waves in graphene transistors with scaling limit

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei

    2015-04-01

    Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the

  18. Water resources data--North Dakota water year 2005, Volume 1. Surface water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2006-01-01

    Water-resources data for the 2005 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 107 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 31 crest-stage stations; and water quality for 93 streamflow-gaging stations, 6 river-stage stations, 15 lake or reservoir stations, and about 50 miscellaneous sample sites on lakes and wetlands. Data are included for 8 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  19. Water Resources Data, Louisiana, Water Year 2002

    USGS Publications Warehouse

    Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Labbe, Charles K.; Walters, David J.

    2003-01-01

    Water resources data for the 2002 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 85 gaging stations; stage only for 79 gaging stations and 7 lakes; water quality for 52 surface-water stations (including 40 gaging stations) and 104 wells; and water levels for 300 observation wells. Also included are data for 143 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  20. Water resources data, Louisiana, water year 2004

    USGS Publications Warehouse

    Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montogmery, P.A.; Resweber, J.C.; Ross, Garron B.; Ward, Aub N.; Walters, David J.

    2005-01-01

    Water resources data for the 2004 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 77 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 60 surface-water stations (including 42 gaging stations) and 112 wells; and water levels for 304 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  1. Water stress, water salience, and the implications for water supply planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  2. Water technology for specific water usage.

    PubMed

    Frimmel, Fritz H

    2003-01-01

    Water is the basis for life and culture. In addition to the availability of water its quality has become a major issue in industrialized areas and in developing countries as well. Water usage has to be seen as part of the hydrological cycle. As a consequence water management has to be sustainable. The aim of the contribution is to give water usage oriented quality criteria and to focus on the technical means to achieve them. Water is used for many purposes, ranging from drinking and irrigation to a broad variety of technical processes. Most applications need specific hygienic, chemical and/or physical properties. To meet these demands separation and reaction principles are applied. The reuse of water and the application of water treatment with little or no waste and by-product formation is the way to go. Membrane separation and advanced oxidation including catalytic reactions are promising methods that apply natural processes in sustainable technical performance. Thus elimination of specific water constituents (e.g. salts and metals, microorganisms) and waste water cleaning (e.g. pollutants, nutrients and organic water) can be done efficiently. Learning from nature and helping nature with appropriate technology is a convincing strategy for sustainable water management.

  3. Water Resources Data, Alaska, Water Year 2000

    USGS Publications Warehouse

    Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.

    2001-01-01

    Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  4. Water Resources Data North Dakota Water Year 2002 Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Lundgren, R.F.; Norbeck, S.W.; Robinson, S.M.; Sether, B.A.

    2003-01-01

    Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 106 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 96 streamflow-gaging stations, 3 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  5. Water Resources Data North Dakota Water Year 2003, Volume 1. Surface Water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2004-01-01

    Water-resources data for the 2003 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 108 streamflow-gaging stations; stage only for 24 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 32 crest-stage stations; and water-quality for 99 streamflow-gaging stations, 5 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  6. Water Resources Data North Dakota Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Berkas, W.R.; Norbeck, S.W.; Robinson, S.M.

    2002-01-01

    Water-resources data for the 2001 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 103 streamflow-gaging stations; stage only for 20 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 94 streamflow-gaging stations, 2 river-stage stations, 9 lake or reservoir stations, 7 miscellaneous sample sites on rivers, and 58 miscellaneous sample sites on lakes and wetlands. Data are included for 9 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  7. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  8. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  9. Smart Water: Energy-Water Optimization in Drinking Water Systems

    EPA Science Inventory

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  10. Shale gas characteristics of the Lower Toarcian Posidonia Shale in Germany: from basin to nanometre scale

    NASA Astrophysics Data System (ADS)

    Schulz, Hans-Martin; Bernard, Sylvain; Horsfield, Brian; Krüger, Martin; Littke, Ralf; di primio, Rolando

    2013-04-01

    The Early Toarcian Posidonia Shale is a proven hydrocarbon source rock which was deposited in a shallow epicontinental basin. In southern Germany, Tethyan warm-water influences from the south led to carbonate sedimentation, whereas cold-water influxes from the north controlled siliciclastic sedimentation in the northwestern parts of Germany and the Netherlands. Restricted sea-floor circulation and organic matter preservation are considered to be the consequence of an oceanic anoxic event. In contrast, non-marine conditions led to sedimentation of coarser grained sediments under progressively terrestrial conditions in northeastern Germany The present-day distribution of Posidonia Shale in northern Germany is restricted to the centres of rift basins that formed in the Late Jurassic (e.g., Lower Saxony Basin and Dogger Troughs like the West and East Holstein Troughs) as a result of erosion on the basin margins and bounding highs. The source rock characteristics are in part dependent on grain size as the Posidonia Shale in eastern Germany is referred to as a mixed to non-source rock facies. In the study area, the TOC content and the organic matter quality vary vertically and laterally, likely as a consequence of a rising sea level during the Toarcian. Here we present and compare data of whole Posidonia Shale sections, investigating these variations and highlighting the variability of Posidonia Shale depositional system. During all phases of burial, gas was generated in the Posidonia Shale. Low sedimentation rates led to diffusion of early diagenetically formed biogenic methane. Isochronously formed diagenetic carbonates tightened the matrix and increased brittleness. Thermogenic gas generation occurred in wide areas of Lower Saxony as well as in Schleswig Holstein. Biogenic methane gas can still be formed today in Posidonia Shale at shallow depth in areas which were covered by Pleistocene glaciers. Submicrometric interparticle pores predominate in immature samples. At

  11. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties 1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family 3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity 4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour depositionmore » with a high crystallinity and very low defect concentration.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogotsi, Yury

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties 1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family 3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity 4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour depositionmore » with a high crystallinity and very low defect concentration.« less

  13. Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2005-01-01

    Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  14. Water Power Research | Water Power | NREL

    Science.gov Websites

    Water Power Research Water Power Research NREL conducts water power research; develops design tools Columbia River, Washington. Hydropower Research Hydropower technologies convert the energy of water moving ; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo

  15. Water Resources Data--Kansas, Water Year 2003

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2004-01-01

    Water-resources data for the 2003 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 148 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 12 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 27 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 138 stations, and suspended-sediment concentration for 11 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  16. Water resources data, Kansas, water year 2004

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2005-01-01

    Water-resources data for the 2004 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 155 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 14 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 16 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 29 high-flow partial-record stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  17. Water Resources Data, Nebraska, Water Year 2003

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.; Miller, J.D.; Drudik, R.A.

    2004-01-01

    The Nebraska water resources data report for water year 2003 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 103 continuous and 5 crest-stage gaging stations, and 5 miscellaneous sites; stream water quality for 14 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 40 observation wells; and ground-water quality for 132 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, State, and Federal agencies.

  18. Water resources data, Nebraska, water year 2004

    USGS Publications Warehouse

    Hitch, D. E.; Soensken, P.J.; Sebree, S.K.; Wilson, K.E.; Walczyk, V.C.; Drudik, R.A.; Miller, J.D.; Hull, S.H.

    2005-01-01

    The Nebraska water resources data report for water year 2004 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 101 continuous and 5 crest-stage gaging stations, and 6 miscellaneous sites; stream water quality for 7 gaging stations and 40 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 74 observation wells; and ground-water quality for 200 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating Federal, State, and local agencies.

  19. Water Resources Data--Nebraska, Water Year 2002

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.

    2002-01-01

    The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Nebraska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ?Water Resources Data - Nebraska.' The Nebraska water resources data report for water year 2002 includes records of stage, discharge, and water quality of streams; stage and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 96 continuous and 5 crest-state gaging stations, and 3 miscellaneous and 55 low-flow sites; stream water quality for 23 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 1 lake and 1 reservoir; ground-water levels for 43 observation wells; and ground-water quality for 115 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, state and Federal agencies.

  20. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz B.; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  1. Surface-Water Data, Georgia, Water Year 1999

    USGS Publications Warehouse

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  2. Water Resources Data, Alabama, Water Year 2004

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2005-01-01

    Water resources data for the 2004 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 19 partial-record or miscellaneous streamflow stations; (2) stage and content records for 16 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 21 streamflow-gaging stations, for 11 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 20 surface-water stations; (5) specific conductance and dissolved oxygen at 20 stations; (6) turbidity at 5 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observa-tion wells; and (9) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous sur-face-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  3. Water Resources Data, Alabama, Water Year 2005

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2006-01-01

    Water resources data for the 2005 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations and 23 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 125 streamflow-gaging stations and 67 ungaged streamsites; (4) water temperature at 179 surface-water stations; (5) specific conductance at 180 stations; (6) dissolved oxygen at 17 stations; (7) turbidity at 52 stations; (8) sediment data at 2 stations; (9) water-level records for 2 recording observation wells; and (10) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface- water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  4. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  5. Gas flow in plant microfluidic networks controlled by capillary valves

    NASA Astrophysics Data System (ADS)

    Capron, M.; Tordjeman, Ph.; Charru, F.; Badel, E.; Cochard, H.

    2014-03-01

    The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ˜102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP ⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP =ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.

  6. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5

  7. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  8. Water Resources Data, Kansas, Water Year 2000

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2001-01-01

    Water-resources data for the 2000 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 144 complete-record gaging stations; elevation and contents at 19 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 8 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, and miscellaneous onsite water-quality data collected at 134 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  9. Water Resources Data, Alabama, Water Year 2002

    USGS Publications Warehouse

    Pearman, J.L.; Stricklin, V.E.; Psinakis, W.L.

    2003-01-01

    Water resources data for the 2002 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 41 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 47 stations; (3) water-quality records for 12 streamflow-gaging stations, for 17 ungaged streamsites, and for 2 precipitation stations; (4) water temperature at 14 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 21 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  10. Water Resources Data, Alabama, Water Year 2003

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2004-01-01

    Water resources data for the 2003 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 130 streamflow-gaging stations, for 29 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 46 stations; (3) water-quality records for 12 streamflow-gaging stations, for 29 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 12 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 9 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  11. Water resources data, Wyoming, water year 2004; Volume 1. Surface water; with List of discontinued and active surface-water, water-quality, sediment, and biological stations

    USGS Publications Warehouse

    Watson, K.R.; Woodruff, R.E.; Laidlaw, G.A.; Clark, M.L.; Miller, K.A.

    2005-01-01

    Water resources data for the 2004 water year for Wyoming consist of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 164 gaging stations; water quality for 43 gaging stations and 45 ungaged stations, and stage and contents for one reservoir. Volume 2 of this report contains water levels records for 64 wells. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent part of the National Water Information System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  12. Water, Water Everywhere: Phase Diagrams of Ordinary Water Substance

    ERIC Educational Resources Information Center

    Glasser, L.

    2004-01-01

    The full phase diagram of water in the form of a graphical representation of the three-dimensional (3D) PVT diagram using authentic data is presented. An interesting controversy regarding the phase behavior of water was the much-touted proposal of a solid phase of water, polywater, supposedly stable under atmospheric conditions.

  13. Water, Water, Everywhere.

    ERIC Educational Resources Information Center

    Selinger, Ben

    1979-01-01

    Water is a major component in many consumer products. Azeotropic distillation of products such as detergents and foodstuffs to form a two-phase distillate is a simple experimental method to determine the percentage of water in the product. (Author/GA)

  14. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    NASA Technical Reports Server (NTRS)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  15. Assess water scarcity integrating water quantity and quality

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zeng, Z.

    2014-12-01

    Water scarcity has become widespread all over the world. Current methods for water scarcity assessment are mainly based on water quantity and seldom consider water quality. Here, we develop an approach for assessing water scarcity considering both water quantity and quality. In this approach, a new water scarcity index is used to describe the severity of water scarcity in the form of a water scarcity meter, which may help to communicate water scarcity to a wider audience. To illustrate the approach, we analyzed the historical trend of water scarcity for Beijing city in China during 1995-2009, as well as the assessment for different river basins in China. The results show that Beijing made a huge progress in mitigating water scarcity, and that from 1999 to 2009 the blue and grey water scarcity index decreased by 59% and 62%, respectively. Despite this progress, we demonstrate that Beijing is still characterized by serious water scarcity due to both water quantity and quality. The water scarcity index remained at a high value of 3.5 with a blue and grey water scarcity index of 1.2 and 2.3 in 2009 (exceeding the thresholds of 0.4 and 1, respectively). As a result of unsustainable water use and pollution, groundwater levels continue to decline, and water quality shows a continuously deteriorating trend. To curb this trend, future water policies should further decrease water withdrawal from local sources (in particular groundwater) within Beijing, and should limit the grey water footprint below the total amount of water resources.

  16. Water Resources Data, Kansas, Water Year 2001

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.

    2002-01-01

    Water-resources data for the 2001 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 145 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 140 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  17. Water Resources Data, Kansas, Water Year 2002

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2003-01-01

    Water-resources data for the 2002 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 149 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 142 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  18. Water Resources Data, Kansas, Water Year 1999

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2000-01-01

    Water-resources data for the 1999 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 143 gaging stations; elevation and contents at 19 watershed lakes and reservoirs; and water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 4 stations. Also included are data for 26 high-flow and 2 low-flow partial-record stations; and 2 chemical quality of precipitation stations. Miscellaneous onsite water-quality data were collected at 132 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with State, local, and Federal agencies in Kansas.

  19. Water resources data Virginia water year 2005 Volume 1. Surface-water discharge and surface-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 172 gaging stations; stage only at 2 gaging stations; elevation at 2 reservoirs and 2 tide gages; contents at 1 reservoir, and water quality at 25 gaging stations. Also included are data for 50 crest-stage partial-record stations. Locations of these sites are shown on figures 4A-B and 5A-B. Miscellaneous hydrologic data were collected at 128 measuring sites and 19 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  20. Water resources data, Utah, water year 1989

    USGS Publications Warehouse

    ReMillard, M.D.; Herbert, L.R.; Sandberg, G.W.; Birdwell, G.A.

    1990-01-01

    Water resources data for the 1989 water year for Utah consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water quality of ground water. This report contains discharge records for 185 gaging stations; stage and contents for 22 lakes and reservoirs; water quality for 21 hydrologic stations and 217 wells; miscellaneous temperature measurements and field determinations for 147 stations; and water levels for 29 observations wells. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Utah.

  1. Predictive of the quantum capacitance effect on the excitation of plasma waves in graphene transistors with scaling limit.

    PubMed

    Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei

    2015-04-28

    Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8 TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5 TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.

  2. Pulsed source of ultra low energy positive muons for near-surface μSR studies

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Matsuda, Yasuyuki; Miyake, Yasuhiro; Nagamine, Kanetada; Iwasaki, Masahiko; Ikedo, Yutaka; Shimomura, Koichiro; Strasser, Patrick; Makimura, Shunshuke

    2008-01-01

    We have produced a pulsed beam of low energy (ultra slow) polarized positive muons (LE-μ+) and performed several demonstration muon spin rotation/relaxation (μSR) experiments at ISIS RIKEN-RAL muon facility in UK. The energy of the muons implanted into a sample is tuneable between 0.1 keV and 18 keV. This allows us to use muons as local magnetic microprobes on a nanometre scale. The control over the implantation depth is from several nanometres to hundreds of nanometres depending on the sample density and muon energy. The LE-μ+ are produced by two-photon resonant laser ionization of thermal muonium atoms. Currently ∼15 LE-μ+/s with 50% spin polarization are transported to the μSR sample position, where they are focused to a small spot with a diameter of only 4 mm. The overall LE-μ+ generation efficiency of 3 × 10-5 is comparable to that obtained when moderating the muon beam to epithermal energies in simple van der Waals bound solids. In contrast to other methods of LE-μ+ generation, the implantation of the muons into the sample can be externally triggered with the duration of the LE-μ+ pulse being only 7.5 ns. This allows us to measure spin rotation frequencies of up to 40 MHz.

