Sample records for nanoparticle aggregation controlled

  1. Controllable g5p-Protein-Directed Aggregation of ssDNA-Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Maye, M; Zhang, Y

    We assembled single-stranded DNA (ssDNA) conjugated nanoparticles using the phage M13 gene 5 protein (g5p) as the molecular glue to bind two antiparallel noncomplementary ssDNA strands. The entire process was controlled tightly by the concentration of the g5p protein and the presence of double-stranded DNA. The g5p-ssDNA aggregate was disintegrated by hybridization with complementary ssDNA (C-ssDNA) that triggers the dissociation of the complex. Polyhistidine-tagged g5p was bound to nickel nitrilotriacetic acid (Ni2+-NTA) conjugated nanoparticles and subsequently used to coassemble the ssDNA-conjugated nanoparticles into multiparticle-type aggregates. Our approach offers great promise for designing biologically functional, controllable protein/nanoparticle composites.

  2. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    NASA Astrophysics Data System (ADS)

    Jiemsakul, Thanakorn; Manakasettharn, Supone; Kanharattanachai, Sivakorn; Wanna, Yongyuth; Wangsuya, Sujint; Pratontep, Sirapat

    2017-01-01

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO2 laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs.

  3. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    NASA Astrophysics Data System (ADS)

    Botasini, Santiago; Méndez, Eduardo

    2013-04-01

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10-20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV-Vis-NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  4. Aggregation in charged nanoparticles solutions induced by different interactions

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  5. Plasmon enhanced fluorescence with aggregated shell-isolated nanoparticles.

    PubMed

    Osorio-Román, Igor O; Guerrero, Ariel R; Albella, Pablo; Aroca, Ricardo F

    2014-10-21

    Shell-isolated nanoparticles (SHINs) nanostructures provide a versatile substrate where the localized surface plasmon resonances (LSPRs) are well-defined. For SHINEF, the silver (or gold) metal core is protected by the SiO2 coating, which is thicker than the critical distance for minimum quenching by the metal. In the present work, it is shown that an increase in the SHINEF enhancement factor may be achieved by inducing SHIN aggregation with electrolytes in solution. The proof of concept is demonstrated using NaCl as aggregating agent, although other inorganic salts will also aggregate SHIN nanoparticles. As much as a 10-fold enhancement in the SHINEF enhancement factor (EF) may be achieved by tuning the electrolyte concentrations in solution. The SHINEF experiments include the study of the aggregation effect controlling gold SHIN's surface concentration via spraying. Au-SHINs are sprayed onto layer-by-layer (LbL) and Langmuir-Blodgett (LB) films, and samples are fabricated using fluorophores with low and also high quantum yield.

  6. Strong coupling-like phenomenon in single metallic nanoparticle embedded in molecular J-aggregates

    NASA Astrophysics Data System (ADS)

    Feng, Xin; Wang, Chen; Ma, Hongjing; Chen, Yuanyuan; Duan, Gaoyan; Zhang, Pengfei; Song, Gang

    2018-02-01

    Strong coupling-like phenomenon between plasmonic cavities and emitters provides a new way to realize the quantum-like effect controlling at microscale/nanoscale. We investigate the strong coupling-like phenomenon in the structure of single metallic nanoparticle embedded in molecular J-aggregates by the classical simulation method and show that the size of the metallic nanoparticle and the oscillator strength of molecular J-aggregates impact the strong coupling-like phenomenon. The strong coupling-like phenomenon is induced by the interactions between two dipoles formed by the metallic nanoparticle and molecular J-aggregates or the interactions between the dipole generated from molecular J-aggregates and the quadrupole generated from the metallic nanoparticle. The strong coupling-like phenomenon appears evidently with the increase in oscillator strength of molecular J-aggregates. The detuning energy linearly decreases with the increase in radius of the metallic nanoparticle. Our structure has potential applications in quantum networks, quantum key distributions and so on.

  7. Aggregation in charged nanoparticles solutions induced by different interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, S.; Kumar, Sugam; Aswal, V. K., E-mail: vkaswal@barc.gov.in

    2016-05-23

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction betweenmore » nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.« less

  8. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.

    PubMed

    Yin, Yongguang; Yang, Xiaoya; Zhou, Xiaoxia; Wang, Weidong; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2015-08-01

    The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments. Copyright © 2015. Published by Elsevier B.V.

  9. Kinetics of aggregation in charged nanoparticle solutions driven by different mechanisms

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Yadav, I.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2017-05-01

    The structure and kinetics during aggregation of anionic silica nanoparticles as induced through different mechanisms have been studied by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Three different additives, namely an electrolyte (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) were used to initiate nanoparticle aggregation. Electrolyte induced aggregation can be explained by DLVO interaction, whereas depletion interaction (non-DLVO interaction) is found responsible for nanoparticle aggregation in case of non-ionic surfactant. Unlike these two cases, strong electrostatic attraction between nanoparticle and oppositely charged protein results into protein-mediated nanoparticle aggregation. The electrolyte induced aggregation show quite slow aggregation rate whereas protein mediated as well as surfactant induced aggregation takes place almost instantaneously. The significant differences observed in the kinetics are explained based on range of interactions responsible for the aggregation. In spite of differences in mechanism and kinetics, the nanoparticle clusters are found to have similar fractal morphology (fractal dimension ˜ 2.5) in all the three cases.

  10. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  11. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    PubMed Central

    2011-01-01

    Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed. PMID:21917152

  12. Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and ``click'' chemistry

    NASA Astrophysics Data System (ADS)

    Dworak, Andrzej; Lipowska, Daria; Szweda, Dawid; Suwinski, Jerzy; Trzebicka, Barbara; Szweda, Roza

    2015-10-01

    This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species.This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent

  13. In Situ Observations of Electric-Field Induced Nanoparticle Aggregation

    NASA Astrophysics Data System (ADS)

    Woehl, T. J.; Browning, N. D.; Ristenpart, W. D.

    2010-11-01

    Nanoparticles have been widely observed to aggregate laterally on electrodes in response to applied electric fields. The mechanism driving this behavior, however, is unclear. Several groups have interpreted the aggregation in terms of electrohydrodynamic or electroosmotic fluid motion, but little corroborating evidence has been presented. Notably, work to date has relied on post situ observations using electron microscopy. Here we present a fluorescence microscopy technique to track the dynamics of nanoparticle aggregation in situ. Fluorescent 20-nm polystyrene nanoparticles are observed to form optically visible aggregates in response to an applied AC field. Although single particle resolution is lost, the existence of aggregates on the electrode surface is marked by growing clusters of increasingly bright intensity. We present a systematic investigation of the effects of applied potential and frequency on the aggregation rate, and we interpret the behavior in terms of a mechanism based on electrically induced convective flow.

  14. Enhanced DNA Sensing via Catalytic Aggregation of Gold Nanoparticles

    PubMed Central

    Huttanus, Herbert M.; Graugnard, Elton; Yurke, Bernard; Knowlton, William B.; Kuang, Wan; Hughes, William L.; Lee, Jeunghoon

    2014-01-01

    A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain reaction into gold nanoparticles was designed and tested. While direct aggregation forms an inter-particle linkage from only ones target DNA strand, the catalytic aggregation forms multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The changes in their absorption spectra were measured at different times and target concentrations and compared against direct aggregation. Catalytic aggregation showed a multifold increase in sensitivity at low target concentrations when compared to direct aggregation. Gel electrophoresis was performed to compare DNA hybridization reactions in catalytic and direct aggregation schemes, and the product formation was confirmed in the catalytic aggregation scheme at low levels of target concentrations. The catalytic aggregation scheme also showed high target specificity. This application of a DNA reaction network to gold nanoparticle-based colorimetric detection enables highly-sensitive, field-deployable, colorimetric readout systems capable of detecting a variety of biomolecules. PMID:23891867

  15. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D., E-mail: debes.phys@gmail.com; Aswal, V. K.

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-inducedmore » for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.« less

  16. Systemic toxicity induced by aggregated layered double hydroxide nanoparticles

    PubMed Central

    Yan, Mina; Yang, Chanzhen; Huang, Binyao; Huang, Zeqian; Huang, Liangfeng; Zhang, Xuefei; Zhao, Chunshun

    2017-01-01

    Layered double hydroxide (LDH) nanoparticles are emerging as one of the promising nanomaterials for biomedical applications, but their systemic toxicity in vivo has received little attention. In the present study, the effects of inorganic nanoparticle aggregation on their systemic toxicity were examined. Remarkably, aggregation was observed after the mixing of naked LDH nanoparticles with saline or erythrocytes. Significant accumulation of the naked LDH nanoparticles in the lungs of mice was detected 1 h after intravenous administration, and the survival rate of mice was 0% after 6 repeated injections. Furthermore, flocculent precipitates in the alveoli and congestion in the lung interstitium were observed in the dead mice. However, lipid membrane-coated LDH nanoparticles would not form aggregates and could be injected intravenously >6 times without causing death. These findings suggested that repeated injections of LDH were lethal even at low dose (30 mg/kg), and lipid membrane coating can be considered as an approach for reducing this risk. PMID:29042768

  17. Nanoparticle-mediated local and remote manipulation of protein aggregation.

    PubMed

    Kogan, Marcelo J; Bastus, Neus G; Amigo, Roger; Grillo-Bosch, Dolors; Araya, Eyleen; Turiel, Antonio; Labarta, Amilcar; Giralt, Ernest; Puntes, Victor F

    2006-01-01

    The local heat delivered by metallic nanoparticles selectively attached to their target can be used as a molecular surgery to safely remove toxic and clogging aggregates. We apply this principle to protein aggregates, in particular to the amyloid beta protein (Abeta) involved in Alzheimer's disease (AD), a neurodegenerative disease where unnaturally folded Abeta proteins self-assemble and deposit forming amyloid fibrils and plaques. We show the possibility to remotely redissolve these deposits and to interfere with their growth, using the local heat dissipated by gold nanoparticles (AuNP) selectively attached to the aggregates and irradiated with low gigahertz electromagnetic fields. Simultaneous tagging and manipulation by AuNP of Abeta at different stages of aggregation allow both, noninvasive exploration and dissolution of molecular aggregates.

  18. Optical characteristics of the nanoparticle coupled to a quantum molecular aggregate

    NASA Astrophysics Data System (ADS)

    Ropakova, I. Yu.; Zvyagin, A. A.

    2017-11-01

    Optical characteristics of a single nanoparticle, coupled to the one-dimensional quantum molecular aggregate is studied. Depending on the values of the coupling of the particle and its own frequency, with respect to the own frequency of the aggregated molecules, and the strength of the aggregation, the dynamical relative permittivity of the nanoparticle manifests the contribution from the exciton band, or/and the ones from the local level(s) caused by the particle. The refractive index and the extinction coefficient of the nanoparticle is also calculated.

  19. J-aggregation in porphyrin nanoparticles induced by diphenylalanine

    NASA Astrophysics Data System (ADS)

    Li, Fengqing; Liu, Dongzhi; Wang, Tianyang; Hu, Jianxin; Meng, Fancui; Sun, Haiya; Shang, Zhi; Li, Pingan; Feng, Wenhui; Li, Wei; Zhou, Xueqin

    2017-08-01

    In this report, L-diphenylalanine-decorated tetraphenylporphyrin (TPPtFFC) was synthesized and self-assembled into regular nano-architechtures. The morphology of the assemblies varied with the concentration of TPPtFFC. The absorption spectra of the nanoparticles show the Soret band merges with the Q bands and redistributes with great red-shift, indicative of the formation of J-aggregates of the porphyrin molecules. The fluorescence emission of the nanoparticles is merged and red-shifted to near-infrared region. Studies of absorption and fluorescence spectra reveal an indispensible role of diphenylalanine group in the formation of J-aggregates. The Raman spectra disclose that diprotonation of the porphyrin core contributes to delocalized coherent excited states in the nanoparticles. The positive cotton effect in circular dichroism spectra corresponding to the Soret band of TPPtFFC in solution confirms the formation of J-aggregates with right-handed chirality of the dipole moment. This report will shed light on the rational design of porphyrin-peptide conjugates to mimic naturally light-harvesting complexes.

  20. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin.

    PubMed

    Dubey, Kriti; Anand, Bibin G; Badhwar, Rahul; Bagler, Ganesh; Navya, P N; Daima, Hemant Kumar; Kar, Karunakar

    2015-12-01

    Here, we have strategically synthesized stable gold (AuNPs(Tyr), AuNPs(Trp)) and silver (AgNPs(Tyr)) nanoparticles which are surface functionalized with either tyrosine or tryptophan residues and have examined their potential to inhibit amyloid aggregation of insulin. Inhibition of both spontaneous and seed-induced aggregation of insulin was observed in the presence of AuNPs(Tyr), AgNPs(Tyr), and AuNPs(Trp) nanoparticles. These nanoparticles also triggered the disassembly of insulin amyloid fibrils. Surface functionalization of amino acids appears to be important for the inhibition effect since isolated tryptophan and tyrosine molecules did not prevent insulin aggregation. Bioinformatics analysis predicts involvement of tyrosine in H-bonding interactions mediated by its C=O, -NH2, and aromatic moiety. These results offer significant opportunities for developing nanoparticle-based therapeutics against diseases related to protein aggregation.

  1. Stable J-aggregation enabled dual photoacoustic and fluorescence nanoparticles for intraoperative cancer imaging

    NASA Astrophysics Data System (ADS)

    Shakiba, Mojdeh; Ng, Kenneth K.; Huynh, Elizabeth; Chan, Harley; Charron, Danielle M.; Chen, Juan; Muhanna, Nidal; Foster, F. Stuart; Wilson, Brian C.; Zheng, Gang

    2016-06-01

    J-aggregates display nanoscale optical properties which enable their use in fluorescence and photoacoustic imaging applications. However, control over their optical properties in an in vivo setting is hampered by the conformational lability of the J-aggregate structure in complex biological environments. J-aggregating nanoparticles (JNP) formed by self-assembly of bacteriopheophorbide-lipid (Bchl-lipid) in lipid nanovesicles represents a novel strategy to stabilize J-aggregates for in vivo bioimaging applications. We find that 15 mol% Bchl-lipid embedded within a saturated phospholipid bilayer vesicle was optimal in terms of maximizing Bchl-lipid dye loading, while maintaining a spherical nanoparticle morphology and retaining spectral properties characteristic of J-aggregates. The addition of cholesterol maintains the stability of the J-aggregate absorption band for up to 6 hours in the presence of 90% FBS. In a proof-of-concept experiment, we successfully applied JNPs as a fluorescence contrast agent for real-time intraoperative detection of metastatic lymph nodes in a rabbit head-and-neck cancer model. Lymph node metastasis delineation was further verified by visualizing the JNP within the excised lymph node using photoacoustic imaging. Using JNPs, we demonstrate the possibility of using J-aggregates as fluorescence and photoacoustic contrast agents and may potentially spur the development of other nanomaterials that can stably induce J-aggregation for in vivo cancer bioimaging applications.J-aggregates display nanoscale optical properties which enable their use in fluorescence and photoacoustic imaging applications. However, control over their optical properties in an in vivo setting is hampered by the conformational lability of the J-aggregate structure in complex biological environments. J-aggregating nanoparticles (JNP) formed by self-assembly of bacteriopheophorbide-lipid (Bchl-lipid) in lipid nanovesicles represents a novel strategy to stabilize J-aggregates

  2. Characterization of Nanoparticle Aggregation in Biologically Relevant Fluids

    NASA Astrophysics Data System (ADS)

    McEnnis, Kathleen; Lahann, Joerg

    Nanoparticles (NPs) are often studied as drug delivery vehicles, but little is known about their behavior in blood once injected into animal models. If the NPs aggregate in blood, they will be shunted to the liver or spleen instead of reaching the intended target. The use of animals for these experiments is costly and raises ethical questions. Typically dynamic light scattering (DLS) is used to analyze aggregation behavior, but DLS cannot be used because the components of blood also scatter light. As an alternative, a method of analyzing NPs in biologically relevant fluids such as blood plasma has been developed using nanoparticle tracking analysis (NTA) with fluorescent filters. In this work, NTA was used to analyze the aggregation behavior of fluorescent polystyrene NPs with different surface modifications in blood plasma. It was expected that different surface chemistries on the particles will change the aggregation behavior. The effect of the surface modifications was investigated by quantifying the percentage of NPs in aggregates after addition to blood plasma. The use of this characterization method will allow for better understanding of particle behavior in the body, and potential problems, specifically aggregation, can be addressed before investing in in vivo studies.

  3. Aggregation Kinetics of Diesel Soot Nanoparticles in Wet Environments.

    PubMed

    Chen, Chengyu; Huang, Weilin

    2017-02-21

    Soot produced during incomplete combustion consists mainly of carbonaceous nanoparticles (NPs) with severe adverse environmental and health effects, and its environmental fate and transport are largely controlled by aggregation. In this study, we examined the aggregation behavior for diesel soot NPs under aqueous condition in an effort to elucidate the fundamental processes that govern soot particle-particle interactions in wet environments such as rain droplets or surface aquatic systems. The influence of electrolytes and aqueous pH on colloidal stability of these NPs was investigated by measuring their aggregation kinetics in different aqueous solution chemistries. The results showed that the NPs had negatively charged surfaces and exhibited both reaction- and diffusion-limited aggregation regimes with rates depended upon solution chemistry. The aggregation kinetics data were in good agreement with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The critical coagulation concentrations (CCC) were quantified and the Hamaker constant was derived for the soot (1.4 × 10 -20 J) using the colloidal chemistry approach. The study indicated that, depending upon local aqueous chemistry, single soot NPs could remain stable against self-aggregation in typical freshwater environments and in neutral cloud droplets but are likely to aggregate under salty (e.g., estuaries) or acidic (e.g., acid rain droplets) aquatic conditions or both.

  4. Impact of environmental conditions on aggregation kinetics of hematite and goethite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Chen-yang; Deng, Kai-ying; Li, Jiu-yu; Xu, Ren-kou

    2015-10-01

    Hematite and goethite nanoparticles were used as model minerals to investigate their aggregation kinetics under soil environmental conditions in the present study. The hydrodynamic diameters of hematite and goethite nanoparticles were 34.4 and 66.3 nm, respectively. The positive surface charges and zeta potential values for goethite were higher than for hematite. The effective diameter for goethite was much larger than for hematite due to anisotropic sticking of needle-shaped goethite during aggregation. Moreover, the critical coagulation concentration (CCC) values of nanoparticles in solutions of NaNO3, NaCl, NaF, and Na2SO4 were 79.2, 75.0, 7.8, and 0.5 mM for hematite and they were 54.7, 62.6, 5.5, and 0.2 mM for goethite, respectively. The disparity of anions in inducing hematite or goethite aggregation lay in the differences in interfacial interactions. NO3 - and Cl- could decrease the zeta potential and enhance aggregation mainly through increasing ionic strength and compressing electric double layers of hematite and goethite nanoparticles. F- and SO4 2- highly destabilized the suspensions of nanoparticles mainly through specific adsorption and then neutralizing the positive surface charges of nanoparticles. Specific adsorption of cations could increase positive surface charges and stabilize hematite and goethite nanoparticles. The Hamaker constants of hematite and goethite nanoparticles were calculated to be 2.87 × 10-20 and 2.29 × 10-20 J-1, respectively. The predicted CCC values based on DLVO theory were consistent well with the experimentally determined CCC values in NaNO3, NaCl, NaF, and Na2SO4 systems, which demonstrated that DLVO theory could successfully predict the aggregation kinetics even when specific adsorption of ions occurred.

  5. Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Taghavy, Amir; Pennell, Kurt D.; Abriola, Linda M.

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media.

  6. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.

    PubMed

    Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis.

    PubMed

    Marczak, Steven; Senapati, Satyajyoti; Slouka, Zdenek; Chang, Hsueh-Chia

    2016-12-15

    A rapid (<20min) gel-membrane biochip platform for the detection and quantification of short nucleic acids is presented based on a sandwich assay with probe-functionalized gold nanoparticles and their separation into concentrated bands by depletion-generated gel isotachophoresis. The platform sequentially exploits the enrichment and depletion phenomena of an ion-selective cation-exchange membrane created under an applied electric field. Enrichment is used to concentrate the nanoparticles and targets at a localized position at the gel-membrane interface for rapid hybridization. The depletion generates an isotachophoretic zone without the need for different conductivity buffers, and is used to separate linked nanoparticles from isolated ones in the gel medium and then by field-enhanced aggregation of only the linked particles at the depletion front. The selective field-induced aggregation of the linked nanoparticles during the subsequent depletion step produces two lateral-flow like bands within 1cm for easy visualization and quantification as the aggregates have negligible electrophoretic mobility in the gel and the isolated nanoparticles are isotachophoretically packed against the migrating depletion front. The detection limit for 69-base single-stranded DNA targets is 10 pM (about 10 million copies for our sample volume) with high selectivity against nontargets and a three decade linear range for quantification. The selectivity and signal intensity are maintained in heterogeneous mixtures where the nontargets outnumber the targets 10,000 to 1. The selective field-induced aggregation of DNA-linked nanoparticles at the ion depletion front is attributed to their trailing position at the isotachophoretic front with a large field gradient. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

    PubMed

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe 3 O 4 and cobalt ferrite CoFe 2 O 4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10-20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%-25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal

  9. Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates

    NASA Astrophysics Data System (ADS)

    Li, Qibin; Wang, Meng; Liang, Yunpei; Lin, Liyang; Fu, Tao; Wei, Peitang; Peng, Tiefeng

    2017-06-01

    Molecular dynamics simulations were employed to investigate the heating rates' effect on aggregation of two copper nanoparticles. The aggregation can be distinguished into three distinct regimes by the contacting and melting of nanoparticles. The nanoparticles contacting at a lower temperature during the sintering with lower heating rate, meanwhile, some temporary stacking fault exists at the contacting neck. The aggregation properties of the system, i.e. neck diameter, shrinkage ratio, potential energy, mean square displacement (MSD) and relative gyration radius, experience drastic changes due to the free surface annihilation. After the nanoparticles coalesced for a stable period, the shrinkage ratio, MSD, relative gyration radius and neck diameter of the system are dramatically changed during the melting process. It is shown that the shrinkage ratio and MSD have relative larger increasing ratio for a lower heating rate. While the evolution of the relative gyration radius and neck diameter is only sensitive to the temperature.

  10. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus.

    PubMed

    Landi, G T; Romero, S A; Santos, A D

    2010-03-01

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  11. Preparation and measurement methods for studying nanoparticle aggregate surface chemistry.

    PubMed

    Szakal, Christopher; McCarthy, James A; Ugelow, Melissa S; Konicek, Andrew R; Louis, Kacie; Yezer, Benjamin; Herzing, Andrew A; Hamers, Robert J; Holbrook, R David

    2012-07-01

    Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files. We present differences in mass spectral peak ratios for bare TiO(2) NPs compared to NPs mixed separately with natural organic matter (NOM) or pond water. The results suggest that subtle changes in the local environment can alter the surface chemistry of TiO(2) NPs, as monitored by Ti(+)/TiO(+) and Ti(+)/C(3)H(5)(+) peak ratios. The subtle changes in the absolute surface chemistry of NP aggregates vs. that of the subsurface are explored. It is envisioned that the methods developed herein can be adapted for monitoring the surface chemistries of a variety of engineered NPs obtained from diverse natural environments.

  12. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of nanoparticles size and polyelectrolyte on nanoparticles aggregation in a cellulose fibrous matrix

    DOE PAGES

    Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan; ...

    2017-09-18

    Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less

  14. Protein corona between nanoparticles and bacterial proteins in activated sludge: Characterization and effect on nanoparticle aggregation.

    PubMed

    Zhang, Peng; Xu, Xiao-Yan; Chen, You-Peng; Xiao, Meng-Qian; Feng, Bo; Tian, Kai-Xun; Chen, Yue-Hui; Dai, You-Zhi

    2018-02-01

    In this work, the protein coronas of activated sludge proteins on TiO 2 nanoparticles (TNPs) and ZnO nanoparticles (ZNPs) were characterized. The proteins with high affinity to TNPs and ZNPs were identified by shotgun proteomics, and their effects of on the distributions of TNPs and ZNPs in activated sludge were concluded. In addition, the effects of protein coronas on the aggregations of TNPs and ZNPs were evaluated. Thirty and nine proteins with high affinities to TNPs and ZNPs were identified, respectively. The proteomics and adsorption isotherms demonstrated that activated sludge had a higher affinity to TNPs than to ZNPs. The aggregation percentages of ZNPs at 35, 53, and 106 mg/L of proteins were 13%, 14%, and 18%, respectively, whereas those of TNPs were 21%, 30%, 41%, respectively. The proteins contributed to ZNPs aggregation by dissolved Zn ion-bridging, whereas the increasing protein concentrations enhanced the TNPs aggregation through macromolecule bridging flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Aggregation control of quantum dots through ion-mediated hydrogen bonding shielding.

    PubMed

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; He, Xiaoxiao; Wang, Qing; Huang, Jin; Liu, Yan

    2012-06-26

    Nanoparticle stabilization against detrimental aggregation is a critical parameter that needs to be well controlled. Herein, we present a facile and rapid ion-mediated dispersing technique that leads to hydrophilic aggregate-free quantum dots (QDs). Because of the shielding of the hydrogen bonds between cysteamine-capped QDs, the presence of F(-) ions disassembled the aggregates of QDs and afforded their high colloidal stability. The F(-) ions also greatly eliminated the nonspecific adsorption of the QDs on glass slides and cells. Unlike the conventional colloidal stabilized method that requires the use of any organic ligand and/or polymer for the passivation of the nanoparticle surface, the proposed approach adopts the small size and large diffusion coefficient of inorganic ions as dispersant, which offers the disaggregation a fast reaction dynamics and negligible influence on their intrinsic surface functional properties. Therefore, the ion-mediated dispersing strategy showed great potential in chemosensing and biomedical applications.

  16. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia

    PubMed Central

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe3O4 and cobalt ferrite CoFe2O4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10–20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%–25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal

  17. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  18. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.

    PubMed

    Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng

    2014-10-22

    ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

  19. Precursor Ion–Ion Aggregation in the Brust–Schiffrin Synthesis of Alkanethiol Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Trent R.; Renslow, Ryan; Govind, Niranjan

    Tetraoctylammonium bromide is used in the Brust-Schiffrin nanoparticle synthesis to phase-transfer chloroaurate ions from the aqueous phase to the organic phase. While it is established that the quaternary ammonium complex self-associates in the organic phase, the actual self-assembled structure is debated. We have confirmed the presence of ion-ion aggregates through quantitative 1H Nuclear Magnetic Resonance spectroscopy (NMR), pulsed field gradient, diffusion-ordered NMR (DOSY-NMR) and density functional theory (DFT) based NMR shift calculations. Tetraoctylammonium complexes (TOA-X, where X = Br, Cl, AuCl4-xBrx, AuBr4/Br and AuCl4-xBrx/Br) were investigated to measure the extraction of water into the organic phase. 1H NMR and DFTmore » based NMR shielding calculations indicated that deshielding of water is due to hydration of the anion and not the formation of the aqueous core of a reverse micelle. DOSYNMR results were consistent with the formation of small aggregates at typical Brust-Schiffrin synthesis concentrations. The extent of aggregation correlated with the size and electronegativity of the anion and was analyzed with a modified, isodesmic, indefinite aggregation model. The substitution of bromoauric acid for chlororoauric acid at conditions emulating the Brust-Schiffrin synthesis increased the aggregation of the quaternary ammonium complex. The increase in aggregation corresponded with an increase in the size of the produced nanoparticles from 4.3 to 4.6 nm. Understanding the selfassembly and supramolecular structure of precursors in the Brust-Schiffrin synthesis will enable further refinement of models that predict the growth of noble metal nanoparticles.« less

  20. Assessing the Role of Capping Molecules in Controlling Aggregative Growth of Gold Nanoparticles in Heated Solution.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2016-01-01

    This report describes findings of an investigation of the role of capping molecules in the size growth in the aggregative growth of pre-formed small-sized gold nanoparticles capped with alkanethiolate monolayers toward monodispersed larger sizes. The size controllability depends on the thiolate chain length and concentration in the thermal solution. The size evolution in solution at different concentrations of alkanethiols is analyzed in relation to adsorption isotherms and cohesive energy. The size dependence on thiolate chain length is also analyzed by considering the cohesive energy of the capping molecules, revealing the importance of cohesive energy in the capping structure. Theoretical and experimental comparisons of the surface plasmonic resonance optical properties have also provided new insights into the mechanism, thus enabling the exploitation of size-dependent nanoscale properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Real-time measurement of size-resolved elemental composition ratio for flame synthesized composite nanoparticle aggregates using a tandem SMPS-ICP-OES

    PubMed Central

    Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim

    2017-01-01

    Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work. PMID:28435179

  2. Real-time measurement of size-resolved elemental composition ratio for flame synthesized composite nanoparticle aggregates using a tandem SMPS-ICP-OES.

    PubMed

    Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim

    2017-01-01

    Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work.

  3. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn−S−NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn−S−NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  4. Aggregation effect on absorbance spectrum of laser ablated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Isnaeni; Irmaniar; Herbani, Y.

    2017-04-01

    Plasmon of gold nanoparticles is one of the hot topics nowadays due to various possible applications. The application is determined by plasmon peak in absorbance spectrum. We have fabricated gold nanoparticles using laser ablation technique and studied the influence of CTAB (Cetyl trimethylammonium bromide) effect on the optical characterization of fabricated gold nanoparticles. We ablated a gold plate using NdYAG pulsed laser at 1064 nm wavelength, 10 Hz pulse frequency at low energy density. We found there are two distinctive plasmon peaks, i.e., primary and secondary peaks, where the secondary peak is the main interests of this work. Our simulation results have revealed that the secondary plasmon peak is affected by random aggregation of gold nanoparticles. Our research leads to good techniques on fabrication of colloidal gold nanoparticles in aqueous solution using laser ablation technique.

  5. Surface modification of the TiO2 nanoparticle surface enables fluorescence monitoring of aggregation and enhanced photoreactivity.

    PubMed

    Kamps, Kara; Leek, Rachael; Luebke, Lanette; Price, Race; Nelson, Megan; Simonet, Stephanie; Eggert, David Joeseph; Ateşin, Tülay Aygan; Brown, Eric Michael Bratsolias

    2013-01-01

    Chemically and biologically modified nanoparticles are increasingly considered as viable and multifunctional tools to be used in cancer theranostics. Herein, we demonstrate that coordination of alizarin blue black B (ABBB) to the TiO(2) nanoparticle surface enhances the resulting nanoparticles by (1) creating distinct fluorescence emission spectra that differentiate smaller TiO(2) nanoparticles from larger TiO(2) nanoparticle aggregates (both in vitro and intracellular) and (2) enhancing visible light activation of TiO(2) nanoparticles above previously described methods to induce in vitro and intracellular damage to DNA and other targets. ABBB-TiO(2) nanoparticles are characterized through sedimentation, spectral absorbance, and gel electrophoresis. The possible coordination modes of ABBB to the TiO(2) nanoparticle surface are modeled by computational methods. Fluorescence emission spectroscopy studies indicate that ABBB coordination on TiO(2) nanoparticles enables discernment between nanoparticles and nanoparticle aggregates both in vitro and intracellular through fluorescence confocal microscopy. Visible light activated ABBB-TiO(2) nanoparticles are capable of inflicting increased DNA cleavage through localized production of reactive oxygen species as visualized by plasmid DNA damage detected through gel electrophoresis and atomic force microscopy. Finally, visible light excited ABBB-TiO(2) nanoparticles are capable of inflicting damage upon HeLa (cervical cancer) cells by inducing alterations in DNA structure and membrane associated proteins. The multifunctional abilities of these ABBB-TiO(2) nanoparticles to visualize and monitor aggregation in real time, as well as inflict visible light triggered damage upon cancer targets will enhance the use of TiO(2) nanoparticles in cancer theranostics.

  6. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles

    EPA Science Inventory

    Aggregation of fullerene nanoparticles (nC60) is a fundamental process influencing its environmental fate and transport, and toxicity. Using time-resolved dynamic light scattering we systematically investigated aggregation kinetics of nC60 generated from extended mixing in water ...

  7. Supercooling of Water Controlled by Nanoparticles and Ultrasound

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Jia, Lisi; Chen, Ying; Li, Yi'ang; Li, Jun; Mo, Songping

    2018-05-01

    Nanoparticles, including Al2O3 and SiO2, and ultrasound were adopted to improve the solidification properties of water. The effects of nanoparticle concentration, contact angle, and ultrasonic intensity on the supercooling degree of water were investigated, as well as the dispersion stability of nanoparticles in water during solidification. Experimental results show that the supercooling degree of water is reduced under the combined effect of ultrasound and nanoparticles. Consequently, the reduction of supercooling degree increases with the increase of ultrasonic intensity and nanoparticle concentration and decrease of contact angle of nanoparticles. Moreover, the reduction of supercooling degree caused by ultrasound and nanoparticles together do not exceed the sum of the supercooling degree reductions caused by ultrasound and nanoparticles separately; the reduction is even smaller than that caused by ultrasound individually under certain conditions of controlled nanoparticle concentration and contact angle and ultrasonic intensity. The dispersion stability of nanoparticles during solidification can be maintained only when the nanoparticles and ultrasound together show a superior effect on reducing the supercooling degree of water to the single operation of ultrasound. Otherwise, the aggregation of nanoparticles appears in water solidification, which results in failure. The relationships among the meaningful nanoparticle concentration, contact angle, and ultrasonic intensity, at which the requirements of low supercooling and high stability could be satisfied, were obtained. The control mechanisms for these phenomena were analyzed.

  8. Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles.

    PubMed

    Martínez, L; Lauwaet, K; Santoro, G; Sobrado, J M; Peláez, R J; Herrero, V J; Tanarro, I; Ellis, G J; Cernicharo, J; Joblin, C; Huttel, Y; Martín-Gago, J A

    2018-05-08

    The increasing demand for nanostructured materials is mainly motivated by their key role in a wide variety of technologically relevant fields such as biomedicine, green sustainable energy or catalysis. We have succeeded to scale-up a type of gas aggregation source, called a multiple ion cluster source, for the generation of complex, ultra-pure nanoparticles made of different materials. The high production rates achieved (tens of g/day) for this kind of gas aggregation sources, and the inherent ability to control the structure of the nanoparticles in a controlled environment, make this equipment appealing for industrial purposes, a highly coveted aspect since the introduction of this type of sources. Furthermore, our innovative UHV experimental station also includes in-flight manipulation and processing capabilities by annealing, acceleration, or interaction with background gases along with in-situ characterization of the clusters and nanoparticles fabricated. As an example to demonstrate some of the capabilities of this new equipment, herein we present the fabrication of copper nanoparticles and their processing, including the controlled oxidation (from Cu 0 to CuO through Cu 2 O, and their mixtures) at different stages in the machine.

  9. Understanding and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer Deposition: An Avenue to Size Selection

    PubMed Central

    2017-01-01

    We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment. PMID:28178779

  10. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  11. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation

    PubMed Central

    Antón, Ricardo López; González, Juan A.; Andrés, Juan P.; Normile, Peter S.; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M.; De Toro, José A.

    2017-01-01

    Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved. PMID:28336895

  12. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation.

    PubMed

    Antón, Ricardo López; González, Juan A; Andrés, Juan P; Normile, Peter S; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M; De Toro, José A

    2017-03-11

    Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved.

  13. Fabrication of Ni@Ti core-shell nanoparticles by modified gas aggregation source

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.

    2017-11-01

    Ni@Ti core-shell nanoparticles were prepared by a vacuum based method using the gas aggregation source (GAS) of nanoparticles. Ni nanoparticles fabricated in the GAS were afterwards coated by a Ti shell. The Ti shell was deposited by means of magnetron sputtering. The Ni nanoparticles were decelerated in the vicinity of the magnetron to the Ar drift velocity in the second deposition chamber. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy analysis of the nanoparticles showed the core-shell structure. It was shown that the thickness of the shell can be easily tuned by the process parameters with a maximum achieved thickness of the Ti shell ~2.5 nm. The core-shell structure was confirmed by the STEM analysis of the particles.

  14. Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels

    NASA Astrophysics Data System (ADS)

    Hoshiar, Ali Kafash; Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok; Yoon, Jungwon

    2017-04-01

    Magnetic-guided targeted drug delivery (TDD) systems can enhance the treatment of diverse diseases. Despite the potential and promising results of nanoparticles, aggregation prevents precise particle guidance in the vasculature. In this study, we developed a simulation platform to investigate aggregation during steering of nanoparticles using a magnetic field function. The magnetic field function (MFF) comprises a positive and negative pulsed magnetic field generated by electromagnetic coils, which prevents adherence of particles to the vessel wall during magnetic guidance. A commonly used Y-shaped vessel was simulated and the performance of the MFF analyzed; the experimental data were in agreement with the simulation results. Moreover, the effects of various parameters on magnetic guidance were evaluated and the most influential identified. The simulation results presented herein will facilitate more precise guidance of nanoparticles in vivo.

  15. Size-controlled and redox-responsive supramolecular nanoparticles

    PubMed Central

    2015-01-01

    Summary Control over the assembly and disassembly of nanoparticles is pivotal for their use as drug delivery vehicles. Here, we aim to form supramolecular nanoparticles (SNPs) by combining advantages of the reversible assembly properties of SNPs using host–guest interactions and of a stimulus-responsive moiety. The SNPs are composed of a core of positively charged poly(ethylene imine) grafted with β-cyclodextrin (CD) and a positively charged ferrocene (Fc)-terminated poly(amidoamine) dendrimer, with a monovalent stabilizer at the surface. Fc was chosen for its loss of CD-binding properties when oxidizing it to the ferrocenium cation. The ionic strength was shown to play an important role in controlling the aggregate growth. The attractive supramolecular and repulsive electrostatic interactions constitute a balance of forces in this system at low ionic strengths. At higher ionic strengths, the increased charge screening led to a loss of electrostatic repulsion and therefore to faster aggregate growth. A Job plot showed that a 1:1 stoichiometry of host and guest moieties gave the most efficient aggregate growth. Different stabilizers were used to find the optimal stopper to limit the growth. A weaker guest moiety was shown to be less efficient in stabilizing the SNPs. Also steric repulsion is important for achieving SNP stability. SNPs of controlled particle size and good stability (up to seven days) were prepared by fine-tuning the ratio of multivalent and monovalent interactions. Finally, reversibility of the SNPs was confirmed by oxidizing the Fc guest moieties in the core of the SNPs. PMID:26733345

  16. Theoretical study of nanoparticle formation in thermal plasma processing: Nucleation, coagulation and aggregation

    NASA Astrophysics Data System (ADS)

    Mendoza Gonzalez, Norma Yadira

    This work presents a mathematical modeling study of the synthesis of nanoparticles in radio frequency (RF) inductively coupled plasma (ICP) reactors. The purpose is to further investigate the influence of process parameters on the final size and morphology of produced particles. The proposed model involves the calculation of flow and temperature fields of the plasma gas. Evaporation of raw particles is also accounted with the particle trajectory and temperature history calculated with a Lagrangian approach. The nanoparticle formation is considered by homogeneous nucleation and the growth is caused by condensation and Brownian coagulation. The growth of fractal aggregates is considered by introducing a power law exponent Df. Transport of nanoparticles occurs by convection, thermophoresis and Brownian diffusion. The method of moments is used to solve the particle dynamics equation. The model is validated using experimental results from plasma reactors at laboratory scale. The results are presented in the following manner. First, use is made of the computational fluid dynamics software (CFD), Fluent 6.1 with a commercial companion package specifically developped for aerosols named: Fine Particle Model (FPM). This package is used to study the relationship between the operating parameters effect and the properties of the end products at the laboratory scale. Secondly, a coupled hybrid model for the synthesis of spherical particles and fractal aggregates is developped in place of the FPM package. Results obtained from this model will allow to identify the importance of each parameter in defining the morphology of spherical primary particles and fractal aggregates of nanoparticles. The solution of the model was made using the geometries and operating conditions of existing reactors at the Centre de Recherche en Energie, Plasma et Electrochimie (CREPE) of the Universite de Sherbrooke, for which experimental results were obtained experimentally. Additionally, this study

  17. Monitoring of conditions inside gas aggregation cluster source during production of Ti/TiOx nanoparticles

    NASA Astrophysics Data System (ADS)

    Kousal, J.; Kolpaková, A.; Shelemin, A.; Kudrna, P.; Tichý, M.; Kylián, O.; Hanuš, J.; Choukourov, A.; Biederman, H.

    2017-10-01

    Gas aggregation sources are nowadays rather widely used in the research community for producing nanoparticles. However, the direct diagnostics of conditions inside the source are relatively scarce. In this work, we focused on monitoring the plasma parameters and the composition of the gas during the production of the TiOx nanoparticles. We studied the role of oxygen in the aggregation process and the influence of the presence of the particles on the plasma. The construction of the source allowed us to make a 2D map of the plasma parameters inside the source.

  18. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    NASA Astrophysics Data System (ADS)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe3O4-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15-20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15-20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran).

  19. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy.

    PubMed

    Li, Huan; Liu, Xiangsheng; Huang, Nan; Ren, Kefeng; Jin, Qiao; Ji, Jian

    2014-01-01

    The acidic microenvironment of tumor tissues has proven to be one of the major differences from other normal tissues. The near-infrared (NIR) light irradiation of aggregated gold nanoparticles in a tumor acidic pH-induced manner could then provide an effect approach to treat solid tumors with the advantage of minimizing the undesired damage to normal tissues. Although it is well-known the aggregation of larger nanoparticles will result in a better NIR photothermal effect, the preparation of pH-sensitive gold nanoparticles in large sizes remains a big challenge because of their worse dispersive stability. In this paper, we introduce a facile way to endow large gold nanoparticles with tunable pH-aggregation behaviors by modifying the nanoparticle surface with mixed-charge self-assembly monolayers compromising positively and negatively charged thiol ligands. Four different size nanoparticles were used to study the general principle of tailoring the pH-induced aggregation behaviors of mixed-charge gold nanoparticles (MC-GNPs) by adjusting the surface ligand composition. With proper surface ligand composition, the MC-GNPs in four different sizes that all exhibited aggregation at tumor acidic pH were obtained. The biggest MC-GNPs showed the most encouraging aggregation-enhanced photothermal efficacy in vitro when they formed aggregates. The mixed-charge self-assembled monolayers were then proved as a facile method to design pH-induced aggregation of large gold nanoparticles for better NIR photothermal cancer therapy.

  20. Soft Landing of Bare Nanoparticles with Controlled Size, Composition, and Morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Colby, Robert J.; Laskin, Julia

    2015-01-01

    A kinetically-limited physical synthesis method based on magnetron sputtering and gas aggregation has been coupled with size-selection and ion soft landing to prepare bare metal nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of bare nanoparticles soft landed onto flat glassy carbon and silicon as well as stepped graphite surfaces may be controlled through size-selection with a quadrupole mass filter and the length of deposition, respectively. The bare nanoparticles are observed with AFM to bind randomly to the flat glassymore » carbon surface when soft landed at relatively low coverage (1012 ions). In contrast, on stepped graphite surfaces at intermediate coverage (1013 ions) the soft landed nanoparticles are shown to bind preferentially along step edges forming extended linear chains of particles. At the highest coverage (5 x 1013 ions) examined in this study the nanoparticles are demonstrated with both AFM and SEM to form a continuous film on flat glassy carbon and silicon surfaces. On a graphite surface with defects, however, it is shown with SEM that the presence of localized surface imperfections results in agglomeration of nanoparticles onto these features and the formation of neighboring depletion zones that are devoid of particles. Employing high resolution scanning transmission electron microscopy in the high angular annular dark field imaging mode (STEM-HAADF) and electron energy loss spectroscopy (EELS) it is demonstrated that the magnetron sputtering/gas aggregation synthesis technique produces single metal particles with controlled morphology as well as bimetallic alloy nanoparticles with clearly defined core-shell structure. Therefore, this kinetically-limited physical synthesis technique, when combined with ion soft landing, is a versatile complementary method for preparing a wide

  1. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth

    PubMed Central

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-01-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L2,3 absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)–Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension. PMID:23038172

  2. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

    PubMed

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-02-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  3. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luef, Birgit; Fakra, Sirine C.; Csencsits, Roseann

    2013-02-04

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III) bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Further, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on sitemore » and subsequently examined using correlated 2- and 3- dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). Most cells had their outer membranes decorated with up to 150 nm diameter aggregates composed of a few nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well studied group of FeRB. STXM results at the Fe L2,3 absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell-surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.« less

  4. Sugar-Terminated Nanoparticle Chaperones Are 102-105 Times Better Than Molecular Sugars in Inhibiting Protein Aggregation and Reducing Amyloidogenic Cytotoxicity.

    PubMed

    Pradhan, Nibedita; Shekhar, Shashi; Jana, Nihar R; Jana, Nikhil R

    2017-03-29

    Sugar-based osmolyte molecules are known to stabilize proteins under stress, but usually they have poor chaperone performance in inhibiting protein aggregation. Here, we show that the nanoparticle form of sugars molecule can enhance their chaperone performance typically by 10 2 -10 5 times, compared to molecular sugar. Sugar-based plate-like nanoparticles of 20-40 nm hydrodynamic size have been synthesized by simple heating of acidic aqueous solution of glucose/sucrose/maltose/trehalose. These nanoparticles have excitation-dependent green/yellow/orange emission and surface chemistry identical to the respective sugar molecule. Fibrillation of lysozyme/insulin/amyloid beta in extracellular space, aggregation of mutant huntingtin protein inside model neuronal cell, and cytotoxic effect of fibrils are investigated in the presence of these sugar nanoparticles. We found that sugar nanoparticles are 10 2 -10 5 times efficient than respective sugar molecules in inhibiting protein fibrillation and preventing cytotoxicity arising of fibrils. We propose that better performance of the nanoparticle form is linked to its stronger binding with fibril structure and enhanced cell uptake. This result suggests that nanoparticle form of osmolyte can be an attractive option in prevention and curing of protein aggregation-derived diseases.

  5. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich

    2016-09-01

    It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag+) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag+/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca2+, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca2+-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV-Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag+ adsorption to ultrafiltration membranes.

  6. Aggregate Load Controllers and Associated Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.

    Aggregate load controllers and associated methods are described. According to one aspect, a method of operating an aggregate load controller includes using an aggregate load controller having an initial state, applying a stimulus to a plurality of thermostatic controllers which are configured to control a plurality of respective thermostatic loads which receive electrical energy from an electrical utility to operate in a plurality of different operational modes, accessing data regarding a response of the thermostatic loads as a result of the applied stimulus, using the data regarding the response, determining a value of at least one design parameter of themore » aggregate load controller, and using the determined value of the at least one design parameter, configuring the aggregate load controller to control amounts of the electrical energy which are utilized by the thermostatic loads.« less

  7. VAPOR PHASE MERCURY SORPTION BY ORGANIC SULFIDE MODIFIED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

  8. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.

    PubMed

    Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike

    2015-12-01

    Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.

  9. Correlation of surface enhanced Raman spectroscopy and nanoparticle aggregation with rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Hoff, Christopher A.

    Surface enhanced Raman spectroscopy (SERS) has fascinated the analytical chemistry field for decades. The SERS phenomenon has progressively leveraged the inherently insensitive Raman phenomenon from a novelty vibrational spectroscopy method into one capable of single molecule detection, with attendant molecular level selectivity and information. Yet, even after 40 years since its discovery, the core mechanism behind this phenomenon is still debated. This thesis presents results from a series of photometric titrations wherein solutions of 30 nm Au@Ag nanoparticles (NPs) were titrated with rhodamine 6G (R6G), spanning five orders of magnitude in R6G concentration, and which elucidate the conditions required for the onset of SERS by R6G in this system. The experiments illustrated the correlation between the Raman response and the plasmonic (via UV-Vis spectroscopy) properties of the nanoparticle solutions. It was found that the onset of R6G SERS was related much more closely to the aggregation of the nanoparticles in solution than to their R6G adsorbed surface coverage. However, triggering aggregation with sodium chloride appeared to enhance SERS by an independent mechanism, which is operative only at low, i.e., [NaCl] > 100 mM concentration.

  10. Semi-flexible polymer engendered aggregation/dispersion of fullerene (C60) nano-particles: An atomistic investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Pattanayek, Sudip K.

    2018-06-01

    Semi flexible polymer chain has been modeled by choosing various values of persistent length (stiffness). As the polymer chain stiffness increases, the shape of polymer chain changes from globule to extended cigar to toroid like structure during cooling from a high temperature. The aggregation of fullerene nano-particles is found to depend on the morphology of polymer chain. To maximize, the number of polymer bead-nanoparticle contacts, all nano-particle have positioned inside the polymer globule. To minimize, the energy penalty, due to bending of the polymer chain, all nano-particle have positioned on the surface of the polymer's cigar and toroid morphology.

  11. Influence of source parameters on the growth of metal nanoparticles by sputter-gas-aggregation

    NASA Astrophysics Data System (ADS)

    Khojasteh, Malak; Kresin, Vitaly V.

    2017-11-01

    We describe the production of size-selected manganese nanoclusters using a magnetron sputtering/aggregation source. Since nanoparticle production is sensitive to a range of overlapping operating parameters (in particular, the sputtering discharge power, the inert gas flow rates, and the aggregation length), we focus on a detailed map of the influence of each parameter on the average nanocluster size. In this way, it is possible to identify the main contribution of each parameter to the physical processes taking place within the source. The discharge power and argon flow supply the metal vapor, and argon also plays a crucial role in the formation of condensation nuclei via three-body collisions. However, the argon flow and the discharge power have a relatively weak effect on the average nanocluster size in the exiting beam. Here the defining role is played by the source residence time, governed by the helium supply (which raises the pressure and density of the gas column inside the source, resulting in more efficient transport of nanoparticles to the exit) and by the aggregation path length.

  12. [Effect of dilution on aggregation of nanoparticles of polycarboxylic derivative of fullerene C60].

    PubMed

    Bobylev, A G; Pen'kov, N V; Troshin, P A; Gudkov, S V

    2015-01-01

    In this work, we investigated the effect of dilution on aggregation of nanoparticles of the polycarboxylic derivative of fullerene C60. It is shown that the diminution of the concentration of PCDF-1 in aqueous medium leads to a decreased amount of aggregates of fullerene and an increased amount of single molecules. This can potentially interfere with the biological activity of a compound on one molecule basis. Addition of organic and inorganic salts to the aqueous medium with fullerene derivative leads to intense disaggregation of PCDF-1. The data obtained suggest an explanation of non-stoichiometric nature of neutralization of reactive oxygen species by derivatives of fullerenes, as well as provide new insight into the physical meaning of the work on the impact of nanoparticles at ultra-low concentrations on biological objects.

  13. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    PubMed

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

  15. Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering.

    PubMed

    Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Kayani, Aminuddin A; Mitchell, Arnan; Daima, Hemant; Bansal, Vipul; Kalantar-zadeh, Kourosh

    2012-05-01

    We demonstrate an active microfluidic platform that integrates dielectrophoresis for the control of silver nanoparticles spacing, as they flow in a liquid channel. By careful control of the nanoparticles spacing, we can effectively increase the surface-enhanced Raman scattering (SERS) signal intensity based on augmenting the number of SERS-active hot-spots, while avoiding irreversible aggregation of the particles. The system is benchmarked using dipicolinate (2,6-pyridinedicarboxylic acid) (DPA), which is a biomarker of Bacillus anthracis. The validity of the results is discussed using several complementing characterization scenarios.