  3. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  4. Water resources data, North Carolina, water year 2002. Volume 1B: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Barker, R.G.; Robinson, J.B.

    2003-01-01

    Water-resources data for the 2002 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 211 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 20 gaging stations; water quality for 52 gaging stations and 7 miscellaneous sites, and continuous water quality for 30 sites; and continuous precipitation at 109 sites. Volume 2 contains ground-water-level data from 143 observation wells and ground-water-quality data from 72 wells. Additional water data were collected at 85 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  5. A sub-tank water-saving drinking water station

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  6. Systematic arthroscopic investigation of the bovine stifle joint.

    PubMed

    Hagag, U; Tawfiek, M G; Brehm, W

    2015-12-01

    The objective of the present study was to establish a protocol for arthroscopic exploration of the bovine stifle joint using craniomedial, caudolateral and caudomedial approaches. An anatomic and arthroscopic study using 26 cadaveric limbs from 13 non-lame adult dairy cows was performed. The craniomedial approach was created between the middle and medial patellar ligaments to investigate the cranial pouches of the stifle joint. The inter-condylar eminence, the proximal aspect of the medial femoral trochlear ridge and the lateral aspect of the lateral femoral condyle were used as starting points for systematic examination of the medial femorotibial, the femoropatellar and the lateral femorotibial joints, respectively. The observed structures were: the suprapatellar pouch, articular surfaces of the patella, femoral trochlear ridges, cruciate ligaments, menisci, and the meniscotibial ligaments. The arthroscopic portal for the caudomedial femorotibial pouch was about 6-8 cm caudal to the medial collateral ligament. The proximal and distal caudolateral femorotibial pouches were explored 3 cm and 1.5 cm caudal to the ipsilateral collateral ligament, respectively. The observed structures were the caudal aspect of femoral condyles, menisci, caudal cruciate ligament, popliteal tendon and the meniscofemoral ligament. Restricted joint size and risk of common peroneal nerve damage were the major limitations for exploration of the caudal femorotibial compartments. The study described the arthroscopic portals and normal intra-articular anatomy of the bovine stifle joint but further investigations are warranted to validate these techniques in clinical cases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Meniscus repair using mesenchymal stem cells - a comprehensive review.

    PubMed

    Yu, Hana; Adesida, Adetola B; Jomha, Nadr M

    2015-04-30

    The menisci are a pair of semilunar fibrocartilage structures that play an essential role in maintaining normal knee function. Injury to the menisci can disrupt joint stability and lead to debilitating results. Because natural meniscal healing is limited, an efficient method of repair is necessary. Tissue engineering (TE) combines the principles of life sciences and engineering to restore the unique architecture of the native meniscus. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential both in vitro and in vivo. This comprehensive review examines the English literature identified through a database search using Medline, Embase, Engineering Village, and SPORTDiscus. The search results were classified based on MSC type, animal model, and method of MSC delivery/culture. A variety of MSC types, including bone marrow-derived, synovium-derived, adipose-derived, and meniscus-derived MSCs, has been examined. Research results were categorized into and discussed by the different animal models used; namely murine, leporine, porcine, caprine, bovine, ovine, canine, equine, and human models of meniscus defect/repair. Within each animal model, studies were categorized further according to MSC delivery/culture techniques. These techniques included direct application, fibrin glue/gel/clot, intra-articular injection, scaffold, tissue-engineered construct, meniscus tissue, pellets/aggregates, and hydrogel. The purpose of this review is to inform the reader about the current state and advances in meniscus TE using MSCs. Future directions of MSC-based meniscus TE are also suggested to help guide prospective research.

  8. Influence of partial meniscectomy on attachment forces, superficial strain and contact mechanics in porcine knee joints.

    PubMed

    Freutel, Maren; Seitz, Andreas M; Ignatius, Anita; Dürselen, Lutz

    2015-01-01

    Numerous studies investigated the reasons for premature osteoarthritis due to partial meniscectomy (PM). However, the influence of meniscectomy on attachment forces and superficial strain of the tibial meniscus is unclear. It is hypothesised that these parameters depend on the degree of PM. Six porcine medial menisci were placed in a custom made apparatus, and each meniscal attachment was connected to a force sensor. After printing markers onto the tibial meniscal surfaces, the menisci were positioned on a glass plate enabling optical superficial strain measurement. Additionally, contact area and pressure were investigated. Each meniscus was axially loaded up to 650 N using its respective femoral condyle. Testing was conducted intact and after 50 and 75% PM of the posterior horn and extending 75% PM to the anterior horn. With increasing meniscectomy, the attachment forces decreased anteriorly by up to 17% (n.s.) and posteriorly by up to 55% (p = 0.003). The circumferential strain in the peripheral meniscal zones was not affected by the meniscectomy, while in some meniscal zones the radial strain changed from compression to tension. Contact area decreased by up to 23% (p = 0.01), resulting in an increase in 40% (p = 0.02) for the maximum contact pressure. Partial meniscectomy significantly alters the loading situation of the meniscus and its attachments. Specifically, the attachment forces decreased with increasing amount of meniscal tissue loss, which reflects the impaired ability of the meniscus to transform axial joint load into meniscal hoop stress.

  9. Effects of Contaminated Fluids on Complex Moduli in Porous Rocks; Lab and Field.

    NASA Astrophysics Data System (ADS)

    Spetzler, H.; Snieder, R.; Zhang, J.

    2006-12-01

    The interaction between fluids and porous rocks has been measured in the laboratory and in a controlled field experiment. In the laboratory we measured the static and dynamic effect of various contaminated fluids on the wettability, capillary pressure and other flow properties on geometrically simple surfaces. The characteristics of the menisci were quantified by measuring the forces required to deform and move them. Rate dependent surface tension and contact angles describe the hysteresis of the contact line motion. Finally we used geometrically complex surfaces, i.e. real rocks, and observed similar behavior. Then we did a field experiment where we could controllably irrigate a test volume and observe changes in deformation. At low deformation rates, where viscous deformation of the fluid is negligible, the dynamic hystereses of menisci deformation become the dominant mechanism for changes in complex moduli of partially fluid saturated rocks. In the laboratory for contaminated samples we observe attenuation increasing from below 1 Hz to 1 mHz, the limit of our patience in making these measurements. In the field we used microseisms and solid Earth tides as low frequency deformation sources. In the case of the tides we compare changes in observed tilt with theoretical site specific tidal tilts. Preliminary theoretical modeling suggests that indeed small changes in the moduli should be observable in changes in tilt response. In this paper we present our laboratory results and the field data and analysis to date.

  10. Water conservation in irrigation can increase water use

    PubMed Central

    Ward, Frank A.; Pulido-Velazquez, Manuel

    2008-01-01

    Climate change, water supply limits, and continued population growth have intensified the search for measures to conserve water in irrigated agriculture, the world's largest water user. Policy measures that encourage adoption of water-conserving irrigation technologies are widely believed to make more water available for cities and the environment. However, little integrated analysis has been conducted to test this hypothesis. This article presents results of an integrated basin-scale analysis linking biophysical, hydrologic, agronomic, economic, policy, and institutional dimensions of the Upper Rio Grande Basin of North America. It analyzes a series of water conservation policies for their effect on water used in irrigation and on water conserved. In contrast to widely-held beliefs, our results show that water conservation subsidies are unlikely to reduce water use under conditions that occur in many river basins. Adoption of more efficient irrigation technologies reduces valuable return flows and limits aquifer recharge. Policies aimed at reducing water applications can actually increase water depletions. Achieving real water savings requires designing institutional, technical, and accounting measures that accurately track and economically reward reduced water depletions. Conservation programs that target reduced water diversions or applications provide no guarantee of saving water. PMID:19015510

  11. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  12. Bottled Water Mania: Americas Misguided Infatuation with Bottled Water over Tap Water

    DTIC Science & Technology

    2010-05-01

    AU/ACSC/BROWN, S/AY10 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY Bottled Water Mania: America’s Misguided...Infatuation with Bottled Water over Tap Water by Seiho P. Brown, LCDR, U.S. Navy A Research Report Submitted to the Faculty In...iii Abstract The purpose of this paper is to analyze the tendency for American people to drink bottled water over tap water even though it costs

  13. Magnetic water-in-water droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Navi, Maryam; Abbasi, Niki; Tsai, Scott

    2017-11-01

    Aqueous two-phase systems (ATPS) have shown to be ideal candidates for replacing the conventional water-oil systems used in droplet microfluidics. We use an ATPS of Polyethylene Glycol (PEG) and Dextran (DEX) for microfluidic generation of magnetic water-in-water droplets. As ferrofluid partitions to DEX phase, there is no significant diffusion of ferrofluid at the interface of the droplets, rendering generation of magnetic DEX droplets in a non-magnetic continuous phase of PEG possible. In this system, both phases are water-based and highly biocompatible. We microfluidically generate magnetic DEX droplets at a flow-focusing junction in a jetting regime. We sort the droplets based on their size by placing a permanent magnet downstream of the droplet generation region, and show that the deflection of droplets is in good agreement with a mathematical model. We also show that the magnetic DEX droplets can be stabilized by lysozyme and be used for separation of single cell containing water-in-water droplets. This system of magnetic water-in-water droplet manipulation may find biomedical applications such as single-cell studies and drug delivery.

  14. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2016-08-06

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  15. Some Interesting Facts about Water and Water Conservation

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2015-12-01

    The total amount of water in the world today is still the same as it was hundreds of thousands of years ago. Almost 97% of the water that is on this earth is undrinkable. About two percent of world's water is locked in polar ice caps and glaciers. Only one percent of world's water is available for human consumption. Agriculture, livestock farming, irrigation, manufacturing, factories, businesses, commercial establishments, offices, communities and household all have to share this 1% of water that is available. Although we call it drinking water, humans actually drink only about 1% of water that is actually supplied to the household by the utility companies. Inside a leak-proof average American household, about 70% of the water is used in the bathroom and about 20% is utilized in kitchen and laundry. The U.S. daily average consumption of water is about 200 gallons per person. Desalinated water may typically cost about 2,000 - 3000 an acre foot. This is approximately a penny a gallon. An acre-foot or 325,851 gallons is roughly the amount of water a family of five uses in a year. 1.2 trillion gallons of industrial waste, untreated sewage and storm water are dumped into U.S. waters each year. Faster depletion of water supplies is partly due to hotter summers, which mean thirstier people, livestock, plants, trees and shrubs. In addition, hotter summers mean more evaporation from lakes, rivers, reservoirs and irrigated farmland. The median household in the U.S. spends about one of its income on water and sewerage. The human body is about 75% water. Although government agencies have taken necessary steps, water pollution levels continue to rise rapidly. It is becoming more and more difficult to clean up polluted water bodies. Water conservation and preventing water pollution is the responsibility of very human being. References: http://www.nrdc.org/water/http://www.epa.gov/greeningepa/water/http://www.waterboards.ca.gov/water_issues/programs/conservation_portal/

  16. Water resources data, North Carolina, water year 2001. Volume 1A: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Walters, D.A.; Cartano, G.D.; Taylor, J.E.

    2002-01-01

    Water-resources data for the 2001 water year for North Carolina consist of records of stage, discharge, water-quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground water levels and water-quality of ground-water. Volume 1 contains discharge records for 209 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 52 gaging stations; water quality for 101 gaging stations and 91 miscellaneous sites; continuous daily tide stage at 4 sites; and continuous precipitation at 98 sites. Volume 2 contains ground-water-level data from 136 observation wells and ground-water-quality data from 68 wells. Additional water data were collected at 84 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  17. Water resources data, Indiana, water year 1982

    USGS Publications Warehouse

    Miller, R.L.; Hoggatt, R.E.; Nell, G.E.

    1983-01-01

    Water resources data for the 1982 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 176 gaging stations, stage and contents for 9 lakes and reservoirs, releases from 8 flood control reservoirs, water quality for 26 gaging stations, and water levels for 87 observation wells. Also included are 71 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.

  18. Water resources data, Indiana, water year 1983

    USGS Publications Warehouse

    Miller, R.L.; Hoggatt, R.E.; Nell, G.E.

    1984-01-01

    Water resources data for the 1983 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations, stage and contents for 9 lake and reservoirs, releases from 7 flood control reservoirs, water quality for 5 gaging stations, and water levels for 84 observation wells. Also included are 23 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.

  19. Jumping of water striders on water

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jaehak; Jablonski, Piotr; Kim, Ho-Young

    2012-11-01

    Small insects such as water striders, springtails, fishing spiders freely move on water by adopting various modes of locomotion, such as rowing, galloping, jumping and meniscus-climbing. As the physics of jumping have not yet been fully understood among those ways of semi-aquatic propulsion, here we present the results of a combined experimental and theoretical investigation of the dynamics of water striders leaping off water. We first image and analyze the trajectories of the legs and body of jumping water striders of three different species with a high-speed camera. We then theoretically compute the forces acting on the body by considering the capillary interaction between the flexible legs and deforming water meniscus. Our theory enables us to predict the maximum take-off speed for given leg lengths. The experimental measurements suggest that the water striders drive their legs near the optimal speed to gain the maximum take-off speed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane

    Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less

  1. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    PubMed

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes.

  2. The "ouzo effect", recent developments and application to therapeutic drug carrying

    NASA Astrophysics Data System (ADS)

    Botet, Robert

    2012-03-01

    This short review is about the spontaneous emulsification effect, aka the "ouzo effect". Under certain conditions, pouring a mixture ol a totally water-miscible solvent and a hydrophobic oil into water, generates spontaneously nanometric droplets which are stable, even without surfactant. A basic example is anise-flavored aperitif, which is known from ages in South Europe and North Africa. Then, it is an amazingly old topic, potentially important in a number of applications - such as food additives, paints, cosmetic products or pharmaceutic drugs -, though the main mechanisms are yet essentially unexplained. This phenomenon is presently under intensive investigation using both microfluidic experiments and large-scale numerical simulations, through a CNRS project grouping four laboratories in France. This presentation will give an overview of the history, context and development of the ouzo effect, as well as recent advancements and ideas in the field. This unique effect is now related to two major streams of the scientific research, namely: nano-technology and bio-technology. Consequences in the latter domain is outlined.

  3. Antifogging abilities of model nanotextures

    DOE PAGES

    Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; ...

    2017-02-27

    Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less

  4. Effect of Particle Size on Thermal Conductivity of Nanofluid

    NASA Astrophysics Data System (ADS)

    Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.

    2008-07-01

    Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.

  5. Modelling the influence of pore size on the response of materials to infrared lasers An application to human enamel

    NASA Astrophysics Data System (ADS)

    Vila Verde, A.; Ramos, Marta M. D.