  16. Redox-responsive nanoparticles with Aggregation-Induced Emission (AIE) characteristic for fluorescence imaging.

    PubMed

    Cheng, Weiren; Wang, Guan; Pan, Xiaoyong; Zhang, Yong; Tang, Ben Zhong; Liu, Ye

    2014-08-01

    The redox environment between intracellular compartments and extracellular matrix is significantly different, and the cellular redox homeostasis determines many physiological functions. Here, redox-responsive nanoparticles with aggregation-induced emission (AIE) characteristic for fluorescence imaging are developed by encapsulation of fluorophore with redox "turn-on" AIE characteristic, TPE-MI, into the micelles of poly(ethylene glycol) (PEG)- and cholesterol (CE)-conjugated disulfide containing poly(amido amine)s. The redox-responsive fluorescence profiles of the nanoparticles are investigated after reaction with glutathione (GSH). The encapsulation of TPE-MI in micelles leads to a higher efficiency and red shift in emission, and the fluorescence intensity of the nanoparticles increases with the concentration of GSH. Confocal microscopy imaging shows that the nanoparticles can provide obvious contrast between the intracellular compartments and the extracellular matrix in MCF-7 and HepG2 cells. So the nanoparticles with PEG shells and low cytotoxicity are promising to provide fluorescence bioimaging with a high contrast and for differentiation of cellular redox environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egan, Garth C.; Sullivan, Kyle T.; LaGrange, Thomas

    2014-02-28

    The word “nanoparticle” nominally elicits a vision of an isolated sphere; however, the vast bulk of nanoparticulate material exists in an aggregated state. This can have significant implications for applications such as combustion, catalysis, and optical excitation, where particles are exposed to high temperature and rapid heating conditions. In such environments, particles become susceptible to morphological changes which can reduce surface area, often to the detriment of functionality. Here, we report on thermally-induced coalescence which can occur in aluminum nanoparticle aggregates subjected to rapid heating (10{sup 6}–10{sup 11} K/s). Using dynamic transmission electron microscopy, we observed morphological changes in nanoparticle aggregatesmore » occurring in as little as a few nanoseconds after the onset of heating. The time-resolved probes reveal that the morphological changes initiate within 15 ns and are completed in less than 50 ns. The morphological changes were found to have a threshold temperature of about 1300 ± 50 K, as determined by millisecond-scale experiments with a calibrated heating stage. The temperature distribution of aggregates during laser heating was modeled with various simulation approaches. The results indicate that, under rapid heating conditions, coalescence occurs at an intermediate temperature between the melting points of aluminum and the aluminum oxide shell, and proceeds rapidly once this threshold temperature is reached.« less

  18. Synthesis, surface modification and biological imaging of aggregation-induced emission (AIE) dye doped silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-05-01

    Fluorescent silica nanoparticles (FSNPs) have been extensively investigated for various biomedical applications in recently years. However, the aggregation of organic dyes in silica nanoparticles also leads the significant fluorescence quenching owing to the aggregation caused quenching effects of organic dyes. Herein, we developed a rather facile strategy to fabricate FSNPs with desirable fluorescent properties through non-covalent incorporation of fluorophores with aggregation-induced emission (AIE) feature into silica nanoparticles, which were subsequently modified with functional polymers. The resultant FSNPs polymer nanocomposites (named as FSNPs-poly(IA-co-PEGMA)) exhibited uniform spherical morphology, high water dispersiity, and bright red fluorescence. Cytotoxicity results indicate that FSNPs-poly(IA-co-PEGMA) possess excellent biocompatibility. Cell uptake behavior suggests FSNPs-poly(IA-co-PEGMA) are of great potential for biological imaging applications. Taken together, we have reported a facile method for the fabrication of FSNPs through non-covalent encapsulation using an AIE-active dye. These FSNPs can be further functionalized with functional polymers through ring-opening reaction and the resultant FSNPs-poly(IA-co-PEGMA) showed great potential for biological imaging. More importantly, we believe that many other functional components could also be integrated into these FSNPs through the facile ring-opening reaction. Therefore, this method should be a facile and general tool for fabrication of polymer functionalized AIE-active FSNPs.

  19. UV Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene (nC60) Nanoparticles

    EPA Science Inventory

    The transport and fate of engineered nanomaterials is affected by multiple environmental factors, including sunlight and natural organic matter. In this study, the initial aggregation kinetics of aqueous fullerene (nC60) nanoparticles before and after UVA irradiation was investig...

  20. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohammadi, Somayeh; Khayatian, Gholamreza

    2017-10-01

    We have described a simple and reliable colorimetric method for the sensing of biothiols such as cysteine, homocysteine, and glutathione in biological samples. The selective binding of chitosan capped silver nanoparticles to biothiols induced aggregation of the chitosan-Ag NPs. But the other amino acids that do not have thiol group cannot aggregate the chitosan-Ag NPs. Aggregation of chitosan-Ag NPs has been confirmed with UV-vis absorption spectra, zeta potential and transmission electron microscopy images. Under optimum conditions, good linear relationships existed between the absorption ratios (at A500/A415) and the concentrations of cysteine, homocysteine, and glutathione in the range of 0.1-10.0 μM with detection limits of 15.0, 84.6 and 40.0 nM, respectively. This probe was successfully applied to detect these biothiols in biological samples (urine and plasma).

  1. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography.

    PubMed

    Xiao, Peng; Li, Qingyun; Joo, Yongjoon; Nam, Jutaek; Hwang, Sekyu; Song, Jaejung; Kim, Sungjee; Joo, Chulmin; Kim, Ki Hean

    2013-11-01

    We report the feasibility of a novel contrast agent, namely "smart" gold nanoparticles (AuNPs), in the detection of cancer cells with photothermal optical coherence tomography (PT-OCT). "Smart" AuNPs form aggregation in low pH condition, which is typical for cancer cells, and this aggregation results in a shift of their absorption spectrum. A PT-OCT system was developed to detect this pH-induced aggregation by combining an OCT light source and a laser with 660 nm in wavelength for photothermal excitation. Optical detection of pH-induced aggregation was tested with solution samples at two different pH conditions. An increase in optical path length (OPL) variation was measured at mild acidic condition, while there was not much change at neutral condition. Detection of cancer cells was tested with cultured cell samples. HeLa and fibroblast cells, as cancer and normal cells respectively, were incubated with "smart" gold nanoparticles and measured with PT-OCT. An elevated OPL variation signal was detected with the HeLa cells while not much of a signal was detected with the fibroblast cells. With the novel optical property of "smart" AuNPs and high sensitivity of PT-OCT, this technique is promising for cancer cell detection.

  2. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field.

    PubMed

    Shen, Yajing; Wu, Congyu; Uyeda, Taro Q P; Plaza, Gustavo R; Liu, Bin; Han, Yu; Lesniak, Maciej S; Cheng, Yu

    2017-01-01

    Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells.

  3. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field

    PubMed Central

    Shen, Yajing; Wu, Congyu; Uyeda, Taro Q. P.; Plaza, Gustavo R.; Liu, Bin; Han, Yu; Lesniak, Maciej S.; Cheng, Yu

    2017-01-01

    Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells. PMID:28529648

  4. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.

    PubMed

    Huber, Franz J T; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  5. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    NASA Astrophysics Data System (ADS)

    Huber, Franz J. T.; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  6. Optical characterization limits of nanoparticle aggregates at different wavelengths using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Eriçok, Ozan Burak; Ertürk, Hakan

    2018-07-01

    Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.

  7. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source

    NASA Astrophysics Data System (ADS)

    Polonskyi, Oleksandr; Ahadi, Amir Mohammad; Peter, Tilo; Fujioka, Kenji; Abraham, Jan Willem; Vasiliauskaite, Egle; Hinz, Alexander; Strunskus, Thomas; Wolf, Sebastian; Bonitz, Michael; Kersten, Holger; Faupel, Franz

    2018-05-01

    Metal clusters and nanoparticles (NPs) have been studied intensively due to their unique chemical, physical, electrical, and optical properties, resulting from their dimensions, which provided host of applications in nanoscience and nanotechnology. Formation of new materials by embedding NPs into various matrices (i.e. formation of nanocomposites) further expands the horizon of possible application of such nanomaterials. In the last few decades, the focus was put on the formation of metallic and metal oxide NPs via a so-called gas aggregation nanoparticle source employing magnetron sputtering (i.e. Haberland concept). In this paper, an overview is given of the recent progress in formation and deposition of NPs by the gas aggregation method. Examples range from noble metals (Ag, Au) through reactive metals (Al, Ti) to Si and the respective oxides. Emphasis is placed on the mechanism of nanoparticle growth and the resulting properties. Moreover, kinetic Monte Carlo simulations were developed to explain the growth mechanism and dynamics of nanoparticle formation depending on the experimental conditions. In addition, the role of trace amounts of reactive gases and of pulsed operation of the plasma on the nucleation process is addressed. Finally, the treatment of the NPs in the plasma environment resulting in nanoparticle charging, morphological and chemical modifications is discussed. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  8. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. SERS-active silver nanoparticle aggregates produced in high-iron float glass by ion exchange process

    NASA Astrophysics Data System (ADS)

    Karvonen, L.; Chen, Y.; Säynätjoki, A.; Taiviola, K.; Tervonen, A.; Honkanen, S.

    2011-11-01

    Silver nanoparticles were produced in iron containing float glasses by silver-sodium ion exchange and post-annealing. In particular, the effect of the concentration and the oxidation state of iron in the host glass on the nanoparticle formation was studied. After the nanoparticle fabrication process, the samples were characterized by optical absorption measurements. The samples were etched to expose nanoparticle aggregates on the surface, which were studied by optical microscopy and scanning electron microscopy. The SERS-activity of these glass samples was demonstrated and compared using a dye molecule Rhodamine 6G (R6G) as an analyte. The importance of the iron oxidation level for reduction process is discussed. The glass with high concentration of Fe 2+ ions was found to be superior in SERS applications of silver nanoparticles. The optimal surface features in terms of SERS enhancement are also discussed.

  10. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation and toxicity

    PubMed Central

    Ates, Mehmet; Daniels, James; Arslan, Zikri; Farah, Ibrahim O.

    2012-01-01

    Aquatic stability and impact of titanium dioxide nanoparticles (TiO2 NPs, 10-30 nm) was investigated using Artemia salina. Acute exposure was conducted on nauplii (larvae) and adults in seawater in a concentration range from 10 to 100 mg/L TiO2 NPs for 24 h and 96 h. Rapid aggregation occurred in all suspensions of TiO2 NPs to form micrometer size particles. Yet, both nauplii and adults accumulated the aggregates significantly. Average TiO2 content in nauplii ranged from 0.47 to 3.19 mg/g and from 1.29 to 4.43 mg/g in 24 h and 96 h, respectively. Accumulation in adults was higher ranging from 2.30 to 4.19 mg/g and from 4.38 to 6.20 mg/g in 24 h and 96 h, respectively. Phase contrast microscopy images revealed that Artemia were unable to excrete the particles. Thus, the TiO2 aggregates filled inside the guts. No significant mortality or toxicity occurred within 24 h at any dose. Lipid peroxidation levels characterized with malondialdehyde (MDA) concentrations were not statistically different from those of the controls (p>0.05). These results suggested that suspensions of the TiO2 NPs were nontoxic to Artemia, most likely due to the formation of benign TiO2 aggregates in water. In contrast, both mortality and lipid peroxidation increased in extended exposure to 96 h. Highest mortality occurred in 100 mg/L TiO2 NP suspensions; 18% for nauplii and 14% for adults (LC50 > 100 mg/L). These effects were attributed to the particle loading inside the guts leading to oxidative stress as a result of impaired food uptake for a long period of time. PMID:22810381

  11. "Smart" gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation.

    PubMed

    Song, Jaejung; Kim, Jeesu; Hwang, Sekyu; Jeon, Mansik; Jeong, Sanghwa; Kim, Chulhong; Kim, Sungjee

    2016-07-07

    'Smart' gold nanoparticles can respond to mild acidic environments, rapidly form aggregates, and shift the absorption to red and near-infrared. They were used as a photoacoustic imaging agent responsive to the cancer microenvironment, and have demonstrated the cancer-specific accumulation at the cellular level and an amplified signal which is twice higher than the control in vivo.

  12. Coating nanoparticles with tunable surfactants facilitates control over the protein corona.

    PubMed

    Müller, J; Bauer, K N; Prozeller, D; Simon, J; Mailänder, V; Wurm, F R; Winzen, S; Landfester, K

    2017-01-01

    Nanoparticles with long blood circulation time are a prerequisite for targeted drug delivery. To make the nanoparticles invisible for phagocytizing cells, functional moieties on the particle surface are believed to be necessary to attract specific so-called 'stealth' proteins forming a protein 'corona'. Currently, covalent attachment of those moieties represents the only way to achieve that attraction. However, that approach requires a high synthetic effort and is difficult to control. Therefore, we present the coating of model nanoparticles with biodegradable polymeric surfactants as an alternative method. The thermodynamic parameters of the coating process can be tuned by adjusting the surfactants' block lengths and hydrophilicity. Consequently, the unspecific protein adsorption and aggregation tendency of the particles can be controlled, and stealth proteins inhibiting cell uptake are enriched on their surface. This non-covalent approach could be applied to any particle type and thus facilitates tuning the protein corona and its biological impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Liquid crystals from mesogens containing gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lewandowski, Wiktor; Gorecka, Ewa

    Long-range ordered structures made of nanoparticles are perspective materials for future optical, electronic and sensing technologies. Conspicuous physicochemical features of nanoparticle aggregates originate from distant-dependent collective interactions, therefore lately a lot of attention was put to the development of assembly strategies allowing control over nanoparticle spatial distribution. In this chapter we will focus on the assembly process based on using thermotropic liquid-crystalline molecules as surface nanoparticle ligands. First, we discuss architectural parameters that inuence structure and thermal properties of the aggregates. Then, we show that this approach enables formation of assemblies with metamaterial characteristic, gives access to dynamic materials with light-, magneto- and thermo-responsive behavior and allows formation of aggregates with unique structures, which all make this strategy an attractive object of research.

  14. Preparation of gold nanoparticle aggregates and their photothermal heating property.

    PubMed

    Kim, Jun-Hyun; Lavin, Brian W

    2011-01-01

    This report describes simple synthetic strategies to prepare partially aggregated gold nanoparticles (GNPs) and their ability to produce photothermally-induced heating of an aqueous medium upon exposure to broadband light. The formation of various GNPs and their aggregates were accomplished in the absence of surfactants at room temperature. The morphologies, structures, and absorption properties of these GNPs were carefully characterized. Given that the resulting GNPs possessing strong and wide absorption bands fall in the most intense solar radiation spectrum, the photothermally-induced heating of water was examined in the presence of the GNPs via irradiation with a solar simulator (i.e., 100 mW/cm2; 1-sun condition). Our GNPs exhibited a slightly greater increase in the water temperature (3-4 degrees C) than that of conventional citrate-stabilized GNPs. This superior photothermal heating property of our GNPs directly indicated that the intense and broad absorption band effectively improved the conversion of highly absorbed photon energy into heat.

  15. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Franz J. T.; Will, Stefan, E-mail: stefan.will@fau.de; Erlangen Graduate School in Advanced Optical Technologies

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiationmore » signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.« less

  16. Colorimetric aptasensor for progesterone detection based on surfactant-induced aggregation of gold nanoparticles.

    PubMed

    Du, Gaoshang; Wang, Lumei; Zhang, Dongwei; Ni, Xuan; Zhou, Xiaotong; Xu, Hanyi; Xu, Lurong; Wu, Shijian; Zhang, Tong; Wang, Wenhao

    2016-12-01

    This paper proposes an aptasensor for progesterone (P4) detection in human serum and urine based on the aggregating behavior of gold nanoparticles (AuNPs) controlled by the interactions among P4-binding aptamer, target P4 and cationic surfactant hexadecyltrimethylammonium bromide (CTAB). The aptamer can form an aptamer-P4 complex with P4, leaving CTAB free to aggregate AuNPs in this aptasensor. Thus, the sensing solution will turn from red (520 nm) to blue (650 nm) in the presence of P4 because P4 aptamers are used up firstly owing to the formation of an aptamer-P4 complex, leaving CTAB free to aggregate AuNPs. However, in the absence of P4, CTAB combines with aptamers so that AuNPs still remain dispersed. Therefore, this assay makes it possible to detect P4 not only by absorbance measurement but also through naked eyes. By monitoring the variation of absorbance and color, a CTAB-induced colorimetric assay for P4 detection was established with a detection limit of 0.89 nM. Besides, the absorbance ratio A650/A520 has a linear correlation with the P4 concentration of 0.89-500 nM. Due to the excellent recoveries in serum and urine, this biosensor has great potential with respect to the visual and instrumental detection of P4 in biological fluids. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells

    NASA Astrophysics Data System (ADS)

    Durgadas, C. V.; Sharma, C. P.; Paul, W.; Rekha, M. R.; Sreenivasan, K.

    2012-09-01

    This study refers an aqueous synthesis of methotrexate (MTX)-conjugated gold nanoparticles (GNPs), their interaction with HepG2 cells, and the use of Raman imaging to observe cellular internalization and drug delivery. GNPs of average size 3.5-5 nm were stabilized using the amine terminated bifunctional biocompatible copolymer and amended by conjugating MTX, an anticancer drug. The nanoparticles were released MTX at a faster rate in acidic pH and subsequently found to form aggregates. The Raman signals of cellular components were found to be enhanced by the aggregated particles enabling the mapping to visualize site-specific drug delivery. The methodology seems to have potential in optimizing the characteristics of nanodrug carriers for emptying the cargo precisely at specified sites.

  18. Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures.

    PubMed

    Salabat, Alireza; Eastoe, Julian; Mutch, Kevin J; Tabor, Rico F

    2008-02-15

    The effect of solvent on stability of water-in-oil microemulsions has been studied with AOT (sodium bis(2-ethylhexyl)sulfosuccinate) and different solvent mixtures of n-heptane, toluene and dodecane. Dynamic light scattering DLS was used to monitor the apparent diffusion coefficient D(A) and effective microemulsion droplet diameter on changing composition of the solvent. Interdroplet attractive interactions, as indicated by variations in D(A), can be tuned by formulation of appropriate solvent mixtures using heptane, toluene, and dodecane. In extreme cases, solvent mixtures can be used to induce phase transitions in the microemulsions. Aggregation and stability of model AOT-stabilized silica nanoparticles in different solvents were also investigated to explore further these solvent effects. For both systems the state of aggregation can be correlated with the effective molecular volume of the solvent V(mol)(eff) mixture.

  19. Multifunctional nanoparticle-protein conjugates with controllable bioactivity and pH responsiveness

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Xue, Lulu; Yuan, Yuqi; Pan, Jingjing; Zhang, Chenjie; Wang, Hongwei; Brash, John L.; Yuan, Lin; Chen, Hong

    2016-02-01

    The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion. This approach has considerable potential in areas such as controlled delivery and release of drugs, biosensing, and biocatalysis.The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion

  20. Enhancement in volatile organic compound sensitivity of aged Ag nanoparticle aggregates by plasma exposure

    NASA Astrophysics Data System (ADS)

    Hosomi, Kei; Ozaki, Koichi; Nishiyama, Fumitaka; Takahiro, Katsumi

    2018-01-01

    Silver nanoparticles (Ag NPs) tarnish easily upon exposure to ambient air, and eventually lose their ability as a plasmonic sensor via weakened localized surface plasmon resonance (LSPR). We have demonstrated the enhancement in plasmonic sensitivity of tarnished Ag NP aggregates to vapors of volatile organic compounds (VOCs) such as ethanol and butanol by Ar plasma exposure. The response of Ag NP aggregates to the VOC vapors was examined by measuring the change in optical extinction spectra before and after exposure to the vapors. The sensitivity of Ag NP aggregates decreased gradually when stored in ambient air. The performance of tarnished Ag NPs for ethanol sensing was recovered by exposure to argon (Ar) plasma for 15 s. The reduction from oxidized Ag to metallic one was recognized, while morphological change was hardly noticeable after the plasma exposure. We conclude, therefore, that a compositional change rather than a morphological change occurred on Ag NP surfaces enhances the sensing ability of tarnished Ag NP aggregates to the VOC vapors.

  1. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  2. Forced and natural convection in aggregate-laden nanofluids

    NASA Astrophysics Data System (ADS)

    Thajudeen, Thaseem; Hogan, Christopher J.

    2011-12-01

    A number of experimental and theoretical studies of convective heat transfer in nanofluids (liquid suspensions of nanoparticles, typically with features below 100 nm in size) reveal contrasting results; nanoparticles can either enhance or reduce the convective heat transfer coefficient. These disparate conclusions regarding the influence of nanoparticles on convective heat transfer may arise due to the aggregation of nanoparticles, which is often not considered in studies of nanofluids. Here, we examine theoretically forced and natural convective heat transfer of aggregate-laden nanofluids using Monte Carlo-based models to determine how the aggregate morphology influences the convective heat transfer coefficient. Specifically, in this study, it is first shown that standard heat transfer correlations should apply to nanofluids, and the main influence of the nanoparticles is to alter suspension thermal conductivity, dynamic viscosity, density, specific heat, and thermal expansion coefficient. Aggregated particles in suspension are modeled as quasi-fractal aggregates composed of individual primary particles described by the primary particle radius, number of primary particles, fractal (Hausdorff) dimension, pre-exponential factor, and degree of coalescence between primary particles. A sequential algorithm is used to computationally generate aggregates with prescribed morphological descriptors. Four types of aggregates are considered; spanning the range of aggregate morphologies observed in nanofluids. For each morphological type, the influences of aggregates on nanofluid dynamic viscosity and thermal conductivity are determined via first passage-based Brownian dynamics calculations. It is found that depending on both the material properties of the nanoparticles as well as the nanoparticle morphology, the addition of nanoparticles to a suspension can either increase or decrease both the forced and natural convective heat transfer coefficients, with both a 51% increase

  3. Size-Selected Ag Nanoparticles with Five-Fold Symmetry

    PubMed Central

    2009-01-01

    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications. PMID:20596397

  4. Size-selected ag nanoparticles with five-fold symmetry.

    PubMed

    Gracia-Pinilla, Miguelángel; Ferrer, Domingo; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo

    2009-05-15

    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications.

  5. Meso-oblate spheroids of thermal-stabile linker-free aggregates with size-tunable subunits for reversible lithium storage.

    PubMed

    Deng, Da; Lee, Jim Yang

    2014-01-22

    The organization of nanoscale materials as building units into extended structures with specific geometry and functional properties is a challenging endeavor. Hereby, an environmentally benign, simple, and scalable method for preparation of stable, linker-free, self-supported, high-order 3D meso-oblate spheroids of CuO nanoparticle aggregates with size-tunable building nanounits for reversible lithium-ion storage is reported. In contrast to traditional spherical nanoparticle aggregation, a unique oblate spheroid morphology is achieved. The formation mechanism of the unusual oblate spheroid of aggregated nanoparticles is proposed. When tested for reversible lithium ion storage, the unique 3D meso-oblate spheroids of CuO nanoparticle aggregate demonstrated highly improved electrochemical performance (around ∼600 mAh/g over 20 cycles), which could be ascribed to the nanoporous aggregated mesostructure with abundant crystalline imperfection. Furthermore, the size of building units can be controlled (12 and 21 nm were tested) to further improve their electrochemical performance.

  6. High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands

    NASA Astrophysics Data System (ADS)

    Diaz-Egea, Carlos; Sigle, Wilfried; van Aken, Peter A.; Molina, Sergio I.

    2013-07-01

    We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled.

  7. Influence of shear forces on the aggregation and sedimentation behavior of cerium dioxide (CeO2) nanoparticles under different hydrochemical conditions

    NASA Astrophysics Data System (ADS)

    Lv, Bowen; Wang, Chao; Hou, Jun; Wang, Peifang; Miao, Lingzhan; Li, Yi; Ao, Yanhui; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-07-01

    This study contributed to a better understanding of the behavior of nanoparticles (NPs) in dynamic water. First, the aggregation behavior of CeO2 NPs at different pH values in various salt solutions was examined to determine the appropriate hydrochemical conditions for hydrodynamics study. Second, the aggregation behavior of CeO2 NPs under different shear forces was investigated at pH 4 and ionic strength 0 in various salt solutions to find out whether shear forces could influence the stability of the nanoparticles and if yes, how. Also, five-stage sedimentation tests were conducted to understand the influence of shear stress on the vertical distribution of CeO2 NPs in natural waters. The aggregation test showed that the shear force could increase the collision efficiency between NPs during aggregation and cause a relatively large mass of NPs to remain in suspension. Consequently, the nanoparticles had a greater possibility of continued aggregation. The sedimentation test under static conditions indicated that a large mass of NPs (>1000 nm) sink to the bottom layer, leaving only small aggregates dispersed in the upper or middle layer of the solution. However, later sedimentation studies under stirring conditions demonstrated that shear forces can disrupt this stratification phenomenon. These results suggest that shear forces can influence the spatial distribution of NPs in natural waters, which might lead to different toxicities of CeO2 NPs to aquatic organisms distributed in the different water layers. This study contributes to a better understanding of nanomaterial toxicology and provides a way for further research.

  8. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.

    PubMed

    Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed

    2016-12-01

    The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.

  9. DNA sensors and aptasensors based on the hemin/G-quadruplex-controlled aggregation of Au NPs in the presence of L-cysteine.

    PubMed

    Niazov-Elkan, Angelica; Golub, Eyal; Sharon, Etery; Balogh, Dora; Willner, Itamar

    2014-07-23

    L-cysteine induces the aggregation of Au nanoparticles (NPs), resulting in a color transition from red to blue due to interparticle plasmonic coupling in the aggregated structure. The hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme catalyzes the aerobic oxidation of L-cysteine to cystine, a process that inhibits the aggregation of the NPs. The degree of inhibition of the aggregation process is controlled by the concentration of the DNAzyme in the system. These functions are implemented to develop sensing platforms for the detection of a target DNA, for the analysis of aptamer-substrate complexes, and for the analysis of L-cysteine in human urine samples. A hairpin DNA structure that includes a recognition site for the DNA analyte and a caged G-quadruplex sequence, is opened in the presence of the target DNA. The resulting self-assembled hemin/G-quadruplex acts as catalyst that controls the aggregation of the Au NPs. Also, the thrombin-binding aptamer folds into a G-quadruplex nanostructure upon binding to thrombin. The association of hemin to the resulting G-quadruplex aptamer-thrombin complex leads to a catalytic label that controls the L-cysteine-mediated aggregation of the Au NPs. The hemin/G-qaudruplex-controlled aggregation of Au NPs process is further implemented for visual and spectroscopic detection of L-cysteine concentration in urine samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.

    2014-09-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.

  11. The effect of nanoparticles aggregation on the thermal conductivity of nanofluids at very low concentrations: Experimental and theoretical evaluations

    NASA Astrophysics Data System (ADS)

    Motevasel, Mohsen; Nazar, Ali Reza Solaimany; Jamialahmadi, Mohammad

    2018-01-01

    Nanoparticles suspended in a base fluid yield increased thermal conductivity, which in turn increases convection heat transfer rate. Prediction of suitable relations for determination of thermal conductivity results in heightened accuracy in the calculation of convection heat transfer coefficient and reduced costs. In the majority of studies performed on the prediction of thermal conductivity, some relations and models were used in which the effect of aggregation of particles, especially at low concentrations was ignored. In this research, the thermal conductivity of the nanofluid is measured experimentally at low volumetric concentrations, within the range of 0.02-0.2% for the nanoparticles of Al2O3, MgO, CuO, and SiC in the base fluid of distilled water. The results obtained from the models are compared by the available models considering and neglecting the effect of aggregation of particles. Within the range of the applied concentrations, the relative absolute average deviation ratio of the thermal conductivity models without considering the aggregation effect in relation with the models considering the aggregate, is observed to be between 2 and 6 times. Therefore, it is recommended that even at low concentrations, the effect of aggregation should be considered in the prediction of thermal conductivity.

  12. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.

    PubMed

    Kent, Ronald D; Vikesland, Peter J

    2012-07-03

    Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7.0, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ≥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, the in-plane radius decreased by 5-11 nm, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of unaggregated AgNP dissolution.

  13. Impact of different environmental conditions on the aggregation of biogenic U(IV) nanoparticles synthesized by Desulfovibrio alaskensis G20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şengör, S. Sevinç; Singh, Gursharan; Dohnalkova, Alice

    This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas inmore » the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 m filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites.« less

  14. Quantification of the aggregation of magnetic nanoparticles with different polymeric coatings in cell culture medium

    NASA Astrophysics Data System (ADS)

    Eberbeck, D.; Kettering, M.; Bergemann, C.; Zirpel, P.; Hilger, I.; Trahms, L.

    2010-10-01

    The knowledge of the physico-chemical characteristics of magnetic nanoparticles (MNPs) is essential to enhance the efficacy of MNP-based therapeutic treatments (e.g. magnetic heating, magnetic drug targeting). According to the literature, the MNP uptake by cells may depend on the coating of MNPs, the surrounding medium as well as on the aggregation behaviour of the MNPs. Therefore, in this study, the aggregation behaviour of MNPs in various media was investigated. MNPs with different coatings were suspended in cell culture medium (CCM) containing fetal calf serum (FCS) and the distribution of the hydrodynamic sizes was measured by magnetorelaxometry (MRX). FCS as well as bovine serum albumin (BSA) buffer (phosphate buffered saline with 0.1% bovine serum albumin) may induce MNP aggregation. Its strength depends crucially on the type of coating. The degree of aggregation in CCM depends on its FCS content showing a clear, local maximum at FCS concentrations, where the IgG concentration (part of FCS) is of the order of the MNP number concentration. Thus, we attribute the observed aggregation behaviour to the mechanism of agglutination of MNPs by serum compartments as for example IgG. No aggregation was induced for MNPs coated with dextran, polyarabic acid or sodium phosphate, respectively, which were colloidally stable in CCM.

  15. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations

    NASA Astrophysics Data System (ADS)

    Liu, Hanzhou; Lv, Ming; Deng, Bo; Li, Jingye; Yu, Ming; Huang, Qing; Fan, Chunhai

    2014-08-01

    To improve the laundering durability of the silver functionalized antibacterial cotton fabrics, a radiation-induced coincident reduction and graft polymerization is reported herein where a pomegranate-shaped silver nanoparticle aggregations up to 500 nm can be formed due to the coordination forces between amino group and silver and the wrapping procedure originated from the coincident growth of the silver nanoparticles and polymer graft chains. This pomegranate-shaped silver NPAs functionalized cotton fabric exhibits outstanding antibacterial activities and also excellent laundering durability, where it can inactivate higher than 90% of both E. coli and S. aureus even after 50 accelerated laundering cycles, which is equivalent to 250 commercial or domestic laundering cycles.

  16. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers.

    PubMed

    Yi, Jiang; Lam, Tina I; Yokoyama, Wallace; Cheng, Luisa W; Zhong, Fang

    2014-09-03

    Undesirable aggregation of nanoparticles stabilized by proteins may occur at the protein's isoelectric point when the particle has zero net charge. Stability against aggregation of nanoparticles may be improved by reacting free amino groups with reducing sugars by the Maillard reaction. β-Lactoglobulin (BLG)-dextran conjugates were characterized by SDS-PAGE and CD. Nanoparticles (60-70 nm diameter) of β-carotene (BC) encapsulated by BLG or BLG-dextran were prepared by the homogenization-evaporation method. Both BLG and BLG-dextran nanoparticles appeared to be spherically shaped and uniformly dispersed by TEM. The stability and release of BC from the nanoparticles under simulated gastrointestinal conditions were evaluated. Dextran conjugation prevented the flocculation or aggregation of BLG-dextran particles at pH ∼4-5 compared to very large sized aggregates of BLG nanoparticles. The released contents of BC from BLG and BLG-dextran nanoparticles under acidic gastric conditions were 6.2 ± 0.9 and 5.4 ± 0.3%, respectively. The release of BC from BLG-dextran nanoparticles by trypsin digestion was 51.8 ± 4.3% of total encapsulated BC, and that from BLG nanoparticles was 60.9 ± 2.9%. Neither BLG-BC nanoparticles nor the Maillard-reacted BLG-dextran conjugates were cytotoxic to Caco-2 cells, even at 10 mg/mL. The apparent permeability coefficient (Papp) of Caco-2 cells to BC was improved by nanoencapsulation, compared to free BC suspension. The results indicate that BC-encapsulated β-lactoglobulin-dextran-conjugated nanoparticles are more stable to aggregation under gastric pH conditions with good release and permeability properties.

  17. Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping

    2017-11-01

    This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.

  18. Self-assembled nanoparticle aggregates: Organizing disorder for high performance surface-enhanced spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasolato, C.; Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, Rome; Domenici, F., E-mail: fabiodomenici@gmail.com

    2015-06-23

    The coherent oscillations of the surface electron gas, known as surface plasmons, in metal nanostructures can give rise to the localization of intense electromagnetic fields at the metal-dielectric interface. These strong fields are exploited in surface enhanced spectroscopies, such as Surface Enhanced Raman Scattering (SERS), for the detection and characterization of molecules at very low concentration. Still, the implementation of SERS-based biosensors requires a high level of reproducibility, combined with cheap and simple fabrication methods. For this purpose, SERS substrates based on self-assembled aggregates of commercial metallic nanoparticles (Nps) can meet all the above requests. Following this line, we reportmore » on a combined micro-Raman and Atomic Force Microscopy (AFM) analysis of the SERS efficiency of micrometric silver Np aggregates (enhancement factors up to 10{sup 9}) obtained by self-assembly. Despite the intrinsic disordered nature of these Np clusters, we were able to sort out some general rules relating the specific aggregate morphology to its plasmonic response. We found strong evidences of cooperative effects among the NPs within the cluster and namely a clear dependence of the SERS-efficiency on both the cluster area (basically linear) and the number of stacked NPs layers. A cooperative action among the superimposed layers has been proved also by electromagnetic simulations performed on simplified nanostructures consisting of stacking planes of ordered Nps. Being clear the potentialities of these disordered self-assembled clusters, in terms of both easy fabrication and signal enhancement, we developed a specific nanofabrication protocol, based on electron beam lithography and molecular functionalization, that allowed for a fine control of the Np assemblies into designed shapes fixing their area and height. In particular, we fabricated 2D ordered arrays of disordered clusters choosing gold Nps owing to their high stability. AFM

  19. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.

    PubMed

    Isojima, Tatsushi; Suh, Su Kyung; Vander Sande, John B; Hatton, T Alan

    2009-07-21

    The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.

  20. The effect of nanoparticle aggregation on surfactant foam stability.

    PubMed

    AlYousef, Zuhair A; Almobarky, Mohammed A; Schechter, David S

    2018-02-01

    The combination of nanoparticles (NPs) and surfactant may offer a novel technique of generating stronger foams for gas mobility control. This study evaluates the potential of silica NPs to enhance the foam stability of three nonionic surfactants. Results showed that the concentration of surfactant and NPs is a crucial parameter for foam stability and that there is certain concentrations for strong foam generation. A balance in concentration between the nonionic surfactants and the NPs can enhance the foam stability as a result of forming flocs in solutions. At fixed surfactant concentration, the addition of NPs at low to intermediate concentrations can produce a more stable foam compared to the surfactant. The production of small population of flocs as a result of mixing the surfactant and NPs can enhance the foam stability by providing a barrier between the gas bubbles and delaying the coalescence of bubbles. Moreover, these flocs can increase the solution viscosity and, therefore, slow the drainage rate of thin aqueous film (lamellae). The measurements of foam half-life, bubble size, and mobility tests confirmed this conclusion. However, the addition of more solid particles or surfactant might have a negative impact on foam stability and reduce the maximum capillary pressure of coalescence as a result of forming extensive aggregates. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Radiopacity of Mineral Trioxide Aggregate with and without Inclusion of Silver Nanoparticles.

    PubMed

    Mendes, Mariana Ss; Resende, Leonardo D; Pinto, Cláudia A; Raldi, Denise P; Cardoso, Flavia Gr; Habitante, Sandra M

    2017-06-01

    The aim of this study was to investigate the inclusion of silver nanoparticles (Ag NPs) in the mineral trioxide aggregate (MTA) composition to know which changes will result in the radiopacity of the material. The experiment was performed according to the American National Standard Institute/American Dental Association specification no. 57/2000 and ISO 6876/2001. Five plates with five holes measuring 1 mm in depth and 5 mm in internal diameter were filled according to the different experimental groups as follows: white mineral trioxide aggregate (WMTA) + NP50 - W MTA with liquid Ag NP 50 ppm, WMTA + NP30 - W MTA with liquid Ag NP 30 ppm, WMTA + NP22 - W MTA with liquid Ag NP 22 ppm, WMTA + NPP - white MTA with liquid Ag NP and powder 1%, WMTA (control). After filling the plates, they were kept in an incubator at 37°C in relative humidity for setting. Each sample was positioned along an aluminum step-wedge placed above the Opteo digital sensor system. The image was divided into four quadrants, and three readings were made for each quadrant to render the average of each quadrant. The resulting data were submitted to Kruskal-Wallis and Dunn's tests. The results showed statistically significant differences between WMTA + NP30, WMTA + NP22, and WMTA + NPP interactions compared with WMTA (control) (p < 0.05). The radiopacity was in descending order: WMTA + NPP, WMTA + NP22, WMTA + NP30, MTA + NP50, and WMTA. Silver NPs changed the radiopacity of WMTA, being more evident in WMTA + NP powder at 1% weight. The low radiopacity of MTA makes it difficult for any radiographic observation. The Ag NPs appear as an alternative, being an excellent radiopacifier as they have excellent antimicrobial property and relatively low toxicity.

  2. Photochemical induced growth and aggregation of metal nanoparticles in diode-array spectrophotometer via excited dimethyl-sulfoxide.

    PubMed

    Zidki, Tomer; Cohen, Haim; Meyerstein, Dan

    2010-10-21

    Ag(0) and Au(0) nanoparticles suspended in dilute aqueous solutions containing (CH(3))(2)SO are photochemically unstable. The light source of a diode-array spectrophotometer induces, within less than a minute, particle growth and aggregation. The results indicate that this process is triggered by UV light absorption by the (CH(3))(2)SO.

  3. Charging of nanoparticles in stationary plasma in a gas aggregation cluster source

    NASA Astrophysics Data System (ADS)

    Blažek, J.; Kousal, J.; Biederman, H.; Kylián, O.; Hanuš, J.; Slavínská, D.

    2015-10-01

    Clusters that grow into nanoparticles near the magnetron target of the gas aggregation cluster source (GAS) may acquire electric charge by collecting electrons and ions or through other mechanisms like secondary- or photo-electron emissions. The region of the GAS close to magnetron may be considered as stationary plasma. The steady state charge distribution on nanoparticles can be determined by means of three possible models—fluid model, kinetic model and model employing Monte Carlo simulations—of cluster charging. In the paper the mathematical and numerical aspects of these models are analyzed in detail and close links between them are clarified. Among others it is shown that Monte Carlo simulation may be considered as a particular numerical technique of solving kinetic equations. Similarly the equations of the fluid model result, after some approximation, from averaged kinetic equations. A new algorithm solving an in principle unlimited set of kinetic equations is suggested. Its efficiency is verified on physical models based on experimental input data.

  4. Stability and Aggregation of Silver and Titanium Dioxide Nanoparticles in Seawater: Role of Salinity and Dissolved Organic Matter

    EPA Science Inventory

    The behavior and fate of nanoparticles (NPs) in the marine environment is largely unknown and has the potential to have important environmental and human health implications. The aggregation state and fate of NPs in the marine environment is greatly influenced by their interactio...

  5. Smart polyaniline nanoparticles with thermal and photothermal sensitivity

    NASA Astrophysics Data System (ADS)

    Bongiovanni Abel, Silvestre; Molina, María A.; Rivarola, Claudia R.; Kogan, Marcelo J.; Barbero, Cesar A.

    2014-12-01

    (e.g. Alzheimer). Moreover, the long range control of aggregation can be used to modulate the nanoparticle residence inside biological tissues.

  6. Using new aggregation operators in rule-based intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Chen, Yung-Yaw; Yager, Ronald R.

    1990-01-01

    A new aggregation operator is applied in the design of an approximate reasoning-based controller. The ordered weighted averaging (OWA) operator has the property of lying between the And function and the Or function used in previous fuzzy set reasoning systems. It is shown here that, by applying OWA operators, more generalized types of control rules, which may include linguistic quantifiers such as Many and Most, can be developed. The new aggregation operators, as tested in a cart-pole balancing control problem, illustrate improved performance when compared with existing fuzzy control aggregation schemes.

  7. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  8. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  9. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE PAGES

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  10. Sorption of organic phosphates and its effects on aggregation of hematite nanoparticles in monovalent and bivalent solutions.

    PubMed

    Xu, Chen-Yang; Li, Jiu-Yu; Xu, Ren-Kou; Hong, Zhi-Neng

    2017-03-01

    Sorption of organic phosphates-myo-inositol hexakisphosphate (IHP) and glycerol phosphate (GP) and its effects on the early stage of hematite aggregation kinetics were investigated at different pH and electrolyte composition. KH 2 PO 4 (KP) was taken as an inorganic P source for comparison. Results indicated that for all types of P, the sorption amounts decreased with increasing solution pH. Sorption amount of IHP was almost two times that of KP, while those of GP and KP were close. Both organic P and inorganic P interacted with hematite via ligand exchange through their phosphate groups, which conveyed negative charges to mineral surface and significantly decreased the zeta potential of hematite. In Na + solution, critical coagulation concentrations (CCCs) of hematite suspensions increased with increasing P concentration and followed the order of KP < GP < IHP at pH 5.5. Compared with KP, the organic P could more effectively stabilize the hematite suspension not only through increasing the negative charges and electrostatic repulsive force, but also through steric repulsion between P-sorbed hematite nanoparticles. When the pH was increased from 5.5 to 10.0, the CCCs of the hematite suspensions with GP and IHP decreased mainly because of the great reductions in organic P sorption amounts and consequent decreases in electrostatic and steric repulsive forces. However, enhanced aggregation was observed in the presence of IHP at pH 4.5 and above in low Ca 2+ solutions. The precipitation of calcium phytate formed net-like structure, which served as bridges to bind hematite nanoparticles and resulted in enhanced aggregation. These results have important implications for assessing the fate and transport of organic P and hematite nanoparticles in soil and aquatic environments.

  11. Origins of the elastic behavior of nanoparticle chain aggregates: Measurements using nanostructure manipulation device

    NASA Astrophysics Data System (ADS)

    Suh, Yong J.; Friedlander, Sheldon K.

    2003-03-01

    Nanoscale studies were conducted on the dynamic behavior of individual nanoparticle chain aggregates (NCAs) and their networks. For this purpose, device was fabricated to apply tension to NCA under controlled conditions. The device is composed of a specimen support and a cartridge. The specimen support is a deformable alloy disk with a narrow slit across which the NCAs are deposited; the cartridge is used to connect the specimen support to a specimen elongation support holder. The aggregates were stretched using the specimen holder to widen or narrow the slit gap at speeds from 0.5 to 300 nm/s and the motion was observed with a transmission electron microscope. Most of the studies were made with carbon NCA (primary particle size between 11 and 16 nm) generated by laser ablation of a graphite target. The aggregates were deposited on the specimen support (disk) to form bridges across the slit. When tension was applied, the NCA chains remained attached at the slit edges; the chains stretched as kinks on the scale of a few particle diameters were straightened by rotation and/or grain boundary sliding at particle-particle interfaces. After the chain became taut, increasing tension produced little additional extension. Eventually, the chain broke, the tension relaxed, and the elastically strained portions along the NCA recovered. This led to fast contraction of the two broken ends. In one of the cases studied in detail, a small primary particle in the chain doubled in length before the chain broke at this site. This probably occurred because of the high tensile stress in the small particle. In separate experiments, a network of carbon NCA was produced by increased deposition around the slit of a specimen support. Chains in the network broke successively as the network stretched. Some of the chains broke midway and not at the junctures with each other. They contracted fast showing behavior similar to that of the individual aggregates. Possible applications to the behavior

  12. Morphology control of rutile TiO2 with tunable bandgap by preformed β-FeOOH nanoparticles.

    PubMed

    Chen, Zheming; Wang, Feng; Balachandran, Subramanian; Li, Gen; Liu, Peng; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-03-23

    Rutile TiO 2 are widely used for applications of coatings, cosmetics, photoelectric devices and so on. However, effective control of well-defined morphology, size and composition of rutile TiO 2 nanoparticles from agglomeration has always been a challenge. A new synthesis strategy was proposed to prepare rutile TiO 2 with controllable morphology varied from flower-like structures to single-separated nanorods. The β-FeOOH nanoparticles were generated by the hydrolysis of FeCl 3 solution and could prevent the aggregation of TiO 2 nanocrystals at early stages of the reaction; thus, could control the morphology of rutile nanoparticles. The morphology of rutile TiO 2 nanoparticles could be controllably regulated from flower-like structures to individually separated nanorods. Meanwhile, the preformed β-FeOOH also played a role of dopant. Fe ions were substitutionally doped into the bulk lattice of TiO 2 nanocrystals and reduced the bandgap, which extended the solar radiation absorption range of rutile TiO 2 . The prepared TiO 2 may be suitable for novel UV-blue light shielding agents and many other applications in photoelectric devices, photocatalysis, and so on due to its small size, unprecedented discrete rod-like structure and unique UV-vis light permeability.

  13. Morphology control of rutile TiO2 with tunable bandgap by preformed β-FeOOH nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Zheming; Wang, Feng; Balachandran, Subramanian; Li, Gen; Liu, Peng; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-03-01

    Rutile TiO2 are widely used for applications of coatings, cosmetics, photoelectric devices and so on. However, effective control of well-defined morphology, size and composition of rutile TiO2 nanoparticles from agglomeration has always been a challenge. A new synthesis strategy was proposed to prepare rutile TiO2 with controllable morphology varied from flower-like structures to single-separated nanorods. The β-FeOOH nanoparticles were generated by the hydrolysis of FeCl3 solution and could prevent the aggregation of TiO2 nanocrystals at early stages of the reaction; thus, could control the morphology of rutile nanoparticles. The morphology of rutile TiO2 nanoparticles could be controllably regulated from flower-like structures to individually separated nanorods. Meanwhile, the preformed β-FeOOH also played a role of dopant. Fe ions were substitutionally doped into the bulk lattice of TiO2 nanocrystals and reduced the bandgap, which extended the solar radiation absorption range of rutile TiO2. The prepared TiO2 may be suitable for novel UV-blue light shielding agents and many other applications in photoelectric devices, photocatalysis, and so on due to its small size, unprecedented discrete rod-like structure and unique UV-vis light permeability.

  14. In situ SAXS study on size changes of platinum nanoparticles with temperature

    NASA Astrophysics Data System (ADS)

    Wang, W.; Chen, X.; Cai, Q.; Mo, G.; Jiang, L. S.; Zhang, K.; Chen, Z. J.; Wu, Z. H.; Pan, W.

    2008-09-01

    Poly(vinylpyrrolidone) (PVP)-coated platinum (Pt) nanoparticles were prepared in methanol-water reduction method. In situ small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) techniques were used to probe the size change of particles and crystallites with temperature. Tangent-by-tangent (TBT) method of SAXS data analysis was improved and used to get the particle size distribution (PSD) from SAXS intensity. Scherrer’s equation was used to derive the crystallite size from XRD pattern. Combining SAXS and XRD results, a step-like characteristic of the Pt nanoparticle growth has been found. Three stages (diffusion, aggregation, and agglomeration) can be used to describe the growth of the Pt nanoparticles and nanocrystallites. Aggregation was found to be the main growth mode of the Pt nanoparticles during heating. The maximum growth rates of Pt nanoparticles and Pt nanocrystallites, as well as the maximum aggregation degree of Pt nanocrystallites were found, respectively, at 250 °C, 350 °C and 300 °C. These results are helpful to understanding the growth mode of nanoparticles, as well as controlling the nanoparticle size.

  15. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.

    PubMed

    Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun

    2017-12-11

    Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

  16. Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization.

    PubMed

    Ogi, Soichiro; Stepanenko, Vladimir; Thein, Johannes; Würthner, Frank

    2016-01-20

    We have investigated the kinetic and thermodynamic supramolecular polymerizations of a series of amide-functionalized perylene bisimide (PBI) organogelator molecules bearing alkyl spacers of varied lengths (ethylene to pentylene chains, PBI-1-C2 to PBI-1-C5) between the amide and PBI imide groups. These amide-functionalized PBIs form one-dimensional fibrous nanostructures as the thermodynamically favored states in solvents of low polarity. Our in-depth studies revealed, however, that the kinetic behavior of their supramolecular polymerization is dependent on the spacer length. Propylene- and pentylene-tethered PBIs follow a similar polymerization process as previously observed for the ethylene-tethered PBI. Thus, the monomers of these PBIs are kinetically trapped in conformationally restricted states through intramolecular hydrogen bonding between the amide and imide groups. In contrast, the intramolecularly hydrogen-bonded monomers of butylene-tethered PBI spontaneously self-assemble into nanoparticles, which constitute an off-pathway aggregate state with regard to the thermodynamically stable fibrous supramolecular polymers obtained. Thus, for this class of π-conjugated system, an unprecedented off-pathway aggregate with high kinetic stability could be realized for the first time by introducing an alkyl linker of optimum length (C4 chain) between the amide and imide groups. Our current system with an energy landscape of two competing nucleated aggregation pathways is applicable to the kinetic control over the supramolecular polymerization by the seeding approach.

  17. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    EPA Science Inventory

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  18. Optical Aggregation of Gold Nanoparticles for SERS Detection of Proteins and Toxins in Liquid Environment: Towards Ultrasensitive and Selective Detection

    PubMed Central

    Foti, Antonino; Donato, Maria Grazia; Fazio, Barbara; Maragò, Onofrio M.; Lamy de la Chapelle, Marc

    2018-01-01

    Optical forces are used to aggregate plasmonic nanoparticles and create SERS–active hot spots in liquid. When biomolecules are added to the nanoparticles, high sensitivity SERS detection can be accomplished. Here, we pursue studies on Bovine Serum Albumin (BSA) detection, investigating the BSA–nanorod aggregations in a range from 100 µM to 50 nM by combining light scattering, plasmon resonance and SERS, and correlating the SERS signal with the concentration. Experimental data are fitted with a simple model describing the optical aggregation process. We show that BSA–nanorod complexes can be optically printed on non-functionalized glass surfaces, designing custom patterns stable with time. Furthermore, we demonstrate that this methodology can be used to detect catalase and hemoglobin, two Raman resonant biomolecules, at concentrations of 10 nM and 1 pM, respectively, i.e., well beyond the limit of detection of BSA. Finally, we show that nanorods functionalized with specific aptamers can be used to capture and detect Ochratoxin A, a fungal toxin found in food commodities and wine. This experiment represents the first step towards the addition of molecular specificity to this novel biosensor strategy. PMID:29562606

  19. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity.

    PubMed

    Zhang, Jingnan; Zhou, Xianbo; Yu, Qianqian; Yang, Licong; Sun, Dongdong; Zhou, Yanhui; Liu, Jie

    2014-06-11

    Alzheimer's disease (AD), the most common neurodegenerative disease, is caused by an accumulation of amyloid-β (Aβ) plaque deposits in the brains. Evidence is increasingly showing that epigallocatechin-3-gallate (EGCG) can partly protect cells from Aβ-mediated neurotoxicity by inhibiting Aβ aggregation. In order to better understand the process of Aβ aggregation and amyloid fibril disaggregation and reduce the cytotoxicity of EGCG at high doses, we attached EGCG onto the surface of selenium nanoparticles (EGCG@Se). Given the low delivery efficiency of EGCG@Se to the targeted cells and the involvement of selenoprotein in antioxidation and neuroprotection, which are the key factors for preventing the onset and progression of AD, we synthesized EGCG-stabilized selenium nanoparticles coated with Tet-1 peptide (Tet-1-EGCG@Se, a synthetic selenoprotein analogue), considering the affinity of Tet-1 peptide to neurons. We revealed that Tet-1-EGCG@Se can effectively inhibit Aβ fibrillation and disaggregate preformed Aβ fibrils into nontoxic aggregates. In addition, we found that both EGCG@Se and Tet-1-EGCG@Se can label Aβ fibrils with a high affinity, and Tet-1 peptides can significantly enhance the cellular uptake of Tet-1-EGCG@Se in PC12 cells rather than in NIH/3T3 cells.

  20. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    PubMed

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (< 7) after 120 min and 60 min polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates.

  1. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules.

    PubMed

    Liang, Jiajie; Liu, Hongwu; Huang, Caihong; Yao, Cuize; Fu, Qiangqiang; Li, Xiuqing; Cao, Donglin; Luo, Zhi; Tang, Yong

    2015-06-02

    Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac.