    2005-07-01

    We present an analytical model for a ceramic material (hydroxyapatite, HA) containing nanometre-scale water pores, and use it to estimate the pressure at the pore as a function of temperature at the end of a single 0.35 μs laser pulse by Er:YAG (2.94 μm) and CO 2 (10.6 μm) lasers. Our results suggest that the pressure at the pore is directly related to pore temperature, and that very high pressures can be generated simply by the thermal expansion of liquid water. Since the temperature reached in the pores at the end of the laser pulse is a strong function of pore size for Er:YAG lasers, but is independent of pore size for CO 2 lasers, our present results provide a possible explanation for the fact that human dental enamel threshold ablation fluences vary more for Er:YAG lasers than for CO 2 lasers. This suggests that experimentalists should analyse their results accounting for factors, like age or type of tooth, that may change the pore size distribution in their samples.

  6. Global monthly water scarcity: blue water footprints versus blue water availability.

    PubMed

    Hoekstra, Arjen Y; Mekonnen, Mesfin M; Chapagain, Ashok K; Mathews, Ruth E; Richter, Brian D

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996-2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity--as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins--can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption.

  7. Quantifying Water Stress Using Total Water Volumes and GRACE

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  8. Water Resources Data for Alaska, Water Year 1996

    USGS Publications Warehouse

    Linn, K.R.; Shaw, S.K.; Swanner, W.C.; Rickman, R.L.; Schellekens, M.F.

    1997-01-01

    Water resources data for the 1996 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 85 gaging stations; stage or contents only at 5 gaging stations; water quality at 19 gaging stations; and water levels for 49 observation wells. Also included are data for 56 crest-stage partial-record stations and 2 lakes. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  9. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  10. Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Pala, Z.; Sedláček, J.; Štengl, V.; Píš, I.; Zahoranová, T.; Nehasil, V.

    2012-06-01

    Titanium dioxide coatings were sprayed by a water-stabilized plasma gun to form robust self-supporting bodies with a photocatalytically active surface. Agglomerated nanometric powder was used as a feedstock. In one case argon was used as a powder-feeding as well as coating-cooling gas whereas in the other case nitrogen was used. Stainless steel was used as a substrate and the coatings were released after the cooling. Over one millimeter thick self-supporting bodies were studied by XRD, HR-TEM, XPS, Raman spectroscopy, UV-VIS spectrophotometry and photocatalytic tests. Selected tests were done at the surface as well as at the bottom side representing the contact surface with the substrate during the spray process. Porosity was studied by image analysis on polished cross sections where also microhardness was measured. The dominant phase present in the sprayed samples was rutile, whereas anatase was only a minor component. The hydrogen content in the nitrogen-assisted coating was higher, but the character of the optical absorption edge remained the same for both samples. Photoelectron spectroscopy revealed differences in the character of the O1s peak between both samples. The photocatalytic activity was tested by decomposition of acetone at UV illumination, whereas also the end products—CO and CO2—were monitored. The nitrogen-assisted coating was revealed as a more efficient photocatalyst. Certain aspects of a thermal post-treatment on the coatings are discussed as well. Color and electrical conductivity are markedly changed at annealing at 760 °C, whereas only very small changes of the as-sprayed coating character correspond to annealing at 500 °C.

  11. Water Resources Data, Florida, Water Year 2003, Volume 3A: Southwest Florida Surface Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 103 streams, periodic discharge for 7 streams, continuous or daily stage for 67 streams, periodic stage for 13 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 62 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  12. Fluorescence fluctuations analysis in nanoapertures: physical concepts and biological applications.

    PubMed

    Lenne, Pierre-François; Rigneault, Hervé; Marguet, Didier; Wenger, Jérôme

    2008-11-01

    During the past years, nanophotonics has provided new approaches to study the biological processes below the optical diffraction limit. How single molecules diffuse, bind and assemble can be studied now at the nanometric level, not only in solutions but also in complex and crowded environments such as in live cells. In this context fluorescence fluctuations spectroscopy is a unique tool since it has proven to be easy to use in combination with nanostructures, which are able to confine light in nanometric volumes. We review here recent advances in fluorescence fluctuations' analysis below the optical diffraction limit with a special focus on nanoapertures milled in metallic films. We discuss applications in the field of single-molecule detection, DNA sequencing and membrane organization, and underscore some potential perspectives of this new emerging technology.

  13. The synthesis, characterisation and in vivo study of a bioceramic for potential tissue regeneration applications

    PubMed Central

    Poinern, Gérrard Eddy Jai; Brundavanam, Ravi Krishna; Thi Le, Xuan; Nicholls, Philip K.; Cake, Martin A.; Fawcett, Derek

    2014-01-01

    Hydroxyapatite (HAP) is a biocompatible ceramic that is currently used in a number of current biomedical applications. Recently, nanometre scale forms of HAP have attracted considerable interest due to their close similarity to the inorganic mineral component of the bone matrix found in humans. In this study ultrafine nanometre scale HAP powders were prepared via a wet precipitation method under the influence of ultrasonic irradiation. The resulting powders were compacted and sintered to form a series of ceramic pellets with a sponge-like structure with varying density and porosity. The crystalline structure, size and morphology of the powders and the porous ceramic pellets were investigated using advanced characterization techniques. The pellets demonstrated good biocompatibility, including mixed cell colonisation and matrix deposition, in vivo following surgical implantation into sheep M. latissimus dorsi. PMID:25168046

  14. Tempering of Low-Temperature Bainite

    NASA Astrophysics Data System (ADS)

    Peet, Mathew J.; Babu, Sudarsanam Suresh; Miller, Mike K.; Bhadeshia, H. K. D. H.

    2017-07-01

    Electron microscopy, X-ray diffraction, and atom probe tomography have been used to identify the changes which occur during the tempering of a carbide-free bainitic steel transformed at 473 K (200 °C). Partitioning of solute between ferrite and thin-films of retained austenite was observed on tempering at 673 K (400 °C) for 30 minutes. After tempering at 673 K (400 °C) and 773 K (500 °C) for 30 minutes, cementite was observed in the form of nanometre scale precipitates. Proximity histograms showed that the partitioning of solutes other than silicon from the cementite was slight at 673 K (400 °C) and more obvious at 773 K (500 °C). In both cases, the nanometre scale carbides are greatly depleted in silicon.

  15. Tempering of low-temperature bainite

    DOE PAGES

    Peet, Mathew J.; Babu, Sudarsanam Suresh; Miller, Mike K.; ...

    2017-04-10

    Electron microscopy, X-ray diffraction, and atom probe tomography have been used to identify the changes which occur during the tempering of a carbide-free bainitic steel transformed at 473 K (200 °C). Partitioning of solute between ferrite and thin-films of retained austenite was observed on tempering at 673 K (400 °C) for 30 minutes. After tempering at 673 K (400 °C) and 773 K (500 °C) for 30 minutes, cementite was observed in the form of nanometre scale precipitates. Here, proximity histograms showed that the partitioning of solutes other than silicon from the cementite was slight at 673 K (400 °C)more » and more obvious at 773 K (500 °C). In both cases, the nanometre scale carbides are greatly depleted in silicon.« less

  16. Magnetic resonance imaging of the knee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mink, J.H.; Reicher, M.A.; Crues, J.V.

    1987-01-01

    Introducing a comprehensive, practical guide to the use of magnetic resonance imaging (MRI) in detecting and evaluating knee disorders and planning arthroscopic surgery) This book integrates MRI findings with pertinent anatomy, physiology, and clinical signs to assist radiologists in selecting imaging protocols and interpreting scans. Detailed chapters focus on magnetic resonance imaging of the menisci and ligaments and evaluation of osteonecrosis, osteochondrosis, and osteochondritis. The authors demonstrate the potential of MRI for diagnosing various knee disorders such as arthritis, fractures, popliteal cysts, synovial disease, plicae, popliteal artery aneurysms, tumors, and bone marrow disorders.

  17. Water dependency and water exploitation at global scale as indicators of water security

    NASA Astrophysics Data System (ADS)

    De Roo, A. P. J.; Beck, H.; Burek, P.; Bernard, B.

    2015-12-01

    A water dependency index has been developed indicating the dependency of water consumption from upstream sources of water, sometimes across (multiple) national border. This index is calculated at global scale using the 0.1 global LISFLOOD hydrological modelling system forced by WFDEI meteorological data for the timeframe 1979-2012. The global LISFLOOD model simulates the most important hydrological processes, as well as water abstraction and consumption from various sectors, and flood routing, at daily scale, with sub-timesteps for routing and subgrid parameterization related to elevation and landuse. The model contains also options for water allocation, to allow preferences of water use for particular sectors in water scarce periods. LISFLOOD is also used for the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), continental scale climate change impact studies on floods and droughts. The water dependency indicator is calculated on a monthly basis, and various annual and multiannual indicators are derived from it. In this study, the indicator will be compared against water security areas known from other studies. Other indicators calculated are the Water Exploitation Index (WEI+), which is a commonly use water security indicator in Europe, and freshwater resources per capita indicators at regional, national and river basin scale. Several climate scnearios are run to indicate future trends in water security.

  18. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells.

    PubMed

    Rea, Ilaria; Martucci, Nicola M; De Stefano, Luca; Ruggiero, Immacolata; Terracciano, Monica; Dardano, Principia; Migliaccio, Nunzia; Arcari, Paolo; Taté, Rosarita; Rendina, Ivo; Lamberti, Annalisa

    2014-12-01

    Diatomite is a natural porous biomaterial of sedimentary origin, formed by fragments of diatom siliceous skeletons, called "frustules". Due to large availability in many areas of the world, chemical stability, and non-toxicity, these fossil structures have been widespread used in lot of industrial applications, such as food production, water extracting agent, production of cosmetics and pharmaceutics. However, diatomite is surprisingly still rarely used in biomedical applications. In this work, we exploit diatomite nanoparticles for small interfering ribonucleic acid (siRNA) transport inside human epidermoid cancer cells (H1355). Morphology and composition of diatomite microfrustules (average size lower than 40μm) are investigated by scanning electron microscopy equipped by energy dispersive X-ray spectroscopy, Fourier transform infrared analysis, and photoluminescence measurements. Nanometric porous particles (average size lower than 450nm) are obtained by mechanical crushing, sonication, and filtering of micrometric frustules. siRNA bioconjugation is performed on both micrometric and nanometric fragments by silanization. In-vitro experiments show very low toxicity on exposure of the cells to diatomite nanoparticle concentration up to 300μg/ml for 72h. Confocal microscopy imaging performed on cancer cells incubated with siRNA conjugated nanoparticles demonstrates a cytoplasmatic localization of vectors. Gene silencing by delivered siRNA is also demonstrated. Our studies endorse diatomite nanoparticles as non-toxic nanocarriers for siRNA transport in cancer cells. siRNA is a powerful molecular tool for cancer treatment but its delivery is inefficient due to the difficulty to penetrate the cell membrane. siRNA-diatomite nanoconjugate may be well suited for delivery of therapeutic to cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Water resources data for Kansas, water year 1973; Part 2, Water quality records

    USGS Publications Warehouse

    Diaz, A.M.; Albert, C.D.

    1974-01-01

    Water-resources data for the 1973 water year for Kansas include records of data for the chemical and physical characteristics of surface and ground water. Data on the quality of surface water (chemical, microbiological, temperature, and sediment) were collected from designated sampling sites at predetermined intervals such as once daily, weekly, monthly, or less frequently, and at some sites data were recorded on punched paper tape at 60-minute intervals. Records are given for 70 sampling stations of which 7 are partial-record stations, and for 51 miscellaneous sites. Miscellaneous temperatures of streamflow are given for 77 gaging stations, and records of chemical analyses are given for 224 ground-water sites. Locations of surface water-quality stations are shown in Figure 1, page 2. Records for pertinent water-quality stations in bordering States are also included. The records were collected by the Water Resources Division of the U.S. Geological Survey under the direction of C. W. Lane, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Kansas. Kansas District personnel who contributed significantly to the collection and preparation of data included in this report were: B. L. Day, L. R. Shelton, M. L. Penny, L. R. Stringer, and D. J. Dark (Kansas State Department of Health).The Geological Survey has published records of chemical quality, suspended sediment, and water temperatures since 1941 in annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Beginning with the 1964 water year, water-quality records also have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. These records will be published later in Geological

  20. Water Resources Data, Florida, Water Year 2003 Volume 2A: South Florida Surface Water

    USGS Publications Warehouse

    Price, C.; Woolverton, J.; Overton, K.

    2004-01-01

    Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

  1. Water Resources Data, Florida, Water Year 2003 Volume 2B: South Florida Ground Water

    USGS Publications Warehouse

    Prinos, S.; Irvin, R.; Byrne, M.

    2004-01-01

    Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

  2. National water-information clearinghouse activities; ground-water perspective

    USGS Publications Warehouse

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  3. Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces

    NASA Astrophysics Data System (ADS)

    Munoz, Raul C.; Arenas, Claudio

    2017-03-01

    1977; (iii) The current in the sample should be proportional to TN, the probability that an electron traverses N consecutive (disordered) grains found along a mean free path; MS assumed that TN = 1. We review unpublished details of a quantum transport theory based upon a model of diffusive transport and Kubo's linear response formalism recently published [Arenas et al., Appl. Surf. Sci. 329, 184 (2015)], which permits estimating the increase in resistivity of a metallic specimen (over the bulk resistivity) under the combined effects of electron scattering by phonons, impurities, disordered grain boundaries, and rough surfaces limiting the sample. We evaluate the predicting power of both the MS theory and of the new quantum model on samples where the temperature dependence of the resistivity has been measured between 4 K and 300 K, and where surface roughness and grain size distribution has been measured on each sample via independent experiments. We find that the quantum theory does exhibit a predicting power, whereas the predicting power of the MS model as well as the significance and reliability of its fitting parameters seems questionable. We explore the power of the new theory by comparing, for the first time, the resistivity predicted and measured on nanometric Cu wires of (approximately) rectangular cross section employed in building integrated circuits, based upon a quantum description of electron motion.

  4. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability

    PubMed Central

    Hoekstra, Arjen Y.; Mekonnen, Mesfin M.; Chapagain, Ashok K.; Mathews, Ruth E.; Richter, Brian D.

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996–2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity – as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins – can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption. PMID:22393438

  5. Water microbiology. Bacterial pathogens and water.

    PubMed

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  6. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla

    2008-02-28

    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0more » of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of

  7. Towards MRI microarrays.

    PubMed

    Hall, Andrew; Mundell, Victoria J; Blanco-Andujar, Cristina; Bencsik, Martin; McHale, Glen; Newton, Michael I; Cave, Gareth W V

    2010-04-14

    Superparamagnetic iron oxide nanometre scale particles have been utilised as contrast agents to image staked target binding oligonucleotide arrays using MRI to correlate the signal intensity and T(2)* relaxation times in different NMR fluids.

  8. Safety of Bottled Water Beverages Including Flavored Water and Nutrient-Added Water Beverages

    MedlinePlus

    ... verifies that the plant's product water and operational water supply are obtained from an approved source; inspects washing and sanitizing procedures; inspects bottling operations; and determines whether ... water and product water for contaminants. Americans like bottled ...

  9. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  10. Water repellents and water-repellent preservatives for wood

    Treesearch

    R. Sam Williams; William C. Feist

    1999-01-01

    Water repellents and water-repellent preservatives increase the durability of wood by enabling the wood to repel liquid water. This report focuses on water-repellent finishes for wood exposed outdoors above ground. The report includes a discussion of the effects of outdoor exposure on wood, the characteristics of water repellent and water-repellent preservative...