  2. Thermoswitchable catalysis controlled by reversible dispersion/aggregation change of nanoreactors in the presence of α-CD polymers

    NASA Astrophysics Data System (ADS)

    Li, Yinfeng; Hu, Jie; Niu, Chengrong; Leng, Jinghang; Li, Songjun

    2018-06-01

    The present work was aimed at preparing a thermosensitive nanoreactor system which could adjust its dispersion/aggregation status according to external temperature change to achieve the switchable catalysis. The mesoporous silica nanoparticle (MSNP) was selected as the framework material of the nanoreactor, and Ag nanoparticles were encapsulated in the mesoporous silica by an in situ reaction. Dodecyl groups were introduced onto MSNP surface, which could transform reversibly between complexation and disassociation with α-cyclodextrin (CD) cavity upon temperature change. It was found that the nanoreactors aggregated and the catalysis was effectively switched ‘off’ in the presence of CD polymers at low temperature (20 °C). However, when the temperature increased to 50 °C, the nanoreactors redispersed and catalysis successfully switched ‘on’.

  3. Thermoswitchable catalysis controlled by reversible dispersion/aggregation change of nanoreactors in the presence of α-CD polymers.

    PubMed

    Li, Yinfeng; Hu, Jie; Niu, Chengrong; Leng, Jinghang; Li, Songjun

    2018-06-01

    The present work was aimed at preparing a thermosensitive nanoreactor system which could adjust its dispersion/aggregation status according to external temperature change to achieve the switchable catalysis. The mesoporous silica nanoparticle (MSNP) was selected as the framework material of the nanoreactor, and Ag nanoparticles were encapsulated in the mesoporous silica by an in situ reaction. Dodecyl groups were introduced onto MSNP surface, which could transform reversibly between complexation and disassociation with α-cyclodextrin (CD) cavity upon temperature change. It was found that the nanoreactors aggregated and the catalysis was effectively switched 'off' in the presence of CD polymers at low temperature (20 °C). However, when the temperature increased to 50 °C, the nanoreactors redispersed and catalysis successfully switched 'on'.

  4. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  5. Development of a dose-controlled multiculture cell exposure chamber for efficient delivery of airborne and engineered nanoparticles

    NASA Astrophysics Data System (ADS)

    Asimakopoulou, Akrivi; Daskalos, Emmanouil; Lewinski, Nastassja; Riediker, Michael; Papaioannou, Eleni; Konstandopoulos, Athanasios G.

    2013-04-01

    In order to study the various health influencing parameters related to engineered nanoparticles as well as to soot emitted by Diesel engines, there is an urgent need for appropriate sampling devices and methods for cell exposure studies that simulate the respiratory system and facilitate associated biological and toxicological tests. The objective of the present work was the further advancement of a Multiculture Exposure Chamber (MEC) into a dose-controlled system for efficient delivery of nanoparticles to cells. It was validated with various types of nanoparticles (Diesel engine soot aggregates, engineered nanoparticles for various applications) and with state-of-the-art nanoparticle measurement instrumentation to assess the local deposition of nanoparticles on the cell cultures. The dose of nanoparticles to which cell cultures are being exposed was evaluated in the normal operation of the in vitro cell culture exposure chamber based on measurements of the size specific nanoparticle collection efficiency of a cell free device. The average efficiency in delivering nanoparticles in the MEC was approximately 82%. The nanoparticle deposition was demonstrated by Transmission Electron Microscopy (TEM). Analysis and design of the MEC employs Computational Fluid Dynamics (CFD) and true to geometry representations of nanoparticles with the aim to assess the uniformity of nanoparticle deposition among the culture wells. Final testing of the dose-controlled cell exposure system was performed by exposing A549 lung cell cultures to fluorescently labeled nanoparticles. Delivery of aerosolized nanoparticles was demonstrated by visualization of the nanoparticle fluorescence in the cell cultures following exposure. Also monitored was the potential of the aerosolized nanoparticles to generate reactive oxygen species (ROS) (e.g. free radicals and peroxides generation), thus expressing the oxidative stress of the cells which can cause extensive cellular damage or damage on DNA.

  6. Cytotoxicity Assessment of Some Carbon Nanotubes and Related Carbon Nanoparticle Aggregates and the Implications for Anthropogenic Carbon Nanotube Aggregates in the Environment

    PubMed Central

    Murr, L. E.; Garza, K. M.; Soto, K. F.; Carrasco, A.; Powell, T. G.; Ramirez, D. A.; Guerrero, P. A.; Lopez, D. A.; Venzor, J.

    2005-01-01

    virtually all gas combustion processes are variously effective sources. These results also raise concerns for manufactured carbon nanotube aggregates, and related fullerene nanoparticles. PMID:16705799

  7. Fabrication and biological imaging of polyhedral oligomeric silsesquioxane cross-linked fluorescent polymeric nanoparticles with aggregation-induced emission feature

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    Aggregation-induced emission (AIE) dyes based fluorescent polymeric nanoparticles (FNPs) have been intensively explored for biomedical applications. However, many of these AIE-active FNPs are relied on the self-assembly of amphiphilic copolymers, which are not stable in diluted solution. Therefore, the introduction of cross-linkages into these micelles has demonstrated to be an efficient route to overcome this stability problem and endow ultra-low critical micelle concentrations (CMC) of these AIE-active FNPs. In this work, we reported the fabrication of cross-linked AIE-active FNPs through controllable reversible addition fragmentation chain transfer polymerization by using commercially available octavinyl-T8-silsesquioxane (8-vinyl POSS) as the cross-linkage for the first time. The resultant cross-linked amphiphilic copolymers (named as PEG-POSS-PhE) are prone to self-assemble into stable core-shell nanoparticles with well water dispersity, strong red fluorescence and low CMC (0.0069 mg mL-1) in aqueous solution. More importantly, PEG-POSS-PhE FNPs possess some other properties such as high water dispersity, uniform morphology and small size, excellent biocompatibility and cellular internalization, providing great potential of PEG-POSS-PhE FNPs for biological imaging application.

  8. Tailoring (bio)chemical activity of semiconducting nanoparticles: critical role of deposition and aggregation.

    PubMed

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2011-06-22

    The impact of deposition and aggregation on (bio)chemical properties of semiconducting nanoparticles (NPs) is perhaps among the least studied aspects of aquatic chemistry of solids. Employing a combination of in situ FTIR and ex situ X-ray photoelectron spectroscopy (XPS) and using the Mn(II) oxygenation on hematite (α-Fe(2)O(3)) and anatase (TiO(2)) NPs as a model catalytic reaction, we discovered that the catalytic and sorption performance of the semiconducting NPs in the dark can be manipulated by depositing them on different supports or mixing them with other NPs. We introduce the electrochemical concept of the catalytic redox activity to explain the findings and to predict the effects of (co)aggregation and deposition on the catalytic and corrosion properties of ferric (hydr)oxides. These results offer new possibilities for rationally tailoring the technological performance of semiconducting metal oxide NPs, provide a new framework for modeling their fate and transport in the environment and living organisms, and can be helpful in discriminating between weakly and strongly adsorbed species in spectra.

  9. Formation and decay of charge carriers in aggregate nanofibers consisting of poly(3-hexylthiophene)-coated gold nanoparticles.

    PubMed

    Lee, Dongki; Lee, Jaewon; Song, Ki-Hee; Rhee, Hanju; Jang, Du-Jeon

    2016-01-21

    Thin nanofibers (NFs) of J-dominant aggregates with a thickness of 15 nm and thick NFs of H-dominant aggregates with a thickness of 25 nm were fabricated by the self-assembly of poly(3-hexylthiophene)-coated gold nanoparticles. The formation and decay dynamics of the charge carriers, which are dependent on the aggregate types of NFs, was investigated by time-resolved emission and transient-absorption spectroscopy. With increasing excitation energy, the fraction of the fast emission decay component decreased, suggesting that the fast formation of polaron pairs (PP), localized (LP), and delocalized polarons (DP) results from higher singlet exciton states produced by the singlet fusion. The faster decay dynamics of DP and LP in the thick NFs than in thin NFs is due to the increased delocalization of DP and LP. As the interchain aggregation is weaker than intrachain aggregation, PP decays faster in thin NFs than in thick NFs. In both thin and thick NFs, although triplet (T1) excitons were barely observed with excitation at 532 nm on a nanosecond time scale, they were observed with excitation at 355 nm, showing that T1 excitons within NFs are generated mainly through the singlet fission from a higher singlet exciton state rather than through intersystem crossing.

  10. Holographic Characterization of Colloidal Fractal Aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Cheong, Fook Chiong; Ruffner, David B.; Zhong, Xiao; Ward, Michael D.; Grier, David G.

    In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with the Lorenz-Mie theory of light scattering and an effective-sphere model to obtain each aggregate's size and the population-averaged fractal dimension. We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin. This technique can characterize several thousand aggregates in ten minutes and naturally distinguishes aggregates from contaminants such as silicone oil droplets. Work supported by the SBIR program of the NSF.

  11. Naked-eye detection of potassium ions in a novel gold nanoparticle aggregation-based aptasensor

    NASA Astrophysics Data System (ADS)

    Naderi, Mahboube; Hosseini, Morteza; Ganjali, Mohammad Reza

    2018-04-01

    In this work, we studied the feasibility of interaction among gold nanoparticles (AuNPs) and a cationic dye in an aptasensor system for the detection of potassium ions. The presence and absence of potassium in the solution was distinguishable by different colors (between orange and green) appeared after reaction. Cationic dye (Y5GL) acts as a new aggregator for AuNP-based sensors which changes the aggregated AuNP solution color from blue-purple to green. In the presence of K+ ions, the aptamer dissociated from the surface of the AuNP so that free AuNPs and cationic dye make the solution green. The aptasensor showed that the analytical linear range was from 10 nM to 50 mM and the detection limit was 4.4 nM. Also, we examined the practicality of this method on a simple paper based platform. The linear range of the colorimetric paper sensor covered of K+ concentration from 10 μM to 40 mM and the detection limit of 6.2 μM was obtained. The selectivity of AuNP aggregation-based sensor improved by the use of cationic dye. Rapidity, simplicity, high sensitivity and excellent selectivity made this assay suitable for practical determination of K+ in real urine samples.

  12. Aggregation state and magnetic properties of magnetite nanoparticles controlled by an optimized silica coating

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Moya, C.; Tartaj, P.; Labarta, A.; Batlle, X.

    2017-01-01

    The control of magnetic interactions is becoming essential to expand/improve the applicability of magnetic nanoparticles (NPs). Here, we show that an optimized microemulsion method can be used to obtain homogenous silica coatings on even single magnetic nuclei of highly crystalline Fe3-xO4 NPs (7 and 16 nm) derived from a high-temperature method. We show that the thickness of this coating is controlled almost at will allowing much higher average separation among particles as compared to the oleic acid coating present on pristine NPs. Magnetic susceptibility studies show that the thickness of the silica coating allows the control of magnetic interactions. Specifically, as this effect is better displayed for the smallest particles, we show that dipole-dipole interparticle interactions can be tuned progressively for the 7 nm NPs, from almost non-interacting to strongly interacting particles at room temperature. The quantitative analysis of the magnetic properties unambiguously suggests that dipolar interactions significantly broaden the effective distribution of energy barriers by spreading the distribution of activation magnetic volumes.

  13. Sulfur Nanoparticles with Novel Morphologies Coupled with Brain-Targeting Peptides RVG as a New Type of Inhibitor Against Metal-Induced Aβ Aggregation.

    PubMed

    Sun, Jing; Xie, Wenjie; Zhu, Xufeng; Xu, Mengmeng; Liu, Jie

    2018-04-18

    Functionalized nanomaterials, which have been applied widely to inhibit amyloid-β protein (Aβ) aggregation, show enormous potential in the field of prevention and treatment of Alzheimer's disease (AD). A significant body of data has demonstrated that the morphology and size of nanomaterials have remarkable effects on their biological behaviors. In this work, we proposed and designed three kinds of brain-targeting sulfur nanoparticles (RVG@Met@SNPs) with novel morphologies (volute-like, tadpole-like, and sphere-like) and investigated the effect of different RVG@Met@SNPs on Aβ-Cu 2+ complex aggregation and their corresponding neurotoxicity. Among them, the sphere-like nanoparticles (RVG@Met@SS) exhibited the most effective inhibitory activity, due to their unique mini size effect, and they reduced 61.6% the Aβ-Cu 2+ complex aggregation and increased 92.4% SH-SY5Y cell viability in a dose of 10 μg/mL. In vitro and in vivo, the abilities of different morphologies of RVG@Met@SNPs to cross the blood-brain barrier (BBB) and target brain parenchymal cells were significantly different. Moreover, improvements in learning disability and cognitive loss were shown in the transgenic AD mice model using the Morris water maze test after multiple doses of RVG@Met@SNPs treatment. In general, the purpose of this research is to develop a biological application of sulfur nanoparticles and to provide a novel functionalized nanomaterial to treat AD.

  14. Effect of surfactant concentration to aggregations of nanogold particles

    NASA Astrophysics Data System (ADS)

    Duangthanu, Methawee; Pattanaporkratana, Apichart

    2017-09-01

    This research presents a study of aggregation of colloidal gold nanoparticles using 400 nm diameter gold nanoparticles mixed with a surfactant (Plantacare 2000) at various concentrations. When observed under a microscope, we found that the nanoparticles aggregated to form nearly spherical clusters at the beginning of the formation, and then sedimented to the bottom of the container. These clusters moved with Brownian’s motion and collided with each other in the horizontal plane, forming branch-like clusters in 2D. The appearance and size of the clusters were different depending on the concentration of surfactant. The clusters’ size and appearance were rarely changed after mixing with surfactant for 90 minutes, and we found that the cluster’s shapes were nearly spherical at low surfactant concentration (c = 0.25%). At surfactant concentration between 0.50% - 5.00%, the aggregates formed branch-like clusters with skinnier branches and smaller sizes at higher surfactant concentration. Moreover, we also found that, at surfactant concentrations between 2.50% - 5.00%, nanoparticles and aggregates stuck to the bottom of the glass container quickly and rarely moved after 10 minutes. At c = 0.25%, the 2D fractal dimension of the aggregates was measured to be D = 1.88 ± 0.04, since the aggregates were nearly spherical. The fractal dimension decreased to the minimum of D = 1.50 ± 0.12 at c = 1.50%, similar to D ∼ 1.45 found in diffusion-limited cluster aggregation (DLCA). At surfactant concentration above 1.50%, the fractal dimension increased until it reached the value of D ∼ 1.66 at c = 5.00%.

  15. Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses.

    PubMed

    Ferrer, Maria L; del Monte, Francisco

    2005-01-13

    Highly fluorescent Nile Red (NR) nanoparticles embedded in a hybrid sol-gel glass are reported. The crystallite growth within the confined system created by the porous hybrid matrix results in NR nanoparticles of averaged dimensions below 36 nm. The preparation process allows for the control of both the conformation adopted by single NR molecules prior to aggregation (e.g., near planar) and the configuration of the aggregates (e.g., oblique with phi < 54.7 degrees) prior to their assembly in the supramolecular architecture which ultimately forms the nanoparticles. The full preservation of the fluorescent configuration of the aggregates in the nanoparticles is confirmed through the application of the exciton theory, and it is responsible for the significant increase of the fluorescence emission intensity (e.g., up to 525- and 70-fold as compared to that obtained for single NR molecules embedded in pure and hybrid silica glasses, respectively).

  16. Physical and Biological Controls of Copepod Aggregation and Baleen Whale Distribution

    DTIC Science & Technology

    2010-09-30

    1 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Physical and Biological Controls of Copepod Aggregation...distribution. OBJECTIVES The objectives of this study are to • Elucidate the mechanisms of copepod aggregation in the Great South Channel, a...Physical and Biological Controls of Copepod Aggregation and Baleen Whale Distribution 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  17. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.

    PubMed

    Elliott Donaghue, Irja; Shoichet, Molly S

    2015-10-01

    Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG

  18. Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates.

    PubMed

    Pena-Pereira, Francisco; Duarte, Regina M B O; Trindade, Tito; Duarte, Armando C

    2013-07-19

    The development of a novel methodology for extraction and preconcentration of the most commonly used anionic surface active agents (SAAs), linear alkylbenzene sulfonates (LAS), is presented herein. The present method, based on the use of silica-magnetite nanoparticles modified with cationic surfactant aggregates, was developed for determination of C10-C13 LAS homologues. The proposed methodology allowed quantitative recoveries of C10-C13 LAS homologues by using a reduced amount of magnetic nanoparticles. Limits of detection were in the range 0.8-1.9μgL(-1) for C10-C13 LAS homologues, while the repeatability, expressed as relative standard deviation (RSD), ranged from 2.0 to 3.9% (N=6). Finally, the proposed method was successfully applied to the analysis of a variety of natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Formation of wormlike aggregates of fluorocarbon-hydrocarbon hybrid surfactant by Langmuir-Blodgett transfer and alignment of gold nanoparticles.

    PubMed

    Kondo, Yukishige; Fukuoka, Hiroshi; Nakano, Shuichi; Hayashi, Kohei; Tsukagoshi, Tatsuya; Matsumoto, Mutsuyoshi; Yoshino, Norio

    2007-05-22

    A novel anionic fluorocarbon-hydrocarbon hybrid surfactant (SS-Hyb-Na+) with a disulfide group has been synthesized from 11-bromo-1-undecanal and perfluorohexylethyl iodide via three steps. The Langmuir-Blodgett (LB) transfer of the 1:100 (mol/mol) mixed monolayer of SS-Hyb-Na+ and stearyl alcohol (C18OH) formed on an aqueous solution containing a cationic polymer, poly(diallyldimethylammonium chloride) (PDDA+Cl-) onto a hydrophobic silicon wafer yields the formation of wormlike aggregates consisting of SS-Hyb-/PDDA+ polyion complexes. It is found that the aggregates align along the withdrawal direction of the wafer substrate. When the wafer on which the wormlike aggregates exist is immersed into the dispersion of gold nanoparticles (Au NPs) prepared by the citrate reduction method, Au NPs align along the wormlike structures. Even though the surface of the wafer is placed either vertical or parallel to the monolayer compression direction during the LB transfer, the one-dimensional (1D) array of Au NPs is observed along the withdrawal direction of the wafer. This indicates that the wormlike aggregates of SS-Hyb-/PDDA+ complexes are aligned during the LB transfer, and the aligned aggregates behave as a scaffold in the 1D array of Au NPs.

  20. Physical and Biological Controls of Copepod Aggregation and Baleen Whale Distribution

    DTIC Science & Technology

    2011-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Physical and Biological Controls of Copepod Aggregation and...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Physical and Biological Controls of Copepod Aggregation and Baleen Whale Distribution...OBJECTIVES The objectives of this study are to: • Elucidate the mechanisms of copepod aggregation in the Great South Channel, a major

  1. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles.

    PubMed

    Wu, Shanshan; Sun, Kang; Wang, Xin; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong

    2013-07-31

    The current results show that epigallocatechin-3-gallate (EGCG), in the form of phenolic anions at pH 8.0, can effectively disperse selenium nanoparticles. However, at gastric juice pH (1.0), the EGCG-dispersed selenium nanoparticles (referred to as E-Se) extensively aggregated, so that nano features largely disappeared. This demonstrates that deprotonated phenolic anions of EGCG play an important role in maintaining E-Se stability and suggests that E-Se would suffer from reduced oral bioavailability. To validate this conjecture, size-equivalent E-Se and bovine serum albumin (BSA)-dispersed selenium nanoparticles (B-Se), whose physicochemical properties were not altered at pH 1.0, were orally administered to selenium-deficient mice. In comparison to B-Se, the bioavailabilities of E-Se as indicated with hepatic and renal glutathione peroxidase activity and hepatic selenium levels were significantly (p < 0.01) reduced by 39, 32, and 31%, respectively. Therefore, the present study reveals that size-equivalent selenium nanoparticles prepared by different dispersers do not necessarily guarantee equivalent oral bioavailability.

  2. Controlled functionalization of nanoparticles & practical applications

    NASA Astrophysics Data System (ADS)

    Rashwan, Khaled

    With the increasing use of nanoparticles in both science and industry, their chemical modification became a significant part of nanotechnology. Unfortunately, most commonly used procedures provide just randomly functionalized materials. The long-term objective of our work is site- and stoichiometrically-controlled functionalization of nanoparticles with the utilization of solid supports and other nanostructures. On the examples of silica nanoparticles and titanium dioxide nanorods, we have obtained results on the solid-phase chemistry, method development, and modeling, which advanced us toward this goal. At the same time, we explored several applications of nanoparticles that will benefit from the controlled functionalization: imaging of titanium-dioxide-based photocatalysts, bioimaging by fluorescent nanoparticles, drug delivery, assembling of bone implants, and dental compositions. Titanium dioxide-based catalysts are known for their catalytic activity and their application in solar energy utilization such as photosplitting of water. Functionalization of titanium dioxide is essential for enhancing bone-titanium dioxide nanotube adhesion, and, therefore, for its application as an interface between titanium implants and bones. Controlled functionalization of nanoparticles should enhance sensitivity and selectivity of nanoassemblies for imaging and drug delivery applications. Along those lines, we studied the relationship between morphology and surface chemistry of nanoparticles, and their affinity to organic molecules (salicylic and caffeic acid) using Langmuir adsorption isotherms, and toward material surfaces using SEM- and TEM-imaging. We focused on commercial samples of titanium dioxide, titanium dioxide nanorods with and without oleic acid ligands, and differently functionalized silica nanoparticles. My work included synthesis, functionalization, and characterization of several types of nanoparticles, exploring their application in imaging, dentistry, and bone

  3. Adsorption of bovine serum albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle-protein interactions.

    PubMed

    Givens, Brittany E; Diklich, Nina D; Fiegel, Jennifer; Grassian, Vicki H

    2017-05-03

    Bovine serum albumin (BSA) adsorbed on amorphous silicon dioxide (SiO 2 ) nanoparticles was studied as a function of pH across the range of 2 to 8. Aggregation, surface charge, surface coverage, and protein structure were investigated over this entire pH range. SiO 2 nanoparticle aggregation is found to depend upon pH and differs in the presence of adsorbed BSA. For SiO 2 nanoparticles truncated with hydroxyl groups, the largest aggregates were observed at pH 3, close to the isoelectric point of SiO 2 nanoparticles, whereas for SiO 2 nanoparticles with adsorbed BSA, the aggregate size was the greatest at pH 3.7, close to the isoelectric point of the BSA-SiO 2 complex. Surface coverage of BSA was also the greatest at the isoelectric point of the BSA-SiO 2 complex with a value of ca. 3 ±   1 × 10 11 molecules cm -2 . Furthermore, the secondary protein structure was modified when compared to the solution phase at all pH values, but the most significant differences were seen at pH 7.4 and below. It is concluded that protein-nanoparticle interactions vary with solution pH, which may have implications for nanoparticles in different biological fluids (e.g., blood, stomach, and lungs).

  4. Kinetic control of block copolymer self-assembly into multicompartment and novel geometry nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin

    2012-02-01

    Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.

  5. Interaction of Colloidal Gold Nanoparticles with Model Serum Proteins: The Nanoparticle-Protein 'Corona' from a PhysicoChemical Viewpoint

    NASA Astrophysics Data System (ADS)

    Dominguez Medina, Sergio

    When nanoparticles come in contact with biological fluids they become coated with a mixture of proteins present in the media, forming what is known as the nanoparticle-protein 'corona'. This corona changes the nanoparticles' original surface properties and plays a central role in how these get screened by cellular receptors. In the context of biomedical research, this presents a bottleneck for the transition of nanoparticles from research laboratories to clinical settings. It is therefore fundamental to probe these nanoparticle-protein interactions in order to understand the different physico-chemical mechanisms involved. This thesis is aimed to investigate the exposure of colloidal gold nanoparticles to model serum proteins, particularly serum albumin, the main transporter of molecular compounds in the bloodstream of mammals. A set of experimental tools based on optical microscopy and spectroscopy were developed in order to probe these interactions in situ. First, the intrinsic photoluminescence and elastic scattering of individual gold nanoparticles were investigated in order to understand its physical origin. These optical signals were then used to measure the size of the nanoparticles while in Brownian diffusion using fluctuation correlation spectroscopy. This spectroscopic tool was then applied to detect the binding of serum albumin onto the nanoparticle surface, increasing its hydrodynamic size. By performing a binding isotherm as a function of protein concentration, it was determined that serum albumin follows an anti-cooperative binding mechanism on negatively charged gold nanoparticles. This protein monolayer substantially enhanced the stability of the colloid, preventing their aggregation in saline solutions with ionic strength higher than biological media. Cationic gold nanoparticles in contrast, aggregated when serum albumin was present at a low protein-to-nanoparticle ratio, but prevented aggregation if exposed in excess. Single-molecule fluorescence

  6. Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-06-01

    Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.

  7. Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid-diol binding.

    PubMed

    Liu, Shufeng; Du, Zongfeng; Li, Peng; Li, Feng

    2012-05-15

    A facile, highly sensitive colorimetric strategy for dihydronicotinamide adenine dinucleotide (NADH) detection is proposed based on anti-aggregation of gold nanoparticles (AuNPs) via boronic acid-diol binding chemistry. The aggregation agent, 4-mercaptophenylboronic acid (MPBA), has specific affinity for AuNPs through Au-S interaction, leading to the aggregation of AuNPs by self-dehydration condensation at a certain concentration, which is responsible for a visible color change of AuNPs from wine red to blue. With the addition of NADH, MPBA would prefer reacting with NADH to form stable borate ester via boronic acid-diol binding dependent on the pH and solvent, revealing an obvious color change from blue to red with increasing the concentration of NADH. The anti-aggregation effect of NADH on AuNPs was seen by the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for NADH is from 8.0 × 10(-9)M to 8.0 × 10(-6)M, with a low detection limit of 2.0 nM. The as-established colorimetric strategy opened a new avenue for NADH determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Ion transport controlled by nanoparticle-functionalized membranes.

    PubMed

    Barry, Edward; McBride, Sean P; Jaeger, Heinrich M; Lin, Xiao-Min

    2014-12-17

    From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane's electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.

  9. Ion transport controlled by nanoparticle-functionalized membranes

    NASA Astrophysics Data System (ADS)

    Barry, Edward; McBride, Sean P.; Jaeger, Heinrich M.; Lin, Xiao-Min

    2014-12-01

    From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.

  10. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles.

    PubMed

    Wu, Pae C; Khoury, Christopher G; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V; Vo-Dinh, Tuan; Brown, April S; Everitt, Henry O

    2009-09-02

    Size-controlled gallium nanoparticles deposited on sapphire were explored as alternative substrates to enhance Raman spectral signatures. Gallium's resilience following oxidation is inherently advantageous in comparison with silver for practical ex vacuo nonsolution applications. Ga nanoparticles were grown using a simple molecular beam epitaxy-based fabrication protocol, and monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry allowed the nanoparticles to be easily controlled for size. The Raman spectra obtained from cresyl fast violet (CFV) deposited on substrates with differing mean nanoparticle sizes represent the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Nonoptimized aggregate enhancement factors of approximately 80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm.

  11. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles

    PubMed Central

    Wu, Pae C; Khoury, Christopher G.; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V.; Vo-Dinh, Tuan; Brown, April S.; Everitt, Henry O.

    2009-01-01

    Size-controlled gallium nanoparticles deposited on sapphire are explored as alternative substrates to enhance Raman spectral signatures. Gallium’s resilience following oxidation is inherently advantageous compared to silver for practical ex vacuo, non-solution applications. Ga nanoparticles are grown using a simple, molecular beam epitaxy-based fabrication protocol, and by monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry, the nanoparticles are easily controlled for size. Raman spectroscopy performed on cresyl fast violet (CFV) deposited on substrates of differing mean nanoparticle size represents the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Non-optimized aggregate enhancement factors of ~80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm. PMID:19655747

  12. Development of screening assays for nanoparticle toxicity assessment in human blood: preliminary studies with charged Au nanoparticles.

    PubMed

    Love, Sara A; Thompson, John W; Haynes, Christy L

    2012-09-01

    As nanoparticles have found increased use in both consumer and medical applications, corresponding increases in possible exposure to humans necessitate studies examining the impacts of these nanomaterials in biological systems. This article examines the effects of approximately 30-nm-diameter gold nanoparticles, with positively and negatively charged surface coatings in human blood. Here, we study the exposure effects, with up to 72 h of exposure to 5, 15, 25 and 50 µg/ml nanoparticles on hemolysis, reactive oxygen species (ROS) generation and platelet aggregation in subsets of cells from human blood. Assessing viability with hemolysis, results show significant changes in a concentration-dependent fashion. Rates of ROS generation were investigated using the dichlorofluorscein diacetate-based assay as ROS generation is a commonly suspected mechanism of nanoparticle toxicity; herein, ROS was not a significant factor. Optical monitoring of platelet aggregation revealed that none of the examined nanoparticles induced aggregation upon short-term exposure.

  13. Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions

    NASA Astrophysics Data System (ADS)

    Celardo, G. L.; Archetti, D.; Ferrini, G.; Gavioli, L.; Pingue, P.; Cavaliere, E.

    2017-01-01

    The specific mechanisms which lead to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We compare a theoretical model of fractal formation with experimental data. The comparison of theory and experiment confirms that fractal aggregates are formed after landing of the ablated material on the substrate surface by a simple diffusive mechanism. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: TiO2 nanoparticles arrive already formed on the substrate, then they diffuse in a size/mass independent way and stick irreversibly upon touching, thus forming fractal clusters. Despite its simplicity, our model explains the main features of the fractal structures arising from the complex interaction of large TiO2 nanoparticles with different substrates. Indeed our model is able to reproduce both the fractal dimensions and the area distributions of the nanostructures for different densities of the ablated material. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.

  14. Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors.

    PubMed

    Wang, Fuan; Liu, Xiaoqing; Lu, Chun-Hua; Willner, Itamar

    2013-08-27

    The cysteine-stimulated aggregation of Au nanoparticles (Au NPs) is used as an auxiliary reporting system for the optical detection of H2O2, for optical probing of the glucose oxidase (GOx) and the catalyzed oxidation of glucose, for probing the biocatalytic cascade composed of acetylcholine esterase/choline oxidase (AChE/ChOx), and for following the inhibition of AChE. The analytical paradigm is based on the I(-)-catalyzed oxidation of cysteine by H2O2 to cystine, a process that prohibits the cysteine-triggered aggregation of the Au NPs. The system enabled the analysis of H2O2 with a detection limit of 2 μM. As the GOx-biocatalyzed oxidation of glucose yields H2O2, and the AChE/ChOx cascade leads to the formation of H2O2, the two biocatalytic processes could be probed by the cysteine-stimulated aggregation of the Au NPs. Since AChE is inhibited by 1,5-bis(4-allyldimethylammonium phenyl)pentane-3-one dibromide, the biocatalytic AChE/ChOx cascade is inhibited by the inhibitor, thus leading to the enhanced cysteine-mediated aggregation of the NPs. The results suggest the potential implementation of the cysteine-mediated aggregation of Au NPs in the presence of AChE/ChOx as a sensing platform for the optical detection of chemical warfare agents.

  15. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  16. Core-size regulated aggregation/disaggregation of citrate-coated gold nanoparticles (5-50 nm) and dissolved organic matter: Extinction, emission, and scattering evidence

    NASA Astrophysics Data System (ADS)

    Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.

    2018-01-01

    Knowledge of the interactions between gold nanoparticles (GNPs) and dissolved organic matter (DOM) is significant in the development of detection devices for environmental sensing, studies of environmental fate and transport, and advances in antifouling water treatment membranes. The specific objective of this research was to spectroscopically investigate the fundamental interactions between citrate-stabilized gold nanoparticles (CT-GNPs) and DOM. Studies indicated that 30 and 50 nm diameter GNPs promoted disaggregation of the DOM. This result-disaggregation of an environmentally important polyelectrolyte-will be quite useful regarding antifouling properties in water treatment and water-based sensing applications. Furthermore, resonance Rayleigh scattering results showed significant enhancement in the UV range which can be useful to characterize DOM and can be exploited as an analytical tool to better sense and improve our comprehension of nanomaterial interactions with environmental systems. CT-GNPs having core size diameters of 5, 10, 30, and 50 nm were studied in the absence and presence of added DOM at 2 and 8 ppm at low ionic strength and near neutral pH (6.0-6.5) approximating surface water conditions. Interactions were monitored by cross-interpretation among ultraviolet (UV)-visible extinction spectroscopy, excitation-emission matrix (EEM) spectroscopy (emission and Rayleigh scattering), and dynamic light scattering (DLS). This comprehensive combination of spectroscopic analyses lends new insights into the antifouling behavior of GNPs. The CT-GNP-5 and -10 controls emitted light and aggregated. In contrast, the CT-GNP-30 and CT-GNP-50 controls scattered light intensely, but did not aggregate and did not emit light. The presence of any CT-GNP did not affect the extinction spectra of DOM, and the presence of DOM did not affect the extinction spectra of the CT-GNPs. The emission spectra (visible range) differed only slightly between calculated and actual

  17. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    NASA Astrophysics Data System (ADS)

    Afrooz, A. R. M. Nabiul; Hussain, Saber M.; Saleh, Navid B.

    2014-12-01

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.

  18. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE PAGES

    Hammons, Joshua A.; Ilavsky, Jan

    2017-01-18

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  19. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Joshua A.; Ilavsky, Jan

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  20. Engineering biofunctional magnetic nanoparticles for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.

    2010-09-01

    Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the

  1. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices

    PubMed Central

    Kim, YongTae; Chung, Bomy Lee; Ma, Mingming; Mulder, Willem J. M.; Fayad, Zahi A.; Farokhzad, Omid C.; Langer, Robert

    2012-01-01

    Lipid-polymer hybrid (LPH) nanoparticles can deliver a wide range of therapeutic compounds in a controlled manner. LPH nanoparticle syntheses using microfluidics improve the mixing process, but are restricted by a low throughput. In this study we present a pattern-tunable microvortex platform that allows mass production and size control of LPH nanoparticles with superior reproducibility and homogeneity. We demonstrate that by varying flow rates (i.e. Reynolds number (30∼150)) we can control the nanoparticle size (30∼170nm) with high productivity (∼3g/hour) and low polydispersity (∼0.1). Our approach may contribute to efficient development and optimization of a wide range of multicomponent nanoparticles for medical imaging and drug delivery. PMID:22716029

  2. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering.

    PubMed

    Ho, Tuan Anh; Greathouse, Jeffery A; Wang, Yifeng; Criscenti, Louise J

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of the aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.

  3. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  4. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

    PubMed Central

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA. PMID:26648722

  5. Fluorine and oxygen plasma influence on nanoparticle formation and aggregation in metal oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2017-03-01

    Despite recent advances in metal oxide thin-film transistor technology, there are no foundry processes available yet for large-scale deployment of metal oxide electronics and photonics, in a similar way as found for silicon based electronics and photonics. One of the biggest challenges of the metal oxide platform is the stability of the fabricated devices. Also, there is wide dispersion on the measured specifications of fabricated TFT, from lot-to-lot and from different research groups. This can be partially explained by the importance of the deposition method and its parameters, which determine thin film microstructure and thus its electrical properties. Furthermore, substrate pretreatment is an important factor, as it may act as a template for material growth. Not so often mentioned, plasma processes can also affect the morphology of deposited films on further deposition steps, such as inducing nanoparticle formation, which strongly impact the conduction mechanism in the channel layer of the TFT. In this study, molybdenum doped indium oxide is sputtered onto ALD deposited HfO2 with or without pattering, and etched by RIE chlorine based processing. Nanoparticle formation is observed when photoresist is removed by oxygen plasma ashing. HfO2 etching in CF4/Ar plasma prior to resist stripping in oxygen plasma promotes the aggregation of nanoparticles into nanosized branched structures. Such nanostructuring is absent when oxygen plasma steps are replaced by chemical wet processing with acetone. Finally, in order to understand the electronic transport effect of the nanoparticles on metal oxide thin film transistors, TFT have been fabricated and electrically characterized.

  6. Aggregation behavior of TiO2 nanoparticles in municipal effluent: Influence of ionic strengthen and organic compounds.

    PubMed

    Ren, Meijie; Horn, Harald; Frimmel, Fritz H

    2017-10-15

    The influence of ionic strengthen and dissolved organic matter (DOM) on the aggregation of TiO 2 nanoparticles (NPs) in municipal effluent was investigated. The results demonstrated that DOM promoted the mobility of NPs in aquatic system by synergism between static repulsion and steric effect, while electrolytes were opposite by charge-neutralization. The physical-chemical characteristics of DOM played the major role on the mobility of NPs. Bovine serum albumin (BSA) showed the strongest enhancement on the mobility of TiO 2 NPs. High adsorption of BSA introduced vast negative charges on the TiO 2 NPs' surface, leading to static repulsion and neutralizing positive charges of electrolytes in surrounding as well. By contrast, another protein α-amylase retarded the aggregation rate of TiO 2 NPs through steric repulsion of the long-chain construction. Humic substances (Fulvic acid and alginate) also reflected the combination of static repulsion and steric effect. However, in the high electrolytes concentration (especially Ca 2+ ), the long-chain aliphatic compounds were prone to form calcium bridge which increased the hydrodynamic diameter of TiO 2 aggregates consequently. Sodium dodecylbenzene sulfonate (SDBS) showed low adsorption capacity, while the unabsorbed SDBS retarded the aggregates caused by the changes of pH and electrolytes. These data indicated that decreasing of DOC concentration in aqueous system was important to reduce the mobility and potential risk of NPs in aqueous system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Green Nanoparticles for Mosquito Control

    PubMed Central

    Soni, Namita; Prakash, Soam

    2014-01-01

    Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicum or C. verum J. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs). The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito. PMID:25243210

  8. Study on aggregation behavior of Cytochrome C-conjugated silver nanoparticles using asymmetrical flow field-flow fractionation.

    PubMed

    Kim, Sun Tae; Lee, Yong-Ju; Hwang, Yu-Sik; Lee, Seungho

    2015-01-01

    In this study, 40 nm silver nanoparticles (AgNPs) were synthesized using the citrate reduction method and then the surface of AgNPs was modified by conjugating Cytochrome C (Cyto C) to improve stability and to enhance bioactivity and biocompatibility of AgNPs. It is known that Cyto C may undergo conformational changes under various conditions of pH, temperature, ionic strength, etc., resulting in aggregation of the particles. These parameters also affect the size and size distribution of Cyto C-conjugated AgNPs (Cyto C-AgNP). ζ-potential measurement revealed that the adsorption of Cyto C on the surface of AgNPs is saturated at the molar ratio [Cyto C]/[AgNPs] above about 300. Asymmetrical flow field-flow fractionation (AsFlFFF) analysis showed that hydrodynamic diameter of AgNPs increases by about 4 nm when the particle is saturated by Cyto C. The aggregation behavior of Cyto C-AgNP at various conditions of pH, temperature and ionic strength were investigated using AsFlFFF and UV-vis spectroscopy. It was found that the aggregation of Cyto C-AgNP increases with decreasing pH, increasing temperature and ionic strength due to denaturation of Cyto C on AgNPs and reduction in the thickness of electrostatic double layer on the surface of Cyto C-AgNP. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering

    NASA Astrophysics Data System (ADS)

    Dan, Wang; Bingbing, Lin; Taipeng, Shen; Jun, Wu; Fuhua, Hao; Chunchao, Xia; Qiyong, Gong; Huiru, Tang; Bin, Song; Hua, Ai

    2016-07-01

    Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ɛ-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (M s) and T 2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).

  10. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation

    NASA Astrophysics Data System (ADS)

    Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.

    2017-03-01

    The interaction of macromolecules with gold nanoparticles (GNPs) is of interest in the emerging field of biomedical and environmental detection devices. However, the physicochemical properties, including spectra, of GNPs in aqueous solution in the absence of metal-macromolecular interactions must first be considered before their activity in biological and environmental systems can be understood. The specific objective of this research was to experimentally illuminate the role of nanoparticle core size on the spectral (simultaneous consideration of extinction, emission, and scattering) versus aggregation behaviors of citrate-coated GNPs (CT-GNPs). It is difficult to find in the literature systematic simultaneous presentation of scattering, emission, and extinction spectra, including the UV range, and thus the present work will aid those who would use such particles for spectroscopic related separations or sensors. The spectroscopic behavior of CT-GNPs with different core sizes (5, 10, 30, and 50 nm) was studied in ultra-pure water at pH 6.0-6.5 employing UV-visible extinction, excitation-emission matrix (EEM), resonance Rayleigh scattering, and dynamic light scattering (DLS) spectroscopies. The CT-GNP-5 and CT-GNP-10 samples aggregated, absorbed light, and emitted light. In contrast, the CT-GNP-30 and CT-GNP-50 samples did not aggregate and did not emit light, but scattered light intensely. Multimodal peaks were observed in the intensity-based DLS spectra of CT-GNP-5 and CT-GNP-10 samples. Monomodal peaks in the volume-based DLS spectra overestimated particle diameters by 60% and 30% for the CT-GNP-5 and CT-GNP-10 samples, respectively, but underestimated diameters by 10% and 4% for the CT-GNP-30 and CT-GNP-50 samples. The volume-based DLS spectra indicated that dimer and trimer aggregates contributed most to the overall volume of particles in the 5- and 10-nm CT-GNPs, whereas the CT-GNP-30 and CT-GNP-50 samples did not aggregate. Here, we discuss the potential

  11. Progress toward clonable inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular

  12. Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil

    2015-01-01

    The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.

  13. Characterization of Magnetic NiFe Nanoparticles with Controlled Bimetallic Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yan; Chi, Yanxiu; Shan, Shiyao

    2014-02-25

    The exploration of the magnetic properties of bimetallic alloy nanoparticles for various technological applications requires the ability to control the morphology, composition, and surface properties. In this report, we describe new findings of an investigation of the morphology and composition of NiFe alloy nanoparticles synthesized under controlled conditions. The controllability over the bimetallic composition has been demonstrated by the observation of an approximate linear relationship between the composition in the nanoparticles and in the synthetic feeding. The morphology of the NiFe nanoparticles is consistent with an fcc-type alloy, with the lattice strain increasing linearly with the iron content in themore » nanoparticles. The alloy nanoparticles exhibit remarkable resistance to air oxidation in comparison with Ni or Fe particles. The thermal stability and the magnetic properties of the as-synthesized alloy nanoparticles are shown to depend on the composition. The alloy nanoparticles have also be sown to display low saturation magnetization and coercivity values in comparison with the Ni nanoparticles, in line with the superparamagnetic characteristic. These findings have important implications for the design of stable and controllable magnetic nanoparticles for various technological applications.« less

  14. Effects of functional groups and ionization on the structure of alkanethiol coated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Lane, J. Matthew D.; Grest, Gary S.

    2013-03-01

    We report fully atomistic molecular dynamics simulations of alkanethiol coated gold nanoparticles solvated in water and decane. The structure of the coatings is analyzed as a function of various functional end groups, including amine and carboxyl groups in different neutralization states. We study the effects of charge in the end groups for two different chain lengths (10 and 18 carbons) and different counterions (mono- and divalent). For the longer alkanes we find significant local phase segregation of chains on the nanoparticle surface, which results in highly asymmetric coating structures. In general, the charged end groups attenuate this effect by enhancing the water solubility of the nanoparticles. Based on the coating structures and density profiles, we can qualitatively infer the overall solubility of the nanoparticles. The asymmetry in the alkanethiol coatings is also likely to have a significant effect on aggregation behavior. More importantly, our simulations suggest the ability to modulate end group charge states (e.g. by changing the pH of the solution) in order to control coating structure, and therefore control solubility and aggregation behavior.

  15. Photoinduced Disaggregation of TiO2 Nanoparticles Enables Transdermal Penetration

    PubMed Central

    Bennett, Samuel W.; Zhou, Dongxu; Mielke, Randall; Keller, Arturo A.

    2012-01-01

    Under many aqueous conditions, metal oxide nanoparticles attract other nanoparticles and grow into fractal aggregates as the result of a balance between electrostatic and Van Der Waals interactions. Although particle coagulation has been studied for over a century, the effect of light on the state of aggregation is not well understood. Since nanoparticle mobility and toxicity have been shown to be a function of aggregate size, and generally increase as size decreases, photo-induced disaggregation may have significant effects. We show that ambient light and other light sources can partially disaggregate nanoparticles from the aggregates and increase the dermal transport of nanoparticles, such that small nanoparticle clusters can readily diffuse into and through the dermal profile, likely via the interstitial spaces. The discovery of photoinduced disaggregation presents a new phenomenon that has not been previously reported or considered in coagulation theory or transdermal toxicological paradigms. Our results show that after just a few minutes of light, the hydrodynamic diameter of TiO2 aggregates is reduced from ∼280 nm to ∼230 nm. We exposed pigskin to the nanoparticle suspension and found 200 mg kg−1 of TiO2 for skin that was exposed to nanoparticles in the presence of natural sunlight and only 75 mg kg−1 for skin exposed to dark conditions, indicating the influence of light on NP penetration. These results suggest that photoinduced disaggregation may have important health implications. PMID:23155401

  16. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y. S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe3O4) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY'S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis.

  17. Conformational stability as a design target to control protein aggregation.

    PubMed

    Costanzo, Joseph A; O'Brien, Christopher J; Tiller, Kathryn; Tamargo, Erin; Robinson, Anne Skaja; Roberts, Christopher J; Fernandez, Erik J

    2014-05-01

    Non-native protein aggregation is a prevalent problem occurring in many biotechnological manufacturing processes and can compromise the biological activity of the target molecule or induce an undesired immune response. Additionally, some non-native aggregation mechanisms lead to amyloid fibril formation, which can be associated with debilitating diseases. For natively folded proteins, partial or complete unfolding is often required to populate aggregation-prone conformational states, and therefore one proposed strategy to mitigate aggregation is to increase the free energy for unfolding (ΔGunf) prior to aggregation. A computational design approach was tested using human γD crystallin (γD-crys) as a model multi-domain protein. Two mutational strategies were tested for their ability to reduce/increase aggregation rates by increasing/decreasing ΔGunf: stabilizing the less stable domain and stabilizing the domain-domain interface. The computational protein design algorithm, RosettaDesign, was implemented to identify point variants. The results showed that although the predicted free energies were only weakly correlated with the experimental ΔGunf values, increased/decreased aggregation rates for γD-crys correlated reasonably well with decreases/increases in experimental ΔGunf, illustrating improved conformational stability as a possible design target to mitigate aggregation. However, the results also illustrate that conformational stability is not the sole design factor controlling aggregation rates of natively folded proteins.

  18. Aggregation of TiO2-graphene nanocomposites in aqueous environment: Influence of environmental factors and UV irradiation.

    PubMed

    Hua, Zulin; Zhang, Jianan; Bai, Xue; Ye, Zhengfang; Tang, Zhiqiang; Liang, Lu; Liu, Yuqi

    2016-01-01

    The aggregation kinetics of TiO2-graphene nanocomposites in aqueous solution affected by solution pH, salt types (NaCl, CaCl2) and concentrations of electrolytes, and stability induced by UV irradiation was investigated in this study. The zeta potentials and hydrodynamic diameter of the nanoparticles were used as bases to assess the aggregation behavior, and stability of nanocomposites exposed to UV irradiation was expressed in terms of supernatant concentration. The aggregation of TiO2-graphene nanoparticles in aqueous media followed the colloidal theory. TiO2-graphene nanoparticles were significantly aggregated in the presence of a diavalent cation compared with monovalent cation because the former was more capable of effective charge screening and neutralization. The calculated Hamaker constant of the TiO2-graphene nanocomposites in aqueous solution prepared in the lab was 2.31×10(-20)J. The stability of this composite nanoparticles was between those of pure TiO2 and graphene. A known intensity of UV irradiation was beneficial in the formation of TiO2-graphene nanoparticle aggregates. However, prolonged UV irradiation may stabilize the nanoparticles. These results provided critical information about the colloidal properties of the new TiO2-graphene nanocomposites and were useful in predicting the fate and transport of TiO2-graphene nanocomposites in natural water environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Self-Assembly of Porphyrin J-Aggregates

    NASA Astrophysics Data System (ADS)

    Snitka, Valentinas; Rackaitis, Mindaugas; Navickaite, Gintare

    2006-03-01

    The porphyrin nanotubes were built by ionic self-assembly of two oppositely charged porphyrins in aqueous solution. The porphyrins in the acid aqueous solution self-assemble into J-aggregates, wheels or other structures. The electrostatic forces between these porphyrin blocks contribute to the formation of porphyrin aggregates in the form of nanotubes, enhance the structural stability of these nanostructures. The nanotubes were composed mixing aqueous solutions of the two porphyrins - anionic Meso-tetra(4- sulfonatophrnyl)porhine dihydrochloride (TPPS4) and cationic Meso-tetra(4-pyridyl)porphine (T4MPyP). The porphyrin nanotubes obtained are hollow structures with the length of 300 nm and diameter 50 nm. Photocatalytic porphyrins are used to reduce metal complexes from aqueous solution and to control the deposition of Au from AuHCl4 and Au nanoparticles colloid solutions onto porphyrin nanotubes. Porphyrin nanotubes are shown to reduce metal complexes and deposit the metal selectively onto the inner or outer surface of the tubes, leading to nanotube-metal composite structures.

  20. Optimum Aggregation and Control of Spatially Distributed Flexible Resources in Smart Grid

    DOE PAGES

    Bhattarai, Bishnu; Mendaza, Iker Diaz de Cerio; Myers, Kurt S.; ...

    2017-03-24

    This paper presents an algorithm to optimally aggregate spatially distributed flexible resources at strategic microgrid/smart-grid locations. The aggregation reduces a distribution network having thousands of nodes to an equivalent network with a few aggregated nodes, thereby enabling distribution system operators (DSOs) to make faster operational decisions. Moreover, the aggregation enables flexibility from small distributed flexible resources to be traded to different power and energy markets. A hierarchical control architecture comprising a combination of centralized and decentralized control approaches is proposed to practically deploy the aggregated flexibility. The proposed method serves as a great operational tool for DSOs to decide themore » exact amount of required flexibilities from different network section(s) for solving grid constraint violations. The effectiveness of the proposed method is demonstrated through simulation of three operational scenarios in a real low voltage distribution system having high penetrations of electric vehicles and heat pumps. Finally, the simulation results demonstrated that the aggregation helps DSOs not only in taking faster operational decisions, but also in effectively utilizing the available flexibility.« less

  1. Optimum Aggregation and Control of Spatially Distributed Flexible Resources in Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Bishnu; Mendaza, Iker Diaz de Cerio; Myers, Kurt S.

    This paper presents an algorithm to optimally aggregate spatially distributed flexible resources at strategic microgrid/smart-grid locations. The aggregation reduces a distribution network having thousands of nodes to an equivalent network with a few aggregated nodes, thereby enabling distribution system operators (DSOs) to make faster operational decisions. Moreover, the aggregation enables flexibility from small distributed flexible resources to be traded to different power and energy markets. A hierarchical control architecture comprising a combination of centralized and decentralized control approaches is proposed to practically deploy the aggregated flexibility. The proposed method serves as a great operational tool for DSOs to decide themore » exact amount of required flexibilities from different network section(s) for solving grid constraint violations. The effectiveness of the proposed method is demonstrated through simulation of three operational scenarios in a real low voltage distribution system having high penetrations of electric vehicles and heat pumps. Finally, the simulation results demonstrated that the aggregation helps DSOs not only in taking faster operational decisions, but also in effectively utilizing the available flexibility.« less

  2. Thermally controlled preferential molecular aggregation state in a thiacarbocyanine dye

    NASA Astrophysics Data System (ADS)

    Passier, Rémy; Ritchie, James P.; Toro, Carlos; Diaz, Carlos; Masunov, Artëm E.; Belfield, Kevin D.; Hernandez, Florencio E.

    2010-10-01

    Herein we report the experimental and theoretical study of the temperature dependence of a thiacarbocyanine dye in its monomer, H- and J-aggregates states. We demonstrate the ability to control the ratio of monomer, H- and/or J-aggregates with heat. We link such a control to the conformation dependence of the molecule. An alternative way to gain access to the dominating species without changing the concentration as a complete switching mechanism between all the present species is proposed. The results presented in this work lead to a better understanding of thiacarbocyanine dye's behavior.