  11. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOEpatents

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  12. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  13. Water Resources Data, West Virginia, Water Year 2003

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2004-01-01

    Water-resources data for the 2003 water year for West Virginia consists of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 70 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 16 crest-stage partial-record stations; stage records for 6 detention reservoirs; water-quality records for 2 stations; and water-level records for 8 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water data were collected at various sites, not involved in the systematic data-collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  14. Water resources data-West Virginia, water year 2004

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2005-01-01

    Water-resources data for the 2004 water year for West Virginia consist of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 17 crest-stage partial-record stations; stage records for 14 detention reservoirs; water-quality records for 2 stations; and water-level records for 10 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water-quality data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  15. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  16. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  17. Water Resources Data for California, Water Year 1987. Volume 5. Ground-water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 786 observation wells and water-quality data for 168 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  18. Water Resources Data for California, Water Year 1986. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Keeter, G.L.; Grillo, D.A.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 765 observation wells and water-quality data for 174 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  19. Training Rats Using Water Rewards Without Water Restriction

    PubMed Central

    Reinagel, Pamela

    2018-01-01

    High-throughput behavioral training of rodents has been a transformative development for systems neuroscience. Water or food restriction is typically required to motivate task engagement. We hypothesized a gap between physiological water need and hedonic water satiety that could be leveraged to train rats for water rewards without water restriction. We show that when Citric Acid (CA) is added to water, female rats drink less, yet consume enough to maintain long term health. With 24 h/day access to a visual task with water rewards, rats with ad lib CA water performed 84% ± 18% as many trials as in the same task under water restriction. In 2-h daily sessions, rats with ad lib CA water performed 68% ± 13% as many trials as under water restriction. Using reward sizes <25 μl, rats with ad lib CA performed 804 ± 285 trials/day in live-in sessions or 364 ± 82 trials/day in limited duration daily sessions. The safety of CA water amendment was previously shown for male rats, and the gap between water need and satiety was similar to what we observed in females. Therefore, it is likely that this method will generalize to male rats, though this remains to be shown. We conclude that at least in some contexts rats can be trained using water rewards without water restriction, benefitting both animal welfare and scientific productivity. PMID:29773982

  20. The rain-watered lawn: Informing effective lawn watering behavior.

    PubMed

    Survis, Felicia D; Root, Tara L

    2017-09-01

    Water restrictions are a common municipal water conservation strategy to manage outdoor water demand, which generally represents more than 50% of total urban-suburban water use. Although water restrictions are designed to limit the frequency of lawn watering, they do not always result in actual water savings. The project described here tested a weather-based add-on water conservation strategy in a South Florida suburban community to determine if it promoted more effective lawn watering behavior than mandatory water restrictions alone. The "rain-watered lawn" pilot program was designed to inform people of recent rainfall and how that contributed to naturally watering their lawns and offset the need to irrigate as often, or in some cases, at all. The goal of the study was to determine if homeowners would water more conservatively than with water restrictions alone if they were also informed of recent rainfall totals. The results show that households in neighborhoods where the add-on rain watered lawn strategy was implemented watered up to 61% less frequently than the control neighborhoods with water restrictions alone. This study demonstrates that weather-based information strategies can be effective for conservation and suggests that a program that focuses on coupling lawn watering behavior with actual climate variables such as rainfall can yield significant water savings. This study holds significance for municipal areas with water restrictions and provides a model to help improve outdoor water conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Water tight.

    PubMed

    Postel, S

    1993-01-01

    Many cities worldwide have gone beyond the limits of their water supply. Growing urban populations increase their demand for water, thereby straining local water supplies and requiring engineers to seek our even more distant water sources. It is costly to build and maintain reservoirs, canals, pumping stations, pipes, sewers, and treatment plants. Water supply activities require much energy and chemicals, thereby contributing to environmental pollution. Many cities are beginning to manage the water supply rather than trying to keep up with demand. Pumping ground water for Mexico City's 18 million residents (500,000 people added/year) surpasses natural replenishment by 50% to 80%, resulting in falling water tables and compressed aquifers. Mexico City now ambitiously promotes replacement of conventional toilets with 1.6 gallon toilets (by late 1991, this had saved almost 7.4 billion gallons of water/year). Continued high rural-urban migration and high birth rates could negate any savings, however. Waterloo, Ontario, has also used conservation efforts to manage water demand. These efforts include retrofit kits to make plumbing fixtures more efficient, efficiency standards for plumbing fixtures, and reduction of water use outdoors. San Jose, California, has distributed water savings devices to about 220,000 households with a 90% cooperation rate. Boston, Massachusetts, not only promoted water saving devices but also repaired leaks and had an information campaign. Increasing water rates to actually reflect true costs also leads to water conservation, but not all cities in developing countries use water meters. All households in Edmonton, Alberta, are metered and its water use is 1/2 of that of Calgary, where only some households are metered. Tucson, Arizona, reduced per capita water use 16% by raising water rates and curbing water use on hot days. Bogor, Indonesia, reduced water use almost 30% by increasing water rates. In the US, more and more states are mandating use

  2. Water Resources Data for California, Water Year 1988. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water-quality in wells. Volume 5 contains water levels for 980 observation wells and water-quality data for 239 observation monitoring wells. These data represent that part of the National water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  3. Selected Works in Water Supply, Water Conservation and Water Quality Planning.

    DTIC Science & Technology

    1981-05-01

    of change (1970- 1980 ). The Institute’s work reflects the fact that the Corps of Engineers is not a novice in the business of providing water supply for...Urban Water Supply of the Task Force was chaired by the Secretary of the Army. The Subcommittee produced a report on 6 June 1980 evaluating urban water...persuant to the President’s Water Pvizcy message to Congress in 1978. The two other reports were published in 1980 and are discussed below. IWR staff

  4. Water resources data, Kentucky. Water year 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at amore » regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.« less

  5. Global consumptive water use for crop production: The importance of green water and virtual water

    NASA Astrophysics Data System (ADS)

    Liu, Junguo; Zehnder, Alexander J. B.; Yang, Hong

    2009-05-01

    Over the last 4 decades the use of blue water has received increasing attention in water resources research, but little attention has been paid to the quantification of green water in food production and food trade. In this paper, we estimate both the blue and green water components of consumptive water use (CWU) for a wide range of agricultural crops, including seven cereal crops, cassava, cotton, groundnuts, potatoes, pulses, rapeseed, soybeans, sugar beets, sugarcane, and sunflower, with a spatial resolution of 30 arc min on the land surface. The results show that the global CWU of these crops amounted to 3823 km3 a-1 for the period 1998-2002. More than 80% of this amount was from green water. Around 94% of the world crop-related virtual water trade has its origin in green water, which generally constitutes a low-opportunity cost of green water as opposed to blue water. High levels of net virtual water import (NVWI) generally occur in countries with low CWU on a per capita basis, where a virtual water strategy is an attractive water management option to compensate for domestic water shortage for food production. NVWI is constrained by income; low-income countries generally have a low level of NVWI. Strengthening low-income countries economically will allow them to develop a virtual water strategy to mitigate malnutrition of their people.

  6. Water Microbiology. Bacterial Pathogens and Water

    PubMed Central

    Cabral, João P. S.

    2010-01-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters. PMID:21139855

  7. Natural mineral waters, curative-medical waters and their protection

    NASA Astrophysics Data System (ADS)

    Fricke, M.

    1993-10-01

    In Europe different types of water are marketed, each strictly defined by EC Directive 80/777 (Natural Mineral Water, Spring and Table Water) or 80/778 (Drinking Water). In Germany, an additional type of water is common in the market: curative/medical water. Product quality and safety, registration as medicine, and pharmaceutical control are defined by the German Federal Medicine Act. A medical water is treated as any other medicine and may be sold only in pharmacies. The use of any water in Germany is controlled and strictly regulated by the Federal Water Act (Fricke 1981). The following requirements are set by the act: (1) No water use without a permit, which is limited in time and quantity. (2) No single or juristic person may own water. (3) Water resources of public interest and their recharge areas are to be protected by the definition of water protection zones. (Natural mineral water is not of public interest and therefore is not required to be protected by the definition of water protection zones, although it represents a market value of more than US2 billion. Medical water is of public interest). The definition of water protection zones impacts private property rights and has to be handled carefully. In order to protect water resources, sometimes the economic basis of a traditional industrial and/or agricultural infrastructure is destroyed. The concerns and needs all citizens, including industry, must be considered in analyzing the adequacy of water protection zones.

  8. The dynamics and stability of lubricating oil films during droplet transport by electrowetting in microfluidic devices.

    PubMed

    Kleinert, Jairus; Srinivasan, Vijay; Rival, Arnaud; Delattre, Cyril; Velev, Orlin D; Pamula, Vamsee K

    2015-05-01

    The operation of digital microfluidic devices with water droplets manipulated by electrowetting is critically dependent on the static and dynamic stability and lubrication properties of the oil films that separate the droplets from the solid surfaces. The factors determining the stability of the films and preventing surface fouling in such systems are not yet thoroughly understood and were experimentally investigated in this study. The experiments were performed using a standard digital microfluidic cartridge in which water droplets enclosed in a thin, oil-filled gap were transported over an array of electrodes. Stable, continuous oil films separated the droplets from the surfaces when the droplets were stationary. During droplet transport, capillary waves formed in the films on the electrode surfaces as the oil menisci receded. The waves evolved into dome-shaped oil lenses. Droplet deformation and oil displacement caused the films at the surface opposite the electrode array to transform into dimples of oil trapped over the centers of the droplets. Lower actuation voltages were associated with slower film thinning and formation of fewer, but larger, oil lenses. Lower ac frequencies induced oscillations in the droplets that caused the films to rupture. Films were also destabilized by addition of surfactants to the oil or droplet phases. Such a comprehensive understanding of the oil film behavior will enable more robust electrowetting-actuated lab-on-a-chip devices through prevention of loss of species from droplets and contamination of surfaces at points where films may break.

  9. The dynamics and stability of lubricating oil films during droplet transport by electrowetting in microfluidic devices

    PubMed Central

    Kleinert, Jairus; Srinivasan, Vijay; Rival, Arnaud; Delattre, Cyril; Velev, Orlin D.; Pamula, Vamsee K.

    2015-01-01

    The operation of digital microfluidic devices with water droplets manipulated by electrowetting is critically dependent on the static and dynamic stability and lubrication properties of the oil films that separate the droplets from the solid surfaces. The factors determining the stability of the films and preventing surface fouling in such systems are not yet thoroughly understood and were experimentally investigated in this study. The experiments were performed using a standard digital microfluidic cartridge in which water droplets enclosed in a thin, oil-filled gap were transported over an array of electrodes. Stable, continuous oil films separated the droplets from the surfaces when the droplets were stationary. During droplet transport, capillary waves formed in the films on the electrode surfaces as the oil menisci receded. The waves evolved into dome-shaped oil lenses. Droplet deformation and oil displacement caused the films at the surface opposite the electrode array to transform into dimples of oil trapped over the centers of the droplets. Lower actuation voltages were associated with slower film thinning and formation of fewer, but larger, oil lenses. Lower ac frequencies induced oscillations in the droplets that caused the films to rupture. Films were also destabilized by addition of surfactants to the oil or droplet phases. Such a comprehensive understanding of the oil film behavior will enable more robust electrowetting-actuated lab-on-a-chip devices through prevention of loss of species from droplets and contamination of surfaces at points where films may break. PMID:26045729

  10. Water Resources Data, New Jersey, Water Year 2002, Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Spehar, A.B.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.; Holzer, G.K.

    2003-01-01

    Water-resources data for the 2002 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 93 gaging stations; tide summaries at 31 gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 104 crest-stage partial-record stations and stage-only at 31 tidal crest-stage gages. Locations of these sites are shown in figures 8-11. Additional water data were collected at various sites that are not part of the systematic data-collection program. Discharge measurements were made at 201 low-flow partial-record stations and 121 miscellaneous sites.

  11. Electron Transport at the Microbe–Mineral Interface: A Synthesis of Current Research Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, David; Fredrickson, Jim K.; Zachara, John M.

    2012-12-01

    Many bacterial and archaeal species can couple growth to the respiratory reduction or oxidation of insoluble mineral oxides of transition metals. These solid substrates are abundant electron sinks and sources for life on Earth, but, since they are insoluble in water, they cannot enter the bacterial cells. So, to exploit these electron sinks and sources, specific respiratory electron-transfer mechanisms must overcome the physical limitations associated with electron transfer between a microbe and extracellular metal oxides. Recent microbiological, geochemical, biochemical, spectroscopic and structural work is beginning to shed light on the molecular mechanism and impacts of electron transfer at themicrobe–mineral interfacemore » from a nanometre to kilometre scale. The research field is attracting attention in applied quarters from those with interests in nanowires, microbial fuel cells, bioremediation and microbial cell factories.« less

  12. Monitoring the formation of inorganic fullerene-like MoS2 nanostructures by laser ablation in liquid environments

    NASA Astrophysics Data System (ADS)

    Compagnini, Giuseppe; Sinatra, Marco G.; Messina, Gabriele C.; Patanè, Giacomo; Scalese, Silvia; Puglisi, Orazio

    2012-05-01

    Laser ablation of solid targets in liquid media is emerging as a simple, clean and reproducible way to generate a large number of intriguing nanometric structures with peculiar properties. In this work we present some results on the formation of MoS2 fullerene-like nanoparticles (10-15 nm diameter) obtained by the ablation of crystalline targets in water. Such a top-down approach can be considered greener than standard sulphidization reactions and represents an intriguing single step procedure. The generation of the MoS2 nanostructures is in competition with that of oxide clusters and strongly depends on the oxidative environment created by the plasma plume. The size, shape and crystalline phase of the obtained nanoparticles are studied by microscopy while X-Ray Photoelectron Spectroscopy is used to investigate the chemical state of produced nanostructures and to propose mechanisms for their growth.

  13. Water Resources Data, Florida, Water Year 2003, Volume 1A: Northeast Florida Surface Water

    USGS Publications Warehouse

    ,

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  14. Water Resources Data, Florida, Water Year 2003, Volume 1B: Northeast Florida Ground Water

    USGS Publications Warehouse

    George, H.G.; Nazarian, A.P.; Dickerson, S.M.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  15. Water Resources Data, Georgia, 2000, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2000

    USGS Publications Warehouse

    McCallum, Brian E.; Hickey, Andrew C.

    2000-01-01

    Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  16. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  17. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  18. Integrated Plasmon-Optic Circuits for Nanometric Sources and Sensors

    DTIC Science & Technology

    2014-10-22

    imaging ...SPP  amplification  and  enhanced-­‐sensitivity  two-­‐photon   imaging  applications     Figure  3:    (a)  schematic  of...in  bio-­‐ imaging  applications     5   3. Accomplishments/New  Findings:   a. Fabricated  Al-­‐Al2O3-­‐Ag  and

  19. Ultracompact vibrometry measurement with nanometric accuracy using optical feedback

    NASA Astrophysics Data System (ADS)

    Jha, Ajit; Azcona, Francisco; Royo, Santiago

    2015-05-01

    The nonlinear dynamics of a semiconductor laser with optical feedback (OF) combined with direct current modulation of the laser is demonstrated to suffice for the measurement of subwavelength changes in the position of a vibrating object. So far, classical Optical Feedback Interferometry (OFI) has been used to measure the vibration of an object given its amplitude is greater than half the wavelength of emission, and the resolution of the measurement limited to some tenths of the wavelength after processing. We present here a methodology which takes advantage of the combination of two different phenomena: continuous wave frequency modulation (CWFM), induced by direct modulation of the laser, and non-linear dynamics inside of the laser cavity subject to optical self-injection (OSI). The methodology we propose shows how to detect vibration amplitudes smaller than half the emission wavelength with resolutions way beyond λ/2, extending the typical performance of OFI setups to very small amplitudes. A detailed mathematical model and simulation results are presented to support the proposed methodology, showing its ability to perform such displacement measurements of frequencies in the MHz range, depending upon the modulation frequency. Such approach makes the technique a suitable candidate, among other applications, to economic laser-based ultrasound measurements, with applications in nondestructive testing of materials (thickness, flaws, density, stresses), among others. The results of simulations of the proposed approach confirm the merit of the figures as detection of amplitudes of vibration below λ/2) with resolutions in the nanometer range.

  20. PREFACE: Water at interfaces Water at interfaces

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  1. Branding water

    PubMed Central

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2014-01-01

    Branding is a key strategy widely used in commercial marketing to make products more attractive to consumers. With the exception of bottled water, branding has largely not been adopted in the water context although public acceptance is critical to the implementation of water augmentation projects. Based on responses from 6247 study participants collected between 2009 and 2012, this study shows that (1) different kinds of water – specifically recycled water, desalinated water, tap water and rainwater from personal rainwater tanks – are each perceived very differently by the public, (2) external events out of the control of water managers, such as serious droughts or floods, had a minimal effect on people's perceptions of water, (3) perceptions of water were stable over time, and (4) certain water attributes are anticipated to be more effective to use in public communication campaigns aiming at increasing public acceptance for drinking purposes. The results from this study can be used by a diverse range of water stakeholders to increase public acceptance and adoption of water from alternative sources. PMID:24742528

  2. Branding water.

    PubMed

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2014-06-15

    Branding is a key strategy widely used in commercial marketing to make products more attractive to consumers. With the exception of bottled water, branding has largely not been adopted in the water context although public acceptance is critical to the implementation of water augmentation projects. Based on responses from 6247 study participants collected between 2009 and 2012, this study shows that (1) different kinds of water - specifically recycled water, desalinated water, tap water and rainwater from personal rainwater tanks - are each perceived very differently by the public, (2) external events out of the control of water managers, such as serious droughts or floods, had a minimal effect on people's perceptions of water, (3) perceptions of water were stable over time, and (4) certain water attributes are anticipated to be more effective to use in public communication campaigns aiming at increasing public acceptance for drinking purposes. The results from this study can be used by a diverse range of water stakeholders to increase public acceptance and adoption of water from alternative sources. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Indian water rights settlements and water management innovations: The role of the Arizona Water Settlements Act

    NASA Astrophysics Data System (ADS)

    Bark, Rosalind H.; Jacobs, Katharine L.

    2009-05-01

    In the American southwest, over-allocated water supplies, groundwater depletion, and potential climate change impacts are major water management concerns. It may therefore seem counterintuitive that the resolution of outstanding senior tribal water claims, essentially reallocating finite water supplies to tribes, could support improved water supply reliability for many water users as is the case with the 2004 Arizona Water Settlements Act. The large size of the settlement and its multiple components translate to significant impacts on water policy in Arizona. Key water management solutions incorporated into the settlement and associated legislation have expanded the water manager's "toolbox" and are expected to enhance water supply reliability both within and outside Arizona's active management areas. Many of these new tools are transferable to water management applications in other states.

  4. [Influence of water source switching on water quality in drinking water distribution system].

    PubMed

    Wang, Yang; Niu, Zhang-bin; Zhang, Xiao-jian; Chen, Chao; He, Wen-jie; Han, Hong-da

    2007-10-01

    This study investigates the regularity of the change on the physical and chemical water qualities in the distribution system during the process of water source switching in A city. Due to the water source switching, the water quality is chemical-astable. Because of the differences between the two water sources, pH reduced from 7.54 to 7.18, alkalinity reduced from 188 mg x L(-1) to 117 mg x L(-1), chloride (Cl(-)) reduced from 310 mg x L(-1) to 132 mg x L(-1), conductance reduced from 0.176 S x m(-1) to 0.087 S x m(-1) and the ions of calcium and magnesium reduced to 15 mg x L(-1) and 11 mg x L(-1) respectively. Residual chlorine changed while the increase of the chlorine demand and the water quantity decreasing at night, and the changes of pH, alkalinity and residual chlorine brought the iron increased to 0.4 mg x L(-1) at the tiptop, which was over the standard. The influence of the change of the water parameters on the water chemical-stability in the drinking water distribution system is analyzed, and the controlling countermeasure is advanced: increasing pH, using phosphate and enhancing the quality of the water in distribution system especially the residual chlorine.

  5. Accounting for Water Insecurity in Modeling Domestic Water Demand

    NASA Astrophysics Data System (ADS)

    Galaitsis, S. E.; Huber-lee, A. T.; Vogel, R. M.; Naumova, E.

    2013-12-01

    Water demand management uses price elasticity estimates to predict consumer demand in relation to water pricing changes, but studies have shown that many additional factors effect water consumption. Development scholars document the need for water security, however, much of the water security literature focuses on broad policies which can influence water demand. Previous domestic water demand studies have not considered how water security can affect a population's consumption behavior. This study is the first to model the influence of water insecurity on water demand. A subjective indicator scale measuring water insecurity among consumers in the Palestinian West Bank is developed and included as a variable to explore how perceptions of control, or lack thereof, impact consumption behavior and resulting estimates of price elasticity. A multivariate regression model demonstrates the significance of a water insecurity variable for data sets encompassing disparate water access. When accounting for insecurity, the R-squaed value improves and the marginal price a household is willing to pay becomes a significant predictor for the household quantity consumption. The model denotes that, with all other variables held equal, a household will buy more water when the users are more water insecure. Though the reasons behind this trend require further study, the findings suggest broad policy implications by demonstrating that water distribution practices in scarcity conditions can promote consumer welfare and efficient water use.

  6. Water resources data for Texas, water year 1993. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1992-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1993-11-01

    Water-resources data for the 1993 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 771 observation wells and water-quality data for 226 monitoring wells.

  7. Water resources data for Texas, water year 1996. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1995-30 September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1996-11-22

    Water-resources data for the 1996 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 845 observation wells and 187 water-quality data for monitoring wells.

  8. Water resources data for Texas, water year 1994. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1993-30 September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1994-12-12

    Water-resources data for the 1994 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 698 observation wells and water-quality data for 97 monitoring wells.

  9. Water resources data for Texas, water year 1997. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1996-30 September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1997-12-03

    Water-resources data for the 1997 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 790 observation wells and 245 water-quality data for monitoring wells.

  10. Water resources data for Texas, water year 1995. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1994-30 September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1995-12-18

    Water-resources data for the 1995 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 919 observation wells and 226 water-quality data for monitoring wells.

  11. The role of yttrium and titanium during the development of ODS ferritic steels obtained through the STARS route: TEM and XAS study

    NASA Astrophysics Data System (ADS)

    Ordás, Nerea; Gil, Emma; Cintins, Arturs; de Castro, Vanessa; Leguey, Teresa; Iturriza, Iñigo; Purans, Juris; Anspoks, Andris; Kuzmin, Alexei; Kalinko, Alexandr

    2018-06-01

    Oxide Dispersion Strengthened Ferritic Steels (ODS FS) are candidate materials for structural components in future fusion reactors. Their high strength and creep resistance at elevated temperatures and their good resistance to neutron radiation damage is obtained through extremely fine microstructures containing a high density of nanometric precipitates, generally yttrium and titanium oxides. This work shows transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) characterization of Fe-14Cr-2W-0.3Ti-0.24Y ODS FS obtained by the STARS route (Surface Treatment of gas Atomized powder followed by Reactive Synthesis), an alternative method to obtain ODS alloys that avoids the mechanical alloying to introduce Y2O3 powder particles. In this route, FS powders already containing Ti and Y, precursors of the nanometric oxides, are obtained by gas atomization. Then, a metastable Cr- and Fe-rich oxide layer is formed on the surface of the powder particles. During consolidation by HIP at elevated temperatures, and post-HIP heat treatments above the HIP temperature, this oxide layer at Prior Particle Boundaries (PPBs) dissociates, the oxygen diffuses, and Y-Ti-O nano-oxides precipitate in the ferritic matrix. TEM characterization combined with XAFS and XANES analyses have proven to be suitable tools to follow the evolution of the nature of the different oxides present in the material during the whole processing route and select appropriate HIP and post-HIP parameters to promote profuse and fine Y-Ti-O nanometric precipitates.

  12. Photovoltage field-effect transistors

    NASA Astrophysics Data System (ADS)

    Adinolfi, Valerio; Sargent, Edward H.

    2017-02-01

    The detection of infrared radiation enables night vision, health monitoring, optical communications and three-dimensional object recognition. Silicon is widely used in modern electronics, but its electronic bandgap prevents the detection of light at wavelengths longer than about 1,100 nanometres. It is therefore of interest to extend the performance of silicon photodetectors into the infrared spectrum, beyond the bandgap of silicon. Here we demonstrate a photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber. The photovoltage generated at the interface between the silicon and the quantum dot, combined with the high transconductance provided by the silicon device, leads to high gain (more than 104 electrons per photon at 1,500 nanometres), fast time response (less than 10 microseconds) and a widely tunable spectral response. Our photovoltage field-effect transistor has a responsivity that is five orders of magnitude higher at a wavelength of 1,500 nanometres than that of previous infrared-sensitized silicon detectors. The sensitization is achieved using a room-temperature solution process and does not rely on traditional high-temperature epitaxial growth of semiconductors (such as is used for germanium and III-V semiconductors). Our results show that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.

  13. Impact of RO-desalted water on distribution water qualities.

    PubMed

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  14. Clean Water State Revolving Fund (CWSRF): Water Conservation

    EPA Pesticide Factsheets

    The CWSRF can provide financial assistance for water conservation projects that reduce the demand for POTW capacity through reduced water consumption (i.e., water efficiency), as well as water reuse and precipitation harvesting.

  15. Inferring foliar water uptake using stable isotopes of water.

    PubMed

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  16. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost.

  17. DISINFECTION OF WATER: DRINKING WATER, RECREATIONAL WATER, AND WASTEWATER

    EPA Science Inventory

    This chapter describes and categorizes the methodology used for disinfection of drinking water, recreational water and wastewater including wastewater sludges. It largely is a literature summary and references articles covering the years of 1939 through 1999, with a few reference...

  18. Water resources data West Virginia water wear 2001

    USGS Publications Warehouse

    Ward, S.M.; Taylor, B.C.; Crosby, G.R.

    2002-01-01

    Water-resources data for the 2001 water year for West Virginia consist of records of discharge and water quality of streams and water levels of observation wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 7 streamflow-gaging stations; annual maximum discharge at 18 crest-stage partial-record stations; water-quality records for 4 stations; and water-level records for 10 observation wells. Locations of these sites are shown on figures 4 and 5. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  19. Utah water use data: Public water supplies, 1979

    USGS Publications Warehouse

    Hooper, David; Schwarting, Richard

    1981-01-01

    This report presents data for public water suppliers in Utah during 1979. A public water supply system supplies water for human consumption and other domestic uses. It can be publicly or privately owned and includes systems supplying water to cities, subdivisions, federal installations, summer homes, and camping areas. The data were collected through questionnaires mailed to the various public water suppliers in the state. The public suppliers and their data listed in this report are not complete but will be expanded as more water utility personnel respond to the questionnaire. Through telephone and personal visits, attempts were made to verify those data which seemed inconsistent with water data collected in other areas of the state. While the degree of confidence in the accuracy of the data is believed to be good, some caution should be exercised in its interpretation. In most cases, the information submitted is only as good as the water measuring devices or personal estimations of the public water supply personnel.

  20. Water resources data for Oregon, water year 2004

    USGS Publications Warehouse

    Herrett, Thomas A.; Hess, Glenn W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine

    2005-01-01

    The annual Oregon water data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, Tribal, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report contains water year 2004 data for both surface and ground water, including discharge records for 209 streamflow-gaging stations, 42 partial-record or miscellaneous streamflow stations, and 9 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 15 lakes and reservoirs; water-level records from 12 long-term observation wells; and water-quality records collected at 133 streamflow-gaging stations and 1 atmospheric deposition station.

  1. Water footprint as a tool for integrated water resources management

    NASA Astrophysics Data System (ADS)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  2. Non-interferometric quantitative phase imaging of yeast cells

    NASA Astrophysics Data System (ADS)

    Poola, Praveen K.; Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Real-time imaging of live cells is quite difficult without the addition of external contrast agents. Various methods for quantitative phase imaging of living cells have been proposed like digital holographic microscopy and diffraction phase microscopy. In this paper, we report theoretical and experimental results of quantitative phase imaging of live yeast cells with nanometric precision using transport of intensity equations (TIE). We demonstrate nanometric depth sensitivity in imaging live yeast cells using this technique. This technique being noninterferometric, does not need any coherent light sources and images can be captured through a regular bright-field microscope. This real-time imaging technique would deliver the depth or 3-D volume information of cells and is highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any preprocessing of samples.

  3. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.

    PubMed

    Rodrigo, Daniel; Limaj, Odeta; Janner, Davide; Etezadi, Dordaneh; García de Abajo, F Javier; Pruneri, Valerio; Altug, Hatice

    2015-07-10

    Infrared spectroscopy is the technique of choice for chemical identification of biomolecules through their vibrational fingerprints. However, infrared light interacts poorly with nanometric-size molecules. We exploit the unique electro-optical properties of graphene to demonstrate a high-sensitivity tunable plasmonic biosensor for chemically specific label-free detection of protein monolayers. The plasmon resonance of nanostructured graphene is dynamically tuned to selectively probe the protein at different frequencies and extract its complex refractive index. Additionally, the extreme spatial light confinement in graphene—up to two orders of magnitude higher than in metals—produces an unprecedentedly high overlap with nanometric biomolecules, enabling superior sensitivity in the detection of their refractive index and vibrational fingerprints. The combination of tunable spectral selectivity and enhanced sensitivity of graphene opens exciting prospects for biosensing. Copyright © 2015, American Association for the Advancement of Science.

  4. Nanostructural hierarchy increases the strength of aluminium alloys.

    PubMed

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-09-07

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

  5. Macroscopic self-reorientation of interacting two-dimensional crystals

    PubMed Central

    Woods, C. R.; Withers, F.; Zhu, M. J.; Cao, Y.; Yu, G.; Kozikov, A.; Ben Shalom, M.; Morozov, S. V.; van Wijk, M. M.; Fasolino, A.; Katsnelson, M. I.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; Mishchenko, A.; Novoselov, K. S.

    2016-01-01

    Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures. PMID:26960435

  6. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  7. Water rights in areas of ground-water mining

    USGS Publications Warehouse

    Thomas, Harold E.

    1955-01-01

    Ground-water mining, the progressive depletion of storage in a ground-water reservoir, has been going on for several years in some areas, chiefly in the Southwestern States. In some of these States a water right is based on ownership of land overlying the ground-water reservoir and does not depend upon putting the water to use; in some States a right is based upon priority of appropriation and use and may be forfeited if the water is allowed to go unused for a specified period, but ownership of land is not essential; and in several States both these doctrines or modifications thereof are accepted, and each applies to certain classes of water or to certain conditions of development.Experience to date indicates that a cure for ground-water mining does not necessarily depend upon the water-rights doctrine that is accepted in the area. Indeed, some recent court decisions have incorporated both the areal factor of the landownership doctrines and the time factor of the appropriation doctrine. Overdraft can be eliminated if water is available from another source to replace some of the water taken from the affected aquifer. In areas where no alternate source of supply is available at reasonable cost, public opinion so far appears to favor treating ground water as a nonrenewable resource comparable to petroleum and metals, and mining it until the supply is exhausted, rather than curbing the withdrawals at an earlier date.