  3. Macro-hydrogels versus nanoparticles by the controlled assembly of polysaccharides.

    PubMed

    Costalat, M; Alcouffe, P; David, L; Delair, T

    2015-12-10

    The controlled assembly of oppositely charged chitosan (CS, Mw ∼ 33 × 10(3) to 600 × 10(3)g mol(-1)) and dextran sulfate (DS, Mw = 1.3 × 10(6)g mol(-1)) or heparin (HP, Mw = 1.8 × 10(4)g mol(-1)) led either to nanoparticles or macro-hydrogels, at room temperature. The control over the electrostatic attractive interactions was achieved using 2 mol L(-1) NaCl in the polyion solutions and subsequent dialysis to let the assembly occur. Macrohydrogels formed with an excess of polyanion. In the presence of an excess of polycation, colloidal gels were exclusively obtained. At salt concentrations lower than 1 mol L(-1), the spontaneous gelation provided macro-hydrogels, whatever the polyion in excess. Rheology measurements showed a similar elastic behaviour for CS-DS and CS-HP hydrogels, though CS-HP hydrogels appeared less cohesive. SAXS experiments revealed an aggregate morphology with internal and surface structure depending on the degree of acetylation (DA) of chitosan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Control of viscous fingering by nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabet, Nasser; Hassanzadeh, Hassan; Abedi, Jalal

    2017-12-01

    A substantial viscosity increase by the addition of a low dose of nanoparticles to the base fluids can well influence the dynamics of viscous fingering. There is a lack of detailed theoretical studies that address the effect of the presence of nanoparticles on unstable miscible displacements. In this study, the impact of nonreactive nanoparticle presence on the stability and subsequent mixing of an originally unstable binary system is examined using linear stability analysis (LSA) and pseudospectral-based direct numerical simulations (DNS). We have parametrized the role of both nondepositing and depositing nanoparticles on the stability of miscible displacements using the developed static and dynamic parametric analyses. Our results show that nanoparticles have the potential to weaken the instabilities of an originally unstable system. Our LSA and DNS results also reveal that nondepositing nanoparticles can be used to fully stabilize an originally unstable front while depositing particles may act as temporary stabilizers whose influence diminishes in the course of time. In addition, we explain the existing inconsistencies concerning the effect of the nanoparticle diffusion coefficient on the dynamics of the system. This study provides a basis for further research on the application of nanoparticles for control of viscosity-driven instabilities.

  5. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering

    DOE PAGES

    Ho, Tuan Anh; Greathouse, Jeffery A.; Wang, Yifeng; ...

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of themore » aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.« less

  6. Controlled release of B-carotene in B-lactoglobulin-dextran conjugates nanoparticles in vitro digestion and the transport with Caco-2 monolayers

    USDA-ARS?s Scientific Manuscript database

    Undesirable aggregation of nanoparticles stabilized by proteins may may occur at the protein’s isoelectric point when the particle has zero net charge. Aggregation may be reduced bychanging the isoelectric point by conjugation of free amino groups with reducing sugars (Maillard reaction). Alternativ...

  7. Microwave-induced formation of oligomeric amyloid aggregates.

    PubMed

    Lee, Wonseok; Choi, Yeseong; Lee, Sang Won; Kim, Insu; Lee, Dongtak; Hong, Yoochan; Lee, Gyudo; Yoon, Dae Sung

    2018-08-24

    Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.

  8. Heated probe diagnostic inside of the gas aggregation nanocluster source

    NASA Astrophysics Data System (ADS)

    Kolpakova, Anna; Shelemin, Artem; Kousal, Jaroslav; Kudrna, Pavel; Tichy, Milan; Biederman, Hynek; Surface; Plasma Science Team

    2016-09-01

    Gas aggregation cluster sources (GAS) usually operate outside common working conditions of most magnetrons and the size of nanoparticles created in GAS is below that commonly studied in dusty plasmas. Therefore, experimental data obtained inside the GAS are important for better understanding of process of nanoparticles formation. In order to study the conditions inside the gas aggregation chamber, special ``diagnostic GAS'' has been constructed. It allows simultaneous monitoring (or spatial profiling) by means of optical emission spectroscopy, mass spectrometry and probe diagnostic. Data obtained from Langmuir and heated probes map the plasma parameters in two dimensions - radial and axial. Titanium has been studied as an example of metal for which the reactive gas in the chamber starts nanoparticles production. Three basic situations were investigated: sputtering from clean titanium target in argon, sputtering from partially pre-oxidized target and sputtering with oxygen introduced into the discharge. It was found that during formation of nanoparticles the plasma parameters differ strongly from the situation without nanoparticles. These experimental data will support the efforts of more realistic modeling of the process. Czech Science Foundation 15-00863S.

  9. Aggregation and charge behavior of metallic and nonmetallic nanoparticles in the presence of competing similarly-charged inorganic ions.

    PubMed

    Mukherjee, Biplab; Weaver, James W

    2010-05-01

    The influence of competing, similarly charged, inorganic ions on the size and charge behavior of suspended titanium-dioxide (nTiO(2)), silver (nAg) and fullerene (nC(60)) nanoparticles (NPs) was investigated. Under pH and ionic conditions similar to natural water bodies, Ca(2+) induced aggregation of nTiO(2) and nAg NPs more strongly than K(+) and Na(+). Although K(+) and Na(+) had a similar effect on aggregation, K(+) provided better screening of the particle surface charge presumably because of its small hydrated radius. These effects were decidedly more prominent for TiO(2) than Ag. Anions (co-ions), SO(4)(2-) and Cl(-), affected the surface charge behavior of nTiO(2) but not of nAg NPs. The zeta potential (ZP) of nTiO(2) NPs was more negative at higher SO(4)(2-)/Cl(-) ratios than lower. When Mg(2+) was the counterion, charge inversion and rapid aggregation of nC(60) NPs occurred under alkaline conditions, with a more pronounced effect for Cl(-) than SO(4)(2-). Response dissimilarities suggest fundamental differences in the interfacial-interaction characteristics of these NPs in the aquatic environment with corresponding differences in transport of these particles. Our study also shows the important role played by the iso-electric point pH (pH(iep)) of the NPs in determining their aggregation kinetics in the environment.

  10. Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles.

    PubMed

    Lakatos, Mathias; Matys, Sabine; Raff, Johannes; Pompe, Wolfgang

    2015-11-01

    Herein, we present simple and rapid colorimetric and UV/VIS spectroscopic methods for detecting anionic arsenic (V) complexes in aqueous media. The methods exploit the aggregation of S-layer-functionalized spherical gold nanoparticles of sizes between 20 and 50 nm in the presence of arsenic species. The gold nanoparticles were functionalized with oligomers of the S-layer protein of Lysinibacillus sphaericus JG-A12. The aggregation of the nanoparticles results in a color change from burgundy-red for widely dispersed nanoparticles to blue for aggregated nanoparticles. A detailed signal analysis was achieved by measuring the shift of the particle plasmon resonance signal with UV/VIS spectroscopy. To further improve signal sensitivity, the influence of larger nanoparticles was tested. In the case of 50 nm gold nanoparticles, a concentration of the anionic arsenic (V) complex lower than 24 ppb was detectable. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Stability of aggregates in the environment: role of solid bridging

    NASA Astrophysics Data System (ADS)

    Seiphoori, A.; Jerolmack, D. J.; Arratia, P. E.

    2017-12-01

    Colloids in suspension may form larger flocs under favorable conditions, via diffusion- or reaction-limited aggregation. In addition, the process of drying colloidal suspensions drives colloids together via hydrodynamic forces to form aggregates, that may be stable or unstable when subject to re-wetting and transport. Channel banks, shorelines and hillslopes are examples where the periodic wetting and drying results in the aggregation of muds. If aggregates disperse, the mud structure is unstable to subsequent wetting or fluid shear and can easily be detached and transported to rivers and coasts. The effective friction that governs hillslope and channel-bank soil creep rates also depends on the stability of the soil aggregates. Yet, few studies probe the particle-scale assembly or stability of aggregates subject to environmental loads, and the effects of shape or size heterogeneity have not been examined in detail. Here we investigate the formation and stability of aggregates subject to passive re-wetting (by misting) and shearing using a simple Poiseuille flow in a microfluidic device. We study the kinetics of a wide range of silicate colloids of different size and surface charge properties using in situ microscopy and particle tracking. We find that negatively charged silica microspheres are dragged by the retreating edge of an evaporating drop and are resuspended easily on re-wetting, showing that aggregates are unstable. In contrast, a bi-disperse suspension created by the addition of silica nanoparticles forms stable deposits, where nanoparticles bind larger particles by bridging the interparticle space, a mechanism similar to capillary bridging that we refer to as "solid bridging." Although aggregate structure and dynamics of the bi-disperse system changes quantitatively with surface-charge of the nanoparticles, smaller particles always conferred stability on the aggregates. Investigation of other colloids, including asbestos fibers and various clays, reveals

  12. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles

    PubMed Central

    Kurokawa, Yoshika; Sone, Hideko; Win-Shwe, Tin-Tin; Zeng, Yang; Kimura, Hiroyuki; Koyama, Yosuke; Yagi, Yusuke; Matsui, Yasuto; Yamazaki, Masashi; Hirano, Seishiro

    2017-01-01

    Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD), an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB) in vitro using a commercially available kit revealed poor permeability of the nanoparticles, which was suppressed by an inhibitor of caveolae-mediated endocytosis, but not by an inhibitor of macropinocytosis. Physicochemical analysis of the PD revealed that cationic PDs are likely to aggregate promptly upon mixing with body fluids and that this prompt aggregation is probably driven by non-Derjaguin–Landau– Verwey–Overbeek attractive forces originating from the surrounding divalent ions. Atomic force microscopy observation of a freshly cleaved mica plate soaked in dendrimer suspension (culture media) confirmed prompt aggregation. Our study revealed poor transfer of intravenously administered cationic PDs into the intracranial nervous tissue, and the results of our analysis suggested that this was largely attributable to the reduced BBB permeability arising from the propensity of the particles to promptly aggregate upon mixing with body fluids. PMID:28579780

  13. Crosslinking to enhance colloidal stability and redispersity of layered double hydroxide nanoparticles.

    PubMed

    Zuo, Huali; Gu, Zi; Cooper, Helen; Xu, Zhi Ping

    2015-12-01

    This article introduces a strategy for stabilizing and redispersing layered double hydroxide (LDH) nanoparticles by crosslinking bovine serum albumin (BSA) coated onto the surface. The strategy involves optimization of the amount of the crosslinking agent glutaraldehyde (GTA) to achieve minimal aggregation and ready redispersion. LDH nanoparticles were prepared by co-precipitation and hydrothermal treatment, with subsequent BSA coating at the BSA/LDH mass ratio of 5:2. BSA coated onto LDH nanoparticles was crosslinked with different amounts of GTA. Aggregation studies using dilution assays, dynamic light scattering, and zeta potential analysis indicated that severe aggregation at lower LDH nanoparticle concentrations can be prevented by proper crosslinking of BSA with GTA. The GTA-crosslinked BSA-coated nanoparticles showed excellent redispersity compared to the non-crosslinked nanoparticles. In vitro cytotoxicity and cell uptake were found to be minimally affected by GTA-crosslinking. The new strategy therefore provides a much more effective method for the prevention of LDH nanoparticle aggregation and improved LDH nanoparticle redispersion for use in a wide variety of bio-applications in vitro and in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Diameter control of vertically aligned carbon nanotubes using CoFe2O4 nanoparticle Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Tamiya, Shuhei; Sato, Taiga; Kushida, Masahito

    2018-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) are suggested for utilization as a new catalyst support of polymer electrolyte fuel cells (PEFCs). The independent control of the diameter and number density of VA-CNTs is essential for application in PEFCs. As the catalyst for VA-CNT growth, we fabricated CoFe2O4 nanoparticle (NP) films using the Langmuir-Blodgett (LB) technique. Using the LB technique, we were able to separately control the diameter and number density of VA-CNTs. The number density of VA-CNTs was changed by mixing with the filler moleculer, palmitic acid (C16). The VA-CNT diameter was changed by the adjusting the CoFe2O4 NP diameter. However, the heat-induced aggregation of CoFe2O4 NPs occurred in thermal chemical vapor deposition to synthesize VA-CNTs. Therefore, we examined how to minimize the effect of heat-induced aggregation of CoFe2O4 NPs. As a result, selection of the appropriate number density and diameter of CoFe2O4 NPs was found to be important for the control of VA-CNT diameter.

  15. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye, Lin; Yun, Jimmy

    2010-06-01

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  16. Synthesis of NiFe2O4 nanoparticles for energy and environment applications

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Rimal, Gaurab; Tang, Jinke; Dai, Qilin

    2018-02-01

    Magnetic nanoparticles are of great interest due to their applications in energy and environment. In this work, we developed a chemical solution based method to synthesize NiFe2O4 (NFO) nanoparticles with different sizes and structures by organic ligands and studied their applications in magnetic electrolyte concentration cells and waste water treatment. NFO nanoparticle growth is controlled by the organic passivating ligand ratios, reaction temperatures, and reaction solution concentrations to achieve the control of NFO nanoparticle size ranging from 25 nm to 160 nm. The NFO growth mechanism is controlled by aggregation related mechanism, leading to tunable magnetic properties and concentration cell device performance. Magnetic biochar consisting of biochar/NFO composite was also obtained based on the developed method. Waste water containing Rhodamine B was tested by the synthesized magnetic biochar. We believe the method developed in this work about magnetic NFO nanoparticles and magnetic biochar will shed light on the application of magnetic nanoparticles in energy and environment.

  17. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy.

    PubMed

    Zečević, Jovana; Hermannsdörfer, Justus; Schuh, Tobias; de Jong, Krijn P; de Jonge, Niels

    2017-01-01

    Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Callow, P

    2014-02-18

    Small-angle neutron scattering (SANS) and UV-visible spectroscopy studies have been carried out to examine pH-dependent interactions and resultant structures of oppositely charged silica nanoparticles and lysozyme protein in aqueous solution. The measurements were carried out at fixed concentration (1 wt %) of three differently sized silica nanoparticles (8, 16, and 26 nm) over a wide concentration range of protein (0-10 wt %) at three different pH values (5, 7, and 9). The adsorption curve as obtained by UV-visible spectroscopy shows exponential behavior of protein adsorption on nanoparticles. The electrostatic interaction enhanced by the decrease in the pH between the nanoparticle and protein (isoelectric point ∼11.4) increases the adsorption coefficient on nanoparticles but decreases the overall amount protein adsorbed whereas the opposite behavior is observed with increasing nanoparticle size. The adsorption of protein leads to the protein-mediated aggregation of nanoparticles. These aggregates are found to be surface fractals at pH 5 and change to mass fractals with increasing pH and/or decreasing nanoparticle size. Two different concentration regimes of interaction of nanoparticles with protein have been observed: (i) unaggregated nanoparticles coexisting with aggregated nanoparticles at low protein concentrations and (ii) free protein coexisting with aggregated nanoparticles at higher protein concentrations. These concentration regimes are found to be strongly dependent on both the pH and nanoparticle size.

  19. Kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying

    NASA Astrophysics Data System (ADS)

    Kameya, Yuki

    2017-06-01

    A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas-liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.

  20. Influence of gold nanoparticles on platelets functional activity in vitro

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Akchurin, George G.; Ivanov, Alexey N.; Kirichuk, Vyacheslav F.; Terentyuk, George S.; Khlebtsov, Boris N.; Khlebtsov, Nikolay G.

    2008-02-01

    Now in the leading biomedical centers of the world approved new technology of laser photothermal destruction of cancer cells using plasmon gold nanoparticles. Investigations of influence of gold nanoparticles on white rat platelets aggregative activity in vitro have been made. Platelet aggregation was investigated in platelet rich plasma (PRP) with help of laser analyzer 230 LA <>, Russia). Aggregation inductor was ADP solution in terminal concentration 2.5 micromole (<>, Russia). Gold nanoshells soluted in salt solution were used for experiments. Samples of PRP were incubated with 50 or 100 μl gold nanoshells solution in 5 minute, after that we made definition ADP induced platelet aggregation. We found out increase platelet function activity after incubation with nanoparticles solution which shown in maximum ADP-induced aggregation degree increase. Increase platelet function activity during intravenous nanoshells injection can be cause of thrombosis on patients. That's why before clinical application of cancer cell destruction based on laser photothermal used with plasmon gold nanoparticles careful investigations of thrombosis process and detail analyze of physiological blood parameters are very necessary.

  1. Synthetic Quorum Sensing and Induced Aggregation in Model Microcapsule Colonies with Repressilator Feedback

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Yashin, Victor; Balazs, Anna

    We model a system of synthetic microcapsules that communicate chemically by releasing nanoparticles or signaling molecules. These signaling species bind to receptors on the shells of capsules and modulate the target shell's permeability, thereby controlling nanoparticle release from the target capsule. Using the repressilator regulatory network motif, whereby three species suppress the production of the next in a cyclic fashion, we show that large amplitude oscillations in nanoparticle release can emerge when many capsules are close together. This exemplifies quorum sensing, which is the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. We present a physically realizable model in which the oscillations exhibited in crowded populations induce aggregation of the microcapsules, mimicking complex biological behavior of the slime mold Dictyostelium discoideum with only simple, synthetic components. We also show that the clusters can be dispersed and reformed repeatedly and controllably by addition of chemical stimuli, demonstrating possible applications in creating reconfigurable or programmable materials.

  2. A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule

    NASA Astrophysics Data System (ADS)

    Lawson, Latevi S.; Chan, James W.; Huser, Thomas

    2014-06-01

    Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts or linker molecules are used in conjunction with chemically sensitive reporters in order to develop robust environmentally sensitive SERS probes. While salt-induced colloidal nanosphere aggregates have produced robust SERS signals, their variability in aggregate size contributes significantly to poor SERS signal reproducibility, which can complicate their use in in vitro cellular studies. Such systems often also lack reproducibility in spectral measurements between different nanoparticle clusters. Preaggregation of colloids via linkers followed by surface functionalization with reporter molecules results in the linker occupying valuable SERS hotspot volume which could otherwise be utilized by additional reporter molecules. Ideally, both functionalities should be obtained from a single molecule. Here, we report the use of 3,5-dimercaptobenzoic acid, a single multifunctional molecule that creates SERS hotspots via the controlled aggregation of nanoparticles, and also reports pH values. We show that 3,5-dimercaptobenzoic acid bound to Au nanospheres results in an excellent pH nanoprobe, producing very robust, and highly reproducible SERS signals that can report pH across the entire physiological range with excellent pH resolution. To demonstrate the efficacy of our novel pH reporters, these probes were also used to image both the particle and pH distribution in the cytoplasm of human induced pluripotent stem cells (hiPSCs).Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts

  3. Enhanced nanoparticle size control by extending LaMer’s mechanism

    DOE PAGES

    Vreeland, Erika C.; Watt, John; Schober, Gretchen B.; ...

    2015-08-17

    The synthesis of well-defined nanoparticle materials has been an area of intense investigation, but size control in nanoparticle syntheses is largely empirical. Here, we introduce a general method for fine size control in the synthesis of nanoparticles by establishing steady state growth conditions through the continuous, controlled addition of precursor, leading to a uniform rate of particle growth. This approach, which we term the “extended LaMer mechanism” allows for reproducibility in particle size from batch to batch as well as the ability to predict nanoparticle size by monitoring the early stages of growth. We have demonstrated this method by applyingmore » it to a challenging synthetic system: magnetite nanoparticles. To facilitate this reaction, we have developed a reproducible method for synthesizing an iron oleate precursor that can be used without purification. As a result, we then show how such fine size control affects the performance of magnetite nanoparticles in magnetic hyperthermia.« less

  4. Synthesis and bioimaging of biodegradable red fluorescent organic nanoparticles with aggregation-induced emission characteristics.

    PubMed

    Xu, Dazhuang; Zou, Hui; Liu, Meiying; Tian, Jianwen; Huang, Hongye; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-15

    Fluorescent organic nanoparticles (FONs) with aggregation-induced emission (AIE) features have recently emerged as promising fluorescent probes for biomedical applications owing to their excellent optical properties, designability and biocompatibility. Significant progress has been made recently for synthesis and biomedical applications of these AIE-active FONs. However, only very limited reports have demonstrated the fabrication of biodegradable AIE-active FONs with red fluorescence emission. In this study, a novel strategy has been developed for the preparation of biodegradable AIE-active polyurethanes (PUs) through a two-step polymerization, in which the diisocyanate-terminated polyethylene glycol (NCO-PEG-NCO) was synthesized and subsequently conjugated with diamine-containing AIE dye (NH 2 -Phe-NH 2 ). The successful synthesis of AIE-active Phe-PEG 2000 PUs is evidenced by a series of characterization techniques. Because of the formation of AIE-active amphiphilic PUs, the final copolymers can self-assemble into spherical nanoparticles, which exhibit strong luminescence and high water dispersion. The biological evaluation results suggest that the AIE-active Phe-PEG 2000 FONs possess low toxicity and desirable cell permeability. Therefore, we anticipate that these AIE-active FONs with biodegradable potential will trigger much research enthusiasm and effort toward the creation of new AIE-active materials with improved properties for various biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Bioresponsive polymer coating on nanoparticles

    NASA Astrophysics Data System (ADS)

    Laemthong, Tunyaboon

    Nanotechnology incorporated with molecular biology became a promising way to treat cancer. The size of nanoparticles enables them to overcome the side effects noticed in cancer treatment like chemotherapy and surgery. Various types and shapes of nanoparticles have been synthesized and used in drug delivery to tumor sites. However, one of problems of using these nanoparticles is the aggregation after injecting them into human body due to flow rate of bloodstream. The coagulation and aggregation will result in clogging blood vessel and lower therapeutic efficacy. In this thesis, a solution to the aggregation problem was proposed, which is coating biopolymer on nanoparticles (NPs). The experimental sections covered synthesis and characterization of breast cancer specific targeting drug-encapsulated NPs and biopolymer coating on the surface of Au-Fe3O4 NPs for thermal therapy. Furthermore, in vitro studies of these NPs with breast cancer cells were also included. The specific targeting anticancer drug-encapsulated NRs showed significant inhibition in BT-474 breast cancer cell growth. The Au-Fe3O4 NPs has a possibility to treat cancer cells using the thermal therapy approach.

  6. Shaped platinum nanoparticles directly synthesized inside mesoporous silica supports

    NASA Astrophysics Data System (ADS)

    Kim, Jiwhan; Bae, Youn-Sang; Lee, Hyunjoo

    2014-10-01

    It is difficult to deposit shape-controlled nanoparticles into a mesoporous framework while preserving the shape. For shaped platinum nanoparticles, which are typically 5-10 nm in size, capillary inclusion by sonication or the formation of a mesoporous framework around the shaped platinum nanoparticles has been attempted, but the nanoparticles aggregated or their shapes were degraded easily. In this work, we directly nucleated platinum on the surface inside a mesoporous silica support and controlled the overgrowth step, producing cubic shaped nanoparticles. Mercaptopropyltrimethoxysilane was used as an anchoring agent causing nucleation at the silica surface, and it also helped to shape the nanoparticles. Platinum nanocubes, which were synthesized with polymeric capping agents separately, were deposited inside the mesoporous silica by sonication, but most of the nanoparticles were clogged at the entrance to the pores, and the surface of the platinum had very few sites that were catalytically active, as evidenced by the small H2 uptake. Unshaped platinum nanoparticles, which were prepared by conventional wet impregnation, showed a similar amount of H2 uptake as the in situ shaped platinum cubes, but the selectivity for pyrrole hydrogenation was poorer towards the production of pyrrolidine. The mesoporosity and the residual thiol groups on the surface of the in situ shaped Pt nanocubes might cause a high selectivity for pyrrolidine.It is difficult to deposit shape-controlled nanoparticles into a mesoporous framework while preserving the shape. For shaped platinum nanoparticles, which are typically 5-10 nm in size, capillary inclusion by sonication or the formation of a mesoporous framework around the shaped platinum nanoparticles has been attempted, but the nanoparticles aggregated or their shapes were degraded easily. In this work, we directly nucleated platinum on the surface inside a mesoporous silica support and controlled the overgrowth step, producing cubic

  7. Ruthenium nanoparticles in ionic liquids: structural and stability effects of polar solutes.

    PubMed

    Salas, Gorka; Podgoršek, Ajda; Campbell, Paul S; Santini, Catherine C; Pádua, Agílio A H; Costa Gomes, Margarida F; Philippot, Karine; Chaudret, Bruno; Turmine, Mireille

    2011-08-14

    Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.

  8. Controlled Aggregation of Ferritin to Modulate MRI Relaxivity

    PubMed Central

    Bennett, Kevin M.; Shapiro, Erik M.; Sotak, Christopher H.; Koretsky, Alan P.

    2008-01-01

    Ferritin is an iron storage protein expressed in varying concentrations in mammalian cells. The deposition of ferric iron in the core of ferritin makes it a magnetic resonance imaging contrast agent, and ferritin has recently been proposed as a gene expression reporter protein for magnetic resonance imaging. To date, ferritin has been overexpressed in vivo and has been coexpressed with transferrin receptor to increase iron loading in cells. However, ferritin has a relatively low T2 relaxivity (R2 ≈ 1 mM−1s−1) at typical magnetic field strengths and so requires high levels of expression to be detected. One way to modulate the transverse relaxivity of a superparamagnetic agent is to cause it to aggregate, thereby manipulating the magnetic field gradients through which water diffuses. In this work, it is demonstrated by computer simulation and in vitro that aggregation of ferritin can alter relaxivity. The effects of aggregate size and intraaggregate perturber spacing on R2 are studied. Computer modeling indicates that the optimal spacing of the ferritin molecules in aggregate for increasing R2 is 100–200 nm for a typical range of water diffusion rates. Chemical cross-linking of ferritin at 12 Å spacing led to a 70% increase in R2 compared to uncross-linked ferritin controls. To modulate ferritin aggregation in a potentially biologically relevant manner, ferritin was attached to actin and polymerized in vitro. The polymerization of ferritin-F-actin caused a 20% increase in R2 compared to unpolymerized ferritin-G-actin. The R2-value was increased by another 10% by spacing the ferritin farther apart on the actin filaments. The modulation of ferritin aggregation by binding to cytoskeletal elements may be a useful strategy to make a functional reporter gene for magnetic resonance imaging. PMID:18326661

  9. Surface plasmon resonances in liquid metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.

    2017-06-01

    We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition "solid-liquid" in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates.

  10. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    PubMed

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    NASA Astrophysics Data System (ADS)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  12. Nanoparticles in Mesostructured Polymers: Stabilizations and Morphology Selection

    NASA Astrophysics Data System (ADS)

    Kim, Jaeup; O'Shaughnessy, Ben

    2002-03-01

    A major challenge in the rapidly developing field of nano-materials is finding ways to create delicate spatial arrangements of nano-sized particles. Nanostructured polymer phases and ultrathin polymer films offer potential templates to spontaneously generate this spatial organization. Here we present theory of such systems. Our conclusions are as follows. (1) Nanoparticles tending to aggregate into clusters under van der Waals attractions may be stabilized in a stretched polymer environment as offered by tethered thin film brushes or lamellar diblock phases. By extending the hydrodynamic analogy of Williams and Pincus to the real case of the end-annealed Semenov brush, we show cluster formation is strongly influenced: disc-shaped clusters are suppressed in favor of extended cylindrical forms. (2) The final morphology of extended nanoparticle aggregates depends on the polymer environment. If the nanoparticle/air/polymer surface tensions and the degree of chain stretching satisfy certain conditions, the polymer media selects the length scale of nanoparticle clusters. This offers the possibility of tuning nanoparticle aggregate morphology by suitable choice of polymeric media. Our predictions are consistent with experiments at Columbia by Levicky, Durning, Cerise and Liu demonstrating nanoparticle stabilization and morphology selection in ultrathin end-tethered polymer films.

  13. Controlled release of folic acid through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Katyal, Henna; Mohanty, Sanat

    2014-11-01

    The present study explores folate nanoparticles as nano-carriers for controlled drug delivery. Cross-linked nanoparticles of liquid crystalline folates are composed of ordered stacks. This paper shows that the folate nanoparticles can be made with less than 5% loss in folate ions. In addition, this study shows that folate nanoparticles can disintegrate in a controlled fashion resulting in controlled release of the folate ions. Release can be controlled by the size of nanoparticles, the extent of cross-linking and the choice of cross-linking cation. The effect of different factors like agitation, pH, and temperature on folate release was also studied. Studies were also carried out to show the effect of release medium and role of ions in the release medium on disruption of folate assembly. Copyright © 2014. Published by Elsevier B.V.

  14. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    PubMed

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  15. Controlled Assembly of Biocompatible Metallic Nanoaggregates Using a Small Molecule Crosslinker

    PubMed Central

    Van Haute, Desiree; Longmate, Julia M.; Berlin, Jacob M.

    2015-01-01

    By introducing a capping step and controlling reaction parameters, the assembly of metallic nanoparticle aggregates can be achieved using a small molecule crosslinker. Aggregates can be assembled from particles of varied size and composition and the size of the aggregates can be systematically adjusted. Following cell uptake of 60 nm aggregates, the aggregates are stable and non-toxic to macrophage cells up to 55mM Au. PMID:26208123

  16. Microelectromechanical (MEMS) manipulators for control of nanoparticle coupling interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Wiederrecht, Gary; Gosztola, David J.

    A nanopositioning system for producing a coupling interaction between a first nanoparticle and a second nanoparticle. A first MEMS positioning assembly includes an electrostatic comb drive actuator configured to selectively displace a first nanoparticle in a first dimension and an electrode configured to selectively displace the first nanoparticle in a second dimensions. Accordingly, the first nanoparticle may be selectively positioned in two dimensions to modulate the distance between the first nanoparticle and a second nanoparticle that may be coupled to a second MEMS positioning assembly. Modulating the distance between the first and second nanoparticles obtains a coupling interaction between themore » nanoparticles that alters at least one material property of the nanoparticles applicable to a variety of sensing and control applications.« less

  17. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier.

    PubMed

    Gou, Jingxin; Chao, Yanhui; Liang, Yuheng; Zhang, Ning; He, Haibing; Yin, Tian; Zhang, Yu; Xu, Hui; Tang, Xing

    2016-09-01

    Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.

  18. Microfluidic Reactors for the Controlled Synthesis of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Erdem, Emine Yegan

    Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low

  19. Microstructured block copolymer surfaces for control of microbe capture and aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.

    2014-01-01

    The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates capturedmore » was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.« less

  20. Insight into nanoparticle charging mechanism in nonpolar solvents to control the formation of Pt nanoparticle monolayers by electrophoretic deposition

    DOE PAGES

    Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman; ...

    2016-08-13

    We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.

  1. Insight into nanoparticle charging mechanism in nonpolar solvents to control the formation of Pt nanoparticle monolayers by electrophoretic deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman

    We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.

  2. Spectral properties of nanocomposites based on fluorine-containing polymer and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Mel’nik, N. N.; Rakov, I. I.; Ivanov, V. E.; Simakin, A. V.; Gudkov, S. V.; Shafeev, G. A.

    2018-04-01

    The optical properties of nanocomposites of gold nanoparticles and fluorine-containing polymer have been studied. Gold nanoparticles were obtained by laser ablation of gold or terbium targets in organic solvents. The thus formed colloidal solutions were used to prepare nanocomposites of gold nanoparticles in polymer matrices of transparent and colorless fluorine-containing polymer. The polymer matrix is found to promote aggregation of nanoparticles of metal under study into elongated chains. In turn, metal nanoparticles influence on the polymer matrix. Gold nanoparticles amplify the Raman signal of the polymer matrix. In addition, the Raman spectra of nanocomposites indicate aggregation of disordered carbon around the nanoparticles obtained by laser ablation in organic solvents.

  3. The controlled release of tilmicosin from silica nanoparticles.

    PubMed

    Song, Meirong; Li, Yanyan; Fai, Cailing; Cui, Shumin; Cui, Baoan

    2011-06-01

    The aim of this study was to use silica nanoparticles as the carrier for controlled release of tilmicosin. Tilmicosin was selected as a drug model molecule because it has a lengthy elimination half-life and a high concentration in milk after subcutaneous administration. Three samples of tilmicosin-loaded silica nanoparticles were prepared with different drug-loading weight. The drug-loading weight in three samples, as measured by thermal gravimetric analysis, was 29%, 42%, and 64%, respectively. With increased drug-loading weight, the average diameter of the drug-loaded silica nanoparticles was increased from 13.4 to 25.7 nm, and the zeta potential changed from-30.62 to-6.78 mV, indicating that the stability of the drug-loaded particles in the aqueous solution decreases as drug-loading weight increases. In vitro release studies in phosphate-buffered saline showed the sample with 29% drug loading had a slow and sustained drug release, reaching 44% after 72 h. The release rate rose with increased drug-loading weight; therefore, the release of tilmicosin from silica nanoparticles was well-controlled by adjusting the drug loading. Finally, kinetics analysis suggested that drug released from silica nanoparticles was mainly a diffusion-controlled process.

  4. Physicochemical interaction mechanism between nanoparticles and tetrasaccharides (stachyose) during freeze-drying.

    PubMed

    Kamiya, Seitaro; Nakashima, Kenichiro

    2017-12-01

    Nanoparticle suspensions are thermodynamically unstable and subject to aggregation. Freeze-drying on addition of saccharides is a useful method for preventing aggregation. In the present study, tetrasaccharides (stachyose) was employed as an additive. In addition, we hypothesize the interactive mechanism between stachyose and the nanoparticles during freeze-drying for the first time. The mean particle size of the rehydrated freeze-dried stachyose-containing nanoparticles (104.7 nm) was similar to the initial particle size before freeze-drying (76.8 nm), indicating that the particle size had been maintained. The mean particle size of the rehydrated normal-dried stachyose-containing nanoparticles was 222.2 nm. The powder X-ray diffraction of the freeze-dried stachyose-containing nanoparticles revealed a halo pattern. The powder X-ray diffraction of the normally dried stachyose-containing nanoparticles produced mainly a halo pattern and a partial peak. These results suggest an interaction between the nanoparticles and stachyose, and that this relationship depends on whether the mixture is freeze-dried or dried normally. In the case of normal drying, although most molecules cannot move rapidly thereby settling irregularly, some stachyose molecules can arrange regularly leading to some degree of crystallization and potentially some aggregation. In contrast, during freeze-drying, the moisture sublimed, while the stachyose molecules and nanoparticles were immobilized in the ice. After sublimation, stachyose remained in the space occupied by water and played the role of a buffer material, thus preventing aggregation.

  5. Controllable fabrication of Pt nanocatalyst supported on N-doped carbon containing nickel nanoparticles for ethanol oxidation.

    PubMed

    Yu, Jianguo; Dai, Tangming; Cao, Yuechao; Qu, Yuning; Li, Yao; Li, Juan; Zhao, Yongnan; Gao, Haiyan

    2018-08-15

    In this paper, platinum nanoparticles were deposited on a carbon carrier with the partly graphitized carbon and the highly dispersive carbon-coated nickel particles. An efficient electron transfer structure can be fabricated by controlling the contents of the deposited platinum. The high resolution transmission electron microscopy images of Pt 2 /Ni@C N-doped sample prove the electron transfer channel from Pt (1 1 1) crystal planes to graphite (1 0 0) or Ni (1 1 1) crystal planes due to these linked together crystal planes. The Pt 3 /Ni@C N-doped with low Pt contents cannot form the electron transfer structure and the Pt 1 /Ni@C N-doped with high Pt contents show an obvious aggregation of Pt nanoparticles. The electrochemical tests of all the catalysts show that the Pt 2 /Ni@C N-doped sample presents the highest catalytic activity, the strongest CO tolerance and the best catalytic stability. The high performance is attributed to the efficient electronic transport structure of the Pt 2 /Ni@C N-doped sample and the synergistic effect between Pt and Ni nanoparticles. This paper provides a promising method for enhancing the conductivity of electrode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Arsenic Mobilization Through Microbial Bioreduction of Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tadanier, C. J.; Roller, J.; Schreiber, M. E.

    2004-12-01

    Under anaerobic conditions Fe(III)-reducing microorganisms can couple the reduction of solid phase Fe(III) (hydr)oxides with the oxidation of organic carbon. Nutrients and trace metals, such as arsenic, associated with Fe(III) hydroxides may be mobilized through microbially-mediated surface reduction. Although arsenic mobilization has been attributed to mineral surface reduction in a variety of pristine and contaminated environments, minimal information exists on the mechanisms causing this arsenic mobilization. Understanding of the fundamental biochemical and physicochemical processes involved in these mobilization mechanisms is still limited, and has been complicated by the often contradictory and interchangeable terminology used in the literature to describe them. We studied arsenic mobilization mechanisms using a series of controlled microcosm experiments containing aggregated arsenic-bearing ferrihydrite nanoparticles and an Fe(III)-reducing microorganism, Geobacter metallireducens. The phase distribution of iron and arsenic was determined through filtration and ultracentrifugation techniques. Experimental results showed that in the biotic trials, approximately 10 percent of the Fe(III) was reduced to Fe(II) by microbial activity, which remained associated with ferrihydrite surfaces. Biotic activity resulted in changes in nanoparticle surface potential and caused deflocculation of nanoparticle aggregates. Deflocculated nanoparticles were able to pass through a 0.2 micron filter and could only be removed from solution by ultracentrifugation. Arsenic mobilized over time in the biotic trials was found to be exclusively associated with the nanoparticles; 98 percent of arsenic that passed through a 0.2 micron filter was removed from solution by ultracentrifugation. None of these changes were observed in abiotic controls. Because arsenic contamination of natural waters due to mobilization from mineral surfaces is a significant route of human arsenic exposure

  7. Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles

    NASA Astrophysics Data System (ADS)

    Shang, Qianqian; Hu, Lihong; Hu, Yun; Liu, Chengguo; Zhou, Yonghong

    2018-01-01

    A facile one-pot method for the fabrication of superhydrophobic fluorinated silica nanoparticles is reported. Fluorinated aggregated silica (A-SiO2/FAS) nanoparticles were synthesized by controlling the nanoparticles assembly, in situ fixation and overgrowth of particle seeds with the assist of tetraethoxysilane (TEOS) in ethanol/water solution and then modification with fluoroalkylsilane (FAS) molecules. Such kind of A-SiO2/FAS nanoparticles showed superhydrophobicity and was not wetted by water, thus it could be served as the encapsulating shells to manipulate liquid droplets. Liquid marbles fabricated from A-SiO2/FAS nanoparticles were used for ammonia gas sensing or emitting by taking advantage of the porosity and superhydrophobicity of the liquid marble shells. In addition, the posibility of A-SiO2/FAS-based liquid marbles as microreactor for dopamine polymerization also was explored.

  8. Considering the formation of hematite spherules on Mars by freezing aqueous hematite nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Sexton, M. R.; Elwood Madden, M. E.; Swindle, A. L.; Hamilton, V. E.; Bickmore, B. R.; Elwood Madden, A. S.

    2017-04-01

    The enigmatic and unexpected occurrence of coarse crystalline (gray) hematite spherules at Terra Meridiani on Mars in association with deposits of jarosite-rich sediments fueled a variety of hypotheses to explain their origin. In this study, we tested the hypothesis that freezing of aqueous hematite nanoparticle suspensions, possibly produced from low-temperature weathering of jarosite-bearing deposits, could produce coarse-grained hematite aggregate spherules. We synthesized four hematite nanoparticle suspensions with a range of sizes and morphologies and performed freezing experiments. All sizes of hematite nanoparticles rapidly aggregate during freezing. Regardless of the size or shape of the initial starting material, they rapidly collect into aggregates that are then too big to push in front of a stable advancing ice front, leading to incohesive masses of particles, rather than solid spherules. We also explored the effects of "seed" silicates, a matrix of sand grains, various concentrations of NaCl and CaCl2, and varying the freezing temperature on hematite nanoparticle aggregation. However, none of these factors resulted in mm-scale spherical aggregates. By comparing our measured freezing rates with empirical and theoretical values from the literature, we conclude that the spherules on Mars could not have been produced through the freezing of aqueous hematite nanoparticle suspensions; ice crystallization front instability disrupts the aggregation process and prevents the formation of mm-scale continuous aggregates.

  9. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    PubMed

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens.

  10. Chloride (Cl-) ion-mediated shape control of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Nalajala, Naresh; Chakraborty, Arup; Bera, Bapi; Neergat, Manoj

    2016-02-01

    The shape control of Pd nanoparticles is investigated using chloride (Cl-) ions as capping agents in an aqueous medium in the temperature range of 60-100 °C. With weakly adsorbing and strongly etching Cl- ions, oxygen plays a crucial role in shape control. The experimental factors considered are the concentration of the capping agents, reaction time and reaction atmosphere. Thus, Pd nanoparticles of various shapes with high selectivity can be synthesized. Moreover, the removal of Cl- ions from the nanoparticle surface is easier than that of Br- ions (moderately adsorbing and etching) and I- ions (strongly adsorbing and weakly etching). The cleaned Cl- ion-mediated shape-controlled Pd nanoparticles are electrochemically characterized and the order of the half-wave potential of the oxygen reduction reaction in oxygen-saturated 0.1 M HClO4 solution is of the same order as that observed with single-crystal Pd surfaces.

  11. Tuning structure of oppositely charged nanoparticle and protein complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.; Callow, P.

    2014-04-01

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ˜ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.).

  12. A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule.

    PubMed

    Lawson, Latevi S; Chan, James W; Huser, Thomas

    2014-07-21

    Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts or linker molecules are used in conjunction with chemically sensitive reporters in order to develop robust environmentally sensitive SERS probes. While salt-induced colloidal nanosphere aggregates have produced robust SERS signals, their variability in aggregate size contributes significantly to poor SERS signal reproducibility, which can complicate their use in in vitro cellular studies. Such systems often also lack reproducibility in spectral measurements between different nanoparticle clusters. Preaggregation of colloids via linkers followed by surface functionalization with reporter molecules results in the linker occupying valuable SERS hotspot volume which could otherwise be utilized by additional reporter molecules. Ideally, both functionalities should be obtained from a single molecule. Here, we report the use of 3,5-dimercaptobenzoic acid, a single multifunctional molecule that creates SERS hotspots via the controlled aggregation of nanoparticles, and also reports pH values. We show that 3,5-dimercaptobenzoic acid bound to Au nanospheres results in an excellent pH nanoprobe, producing very robust, and highly reproducible SERS signals that can report pH across the entire physiological range with excellent pH resolution. To demonstrate the efficacy of our novel pH reporters, these probes were also used to image both the particle and pH distribution in the cytoplasm of human induced pluripotent stem cells (hiPSCs).

  13. Physicochemical properties of protein-modified silver nanoparticles in seawater

    NASA Astrophysics Data System (ADS)

    Zhong, Hangyue

    2013-10-01

    This study investigated the physicochemical properties of silver nanoparticles stabilized with casein protein in seawater. UV?vis spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to measure the stability of silver nanoparticles in seawater samples. The obtained results show an increased aggregation tendency of silver nanoparticles in seawater, which could be attributed its relatively high cation concentration that could neutralize the negatively charges adsorbed on the surface of silver nanoparticles and reduce the electrostatic repulsion forces between nanoparticles. Similarly, due to the surface charge screening process, the zeta potential of silver nanoparticles in seawater decreased. This observation further supported the aggregation behavior of silver nanoparticles. This study also investigated the dissolution of silver nanoparticles in seawater. Result shows that the silver nanoparticle dissolution in DI water is lower than in seawater, which is attributed to the high Cl? concentration present in seawater. As Cl? can react with silver and form soluble AgCl complex, dissolution of silver nanoparticles was enhanced. Finally, this study demonstrated that silver nanoparticles are destabilized in seawater condition. These results may be helpful in understanding the environmental risk of discharged silver nanoparticles in seawater conditions.

  14. Silica-based mesoporous nanoparticles for controlled drug delivery

    PubMed Central

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  15. Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D.; Aswal, V. K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, J.

    2015-04-28

    The evolution of the interaction and the resultant structure in the mixed system of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactant decaethylene glycol monododecylether (C12E10), undergoing phase separation, have been studied using small-angle neutron scattering and dynamic light scattering. The measurements have been carried out for a fixed concentration of nanoparticle (1 wt. %) with varying concentration of surfactant (0 to 1 wt. %), in the absence and presence of an electrolyte. It is found that the micelles of non-ionic surfactant adsorb on the nanoparticle in the absence of electrolyte (form stable system), whereas these micelles become non-adsorbing in the presence of electrolytemore » (show phase separation). The phase separation arises because of C12E10 micelles, causing depletion interaction between nanoparticles and leading to their aggregation. The interaction is modeled by double Yukawa potential accounting for attractive depletion as well as repulsive electrostatic forces. Both the interactions (attraction and repulsion) are found to be of long-range. The nanoparticle aggregation (phase separation) is governed by the increase in the magnitude and the range of the depletion attraction with the increase in the surfactant concentration. The nanoparticle aggregates formed are quite large in size (order of micron) and are characterized by the surface fractal having simple cubic packing of nanoparticles within the aggregates.« less

  16. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles

    PubMed Central

    Mehrmohamamdi, Mohammad; Qu, Min; Ma, Li L.; Romanovicz, Dwight K.; Johnston, Keith P.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.

    2012-01-01

    As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular trafficking of nanoparticles – an important part of cell-nanoparticle interaction, has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique – pulsed magneto-motive ultrasound (pMMUS), to identify intracellular trafficking of endocytosed magnetic nanoparticles. In pulsed magneto-motive ultrasound imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular aggregation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular trafficking non-invasively and in real-time. PMID:21926454

  17. Two-Dimensional Self-Assembly and Chemical Synthesis of Charged Gold Nanoparticles in Non-Polar Solvents

    NASA Astrophysics Data System (ADS)

    Martin, Matthew Nichols

    Gold nanoparticles between 1 and 10 nm in diameter exhibit size-dependent electronic and optical properties that cannot be explained by molecular science and which deviate significantly from their bulk counterparts. For example, the melting temperature of gold nanoparticles less than 5 nm in diameter is around 300 °C [1], whereas bulk gold melts at over 1000 °C [2]. Gold nanoparticles require precise control over particle diameter in order to exploit and tailor their unique properties; however, tuning the size reproducibly and predictably has proved to be a challenge. One of the most difficult obstacles to overcome is nanoparticle aggregation, since nanoparticles flocculate at room temperature quite readily. In 1994, Brust et al. solved the aggregation problem by introducing monolayer protection coatings on gold nanoparticles, in which organic ligand molecules are attached to the nanoparticle surface and create a physical barrier between the gold core and solvent. This was a definitive solution to size stability, since nanoparticles never aggregate, however the synthesis method does not generate monodisperse nanoparticles and has poor size-tuning capabilities. We developed a synthesis method for gold nanoparticles that improves greatly upon the Brust method. Starting from scratch, we discovered a "sweet zone" for aqueous gold nanoparticles, revealing how to make "naked" (stabilizer-free) gold nanoparticles which are continuously and precisely controlled between 3.2 and 5.2 nm in diameter, both reproducibly and predictably. Naked nanoparticles are then coated with organic 1-dodecanethiol ligand molecules, and transferred to hexane. Since all reaction byproducts remain in the water-phase, no postsynthesis cleaning or size-filtering is necessary, reducing the total synthesis time from ~24 hours in the Brust method, to less than 10 minutes. Surprisingly, our nanoparticles are highly negatively charged in nonpolar solvents. This unexpectedly caused nanoparticles to be

  18. Aggregation-based colorimetric sensor for determination of prothioconazole fungicide using colloidal silver nanoparticles (AgNPs)

    NASA Astrophysics Data System (ADS)

    Ivrigh, Zahra Jafar-Nezhad; Fahimi-Kashani, Nafiseh; Hormozi-Nezhad, M. Reza

    2017-12-01

    There is a growing interest in developing high-performance sensors monitoring fungicides, due to their broadly usage and their adverse effects on humans and wildlife. In the present study, a colorimetric probe has been proposed for detection of prothioconazole based on aggregation of unmodified silver nanoparticles (AgNPs). Under optimized condition, linear relationships between the concentration of prothioconazole and the absorbance ratio of A500/A395 were found over the range of 0.01 μg·mL- 1 to 0.4 μg·mL- 1 with quantification limit as low as 1.7 ng·mL- 1. Furthermore, AgNPs color change from yellow to pink-orange in presence of prothioconazole, indicates highly sensitive naked-eye colorimetric assay for quantifying prothioconazole in real applications. The proposed approach was successfully used for the determination of prothioconazole in wheat flour and paddy water sample.

  19. Direct visualization of nanoparticle dynamics at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Gao, Yige; Kim, Paul; Hoagland, David; Russell, Tom

    Ionic liquids, because of their negligible vapor pressures and moderate viscosities, are suitable media to investigate the dynamics of different types of dispersed nanoparticles by scanning electron microscopy. No liquid cell is necessary. Here, Brownian motions of nanoparticles partially wetted at the vacuum-liquid interface are visualized by low voltage SEM under conditions that allow single particle tracking for tens-of-minutes or longer. Conductive, nonconductive, semiconductive, and core-shell conductive-nonconductive nanoparticles have all been studied, and their interactions with each other in one- and two-component layers, as manifested in particle trajectories, differ significantly. For example, Au-coated silica nanoparticles aggregate above a threshold current, whereas aggregated silica-coated Au nanoparticles disaggregate at the same conditions. The impacts of surface concentration of nanoparticle dynamics were observed for one-component and two-component layers, with both global and localized motions visualized for single particles even in dense environments. As the surface concentration increases, the diffusion coefficient drops, and when the concentration reaches a critical threshold, the nanoparticles are essentially frozen. Financial support from NSF DMR-1619651 is acknowledged.

  20. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.

    PubMed

    Zhang, Zhiyang; Wang, Han; Chen, Zhaopeng; Wang, Xiaoyan; Choo, Jaebum; Chen, Lingxin

    2018-08-30

    Plasmonic colorimetric sensors have emerged as a powerful tool in chemical and biological sensing applications due to the localized surface plasmon resonance (LSPR) extinction in the visible range. Among the plasmonic sensors, the most famous sensing mode is the "aggregation" plasmonic colorimetric sensor which is based on plasmon coupling due to nanoparticle aggregation. Herein, this review focuses on the newly-developing plasmonic colorimetric sensing mode - the etching or the growth of metal nanoparticles induces plasmon changes, namely, "non-aggregation" plasmonic colorimetric sensor. This type of sensors has attracted increasing interest because of their exciting properties of high sensitivity, multi-color changes, and applicability to make a test strip. Of particular interest, the test strip by immobilization of nanoparticles on the substrate can avoid the influence of nanoparticle auto-aggregation and increase the simplicity in storage and use. Although there are many excellent reviews available that describe the advance of plasmonic sensors, limited attention has been paid to the plasmonic colorimetric sensors based on etching or growth of metal nanoparticles. This review highlights recent progress on strategies and application of "non-aggregation" plasmonic colorimetric sensors. We also provide some personal insights into current challenges associated with "non-aggregation" plasmonic colorimetric sensors and propose future research directions. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    PubMed Central

    2011-01-01

    Herein, the generation of gold, silver, and silver–gold (Ag–Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV–visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device. PMID:27502645

  2. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  3. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

    PubMed

    Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun

    2012-06-19

    Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

  4. Electrosprayed nanoparticle delivery system for controlled release.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan; Harker, Anthony

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70nm at the rate of 1.37×10(9) nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈21% and the encapsulation efficiency ≈70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp.

    PubMed

    Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Wang, Yonghong; Li, Huimin; Tan, Weihong

    2009-10-01

    The unique optoelectronic and physicochemical properties of gold nanoparticles are significantly dependent on the particle size, shape and structure. In this paper, biosynthesis of size-controlled gold nanoparticles using fungus Penicillium sp. is reported. Fungus Penicillium sp. could successfully bioreduce and nucleate AuCl4(-) ions, and lead to the assembly and formation of intracellular Au nanoparticles with spherical morphology and good monodispersity after exposure to HAuCl4 solution. Reaction temperature, as an important physiological parameter for fungus Penicillium sp. growth, could significantly control the size of the biosynthesized Au nanoparticles. The biological compositions and FTIR spectra analysis of fungus Penicillium sp. exposed to HAuCl4 solution indicated the intracellular reducing sugar played an important role in the occurrence of intracellular reduction of AuCl4(-) ions and the growth of gold nanoparticles. Furthermore, the intracellular gold nanoparticles could be easily separated from the fungal cell lysate by ultrasonication and centrifugation.

  6. Disaggregation of silver nanoparticle homoaggregates in a river water matrix.

    PubMed

    Metreveli, George; Philippe, Allan; Schaumann, Gabriele E

    2015-12-01

    Silver nanoparticles (Ag NPs) could be found in aquatic systems in the near future. Although the interplay between aggregate formation and disaggregation is an important factor for mobility, bioavailability and toxicity of Ag NPs in surface waters, the factors controlling disaggregation of Ag NP homoaggregates are still unknown. In this study, we investigated the reversibility of homoaggregation of citrate coated Ag NPs in a Rhine River water matrix. We characterized the disaggregation of Ag NP homoaggregates by ionic strength reduction and addition of Suwannee River humic acid (SRHA) in the presence of strong and weak shear forces. In order to understand the disaggregation processes, we also studied the nature of homoaggregates and their formation dynamics under the influence of SRHA, Ca(2+) concentration and nanoparticle concentration. Even in the presence of SRHA and at low particle concentrations (10 μg L(-1)), aggregates formed rapidly in filtered Rhine water. The critical coagulation concentration (CCC) of Ca(2+) in reconstituted Rhine water was 1.5 mmol L(-1) and was shifted towards higher values in the presence of SRHA. Analysis of the attachment efficiency as a function of Ca(2+) concentration showed that SRHA induces electrosteric stabilization at low Ca(2+) concentrations and cation-bridging flocculation at high Ca(2+) concentrations. Shear forces in the form of mechanical shaking or ultrasound were necessary for breaking the aggregates. Without ultrasound, SRHA also induced disaggregation, but it required several days to reach a stable size of dense aggregates still larger than the primary particles. Citrate stabilized Ag NPs may be in the form of reaction limited aggregates in aquatic systems similar to the Rhine River. The size and the structure of these aggregates will be dynamic and be determined by the solution conditions. Seasonal variations in the chemical composition of natural waters can result in a sedimentation-release cycle of engineered

  7. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack

    2011-03-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

  8. Effect of HPV16 L1 virus-like particles on the aggregation of non-functionalized gold nanoparticles.

    PubMed

    Palomino-Vizcaino, Giovanni; Valencia Reséndiz, Diana Gabriela; Benítez-Hess, María Luisa; Martínez-Acuña, Natalia; Tapia-Vieyra, Juana Virginia; Bahena, Daniel; Díaz-Sánchez, Mauricio; García-González, Octavio Patricio; Alvarez-Sandoval, Brenda Arizaí; Alvarez-Salas, Luis Marat

    2018-02-15

    Colorimetric assays based on gold nanoparticles (GNPs) are of considerable interest for diagnostics because of their simplicity and low-cost. Nevertheless, a deep understanding of the interaction between the GNPs and the intended molecular target is critical for the development of reliable detection technologies. The present report describes the spontaneous interaction between HPV16 L1 virus-like particles (VLPs) and non-functionalized GNPs (nfGNPs) resulting in the inhibition of nfGNPs salt-induced aggregation and the stabilization of purified VLPs. Ionic-competition experiments suggested that the nature of nfGNPs-VLPs interaction is non-covalent. Adsorption of an RNA aptamer on nfGNPs surface showed an additive aggregation-inhibitory effect. The use of mutant VLPs confirmed that the interaction nfGNPs-VLPs is not mediated by the opposing superficial electrostatic charges, suggesting that non-electrostatic forces participate in the arrangement of nfGNPs on the VLPs surface. Competition experiments using increasing ethanol concentrations on nfGNPs-VLPs complexes suggested hydrophobic interactions as the main stabilizing force. Therefore, the nfGNPs-VLPs interaction described here should facilitate the development of adsorption assays based on nfGNPs for HPV detection and cervical cancer prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Highly Sensitive Naked-Eye Assay for Enterovirus 71 Detection Based on Catalytic Nanoparticle Aggregation and Immunomagnetic Amplification.

    PubMed

    Xiong, Ling-Hong; He, Xuewen; Xia, Junjie; Ma, Hanwu; Yang, Fan; Zhang, Qian; Huang, Dana; Chen, Long; Wu, Chunli; Zhang, Xiaomin; Zhao, Zheng; Wan, Chengsong; Zhang, Renli; Cheng, Jinquan

    2017-05-03

    Development of sensitive, convenient, and cost-effective virus detection product is of great significance to meet the growing demand of clinical diagnosis at the early stage of virus infection. Herein, a naked-eye readout of immunoassay by means of virion bridged catalase-mediated in situ reduction of gold ions and growth of nanoparticles, has been successfully proposed for rapid visual detection of Enterovirus 71 (EV71). Through tailoring the morphologies of the produced gold nanoparticles (GNPs) varying between dispersion and aggregation, a distinguishing color changing was ready for observation. This colorimetric detection assay, by further orchestrating the efficient magnetic enrichment and the high catalytic activity of enzyme, is managed to realize highly sensitive detection of EV71 virions with the limit of detection (LOD) down to 0.65 ng/mL. Our proposed method showed a much lower LOD value than the commercial ELISA for EV71 virion detection. Comparing to the current clinical gold standard polymerase chain reaction (PCR) method, our strategy provided the same diagnostic outcomes after testing real clinical samples. Besides, this strategy has no need of complicated sample pretreatment or expensive instruments. Our presented naked-eye immunoassay method holds a promising prospect for the early detection of virus-infectious disease especially in resource-constrained settings.

  10. Reduction of HAuCl 4 by Na 2S revisited: The case for Au nanoparticle aggregates and against Au 2S/Au core/shell particles

    DOE PAGES

    Schwartzberg, A. M.; Grant, C. D.; van Buuren, Tony; ...

    2007-03-10

    The reaction of sodium sulfide with chloroauric acid has been surrounded by a controversy over the structure of the resulting product. The original report proposed a Au 2S/Au core/shell structure based on strong near-IR resonance and limited transmission electron microscopy. Subsequent reports used the same model without further attempts to determine the structure of the products. With a significant body of experimental work compiled over a period of several years, we have shown that the major product of this reaction is aggregated spherical nanoparticles of gold with a minority component consisting of triangular and rod-like structures. This is in contradictionmore » to the core/shell structures as originally proposed. Recently, there have been additional reports that again suggest a Au 2S/Au core/shell structure or irregularly shaped Au nanoparticles as an explanation for the near-IR resonance. To help resolve this issue, we have carried out further experiments to determine how the reaction products may depend on experimental conditions such as concentration and aging of the reactants, particularly Na 2S. It has been determined that sodium thiosulfate is the likely product from Na 2S aging. In addition, persistent spectral hole burning experiments have been conducted on gold nanoparticle aggregate (GNA) samples at excitation intensities that are lower than that required to melt the nanostructures. We have observed a decrease in optical absorption on resonance with the excitation laser wavelength, with simultaneous increases in absorption to the blue and red of this wavelength region. However, in the presence of the stabilizer poly(vinyl pyrrolidone) (PVP), no increase in absorbance was observed but rather a blue shifting and decrease in intensity of the near-IR plasmon resonance. These results imply that the non-stabilized GNAs are able to break apart and reform into off resonant aggregate structures. In contrast, this behavior is suppressed in PVP stabilized

  11. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles.

    PubMed

    Adam, Nathalie; Vergauwen, Lucia; Blust, Ronny; Knapen, Dries

    2015-04-01

    There is still a lot of contradiction on whether metal ions are solely responsible for the observed toxicity of ZnO and CuO nanoparticles to aquatic species. While most experiments have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at lower levels of biological organization may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO and CuO nanoparticles was tested at two lower levels: energy reserves and gene transcription and compared with zinc and copper salts. Daphnia magna was exposed during 96h to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for determination of glycogen, lipid and protein concentration and for a differential gene transcription analysis using microarray. The dissolved, nanoparticle and aggregated fraction in the medium was characterized. The results showed that ZnO nanoparticles had largely dissolved directly after addition to the test medium. The CuO nanoparticles mostly formed aggregates, while only a small fraction dissolved. The exposure to zinc (both nano and metal salt) had no effect on the available energy reserves. However, in the copper exposure, the glycogen, lipid and protein concentration in the exposed daphnids was lower than in the unexposed ones. When comparing the nanoparticle (ZnO or CuO) exposed daphnids to the metal salt (zinc or copper salt) exposed daphnids, the microarray results showed no significantly differentially transcribed gene fragments. The results indicate that under the current exposure conditions the toxicity of ZnO and CuO nanoparticles to D. magna is solely caused by toxic metal ions. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Controlling diameter distribution of catalyst nanoparticles in arc discharge.

    PubMed

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.

  13. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.

    PubMed

    Lach, Marcel; Künzle, Matthias; Beck, Tobias

    2017-12-11

    The construction of defined nanostructured catalysts is challenging. In previous work, we established a strategy to assemble binary nanoparticle superlattices with oppositely charged protein containers as building blocks. Here, we show that these free-standing nanoparticle superlattices are catalytically active. The metal oxide nanoparticles inside the protein scaffold are accessible for a range of substrates and show oxidase-like and peroxidase-like activity. The stable superlattices can be reused for several reaction cycles. In contrast to bulk nanoparticle-based catalysts, which are prone to aggregation and difficult to characterize, nanoparticle superlattices based on engineered protein containers provide an innovative synthetic route to structurally defined heterogeneous catalysts with control over nanoparticle size and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.

    PubMed

    Gong, Ning; Shao, Kuishuang; Feng, Wei; Lin, Zhengzhi; Liang, Changhua; Sun, Yeqing

    2011-04-01

    Adverse effects of manufactured nickel oxide nanoparticles on the microalgae Chlorellavulgaris were determined by algal growth-inhibition test and morphological observation via transmission electron microscopy (TEM). Results showed that the NiO nanoparticles had severe impacts on the algae, with 72 h EC(50) values of 32.28 mg NiOL(-1). Under the stress of NiO nanoparticles, C. vulgaris cells showed plasmolysis, cytomembrane breakage and thylakoids disorder. NiO nanoparticles aggregated and deposited in algal culture media. The presence of algal cells accelerated aggregation of nanoparticles. Moreover, about 0.14% ionic Ni was released when NiO NPs were added into seawater. The attachment of aggregates to algal cell surface and the presence of released ionic Ni were likely responsible for the toxic effects. Interestingly, some NiO nanoparticles were reduced to zero valence nickel as determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The maximum ratios of nickel reduction was achieved at 72 h of exposure, in accordance with the time-course of changes in soluble protein content of treated C. vulgaris, implying that some proteins of algae are involved in the process. Our results indicate that the toxicity and bioavailability of NiO nanoparticles to marine algae are reduced by aggregation and reduction of NiO. Thus, marine algae have the potential for usage in nano-pollution bio-remediation in aquatic system. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  15. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  16. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles.

    PubMed

    Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu

    2014-08-13

    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.

  17. Plasmonics-Based Detection of Virus Using Sialic Acid Functionalized Gold Nanoparticles.

    PubMed

    Lee, Changwon; Wang, Peng; Gaston, Marsha A; Weiss, Alison A; Zhang, Peng

    2017-01-01

    Biosensor for the detection of virus was developed by utilizing plasmonic peak shift phenomenon of the gold nanoparticles and viral infection mechanism of hemagglutinin on virus and sialic acid on animal cells. The plasmonic peak of the colloidal gold nanoparticles changes with the aggregation of the particles due to the plasmonic interaction between nearby particles and the color of the colloidal nanoparticle solution changes from wine red to purple. Sialic acid reduced and stabilized colloidal gold nanoparticle aggregation is induced by the addition of viral particles in the solution due to the hemagglutinin-sialic acid interaction. In this work, sialic acid reduced and stabilized gold nanoparticles (d = 20.1 ± 1.8 nm) were synthesized by a simple one-pot, green method without chemically modifying sialic acid. The gold nanoparticles showed target-specific aggregation with viral particles via hemagglutinin-sialic acid binding. A linear correlation was observed between the change in optical density and dilution of chemically inactivated influenza B virus species. The detection limit of the virus dilution (hemagglutinination assay titer, 512) was shown to be 0.156 vol% and the upper limit of the linearity can be extended with the use of more sialic acid-gold nanoparticles.

  18. Biomimetic and Aggregation-Driven Crystallization Route for Room-Temperature Material Synthesis: Growth of β-Ga2O3 Nanoparticles Using Peptide Assemblies as Nanoreactors

    PubMed Central

    Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi

    2008-01-01

    The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413

  19. Nylon-sputtered nanoparticles: fabrication and basic properties

    NASA Astrophysics Data System (ADS)

    Polonskyi, O.; Kylián, O.; Solař, P.; Artemenko, A.; Kousal, J.; Slavínská, D.; Choukourov, A.; Biederman, H.

    2012-12-01

    Nylon-sputtered nanoparticles were prepared using a simple gas aggregation cluster source based on a planar magnetron (Haberland type) and equipped with a nylon target. Plasma polymer particles originated in an aggregation chamber and travelled to a main (deposition) chamber with a gas flow through an orifice. The deposited nanoparticles were observed to have a cauliflower-like structure. The nanoparticles were found to be nitrogen-rich with N/C ratio close to 0.5. An increase in rf power from 60 to 100 W resulted in a decrease in mean particle size from 210 to 168 nm whereas an increase in their residence time in the cluster source from 0.7 to 4.6 s resulted in an increase in the size from 73 to 231 nm.

  20. Rich complex behaviour of self-assembled nanoparticles far from equilibrium

    PubMed Central

    Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Özgün; Tokel, Onur; Pavlov, Ihor; Gülseren, Oguz; Ilday, F. Ömer

    2017-01-01

    A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise only one pattern or bifurcated patterns can coexist, compete, endure or perish. PMID:28443636

  1. Rich complex behaviour of self-assembled nanoparticles far from equilibrium

    NASA Astrophysics Data System (ADS)

    Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Özgün; Tokel, Onur; Pavlov, Ihor; Gülseren, Oguz; Ilday, F. Ömer

    2017-04-01

    A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise only one pattern or bifurcated patterns can coexist, compete, endure or perish.

  2. Synthesis of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  3. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    PubMed

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. 76 FR 78044 - Controlled Substances: Established Aggregate Production Quotas for 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... that the 2012 aggregate production quotas for the following controlled substances, expressed in grams... Methamphetamine 3,130,000 g [750,000 grams of levo-desoxyephedrine for use in a non-controlled, non- prescription product; 2,331,000 grams for methamphetamine mostly for conversion to a Schedule III product; and 49,000...

  5. Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection.

    PubMed

    Korupalli, Chiranjeevi; Huang, Chieh-Cheng; Lin, Wei-Chih; Pan, Wen-Yu; Lin, Po-Yen; Wan, Wei-Lin; Li, Meng-Ju; Chang, Yen; Sung, Hsing-Wen

    2017-02-01

    Focal infections that are caused by antibiotic-resistant bacteria are becoming an ever-growing challenge to human health. To address this challenge, a pH-responsive amphiphilic polymer of polyaniline-conjugated glycol chitosan (PANI-GCS) that can self-assemble into nanoparticles (NPs) in situ is developed. The PANI-GCS NPs undergo a unique surface charge conversion that is induced by their local pH, favoring bacterium-specific aggregation without direct contact with host cells. Following conjugation onto GCS, the optical-absorbance peak of PANI is red-shifted toward the near-infrared (NIR) region, enabling PANI-GCS NPs to generate a substantial amount of heat, which is emitted to their neighborhood. The local temperature of the NIR-irradiated PANI-GCS NPs is estimated to be approximately 5 °C higher than their ambient tissue temperature, ensuring specific and direct heating of their aggregated bacteria; hence, damage to tissue is reduced and wound healing is accelerated. The above results demonstrate that PANI-GCS NPs are practical for use in the photothermal ablation of focal infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Controlled synthesis of germanium nanoparticles by nonthermal plasmas

    NASA Astrophysics Data System (ADS)

    Ahadi, Amir Mohammad; Hunter, Katharine I.; Kramer, Nicolaas J.; Strunskus, Thomas; Kersten, Holger; Faupel, Franz; Kortshagen, Uwe R.

    2016-02-01

    The size, composition, and crystallinity of plasma produced nanoparticles are crucial factors for their physical and chemical properties. Here, we investigate the role of the process gas composition, particularly the hydrogen (H2) flow rate, on germanium (Ge) nanoparticles synthesized from a chlorinated precursor by nonthermal plasma. We demonstrate that the gas composition can significantly change the nanoparticle size and also adjust the surface chemistry by altering the dominant reaction mechanisms. A red shift of the Ge-Clx infrared absorptions with increasing H2 flow indicates a weakening of the Ge-Clx bonds at high H2 content. Furthermore, by changing the gas composition, the nanoparticles microstructure can be controlled from mostly amorphous at high hydrogen flow to diamond cubic crystalline at low hydrogen flow.

  7. In-situ formation of nanoparticles within a silicon-based matrix

    DOEpatents

    Thoma, Steven G [Albuquerque, NM; Wilcoxon, Jess P [Albuquerque, NM; Abrams, Billie L [Albuquerque, NM

    2008-06-10

    A method for encapsulating nanoparticles with an encapsulating matrix that minimizes aggregation and maintains favorable properties of the nanoparticles. The matrix comprises silicon-based network-forming compounds such as ormosils and polysiloxanes. The nanoparticles are synthesized from precursors directly within the silicon-based matrix.

  8. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sai, Ranajit, E-mail: ranajit@ecei.tohoku.ac.jp; Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore; Endo, Yasushi

    2015-05-07

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f{sub FMR}) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess highmore » degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f{sub FMR} has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.« less

  9. Design of a dual-function peptide probe as a binder of angiotensin II and an inducer of silver nanoparticle aggregation for use in label-free colorimetric assays.

    PubMed

    Okochi, Mina; Kuboyama, Masashi; Tanaka, Masayoshi; Honda, Hiroyuki

    2015-09-01

    Label-free colorimetric assays using metallic nanoparticles have received much recent attention, for their application in simple and sensitive methods for detection of biomolecules. Short peptide probes that can bind to analyte biomolecules are attractive ligands in molecular nanotechnology; however, identification of biological recognition motifs is usually based on trial-and-error experiments. Herein, a peptide probe was screened for colorimetric detection of angiotensin II (Ang II) using a mechanism for non-crosslinking aggregation of silver nanoparticles (AgNPs). The dual-function peptides, which bind to the analyte and induce AgNP aggregation, were identified using a two-step strategy: (1) screening of an Ang II-binding peptide from an Ang II receptor sequence library, using SPOT technology, which enable peptides synthesis on cellulose membranes via an Fmoc method and (2) selection of peptide probes that effectively induce aggregation of AgNPs using a photolinker modified peptide array. Using the identified peptide probe, KGKNKRRR, aggregation of AgNPs was detected by observation of a pink color in the absence of Ang II, whereas AgNPs remained dispersed in the presence of Ang II (yellow). The color changes were not observed in the presence of other hormone molecules. Ang II could be detected within 15 min, with a detection limit of 10 µM, by measuring the ratio of absorbance at 400 nm and 568 nm; the signal could also be observed with the naked eye. These data suggest that the peptide identified here could be used as a probe for simple and rapid colorimetric detection of Ang II. This strategy for the identification of functional peptides shows promise for the development of colorimetric detection of various diagnostically important biomolecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Directing self-assembly of gold nanoparticles in diblock copolymer scaffold

    NASA Astrophysics Data System (ADS)

    Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas

    2007-03-01

    A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.

  11. Emergence of Life-Like Properties from Dissipative Self-Assembly of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Ozgun; Tokel, Onur; Pavlov, Ihor; Gulseren, Oguz; Ilday, F. Omer

    A profoundly fundamental question at the interface between physics and biology remains open: What are the minimum requirements for emergence of life-like properties from non-living systems? Here, we address this question and report emergent complex behavior of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: The system is driven far from equilibrium by ultrafast laser pulses, which create spatiotemporal temperature gradients, inducing Marangoni-type flow that drags the particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between the flow, the aggregate, and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behavior, analogous to those commonly seen in living organisms, emerges, whereby the aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise of only one pattern or bifurcated patterns can co-exist, compete, survive or die.

  12. A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size.

    PubMed

    Lou, Sha; Ye, Jia-ying; Li, Ke-qiang; Wu, Aiguo

    2012-03-07

    Four different sized gold nanoparticles (14 nm, 16 nm, 35 nm and 38 nm) were prepared to conjugate an antibody for a gold nanoparticle-based immunochromatographic assay which has many applications in both basic research and clinical diagnosis. This study focuses on the conjugation efficiency of the antibody with different sized gold nanoparticles. The effect of factors such as pH value and concentration of antibody has been quantificationally discussed using spectra methods after adding 1 wt% NaCl which induced gold nanoparticle aggregation. It was found that different sized gold nanoparticles had different conjugation efficiencies under different pH values and concentrations of antibody. Among the four sized gold nanoparticles, the 16 nm gold nanoparticles have the minimum requirement for antibody concentrations to avoid aggregation comparing to other sized gold nanoparticles but are less sensitive for detecting the real sample compared to the 38 nm gold nanoparticles. Consequently, different sized gold nanoparticles should be labeled with antibody under optimal pH value and optimal concentrations of antibody. It will be helpful for the application of antibody-labeled gold nanoparticles in the fields of clinic diagnosis, environmental analysis and so on in future.

  13. Extracellular proteins limit the dispersal of biogenic nanoparticles

    USGS Publications Warehouse

    Moreau, J.W.; Weber, P.K.; Martin, M.C.; Gilbert, B.; Hutcheon, I.D.; Banfield, J.F.

    2007-01-01

    High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.

  14. Ultra-short laser interactions with nanoparticles in different media: from electromagnetic to thermal and electrostatic effects

    NASA Astrophysics Data System (ADS)

    Itina, Tatiana E.

    2017-02-01

    Key issues of the controlled synthesis of nanoparticles and nanostructures, as well as laser-particle interactions are considered in the context of the latest applications appearing in many fields such as photonics, medicine, 3D printing, etc. The results of a multi-physics numerical study of laser interaction with nanoparticles will be presented in the presence of several environments. In particular, attention will be paid to the numerical study of laser interactions with heterogeneous materials (eg. colloidal liquids and/or nanoparticles in a dielectric medium) and the aggregation/sintering/fragmentation processes induced by ultra-short laser pulses.

  15. Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation.

    PubMed

    Song, Jieun; Kim, Dukhan; Lee, Dongil

    2011-11-15

    We report a facile synthetic route for size-controlled preparation of gold nanoparticles. Nearly monodisperse gold nanoparticles with core diameters of 1-6 nm were obtained by reducing AuP(Phenyl)(3)Cl with tert-butylamine borane in the presence of dodecanethiol in the solvent mixture of benzene and CHCl(3). Mechanism studies have shown that the size control is achieved by the solvent-controlled nucleation in which the nuclei concentration increases with increasing the fraction of CHCl(3), leading to smaller particles. It was also found that, following the solvent-controlled nucleation, particle growth occurs via ligand replacement of PPh(3) on the nuclei by Au(I)thiolate generated by the digestive etching of small particles. This synthetic strategy was successfully demonstrated with other alkanethiols of different chain length with which size-controlled, monodisperse gold nanoparticles were prepared in remarkable yield without requiring any postsynthesis treatments.

  16. Modeling the transport of engineered nanoparticles in saturated porous media - an experimental setup

    NASA Astrophysics Data System (ADS)

    Braun, A.; Neukum, C.; Azzam, R.

    2011-12-01

    The accelerating production and application of engineered nanoparticles is causing concerns regarding their release and fate in the environment. For assessing the risk that is posed to drinking water resources it is important to understand the transport and retention mechanisms of engineered nanoparticles in soil and groundwater. In this study an experimental setup for analyzing the mobility of silver and titanium dioxide nanoparticles in saturated porous media is presented. Batch and column experiments with glass beads and two different soils as matrices are carried out under varied conditions to study the impact of electrolyte concentration and pore water velocities. The analysis of nanoparticles implies several challenges, such as the detection and characterization and the preparation of a well dispersed sample with defined properties, as nanoparticles tend to form agglomerates when suspended in an aqueous medium. The analytical part of the experiments is mainly undertaken with Flow Field-Flow Fractionation (FlFFF). This chromatography like technique separates a particulate sample according to size. It is coupled to a UV/Vis and a light scattering detector for analyzing concentration and size distribution of the sample. The advantage of this technique is the ability to analyze also complex environmental samples, such as the effluent of column experiments including soil components, and the gentle sample treatment. For optimization of the sample preparation and for getting a first idea of the aggregation behavior in soil solutions, in sedimentation experiments the effect of ionic strength, sample concentration and addition of a surfactant on particle or aggregate size and temporal dispersion stability was investigated. In general the samples are more stable the lower the concentration of particles is. For TiO2 nanoparticles, the addition of a surfactant yielded the most stable samples with smallest aggregate sizes. Furthermore the suspension stability is

  17. Material influence on hot spot distribution in the nanoparticle heterodimer on film

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Huang, Yingzhou; Wei, Hua; Wang, Shuxia; Zeng, Xiping; Cao, Wenbin; Wen, Weijia

    2018-04-01

    The metal nanoparticle aggregated on film, as an effective plasma enhancement pathway, has been widely used in various surface plasmon-related fields. In this study, the hot spots on the metal nanoparticle dimer composed of different materials (Agsbnd Au, Agsbnd Pd, and Agsbnd Cu) on metal (Au) film were investigated with finite element method. Based on the results, the hot spot distribution affected by the material can be confirmed by the electric field distribution of the metal nanoparticle dimer on the film. The aggregation effects of Au and Ag nanoparticles in Ausbnd Ag dimer system are not significant. However, for the Pdsbnd Ag dimer system, the hot spot aggregation effect is slightly larger than that of the Pd nanoparticle under the Ag nanoparticle. Besides, the non-uniform hot spots would bring about the light focusing phenomenon that the light intensity under Ag nanoparticle is almost 100 times greater than that under Cu nanoparticle in Agsbnd Cu dimer system. These results were further confirmed by the surface charge distribution, and analyzed based on the plasmonic hybridization theory. The data about the nanoparticle dimer on the dielectric (Si) film demonstrate the importance of induced image charges on the film surface in such a light focusing phenomenon. Our findings can enhance the understanding of the surface plasmon coupling in different materials, which may have great application prospects in surface plasmon-related fields, such as SERS, plasmonic enhanced solar cell, and plasmonic sensoring, etc.

  18. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Chávez, V. H. G.; Barriga-Castro, Enrique Díaz; Núñez, Nuria O.; Mendoza-Reséndez, Raquel

    2015-04-01

    Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices.

  19. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds.

    PubMed

    Luna, Carlos; Chávez, V H G; Barriga-Castro, Enrique Díaz; Núñez, Nuria O; Mendoza-Reséndez, Raquel

    2015-04-15

    Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  1. Use of Soybean Lecithin in Shape Controlled Synthesis of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ayres, Benjamin Robert

    The work presented in this dissertation is a composite of experiments in the growth of gold nanoparticles with specific optical properties of interest. The goal is to synthesize these gold nanoparticles using soybean extract for not only shape control, but for propensity as a biocompatible delivery system. The optical properties of these nanoparticles has found great application in coloring glass during the Roman empire and, over the centuries, has grown into its own research field in applications of nanoparticulate materials. Many of the current functions include use in biological systems as biosensors and therapeutic applications, thus making biocompatibility a necessity. Current use of cetyltrimethylammonium bromide leads to rod-shaped gold nanoparticles, however, the stability of these gold nanoparticles does not endure for extended periods of time in aqueous media. In my research, two important components were found to be necessary for stable, anisotropic growth of gold nanoparticles. In the first experiments, it was found that bromide played a key role in shape control. Bromide exchange on the gold atoms led to specific packing of the growing crystals, allowing for two-dimensional growth of gold nanoparticles. It was also discerned that soybean lecithin contained ligands that blocked specific gold facets leading to prismatic gold nanoparticle growth. These gold nanoprisms give a near infrared plasmon absorption similar to that of rod-shaped gold nanoparticles. These gold nanoprisms are discovered to be extremely stable in aqueous media and remain soluble for extended periods of time, far longer than that of gold nanoparticles grown using cetyltrimethylammonium bromide. Since soy lecithin has a plethora of compounds present, it became necessary to discover which compound was responsible for the shape control of the gold nanoprisms in order to optimize the synthesis and allow for a maximum yield of the gold nanoprisms. Many of these components were identified

  2. SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion.

    PubMed

    Sloufová, Ivana; Sisková, Karolína; Vlcková, Blanka; Stepánek, Josef

    2008-04-28

    Changes in morphology, surface reactivity and surface-enhancement of Raman scattering induced by modification of borate-stabilized Ag nanoparticles by adsorbed chlorides have been explored using TEM, EDX analysis and SERS spectra of probing adsorbate 2,2'-bipyridine (bpy) excited at 514.5 nm and evaluated by factor analysis. At fractional coverages of the parent Ag nanoparticles by adsorbed chlorides <0.6, the Ag colloid/Cl(-)/bpy systems were found to be constituted by fractal aggregates of Ag nanoparticles fairly uniform in size (10 +/- 2 nm) and SERS spectra of Ag(+)-bpy surface species were detected. The latter result was interpreted in terms of the presence of oxidized Ag(+) and/or Ag(n)(+) adsorption sites, which have been encountered also in systems with the chemically untreated Ag nanoparticles. At chloride coverages >0.6, a fusion of fractal aggregates into the compact aggregates of touching and/or interpenetrating Ag nanoparticles has been observed and found to be accompanied by the formation of another surface species, Ag-bpy, as well as by the increase of the overall SERS enhancement of bpy by factor of 40. The same Ag-bpy surface species has been detected under the strongly reducing conditions of reduction of silver nitrate by sodium borohydride in the presence of bpy. The formation of Ag-bpy is thus interpreted in terms of the stabilization of reduced Ag(0) adsorption sites by adsorbed bpy. The formation of reduced adsorption sites on Ag nanoparticle surfaces at chloride coverages >0.6 is discussed in terms of local changes in the work function of Ag. Finally, the SERS spectral detection of Ag-bpy species is proposed as a tool for probing the presence of reduced Ag(0) adsorption sites in systems with chemically modified Ag nanoparticles.

  3. Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh

    2016-11-01

    Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.

  4. Obtaining electrostatically bound CdS-SiO2 aggregates from electrophoretic concentrates of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Bulavchenko, A. I.; Sap'yanik, A. A.; Demidova, M. G.; Rakhmanova, M. I.; Popovetskii, P. S.

    2015-05-01

    Nonaqueous electrophoresis reveals that the electrokinetic potential of CdS nanoparticles increases slightly (85-120 mV) along with the concentration (0-5 × 10-3 M) of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in n-decane, while negatively charged SiO2 particles acquire positive charge (switching from -75 up to +135 mV). The energies of interparticle interactions in CdS-CdS and CdS-SiO2 systems are calculated from these parameters and the literature values of the Hamaker constants according to the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory. It is concluded that the presence of a minimum (2.5 k B T) on the potential dependences of the CdS-SiO2 system indicates the formation of CdS-SiO2 aggregates electrostatically bound by heterocoagulation at low concentrations of AOT. The luminescent properties of the obtained ultrafine CdS-SiO2 powders depend on the CdS content.

  5. Characterizing the Role of Nanoparticle Design on Tumor Transport and Stability in the Extracellular Environment

    NASA Astrophysics Data System (ADS)

    Albanese, Alexandre

    Nanotechnology has emerged as an exciting strategy for the delivery of diagnostic and therapeutic agents into established tumors. Advancements in nanomaterial synthesis have generated an extensive number of nanoparticle designs made from different materials. Unfortunately, it remains impossible to predict a design's effectiveness for in vivo tumor accumulation. Little is known about how a nanoparticle's morphology and surface chemistry affect its interactions with cells and proteins inside the tumor tissue. This thesis focuses on the development of in vitro experimental tools to evaluate how nanoparticle design affects transport in a three-dimensional tumor tissue and stability in the tumor microenvironment. Nanoparticle transport was evaluated using a novel 'tumor-on-a-chip' system where multicellular tumor spheroids were immobilized in a microfluidic channel. This setup created a three-dimensional tumor environment displaying physiological cell density, extracellular matrix organization, and interstitial flow rates. The tumor-on-a-chip demonstrated that accumulation of nanoparticles was limited to diameters below 110 nm and was improved by receptor targeting. Nanoparticle stability in the tumor microenvironment was evaluated using media isolated from different tumor cell lines. Nanoparticle diameter and surface chemistry were important determinants of stability in cancer cell-conditioned media. Small nanoparticles with unstable surface chemistries adsorbed cellular proteins on their surface and were prone to aggregation. Nanoparticle aggregation altered cellular interactions leading to changes in cell uptake. Using a novel technique to generate different aggregate sizes possessing a uniform surface composition, it was determined that aggregation can change receptor affinity, cell internalization mechanisms and sub-cellular sequestration patterns. Data from this thesis characterize the behavior of nanoparticles within modeled tumor environments and provide some

  6. Functionalizing large nanoparticles for small gaps in dimer nanoantennas

    NASA Astrophysics Data System (ADS)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P.; Tinnefeld, Philip

    2016-04-01

    The process of functionalizing gold nanoparticles with DNA commonly competes with nanoparticle aggregation, especially for larger particles of more than 80 nm diameter. Longer DNA strands reduce the tendency for aggregation but commonly lead to larger gaps when applied in certain geometrical arrangements such as gap nanoantennas. Here, we demonstrate that reversing the polarization of one of the strands for hybridization (yielding a zipper-like geometry) is sterically possible with uncompromised yields. Using the single dye molecule’s fluorescence lifetime as an indicator of the proximity of the nanoparticle in combination with electrodynamic simulations, we determine the distance between the nanoparticle and the dye placed in a DNA origami pillar. Importantly, compared to the common shear geometry smaller distances between the connected structures are obtained which are independent of the length of the DNA connector. Using the zipper geometry, we then arranged nanoparticles of 100 and 150 nm diameter on DNA origami and formed gap nanoantennas. We find that the previously reported trend of increased fluorescence enhancement of ATTO647N with increasing particle size for 20-100 nm nanoparticles is stopped. Gap nanoantennas built with 150 nm nanoparticles exhibit smaller enhancement than those with 100 nm nanoparticles. These results are discussed with the aid of electrodynamic simulations.

  7. Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micropillars

    NASA Astrophysics Data System (ADS)

    Orlandi, G.; Kuzhir, P.; Izmaylov, Y.; Alves Marins, J.; Ezzaier, H.; Robert, L.; Doutre, F.; Noblin, X.; Lomenech, C.; Bossis, G.; Meunier, A.; Sandoz, G.; Zubarev, A.

    2016-06-01

    Microfluidic separation of magnetic particles is based on their capture by magnetized microcollectors while the suspending fluid flows past the microcollectors inside a microchannel. Separation of nanoparticles is often challenging because of strong Brownian motion. Low capture efficiency of nanoparticles limits their applications in bioanalysis. However, at some conditions, magnetic nanoparticles may undergo field-induced aggregation that amplifies the magnetic attractive force proportionally to the aggregate volume and considerably increases nanoparticle capture efficiency. In this paper, we have demonstrated the role of such aggregation on an efficient capture of magnetic nanoparticles (about 80 nm in diameter) in a microfluidic channel equipped with a nickel micropillar array. This array was magnetized by an external uniform magnetic field, of intensity as low as 6-10 kA/m, and experiments were carried out at flow rates ranging between 0.3 and 30 μ L /min . Nanoparticle capture is shown to be mostly governed by the Mason number Ma, while the dipolar coupling parameter α does not exhibit a clear effect in the studied range, 1.4 < α < 4.5. The capture efficiency Λ shows a strongly decreasing Mason number behavior, Λ ∝M a-1.78 within the range 32 ≤ Ma ≤ 3250. We have proposed a simple theoretical model which considers destructible nanoparticle chains and gives the scaling behavior, Λ ∝M a-1.7 , close to the experimental findings.

  8. Functionally-interdependent shape-switching nanoparticles with controllable properties

    PubMed Central

    Halman, Justin R.; Satterwhite, Emily; Roark, Brandon; Chandler, Morgan; Viard, Mathias; Ivanina, Anna; Bindewald, Eckart; Kasprzak, Wojciech K.; Panigaj, Martin; Bui, My N.; Lu, Jacob S.; Miller, Johann; Khisamutdinov, Emil F.; Shapiro, Bruce A.; Dobrovolskaia, Marina A.

    2017-01-01

    Abstract We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities. Computational algorithms were developed to accurately predict melting temperatures of nanoparticles of various compositions and trace the process of their re-association in silico. Additionally, tunable immunostimulatory properties of described nanoparticles suggest that the particles that do not induce pro-inflammatory cytokines and high levels of interferons can be used as scaffolds to carry therapeutic oligonucleotides, while particles with strong interferon and mild pro-inflammatory cytokine induction may qualify as vaccine adjuvants. The presented concept provides a simple, cost-effective and straightforward model for the development of combinatorial regulation of biological processes in nucleic acid nanotechnology. PMID:28108656

  9. Magnetic Fluids Have Ability to Decrease Amyloid Aggregation Associated with Amyloid-Related Diseases

    NASA Astrophysics Data System (ADS)

    Antosova, Andrea; Koneracka, Martina; Siposova, Katarina; Zavisova, Vlasta; Daxnerova, Zuzana; Vavra, Ivo; Fabian, Martin; Kopcansky, Peter; Gazova, Zuzana

    2010-12-01

    At least twenty human proteins can fold abnormally to form pathological deposits that are associated with several amyloid-related diseases. We have investigated the effect of four magnetic fluids (MFs)—electrostatically stabilized Fe3O4 magnetic nanoparticles (MF1) and sterically stabilized Fe3O4 magnetic nanoparticles by sodium oleate (MF2, MF3 and MF4) with adsorbed BSA (MF2) or dextran (MF4)—on amyloid aggregation of two proteins, human insulin and chicken egg lysozyme. The morphology, particle size and size distribution of the prepared magnetic fluids were characterized. We have found that MFs are able to decrease amyloid aggregation of both studied proteins and the extent of depolymerization depended on the MF properties. The most effective reduction was observed for MF4 as 90% decrease of amyloids was detected for insulin and lysozyme amyloid aggregates. Our findings indicate that MFs have potential to be used for treatment of amyloid diseases.

  10. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles

    PubMed Central

    Zhang, Jinsong; Taylor, Ethan W; Wan, Xiaochun; Peng, Dungeng

    2012-01-01

    Background Elemental selenium nanoparticles have emerged as a novel selenium source with the advantage of reduced risk of selenium toxicity. The present work investigated whether heat treatment affects the size, structure, and bioactivity of selenium nanoparticles. Methods and results After a one-hour incubation of solution containing 80 nm selenium particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and nanorods (290 nm × 70 nm), leading to significantly reduced bioavailability and phase II enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 72 nm particles but did not transform into nanorods, demonstrating that the thermostability of selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant than larger selenium nanoparticles to transformation into nanorods during heat treatment. Conclusion The present results suggest that temperature and duration of the heat process, as well as the original nanoparticle size, should be carefully selected when a solution containing selenium nanoparticles is added to functional foods. PMID:22359458

  11. Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications.

    PubMed

    Picco, Agustin S; Ferreira, Larissa F; Liberato, Michelle S; Mondo, Gabriela B; Cardoso, Mateus B

    2018-01-01

    To study freeze-drying of silica nanoparticles (SiO 2 NPs) in order to find suitable conditions to produce lyophilized powders with no aggregation after resuspension and storage. SiO 2 NPs were synthesized using a Stöber-based procedure, and characterized by scanning electron microscopy, dynamic light scattering and nitrogen adsorption/desorption isotherms. SiO 2 NPs hydrodynamic diameters were compared prior and after freeze-drying in the presence/absence of carbohydrate protectants. Glucose was found to be the most suitable protectant against the detrimental effects of lyophilization. The minimum concentration of carbohydrate required to effectively protect SiO 2 NPs from aggregation during freeze-drying is influenced by the nanoparticle's size and texture. Negligible aggregation was observed during storage. Carbohydrates can be used during SiO 2 NPs freeze-drying process to obtain redispersable solids that maintain original sizes without residual aggregation.

  12. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    PubMed

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  13. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia.

    PubMed

    Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti

    2014-05-01

    The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.

  14. Wetting-Dewetting and Dispersion-Aggregation Transitions Are Distinct for Polymer Grafted Nanoparticles in Chemically Dissimilar Polymer Matrix.

    PubMed

    Martin, Tyler B; Mongcopa, Katrina Irene S; Ashkar, Rana; Butler, Paul; Krishnamoorti, Ramanan; Jayaraman, Arthi

    2015-08-26

    Simulations and experiments are conducted on mixtures containing polymer grafted nanoparticles in a chemically distinct polymer matrix, where the graft and matrix polymers exhibit attractive enthalpic interactions at low temperatures that become progressively repulsive as temperature is increased. Both coarse-grained molecular dynamics simulations, and X-ray scattering and neutron scattering experiments with deuterated polystyrene (dPS) grafted silica and poly(vinyl methyl ether) PVME matrix show that the sharp phase transition from (mixed) dispersed to (demixed) aggregated morphologies due to the increasingly repulsive effective interactions between the blend components is distinct from the continuous wetting-dewetting transition. Strikingly, this is unlike the extensively studied chemically identical graft-matrix composites, where the two transitions have been considered to be synonymous, and is also unlike the free (ungrafted) blends of the same graft and matrix homopolymers, where the wetting-dewetting is a sharp transition coinciding with the macrophase separation.

  15. Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent.

    PubMed

    Kim, Dae-Young; Shinde, Surendra; Ghodake, Gajanan

    2017-05-15

    High reducibility of gallic acid allows synthesis of small sized monodisperse gold nanoparticles (GNPs) at ambient temperature (25°C). Mg 2+ rapidly interacts with the gallic acid ligands and suppresses the dispersion of GNPs therefore, causing a decrease in UV-vis absorbance intensity, and color change from red to blue. Thus, the colorimetric response of GNPs with Mg 2+ was investigated by observing temporal quenching of UV-vis absorbance and precise tuning of fractal growth of GNP aggregates. Moreover, Mg 2+ at concentrations as low as 200ppb can be detected using gallic acid ligand-mediated coordination chemistry which results quenching in UV-vis absorbance proportional to the exposure time. This gallic acid-based colorimetric sensor shown a great potential for the selective detection of pathologically important electrolyte Mg 2+ without any interference from other cations Ca 2+ and K + . Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Characterization of core/shell Cu/Ag nanopowders synthesized by electrochemistry and assessment of their impact on hemolysis, platelet aggregation, and coagulation on human blood for potential wound dressing use

    NASA Astrophysics Data System (ADS)

    Laloy, Julie; Haguet, Hélène; Alpan, Lutfiye; Mancier, Valérie; Mejia, Jorge; Levi, Samuel; Dogné, Jean-Michel; Lucas, Stéphane; Rousse, Céline; Fricoteaux, Patrick

    2017-08-01

    Copper/silver core/shell nanopowders with different metal ratio have been elaborated by electrochemistry (ultrasound-assisted electrolysis followed by a displacement reaction). Characterization was performed by several methods (X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, centrifugal liquid sedimentation, and zeta potential measurements). The mean diameter of all nanoparticles is around 10 nm. The impact of each nanopowder on hemolysis, platelet aggregation, and coagulation has been studied on whole human blood. Hemolysis assays were performed with spectrophotometric measurement and platelet aggregation, with light transmission aggregometry and was compared to Cu/Pt core/shell nanoparticles with similar size as negative control. Calibrated thrombin generation test has been used for a coagulation study. They neither impact platelet aggregation nor hemolysis and have a procoagulant effect whatever their composition (i.e., metal ratio). These results highlight that such nanopowders have a potential use in medical applications (e.g., wound dressing).

  17. Naked eye detection of mutagenic DNA photodimers using gold nanoparticles.

    PubMed

    Kim, Joong Hyun; Chung, Bong Hyun

    2011-01-15

    We developed a method to detect mutagenic DNA photodimers by the naked eye using gold nanoparticles. The stability of gold nanoparticles in a high ionic strength solution is maintained by straight ssDNA adsorbed physically on the AuNPs. However, we found that UV-irradiated DNA was less adsorptive onto gold nanoparticles because of a conformational change of UV-irradiated DNA. The accumulated deformation of the DNA structure by multiple-dimer formation triggered aggregation of the gold nanoparticles mixed with the UV-irradiated DNA and thus red to purple color changes of the mixture, which allowed colorimetric detection of the DNA photodimers by the naked eye. No fragmented mass and reactive oxygen species production under the UVB irradiation confirmed that the aggregation of gold nanoparticles was solely attributed to the accumulated deformation of the UV irradiated DNA. The degree of gold nanoparticles-aggregation was dependent on the UVB irradiated time and base compositions of the UV-irradiated oligonucleotides. In addition, we successfully demonstrated how to visually qualify the photosensitizing effect of chemical compounds in parallel within only 10 min by applying this new method. Since our method does not require any chemical or biochemical treatments or special instruments for purifying and qualifying the DNA photolesions, it should provide a feasible tool for the studies of the UV-induced mutagenic or carcinogenic DNA dimers and accelerate screening of a large number of drug candidates. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  18. Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats.

    PubMed

    Kurantowicz, Natalia; Strojny, Barbara; Sawosz, Ewa; Jaworski, Sławomir; Kutwin, Marta; Grodzik, Marta; Wierzbicki, Mateusz; Lipińska, Ludwika; Mitura, Katarzyna; Chwalibog, André

    2015-12-01

    Carbon nanoparticles have recently drawn intense attention in biomedical applications. Hence, there is a need for further in vivo investigations of their biocompatibility and biodistribution via various exposure routes. We hypothesized that intraperitoneally injected diamond, graphite, and graphene oxide nanoparticles may have different biodistribution and exert different effects on the intact organism. Forty Wistar rats were divided into four groups: the control and treated with nanoparticles by intraperitoneal injection (4 mg of nanoparticles/kg body weight) eight times during the 4-week period. Blood was collected for evaluation of blood morphology and biochemistry parameters. Photographs of the general appearance of each rat's interior were taken immediately after sacrifice. The organs were excised and their macroscopic structure was visualized using a stereomicroscope. The nanoparticles were retained in the body, mostly as agglomerates. The largest agglomerates (up to 10 mm in diameter) were seen in the proximity of the injection place in the stomach serous membrane, between the connective tissues of the abdominal skin, muscles, and peritoneum. Numerous smaller, spherical-shaped aggregates (diameter around 2 mm) were lodged among the mesentery. Moreover, in the connective and lipid tissue in the proximity of the liver and spleen serosa, small aggregates of graphite and graphene oxide nanoparticles were observed. However, all tested nanoparticles did not affect health and growth of rats. The nanoparticles had no toxic effects on blood parameters and growth of rats, suggesting their potential applicability as remedies or in drug delivery systems.

  19. Environmental nanoparticles are significantly over-expressed in acute myeloid leukemia.

    PubMed

    Visani, G; Manti, A; Valentini, L; Canonico, B; Loscocco, F; Isidori, A; Gabucci, E; Gobbi, P; Montanari, S; Rocchi, M; Papa, S; Gatti, A M

    2016-11-01

    The increase in the incidence of acute myeloid leukemia (AML) may suggest a possible environmental etiology. PM2.5 was declared by IARC a Class I carcinogen. No report has focused on particulate environmental pollution together with AML. The study investigated the presence and composition of particulate matter in blood with a Scanning Electron Microscope coupled with an Energy Dispersive Spectroscope, a sensor capable of identifying the composition of foreign bodies. 38 peripheral blood samples, 19 AML cases and 19 healthy controls, were analyzed. A significant overload of particulate matter-derived nanoparticles linked or aggregated to blood components was found in AML patients, while almost absent in matched healthy controls. Two-tailed Student's t-test, MANOVA and Principal Component Analysis indicated that the total numbers of aggregates and particles were statistically different between cases and controls (MANOVA, P<0.001 and P=0.009 respectively). The particles detected showed to contain highly-reactive, non-biocompatible and non-biodegradable metals; in particular, micro- and nano-sized particles grouped in organic/inorganic clusters, with statistically higher frequency of a subgroup of elements in AML samples. The demonstration, for the first time, of an overload of nanoparticles linked to blood components in AML patients could be the basis for a possible, novel pathogenetic mechanism for AML development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  1. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    PubMed Central

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  2. Nanoparticle Immobilization for Controllable Experiments in Liquid-Cell Transmission Electron Microscopy.

    PubMed

    Robertson, Alex W; Zhu, Guomin; Mehdi, B Layla; Jacobs, Robert M J; De Yoreo, James; Browning, Nigel D

    2018-06-22

    We demonstrate that silanization can control the adhesion of nanostructures to the SiN windows compatible with liquid-cell transmission electron microscopy (LC-TEM). Formation of an (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayer on a SiN window, producing a surface decorated with amino groups, permits strong adhesion of Au nanoparticles to the window. Many of these nanoparticles remain static, undergoing minimal translation or rotation during LC-TEM up to high electron beam current densities due to the strong interaction between the APTES amino group and Au. We then use this technique to perform a direct comparative LC-TEM study on the behavior of ligand and nonligand-coated Au nanoparticles in a Au growth solution. While the ligand coated nanoparticles remain consistent even under high electron beam current densities, the naked nanoparticles acted as sites for secondary Au nucleation. These nucleated particles decorated the parent nanoparticle surface, forming consecutive monolayer assemblies of ∼2 nm diameter nanoparticles, which sinter into the parent particle when the electron beam was shut off. This method for facile immobilization of nanostructures for LC-TEM study will permit more sophisticated and controlled in situ experiments into the properties of solid-liquid interfaces in the future.

  3. Effects of garlic extract on platelet aggregation: a randomized placebo-controlled double-blind study.

    PubMed

    Morris, J; Burke, V; Mori, T A; Vandongen, R; Beilin, L J

    1995-01-01

    1. Studies of the effects of garlic on platelet aggregation have produced inconsistent results possibly related to variations in study design and in the garlic preparations used. 2. The present study examined the effects on platelet aggregation and serum thromboxane and lyso-platelet activating factor, of feeding garlic extract to healthy men using a placebo-controlled, double-blind design. The effects of the same garlic preparation on platelet aggregation in vitro were also investigated. 3. There were no significant differences in platelet aggregation with adenosine diphosphate, platelet activating factor (PAF) or collagen according to treatment group. Serum thromboxane and lysoPAF also showed no change related to garlic supplements. 4. In vitro aggregation with collagen decreased linearly with increasing amounts of garlic extract, but concentrations were higher than those attainable in vivo. Gastrointestinal side effects prevented the use of higher doses of garlic which must be considered to be pharmacological as they exceed changes achievable by dietary modification.

  4. Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease.

    PubMed

    Graham, Duncan; Stevenson, Ross; Thompson, David G; Barrett, Lee; Dalton, Colette; Faulds, Karen

    2011-01-01

    DNA functionalised nanoparticle probes offer new opportunities in analyte detection. Ultrasensitive, molecularly specific targeting of analytes is possible through the use of metallic nanoparticles and their ability to generate a surface enhanced Raman scattering (SERS) response. This is leading to a new range of diagnostic clinical probes based on SERS detection. Our approaches have shown how such probes can detect specific DNA sequences by using a biomolecular recognition event to 'turn on' a SERS response through a controlled assembly process of the DNA functionalised nanoparticles. Further, we have prepared DNA aptamer functionalised SERS probes and demonstrated how introduction of a protein target can change the aggregation state of the nanoparticles in a dose-dependant manner. These approaches are being used as methods to detect biomolecules that indicate a specific disease being present with a view to improving disease management.

  5. Rydberg aggregates

    NASA Astrophysics Data System (ADS)

    Wüster, S.; Rost, J.-M.

    2018-02-01

    We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.

  6. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    NASA Astrophysics Data System (ADS)

    Baldassarre, Francesca; Cacciola, Matteo; Ciccarella, Giuseppe

    2015-09-01

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.