  8. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  9. Water Resources Data, New Jersey, Water Year 2003; Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.

    2004-01-01

    Water-resources data for the 2003 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 100 gaging stations; tide summaries at 29 tidal gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 106 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 142 low-flow partial- record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 143 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including streamflow, precipitation, reservoir conditions, and air temperatures.

  10. Water hyacinths for removal of phenols from polluted waters

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1975-01-01

    Removal of phenol by water hyacinths (Eichhornia crassipes (Mart.) Solms) in static water was investigated. 2.75 g dry weight of this aquatic plant demonstrated the ability to absorb 100 mg of phenol per plant per 72 hours from distilled water, river water, and bayou water. One hectare of water hyacinth plants is shown to be potentially capable of removing 160 kg of phenol per 72 hours from waters polluted with this chemical.

  11. Source-Water Protection and Water-Quality Investigations in the Cambridge, Massachusetts, Drinking-Water Supply System

    USGS Publications Warehouse

    Waldron, Marcus C.; Norton, Chip; MacDonald, Timothy W.D.

    1998-01-01

    Introduction The Cambridge Water Department (CWD) supplies about 15 million gallons of water each day to more than 95,000 customers in the City of Cambridge, Massachusetts. Most of this water is obtained from a system of reservoirs located in Cambridge and in parts of five other suburban-Boston communities. The drainage basin that contributes water to these reservoirs includes several potential sources of drinking-water contaminants, including major highways, secondary roads, areas of commercial and industrial development, and suburban residential tracts. The CWD is implementing a comprehensive Source-Water Protection Plan to ensure that the highest quality water is delivered to the treatment plant. A key element of this plan is a program that combines systematic monitoring of the drainage basin with detailed investigations of the effects of nonpoint-source contaminants, such as highway-deicing chemicals, nutrients, oxygen-demanding organic compounds, bacteria, and trace metals arising from stormwater runoff. The U.S. Geological Survey (USGS) is working with the CWD and the Massachusetts Highway Department (MassHighway) to develop a better understanding of the sources, transport, and fate of many of these contaminants. This Fact Sheet describes source-water protection and water-quality investigations currently underway in the Cambridge drinking-water supply system. The investigations are designed to complement a national effort by the USGS to provide water suppliers and regulatory agencies with information on the vulnerability of water supplies and the movement and fate of source-water contaminants.

  12. OVERVIEW OF USEPA'S WATER SUPPLY & WATER RESOURCES DIVISION PROGRAM

    EPA Science Inventory

    The United States Environmental Protection Agency's (USEPA) Water Supply and Water Resources Division (WSWRD) conducts a wide range of research on regulated and unregulated contaminants in drinking water, water distribution systems, homeland security, source water protection, and...

  13. Water Underground

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.

    2014-12-01

    The world's largest accessible source of freshwater is hidden underground. However it remains difficult to estimate its volume, and we still cannot answer the question; will there be enough for everybody? In many places of the world groundwater abstraction is unsustainable: more water is used than refilled, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions in the world unsustainable water use will increase in the coming decades, due to rising human water use under a changing climate. It would not take long before water shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to prevent such large water conflicts. The world's largest aquifers are mapped, but these maps do not mention how much water these aquifers contain or how fast water levels decline. If we can add thickness and geohydrological information to these aquifer maps, we can estimate how much water is stored and its flow direction. Also, data on groundwater age and how fast the aquifer is refilled is needed to predict the impact of human water use and climate change on the groundwater resource. Ultimately, if we can provide this knowledge water conflicts will focus more on a fair distribution instead of absolute amounts of water.

  14. U.S. Geological Survey Catskill/Delaware Water-Quality Network: Water-Quality Report Water Year 2006

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2010-01-01

    The U.S. Geological Survey operates a 60-station streamgaging network in the New York City Catskill/Delaware Water Supply System. Water-quality samples were collected at 13 of the stations in the Catskill/Delaware streamgaging network to provide resource managers with water-quality and water-quantity data from the water-supply system that supplies about 85 percent of the water needed by the more than 9 million residents of New York City. This report summarizes water-quality data collected at those 13 stations plus one additional station operated as a part of the U.S. Environmental Protection Agency's Regional Long-Term Monitoring Network for the 2006 water year (October 1, 2005 to September 30, 2006). An average of 62 water-quality samples were collected at each station during the 2006 water year, including grab samples collected every other week and storm samples collected with automated samplers. On average, 8 storms were sampled at each station during the 2006 water year. The 2006 calendar year was the second warmest on record and the summer of 2006 was the wettest on record for the northeastern United States. A large storm on June 26-28, 2006, caused extensive flooding in the western part of the network where record peak flows were measured at several watersheds.

  15. Measurement Of Multiphase Flow Water Fraction And Water-cut

    NASA Astrophysics Data System (ADS)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  16. Water resources data for New Mexico, water year 1975

    USGS Publications Warehouse

    ,

    1976-01-01

    Water resources data for the 1975 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 201 gaging stations; stage and contents far 23 lakes and reservoirs; water quality for 62 gaging stations, 77 partial-record flow stations, 1 reservoir, 47 springs and 197 wells; and water levels for 93 observation wells. Also included are 162 crest-stage partial-record stations and 2 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic da,ta collection program, and are pu,blis"Q,ed as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  17. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering.

    PubMed

    Kremer, Antje; Ribitsch, Iris; Reboredo, Jenny; Dürr, Julia; Egerbacher, Monika; Jenner, Florien; Walles, Heike

    2017-05-01

    Meniscal injuries are the most frequently encountered soft tissue injuries in the equine stifle joint. Due to the inherent limited repair potential of meniscal tissue, meniscal injuries do not only affect the meniscus itself but also lead to impaired joint homeostasis and secondary osteoarthritis. The presented study compares 3D coculture constructs of primary equine mesenchymal stem cells (MSC) and meniscus cells (MC) seeded on three different scaffolds-a cell-laden collagen type I hydrogel (Col I gel), a tissue-derived small intestinal matrix scaffold (SIS-muc) and a combination thereof-for their qualification to be applied for meniscus tissue engineering. To investigate cell attachment of primary MC and MSC on SIS-muc matrix SEM pictures were performed. For molecular analysis, lyophilized samples of coculture constructs with different cell ratios (100% MC, 100% MSC, and 50% MC and 50% MSC, 20% MC, and 80% MSC) were digested and analyzed for DNA and GAG content. Active matrix remodeling of 3D coculture models was indicated by matrix metalloproteinases detection. For comparison of tissue-engineered constructs with the histologic architecture of natural equine menisci, paired lateral and medial menisci of 15 horses representing different age groups were examined. A meniscus phenotype with promising similarity to native meniscus tissue in its GAG/DNA expression in addition to Col I, Col II, and Aggrecan production was achieved using a scaffold composed of Col I gel on SIS-muc combined with a coculture of MC and MSC. The results encourage further development of this scaffold-cell combination for meniscus tissue engineering.

  18. [Relevance of proton spin tomographic meniscus diagnosis in correlation with arthroscopy].

    PubMed

    Imhoff, A; Buess, E; Hodler, J; Schreiber, A

    1994-04-01

    Arthroscopy of the menisci is considered the gold standard by which all noninvasive imaging procedures of the knee are measured. In a prospective study we evaluated the use of MRI in 50 patients in whom a disorder of the meniscus was suspected clinically; this was followed by an arthroscopic examination by an experienced arthroscopist. The MR studies were performed after clinical evaluation and were interpreted by an experienced radiologist, who had no knowledge of the clinical findings. The accuracy of the diagnosis from MRI was 78% for the medial meniscus (sensitivity 79% and specificity 78%) and 94% for the lateral meniscus (sensitivity 50% and specificity 98%). The average age of the patients was 34 years, with a range of 3-73 years. The imaging studies revealed 9 false-positive tests and suggested that the meniscus was either degenerated or torn in the horizontal plane. In all 9 menisci the abnormal MR imaging signal was limited to the posterior horns. The positive predictive value was 59% and the negative predictive value was 94%, representing a moderate level of diagnostic certainty both in patients who had a positive result and in those who had a negative result. The high predictive negative value of MRI indicates that a negative MRI is quite reliable for meniscal lesions. The problem areas in MR imaging are the popliteal tendon sheath and the transverse ligament. This ligament is seen in association with a large branch of the lateral inferior geniculate artery and may be mistaken for a grade 3 signal intensity in the anterior horn of the lateral meniscus.

  19. Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro

    PubMed Central

    Hennerbichler, Alfred; Moutos, Franklin T.; Hennerbichler, Diana; Weinberg, J. Brice; Guilak, Farshid

    2011-01-01

    OBJECTIVE Injury or removal of the knee meniscus leads to progressive joint degeneration, and current surgical therapies for meniscal tears seek to maximally preserve meniscal structure and function. However, the factors that influence intrinsic repair of the meniscus are not well understood. The goal of this study was to investigate the capacity of meniscus tissue to repair a simulated defect in vitro and to examine the effect of pro-inflammatory cytokines on this process. METHODS Cylindrical explants were harvested from the outer one-third of medial porcine menisci. To simulate a full-thickness defect, a central core was removed and reinserted immediately into the defect. Explants were cultured for 2, 4, or 6 weeks in serum-containing media in the presence or absence of interleukin-1 (IL-1) or tumor necrosis factor alpha (TNF-alpha), and meniscal repair was investigated using mechanical testing and fluorescence confocal microscopy. RESULTS Meniscal lesions in untreated samples showed a significant capacity for intrinsic repair in vitro, with increasing cell accumulation and repair strength over time in culture. In the presence of IL-1 or TNF-alpha, no repair was observed despite the presence of abundant viable cells. CONCLUSIONS This study demonstrates that the meniscus exhibits an intrinsic repair response in vitro. However, the presence of pro-inflammatory cytokines completely inhibited repair. These findings suggest that increased levels of pro-inflammatory cytokines post-injury or under arthritic conditions may inhibit meniscal repair. Therefore, inhibition of these cytokines may provide a means of accelerating repair of damaged or injured menisci in vivo. PMID:17448702

  20. Fluids of the ocular surface: concepts, functions and physics.

    PubMed

    Cher, Ivan

    2012-08-01

    General adoption of the ocular surface (OS) concept has advanced the therapy of the external eye. Fresh physical findings have prompted new concepts; examples taken from each section of the text are: (i) ever-present lipid sealant bridges the palpebral fissure capping the three-dimensional 'OS' sac. The muco-aqueous pool (MAP) is thus enclosed, secluded from atmosphere, evaporation mitigated. Hence, the OS is conceptually, a compartment. The term 'dacruon' (otherwise 'tear film') has been coined for the combined fluids of the OS, viz. lipid film and MAP. (ii) Investigative techniques of physics yield data on (say) surface tension and viscosity, and on functions such as anchorage of dacruon base to the varied mucosae of the OS, lubrication, renovation of intermarginal fluid layers as the eye opens after each blink, and refinement of optics and vision by the fluids attached to the cornea. (iii) Physical events in the opening eye produce the unique 'black line' phenomenon in which capillary force induces subsurface flows into thirsty menisci, bringing about parameniscal dark grooves, pupil-ward of each meniscus. Attenuation of fluorescein in the shallowed fluid gaps behind each groove makes the dye appear unilluminated ('black lines') relative to adjacent full-thickness MAP fluid glowing under cobalt-blue illumination. Isolated from cornea by grooves and gaps, the meniscal fluid cannot pass freely over the cornea. It therefore streams through the menisci to nasolacrimal outflow. © 2012 The Author. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  1. Water resources data for Michigan, water year 1974; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1975-01-01

    Surface-water records for the 1974 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T.R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan.Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan are contained in Part 4 of that series.Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and they are designed primarily for rapid release of data shortly after the end of the water year.

  2. Water Conservation and Water Storage

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2014-12-01

    Water storage can be a viable part of the solution to water conservation. This means that we should include reservoirs. Regardless, one should evaluate all aspects of water conservation principles. Recent drought in California indicates that there is an urgent need to re-visit the techniques used to maintain the water supply-chain mechanism in the entire state. We all recognize the fact that fish and wildlife depend on the streams, rivers and wetlands for survival. It is a well-known fact that there is an immediate need to provide solid protection to all these resources. Laws and regulations should help meet the needs of natural systems. Farmers may be forced to drilling wells deeper than ever. But, they will be eventually depleting groundwater reserves. Needless to say that birds, fish and wildlife cannot access these groundwater table. California is talking a lot about conservation. Unfortunately, the conservation efforts have not established a strong visible hold. The Environmental Protection Agency has a plan called E2PLAN (Narayanan, 2012). It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The author has previously reported these in detail at the 2012 AGU fall meeting. References: Ziegler, Jay (15 JUNE 2014). The Conversation: Water conservation efforts aren't taking hold, but there are encouraging signs. THE SACRAMENTO BEE. California. Narayanan, Mysore. (2012). The Importance of Water Conservation in the 21st Century. 72nd AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 92, No. 56, Fall Meeting Supplement, 2012. H31I - 1255.http://www.sacbee.com/2014/06/15/6479862/jay-ziegler-water-conservation.html#storylink=cpy

  3. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  4. Critical seeding density improves properties and translatability of self-assembling anatomically shaped knee menisci

    PubMed Central

    Hadidi, Pasha; Yeh, Timothy C.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were: (i) to determine the minimum seeding density, normalized by an area of 44 mm2, necessary for the self-assembling process of fibrocartilage to occur, (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density, and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties, and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues. PMID:25234157

  5. Use of the augmented Young-Laplace equation to model equilibrium and evaporating extended menisci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DasGupta, S.; Schonberg, J.A.; Kim, I.Y.

    1993-05-01

    The generic importance of fluid flow and change-of-phase heat transfer in the contact line region of an extended meniscus has led to theoretical and experimental research on the details of these transport processes. Numerical solutions of equilibrium and nonequilibrium models based on the augmented Young-Laplace equation were successfully used to evaluate experimental data for an extended meniscus. The data for the equilibrium and nonequilibrium meniscus profiles were obtained optically using ellipsometry and image processing interferometry. A Taylor series expansion of the fourth-order nonlinear transport model was used to obtain the extremely sensitive initial conditions at the interline. The solid-liquid-vapor Hamakermore » constants for the systems were obtained from the experimental data. The consistency of the data was demonstrated by using the combining rules to calculate the unknown value of the Hamaker constant for the experimental substrate. The sensitivity of the meniscus profile to small changes in the environment was demonstrated. Both temperature and intermolecular forces need to be included in modeling transport processes in the contact line region because the chemical potential is a function of both temperature and pressure.« less

  6. Water-resources activities in Ohio, 1986 (water fact sheet)

    USGS Publications Warehouse

    Hindall, S.M.