  7. Morphology controlled synthesis of platinum nanoparticles performed on the surface of graphene oxide using a gas-liquid interfacial reaction and its application for high-performance electrochemical sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Zheng, Jianbin

    2016-07-21

    In this paper, we report a novel morphology-controlled synthetic method. Platinum (Pt) nanoparticles with three kinds of morphology (aggregation-like, cube-like and globular) were grown on the surface of graphene oxide (GO) using a simple gas-liquid interfacial reaction and Pt/GO nanocomposites were obtained successfully. According to the experimental results, the morphology of the Pt nanoparticles can be controlled by adjusting the reaction temperature with the protection of chitosan. The obtained Pt/GO nanocomposites were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). Then the Pt/GO nanocomposites with the three kinds of morphology were all used to fabricate electrochemical sensors. The electrochemical experimental results indicated that compared with various reported electrochemical sensors, the Pt/GO modified sensors in this work exhibit a low detection limit, high sensitivity and an extra wide linear range for the detection of nitrite. In addition, the synthesis of Pt particles based on a gas-liquid interfacial reaction provides a new platform for the controllable synthesis of nanomaterials.

  8. Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer

    NASA Astrophysics Data System (ADS)

    Shi, Qixun; Javorskis, Tomas; Bergquist, Karl-Erik; Ulčinas, Artūras; Niaura, Gediminas; Matulaitienė, Ieva; Orentas, Edvinas; Wärnmark, Kenneth

    2017-04-01

    The design and synthesis of new stimuli-responsive hydrogen-bonding monomers that display a diversity of self-assembly pathways is of central importance in supramolecular chemistry. Here we describe the aggregation properties of a simple, intrinsically C2-symmetric enantiopure bicyclic cavity compound bearing a terminally unsubstituted ureidopyrimidinone fragment fused with a pyrrole moiety in different solvents and in the absence and presence of C60 and C70 guests. The tetrameric cyclic aggregate is selectively obtained in chlorinated solvents, where only part of the available hydrogen bonding sites are utilized, whereas in toluene or upon addition of C70 guests, further aggregation into tubular supramolecular polymers is achieved. The open-end cyclic assemblies rearrange into a closed-shell capsule upon introduction of C60 with an accompanied symmetry breaking of the monomer. Our study demonstrates that a C60 switch can be used to simultaneously control the topology and occupancy of tubular assemblies resulting from the aggregation of small monomers.

  9. Aggregate gradation control program, Virginia.

    DOT National Transportation Integrated Search

    1985-01-01

    In 1983, Virginia implemented a specification for the acceptance of aggregate base and bituminous concrete in which the producer undertook the acceptance testing and state personnel did much reduced testing as a monitoring program. Although some peop...

  10. Detection and aggregation of the antitumoral drug parietin in ethanol/water mixture and on plasmonic metal nanoparticles studied by surface-enhanced optical spectroscopy: Effect of pH and ethanol concentration.

    PubMed

    Lopez-Tobar, Eduardo; Verebova, Valeria; Blascakova, Ludmila; Jancura, Daniel; Fabriciova, Gabriela; Sanchez-Cortes, Santiago

    2016-04-15

    In the present paper, we have investigated the effect of ethanol in aqueous media, the pH and the presence of Ag nanoparticles (NPs) on the aggregation processes of the antitumoral anthraquinone parietin in aqueous media and on the metal surface. UV-visible absorption, fluorescence and Raman spectra of parietin were used for such purpose. The present study provides information about the deprotonation and molecular aggregation processes occurring in parietin under different environments: ethanol/water mixture and when adsorbed onto Ag nanoparticles. The effect of ethanol on the optical properties of parietin in alcohol-water mixtures was also investigated at different ethanol concentrations with the time. For the case of the adsorption and organization of parietin molecules on the surface of Ag NPs, special attention was paid to the use of surface-enhanced optical techniques, SEF (surface-enhanced fluorescence) and SERS (surface-enhanced Raman scattering), for the characterization of the parietin aggregates and the ionization of the molecule on the surface. In particular, we have studied the variation of the SEF signal with the pH, which depends on the molecular organization of the molecule on the surface. Furthermore, a detailed analysis of the SERS spectra at different pH was accomplished and the main Raman bands of the protonated, mono-deprotonated and di-deprotonated parietin were identified. Finally, the second ionization pK of parietin on metal NPs was deduced from the SERS spectra. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Detection and aggregation of the antitumoral drug parietin in ethanol/water mixture and on plasmonic metal nanoparticles studied by surface-enhanced optical spectroscopy: Effect of pH and ethanol concentration

    NASA Astrophysics Data System (ADS)

    Lopez-Tobar, Eduardo; Verebova, Valeria; Blascakova, Ludmila; Jancura, Daniel; Fabriciova, Gabriela; Sanchez-Cortes, Santiago

    2016-04-01

    In the present paper, we have investigated the effect of ethanol in aqueous media, the pH and the presence of Ag nanoparticles (NPs) on the aggregation processes of the antitumoral anthraquinone parietin in aqueous media and on the metal surface. UV-visible absorption, fluorescence and Raman spectra of parietin were used for such purpose. The present study provides information about the deprotonation and molecular aggregation processes occurring in parietin under different environments: ethanol/water mixture and when adsorbed onto Ag nanoparticles. The effect of ethanol on the optical properties of parietin in alcohol-water mixtures was also investigated at different ethanol concentrations with the time. For the case of the adsorption and organization of parietin molecules on the surface of Ag NPs, special attention was paid to the use of surface-enhanced optical techniques, SEF (surface-enhanced fluorescence) and SERS (surface-enhanced Raman scattering), for the characterization of the parietin aggregates and the ionization of the molecule on the surface. In particular, we have studied the variation of the SEF signal with the pH, which depends on the molecular organization of the molecule on the surface. Furthermore, a detailed analysis of the SERS spectra at different pH was accomplished and the main Raman bands of the protonated, mono-deprotonated and di-deprotonated parietin were identified. Finally, the second ionization pK of parietin on metal NPs was deduced from the SERS spectra.

  12. Attogram detection of picric acid by hexa-peri-hexabenzocoronene-based chemosensors by controlled aggregation-induced emission enhancement.

    PubMed

    Vij, Varun; Bhalla, Vandana; Kumar, Manoj

    2013-06-12

    Hexa-peri-hexabenzocoronene (HBC) based molecules 5 and 6 have been designed and synthesized. These planar coronenes are appended with rotors to invoke aggregation induced emission enhancement (AIEE) phenomenon by controlling the ratio of H2O in solutions of aggregates. These aggregates of HBC derivatives serve as highly selective chemosensors for picric acid (PA) in mixed aqueous solution. These aggregates are also able to detect PA in vapor phase. In addition, fluorescent test strips have been prepared by dip-coating the Whatman paper with aggregates of both compounds for trace detection of PA in contact mode with detection limits in attograms.

  13. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol

    NASA Astrophysics Data System (ADS)

    Zhang, Shulan; Wang, Renjie; Yang, Xueyun; Sun, Benhua; Li, Qinghui

    2016-12-01

    Soil aggregation was studied in a 21-year experiment conducted on an Anthrosol. The soil management regimes consisted of cropland abandonment, bare fallow without vegetation and cropping system. The cropping system was combined with the following nutrient management treatments: control (CONTROL, no nutrient input); nitrogen, phosphorus and potassium (NPK); straw plus NPK (SNPK); and manure (M) plus NPK (MNPK). Compared with the CONTROL treatment, the abandonment treatment significantly increased the formation of large soil macroaggregates (>2 mm) and consequently improved the stability of aggregates in the surface soil layer due to enhancement of hyphal length and of soil organic matter content. However, in response to long-term bare fallow treatment aggregate stability was low, as were the levels of aggregating agents. Long term fertilization significantly redistributed macroaggregates; this could be mainly ascribed to soil organic matter contributing to the formation of 0.5-2 mm classes of aggregates and a decrease in the formation of the >2 mm class of aggregates, especially in the MNPK treatment. Overall, hyphae represented a major aggregating agent in both of the systems tested, while soil organic compounds played significantly different roles in stabilizing aggregates in Anthrosol when the cropping system and the soil management regimes were compared.

  14. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol

    PubMed Central

    Zhang, Shulan; Wang, Renjie; Yang, Xueyun; Sun, Benhua; Li, Qinghui

    2016-01-01

    Soil aggregation was studied in a 21-year experiment conducted on an Anthrosol. The soil management regimes consisted of cropland abandonment, bare fallow without vegetation and cropping system. The cropping system was combined with the following nutrient management treatments: control (CONTROL, no nutrient input); nitrogen, phosphorus and potassium (NPK); straw plus NPK (SNPK); and manure (M) plus NPK (MNPK). Compared with the CONTROL treatment, the abandonment treatment significantly increased the formation of large soil macroaggregates (>2 mm) and consequently improved the stability of aggregates in the surface soil layer due to enhancement of hyphal length and of soil organic matter content. However, in response to long-term bare fallow treatment aggregate stability was low, as were the levels of aggregating agents. Long term fertilization significantly redistributed macroaggregates; this could be mainly ascribed to soil organic matter contributing to the formation of 0.5–2 mm classes of aggregates and a decrease in the formation of the >2 mm class of aggregates, especially in the MNPK treatment. Overall, hyphae represented a major aggregating agent in both of the systems tested, while soil organic compounds played significantly different roles in stabilizing aggregates in Anthrosol when the cropping system and the soil management regimes were compared. PMID:27958366

  15. Three-Dimensional Orientation of Anisotropic Plasmonic Aggregates at Intracellular Nuclear Indentation Sites by Integrated Light Sheet Super-Resolution Microscopy.

    PubMed

    Chakkarapani, Suresh Kumar; Sun, Yucheng; Lee, Seungah; Fang, Ning; Kang, Seong Ho

    2018-05-22

    Three-dimensional (3D) orientations of individual anisotropic plasmonic nanoparticles in aggregates were observed in real time by integrated light sheet super-resolution microscopy ( iLSRM). Asymmetric light scattering of a gold nanorod (AuNR) was used to trigger signals based on the polarizer angle. Controlled photoswitching was achieved by turning the polarizer and obtaining a series of images at different polarization directions. 3D subdiffraction-limited super-resolution images were obtained by superlocalization of scattering signals as a function of the anisotropic optical properties of AuNRs. Varying the polarizer angle allowed resolution of the orientation of individual AuNRs. 3D images of individual nanoparticles were resolved in aggregated regions, resulting in as low as 64 nm axial resolution and 28 nm spatial resolution. The proposed imaging setup and localization approach demonstrates a convenient method for imaging under a noisy environment where the majority of scattering noise comes from cellular components. This integrated 3D iLSRM and localization technique was shown to be reliable and useful in the field of 3D nonfluorescence super-resolution imaging.

  16. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    NASA Astrophysics Data System (ADS)

    Araya, Eyleen; Olmedo, Ivonne; Bastus, Neus G.; Guerrero, Simón; Puntes, Víctor F.; Giralt, Ernest; Kogan, Marcelo J.

    2008-11-01

    Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ) amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  17. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.

    PubMed

    Wen, Yang; Zhu, Yujie; Langrock, Alex; Manivannan, Ayyakkannu; Ehrman, Sheryl H; Wang, Chunsheng

    2013-08-26

    Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high-capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by graphene is synthesized by a one-step aerosol spraying of surface-modified Si nanoparticles and graphene oxide suspension. The functional groups on the surface of Si nanoparticles (50-100 nm) not only react with graphene oxide and bind Si nanoparticles to the graphene oxide shell, but also prevent Si nanoparticles from aggregation, thus contributing to a uniform Si suspension. A homogeneous graphene-encapsulated Si nanoparticle morphology forms during the aerosol spraying process. The open-ended graphene shell with defects allows fast electrochemical lithiation/delithiation, and the void space inside the graphene shell accompanied by its strong mechanical strength can effectively accommodate the volume expansion of Si upon lithiation. The graphene shell provides good electronic conductivity for Si nanoparticles and prevents them from aggregating during charge/discharge cycles. The functionalized Si encapsulated by graphene sample exhibits a capacity of 2250 mAh g⁻¹ (based on the total mass of graphene and Si) at 0.1C and 1000 mAh g⁻¹ at 10C, and retains 85% of its initial capacity even after 120 charge/discharge cycles. The exceptional performance of graphene-encapsulated Si anodes combined with the scalable and one-step aerosol synthesis technique makes this material very promising for lithium ion batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport

    PubMed Central

    Wang, Gang; Huang, Wei; Eastham, Nicholas D.; Fabiano, Simone; Manley, Eric F.; Zeng, Li; Wang, Binghao; Zhang, Xinan; Chen, Zhihua; Li, Ran; Chang, Robert P. H.; Chen, Lin X.; Bedzyk, Michael J.; Melkonyan, Ferdinand S.; Facchetti, Antonio; Marks, Tobin J.

    2017-01-01

    Shear-printing is a promising processing technique in organic electronics for microstructure/charge transport modification and large-area film fabrication. Nevertheless, the mechanism by which shear-printing can enhance charge transport is not well-understood. In this study, a printing method using natural brushes is adopted as an informative tool to realize direct aggregation control of conjugated polymers and to investigate the interplay between printing parameters, macromolecule backbone alignment and aggregation, and charge transport anisotropy in a conjugated polymer series differing in architecture and electronic structure. This series includes (i) semicrystalline hole-transporting P3HT, (ii) semicrystalline electron-transporting N2200, (iii) low-crystallinity hole-transporting PBDTT-FTTE, and (iv) low-crystallinity conducting PEDOT:PSS. The (semi-)conducting films are characterized by a battery of morphology and microstructure analysis techniques and by charge transport measurements. We report that remarkably enhanced mobilities/conductivities, as high as 5.7×/3.9×, are achieved by controlled growth of nanofibril aggregates and by backbone alignment, with the adjusted R2 (R2adj) correlation between aggregation and charge transport as high as 95%. However, while shear-induced aggregation is important for enhancing charge transport, backbone alignment alone does not guarantee charge transport anisotropy. The correlations between efficient charge transport and aggregation are clearly shown, while mobility and degree of orientation are not always well-correlated. These observations provide insights into macroscopic charge transport mechanisms in conjugated polymers and suggest guidelines for optimization. PMID:29109282

  19. Understanding the Benefits and Limitations of Magnetic Nanoparticle Heating for Improved Applications in Cancer Hyperthermia and Biomaterial Cryopreservation

    NASA Astrophysics Data System (ADS)

    Etheridge, Michael L.

    The current work focused on the ability of magnetic nanoparticles to produce heat in the presence of an applied alternating magnetic field. Magnetic nanoparticle hyperthermia applications utilize this behavior to treat cancer and this approach has received clinical approval in the European Union, but significant developments are necessary for this technology to have a chance for wider-spread acceptance. Here then we begin by investigating some of the important limitations of the current technology. By characterizing the ability of superparamagnetic and ferromagnetic nanoparticles to heat under a range of applied fields, we are able to determine the optimal field settings for clinical application and make recommendations on the highest impact strategies to increase heating. In addition, we apply these experimentally determined limits to heating in a series of heat transfer models, to demonstrate the therapeutic impact of nanoparticle concentration, target volume, and delivery strategy. Next, we attempt to address one of the key questions facing the field- what is the impact of biological aggregation on heating? Controlled aggregate populations are produced and characterized in ionic and protein solutions and their heating is compared with nanoparticles incubated in cellular suspensions. Through this investigation we are able to demonstrate that aggregation is responsible for up to a 50% decrease in heating. However, more importantly, we are able to demonstrate that the observed reductions in heating correlate with reductions in longitudinal relaxation (T1) measured by sweep imaging with Fourier transformation (SWIFT) magnetic resonance imaging (MRI), providing a potential platform to account for these aggregation effects and directly predict heating in a clinical setting. Finally, we present a new application for magnetic nanoparticle heating, in the thawing of cryopreserved biomaterials. A number of groups have demonstrated the ability to rapidly cool and preserve

  20. Nanoparticle Tracking Analysis for Determination of Hydrodynamic Diameter, Concentration, and Zeta-Potential of Polyplex Nanoparticles.

    PubMed

    Wilson, David R; Green, Jordan J

    2017-01-01

    Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.

  1. Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles

    DOE PAGES

    Liu, Siqi; Senses, Erkan; Jiao, Yang; ...

    2016-04-15

    Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less

  2. Controlling the net charge on a nanoparticle optically levitated in vacuum

    NASA Astrophysics Data System (ADS)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas

    2017-06-01

    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  3. Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances.

    PubMed

    Desai, Kashappa Goud

    2016-01-01

    The objective of this review is to summarize recent advances in chitosan nanoparticles prepared by ionotropic gelation. Significant progress has occurred in this area since the method was first reported. The gelation technique has been improved through a number of creative methodological modifications. Ionotropic gelation via electrospraying and spinning disc processing produces nanoparticles with a more uniform size distribution. Large-scale manufacturing of the nanoparticles can be achieved with the latter approach. Hydrophobic and hydrophilic drugs can be simultaneously encapsulated with high efficiency by emulsification followed by ionic gelation. The turbulent mixing approach facilitates nanoparticle formation at a relatively high polymer concentration (5 mg/mL). The technique can be easily tuned to achieve the desired polymer/surface modifications (e.g., blending, coating, and surface conjugation). Using factorial-design-based approaches, optimal conditions for nanoparticle formation can be determined with a minimum number of experiments. New insights have been gained into the mechanism of chitosan-tripolyphosphate nanoparticle formation. Chitosan nanoparticles prepared by ionotropic gelation tend to aggregate/agglomerate in unfavorable environments. Factors influencing this phenomenon and strategies that can be adopted to minimize the instability are discussed. Ionically cross-linked nanoparticles based on native chitosan and modified chitosan have shown excellent efficacy for controlled and targeted drug-delivery applications.

  4. Sorting process of nanoparticles and applications of same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.

    In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of timemore » to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.« less

  5. Correlation of the physicochemical properties of natural organic matter samples from different sources to their effects on gold nanoparticle aggregation in monovalent electrolyte.

    PubMed

    Louie, Stacey M; Spielman-Sun, Eleanor R; Small, Mitchell J; Tilton, Robert D; Lowry, Gregory V

    2015-02-17

    Engineered nanoparticles (NPs) released into natural environments will interact with natural organic matter (NOM) or humic substances, which will change their fate and transport behavior. Quantitative predictions of the effects of NOM are difficult because of its heterogeneity and variability. Here, the effects of six types of NOM and molecular weight fractions of each on the aggregation of citrate-stabilized gold NPs are investigated. Correlations of NP aggregation rates with electrophoretic mobility and the molecular weight distribution and chemical attributes of NOM (including UV absorptivity or aromaticity, functional group content, and fluorescence) are assessed. In general, the >100 kg/mol components provide better stability than lower molecular weight components for each type of NOM, and they contribute to the stabilizing effect of the unfractionated NOM even in small proportions. In many cases, unfractionated NOM provided better stability than its separated components, indicating a synergistic effect between the high and low molecular weight fractions for NP stabilization. Weight-averaged molecular weight was the best single explanatory variable for NP aggregation rates across all NOM types and molecular weight fractions. NP aggregation showed poorer correlation with UV absorptivity, but the exponential slope of the UV-vis absorbance spectrum was a better surrogate for molecular weight. Functional group data (including reduced sulfur and total nitrogen content) were explored as possible secondary parameters to explain the strong stabilizing effect of a low molecular weight Pony Lake fulvic acid sample to the gold NPs. These results can inform future correlations and measurement requirements to predict NP attachment in the presence of NOM.

  6. Advances and challenges in the field of plasma polymer nanoparticles.

    PubMed

    Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

  7. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.

    PubMed

    Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2017-02-07

    The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of

  8. Combination Chemotherapeutic Dry Powder Aerosols via Controlled Nanoparticle Agglomeration

    PubMed Central

    El-Gendy, Nashwa; Berkland, Cory

    2014-01-01

    Purpose To develop an aerosol system for efficient local lung delivery of chemotherapeutics where nanotechnology holds tremendous potential for developing more valuable cancer therapies. Concurrently, aerosolized chemotherapy is generating interest as a means to treat certain types of lung cancer more effectively with less systemic exposure to the compound. Methods Nanoparticles of the potent anticancer drug, paclitaxel, were controllably assembled to form low density microparticles directly after preparation of the nanoparticle suspension. The amino acid, L-leucine, was used as a colloid destabilizer to drive the assembly of paclitaxel nanoparticles. A combination chemotherapy aerosol was formed by assembling the paclitaxel nanoparticles in the presence of cisplatin in solution. Results Freeze-dried powders of the combination chemotherapy possessed desirable aerodynamic properties for inhalation. In addition, the dissolution rates of dried nanoparticle agglomerate formulations (~60% to 66% after 8 h) were significantly faster than that of micronized paclitaxel powder as received (~18% after 8 h). Interestingly, the presence of the water soluble cisplatin accelerated the dissolution of paclitaxel. Conclusions Nanoparticle agglomerates of paclitaxel alone or in combination with cisplatin may serve as effective chemotherapeutic dry powder aerosols to enable regional treatment of certain lung cancers. PMID:19415471

  9. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin.

    PubMed

    He, Zhiyu; Santos, Jose Luis; Tian, Houkuan; Huang, Huahua; Hu, Yizong; Liu, Lixin; Leong, Kam W; Chen, Yongming; Mao, Hai-Quan

    2017-06-01

    Controlled delivery of protein would find diverse therapeutic applications. Formulation of protein nanoparticles by polyelectrolyte complexation between the protein and a natural polymer such as chitosan (CS) is a popular approach. However, the current method of batch-mode mixing faces significant challenges in scaling up while maintaining size control, high uniformity, and high encapsulation efficiency. Here we report a new method, termed flash nanocomplexation (FNC), to fabricate insulin nanoparticles by infusing aqueous solutions of CS, tripolyphosphate (TPP), and insulin under rapid mixing condition (Re > 1600) in a multi-inlet vortex mixer. In comparison with the bulk-mixing method, the optimized FNC process produces CS/TPP/insulin nanoparticles with a smaller size (down to 45 nm) and narrower size distribution, higher encapsulation efficiency (up to 90%), and pH-dependent nanoparticle dissolution and insulin release. The CS/TPP/insulin nanoparticles can be lyophilized and reconstituted without loss of activity, and produced at a throughput of 5.1 g h -1 when a flow rate of 50 mL min -1 is used. Evaluated in a Type I diabetes rat model, the smaller nanoparticles (45 nm and 115 nm) control the blood glucose level through oral administration more effectively than the larger particles (240 nm). This efficient, reproducible and continuous FNC technique is amenable to scale-up in order to address the critical barrier of manufacturing for the translation of protein nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  11. A visual assay and spectrophotometric determination of LLM-105 explosive using detection of gold nanoparticle aggregation at two pH values.

    PubMed

    He, Yi; Cheng, Yang

    2016-08-01

    We report a simple, rapid, and sensitive assay for visual and spectrophotometric detection of the 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) explosive. The assay is based on different interactions between LLM-105 and gold nanoparticle (AuNP) dispersions at two pH values, leading to the formation of dispersed or aggregated AuNPs. Two AuNP dispersions at two pH values were applied to recognize and detect LLM-105 instead of traditional AuNP dispersion under an aptotic pH to improve the anti-interference ability. The developed assay showed excellent sensitivity with a detection limit of 3 ng/mL, and the presence of as low as 0.2 μg/mL LLM-105 can be directly detected with the bare eye. This sensitivity is about six orders of magnitude higher than that of the reported traditional assays. Additionally, the assay exhibited good selectivity toward LLM-105 over other explosives, sulfur-containing compounds, and amines. Graphical abstract A simple, sensitive, and selective assay for LLM-105 was developed based on the pH-dependent interaction between the LLM-105 explosive and gold nanoparticle dispersion.

  12. Modeling thermionic emission from laser-heated nanoparticles

    DOE PAGES

    Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.; ...

    2016-02-01

    An adjusted form of thermionic emission is applied to calculate emitted current from laser-heated nanoparticles and to interpret time-resolved laser-induced incandescence (TR-LII) signals. This adjusted form of thermionic emission predicts significantly lower values of emitted current compared to the commonly used Richardson-Dushman equation, since the buildup of positive charge in a laser-heated nanoparticle increases the energy barrier for further emission of electrons. Thermionic emission influences the particle's energy balance equation, which can influence TR-LII signals. Additionally, reports suggest that thermionic emission can induce disintegration of nanoparticle aggregates when the electrostatic Coulomb repulsion energy between two positively charged primary particles ismore » greater than the van der Waals bond energy. Furthermore, since the presence and size of aggregates strongly influences the particle's energy balance equation, using an appropriate form of thermionic emission to calculate emitted current may improve interpretation of TR-LII signals.« less

  13. Observation of Metal Nanoparticles for Acoustic Manipulation

    PubMed Central

    Chen, Mian; Cai, Feiyan; Wang, Chen; Wang, Zhiyong; Meng, Long; Li, Fei; Zhang, Pengfei; Liu, Xin

    2017-01-01

    Use of acoustic trapping for the manipulation of objects is invaluable to many applications from cellular subdivision to biological assays. Despite remarkable progress in a wide size range, the precise acoustic manipulation of 0D nanoparticles where all the structural dimensions are much smaller than the acoustic wavelength is still present challenges. This study reports on the observation of metal nanoparticles with different nanostructures for acoustic manipulation. Results for the first time exhibit that the hollow nanostructures play more important factor than size in the nanoscale acoustic manipulation. The acoustic levitation and swarm aggregations of the metal nanoparticles can be easily realized at low energy and clinically acceptable acoustic frequency by hollowing their nanostructures. In addition, the behaviors of swarm aggregations can be flexibly regulated by the applied voltage and frequency. This study anticipates that the strategy based on the unique properties of the metal hollow nanostructures and the manipulation method will be highly desirable for many applications. PMID:28546912

  14. Observation of Metal Nanoparticles for Acoustic Manipulation.

    PubMed

    Chen, Mian; Cai, Feiyan; Wang, Chen; Wang, Zhiyong; Meng, Long; Li, Fei; Zhang, Pengfei; Liu, Xin; Zheng, Hairong

    2017-05-01

    Use of acoustic trapping for the manipulation of objects is invaluable to many applications from cellular subdivision to biological assays. Despite remarkable progress in a wide size range, the precise acoustic manipulation of 0D nanoparticles where all the structural dimensions are much smaller than the acoustic wavelength is still present challenges. This study reports on the observation of metal nanoparticles with different nanostructures for acoustic manipulation. Results for the first time exhibit that the hollow nanostructures play more important factor than size in the nanoscale acoustic manipulation. The acoustic levitation and swarm aggregations of the metal nanoparticles can be easily realized at low energy and clinically acceptable acoustic frequency by hollowing their nanostructures. In addition, the behaviors of swarm aggregations can be flexibly regulated by the applied voltage and frequency. This study anticipates that the strategy based on the unique properties of the metal hollow nanostructures and the manipulation method will be highly desirable for many applications.

  15. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    PubMed

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  16. Gold Nanoparticles as a Photothermal Agent in Cancer Therapy: The Thermal Ablation Characteristic Length.

    PubMed

    Grosges, Thomas; Barchiesi, Dominique

    2018-05-31

    In cancer therapy, the thermal ablation of diseased cells by embedded nanoparticles is one of the known therapies. It is based on the absorption of the energy of the illuminating laser by nanoparticles. The resulting heating of nanoparticles kills the cell where these photothermal agents are embedded. One of the main constraints of this therapy is preserving the surrounding healthy cells. Therefore, two parameters are of interest. The first one is the thermal ablation characteristic length, which corresponds to an action distance around the nanoparticles for which the temperature exceeds the ablation threshold. This critical geometric parameter is related to the expected conservation of the body temperature in the surroundings of the diseased cell. The second parameter is the temperature that should be reached to achieve active thermal agents. The temperature depends on the power of the illuminating laser, on the size of nanoparticles and on their physical properties. The purpose of this paper is to propose behavior laws under the constraints of both the body temperature at the boundary of the cell to preserve surrounding cells and an acceptable range of temperature in the target cell. The behavior laws are deduced from the finite element method, which is able to model aggregates of nanoparticles. We deduce sensitivities to the laser power and to the particle size. We show that the tuning of the temperature elevation and of the distance of action of a single nanoparticle is not significantly affected by variations of the particle size and of the laser power. Aggregates of nanoparticles are much more efficient, but represent a potential risk to the surrounding cells. Fortunately, by tuning the laser power, the thermal ablation characteristic length can be controlled.

  17. Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces.

    PubMed

    Lai, Stanley C S; Lazenby, Robert A; Kirkman, Paul M; Unwin, Patrick R

    2015-02-01

    The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of silver on basal plane highly oriented pyrolytic graphite (HOPG) is investigated as a model system at a wide range of length scales, spanning electrochemical measurements from the macroscale to the nanoscale using scanning electrochemical cell microscopy (SECCM), a pipette-based approach. The macroscale measurements show that the nucleation process cannot be modelled as either truly instantaneous or progressive, and that step edge sites of HOPG do not play a dominant role in nucleation events compared to the HOPG basal plane, as has been widely proposed. Moreover, nucleation numbers extracted from electrochemical analysis do not match those determined by atomic force microscopy (AFM). The high time and spatial resolution of the nanoscale pipette set-up reveals individual nucleation and growth events at the graphite basal surface that are resolved and analysed in detail. Based on these results, corroborated with complementary microscopy measurements, we propose that a nucleation-aggregative growth-detachment mechanism is an important feature of the electrodeposition of silver NPs on HOPG. These findings have major implications for NP electrodeposition and for understanding electrochemical processes at graphitic materials generally.

  18. Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control.

    PubMed

    Gorka, Danielle E; Osterberg, Joshua S; Gwin, Carley A; Colman, Benjamin P; Meyer, Joel N; Bernhardt, Emily S; Gunsch, Claudia K; DiGulio, Richard T; Liu, Jie

    2015-08-18

    The use of antibacterial silver nanomaterials in consumer products ranging from textiles to toys has given rise to concerns over their environmental toxicity. These materials, primarily nanoparticles, have been shown to be toxic to a wide range of organisms; thus methods and materials that reduce their environmental toxicity while retaining their useful antibacterial properties can potentially solve this problem. Here we demonstrate that silver nanocubes display a lower toxicity toward the model plant species Lolium multiflorum while showing similar toxicity toward other environmentally relevant and model organisms (Danio rerio and Caenorhabditis elegans) and bacterial species (Esherichia coli, Bacillus cereus, and Pseudomonas aeruginosa) compared to quasi-spherical silver nanoparticles and silver nanowires. More specifically, in the L. multiflorum experiments, the roots of silver nanocube treated plants were 5.3% shorter than the control, while silver nanoparticle treated plant roots were 39.6% shorter than the control. The findings here could assist in the future development of new antibacterial products that cause less environmental toxicity after their intended use.

  19. β-sheet propensity controls the kinetic pathways and morphologies of seeded peptide aggregation

    NASA Astrophysics Data System (ADS)

    Morriss-Andrews, Alex; Bellesia, Giovanni; Shea, Joan-Emma

    2012-10-01

    The effect of seeds in templating the morphology of peptide aggregates is examined using molecular dynamics simulations and a coarse-grained peptide representation. Varying the nature of the aggregate seed between β-sheet, amorphous, and β-barrel seeds leads to different aggregation pathways and to morphologically different aggregates. Similar effects are seen by varying the β-sheet propensity of the free peptides. For a fibrillar seed and free peptides of high β-sheet propensity, fibrillar growth occurred by means of direct attachment (without structural rearrangement) of free individual peptides and small ordered oligomers onto the seed. For a fibrillar seed and free peptides of low β-sheet propensity, fibrillar growth occurred through a dock-lock mechanism, in which the free peptides first docked onto the seed, and then locked on, extending and aligning to join the fibril. Amorphous seeds absorbed free peptides into themselves indiscriminately, with any fibrillar rearrangement subsequent to this absorption by means of a condensation-ordering transition. Although the mechanisms observed by varying peptide β-sheet propensity are diverse, the initial pathways can always be broken down into the following steps: (i) the free peptides diffuse in the bulk and attach individually to the seed; (ii) the free peptides diffuse and aggregate among themselves; (iii) the free peptide oligomers collide with the seed; and (iv) the free oligomers merge with the seed and rearrange in a manner dependent on the backbone flexibility of both the free and seed peptides. Our simulations indicate that it is possible to sequester peptides from amorphous aggregates into fibrils, and also that aggregate morphology (and thus cytoxicity) can be controlled by introducing seeds of aggregate-compatible peptides with differing β-sheet propensities into the system.

  20. Dissolution and aggregation of Cu nanoparticles in culture media: effects of incubation temperature and particles size

    NASA Astrophysics Data System (ADS)

    Li, Lingxiangyu; Fernández-Cruz, María Luisa; Connolly, Mona; Schuster, Michael; Navas, José María

    2015-01-01

    Here, the effects of incubation temperature and particle size on the dissolution and aggregation behavior of copper nanoparticles (CuNPs) in culture media were investigated over 96 h, equivalent to the time period for acute cell toxicity tests. Three CuNPs with the nominal sizes of 25, 50, and 100 nm and one type of micro-sized particles (MPs, 500 nm) were examined in culture media used for human and fish hepatoma cell lines acute tests. A large decrease in sizes of CuNPs in the culture media was observed in the first 24 h incubation, and subsequently the sizes of CuNPs changed slightly over the following 72 h. Moreover, the decreasing rate in size was significantly dependent on the incubation temperature; the higher the incubation temperature, the larger the decreasing rate in size. In addition to that, we also found that the release of copper ions depended on the incubation temperature. Moreover, the dissolution rate of Cu particles increased very fast in the first 24 h, with a slight increase over the following 72 h.

  1. Functionalized Iron Oxide Nanoparticles for Controlling the Movement of Immune Cells

    PubMed Central

    White, Ethan E; Pai, Alex; Weng, Yiming; Suresh, Anil K.; Van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M.

    2015-01-01

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed “cell box” was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain. PMID:25848983

  2. Functionalized iron oxide nanoparticles for controlling the movement of immune cells.

    PubMed

    White, Ethan E; Pai, Alex; Weng, Yiming; Suresh, Anil K; Van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M

    2015-05-07

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed "cell box" was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain.

  3. Stabilizing Lithium-Sulfur Batteries through Control of Sulfur Aggregation and Polysulfide Dissolution.

    PubMed

    Liu, Qian; Zhang, Jianhua; He, Shu-Ang; Zou, Rujia; Xu, Chaoting; Cui, Zhe; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Xu, Kaibing; Hu, Junqing

    2018-04-17

    Lithium-sulfur (Li-S) batteries are investigated intensively as a promising large-scale energy storage system owing to their high theoretical energy density. However, the application of Li-S batteries is prevented by a series of primary problems, including low electronic conductivity, volumetric fluctuation, poor loading of sulfur, and shuttle effect caused by soluble lithium polysulfides. Here, a novel composite structure of sulfur nanoparticles attached to porous-carbon nanotube (p-CNT) encapsulated by hollow MnO 2 nanoflakes film to form p-CNT@Void@MnO 2 /S composite structures is reported. Benefiting from p-CNTs and sponge-like MnO 2 nanoflake film, p-CNT@Void@MnO 2 /S provides highly efficient pathways for the fast electron/ion transfer, fixes sulfur and Li 2 S aggregation efficiently, and prevents polysulfide dissolution during cycling. Besides, the additional void inside p-CNT@Void@MnO 2 /S composite structure provides sufficient free space for the expansion of encapsulated sulfur nanoparticles. The special material composition and structural design of p-CNT@Void@MnO 2 /S composite structure with a high sulfur content endow the composite high capacity, high Coulombic efficiency, and an excellent cycling stability. The capacity of p-CNT@Void@MnO 2 /S electrode is ≈599.1 mA h g -1 for the fourth cycle and ≈526.1 mA h g -1 after 100 cycles, corresponding to a capacity retention of ≈87.8% at a high current density of 1.0 C. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fluorescent nanoparticles based on AIE fluorogens for bioimaging.

    PubMed

    Yan, Lulin; Zhang, Yan; Xu, Bin; Tian, Wenjing

    2016-02-07

    Fluorescent nanoparticles (FNPs) have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance in imaging. Compared with conventional molecular probes including small organic dyes and fluorescent proteins, FNPs based on aggregation-induced emission (AIE) fluorogens have shown significant advantages in tunable emission and brightness, good biocompatibility, superb photo- and physical stability, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of fluorescent nanoparticles based on AIE fluorogens including polymer nanoparticles and silica nanoparticles over the past few years, and the various biomedical applications based on these fluorescent nanoparticles are also elaborated.

  5. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media at Low-Ionic-Strength Conditions: Measurements and Mechanisms

    EPA Science Inventory

    The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...

  6. Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition.

    PubMed

    Hutchings, Graham J; Kiely, Christopher J

    2013-08-20

    The discovery that supported gold nanoparticles are exceptionally effective catalysts for redox reactions has led to an explosion of interest in gold nanoparticles. In addition, incorporating a second metal as an alloy with gold can enhance the catalyst performance even more. The addition of small amounts of gold to palladium, in particular, and vice versa significantly enhances the activity of supported gold-palladium nanoparticles as redox catalysts through what researchers believe is an electronic effect. In this Account, we describe and discuss methodologies for the synthesis of supported gold-palladium nanoparticles and their use as heterogeneous catalysts. In general, three key challenges need to be addressed in the synthesis of bimetallic nanoparticles: (i) control of the particle morphology, (ii) control of the particle size distribution, and (iii) control of the nanoparticle composition. We describe three methodologies to address these challenges. First, we discuss the relatively simple method of coimpregnation. Impregnation allows control of particle morphology during alloy formation but does not control the particle compositions or the particle size distribution. Even so, we contend that this method is the best preparation method in the catalyst discovery phase of any project, since it permits the investigation of many different catalyst structures in one experiment, which may aid the identification of new catalysts. A second approach, sol-immobilization, allows enhanced control of the particle size distribution and the particle morphology, but control of the composition of individual nanoparticles is not possible. Finally, a modified impregnation method can allow the control of all three of these crucial parameters. We discuss the effect of the different methodologies on three redox reactions: benzyl alcohol oxidation, toluene oxidation, and the direct synthesis of hydrogen peroxide. We show that the coimpregnation method provides the best reaction

  7. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions

    PubMed Central

    Snell, Jared R.; Zhou, Chen; Carpenter, John F.; Randolph, Theodore W.

    2016-01-01

    The generation of nanobubbles following reconstitution of lyophilized trehalose formulations has recently been reported.1 Here, we characterize particle formation and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in reconstituted formulations of lyophilized trehalose. Particle characterization methods including resonant mass measurement and nanoparticle tracking analysis were used to count and size particles generated upon reconstitution of lyophilized trehalose formulations. In addition, accelerated degradation studies were conducted to monitor rhIL-1ra aggregation in solutions containing various concentrations of suspended nanobubbles. Reconstitution of lyophilized trehalose formulations with solutions containing rhIL-1ra reduced nanobubble concentrations and generated negatively buoyant particles attributed to aggregated rhIL-1ra. Furthermore, levels of rhIL-1ra aggregation following incubation in aqueous solution correlated with concentrations of suspended nanobubbles. The results of this study suggest nanobubbles may be a contributor to protein aggregation and particle formation in reconstituted, lyophilized therapeutic protein formulations. PMID:27488901

  8. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  9. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.

    PubMed

    Unrine, Jason M; Colman, Benjamin P; Bone, Audrey J; Gondikas, Andreas P; Matson, Cole W

    2012-07-03

    To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures.

  10. Controlling Non-Equilibrium Structure Formation on the Nanoscale.

    PubMed

    Buchmann, Benedikt; Hecht, Fabian Manfred; Pernpeintner, Carla; Lohmueller, Theobald; Bausch, Andreas R

    2017-12-06

    Controlling the structure formation of gold nanoparticle aggregates is a promising approach towards novel applications in many fields, ranging from (bio)sensing to (bio)imaging to medical diagnostics and therapeutics. To steer structure formation, the DNA-DNA interactions of DNA strands that are coated on the surface of the particles have become a valuable tool to achieve precise control over the interparticle potentials. In equilibrium approaches, this technique is commonly used to study particle crystallization and ligand binding. However, regulating the structural growth processes from the nano- to the micro- and mesoscale remains elusive. Here, we show that the non-equilibrium structure formation of gold nanoparticles can be stirred in a binary heterocoagulation process to generate nanoparticle clusters of different sizes. The gold nanoparticles are coated with sticky single stranded DNA and mixed at different stoichiometries and sizes. This not only allows for structural control but also yields access to the optical properties of the nanoparticle suspensions. As a result, we were able to reliably control the kinetic structure formation process to produce cluster sizes between tens of nanometers up to micrometers. Consequently, the intricate optical properties of the gold nanoparticles could be utilized to control the maximum of the nanoparticle suspension extinction spectra between 525 nm and 600 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Advances and challenges in the field of plasma polymer nanoparticles

    PubMed Central

    Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847

  12. Green synthesis of size controllable gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, Kesarla; Mandal, Badal Kumar; Kiran Kumar, Hoskote A.; Maddinedi, Sireesh Babu

    2013-12-01

    A facile rapid green eco-friendly method to synthesize gold nanoparticles (Au NPs) of tunable size using aqueous Terminalia arjuna fruit extracts has been demonstrated herein. Formation of Au NPs was confirmed by Surface Plasmon Resonance (SPR) study at 528 nm using UV-visible spectrophotometer. The time of reduction, size and morphological variations of Au NPs were studied with varying quantities of T. arjuna fruit aqueous extracts. Synthesized Au NPs were characterized using UV-visible spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy dispersive X-ray spectroscopy (EDAX). Polyphenols responsible for reduction of Au3+ to Au0 were identified using High Performance Liquid Chromatography (HPLC) as ascorbic acid, gallic acid and pyrogallol. The oxidized forms of polyphenols formed coordination with surface of Au NPs which protected their further growth and aggregation. We also propose a plausible mechanism how to tune size and shape of Au NPs by varying the quantity of extracts. Thus obtained Au NPs were stable for more than four months.

  13. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta.

    PubMed

    Morelli, Elisabetta; Gabellieri, Edi; Bonomini, Alessandra; Tognotti, Danika; Grassi, Giacomo; Corsi, Ilaria

    2018-02-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have been widely employed in industrial applications, thus rising concern about their impact in the aquatic environment. In this study we investigated the chemical behaviour of TiO 2 NPs in the culture medium and its effect on the green alga Dunaliella tertiolecta, in terms of growth inhibition, oxidative stress, ROS (Reactive Oxygen Species) accumulation and chlorophyll content. In addition, the influence of exopolymeric substances (EPS) excreted by the microalgae on the stability of NPs has been evaluated. The physicochemical characterization showed a high propensity of TiO 2 NPs to form micrometric-sized aggregates within 30min, large enough to partially settle to the bottom of the test vessel. Indeed, an increasing amount of TiO 2 particles settled out with time, but the presence of EPS seemed to mitigate this behaviour in the first 6h of exposure where the main effects in D. tertiolecta were observed. TiO 2 NPs did not inhibit the 72-h growth rate of D. tertiolecta, nor affected the cellular chlorophyll concentration in the range 0.01-10mgL -1 . The time-course of ROS production showed an initial transient increase of ROS in TiO 2 NP-exposed algae compared to the control, concomitant with an enhancement of catalase activity. Interestingly, intracellular ROS was a small fraction of total ROS, the highest amount being extracellular. The occurrence of cell-mediated chemical transformations of TiO 2 NPs in the external medium, related to the presence of EPS, has been evaluated. Our results showed that carbohydrates were the major component of EPS, whereas proteins of medium molecular weight (20-80kDa) were preferentially bound to TiO 2 NPs, likely influencing their biological fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Control of binder viscosity and hygroscopicity on particle aggregation efficiency

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Delmelle, Pierre; Dingwell, Donald B.

    2016-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  15. Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L.

    PubMed

    Kumar, V; Yadav, S K

    2012-03-01

    Green synthesis of nanoparticles is one of the crucial requirements in today's climate change scenario all over the world. In view of this, leaf extract (LE) of Bauhinia variegata L. possessing strong antidiabetic and antibacterial properties has been used to synthesise silver nanoparticles (SNP) in a controlled manner. Various-sized SNP (20-120 nm) were synthesised by varying incubation temperature, silver nitrate and LE concentrations. The rate of SNP synthesis and their size increased with increase in AgNO(3) concentration up to 4 mM. With increase in LE concentration, size and aggregation of SNP was increased. The size and aggregation of SNP were also increased at temperatures above and below 40°C. This has suggested that size and dispersion of SNP can be controlled by varying reaction components and conditions. Polarity-based fractionation of B. variegata LE has suggested that only water-soluble fraction is responsible for SNP synthesis. Fourier transform infrared spectroscopy analysis revealed the attachment of polyphenolic and carbohydrate moieties to SNP. The synthesised SNPs were found stable in double distilled water, BSA and phosphate buffer (pH 7.4). On the contrary, incubation of SNP with NaCl induced aggregation. This suggests the safe use of SNP for various in vivo applications.

  16. Functionalized iron oxide nanoparticles for controlling the movement of immune cells

    NASA Astrophysics Data System (ADS)

    White, Ethan E.; Pai, Alex; Weng, Yiming; Suresh, Anil K.; van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M.

    2015-04-01

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed ``cell box'' was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain.Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were

  17. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    PubMed

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Interaction of DNA bases with silver nanoparticles: assembly quantified through SPRS and SERS.

    PubMed

    Basu, Soumen; Jana, Subhra; Pande, Surojit; Pal, Tarasankar

    2008-05-15

    Colloidal silver nanoparticles were prepared by reducing silver nitrate with sodium borohydride. The synthesized silver particles show an intense surface plasmon band in the visible region. The work reported here describes the interaction between nanoscale silver particles and various DNA bases (adenine, guanine, cytosine, and thymine), which are used as molecular linkers because of their biological significance. In colloidal solutions, the color of silver nanoparticles may range from red to purple to orange to blue, depending on the degree of aggregation as well as the orientation of the individual particles within the aggregates. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and absorption spectroscopy were used to characterize the assemblies. DNA base-induced differential silver nanoparticle aggregation was quantified from the peak separation (relates to color) of surface plasmon resonance spectroscopy (SPRS) and the signal intensity of surface-enhanced Raman scattering (SERS), which rationalize the extent of silver-nucleobase interactions.

  19. The effect of magnetic nanoparticle concentration on the structure organisation of a microferrogel

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. V.; Melenev, P. V.; Balasoiu, M.; Raikher, Yu L.

    2018-03-01

    Coarse-grained molecular dynamics simulation is applied to study the structural response of micro-sized magnetopolymer objects – microferrogels (MFG). The results for MFGs with different magnetic properties and concentrations of magnetic filler nanoparticles are analysed to detect the transition between non-aggregated configurations and the states with pronounced chains. The nanoparticles are assumed to be either magnetically isotropic or to possess infinite magnetic anisotropy. It is shown that, depending on the type of the particle anisotropy, an applied field in rather different ways affects the MFG structure and shape. Diagrams describing the degree of aggregation as a function of the parameter of the interparticle magnetodipolar interaction and concentration are presented. In particular, it is found that in the case of infinitely anisotropic nanoparticles the aggregation transitions undergoes via a non-trivial scenario. The effect of the structure transformations on the volume change of the MFG objects is studied as well.

  20. Size determination of gold nanoparticles in silicate glasses by UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Ali, Shahid; Khan, Younas; Iqbal, Yaseen; Hayat, Khizar; Ali, Muhammad

    2017-01-01

    A relatively easier and more accurate method for the determination of average size of metal nanoparticles/aggregates in silicate glasses based on ultraviolet visible (UV-Vis) spectra fitted with the Mie and Mie-Gans models was reported. Gold ions were diffused into sodalime silicate and borosilicate glasses by field-assisted solid-state ion-exchange technique using the same experimental parameters for both glasses. Transmission electron microscopy was performed to directly investigate the morphology and distribution of the dopant nanoparticles. UV-Vis spectra of the doped glasses showed broad surface plasmon resonance peaks in their fingerprint regions, i.e., at 525 and 500 nm for sodalime silicate and borosilicate glass matrices, respectively. These spectra were fitted with the Mie model for spherical nanoparticles and the Mie-Gans model for spheroidal nanoparticles. Although both the models were developed for colloidal nanoparticles, the size of the nanoparticles/aggregates calculated was accurate to within ˜10% in both the glass matrices in comparison to the size measured directly from the transmission electron microscope images.

  1. PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Rostami, Elham

    2014-03-01

    In this study, poly ethylene glycol 100 stearate (PEG 100-S) was used to prepare coated solid lipid nanoparticles with loading levothyroxine sodium (levo-loaded PEG 100-S-coated SLNs) by microemulsification technique. Evaluation of the release kinetic of prepared colloidal carriers was conducted. The particle size and zeta potential of levo-loaded PEG 100-S-coated SLNs have been measured to be 187.5 nm and -23.0 mV, respectively, using photon correlation spectroscopy (PCS). Drug entrapment efficiency (EE) was calculated to be 99 %. Differential scanning calorimetry indicated that the majority of drug loaded in PEG 100-S-coated SLNs were in amorphous state which could be considered desirable for drug delivery. The purpose of this study was to develop a new nanoparticle system, consisting lipid nanoparticles coated with PEG 100-S. The modification procedure led to a reduction in the zeta potential values, varying from -40.0 to -23.0 mV for the uncoated and PEG-coated SLNs, respectively. Stability results of the nanoparticles in gastric and intestinal media show that the low pH of the gastric medium is responsible for the critical aggregation and degradation of the uncoated lipid nanoparticles. PEG 100-S-coated SLNs were more stable due to their polymer coating layer which prevented aggregation of SLNs. Consequently, it is possible that the PEG surrounds the particles reducing the attachment of enzymes and further degradation of the triglyceride cores. Shape and surface morphology of particles were determined by transition electron microscopy and scanning electron microscopy that revealed spherical shape of nanoparticles. In vitro drug release of PEG 100-S-coated SLNs was characterized using diffusion cell which showed a controlled release for drug.

  2. Differences in single and aggregated nanoparticle plasmon spectroscopy.

    PubMed

    Singh, Pushkar; Deckert-Gaudig, Tanja; Schneidewind, Henrik; Kirsch, Konstantin; van Schrojenstein Lantman, Evelien M; Weckhuysen, Bert M; Deckert, Volker

    2015-02-07

    Vibrational spectroscopy usually provides structural information averaged over many molecules. We report a larger peak position variation and reproducibly smaller FWHM of TERS spectra compared to SERS spectra indicating that the number of molecules excited in a TERS experiment is extremely low. Thus, orientational averaging effects are suppressed and micro ensembles are investigated. This is shown for a thiophenol molecule adsorbed on Au nanoplates and nanoparticles.

  3. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    PubMed

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  4. Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells

    PubMed Central

    Jagielski, Jakub; Kumar, Sudhir; Wang, Mingchao; Scullion, Declan; Lawrence, Robert; Li, Yen-Ting; Yakunin, Sergii; Tian, Tian; Kovalenko, Maksym V.; Chiu, Yu-Cheng; Santos, Elton J. G.; Lin, Shangchao; Shih, Chih-Jen

    2017-01-01

    The outstanding excitonic properties, including photoluminescence quantum yield (ηPL), of individual, quantum-confined semiconductor nanoparticles are often significantly quenched upon aggregation, representing the main obstacle toward scalable photonic devices. We report aggregation-induced emission phenomena in lamellar solids containing layer-controlled colloidal quantum wells (QWs) of hybrid organic-inorganic lead bromide perovskites, resulting in anomalously high solid-state ηPL of up to 94%. Upon forming the QW solids, we observe an inverse correlation between exciton lifetime and ηPL, distinct from that in typical quantum dot solid systems. Our multiscale theoretical analysis reveals that, in a lamellar solid, the collective motion of the surface organic cations is more restricted to orient along the [100] direction, thereby inducing a more direct bandgap that facilitates radiative recombination. Using the QW solids, we demonstrate ultrapure green emission by completely downconverting a blue gallium nitride light-emitting diode at room temperature, with a luminous efficacy higher than 90 lumen W−1 at 5000 cd m−2, which has never been reached in any nanomaterial assemblies by far. PMID:29282451

  5. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Morales, M. P.

    2016-06-01

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml-1 after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.

  6. Dispersion of ferrofluid aggregates in steady flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia M.; Vlachos, Pavlos P.

    2011-12-01

    Using focused shadowgraphs, we investigate steady flows of a magnetically non-susceptible fluid interacting with ferrofluid aggregates comprised of superparamagnetic nanoparticles. The ferrofluid aggregate is retained at a specific site within the flow channel using two different applied magnetic fields. The bulk flow induces shear stresses on the aggregate, which give rise to the development of interfacial disturbances, leading to Kelvin-Helmholtz (K-H) instabilities and shedding of ferrofluid structures. Herein, the effects of bulk Reynolds number, ranging from 100 to 1000, and maximum applied magnetic fields of 1.2 × 105 and 2.4 × 105 A/m are investigated in the context of their impact on dispersion or removal of material from the core aggregate. The aggregate interaction with steady bulk flow reveals three regimes of aggregate dynamics over the span of Reynolds numbers studied: stable, transitional, and shedding. The first regime is characterized by slight aggregate stretching for low Reynolds numbers, with full aggregate retention. As the Reynolds number increases, the aggregate is in-transition between stable and shedding states. This second regime is characterized by significant initial stretching that gives way to small amplitude Kelvin-Helmholtz waves. Higher Reynolds numbers result in ferrofluid shedding, with Strouhal numbers initially between 0.2 and 0.3, wherein large vortical structures are shed from the main aggregate accompanied by precipitous decay of the accumulated ferrofluid aggregate. These behaviors are apparent for both magnetic field strengths, although the transitional Reynolds numbers are different between the cases, as are the characteristic shedding frequencies relative to the same Reynolds number. In the final step of this study, relevant parameters were extracted from the time series dispersion data to comprehensively quantify aggregate mechanics. The aggregate half-life is found to decrease as a function of the Reynolds number

  7. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  8. Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation

    DOE PAGES

    Lequieu, Joshua; Córdoba, Andrés; Hinckley, Daniel; ...

    2016-08-17

    The self-assembly of DNA-conjugated nanoparticles represents a promising avenue toward the design of engineered hierarchical materials. By using DNA to encode nanoscale interactions, macroscale crystals can be formed with mechanical properties that can, at least in principle, be tuned. Here we present in silico evidence that the mechanical response of these assemblies can indeed be controlled, and that subtle modifications of the linking DNA sequences can change the Young’s modulus from 97 kPa to 2.1 MPa. We rely on a detailed molecular model to quantify the energetics of DNA–nanoparticle assembly and demonstrate that the mechanical response is governed by entropic,more » rather than enthalpic, contributions and that the response of the entire network can be estimated from the elastic properties of an individual nanoparticle. The results here provide a first step toward the mechanical characterization of DNA–nanoparticle assemblies, and suggest the possibility of mechanical metamaterials constructed using DNA.« less

  9. Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lequieu, Joshua; Córdoba, Andrés; Hinckley, Daniel

    The self-assembly of DNA-conjugated nanoparticles represents a promising avenue toward the design of engineered hierarchical materials. By using DNA to encode nanoscale interactions, macroscale crystals can be formed with mechanical properties that can, at least in principle, be tuned. Here we present in silico evidence that the mechanical response of these assemblies can indeed be controlled, and that subtle modifications of the linking DNA sequences can change the Young’s modulus from 97 kPa to 2.1 MPa. We rely on a detailed molecular model to quantify the energetics of DNA–nanoparticle assembly and demonstrate that the mechanical response is governed by entropic,more » rather than enthalpic, contributions and that the response of the entire network can be estimated from the elastic properties of an individual nanoparticle. The results here provide a first step toward the mechanical characterization of DNA–nanoparticle assemblies, and suggest the possibility of mechanical metamaterials constructed using DNA.« less

  10. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.

    PubMed

    Zhu, Miao; Wang, Hongtao; Keller, Arturo A; Wang, Tao; Li, Fengting

    2014-07-15

    With the increasingly widespread use of titanium dioxide nanoparticles (TiO2 NPs), the particles' environmental impacts have attracted concern, making it necessary to understand the fate and transport of TiO2 NPs in aqueous media. In this study, we investigated TiO2 NP aggregation caused by the effects of humic acid (HA), ionic strength (IS) and different pH using dynamic light scattering (DLS) to monitor the size distribution of the TiO2 NPs continuously. It was determined that HA can influence the stability of TiO2 NPs through charge neutralization, steric hindrance and bridging effects. In the absence of IS, aggregation was promoted by adding HA only when the pH (pH=4) is less than the point of zero charge for the TiO2 NPs (pHPZC≈6) because HA reduces the zeta potential of the TiO2 NPs via charge neutralization. At pH=4 and when the concentration of HA is 94.5 μg/L, the zeta potential of TiO2 NPs is close to zero, and they reach an aggregation maximum. A higher concentration of HA results in more negatively charged TiO2 NP surfaces, which hinder their aggregation. When the pH is 5.8, HA enhances the negative zeta potential of the TiO2 NPs and increases their stability via electrostatic repulsion and steric hindrance. When the pH (pH=8) is greater than pHpzc, the zeta potential of the TiO2 NPs is high (~40 mV), and it barely changes with increasing HA concentration. Thus, the TiO2 NPs are notably stable, and their size does not grow at pH8. The increase in the critical coagulation concentration (CCC) of TiO2 NPs indicated that there is steric hindrance after the addition of HA. HA can enhance the coagulation of TiO2 NPs, primarily due to bridging effect. These findings are useful in understanding the size change of TiO2 NPs, as well as the removal of TiO2 NPs and HA from aqueous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles

    PubMed Central

    Kumar, Dhiraj; Meenan, Brian J; Dixon, Dorian

    2012-01-01

    Gold nanoparticles synthesized via sodium citrate reduction of chloroauric acid (HAuCl4) were functionalized with either various concentrations of thiol-terminated Bodipy® FL L-cystine (0.5, 1.0, 1.5, and 2.0 μg/mL) or Bodipy-poly(ethylene glycol) at concentrations of 0.5–18.75, 1.0–12.50, and 1.5–6.25 μg/mL to form a mixed monolayer of BODIPY-PEG. Thiol-terminated Bodipy, a fluorescing molecule, was used as the model drug, while PEG is widely used in drug-delivery applications to shield nanoparticles from unwanted immune responses. Understanding the influence of PEG-capping on payload release is critical because it is the most widely used type of nanoparticle functionalization in drug delivery studies. It has been previously reported that glutathione can trigger release of thiol-bound payloads from gold nanoparticles. Bodipy release from Bodipy capped and from Bodipy-PEG functionalized gold nanoparticles was studied at typical intracellular glutathione levels. It was observed that the addition of PEG capping inhibits the initial burst release observed in gold nanoparticles functionalized only with Bodipy and inhibits nanoparticle aggregation. Efficient and controlled payload release was observed in gold nanoparticles cofunctionalized with only a limited amount of PEG, thus enabling the coattachment of large amounts of drug, targeting groups or other payloads. PMID:22915847

  12. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles

    NASA Astrophysics Data System (ADS)

    Cigler, Petr; Lytton-Jean, Abigail K. R.; Anderson, Daniel G.; Finn, M. G.; Park, Sung Yong

    2010-11-01

    The formation of diamond structures from tailorable building blocks is an important goal in colloidal crystallization because the non-compact diamond lattice is an essential component of photonic crystals for the visible-light range. However, designing nanoparticle systems that self-assemble into non-compact structures has proved difficult. Although several methods have been proposed, single-component nanoparticle assembly of a diamond structure has not been reported. Binary systems, in which at least one component is arranged in a diamond lattice, provide alternatives, but control of interparticle interactions is critical to this approach. DNA has been used for this purpose in a number of systems. Here we show the creation of a non-compact lattice by DNA-programmed crystallization using surface-modified Qβ phage capsid particles and gold nanoparticles, engineered to have similar effective radii. When combined with the proper connecting oligonucleotides, these components form NaTl-type colloidal crystalline structures containing interpenetrating organic and inorganic diamond lattices, as determined by small-angle X-ray scattering. DNA control of assembly is therefore shown to be compatible with particles possessing very different properties, as long as they are amenable to surface modification.

  13. Nanoparticle Superlattices: The Roles of Soft Ligands

    PubMed Central

    Si, Kae Jye; Chen, Yi; Shi, Qianqian

    2017-01-01

    Abstract Nanoparticle superlattices are periodic arrays of nanoscale inorganic building blocks including metal nanoparticles, quantum dots and magnetic nanoparticles. Such assemblies can exhibit exciting new collective properties different from those of individual nanoparticle or corresponding bulk materials. However, fabrication of nanoparticle superlattices is nontrivial because nanoparticles are notoriously difficult to manipulate due to complex nanoscale forces among them. An effective way to manipulate these nanoscale forces is to use soft ligands, which can prevent nanoparticles from disordered aggregation, fine‐tune the interparticle potential as well as program lattice structures and interparticle distances – the two key parameters governing superlattice properties. This article aims to review the up‐to‐date advances of superlattices from the viewpoint of soft ligands. We first describe the theories and design principles of soft‐ligand‐based approach and then thoroughly cover experimental techniques developed from soft ligands such as molecules, polymer and DNA. Finally, we discuss the remaining challenges and future perspectives in nanoparticle superlattices. PMID:29375958

  14. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection.

    PubMed

    Astefanei, Alina; Kok, Wim Th; Bäuerlein, Patrick; Núñez, Oscar; Galceran, Maria Teresa; de Voogt, Pim; Schoenmakers, Peter J

    2015-08-21

    Fullerenes are carbon nanoparticles with widespread biomedical, commercial and industrial applications. Attributes such as their tendency to aggregate and aggregate size and shape impact their ability to be transported into and through the environment and living tissues. Knowledge of these properties is therefore valuable for their human and environmental risk assessment as well as to control their synthesis and manufacture. In this work, asymmetrical flow-field flow fractionation (AF4) coupled to multi-angle light scattering (MALS) was used for the first time to study the size distribution of surface modified fullerenes with both polyhydroxyl and carboxyl functional groups in aqueous solutions having different pH (6.5-11) and ionic strength values (0-200mM) of environmental relevance. Fractionation key parameters such as flow rates, flow programming, and membrane material were optimized for the selected fullerenes. The aggregation of the compounds studied appeared to be indifferent to changes in solution pH, but was affected by changes in the ionic strength. Polyhydroxy-fullerenes were found to be present mostly as 4nm aggregates in water without added salt, but showed more aggregation at high ionic strength, with an up to 10-fold increase in their mean hydrodynamic radii (200mM), due to a decrease in the electrostatic repulsion between the nanoparticles. Carboxy-fullerenes showed a much stronger aggregation degree in water (50-100nm). Their average size and recoveries decreased with the increase in the salt concentration. This behavior can be due to enhanced adsorption of the large particles to the membrane at high ionic strength, because of their higher hydrophobicity and much larger particle sizes compared to polyhydroxy-fullerenes. The method performance was evaluated by calculating the run-to-run precision of the retention time (hydrodynamic radii), and the obtained RSD values were lower than 1%. MALS measurements showed aggregate sizes that were in good

  15. Effects of humic acid and solution chemistry on the aggregation and dispersion of carboxyl-functionalized carbon black nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Gomez-Flores, A.; Choi, S.; Han, Y., , Dr; Kim, H.

    2017-12-01

    The influence of humic acid, ionic strength and ionic species on the aggregation and dispersion of carboxyl-functionalized carbon black nanoparticles (CB-NPs) was systemically investigated in aqueous media. The experimental conditions of stability tests were selected to the changes in the solution chemistry (0.1-10 mM NaCl and 0.01-1 mM CaCl2) and in the presence/absence of humic acid (1 and 5 mg L-1) in an aquatic environment. The CB-NPs suspension was more rapidly settled in NaCl solution than in CaCl2. Specifically, in the case of NaCl, the aggregation rate of CB-NPs increased with ionic strength. Contrary, CB-NPs dispersed in CaCl2 were insensitive to the aggregation as the ionic strength increased; that was because specific adsorption of the divalent cation Ca2+ occurred since the zeta potential of the CB-NPs is reversed to a positive charge with increasing of the ionic strength. It was confirmed that humic acid greatly influences the stability of the CB-NPs. In particular, the dispersion of CB-NPs was improved in the whole range of ionic strengths of NaCl as well as of CaCl2. To support the results, the interaction energy between CB-NPs was calculated for each condition by using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and modified-DLVO theories. In the presence of humic acid, the improved stability of CB-NPs is attributed to the steric repulsive force.This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020766), the Ministry of Education (MOE) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (2015H1C1A1035930) and Korea Energy and Mineral Resources Engineering Program (KEMREP).

  16. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle

    PubMed Central

    Chang, Ming; Lin, Yu-Hao; Gabayno, Jacque Lynn; Li, Qian; Liu, Xiaojun

    2017-01-01

    ABSTRACT In this study, the control of magnetic fields to manipulate surface-functionalized Fe3O4 nanoparticles by urokinase coating is investigated for thrombolysis in a microfluidic channel. The urokinase-coated Fe3O4 nanoparticles are characterized using particle size distribution, zeta potential measurement and spectroscopic data. Thrombolytic ratio tests reveal that the efficiency for thrombus cleaning is significantly improved when using magnetically-controlled urokinase-coated Fe3O4 nanoparticles than pure urokinase solution. The average increase in the rate of thrombolysis with the use of urokinase-coated Fe3O4 nanoparticles is about 50%. In vitro thrombolysis test in a microfluidic channel using the coated nanoparticles shows nearly complete removal of thrombus, a result that can be attributed to the clot busting effect of the urokinase as it inhibits the possible formation of blood bolus during the magnetically-activated microablation process. The experiment further demonstrates that a thrombus mass of 10.32 mg in the microchannel is fully removed in about 180 s. PMID:27689864

  17. Surface-enhanced Raman scattering of the adsorption of pesticide endosulfan on gold nanoparticles.

    PubMed

    Hernández-Castillo, M I; Zaca-Morán, O; Zaca-Morán, P; Orduña-Diaz, A; Delgado-Macuil, R; Rojas-López, M

    2015-01-01

    The absorption of pesticide endosulfan on the surface of gold nanoparticles results from the formation of micrometric structures (1-10 μm) with irregular shape because of the aggregation of individual particles. Such aggregation of gold nanoparticles after absorption of pesticide shows a surface-enhanced Raman scattering (SERS) spectrum, whose intensity depends on the concentration of endosulfan. In addition, the discoloration of the colloidal solution and a diminishing of the intensity of the surface plasmon resonance absorption from individual particles were observed by UV-visible spectroscopy. At the same time, a second band between 638 and 700 nm confirms the formation of aggregates of gold nanoparticles as the concentration of endosulfan increases. Finally, we used the SERS intensity of the S-O stretching vibration at 1239 cm(-1) from the SO3 group as a measure of concentration of pesticide endosulfan. This method could be used to estimate the level of pollution in water by endosulfan in a simple and practical form.

  18. Nanoparticle-Reinforced Associative Network Hydrogels

    PubMed Central

    Agrawal, Sarvesh K.; Sanabria-DeLong, Naomi; Tew, Gregory N.; Bhatia, Surita R.

    2009-01-01

    ABA triblock copolymers in solvents selective for the midblock are known to form associative micellar gels. We have modified the structure and rheology of ABA triblock copolymer gels comprising poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) through addition of a clay nanoparticle, laponite. Addition of laponite particles resulted in additional junction points in the gel via adsorption of the PEO corona chains onto the clay surfaces. Rheological measurements showed that this strategy led to a significant enhancement of the gel elastic modulus with small amounts of nanoparticles. Further characterization using SAXS and DLS confirmed that nanoparticles increase the intermicellar attraction and result in aggregation of PLA-PEO-PLA micelles. PMID:18947244

  19. Copper Nanoparticles: Synthesis and Biological Activity

    NASA Astrophysics Data System (ADS)

    Satyvaldiev, A. S.; Zhasnakunov, Z. K.; Omurzak, E.; Doolotkeldieva, T. D.; Bobusheva, S. T.; Orozmatova, G. T.; Kelgenbaeva, Z.

    2018-01-01

    By means of XRD and FESEM analysis, it is established that copper nanoparticles with sizes less than 10 nm are formed during the chemical reduction, which form aggregates mainly with spherical shape. Presence of gelatin during the chemical reduction of copper induced formation of smaller size distribution nanoparticles than that of nanoparticles synthesized without gelatin and it can be related to formation of protective layer. Synthesized Cu nano-powders have sufficiently high activity against the Erwinia amylovora bacterium, and the bacterial growth inhibition depends on the Cu nanoparticles concentration. At a concentration of 5 mg / ml of Cu nanoparticles, the exciter growth inhibition zone reaches a maximum value within 72 hours and the lysis zone is 20 mm, and at a concentration of 1 mg / ml this value is 16 mm, which also indicates the significant antibacterial activity of this sample.

  20. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation.

    PubMed

    Fan, Daoqing; Zhai, Qingfeng; Zhou, Weijun; Zhu, Xiaoqing; Wang, Erkang; Dong, Shaojun

    2016-11-15

    Herein, a gold nanoparticles (AuNPs) based label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) was constructed for the first time. Four bases (G-G mismatch) mismatched streptavidin aptamer (MSAA) was used to protect AuNPs from salt-induced aggregation and recognize Pt (II) specifically. Only in the presence of Pt (II), coordination occurs between G-G bases and Pt (II), leading to the activation of streptavidin aptamer. Streptavidin coated magnetic beads (MBs) were used as separation agent to separate Pt (II)-coordinated MSAA. The residual less amount of MSAA could not efficiently protect AuNPs anymore and aggregation of AuNPs will produce a colorimetric product. With the addition of Pt (II), a pale purple-to-blue color variation could be observed by the naked eye. A detection limit of 150nM and a linear range from 0.6μM to 12.5μM for Pt (II) could be achieved without any amplification. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Controlled release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles for direct pulp capping in rat teeth.

    PubMed

    Lin, Hung-Pin; Tu, Han-Ping; Hsieh, Yu-Ping; Lee, Bor-Shiunn

    2017-01-01

    Statin at appropriate concentrations has been shown to induce odontoblastic differentiation, dentinogenesis, and angiogenesis. However, using a carrier to control statin release might reduce toxicity and enhance its therapeutic effects. The aim of this study was to prepare poly(d,l-lactide- co -glycolide acid) (PLGA) nanoparticles that contain lovastatin for application in direct pulp capping. The PLGA-lovastatin particle size was determined using dynamic light scattering measurements and transmission electron microscopy. In addition, the release of lovastatin was quantified using a UV-Vis spectrophotometer. The cytotoxicity and alkaline phosphatase (ALP) activity of PLGA-lovastatin nanoparticles on human dental pulp cells were investigated. Moreover, a real-time polymerase chain reaction (PCR) assay, Western blot analysis, and an enzyme-linked immunosorbent assay (ELISA) were used to examine the osteogenesis gene and protein expression of dentin sialophosphoprotein (DSPP), dentin matrix acidic phosphoprotein 1 (DMP1), and osteocalcin (OCN). Finally, PLGA-lovastatin nanoparticles and mineral trioxide aggregate (MTA) were compared as direct pulp capping materials in Wistar rat teeth. The results showed that the median diameter of PLGA-lovastatin nanoparticles was 174.8 nm and the cumulative lovastatin release was 92% at the 44th day. PLGA-lovastatin nanoparticles demonstrated considerably a lower cytotoxicity than free lovastatin at 5, 9, and 13 days of culture. For ALP activity, the ALP amount of PLGA-lovastatin (100 μg/mL) was significantly higher than that of the other groups for 9 and 13 days of culture. The real-time PCR assay, Western blot analysis, and ELISA assay showed that PLGA-lovastatin (100 μg/mL) induced the highest mRNA and protein expression of DSPP, DMP1, and OCN in pulp cells. Histological evaluation of the animal studies revealed that MTA was superior to the PLGA-lovastatin in stimulating the formation of tubular dentin in an observation period

  2. 77 FR 39737 - Controlled Substances: Proposed Adjustment to the Aggregate Production Quotas for 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... aggregate production quotas for some schedule I and II controlled substances, expressed in grams of.... [750,000 grams of levo-desoxyephedrine for use in a non-controlled, non-prescription product; 2,331,000 grams for methamphetamine mostly for conversion to a schedule III product; and 49,000 grams for...

  3. Glutathione-facilitated design and fabrication of gold nanoparticle-based logic gates and keypad lock.

    PubMed

    Huang, Zhenzhen; Wang, Haonan; Yang, Wensheng

    2014-07-21

    In this paper, we describe how we developed a simple design and fabrication method for logic gates and a device by using a commercially available tripeptide, namely glutathione (GSH), together with metal ions and disodium ethylenediaminetetraacetate (EDTA) to control the dispersion and aggregation of gold nanoparticles (NPs). With the fast adsorption of GSH on gold NPs and the strong coordination of GSH with metal ions, the addition of GSH and Pb(2+) ions immediately resulted in the aggregation of gold NPs, giving rise to an AND function. Either Pb(2+) or Ba(2+) ions induced the aggregation of gold NPs in the presence of GSH, supporting an OR gate. Based on the fact that EDTA has a strong capacity to bind metal ions, thus preventing the aggregation of gold NPs, an INHIBIT gate was also fabricated. More interestingly, we found that the addition sequence of GSH and Hg(2+) ions influenced the aggregation of gold NPs in a controlled manner, which was used to design a sequential logic gate and a three-input keypad lock for potential use in information security. The GSH strategy addresses concerns of low cost, simple fabrication, versatile design and easy operation, and offers a promising platform for the development of functional logic systems.

  4. Synthesis of Cu{sub 2}ZnSnS{sub 4} nanoparticles and controlling the morphology with polyethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Kusum; Department of Electronic Science, University of Delhi South Campus, Delhi 110021; Kim, Hee-Joon

    Highlights: • Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique. • First report on the effect of using polyethylene glycol as a structure directing agent on Cu{sub 2}ZnSnS{sub 4} nanoparticles. • The morphology of Cu{sub 2}ZnSnS{sub 4} nanoparticles changes into nanoflakes and nanorods structures with polyethylene glycol concentration. • Polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle film exhibits optical bandgap of 1.5 eV which is suitable for the application in solar cells. - Abstract: Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique using metal thiourea precursor at 250 °C. The structural and morphological properties of asmore » grown nanoparticles have been characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The influence of different concentration of polyethylene glycol as structure directing agent on the morphologies of Cu{sub 2}ZnSnS{sub 4} nanoparticles are investigated on thin films deposited by spin coating technique. The mean crystallite size of the Cu{sub 2}ZnSnS{sub 4} nanoparticles was found to improve with polyethylene glycol concentration. Scanning electron microscopy images of Cu{sub 2}ZnSnS{sub 4} revealed aggregated spherical shaped nanoparticles whereas the polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle films show nanoflakes and nanorods structures with increasing concentration of polyethylene glycol. Transmission electron microscopy analysis has also been performed to determine the size and structure of nanorods. UV–vis absorption spectroscopy shows the broad band absorption with optical bandgap of 1.50 eV for polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} films.« less

  5. Thick electrodes including nanoparticles having electroactive materials and methods of making same

    DOEpatents

    Xiao, Jie; Lu, Dongping; Liu, Jun; Zhang, Jiguang; Graff, Gordon L.

    2017-02-21

    Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.

  6. Workplace exposure to nanoparticles from gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Zhang, Meibian; Jian, Le; Bin, Pingfan; Xing, Mingluan; Lou, Jianlin; Cong, Liming; Zou, Hua

    2013-11-01

    Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding ( P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000-18,000 and 560-320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace exposure to

  7. Exchange of TiO2 nanoparticles between streams and streambeds.

    PubMed

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  8. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature.

    PubMed

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Huang, Qiang; Huang, Long; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-02-01

    In recent years, the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) feature have been extensively exploited in various biomedical fields owing to their advantages, such as low toxicity, biodegradation, excellent biocompatibility, good designability and optical properties. Therefore, development of a facile, efficient and well designable strategy should be of great importance for the biomedical applications of these AIE-active FPNs. In this work, a novel method for the fabrication of AIE-active FPNs has been developed through the self-catalyzed photo-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using an AIE dye containing chain transfer agent (CTA), which could initiate the RAFT polymerization under light irradiation. The results suggested that the final AIE-active FPNs (named as TPE-poly(St-PEGMA)) showed great potential for biomedical applications owing to their optical and biological properties. More importantly, the method described in the work is rather simple and effective and can be further extended to prepare many other different AIE-active FPNs owing to the good monomer adoptability of RAFT polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. From Single Atoms to Nanoparticles: Autocatalysis and Metal Aggregation in Atomic Layer Deposition of Pt on TiO2 Nanopowder.

    PubMed

    Grillo, Fabio; Van Bui, Hao; La Zara, Damiano; Aarnink, Antonius A I; Kovalgin, Alexey Y; Kooyman, Patricia; Kreutzer, Michiel T; van Ommen, Jan Rudolf

    2018-06-01

    A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO 2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O 2 as the coreactant is presented. The growth follows a pathway from single atoms to NPs as a function of the oxygen exposure (P O2 × time). The growth kinetics is modeled by accounting for the autocatalytic combustion of the precursor ligands via a variant of the Finke-Watzky two-step model. Even at relatively high oxygen exposures (<120 mbar s) little to no Pt is deposited after the first cycle and most of the Pt is atomically dispersed. Increasing the oxygen exposure above 120 mbar s results in a rapid increase in the Pt loading, which saturates at exposures > 120 mbar s. The deposition of more Pt leads to the formation of NPs that can be as large as 6 nm. Crucially, high P O2 (≥5 mbar) hinders metal aggregation, thus leading to narrow particle size distributions. The results show that ALD of Pt NPs is reproducible across small and large surface areas if the precursor ligands are removed at high P O2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Interaction of Nanoparticles with Biofilms

    EPA Science Inventory

    In this work we have studied the interaction and adsorption of engineered nanoparticles such as TiO2, ZnO, CeO2 , and carbon nanotubes with biofilms. Biofilm is an extracellular polymeric substance coating comprised of living material and it is an aggregation of bacteria, algae, ...

  11. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions.

    PubMed

    Snell, Jared R; Zhou, Chen; Carpenter, John F; Randolph, Theodore W

    2016-10-01

    The generation of nanobubbles following reconstitution of lyophilized trehalose formulations has recently been reported. Here, we characterize particle formation and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in reconstituted formulations of lyophilized trehalose. Particle characterization methods including resonant mass measurement and nanoparticle tracking analysis were used to count and size particles generated upon reconstitution of lyophilized trehalose formulations. In addition, accelerated degradation studies were conducted to monitor rhIL-1ra aggregation in solutions containing various concentrations of suspended nanobubbles. Reconstitution of lyophilized trehalose formulations with solutions containing rhIL-1ra reduced nanobubble concentrations and generated negatively buoyant particles attributed to aggregated rhIL-1ra. Furthermore, levels of rhIL-1ra aggregation following incubation in aqueous solution correlated with concentrations of suspended nanobubbles. The results of this study suggest that nanobubbles may be a contributor to protein aggregation and particle formation in reconstituted, lyophilized therapeutic protein formulations. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites

    PubMed Central

    Han, Yue; Zhang, Xiaohua; Yu, Xueping; Zhao, Jingna; Li, Shan; Liu, Feng; Gao, Peng; Zhang, Yongyi; Zhao, Tong; Li, Qingwen

    2015-01-01

    High performance nanocomposites require well dispersion and high alignment of the nanometer-sized components, at a high mass or volume fraction as well. However, the road towards such composite structure is severely hindered due to the easy aggregation of these nanometer-sized components. Here we demonstrate a big step to approach the ideal composite structure for carbon nanotube (CNT) where all the CNTs were highly packed, aligned, and unaggregated, with the impregnated polymers acting as interfacial adhesions and mortars to build up the composite structure. The strategy was based on a bio-inspired aggregation control to limit the CNT aggregation to be sub 20–50 nm, a dimension determined by the CNT growth. After being stretched with full structural relaxation in a multi-step way, the CNT/polymer (bismaleimide) composite yielded super-high tensile strengths up to 6.27–6.94 GPa, more than 100% higher than those of carbon fiber/epoxy composites, and toughnesses up to 117–192 MPa. We anticipate that the present study can be generalized for developing multifunctional and smart nanocomposites where all the surfaces of nanometer-sized components can take part in shear transfer of mechanical, thermal, and electrical signals. PMID:26098627

  13. Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure

    NASA Astrophysics Data System (ADS)

    Xie, Wanfeng; Fan, Jihui; Song, Hui; Jiang, Feng; Yuan, Huimin; Wei, Zhixian; Ji, Ziwu; Pang, Zhiyong; Han, Shenghao

    2016-10-01

    We report the controllable growth of rice-shape nanoparticles of Alq3 by an extremely facile self-assembly approach. Possible mechanisms have been proposed to interpret the formation and controlled process of the single crystal nanoparticles. The field-emission performances (turn-on field 7 V μm-1, maximum current density 2.9 mA cm-2) indicate the potential application on miniaturized nano-optoelectronics devices of Alq3-based. This facile method can potentially be used for the controlled synthesis of other functional complexes and organic nanostructures.

  14. Heating efficiency in magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison E.; Evans, Benjamin A.

    2014-03-01

    Magnetic nanoparticles for hyperthermic treatment of cancers have gained significant attention in recent years. In magnetic hyperthermia, three independent mechanisms result in thermal energy upon stimulation: Néel relaxation, Brownian relaxation, and hysteresis loss. The relative contribution of each is strongly dependent on size, shape, crystalline anisotropy, and degree of aggregation or agglomeration of the nanoparticles. We review the effects of each of these physical mechanisms in light of recent experimental studies and suggest routes for progress in the field.

  15. Retention of ferrofluid aggregates at the target site during magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Asfer, Mohammed; Saroj, Sunil Kumar; Panigrahi, Pradipta Kumar

    2017-08-01

    The present study reports the retention dynamics of a ferrofluid aggregate localized at the target site inside a glass capillary (500 × 500 μm2 square cross section) against a bulk flow of DI water (Re = 0.16 and 0.016) during the process of magnetic drug targeting (MDT). The dispersion dynamics of iron oxide nanoparticles (IONPs) into bulk flow for different initial size of aggregate at the target site is reported using the brightfield visualization technique. The flow field around the aggregate during the retention is evaluated using the μPIV technique. IONPs at the outer boundary experience a higher shear force as compared to the magnetic force, resulting in dispersion of IONPs into the bulk flow downstream to the aggregate. The blockage effect and the roughness of the outer boundary of the aggregate resulting from chain like clustering of IONPs contribute to the flow recirculation at the downstream region of the aggregate. The entrapment of seeding particles inside the chain like clusters of IONPs at the outer boundary of the aggregate reduces the degree of roughness resulting in a streamlined aggregate at the target site at later time. The effect of blockage, structure of the aggregate, and disturbed flow such as recirculation around the aggregate are the primary factors, which must be investigated for the effectiveness of the MDT process for in vivo applications.

  16. Real-time modulated nanoparticle separation with an ultra-large dynamic range.

    PubMed

    Zeming, Kerwin Kwek; Thakor, Nitish V; Zhang, Yong; Chen, Chia-Hung

    2016-01-07

    Nanoparticles exhibit size-dependent properties which make size-selective purification of proteins, DNA or synthetic nanoparticles essential for bio-analytics, clinical medicine, nano-plasmonics and nano-material sciences. Current purification methods of centrifugation, column chromatography and continuous-flow techniques suffer from particle aggregation, multi-stage process, complex setups and necessary nanofabrication. These increase process costs and time, reduce efficiency and limit dynamic range. Here, we achieve an unprecedented real-time nanoparticle separation (51-1500 nm) using a large-pore (2 μm) deterministic lateral displacement (DLD) device. No external force fields or nanofabrication are required. Instead, we investigated innate long-range electrostatic influences on nanoparticles within a fluid medium at different NaCl ionic concentrations. In this study we account for the electrostatic forces beyond Debye length and showed that they cannot be assumed as negligible especially for precise nanoparticle separation methods such as DLD. Our findings have enabled us to develop a model to simultaneously quantify and modulate the electrostatic force interactions between nanoparticle and micropore. By simply controlling buffer solutions, we achieve dynamic nanoparticle size separation on a single device with a rapid response time (<20 s) and an enlarged dynamic range (>1200%), outperforming standard benchtop centrifuge systems. This novel method and model combines device simplicity, isolation precision and dynamic flexibility, opening opportunities for high-throughput applications in nano-separation for industrial and biological applications.

  17. Second harmonic generation from small particle aggregates

    NASA Astrophysics Data System (ADS)

    Mochan, W. Luis; Ortiz, Guillermo P.; Mendoza, Bernardo S.; Brudny, Vera L.

    2001-03-01

    Novel nanofabrication techniques are capable of producing nanoparticles with controled structures which include small clusters, self-assembled particles, quantum dots, vesicles, etc. The non-linear optical scattering of these structures are important for applications, and can be used for their physical characterization. The second harmonic (SH) field radiated by a single small spherical particle has surface and bulk, dipolar and quadrupolar contributions of similar intensities and is strongly dependent of the local environment of the particle [1], in contrast to the linear case. In this work we calculate the nonlinear scattering by particle aggregates and we investigate the effects on the SH generation of the disorder induced field fluctuations and of the localization of light. We acknowledge the partial support from DGAPA-UNAM (grant IN110999), Conacyt (31120-E and 26651-E), CIP and UBACyT. [1] Vera L. Brudny, Bernardo S. Mendoza, and W. Luis Mochán, Phys. Rev. B 62, 11152 (2000).

  18. Albumin-based nanoparticle trehalose lyophilisation stress-down to preserve structure/function and enhanced binding.

    PubMed

    Siri, Macarena; Grasselli, Mariano; Alonso, Silvia Del V

    2016-07-15

    The aim of this study was to preserve albumin nanoparticle structure/function during the lyophilisation process. Bovine serum albumin nanoparticles were obtained by γ-irradiation. Nanoparticles were lyophilised in buffer, miliQ water or in trehalose/miliQ solution. The size and charge of the nanoparticles were tested after lyophilisation by light scattering and Z potential. The most relevant results in size of BSA nanoparticle were those lyophilised in PBS between 20 and 350nm, assembled in different aggregates, and negative Z potential obtained was 37±8mV in all, and those nanoparticles lyophilised with trehalose had a size range of 70±2nm and a negative Z potential of 20±5mV. Structure determination of surface aminoacids SH groups in the BSA NP lyophilised in PBS showed an increase in the free SH groups. Different aggregates had different amount of SH groups exposure from 55 to 938 (from smaller to bigger aggregates), whereas BSA NP lyophilised with trehalose showed no significant difference if compared with BSA NP. The binding properties of the BSA nanoparticle with a theragnostic probe (merocyanine 540) were studied after lyophilisation. Results showed more affinity between the BSA NP lyophilised with trehalose than that observed with non lyophilised BSA NP. As a result, the lyophilisation condition in trehalose 100μM solution is the best one to preserve the BSA NP structure/function and the one with the enhance binding affinity of the BSA NP. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Hierarchical Nanoparticle Topography in Amphiphilic Copolymer Films Controlled by Thermodynamics and Dynamics

    PubMed Central

    Caporizzo, M. A.; Ezzibdeh, R. M.

    2016-01-01

    This study systematically investigates how polymer composition changes nanoparticle (NP) grafting and diffusion in solvated random copolymer thin films. By thermal annealing from 135 to 200 °C, thin films with a range of hydrophobicity are generated by varying acrylic acid content from 2% (SAA2) to 29% (SAA29). Poly(styrene-random-tert butyl acrylate) films, 100 nm thick, that are partially converted to poly(styrene-random-acrylic acid), SAA, reversibly swell in ethanol solutions containing amine-functionalized SiO2 nanoparticles with a diameter of 45 nm. The thermodynamics and kinetics of NP grafting are directly controlled by the AA content in the SAA films. At low AA content, namely SAA4, NP attachment saturates at a monolayer, consistent with a low solubility of NPs in SAA4 due to a weakly negative χ parameter. When the AA content exceeds 4%, NPs sink into the film to form multilayers. These films exhibit hierarchical surface roughness with a RMS roughness greater than the NP size. Using a quartz crystal microbalance, NP incorporation in the film is found to saturate after a mass equivalence of about 3 close-packed layers of NPs have been incorporated within the SAA. The kinetics of NP grafting is observed to scale with AA content. The surface roughness is greatest at intermediate times (5–20 min) for SAA13 films, which also exhibit superhydrophobic wetting. Because clustering and aggregation of the NPs within SAA29 films reduce film transparency, SAA13 films provide both maximum hydrophobicity and transparency. The method in this study is widely applicable because it can be applied to many substrate types, can cover large areas, and retains the amine functionality of the particles which allows for subsequent chemical modification. PMID:25689222

  20. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications.

  1. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g-1 at current densities of 1, 2, 5, 10 A g-1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  2. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors.

    PubMed

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-14

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g(-1) at current densities of 1, 2, 5, 10 A g(-1), respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  3. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    PubMed Central

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-01-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g−1 at current densities of 1, 2, 5, 10 A g−1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials. PMID:25394517

  4. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Matias, Ignacio Raul; Arregui, Francisco Javier

    2013-10-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs.

  5. Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates

    PubMed Central

    2013-01-01

    Hybrid materials formed by plasmonic nanostructures and J-aggregates provide a unique combination of highly localized and enhanced electromagnetic field in metal constituent with large oscillator strength and extremely narrow exciton band of the organic component. The coherent coupling of localized plasmons of the multispiked gold nanoparticles (nanostars) and excitons of JC1 dye J-aggregates results in a Rabi splitting reaching 260 meV. Importantly, broad absorption features of nanostars extending over a visible and near-infrared spectral range allowed us to demonstrate double Rabi splitting resulting from the simultaneous coherent coupling between plasmons of the nanostars and excitons of J-aggregates of two different cyanine dyes. PMID:23522305

  6. Enhanced Performance Consistency in Nanoparticle/TIPS Pentacene-Based Organic Thin Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhengran; Xiao, Kai; Durant, William Mark

    2011-01-01

    In this study, inorganic silica nanoparticles are used to manipulate the morphology of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS pentacene) thin films and the performance of solution-processed organic thin-film transistors (OTFTs). This approach is taken to control crystal anisotropy, which is the origin of poor consistency in TIPS pentacene based OTFT devices. Thin film active layers are produced by drop-casting mixtures of SiO{sub 2} nanoparticles and TIPS pentacene. The resultant drop-cast films yield improved morphological uniformity at {approx}10% SiO{sub 2} loading, which also leads to a 3-fold increase in average mobility and nearly 4 times reduction in the ratio of measured mobility standard deviationmore » ({mu}{sub Stdev}) to average mobility ({mu}{sub Avg}). Grazing-incidence X-ray diffraction, scanning and transmission electron microscopy as well as polarized optical microscopy are used to investigate the nanoparticle-mediated TIPS pentacene crystallization. The experimental results suggest that the SiO{sub 2} nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity.« less

  7. Natural colloids are the dominant factor in the sedimentation of nanoparticles.

    PubMed

    Quik, Joris T K; Stuart, Martien Cohen; Wouterse, Marja; Peijnenburg, Willie; Hendriks, A Jan; van de Meent, Dik

    2012-05-01

    Estimating the environmental exposure to manufactured nanomaterials is part of risk assessment. Because nanoparticles aggregate with each other (homoaggregation) and with other particles (heteroaggregation), the main route of the removal of most nanoparticles from water is aggregation, followed by sedimentation. The authors used water samples from two rivers in Europe, the Rhine and the Meuse. To distinguish between small (mainly natural organic matter [NOM]) particles and the remainder of the natural colloids present, both filtered and unfiltered river water was used to prepare the particle suspensions. The results show that the removal of nanoparticles from natural river water follows first-order kinetics toward a residual concentration. This was measured in river water with less than 1 mg L(-1) CeO(2) nanoparticles. The authors inferred that the heteroaggregation with or deposition onto the solid fraction of natural colloids was the main mechanism causing sedimentation in relation to homoaggregation. In contrast, the NOM fraction in filtered river water stabilized the residual nanoparticles against further sedimentation for up to 12 d. In 10 mg L(-1) and 100 mg L(-1) CeO(2) nanoparticle suspensions, homoaggregation is likely the main mechanism leading to sedimentation. The proposed model could form the basis for improved exposure assessment for nanomaterials. Copyright © 2012 SETAC.

  8. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Geng, Junlong; Zhu, Zhenshu; Qin, Wei; Ma, Lin; Hu, Yong; Gurzadyan, Gagik G.; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging.Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000

  9. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    PubMed

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  10. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications.

    PubMed

    Singh, Richa; Shedbalkar, Utkarsha U; Wadhwani, Sweety A; Chopade, Balu A

    2015-06-01

    Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles. The present review focuses specifically on bacteria-mediated synthesis of AgNPs, its mechanism, and applications. Bacterial synthesis of extra- and intracellular AgNPs has been reported using biomass, supernatant, cell-free extract, and derived components. The extracellular mode of synthesis is preferred over the intracellular mode owing to easy recovery of nanoparticles. Silver-resistant genes, c-type cytochromes, peptides, cellular enzymes like nitrate reductase, and reducing cofactors play significant roles in AgNP synthesis in bacteria. Organic materials released by bacteria act as natural capping and stabilizing agents for AgNPs, thereby preventing their aggregation and providing stability for a longer time. Regulation over reaction conditions has been suggested to control the morphology, dispersion, and yield of nanoparticles. Bacterial AgNPs have anticancer and antioxidant properties. Moreover, the antimicrobial activity of AgNPs in combination with antibiotics signifies their importance in combating the multidrug-resistant pathogenic microorganisms. Multiple microbicidal mechanisms exhibited by AgNPs, depending upon their size and shape, make them very promising as novel nanoantibiotics.

  11. Effect of temperature tuning on the aerosol acoustic aggregation process.

    PubMed

    Qiao, Zhenghui; Dong, Wei; Huang, Yaji; Naso, Vincenzo

    2018-05-01

    Diesel exhaust aerosols (DEAs) can absorb and accumulate toxic metal particulates and bacteria suspended in the atmospheric environment, which impact human health and the environment. The use of acoustic standing waves (ASWs) to aggregate DEA is currently considered to be an efficient particle removal method; however, study of the effect of different temperatures on the acoustic aggregation process is scarce. To explore the method and technology to regulate and optimize the aerosol aggregation process through temperature tuning, an acoustic apparatus integrated with a temperature regulation function was constructed. Using this apparatus, the effect of different characteristic temperatures (CTs) on the aerosol aggregation process was investigated experimentally in the ASW environment. Under constant conditions of acoustic frequency 1.286kHz, voltage amplitude 17V and input electric power 16.7W, the study concentrated on temperature effects on the aggregation process in the CT range of 58-72°C. The DEA opacity was used. The results demonstrate that the aggregation process is quite sensitive to the CT, and that the optimal DEA aggregation can be achieved at 66°C. The aggregated particles of 68.17μm are composed of small nanoparticles of 13.34-62.15nm. At CTs higher and lower than 66°C, the apparatus in non-resonance mode reduces the DEA aggregation level. For other instruments, the method for obtaining the optimum temperature for acoustic agglomeration is universal. This preliminary demonstration shows that the use of acoustic technology to regulate the aerosol aggregation process through tuning the operating temperature is feasible and convenient. Copyright © 2017. Published by Elsevier B.V.

  12. The effect of coating on heat generation properties of Iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan

    Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating. Commercially available suspensions of iron oxide nanoparticles with a diameter of approximately 10 nm and different coatings relevant to biomedical applications such as aminosilane, carboxymethyl-dextran, protein A, biotin were extensively characterized. First of all, magnetic phase reduction of magnetite nanoparticles was examined by studying the discrepancy between the volume fraction of magnetic phase calculated from magnetization curve and the magnetic core concentration obtained from Tiron chelation test. The findings indicated that coatings might interact with the surface atoms of the magnetic core and form a magnetically disordered layer reducing the total amount of the magnetic phase. Secondly, the impact of coating and aggregation

  13. Precursor directed synthesis - ``molecular'' mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures

    NASA Astrophysics Data System (ADS)

    Seisenbaeva, Gulaim A.; Kessler, Vadim G.

    2014-05-01

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.

  14. Surfactant adsorption and aggregate structure of silica nanoparticles: a versatile stratagem for the regulation of particle size and surface modification

    NASA Astrophysics Data System (ADS)

    Chaudhary, Savita; Rohilla, Deepak; Mehta, S. K.

    2014-03-01

    The area of silica nanoparticles is incredibly polygonal. Silica particles have aroused exceptional deliberation in bio-analysis due to great progress in particular arenas, for instance, biocompatibility, unique properties of modifiable pore size and organization, huge facade areas and pore volumes, manageable morphology and amendable surfaces, elevated chemical and thermal stability. Currently, silica nanoparticles participate in crucial utilities in daily trade rationales such as power storage, chemical and genetic sensors, groceries dispensation and catalysis. Herein, the size-dependent interfacial relation of anionic silica nanoparticles with twelve altered categories of cationic surfactants has been carried out in terms of the physical chemical facets of colloid and interface science. The current analysis endeavours to investigate the virtual consequences of different surfactants through the development of the objective composite materials. The nanoparticle size controls, the surface-to-volume ratio and surface bend relating to its interaction with surfactant will also be addressed in this work. More importantly, the simulated stratagem developed in this work can be lengthened to formulate core-shell nanostructures with functional nanoparticles encapsulated in silica particles, making this approach valuable and extensively pertinent for employing sophisticated materials for catalysis and drug delivery.

  15. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media.

    PubMed

    Basnet, Mohan; Ghoshal, Subhasis; Tufenkji, Nathalie

    2013-01-01

    Palladium-doped nanosized zerovalent iron (Pd-NZVI) particles can contribute to the transformation of chlorinated solvents and various other contaminants into innocuous products. To make Pd-NZVI an effective in situ subsurface remediation agent, these particles need to migrate through a targeted contaminated area. However, previous studies have reported very limited mobility of these particles in the groundwater environment and attributed it to rapid aggregation and subsequent pore plugging. In this study, we systematically investigated the influence of selected natural and nontoxic organic macromolecules (carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein) on the aggregation and transport behavior of bare and coated Pd-NZVI. Aggregation behavior was investigated using dynamic light scattering by monitoring the evolution of hydrodynamic diameter as a function of time, whereas transport behavior was investigated by conducting water-saturated sand-packed column experiments. While bare Pd-NZVI is prone to rapid aggregation, we observed good colloidal stability and concurrent enhanced transport of Pd-NZVI coated with carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein. Each surface modifier performed well at lower ionic strength (IS) (10 mM NaHCO3), and one of the rhamnolipid surface modifiers (JBR215) significantly enhanced transport of 150 mg/L Pd-NZVI at concentrations as low as 10 mg/L total organic carbon. However, an increase in the solution IS induced significant Pd-NZVI aggregation with a simultaneous decrease in the transport potential in accordance with the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory of colloidal stability. Nonetheless, at the highest IS (300 mM NaHCO3) investigated, the mobility of rhamnolipid-coated Pd-NZVI is significantly higher than that of Pd-NZVI coated with the other surface modifiers, suggesting that biosurfactants may be the most suitable surface modifiers in field application. Overall

  16. Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats

    PubMed Central

    Strojny, Barbara; Kurantowicz, Natalia; Sawosz, Ewa; Grodzik, Marta; Jaworski, Sławomir; Kutwin, Marta; Wierzbicki, Mateusz; Hotowy, Anna; Lipińska, Ludwika; Chwalibog, André

    2015-01-01

    Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects. PMID:26657282

  17. Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats.

    PubMed

    Strojny, Barbara; Kurantowicz, Natalia; Sawosz, Ewa; Grodzik, Marta; Jaworski, Sławomir; Kutwin, Marta; Wierzbicki, Mateusz; Hotowy, Anna; Lipińska, Ludwika; Chwalibog, André

    2015-01-01

    Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects.

  18. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.

    PubMed

    Stankus, Dylan P; Lohse, Samuel E; Hutchison, James E; Nason, Jeffrey A

    2011-04-15

    The adsorption of natural organic matter (NOM) to the surfaces of natural colloids and engineered nanoparticles is known to strongly influence, and in some cases control, their surface properties and aggregation behavior. As a result, the understanding of nanoparticle fate, transport, and toxicity in natural systems must include a fundamental framework for predicting such behavior. Using a suite of gold nanoparticles (AuNPs) with different capping agents, the impact of surface functionality, presence of natural organic matter, and aqueous chemical composition (pH, ionic strength, and background electrolytes) on the surface charge and colloidal stability of each AuNP type was investigated. Capping agents used in this study were as follows: anionic (citrate and tannic acid), neutral (2,2,2-[mercaptoethoxy(ethoxy)]ethanol and polyvinylpyrrolidone), and cationic (mercaptopentyl(trimethylammonium)). Each AuNP type appeared to adsorb Suwannee River Humic Acid (SRHA) as evidenced by measurable decreases in zeta potential in the presence of 5 mg C L(-1) SRHA. It was found that 5 mg C L(-1) SRHA provided a stabilizing effect at low ionic strength and in the presence of only monovalent ions while elevated concentrations of divalent cations lead to enhanced aggregation. The colloidal stability of the NPs in the absence of NOM is a function of capping agent, pH, ionic strength, and electrolyte valence. In the presence of NOM at the conditions examined in this study, the capping agent is a less important determinant of stability, and the adsorption of NOM is a controlling factor.

  19. Clean Photothermal Heating and Controlled Release from Near-Infrared Dye Doped Nanoparticles without Oxygen Photosensitization.

    PubMed

    Guha, Samit; Shaw, Scott K; Spence, Graeme T; Roland, Felicia M; Smith, Bradley D

    2015-07-21

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of (1)O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive (1)O2, leading to bleaching of the dye and also decomposition of coencapsulated payload such as the drug doxorubicin. Croc dye was especially useful as a photothermal agent for laser-controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water-soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications.

  20. Clean Photothermal Heating and Controlled Release From Near Infrared Dye Doped Nanoparticles Without Oxygen Photosensitization

    PubMed Central

    Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.

    2015-01-01

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326

  1. From helical supramolecular arrays to gel-forming networks: lattice restructuring and aggregation control in peptide-based sulfamides to integrate new functional attributes.

    PubMed

    Raghava, Saripalli V; Srivastava, Bhartendu K; Ramshad, Kalluruttimmal; Antharjanam, Sudhadevi; Varghese, Babu; Muraleedharan, Kannoth M

    2018-03-28

    While supramolecular organisation is central to both crystallization and gelation, the latter is more complex considering its dynamic nature and multifactorial dependence. This makes the rational design of gelators an extremely difficult task. In this report, the assembly preference of a group of peptide-based sulfamides was modulated by making them part of an acid-amine two-component system to drive the tendency from crystallization to gelation. Here, the peptide core directed the assembly while the long-chain amines, introduced through salt-bridges, promoted layering and anisotropic development of primary aggregates. This proved to be very successful, leading to gelation of a number of solvents. Apart from this, it was possible to fine-tune their aggregation using an amphiphilic polymer like F-127 as an additive to get honey-comb-like 3D molecular architectures. These gels also proved to be excellent matrices for entrapping silver nanoparticles with superior emissive properties.

  2. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Faucher, Luc; Gossuin, Yves; Hocq, Aline; Fortin, Marc-André

    2011-07-01

    Ultra-small gadolinium oxide nanoparticles (US-Gd2O3) are used to provide 'positive' contrast effects in magnetic resonance imaging (MRI), and are being considered for molecular and cellular imaging applications. However, these nanoparticles can aggregate over time in aqueous medium, as well as when internalized into cells. This study is aimed at measuring in vitro, in aqueous medium, the impact of aggregation on the relaxometric properties of paramagnetic US-Gd2O3 particles. First, the nanoparticle core size as well as aggregation behaviour was assessed by HRTEM. DLS (hydrodynamic diameter) was used to measure the hydrodynamic diameter of nanoparticles and nanoaggregates. The relaxometric properties were measured by NMRD profiling, as well as with 1H NMR relaxometers. Then, the positive contrast enhancement effect was assessed by using magnetic resonance scanners (at 1.5 and 7 T). At every magnetic field, the longitudinal relaxivity (r1) decreased upon agglomeration, while remaining high enough to provide positive contrast. On the other hand, the transverse relaxivity (r2) slightly decreased at 0.47 and 1.41 T, but it was enhanced at higher fields (7 and 11.7 T) upon agglomeration. All NMRD profiles revealed a characteristic relaxivity peak in the range 60-100 MHz, suggesting the possibility to use US-Gd2O3 as an efficient 'positive-T1' contrast agent at clinical magnetic fields (1-3 T), in spite of aggregation.

  3. Patterns of [PSI+] aggregation allow insights into cellular organization of yeast prion aggregates

    PubMed Central

    Tyedmers, Jens

    2012-01-01

    The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI+] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates. PMID:22449721

  4. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices.