    1986-01-01

    The Ohio District of the Water Resources Division, U.S. Geological Survey, provides information on Ohio 's water resources for the overall benefit of the State and the Nation. An integral part of the Survey 's mission is to conduct investigations of the Nation 's land, mineral, and water resources, and to publish and disseminate the information needed to understand, to plan the use of, and to manage these resources. The activities fall into eight broad categories: collection of hydrologic data; water resources investigations and assessments; basic and problem-oriented hydrologic and water related research; acquisition of information useful in predicting and delineating water related natural hazards; coordination of the activities of all Federal agencies in the acquisition of water data, and operation of water information centers; dissemination of data and the results of investigations; provision of scientific and technical assistance in hydrologic studies; and the administration of the State Water Resources Research Institute Program and the National Water Resources Research Grant Program. (Lantz-PTT)

  7. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  8. Water resources data for Kansas, water year 1972; Part 1, Surface water records

    USGS Publications Warehouse

    Thompson, M.L.; Curtis, R. E.

    1973-01-01

    Surface-water records for the 1972 water year for Kansas, including records of streamflow or reservoir storage at gaging stations and partial-record stations, are given in this report. The locations of the stations are on figures 1 and 2. Records for a few pertinent gaging stations in bordering States also are included. These data represent that part of the National Water Data System collected by the U. S. Geological Survey and cooperating State and Federal agencies in Kansas. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey under the direction of C. W. Lane, district chief. Kansas district personnel who contributed significantly to the collection and preparation of data included in this report were: J. L. Ebling, C. 0. Geiger, K. D. Medina, L. E. Stuliken, C. 0. Peek, J. D. Craig, L. L. Jones, A. T. Klamm, J. P. Marshall, C. W. Kennedy, W. J. Carswell, D. L. Lacock, G. G. Quy II, J. T. Religa, R. D. Thomas, S. V. Bond, S. T. Green, C. G. Sauer, A. B. Evans, A. F. Browning, M. J. Goetz, M. L. Penny, and M. Pabst.Through September 30, 1960, the records of discharge and stage of streams and canals and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States."Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. The discharge and reservoir storage records for 1961-65 also have been published in a Geological Survey water-supply paper series entitled "Surface Water Supply of the United States 1961-65."

  9. Water resources data for Kansas, water year 1973; Part 1, Surface water records

    USGS Publications Warehouse

    Thompson, M.L.; Curtis, R. E.

    1974-01-01

    Surface-water records for the 1973 water year for Kansas, including records of streamflow or reservoir storage at gaging stations and partial-record stations, are given in this report. The locations of the stations are on figures 1 and 2. Records for a few pertinent gaging stations in bordering States also are included. These data represent that part of the National Water Data System collected by the U. S. Geological Survey and cooperating State and Federal agencies in Kansas. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey under the direction of C. W. Lane, district chief. Kansas district personnel who contributed significantly to the collection and preparation of data included in this report were: J. L. Ebling, C. 0. Geiger, K. D. Medina, C. 0. Peek, J. D. Craig, L. L. Jones, J. P. Marshall, W. J. Carswell, D. L. Lacock, G. G. Quy II, J. T. Religa, R. D. Thomas, S. V. Bond, S. T. Green, C. G. Sauer, L. M. Pope, F. D. Toepfer, A. F. Browning, M. L. Penny, M. Pabst, and L. R. Stringer.Through September 30, 1960, the records of discharge and stage of streams and canals and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States."Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. The discharge and reservoir storage records for 1961-65 also have been published in a Geological Survey water-supply paper series entitled "Surface Water Supply of the United States 1961-65."

  10. Healthy Water

    MedlinePlus

    ... Medical Professionals Aquatics, Water Utilities, & Other Water-related Sectors Publications, Data, & Statistics Get Email Updates To receive ... Medical Professionals Aquatics, Water Utilities, & Other Water-related Sectors Publications, Data, & Statistics Magnitude & Burden of Waterborne Disease ...

  11. Alleviating the water scarcity in the North China Plain: the role of virtual water and real water transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoying; Yang, Hong; Shi, Minjun

    2016-04-01

    The North China Plain is the most water scarce region in China. Its water security is closely relevant to interregional water movement, which can be realized by real water transfers and/or virtual water transfers. This study investigates the roles of virtual water trade and real water transfer using Interregional Input-Output model. The results show that the region is receiving 19.4 billion m3/year of virtual water from the interregional trade, while exporting 16.4 billion m3/year of virtual water in the international trade. In balance, the region has a net virtual water gain of 3 billion m3/year from outside. Its virtual water inflow is dominated by agricultural products from other provinces, totalling 16.6 billion m3/year, whilst its virtual water export is dominated by manufacturing sectors to other countries, totalling 11.7 billion m3/year. Both virtual water import and real water transfer from South to North Water Diversion Project are important water supplements for the region. The results of this study provide useful scientific references for the establishment of combating strategies to deal with the water scarcity in the future.

  12. Ground-water, surface-water, and water-chemistry data, Black Mesa area, Northeastern Arizona: 1999

    USGS Publications Warehouse

    Thomas, Blakemore E.; Truini, Margot

    2000-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and a precipitation of only about 6 to 12 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 1999, total ground-water withdrawals were 7,110 acre-feet, industrial use was 4,210 acre-feet, and municipal use was 2,900 acre-feet. From 1998 to 1999, total withdrawals increased by 0.7 percent, industrial use increased by 4 percent, and municipal use decreased by 4 percent. From 1998 to 1999, water levels declined in 11 of 15 wells in the unconfined part of the aquifer, and the median decline was 0.7 foot. Water levels declined in 14 of 16 wells in the confined part of the aquifer, and the median decline was 1.2 feet. From the prestress period (prior to 1965) to 1999, the median water-level decline in 31 wells was 10.6 feet. Median water-level changes were 0.0 foot for 15 wells in the unconfined part of the aquifer and a decline of 45.5 feet in 16 wells in the confined part. From 1998 to 1999, discharges were measured annually at four springs. Discharges declined 30 percent and 3 percent at 2 springs, did not change at 1 spring, and increased by 11 percent at 1 spring. For the past 10 years, discharges from the four springs have fluctuated; however, an increasing or decreasing trend was not observed. Continuous records of surface-water discharge have been collected from July 1976 to 1999 at Moenkopi Wash, July 1996 to 1999 at Laguna Creek, June 1993 to 1999 at Dinnebito Wash, and April

  13. Water resources data-Maine, water year 2003

    USGS Publications Warehouse

    Stewart, G.J.; Caldwell, J.M.; Cloutier, A.R.

    2004-01-01

    This volume of the annual hydrologic data report of Maine is one of a series of annual reports that document data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  14. Surface-Water Conditions in Georgia, Water Year 2005

    USGS Publications Warehouse

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  15. Water resources data for Michigan, water year 1972; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1973-01-01

    Surface-water records for the 1972 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T. R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan were contained in Part 4 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs.

  16. Water resources data for Michigan, water year 1971; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1972-01-01

    Surface-water records for the 1971 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T. R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan were contained in Part 4 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs.

  17. Water resources data for Michigan, water year 1973; Part 1, Surface water records

    USGS Publications Warehouse

    ,

    1974-01-01

    Surface-water records for the 1973 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of Michigan are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of T.R. Cummings, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Michigan. Records of discharge and stage of streams, and contents and stage of lakes or reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Through September 30, 1960, these water-supply papers were in an annual series and since then are in a 5-year series. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in Michigan are contained in Part 4 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs.

  18. Water Conditioner

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A home use water treatment incorporates technology developed to purify water aboard Space Shuttle Orbiters. The General Ionics Model IQ Bacteriostatic Water Softener softens water and inhibits bacteria growth in the filtering unit. Ionics used NASA silver ion technology as a basis for development of a silver carbon dense enough to remain on top of the water softening resin bed.

  19. Water quality risks of 'improved' water sources: evidence from Cambodia.

    PubMed

    Shaheed, A; Orgill, J; Ratana, C; Montgomery, M A; Jeuland, M A; Brown, J

    2014-02-01

    The objective of this study was to investigate the quality of on-plot piped water and rainwater at the point of consumption in an area with rapidly expanding coverage of 'improved' water sources. Cross-sectional study of 914 peri-urban households in Kandal Province, Cambodia, between July-August 2011. We collected data from all households on water management, drinking water quality and factors potentially related to post-collection water contamination. Drinking water samples were taken directly from a subsample of household taps (n = 143), stored tap water (n = 124), other stored water (n = 92) and treated stored water (n = 79) for basic water quality analysis for Escherichia coli and other parameters. Household drinking water management was complex, with different sources used at any given time and across seasons. Rainwater was the most commonly used drinking water source. Households mixed different water sources in storage containers, including 'improved' with 'unimproved' sources. Piped water from taps deteriorated during storage (P < 0.0005), from 520 cfu/100 ml (coefficient of variation, CV: 5.7) E. coli to 1100 cfu/100 ml (CV: 3.4). Stored non-piped water (primarily rainwater) had a mean E. coli count of 1500 cfu/100 ml (CV: 4.1), not significantly different from stored piped water (P = 0.20). Microbial contamination of stored water was significantly associated with observed storage and handling practices, including dipping hands or receptacles in water (P < 0.005), and having an uncovered storage container (P = 0.052). The microbial quality of 'improved' water sources in our study area was not maintained at the point of consumption, possibly due to a combination of mixing water sources at the household level, unsafe storage and handling practices, and inadequately treated piped-to-plot water. These results have implications for refining international targets for safe drinking water access as well as the assumptions underlying global burden of disease

  20. Assessment of microbial quality of reclaimed water, roof-harvest water, and creek water for irrigation

    USDA-ARS?s Scientific Manuscript database

    The availability of water for crop irrigation is decreasing due to droughts, population growth, and pollution. The Food Safety and Modernization Act (FSMA) standards for irrigation water may also discourage growers to use poor microbial quality water for produce crop irrigation. Reclaimed water use ...

  1. Assessment of microbial quality of reclaimed water, roof-harvest water, and creek water for irrigation

    USDA-ARS?s Scientific Manuscript database

    The availability of water for crop irrigation is decreasing due to droughts, population growth, and pollution. Food Safety and Modernization Act (FSMA) for irrigation water standards may also discourage growers to use poor microbial quality water for produce crop irrigation. Reclaimed water use for ...

  2. New England's Drinking Water | Drinking Water in New ...

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  3. Measuring scarce water saving from interregional virtual water flows in China

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Li, Y. P.; Yang, H.; Liu, W. F.; Tillotson, M. R.; Guan, D.; Yi, Y.; Wang, H.

    2018-05-01

    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index (WSI). We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower WSI to that with higher WSI. Conversely, 175 connections contributed to 20.6 km3 of scarce water loss. The virtual water flow connections between Xinjiang and other provinces stood out as the biggest contributors, accounting for 66% of total scarce water loss. The results show the importance of assessing water savings generated from trade with consideration of both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy.

  4. Surgical Indications and Technique for Anterior Cruciate Ligament Reconstruction Combined with Lateral Extra-articular Tenodesis or Anterolateral Ligament Reconstruction.

    PubMed

    Vundelinckx, Bart; Herman, Benjamin; Getgood, Alan; Litchfield, Robert

    2017-01-01

    After anterior cruciate ligament (ACL) rupture, anteroposterior and rotational laxity in the knee causes instability, functional symptoms, and damage to other intra-articular structures. Surgical reconstruction aims to restore the stability in the knee, and to improve function and ability to participate in sports. It also protects cartilage and menisci from secondary injuries. Because of persistent rotational instability after ACL reconstruction, combined intra-articular and extra-articular procedures are more commonly performed. In this article, an overview of anatomy, biomechanical studies, current gold standard procedures, techniques, and research topics are summarized. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Physical Examination of the Knee: Meniscus, Cartilage, and Patellofemoral Conditions.

    PubMed

    Bronstein, Robert D; Schaffer, Joseph C

    2017-05-01

    The knee is one of the most commonly injured joints in the body. Its superficial anatomy enables diagnosis of the injury through a thorough history and physical examination. Examination techniques for the knee described decades ago are still useful, as are more recently developed tests. Proper use of these techniques requires understanding of the anatomy and biomechanical principles of the knee as well as the pathophysiology of the injuries, including tears to the menisci and extensor mechanism, patellofemoral conditions, and osteochondritis dissecans. Nevertheless, the clinical validity and accuracy of the diagnostic tests vary. Advanced imaging studies may be useful adjuncts.

  6. Mineral water or tap water? An endless debate.

    PubMed

    De Giglio, O; Quaranta, A; Lovero, G; Caggiano, G; Montagna, M T

    2015-01-01

    The consumption of mineral water has been increasing because of the frequent and unjustified reports of the water supply contamination. However some authors have shown that bottled waters are not always better than tap water. Mineral waters are more palatable for organoleptic characteristic because, being pure at source, they do not undergo disinfection treatments and are sometimes enriched with CO2. In fact, they are characterized by their microbial facies subject to changes during the production cycle which can contribute to their contamination. It is necessary to provide people with the tools necessary to operate a critical choice of the type of water to be consumed not exclusively for their organoleptic characteristics or marketing strategies.

  7. Water Resources Data: New Jersey, Water Year 1998, Volume 1, Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; Centinaro, G.L.; Dudek, J.F.; Corcino, V.; Stekroadt, G.C.; McTigure, R.C.

    1999-01-01

    This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  8. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  9. Water accounting implementation: water footprint and water efficiency of the coffee shop in Indonesia

    NASA Astrophysics Data System (ADS)

    Hendratno, S. P.; Agustine, Y.

    2018-01-01

    The purpose of this paper is for understand the water accounting practice in the company, especially beverage industry in Indonesia. The sample in this study is one coffee shop near Jakarta. Case study has been choosen as the method in this study. We collect data with semi-structured interview, observation, and survey about the water efficiency in the coffee shop. The operational officers such as barista, cashier, supervisor, and store manager are the respondents in this study. Operational management already understand about the importance of water efficiency in the coffee shop operation, but it can’t be implemented because their standard operation haven’t use the water efficiency as part of their procedures. The coffee shop’s operational standard in cleaning always takes much time and use so much water. The cleaning itself takes one until two hours each day only for cleaning bar and all operational equipment. This paper is for understand the water efficiency in the coffee shop with the focus is in their water footprint, operational standard that used every day in the coffee shop, and the connection between operational standard and the water efficiency.

  10. Water Works.

    ERIC Educational Resources Information Center

    Van De Walle, Carol

    1988-01-01

    Describes a two-day field trip, along with follow-up classroom activities and experiments which relate to water resources and water quality. Discusses how trips to a lake and water treatment facilities can enhance appreciation of water. (TW)

  11. Water Resources Data Massachusetts and Rhode Island Water Year 1999

    USGS Publications Warehouse

    Socolow, R.S.; Zanca, J.L.; Murino, Domenic; Ramsbey, L.R.

    2000-01-01

    INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Massachusetts and Rhode Island each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the States. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled 'Water Resources Data-Massachusetts and Rhode Island.' Hydrologic data are also available through the Massachusetts-Rhode Island District Home Page on the world-wide web (http://ma.water.usgs.gov). Historical data and real-time data (for sites equipped with satellite gage-height telemeter) are also available. The home page also contains a link to the U.S. Geological Survey National Home Page where streamflow data from locations throughout the United States can be retrieved. This report series includes records of stage, discharge, and water quality of streams; contents of lakes and reservoirs; water levels of ground-water wells; and water quality of ground-water wells. This volume contains discharge records at 90 gaging stations; stage records at 2 gaging stations; monthend contents of 4 lakes and reservoirs; water quality at 31 gaging stations; water quality at 27 observation wells; and water levels for 139 observation wells. Locations of these sites are shown in figures 1 and 2. Short-term water-quality data were collected at 21 gaging stations and 27 observation wells and are shown in figure 3. Miscellaneous hydrologic data were collected at various sites that were not involved in the systematic data-collection program and are published as miscellaneous discharge measurements. The data in this report represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies

  12. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  13. Water Resources Data for Oregon, Water Year 2002

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2003-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  14. Water Resources Data for Oregon, Water Year 2003

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2004-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  15. Water Purifier

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Floatron water purifier combines two space technologies - ionization for water purification and solar electric power generation. The water purification process involves introducing ionized minerals that kill microorganisms like algae and bacteria. The 12 inch unit floats in a pool while its solar panel collects sunlight that is converted to electricity. The resulting current energizes a specially alloyed mineral electrode below the waterline, causing release of metallic ions into the water. The electrode is the only part that needs replacing, and water purified by the system falls within EPA drinking water standards.