    PubMed

    Lai, James J; Nelson, Kjell E; Nash, Michael A; Hoffman, Allan S; Yager, Paul; Stayton, Patrick S

    2009-07-21

    In the absence of applied forces, the transport of molecules and particulate reagents across laminar flowstreams in microfluidic devices is dominated by the diffusivities of the transported species. While the differential diffusional properties between smaller and larger diagnostic targets and reagents have been exploited for bioseparation and assay applications, there are limitations to methods that depend on these intrinsic size differences. Here a new strategy is described for exploiting the sharply reversible change in size and magnetophoretic mobility of "smart" magnetic nanoparticles (mNPs) to perform bioseparation and target isolation under continuous flow processing conditions. The isolated 5 nm mNPs do not exhibit significant magnetophoretic velocities, but do exhibit high magnetophoretic velocities when aggregated by the action of a pH-responsive polymer coating. A simple external magnet is used to magnetophorese the aggregated mNPs that have captured a diagnostic target from a lower pH laminar flowstream (pH 7.3) to a second higher pH flowstream (pH 8.4) that induces rapid mNP disaggregation. In this second dis-aggregated state and flowstream, the mNPs continue to flow past the magnet rather than being immobilized at the channel surface near the magnet. This stimuli-responsive reagent system has been shown to transfer 81% of a model protein target from an input flowstream to a second flowstream in a continuous flow H-filter device.

  5. Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity

    NASA Astrophysics Data System (ADS)

    Chen, Shaoyi; Florinas, Stelios; Teitgen, Abigail; Xu, Ze-Qi; Gao, Changshou; Wu, Herren; Kataoka, Kazunori; Cabral, Horacio; Christie, R. James

    2017-12-01

    Antibodies and antigen-binding fragments (Fabs) can be used to modify the surface of nanoparticles for enhanced target binding. In our previous work, site-specific conjugation of Fabs to polymeric micelles using conventional methods was limited to approximately 30% efficiency, possibly due to steric hindrance related to macromolecular reactants. Here, we report a new method that enables conjugation of Fabs onto a micelle surface in a controlled manner with up to quantitative conversion of nanoparticle reactive groups. Variation of (i) PEG spacer length in a heterofunctionalized cross-linker and (ii) Fab/polymer feed ratios resulted in production of nanoparticles with a range of Fab densities on the surface up to the theoretical maximum value. The biological impact of variable Fab density was evaluated in vitro with respect to cell uptake and cytotoxicity of a drug-loaded (SN38) targeted polymeric micelle bearing anti-EphA2 Fabs. Fab conjugation increased cell uptake and potency compared with non-targeted micelles, although a Fab density of 60% resulted in decreased uptake and potency of the targeted micelles. Altogether, our findings demonstrate that conjugation strategies can be optimized to allow control of Fab density on the surface of nanoparticles and also that Fab density may need to be optimized for a given cell-surface target to achieve the highest bioactivity.

  6. Adsorption of Anionic, Cationic and Nonionic Surfactants on Carbonate Rock in Presence of ZrO 2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, Pouriya; Bahramian, Alireza; Fakhroueian, Zahra

    The adsorption of surfactants at the solid-water interface is important for the control of wetting, lubrication, detergency and in mineral flotation.We have studied the adsorptions of different types of surfactants, cationic (Dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS) and non-anionic (lauryl alcohol-7 mole ethoxylate, LA7) on carbonate rock in presence of zirconium oxide spherical nanoparticles (17-19 nm). ZrO2 nanoparticles with tetrahedral structure have significant effect on adsorption of surfactants on the carbonate rock. We have used the measured conductivities to determine the rate of adsorption of surfactants at rock-water interfaces. The conductivity of DTAB in aqueous solutions containing calcite powder decreases more than the other surfactants in contact with ZrO2 nanoparticles. We have also investigated the adsorption of surfactants at the air-water interface. The presence of nanoparticles, as demonstrated by our experiments, enhances the surface activity and surface adsorption of the surfactants through electrostatic forces or formation of nanostructures. Dynamic light structuring data shows similar aggregation number of nanoparticles in presence of nanoparticles.

  7. Solid-State Dewetting of Gold Aggregates/Islands on TiO2 Nanorod Structures Grown by Oblique Angle Deposition.

    PubMed

    Liu, Shizhao; Plawsky, Joel L

    2017-12-12

    A composite film made of a stable gold nanoparticle (NP) array with well-controlled separation and size atop a TiO 2 nanorod film was fabricated via the oblique angle deposition (OAD) technique. The fabrication of the NP array is based on controlled, Rayleigh-instability-induced, solid-state dewetting of as-deposited gold aggregates on the TiO 2 nanorods. It was found that the initial spacing between as-deposited gold aggregates along the vapor flux direction should be greater than the TiO 2 interrod spacing created by 80° OAD to control dewetting and produce NP arrays. A numerical investigation of the process was conducted using a phase-field modeling approach. Simulation results showed that coalescence between neighboring gold aggregates is likely to have caused the uncontrolled dewetting in the 80° deposition, and this could be circumvented if the initial spacing between gold aggregates is larger than a critical value s min . We also found that TiO 2 nanorod tips affect dewetting dynamics differently than planar TiO 2 . The topology of the tips can induce contact line pinning and an increase in the contact angle along the vapor flux direction to the supported gold aggregates. These two effects are beneficial for the fabrication of monodisperse NPs based on Rayleigh-instability-governed self-assembly of materials, as they help to circumvent the undesired coalescence and facilitate the instability growth on the supported material. The findings uncover the application potential of OAD as a new method to fabricate structured films as template substrates to mediate dewetting. The reported composite films would have uses in optical coatings and photocatalytic systems, taking advantage of their ability to combine plasmonic nanostructures within a nanostructured dielectric film.

  8. Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium.

    PubMed

    Xu, Xiaoting; Xu, Nan; Cheng, Xueying; Guo, Peng; Chen, Zhigang; Wang, Dongtian

    2017-02-01

    The widely used artificial nanoparticles (NPs) and the excess of ammonium (NH 4 + ) fertilizers are easily released into the natural environment. So, clarifying the mobility of NPs in the presence of NH 4 + is therefore of great urgency and high priority. Currently, few studies focus on the transport and deposition of nanoparticle titanium dioxide (nTiO 2 ) in single and binary systems containing NH 4 + , especially describing this process by a mathematical model. In this work, the comparison between the transport and retention of rutile nTiO 2 in single and binary electrolyte solutions of NH 4 Cl and/or NaCl (0.5-50 mM) were conducted at pH 6.0 and 8.0 through running the column experiments. Experimental results show that the aggregation and retention of nTiO 2 in solution containing mono-valence cations obeys the order as follows: NH 4 +  > Na +  > Na +  + NH 4 + at the same ion strength (IS). It is attributed to the lower critical coagulation concentration (CCC) of rutile nTiO 2 in NH 4 + than that in Na + solution. In particular, the simultaneous presence of NH 4 + and Na + favors the transportability of nTiO 2 due to the strong competitive adsorption on the surface of NPs. The two-site kinetic retention model provides the good simulation for their transport behavior. The likely mechanism is that the secondary energy minimum of nTiO 2 in NH 4 + system associated with the greater K 2 at surface Site 2 (from model) on sand can be explained for the more reversible deposition. Ammonium leachate associated with NPs can thus be considered a serious concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis and applications of novel silver nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Dukes, Kyle

    The field of nanotechnology is rapidly expanding across disciplines as each new development is realized. New exciting technologies are being driven by advances in the application of nanotechnology; including biochemical, optical, and semiconductors research. This thesis will focus on the use of silver nanoparticles as optical labels on cells, methods of forming different small structures of silver nanoparticles, as well as the use of silver nanoparticles in the development of a photovoltaic cell. Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core-shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide-azide coupling chemistry and biotinylated antibodies targeting cell surface receptors were bound to the nanoparticle surface. The nanoparticle labels exhibited long-term stability under physiological conditions without aggregation or silver ion leaching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared to unlabeled cells. Dimers of silver nanoparticles have been fabricated by first immobilizing a monolayer of single silver nanoparticles onto poly(4-vinylpyridine) covered glass slides. The monolayer was then exposed to adenine, which has two amines which will bind to silver. The nanoparticle monolayer, now modified with adenine, is exposed to a second suspension of nanoparticles which will bind with the amine modified monolayer. Finally, a thin silica shell is formed about the structure via solgel chemistry to prevent dissolution or aggregation upon sonication/striping. Circular arrays of silver nanoparticels are developed using a

  10. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles.

    PubMed

    Tan, Li Huey; Xing, Hang; Lu, Yi

    2014-06-17

    CONSPECTUS: Several properties of nanomaterials, such as morphologies (e.g., shapes and surface structures) and distance dependent properties (e.g., plasmonic and quantum confinement effects), make nanomaterials uniquely qualified as potential choices for future applications from catalysis to biomedicine. To realize the full potential of these nanomaterials, it is important to demonstrate fine control of the morphology of individual nanoparticles, as well as precise spatial control of the position, orientation, and distances between multiple nanoparticles. In addition, dynamic control of nanomaterial assembly in response to multiple stimuli, with minimal or no error, and the reversibility of the assemblies are also required. In this Account, we summarize recent progress of using DNA as a powerful programmable tool to realize the above goals. First, inspired by the discovery of genetic codes in biology, we have discovered DNA sequence combinations to control different morphologies of nanoparticles during their growth process and have shown that these effects are synergistic or competitive, depending on the sequence combination. The DNA, which guides the growth of the nanomaterial, is stable and retains its biorecognition ability. Second, by taking advantage of different reactivities of phosphorothioate and phosphodiester backbone, we have placed phosphorothioate at selective positions on different DNA nanostructures including DNA tetrahedrons. Bifunctional linkers have been used to conjugate phosphorothioate on one end and bind nanoparticles or proteins on the other end. In doing so, precise control of distances between two or more nanoparticles or proteins with nanometer resolution can be achieved. Furthermore, by developing facile methods to functionalize two hemispheres of Janus nanoparticles with two different DNA sequences regioselectively, we have demonstrated directional control of nanomaterial assembly, where DNA strands with specific hybridization serve as

  11. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    PubMed Central

    2013-01-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs. PMID:24148227

  12. Silver nanocube aggregation gradient materials in search for total internal reflection with high phase sensitivity

    NASA Astrophysics Data System (ADS)

    König, Tobias A. F.; Ledin, Petr A.; Russell, Michael; Geldmeier, Jeffrey A.; Mahmoud, Mahmoud. A.; El-Sayed, Mostafa A.; Tsukruk, Vladimir V.

    2015-03-01

    We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging.We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions

  13. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs.

    PubMed

    Di Martino, Antonio; Guselnikova, Olga A; Trusova, Marina E; Postnikov, Pavel S; Sedlarik, Vladimir

    2017-06-30

    The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500μg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Glutathione-Capped Gold Nanoparticles-Based Photoacoustic Sensor for Label-Free Detection of Lead Ions

    NASA Astrophysics Data System (ADS)

    Shi, R.; Liu, X.-J.; Ying, Y.

    2017-07-01

    The photoacoustic signal generated by laser-induced nanobubbles (PA-LINB) proved to be a sensitive tool to monitor the aggregation of gold nanoparticles. Here, a simple and label-free photoacoustic method for the rapid detection of Pb2+ in the aqueous phase was developed. Due to the high affinity of Pb2+ ions to glutathione, the presence of Pb2+ led to the aggregation of glutathione-conjugated gold nanoparticles (GSH-GNPs). Hence, by measuring the variation of the PA-LINB signal after the aggregation of GSH-GNPs, Pb2+ can be quantified. A low detection limit for Pb2+ (42 nM) and a wide linear working range ( 42-1000 nM) were achieved. Furthermore, the proposed method showed good selectivity against other metal ions.

  15. Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis.

    PubMed

    Wall, Matthew A; Harmsen, Stefan; Pal, Soumik; Zhang, Lihua; Arianna, Gianluca; Lombardi, John R; Drain, Charles Michael; Kircher, Moritz F

    2017-06-01

    Gold nanoparticles have unique properties that are highly dependent on their shape and size. Synthetic methods that enable precise control over nanoparticle morphology currently require shape-directing agents such as surfactants or polymers that force growth in a particular direction by adsorbing to specific crystal facets. These auxiliary reagents passivate the nanoparticles' surface, and thus decrease their performance in applications like catalysis and surface-enhanced Raman scattering. Here, a surfactant- and polymer-free approach to achieving high-performance gold nanoparticles is reported. A theoretical framework to elucidate the growth mechanism of nanoparticles in surfactant-free media is developed and it is applied to identify strategies for shape-controlled syntheses. Using the results of the analyses, a simple, green-chemistry synthesis of the four most commonly used morphologies: nanostars, nanospheres, nanorods, and nanoplates is designed. The nanoparticles synthesized by this method outperform analogous particles with surfactant and polymer coatings in both catalysis and surface-enhanced Raman scattering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation

    PubMed Central

    Nivon, Mathieu; Fort, Loïc; Muller, Pascale; Richet, Emma; Simon, Stéphanie; Guey, Baptiste; Fournier, Maëlenn; Arrigo, André-Patrick; Hetz, Claudio; Atkin, Julie D.; Kretz-Remy, Carole

    2016-01-01

    During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called “protein conformational diseases,” such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases. PMID:27075172

  17. Functionalization of paramagnetic nanoparticles for protein immobilization and purification.

    PubMed

    Carneiro, Lara A B C; Ward, Richard J

    2018-01-01

    A paramagnetic nanocomposite coated with chitosan and N-(5-Amino-1-carboxy-pentyl) iminodiacetic acid (NTA) that is suitable for protein immobilization applications has been prepared and characterized. The nanoparticle core was synthesized by controlled aggregation of Fe 3 O 4 under alkaline conditions, and Transmission Electron Microscopy revealed a size distribution of 10-50 nm. The nanoparticle core was coated with chitosan and derivatized with glutaraldehyde and NTA, as confirmed by Fourier Transform Infrared Spectroscopy. The final nanoparticles were used as a metal affinity matrix to separate a recombinant polyhistidine-tagged β-galactosidase from Bacillus subtilis directly from E. coli cell lysates with high purity (>95%). After loading with Ni 2+ , nanoparticles demonstrated a binding capacity of 250 μg of a polyhistidine-tagged β-galactosidase per milligram of support. The immobilized enzyme retained 80% activity after 9 cycles of washing, and the immobilized recombinant protein could be eluted with high purity with imidazole. The applications for these nanomagnetic composites extend beyond protein purification, and can also be used for immobilizing enzymes, where the β-galactosidase immobilized on the nanomagnetic support was used in multiple cycles of catalytic reactions with no significant loss of catalytic activity. Copyright © 2017. Published by Elsevier Inc.

  18. Computational studies of steering nanoparticles with magnetic gradients

    NASA Astrophysics Data System (ADS)

    Aylak, Sultan Suleyman

    Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.

  19. Edible lipid nanoparticles: digestion, absorption, and potential toxicity.

    PubMed

    McClements, David Julian

    2013-10-01

    Food-grade nanoemulsions are being increasingly used in the food and beverage industry to encapsulate, protect, and deliver hydrophobic functional components, such as oil-soluble flavors, colors, preservatives, vitamins, and nutraceuticals. These nanoemulsions contain lipid nanoparticles (radius <100 nm) whose physicochemical characteristics (e.g., composition, dimensions, structure, charge, and physical state) can be controlled by selection of appropriate ingredients and fabrication techniques. Nanoemulsions have a number of potential advantages over conventional emulsions for applications within the food industry: higher stability to particle aggregation and gravitational separation; higher optical transparency; and, increased bioavailability of encapsulated components. On the other hand, there are also some risks associated with consumption of lipid nanoparticles that should be considered before they are widely utilized, such as their ability to alter the fate of bioactive components within the gastrointestinal tract and the potential toxicity of some of the components used in their fabrication (e.g., surfactants and organic solvents). This article provides an overview of the current status of the biological fate and potential toxicity of food-grade lipid nanoparticles suitable for utilization within the food and beverage industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering.

    PubMed

    Jayaraman, Praveena; Gandhimathi, Chinnasamy; Venugopal, Jayarama Reddy; Becker, David Laurence; Ramakrishna, Seeram; Srinivasan, Dinesh Kumar

    2015-11-01

    Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression. Therefore, the use of engineered nanoparticles has been rapidly increasing in bone tissue engineering (BTE) applications. The electrospray technique is advantageous over other conventional methods as it generates nanomaterials of particle sizes in the micro/nanoscale range. The size and charge of the particles are controlled by regulating the polymer solution flow rate and electric voltage. The unique properties of nanoparticles such as large surface area-to-volume ratio, small size, and higher reactivity make them promising candidates in the field of biomedical engineering. These nanomaterials are extensively used as therapeutic agents and for drug delivery, mimicking ECM, and restoring and improving the functions of damaged organs. The controlled and sustained release of encapsulated drugs, proteins, vaccines, growth factors, cells, and nucleotides from nanoparticles has been well developed in nanomedicine. This review provides an insight into the preparation of nanoparticles by electrospraying technique and illustrates the use of nanoparticles in drug delivery for promoting bone tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    PubMed

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  2. Thermal transport phenomena in nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-12-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications.

  3. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

    PubMed Central

    Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.

    2016-01-01

    Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554

  4. Controlling ion aggregation and conduction in PEO-based ionomers.

    NASA Astrophysics Data System (ADS)

    Caldwell, David, II; Maranas, Janna

    2015-03-01

    PEO-based ionomers are ideal for reducing concentration polarization found in typical solid polymer electrolytes. This is achieved by binding the anion to the polymer backbone, significantly reducing the anions mobility. Ion aggregation is prevalent in these systems, but their influence on SPE performance is difficult to study experimentally. We present results of molecular dynamics simulations that explore the relationship between ion content and temperature on ion aggregation, polymer motion, and ion conduction. An unforeseen result of ionomers is the creation of string like aggregates that form conduction pathways in the amorphous region. These conduction pathways allow for a partial decoupling of ion conduction with polymer dynamics. The improvement in conductivity through the use of ion aggregates can be quantified by calculating the inverse of the Haven Ratio, dubbed f-value. Typical SPEs have an f-value less than 0.2, while the ionomers of study exhibit f-values near unity or higher. Understanding what properties influence the development and use of these conduction pathways will provide insight for further development of solid polymer electrolytes.

  5. Size-controlled synthesis of transition metal nanoparticles through chemical and photo-chemical routes

    NASA Astrophysics Data System (ADS)

    Tangeysh, Behzad

    The central objective of this work is developing convenient general procedures for controlling the formation and stabilization of nanoscale transition metal particles. Contemporary interest in developing alternative synthetic approaches for producing nanoparticles arises in large part from expanding applications of the nanomaterials in areas such as catalysis, electronics and medicine. This research focuses on advancing the existing nanoparticle synthetic routes by using a new class of polymer colloid materials as a chemical approach, and the laser irradiation of metal salt solution as a photo-chemical method to attain size and shape selectivity. Controlled synthesis of small metal nanoparticles with sizes ranging from 1 to 5nm is still a continuing challenge in nanomaterial synthesis. This research utilizes a new class of polymer colloid materials as nano-reactors and protective agents for controlling the formation of small transition metal nanoparticles. The polymer colloid particles were formed from cross-linking of dinegatively charged metal precursors with partially protonated poly dimethylaminoethylmethacrylate (PDMAEMA). Incorporation of [PtCl6]2- species into the colloidal particles prior to the chemical reduction was effectively employed as a new strategy for synthesis of unusually small platinum nanoparticles with narrow size distributions (1.12 +/-0.25nm). To explore the generality of this approach, in a series of proof-of-concept studies, this method was successfully employed for the synthesis of small palladium (1.4 +/-0.2nm) and copper nanoparticles (1.5 +/-0.6nm). The polymer colloid materials developed in this research are pH responsive, and are designed to self-assemble and/or disassemble by varying the levels of protonation of the polymer chains. This unique feature was used to tune the size of palladium nanoparticles in a small range from 1nm to 5nm. The procedure presented in this work is a new convenient room temperature route for synthesis of

  6. Nanoparticles modulate autophagic effect in a dispersity-dependent manner

    NASA Astrophysics Data System (ADS)

    Huang, Dengtong; Zhou, Hualu; Gao, Jinhao

    2015-09-01

    Autophagy plays a key role in human health and disease, especially in cancer and neurodegeneration. Many autophagy regulators are developed for therapy. Diverse nanomaterials have been reported to induce autophagy. However, the underlying mechanisms and universal rules remain unclear. Here, for the first time, we show a reliable and general mechanism by which nanoparticles induce autophagy and then successfully modulate autophagy via tuning their dispersity. Various well-designed univariate experiments demonstrate that nanomaterials induce autophagy in a dispersity-dependent manner. Aggregated nanoparticles induce significant autophagic effect in comparison with well-dispersed nanoparticles. As the highly stable nanoparticles may block autophagic degradation in autolysosomes, endocytosis and intracellular accumulation of nanoparticles can be responsible for this interesting phenomenon. Our results suggest dispersity-dependent autophagic effect as a common cellular response to nanoparticles, reveal the relationship between properties of nanoparticles and autophagy, and offer a new alternative way to modulate autophagy.

  7. Long-term exposure to gold nanoparticles accelerates larval metamorphosis without affecting mass in wood frogs (Lithobates sylvaticus) at environmentally relevant concentrations.

    PubMed

    Fong, Peter P; Thompson, Lucas B; Carfagno, Gerardo L F; Sitton, Andrea J

    2016-09-01

    Nanoparticles are environmental contaminants of emerging concern. Exposure to engineered nanoparticles has been shown to have detrimental effects on aquatic organisms. The authors synthesized gold nanoparticles (18.1 ± 3.5 nm) and tested their effects on time to and weight at metamorphosis in wood frog (Lithobates sylvaticus) tadpoles, a species known to be sensitive to environmental stressors. Continuous exposure to all concentrations of gold nanoparticles (0.05 pM, 0.5 pM, and 5 pM in particles) for up to 55 d significantly reduced time to metamorphosis by as much as an average of 3 d (p < 0.05). However, exposure to gold nanoparticles had no effect on tadpole mass at metamorphosis. The approximately 18-nm gold nanoparticles used were metastable in dechlorinated tap water, resulting in a change in surface charge and aggregation over time, leading to negatively charged aggregates that were on the order of 60 nm to 110 nm. Nanoparticle aggregation could exacerbate the effect on time to metamorphosis. To the authors' knowledge, the present study is the first report on the effect of engineered nanoparticles of any kind on life-history variables in an amphibian, a taxonomic group that has been declining globally for at least 25 yr. Environ Toxicol Chem 2016;35:2304-2310. © 2016 SETAC. © 2016 SETAC.

  8. Bovine Serum Albumin Nanoparticles Containing Amphotericin B: Characterization, Cytotoxicity and In Vitro Antifungal Evaluation.

    PubMed

    Casa, Diani Meza; Karam, Thaysa Ksiaskiewcz; Alves, Aline de Cristo Soares; Zgoda, Aline Aparecida; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    In this study, nanoparticles based on bovine serum albumin (BSA) containing amphotericin B (AmB) were obtained by the desolvation method and characterized with respect to size, size distribution, AmB encapsulation efficiency, AmB state of aggregation, and AmB in vitro release profile. After, the effect of nanoparticles on the cytotoxicity of human erythrocytes in vitro and efficacy over strains of Candida spp. were evaluated. The mean particle size was 156 nm and the AmB encapsulation efficiency was over 82%. The in vitro release profile revealed a sustained release of approximately 48% of AmB over 5 days. AmB is present in BSA nanoparticles as monomer. AmB-loaded nanoparticles showed very low index of hemolysis (less than 8%) in 72 h of assay compared to free AmB, which presented 100% of hemolysis in 2 h of incubation. The AmB-loaded BSA nanoparticles were as effective as free AmB against Candida albicans and Candida tropicalis, considering their sustained release profile. Thus, BSA nanoparticles are potential carriers for AmB, reducing its molecular aggregation and prolonging its release, resulting in lower cytotoxicity while maintaining its antifungal activity.

  9. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation.

    PubMed

    Potter, Timothy M; Rodriguez, Jamie C; Neun, Barry W; Ilinskaya, Anna N; Cedrone, Edward; Dobrovolskaia, Marina A

    2018-01-01

    Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterial's likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.

  10. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe.

    PubMed

    Li, Hongkun; Guo, Jiajia; Ping, Hong; Liu, Lurui; Zhang, Minwei; Guan, Fengrui; Sun, Chunyan; Zhang, Qian

    2011-12-15

    With citrate-coated Au nanoparticles as colorimetric probe, a novel visual method for rapid assay of organophosphorus pesticides has been developed. The assay principle is based on catalytic hydrolysis of acetylthiocholine into thiocholine by acetylcholinesterase, which induces the aggregation of Au nanoparticles and the color change from claret-red to purple or even grey. The original plasmon absorption of Au nanoparticles at 522 nm decreases, and simultaneously, a new absorption band appears at 675 nm. The irreversible inhibition of organophosphorus pesticides on acetylcholinesterase prevents aggregation of Au nanoparticles. Under optimum conditions, the absorbance at 522 nm of Au nanoparticles is related linearly to the concentration of mathamidophos in the range of 0.02-1.42 μg/mL with a detection limit of 1.40 ng/mL. This colorimetric method has been successfully utilized to detect mathamidophos in vegetables with satisfactory results. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for the analysis of organophosphorus pesticides. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Materials and methods for stabilizing nanoparticles in salt solutions

    DOEpatents

    Robinson, David Bruce; Zuckermann, Ronald; Buffleben, George M.

    2013-06-11

    Sequence-specific polymers are proving to be a powerful approach to assembly and manipulation of matter on the nanometer scale. Ligands that are peptoids, or sequence-specific N-functional glycine oligomers, allow precise and flexible control over the arrangement of binding groups, steric spacers, charge, and other functionality. We have synthesized short peptoids that can prevent the aggregation of gold nanoparticles in high-salt environments including divalent salt, and allow co-adsorption of a single DNA molecule. This degree of precision and versatility is likely to prove essential in bottom-up assembly of nanostructures and in biomedical applications of nanomaterials.

  12. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  13. Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: preparation, characterization, and functional performance.

    PubMed

    Chen, Jingjing; Zheng, Jinkai; McClements, David Julian; Xiao, Hang

    2014-09-01

    The aim of this study was to design a colloidal delivery system to encapsulate poor water-soluble bioactive flavonoid tangeretin so that it could be utilized in various food products as functional ingredient. Tangeretin-loaded protein nanoparticles were produced by mixing an organic phase containing zein and tangeretin with an aqueous phase containing β-lactoglobulin and then converted into powder by freeze-drying. This powder formed a colloidal suspension when dispersed in water that is relatively stable to particle aggregation and sedimentation. The influence of temperature, ionic strength, and pH on the stability of the protein nanoparticles was tested. Extensive particle aggregation occurred at high ionic strength (>100mM) and intermediate pH (4.5-5.5) due to reduced electrostatic repulsion. Extensive aggregation also occurred at temperatures exceeding 60 °C, which was presumably due to increased hydrophobic attraction. Overall, this study shows that protein-based nanoparticles can be used to encapsulate bioactive tangeretin so that it can be readily dispersed in compatible food products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Contrasting self-aggregation over land and ocean surfaces

    NASA Astrophysics Data System (ADS)

    Inda Diaz, H. A.; O'Brien, T. A.

    2017-12-01

    The spontaneous organization of convection into clusters, or self-aggregation, demonstrably changes the nature and statistics of precipitation. While there has been much recent progress in this area, the processes that control self-aggregation are still poorly understood. Most of the work to date has focused on self-aggregation over ocean-like surfaces, but it is particularly pressing to understand what controls convective aggregation over land, since the associated change in precipitation statistics—between non-aggregated and aggregated convection—could have huge impacts on society and infrastructure. Radiative-convective equilibrium (RCE), has been extensively used as an idealized framework to study the tropical atmosphere. Self-aggregation manifests in numerous numerical models of RCE, nevertheless, there is still a lack of understanding in how it relates to convective organization in the observed world. Numerous studies have examined self-aggregation using idealized Cloud Resolving Models (CRMs) and General Circulation Models over the ocean, however very little work has been done on RCE and self-aggregation over land. Idealized models of RCE over ocean have shown that aggregation is sensitive to sea surface temperature (SST), more intense precipitation occurs in aggregated systems, and a variety of feedbacks—such as surface flux, cloud radiative, and upgradient moisture transport— contribute to the maintenance of aggregation, however it is not clear if these results apply over land. Progress in this area could help relate understanding of self-aggregation in idealized simulations to observations. In order to explore the behavior of self-aggregation over land, we use a CRM to simulate idealized RCE over land. In particular, we examine the aggregation of convection and how it compares with aggregation over ocean. Based on previous studies, where a variety of different CRMs exhibit a SST threshold below which self-aggregation does not occur, we hypothesize

  15. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    PubMed Central

    Hu, Yan; Ke, Lei; Chen, Hao; Zhuo, Ma; Yang, Xinzhou; Zhao, Dan; Zeng, Suying; Xiao, Xincai

    2017-01-01

    To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs), which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS) which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. PMID:29200852

  16. The role of surface charge in the desolvation process of gelatin: implications in nanoparticle synthesis and modulation of drug release

    PubMed Central

    Ahsan, Saad M; Rao, Chintalagiri Mohan

    2017-01-01

    The process of moving hydrophobic amino acids into the core of a protein by desolvation is important in protein folding. However, a rapid and forced desolvation can lead to precipitation of proteins. Desolvation of proteins under controlled conditions generates nanoparticles – homogeneous aggregates with a narrow size distribution. The protein nanoparticles, under physiological conditions, undergo surface erosion due to the action of proteases, releasing the entrapped drug/gene. The packing density of protein nanoparticles significantly influences the release kinetics. We have investigated the desolvation process of gelatin, exploring the role of pH and desolvating agent in nanoparticle synthesis. Our results show that the desolvation process, initiated by the addition of acetone, follows distinct pathways for gelatin incubated at different pH values and results in the generation of nanoparticles with varying matrix densities. The nanoparticles synthesized with varying matrix densities show variations in drug loading and protease-dependent extra- and intracellular drug release. These results will be useful in fine-tuning the synthesis of nanoparticles with desirable drug release profiles. PMID:28182126

  17. The Green Synthesis and Evaluation of Silver Nanoparticles and Zinc Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gebear-Eigzabher, Bellsabel

    Nanoparticle (NP) research has received exceptional attention as the field of study that contributes to transforming the world of materials science. When implementing NPs in consumer and industrial products, their unique properties improve technologies to the extent of significant game-changing breakthroughs. Conversely, the increased production of NPs, their use, their disposal or inadvertent release in the environment drove the need for processes and policies that ensures consumer and environmental safety. Mitigation of any harmful effects that NPs could potentially have combines methods of safe preparation, safe handling and safe disposal as well as containment of any inadvertent release. Our focus is in safe preparation of nanomaterials and we report green and energy efficient synthesis methods for metal NPs and metal oxide NPs of two popular materials: silver (Ag) and zinc oxide (ZnO). The thesis explained: 1) The impact of NPs in nowadays' world; 2) Synthesis methods that were designed to include environmentally-friendly staring materials and energy-saving fabrication processes, with emphasis on maintaining NPs final size and morphology when compared with existing methods; and 3) Nanoparticles characterization and data collection which allowed us to determine and/or validate their properties. Nanoparticles were studied using transmission electron microscope (TEM), X-Ray powder diffraction (XRD), low-voltage (5 keV) transmission electron microscopy (LV EM 5), Fourier-Transform Infrared Spectroscopy (FT-IR), and Ultraviolet-Visible (UV-Vis) spectroscopy. We developed an aqueous-based preparation of zinc oxide nanoparticles (ZnO NPs) using microwave-assisted chemistry to render a well-controlled particle size distribution within each set of reaction conditions in the range of 15 nm to 75 nm. We developed a scalable silver nanoparticles synthesis by chemical reduction methods. The NPs could be used in consumer products. The measurement tools for consumer products

  18. Responsive Block Copolymer and Gold Nanoparticle Hybrid Nanotubes.

    NASA Astrophysics Data System (ADS)

    Chang, Sehoon; Singamaneni, Srikanth; Young, Seth; Tsukruk, Vladimir

    2009-03-01

    We demonstrate the facile fabrication of responsive polymer and metal nanoparticle composite nanotube structures. The nanotubes are comprised of responsive block copolymer, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and gold nanoparticles. PS-b-P2VP nanotubes were fabricated using porous alumina template and in situ reduction of the gold nanoparticles in P2VP domains. Owing to the pH sensitive nature of P2VP (anionic polymer with a pKa of 3.8), the nanotubes exhibit a dramatic change in topology in response to the changes in the external pH. Furthermore, the gold nanoparticles in the responsive block exhibit a reversible aggregation, causing a reversible change in optical properties such as absorption.

  19. Rewritable and pH-Sensitive Micropatterns Based on Nanoparticle "Inks"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, D. W.; Lagzi, Istvan; Wesson, Paul J.

    2010-08-16

    Rewritable micropatterns based on nanoparticle “inks” are created in gel substrates by wet stamping. The colors of the patterns depend on pH, reflect the degree of nanoparticle aggregation, and can be written using acids and erased using bases. Micropatterns imprinted with salts are “permanent” but can change color upon pH changes; these patterns act as multiple-use pH sensors.

  20. Design and Fabrication of Tunable Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sun, Leming

    biomaterials, the sundew-inspired hydrogels demonstrated superior wound healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. While tremendous efforts have been spent in investigating scalable approaches for fabricating nanoparticles, less progress has been made in scalable synthesizing cyclic peptide nanoparticles and nanotubes, despite their great potential for broader biomedical applications. In Chapter 4, tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles using three different methods, phase equilibrium, pH-driven, and pH-sensitive methods were proposed and investigated. The goal is for scalable nano-manufacturing of cyclic peptide nanoparticles and nanotubes with different sizes in large quality by controlling multiple process parameters. The dimensions of self-assembled nanostructures were found to be strongly influenced by the cyclic peptides concentration, side chains modification, pH value, reaction time, stirring intensity, and sonication time. This study proposed an overall strategy to integrate all the parameters to achieve optimal synthesis outputs. AD is associated with the accumulation of insoluble forms of amyloid-beta (Abeta) in plaques in extracellular spaces, as well as in the walls of blood vessels, and aggregation of microtubule protein tau in neurofibrillary tangles in neurons. In Chapter 5, we designed and synthesized a series of fluorescent cyclic peptide nanoparticles that can be used to detect Abeta aggregates in both the cerebrospinal fluid (CSF) and serum, which were obtained from healthy people and AD patients in different disease stages. Our experimental studies indicate that the fluorescence intensities and wavelengths generated from the interactions between the negatively charged

  1. Selective manipulation of superparamagnetic nanoparticles for product purification and microfluidic diagnostics.

    PubMed

    Gädke, Johannes; Thies, Jan-Wilhelm; Kleinfeldt, Lennart; Schulze, Torben; Biedendieck, Rebekka; Rustenbeck, Ingo; Garnweitner, Georg; Krull, Rainer; Dietzel, Andreas

    2018-05-01

    The needs of scalable product purification as well as the demand for sensitive diagnostics for highly dilute entities can be addressed with the utilization of tailored superparamagnetic nanoparticles. Recent developments have led to more efficient fluidic systems at different scales with suspended nanoparticles or nanoparticle aggregates. However, magnetic nanoparticle systems differ widely in properties and their applications are characterized by very specific challenges. This review summarizes advances in the synthesis of superparamagnetic particles and displays states and trends in research making use of these particles in biotechnological downstream processing and in biosensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Determination of pyrophosphate and sulfate using polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles.

    PubMed

    Terenteva, E A; Apyari, V V; Dmitrienko, S G; Garshev, A V; Volkov, P A; Zolotov, Yu A

    2018-04-01

    Positively charged polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles (PHMG-AgNPs) were prepared and applied as a colorimetric probe for single-step determination of pyrophosphate and sulfate. The approach is based on the nanoparticles aggregation leading to change in their absorption spectra and color of the solution. Due to both electrostatic and steric stabilization these nanoparticles show decreased sensitivity relatively to many common anions, which allows for simple and rapid direct single-step determination of pyrophosphate and sulfate. Effects of different factors (time of interaction, pH, concentrations of anions and the nanoparticles) on aggregation of PHMG-AgNPs and analytical performance of the procedure were investigated. The method allows for the determination of pyrophosphate and sulfate in the range of 0.16-2μgmL -1 and 20-80μgmL -1 with RSD of 2-5%, respectively. The analysis can be performed using either spectrophotometry or naked-eye detection. Practical application of the method was shown by the example of pyrophosphate determination in baking powder sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  4. Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles.

    PubMed

    Hull, Matthew S; Chaurand, Perrine; Rose, Jerome; Auffan, Melanie; Bottero, Jean-Yves; Jones, Jason C; Schultz, Irvin R; Vikesland, Peter J

    2011-08-01

    Nanoparticles resistant to salt-induced aggregation are continually being developed for biomedical and industrial applications. Because of their colloidal stability these functionalized nanoparticles are anticipated to be persistent aquatic contaminants. Here, we show that Corbicula fluminea, a globally distributed clam that is a known sentinel of aquatic ecosystem contamination, can uptake and biodeposit bovine serum albumin (BSA) stabilized gold nanoparticles. Nanoparticle clearance rates from suspension were dictated by diameter and concentration, with the largest particles cleared most quickly on a mass basis. Particle capture facilitates size-selective 'biopurification' of particle suspensions with nanoscale resolution. Nanoparticles were retained either within the clam digestive tract or excreted in feces. Our results suggest that biotransformation and biodeposition will play a significant role in the fate and transport of persistent nanoparticles in aquatic systems.

  5. Controllable synthesis of iron oxide nanoparticles in porous NaCl matrix

    NASA Astrophysics Data System (ADS)

    Kurapov, Yury A.; E Litvin, Stanislav; Romanenko, Sergey M.; Didikin, Gennadii G.; Oranskaya, Elena I.

    2017-03-01

    The paper gives the results of studying the structure of porous condensates of Fe + NaCl composition, chemical and phase compositions and dimensions of nanoparticles produced from the vapor phase by EB-PVD. Iron nanoparticles at fast removal from the vacuum oxidize in air and possess significant sorption capacity relative to oxygen and moisture. At heating in air, reduction of porous condensate weight occurs right to the temperature of 650 °C, primarily, due to desorption of physically sorbed moisture. Final oxidation of Fe3O4 to Fe2O3 proceeds in the range of 380 °C-650 °C, due to the remaining fraction of physically adsorbed oxygen. At iron concentrations of up to 10-15 at%, condensate sorption capacity is markedly increased with increase of iron concentration, i.e. of the quantity of fine particles. Increase of condensation temperature is accompanied by increase of nanoparticle size, resulting in a considerable reduction of the total area of nanoparticle surface, and, hence of their sorption capacity. In addition to condensation temperature, the size and phase composition of nanoparticles can also be controlled by heat treatment of initial condensate, produced at low condensation temperatures. Magnetite nanoparticles can be transferred into stable colloid systems.

  6. Monoclonal Antibody Interactions with Micro- and Nanoparticles: Adsorption, Aggregation and Accelerated Stress Studies

    PubMed Central

    Bee, Jared S.; Chiu, David; Sawicki, Suzanne; Stevenson, Jennifer L.; Chatterjee, Koustuv; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2009-01-01

    Therapeutic proteins are exposed to various wetted surfaces that could shed sub-visible particles. In this work we measured the adsorption of a monoclonal antibody (mAb) to various microparticles, characterized the adsorbed mAb secondary structure, and determined the reversibility of adsorption. We also developed and used a front-face fluorescence quenching method to determine that the mAb tertiary structure was near-native when adsorbed to glass, cellulose and silica. Initial adsorption to each of the materials tested was rapid. During incubation studies, exposure to the air-water interface was a significant cause of aggregation but acted independently of the effects of microparticles. Incubations with glass, cellulose, stainless steel or Fe2O3 microparticles gave very different results. Cellulose preferentially adsorbed aggregates from solution. Glass and Fe2O3 adsorbed the mAb but did not cause aggregation. Adsorption to stainless steel microparticles was irreversible, and caused appearance of soluble aggregates upon incubation. The secondary structure of mAb adsorbed to glass and cellulose was near-native. We suggest that the protocol described in this work could be a useful preformulation stress screening tool to determine the sensitivity of a therapeutic protein to exposure to common surfaces encountered during processing and storage. PMID:19492408

  7. Structure and magnetic properties of L10-MnGa nanoparticles prepared using direct reactions between Mn nanoparticles and Ga

    NASA Astrophysics Data System (ADS)

    Si, P. Z.; Qian, H. D.; Park, J.; Ge, H. L.; Shinde, K. P.; Chung, K. C.; Choi, C. J.

    2018-05-01

    The tetragonal L10-Mn1+xGa (x<0.8) nanoparticles and bcc-Mn23Ga77 nanoparticles with large coercivity were prepared using direct reactions between Mn nanoparticles and Ga at elevated temperatures. The Mn23Ga77 phase was formed at ˜573 K while the L10-structured Mn1+xGa was formed at ˜850 K. After ball-milling, the L10-Mn1+xGa nanoparticles transformed into nano-flakes with enhanced coercivity. The size of the as-prepared Mn23Ga77 nanoparticles is comparable to that of the precursor Mn nanoparticles. An aggregation of the nanoparticles and thus a larger particle size were observed in the L10-Mn1+xGa nanoparticles obtained at 850 K. The size of the L10-Mn1+xGa nano-flakes is reduced to about 200-400 nm with a thickness of ˜20 nm. The coercivity of the Mn23Ga77 nanoparticles and the L10-Mn1+xGa nanoparticles at 300 K reached up to 0.2 T and 0.43 T, respectively. The coercivity of L10-Mn1+xGa ball-milled nano-flakes is 0.59 T at 300 K.

  8. Nanoparticles That "Remember" Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klajn, Rafal; Browne, Kevin P.; Siowling, Soh

    2010-06-02

    Photoresponsive gold nanoparticles dispersed in a solid/frozen matrix provide a basis for sensors that “remember” whether the sample has ever exceeded the melting temperature of the matrix. The operation of these sensors rests on the ability to photoinduce metastable electric dipoles on NP surfaces – upon melting, these dipoles drive NP aggregation, precipitation, and crosslinking. These events are manifested by a pronounced color change.

  9. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation.

    PubMed

    Skaat, Hadas; Chen, Ravit; Grinberg, Igor; Margel, Shlomo

    2012-09-10

    Protein aggregation into amyloid fibrils is implicated in the pathogenesis of many neurodegenerative diseases. Engineered nanoparticles have emerged as a potential approach to alter the kinetics of protein fibrillation process. Yet, there are only a few reports describing the use of nanoparticles for inhibition of amyloid-β 40 (Aβ(40)) peptide aggregation, involved in Alzheimer's disease (AD). In the present study, we designed new uniform biocompatible amino-acid-based polymer nanoparticles containing hydrophobic dipeptides in the polymer side chains. The dipeptide residues were designed similarly to the hydrophobic core sequence of Aβ. Poly(N-acryloyl-L-phenylalanyl-L-phenylalanine methyl ester) (polyA-FF-ME) nanoparticles of 57 ± 6 nm were synthesized by dispersion polymerization of the monomer A-FF-ME in 2-methoxy ethanol, followed by precipitation of the obtained polymer in aqueous solution. Cell viability assay confirmed that no significant cytotoxic effect of the polyA-FF-ME nanoparticles on different human cell lines, e.g., PC-12 and SH-SY5Y, was observed. A significantly slow secondary structure transition from random coil to β-sheets during Aβ(40) fibril formation was observed in the presence of these nanoparticles, resulting in significant inhibition of Aβ(40) fibrillation kinetics. However, the polyA-FF-ME analogous nanoparticles containing the L-alanyl-L-alanine (AA) dipeptide in the polymer side groups, polyA-AA-ME nanoparticles, accelerate the Aβ(40) fibrillation kinetics. The polyA-FF-ME nanoparticles and the polyA-AA-ME nanoparticles may therefore contribute to a mechanistic understanding of the fibrillation process, leading to the development of therapeutic strategies against amyloid-related diseases.

  10. Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation

    PubMed Central

    Gsponer, Jörg; Babu, M. Madan

    2012-01-01

    Summary Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control. PMID:23168257

  11. The characteristics and mechanisms of Au nanoparticles processed by functional centrifugal procedures

    NASA Astrophysics Data System (ADS)

    Shiau, Bo-Wen; Lin, Chien-Hung; Liao, Ying-Yen; Lee, Ya-Rong; Liu, Shih-Hao; Ding, Wei-Cheng; Lee, Jia-Ren

    2018-05-01

    In this work, the optical properties of Au nanoparticles processed by centrifugation techniques are studied. Most of the literature related to the control of nanoparticle size has focused on different preparation parameters; however, the wide size distribution is commonly an issue for follow-up investigations and further applications. Therefore, we developed a method in which specific-diameter particles can be effectively separated using different centrifugal procedures. The initial nanoparticle solution with a primary absorption peak at 534 nm is separated into discernible resonance wavelengths from 526 to 537 nm, with corresponding particle sizes from 30 to 55 nm. For the atomic force microscopy analysis of nanoparticle size, a dry cetyltrimethylammonium bromide (CTAB) film often covers the particles and interferes with the measurement; thus, CTAB has to be removed. However, if too much CTAB is removed, the surface of the Au nanoparticle becomes unstable, and the particles aggregate. Accordingly, we used UV spectroscopy to monitor the CTAB content; properly adjust the rotational speed and the number of centrifugation stages; and design a method that can effectively remove impurities, avoid clustering, and enable particle size measurement. The usually complicated procedures and high cost of preparation of specific-size Au nanoparticles are greatly simplified and reduced by the convenient extraction process proposed in this work, which would benefit related research and applications.

  12. Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles.

    PubMed

    Nagaraja, Ashvin T; Pradhan, Sulolit; McShane, Michael J

    2014-03-15

    Calcium carbonate nanoparticles of the vaterite polymorph were synthesized by combining CaCl2 and Na2CO3 in the presence of poly (vinylsulfonic acid) (PVSA). By studying the important experimental parameters we found that controlling PVSA concentration, reaction temperature, and order of reagent addition the particle size, monodispersity, and surface charge can be controlled. By increasing PVSA concentration or by decreasing temperature CCNPs with an average size from ≈150 to 500 nm could be produced. We believe the incorporation of PVSA into the reaction plays a dual role to (1) slow down the nucleation rate by sequestering calcium and to (2) stabilize the resulting CCNPs as the vaterite polymorph, preventing surface calcification or aggregation into microparticles. The obtained vaterite nanoparticles were found to maintain their crystal structure and surface charge after storage in aqueous buffer for at least 5 months. The aqueous stable vaterite nanoparticles could be a useful platform for the encapsulation of a large variety of biomolecules for drug delivery or as a sacrificial template toward capsule formation for biosensor applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles.

    PubMed

    Layet, Clément; Auffan, Mélanie; Santaella, Catherine; Chevassus-Rosset, Claire; Montes, Mélanie; Ortet, Philippe; Barakat, Mohamed; Collin, Blanche; Legros, Samuel; Bravin, Matthieu N; Angeletti, Bernard; Kieffer, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Doelsch, Emmanuel

    2017-09-05

    The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg -1 of dissolved Ce 2 (SO 4 ) 3 , bare and citrate-coated CeO 2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO 2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.

  14. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices

    PubMed Central

    Lai, James J.; Nelson, Kjell; Nash, Michael A.; Hoffman, Allan S.; Yager, Paul; Stayton, Patrick S.

    2010-01-01

    In the absence of applied forces, the transport of molecules and particulate reagents across laminar flowstreams in microfluidic devices is dominated by the diffusivities of the transported species. While the differential diffusional properties between smaller and larger diagnostic targets and reagents have been exploited for bioseparation and assay applications, there are limitations to methods that depend on these intrinsic size differences. Here a new strategy is described for exploiting the sharply reversible change in size and magnetophoretic mobility of “smart” magnetic nanoparticles (mNPs) to perform bioseparation and target isolation under continuous flow processing conditions. The isolated 5 nm mNPs do not exhibit significant magnetophoretic velocities, but do exhibit high magnetophoretic velocities when aggregated by the action of a pH-responsive polymer coating. A simple external magnet is used to magnetophorese the aggregated mNPs that have captured a diagnostic target from a lower pH laminar flowstream (pH 7.3) to a second higher pH flowstream (pH 8.4) that induces rapid mNP dis-aggregation. In this second disaggregated state and flowstream, the mNPs continue to flow past the magnet rather than being immobilized at the channel surface near the magnet. This stimuli-responsive reagent system has been shown to transfer 81% of a model protein target from an input flowstream to a second flowstream in a continuous flow H-filter device. PMID:19568666

  15. Effect of Chitosan and Liposome Nanoparticles as Adjuvant Codelivery on the Immunoglobulin G Subclass Distribution in a Mouse Model.

    PubMed

    Haryono, Agus; Salsabila, Korrie; Restu, Witta Kartika; Harmami, Sri Budi; Safari, Dodi

    2017-01-01

    We investigate the immunogenic properties of chitosan and liposome nanoparticles as adjuvant codelivery against a commercial pneumococcal conjugate vaccine (PCV) in an animal model. The chitosan and liposome nanoparticles were prepared by ionic gelation and dry methods, respectively. The PCV immunization was performed intradermally in the presence of adjuvants and booster injections which were given without an adjuvant. The Quil-A® was used as a control adjuvant. The ELISA was performed to measure the antibodies against pneumococcal type 14 polysaccharide (Pn14PS). The level of total antibodies against Pn14PS antigen was no different between the mouse groups with or without adjuvant codelivery. Codelivery of the PCV with chitosan nanoparticles as well as the Quil-A adjuvant elicited IgG1, IgG2a, IgG2b, and IgG3 antibodies. Meanwhile, codelivery of liposome nanoparticles elicited mainly IgG1 antibodies against the Pn14PS. The chitosan and liposome nanoparticles as adjuvant codelivery were successfully synthesized. These nanoparticles have different shapes in particle formation, liposome nanoparticle with their unilamellar shape and chitosan nanoparticles in large shape due to the aggregation of small-size particles. Codelivery of chitosan nanoparticles has more effect on the IgG subclass antibody production than that of liposome nanoparticles in a mouse model.

  16. Colorimetric detection of UV light-induced single-strand DNA breaks using gold nanoparticles.

    PubMed

    Kim, Joong Hyun; Chung, Chan Ho; Chung, Bong Hyun

    2013-02-21

    We developed a colorimetric method to specifically detect single-strand DNA breaks using gold nanoparticles. In our assay, broken DNA cannot stabilize gold nanoparticles to prevent salt-induced aggregation as good as intact DNA can, and this effect can be easily observed with the naked eye as a red-to-purple color change.

  17. Enzymatically Controlled Vacancies in Nanoparticle Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemicalmore » nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.« less

  18. Surface plasmon resonances of protein-conjugated gold nanoparticles on graphitic substrates

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Hoang, Trinh X.; Nghiem, Thi H. L.; Woods, Lilia M.

    2013-10-01

    We present theoretical calculations for the absorption properties of protein-coated gold nanoparticles on graphene and graphite substrates. As the substrate is far away from nanoparticles, numerical results show that the number of protein bovine serum molecules aggregating on gold surfaces can be quantitatively determined for gold nanoparticles with arbitrary size by means of the Mie theory and the absorption spectra. The presence of a graphene substrate near the protein-conjugated gold nanoparticles results in a red shift of the surface plasmon resonances of the nanoparticles. This effect can be modulated upon changing the graphene chemical potential. Our findings show that the graphene and graphite affect the absorption spectra in a similar way.

  19. 77 FR 46519 - Proposed Aggregate Production Quotas for Schedule I and II Controlled Substances and Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Production Quotas for Schedule I and II Controlled Substances and Proposed Assessment of Annual Needs for the... the Controlled Substances Act (CSA) and assessment of annual needs for the list I chemicals ephedrine... proposed 2013 aggregate production quotas and assessment of annual needs, DEA has taken into account the...

  20. Cavity Control and Cooling of Nanoparticles in High Vacuum

    NASA Astrophysics Data System (ADS)

    Millen, James

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres, and control the rotation of nanorods, with the potential to produce cold, aligned nanostructures. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.