  16. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a

  17. [Case study of red water phenomenon in drinking water distribution systems caused by water source switch].

    PubMed

    Wang, Yang; Zhang, Xiao-jian; Chen, Chao; Pan, An-jun; Xu, Yang; Liao, Ping-an; Zhang, Su-xia; Gu, Jun-nong

    2009-12-01

    Red water phenomenon occurred in some communities of a city in China after water source switch in recent days. The origin of this red water problem and mechanism of iron release were investigated in the study. Water quality of local and new water sources was tested and tap water quality in suffered area had been monitored for 3 months since red water occurred. Interior corrosion scales on the pipe which was obtained from the suffered area were analyzed by XRD, SEM, and EDS. Corrosion rates of cast iron under the conditions of two source water were obtained by Annular Reactor. The influence of different source water on iron release was studied by pipe section reactor to simulate the distribution systems. The results indicated that large increase of sulfate concentration by water source shift was regarded as the cause of red water problem. The Larson ratio increased from about 0.4 to 1.7-1.9 and the red water problem happened in the taps of some urban communities just several days after the new water source was applied. The mechanism of iron release was concluded that the stable shell of scales in the pipes had been corrupted by this kind of high-sulfate-concentration source water and it was hard to recover soon spontaneously. The effect of sulfate on iron release of the old cast iron was more significant than its effect on enhancing iron corrosion. The rate of iron release increased with increasing Larson ratio, and the correlation of them was nonlinear on the old cast-iron. The problem remained quite a long time even if the water source re-shifted into the blended one with only small ratio of the new source and the Larson ratio reduced to about 0.6.

  18. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    PubMed

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P < 0.05). Water balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  19. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    USGS Publications Warehouse

    Smith, Kirk P.

    2011-01-01

    Water samples were collected in nearly all of the subbasins in the Cambridge drinking-water source area and from Fresh Pond during the study period. Discrete water samples were collected during base-flow conditions with an antecedent dry period of at least 3 days. Composite sampl

  20. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  1. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  2. Cell engineering: nanometric grafting of poly-N-isopropylacrylamide onto polystyrene film by different doses of gamma radiation

    PubMed Central

    Biazar, Esmaeil; Zeinali, Reza; Montazeri, Naser; Pourshamsian, Khalil; Behrouz, Mahmoud Jabarvand; Asefnejad, Azadeh; Khoshzaban, Ahad; Shahhosseini, Gholamreza; Najafabadi, Mostafa Soleimannejad; Abyani, Reza; Jamalzadeh, Hamidreza; Fouladi, Mahdi; Hagh, Sasan Rahbar F; Khamaneh, Aylar Shams; Kabiri, Soudabeh; Keshel, Saeed Heidari; Mansourkiaei, Ana

    2010-01-01

    Poly-N-isopropylacrylamide was successfully grafted onto a polystyrene cell culture dish and γ-preirradiated in air. In this study, the effect of a γ-pre-irradiation dose of radiation (radiation absorbed dosages of 10, 20, 30, 40 KGy) under appropriate temperature and grafting conditions was investigated. The Fourier transform infrared spectroscopy analysis showed the existence of the graft poly-N-isopropylacrylamide (PNIPAAm) on the substrate. The optimal value of the dose for grafting was 40 KGy at 50°C. The scanning electron microscopy and atomic force microscopy (AFM) images clearly showed that increasing the absorbed dose of radiation would increase the amount of grafting. Surface topography and graft thickness in AFM images of the radiated samples showed that the PNIPAAm at the absorbed dose of radiation was properly grafted. The thickness of these grafts was about 50–100 nm. The drop water contact angles of the best grafted sample at 37°C and 10°C were 55.3 ± 1.2° and 61.2 ± 0.9° respectively, which showed the hydrophilicity and hydrophobicity of the grafted surfaces. Differential scanning calorimetry analysis also revealed the low critical solution temperature of the grafted sample to be 32°C. Thermoresponsive polymers were grafted to dishes covalently which allowed fibroblast cells to attach and proliferate at 37°C; the cells also detached spontaneously without using enzymes when the temperature dropped below 32°C. This characteristic proves that this type of grafted material has potential as a biomaterial for cell sheet engineering. PMID:20957116

  3. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    NASA Astrophysics Data System (ADS)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  4. Water underground

    NASA Astrophysics Data System (ADS)

    de Graaf, Inge

    2015-04-01

    The world's largest assessable source of freshwater is hidden underground, but we do not know what is happening to it yet. In many places of the world groundwater is abstracted at unsustainable rates: more water is used than being recharged, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions of the world unsustainable water use will increase, due to increasing human water use under changing climate. It would not be long before shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to stop this. The world largest aquifers are mapped, but these maps do not mention how much water they contain or how fast water levels decline. If we can add a third dimension to the aquifer maps, so a thickness, and add geohydrological information we can estimate how much water is stored. Also data on groundwater age and how fast it is refilled is needed to predict the impact of human water use and climate change on the groundwater resource.

  5. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework.

    PubMed

    Xinchun, Cao; Mengyang, Wu; Xiangping, Guo; Yalian, Zheng; Yan, Gong; Nan, Wu; Weiguang, Wang

    2017-12-31

    An indicator, agricultural water stress index (AWSI), was established based blue-green water resources and water footprint framework for regional water scarcity in agricultural production industry evaluation. AWSI is defined as the ratio of the total agricultural water footprint (AWF) to water resources availability (AWR) in a single year. Then, the temporal and spatial patterns of AWSI in China during 1999-2014 were analyzed based on the provincial AWR and AWF quantification. The results show that the annual AWR in China has been maintained at approximately 2540Gm 3 , of which blue water accounted for >70%. The national annual AWF was approximately 1040Gm 3 during the study period and comprised 65.6% green, 12.7% blue and 21.7% grey WFs The space difference in both the AWF for per unit arable land (AWFI) and its composition was significant. National AWSI was calculated as 0.413 and showed an increasing trend in the observed period. This index increased from 0.320 (mid-water stress level) in 2000 to 0.490 (high water stress level) in the present due to the expansion of the agricultural production scale. The Northern provinces, autonomous regions and municipalities (PAMs) have been facing high water stress, particularly the Huang-Huai-Hai Plain, which was at a very high water stress level (AWSI>0.800). Humid South China faces increasingly severe water scarcity, and most of the PAMs in the region have converted from low water stress level (AWSI=0.100-0.200) to mid water stress level (AWSI=0.200-0.400). The AWSI is more appropriate for reflecting the regional water scarcity than the existing water stress index (WSI) or the blue water scarcity (BWS) indicator, particularly for the arid agricultural production regions due to the revealed environmental impacts of agricultural production. China should guarantee the sustainable use of agricultural water resources by reducing its crop water footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Concentration data for anthropogenic organic compounds in ground water, surface water, and finished water of selected community water systems in the United States, 2002-05

    USGS Publications Warehouse

    Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.

    2007-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems (CWSs) in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that is treated and ready to be delivered to consumers. Finished water is collected before entering the distribution system. SWQA studies are conducted in two phases, and the objectives of SWQA studies are twofold: (1) to determine the occurrence and, for rivers, seasonal changes in concentrations of a broad list of anthropogenic organic compounds (AOCs) in aquifers and rivers that have some of the largest withdrawals for drinking-water supply (phase 1), and (2) for those AOCs found to occur most frequently in source water, characterize the extent to which these compounds are present in finished water (phase 2). These objectives were met for SWQA studies by collecting ground-water and surface-water (source) samples and analyzing these samples for 258 AOCs during phase 1. Samples from a subset of wells and surface-water sites located in areas with substantial agricultural production in the watershed were analyzed for 19 additional AOCs, for a total of 277 compounds analyzed for SWQA studies. The 277 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and

  7. Public Water-Supply Systems and Associated Water Use in Tennessee, 2000

    USGS Publications Warehouse

    Webbers, Ank

    2003-01-01

    Public water-supply systems in Tennessee provide water to meet customer needs for domestic, industrial, and commercial users and municipal services. In 2000, more than 500 public water-supply systems distributed about 890 million gallons per day (Mgal/d) of surface water and ground water to a population of about 5 million in Tennessee. Surface-water sources provided 64 percent (about 569 Mgal/d) of the State?s water supplies, primarily in Middle and East Tennessee. Ground water produced from wells and springs in Middle and East Tennessee and from wells in West Tennessee provided 36 percent (about 321 Mgal/d) of the public water supplies. Springs in Middle and East Tennessee provided about 14 percent (about 42 Mgal/d) of ground-water supplies used in the State. Per capita water use for Tennessee in 2000 was about 136 gallons per day. An additional 146 public water-supply systems provided approximately 84 Mgal/d of water supplies that were purchased from other water systems. Water withdrawals by public water-supply systems in Tennessee have increased by over 250 percent; from 250 Mgal/d in 1955 to 890 Mgal/d in 2000. Although Tennessee public water-supply systems withdraw less ground water than surface water, ground-water withdrawal rates reported by these systems continue to increase. In addition, the number of public water-supply systems reporting ground-water withdrawals of 1 Mgal/d or more in West Tennessee is increasing.

  8. Urban-Water Harmony model to evaluate the urban water management.

    PubMed

    Ding, Yifan; Tang, Deshan; Wei, Yuhang; Yin, Sun

    2014-01-01

    Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water-society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social-economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.

  9. WaterML: an XML Language for Communicating Water Observations Data

    NASA Astrophysics Data System (ADS)

    Maidment, D. R.; Zaslavsky, I.; Valentine, D.

    2007-12-01

    One of the great impediments to the synthesis of water information is the plethora of formats used to publish such data. Each water agency uses its own approach. XML (eXtended Markup Languages) are generalizations of Hypertext Markup Language to communicate specific kinds of information via the internet. WaterML is an XML language for water observations data - streamflow, water quality, groundwater levels, climate, precipitation and aquatic biology data, recorded at fixed, point locations as a function of time. The Hydrologic Information System project of the Consortium of Universities for the Advancement of Hydrologic Science, Inc (CUAHSI) has defined WaterML and prepared a set of web service functions called WaterOneFLow that use WaterML to provide information about observation sites, the variables measured there and the values of those measurments. WaterML has been submitted to the Open GIS Consortium for harmonization with its standards for XML languages. Academic investigators at a number of testbed locations in the WATERS network are providing data in WaterML format using WaterOneFlow web services. The USGS and other federal agencies are also working with CUAHSI to similarly provide access to their data in WaterML through WaterOneFlow services.

  10. Compilation of Water-Resources Data for Montana, Water Year 2006

    USGS Publications Warehouse

    Ladd, P. B.; Berkas, W.R.; White, M.K.; Dodge, K.A.; Bailey, F.A.

    2007-01-01

    The U.S. Geological Survey, Montana Water Science Center, in cooperation with other Federal, State, and local agencies, and Tribal governments, collects a large amount of data pertaining to the water resources of Montana each water year. This report is a compilation of Montana site-data sheets for the 2006 water year, which consists of records of stage and discharge of streams; water quality of streams and ground water; stage and contents of lakes and reservoirs; water levels in wells; and precipitation data. Site-data sheets for selected stations in Canada and Wyoming also are included in this report. The data for Montana, along with data from various parts of the Nation, are included in 'Water-Resources Data for the United States, Water Year 2006', which is published as U.S. Geological Survey Water-Data Report WDR-US-2006 and is available at http://pubs.water.usgs.gov/wdr2006. Additional water year 2006 data collected at crest-stage gage and miscellaneous-measurement stations were collected but were not published. These data are stored in files of the U.S. Geological Survey Montana Water Science Center in Helena, Montana, and are available on request.

  11. Lunchtime School Water Availability and Water Consumption among California Adolescents

    PubMed Central

    Bogart, Laura M.; Babey, Susan H.; Patel, Anisha I.; Wang, Pan; Schuster, Mark A.

    2015-01-01

    Purpose To examine the potential impact of California SB1413, which required school districts to provide free, fresh drinking water during mealtimes in food service areas by July 1, 2011, on greater water consumption among California adolescents. Methods Data were drawn from the 2012 and 2013 state-representative California Health Interview Survey. A total of 2,665 adolescents aged 12-17 were interviewed regarding their water consumption and availability of free water during lunchtime at their school. Results Three-fourths reported that their school provided free water at lunchtime, mainly via fountains. In a multivariate model that controlled for age, gender, income, race/ethnicity, BMI, and school type, adolescents in schools that provided free water consumed significantly more water than adolescents who reported that water was not available, b (SE) = 0.67 (0.28), p = .02. School water access did not significantly vary across the two years. Conclusions Lunchtime school water availability was related to water consumption, but a quarter of adolescents reported that their school did not provide free water at lunch. Future research should explore what supports and inducements might facilitate provision of drinking water during school mealtimes. PMID:26552740

  12. Natural water purification and water management by artificial groundwater recharge.

    PubMed

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  13. Water Treatment: Can You Purify Water for Drinking?

    ERIC Educational Resources Information Center

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  14. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures

    NASA Astrophysics Data System (ADS)

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-05-01

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.

  15. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures.

    PubMed

    Anufriev, Roman; Ramiere, Aymeric; Maire, Jeremie; Nomura, Masahiro

    2017-05-18

    Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.

  16. Superior electric storage on an amorphous perfluorinated polymer surface

    PubMed Central

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-01-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the −90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system. PMID:26902953

  17. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    PubMed Central

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  18. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    DOE PAGES

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al 2O 3, ZnO, TiO 2 etc.) material coatings also improvemore » the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less

  19. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    DOE PAGES

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-06-14

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancymore » spins, resulting in enhanced coherent rotation of the spin state. Lastly, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ~ 100 ns timescales.« less

  20. Split-ball resonator as a three-dimensional analogue of planar split-rings

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Arseniy I.; Miroshnichenko, Andrey E.; Hsing Fu, Yuan; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Ying Pan, Zhen; Kivshar, Yuri; Pickard, Daniel S.; Luk'Yanchuk, Boris

    2014-01-01

    Split-ring resonators are basic elements of metamaterials, which can induce a magnetic response in metallic nanosctructures. Tunability of such response up to the visible frequency range is still a challenge. Here we introduce the concept of the split-ball resonator and demonstrate the strong magnetic response in the visible for both gold and silver spherical plasmonic nanoparticles with nanometre scale cuts. We realize this concept experimentally by employing the laser-induced transfer method to produce near-perfect metallic spheres and helium ion beam milling to make cuts with the clean straight sidewalls and nanometre resolution. The magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. This method can be applied to the structuring of arbitrary three-dimensional features on the surface of nanoscale resonators. It provides new ways for engineering hybrid resonant modes and ultra-high near-field enhancement.