Science.gov

Sample records for nanoparticle exposure disrupts

  1. Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis.

    PubMed

    Carew, Amanda C; Hoque, M Ehsanul; Metcalfe, Chris D; Peyrot, Caroline; Wilkinson, Kevin J; Helbing, Caren C

    2015-02-01

    Nanoparticles (NPs) are engineered in the nanoscale (<100 nm) to have unique physico-chemical properties from their bulk counterparts. Nanosilver particles (AgNPs) are the most prevalent NPs in consumer products due to their strong antimicrobial action. While AgNP toxicity at high concentrations has been thoroughly investigated, the sublethal effects at or below regulatory guidelines are relatively unknown. Amphibian metamorphosis is mediated by thyroid hormone (TH), and initial studies with bullfrogs (Rana catesbeiana) indicate that low concentrations of AgNPs disrupt TH-dependent responses in premetamorphic tadpole tailfin tissue. The present study examined the effects of low, non-lethal, environmentally-relevant AgNP concentrations (0.018, 0.18 or 1.8 μg/L Ag; ∼10 nm particle size) on naturally metamorphosing Xenopus laevis tadpoles in two-28 day chronic exposures beginning with either pre- or prometamorphic developmental stages. Asymmetric flow field flow fractionation with online inductively coupled plasma mass spectrometry and nanoparticle tracking analysis indicated a mixture of single AgNPs with homo-agglomerates in the exposure water with a significant portion (∼30-40%) found as dissolved Ag. Tadpoles bioaccumulated AgNPs and displayed transient alterations in snout/vent and hindlimb length with AgNP exposure. Using MAGEX microarray and quantitative real time polymerase chain reaction transcript analyses, AgNP-induced disruption of five TH-responsive targets was observed. The increased mRNA abundance of two peroxidase genes by AgNP exposure suggests the presence of reactive oxygen species even at low, environmentally-relevant concentrations. Furthermore, differential responsiveness to AgNPs was observed at each developmental stage. Therefore, low concentrations of AgNPs had developmental stage-specific endocrine disrupting effects during TH-dependent metamorphosis.

  2. Intravenous and Gastric Cerium Dioxide Nanoparticle Exposure Disrupts Microvascular Smooth Muscle Signaling

    PubMed Central

    Minarchick, Valerie C.; Stapleton, Phoebe A.; Fix, Natalie R.; Leonard, Stephen S.; Sabolsky, Edward M.; Nurkiewicz, Timothy R.

    2015-01-01

    Cerium dioxide nanoparticles (CeO2 NP) hold great therapeutic potential, but the in vivo effects of non-pulmonary exposure routes are unclear. The first aim was to determine whether microvascular function is impaired after intravenous and gastric CeO2 NP exposure. The second aim was to investigate the mechanism(s) of action underlying microvascular dysfunction following CeO2 NP exposure. Rats were exposed to CeO2 NP (primary diameter: 4 ± 1 nm, surface area: 81.36 m2/g) by intratracheal instillation, intravenous injection, or gastric gavage. Mesenteric arterioles were harvested 24 h post-exposure and vascular function was assessed using an isolated arteriole preparation. Endothelium-dependent and independent function and vascular smooth muscle (VSM) signaling (soluble guanylyl cyclase [sGC] and cyclic guanosine monophosphate [cGMP]) were assessed. Reactive oxygen species (ROS) generation and nitric oxide (NO) production were analyzed. Compared with controls, endothelium-dependent and independent dilation were impaired following intravenous injection (by 61% and 45%) and gastric gavage (by 63% and 49%). However, intravenous injection resulted in greater microvascular impairment (16% and 35%) compared with gastric gavage at an identical dose (100 µg). Furthermore, sGC activation and cGMP responsiveness were impaired following pulmonary, intravenous, and gastric CeO2 NP treatment. Finally, nanoparticle exposure resulted in route-dependent, increased ROS generation and decreased NO production. These results indicate that CeO2 NP exposure route differentially impairs microvascular function, which may be mechanistically linked to decreased NO production and subsequent VSM signaling. Fully understanding the mechanisms behind CeO2 NP in vivo effects is a critical step in the continued therapeutic development of this nanoparticle. PMID:25481005

  3. Exposure to Nanoparticles and Hormesis

    PubMed Central

    Iavicoli, Ivo; Calabrese, Edward J.; Nascarella, Marc A.

    2010-01-01

    Nanoparticles are particles with lengths that range from 1 to 100 nm. They are increasingly being manufactured and used for commercial purpose because of their novel and unique physicochemical properties. Although nanotechnology-based products are generally thought to be at a pre-competitive stage, an increasing number of products and materials are becoming commercially available. Human exposure to nanoparticles is therefore inevitable as they become more widely used and, as a result, nanotoxicology research is now gaining attention. However, there are many uncertainties as to whether the unique properties of nanoparticles also pose occupational health risks. These uncertainties arise because of gaps in knowledge about the factors that are essential for predicting health risks such as routes of exposure, distribution, accumulation, excretion and dose-response relationship of the nanoparticles. In particular, uncertainty remains with regard to the nature of the dose-response curve at low level exposures below the toxic threshold. In fact, in the literature, some studies that investigated the biological effects of nanoparticles, observed a hormetic dose-response. However, currently available data regarding this topic are extremely limited and fragmentary. It therefore seems clear that future studies need to focus on this issue by studying the potential adverse health effects caused by low-level exposures to nanoparticles. PMID:21191487

  4. Oral exposure to polystyrene nanoparticles affects iron absorption

    NASA Astrophysics Data System (ADS)

    Mahler, Gretchen J.; Esch, Mandy B.; Tako, Elad; Southard, Teresa L.; Archer, Shivaun D.; Glahn, Raymond P.; Shuler, Michael L.

    2012-04-01

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.

  5. Gold nanoparticles disrupt zebrafish eye development and pigmentation.

    PubMed

    Kim, Ki-Tae; Zaikova, Tatiana; Hutchison, James E; Tanguay, Robert L

    2013-06-01

    Systematic toxicological study is still required to fully understand the hazard potentials of gold nanoparticles (AuNPs). Because their biomedical applications are rapidly evolving, we investigated developmental toxicity of AuNPs in an in vivo embryonic zebrafish model at exposure concentration ranges from 0.08 to 50mg/l. Exposure of zebrafish embryos to 1.3 nm AuNPs functionalized with a cationic ligand, N,N,N-trimethylammoniumethanethiol (TMAT-AuNPs), resulted in smaller malpigmented eyes. We determined that TMAT-AuNPs caused a significant increase of cell death in the eye, which was correlated with an increase in gene expression of p53 and bax. Expression patterns of key transcription factors regulating eye development (pax6a, pax6b, otx2, and rx1) and pigmentation (sox10) were both repressed in a concentration-dependent manner in embryos exposed to TMAT-AuNPs. Reduced spatial localization of pax6a, rx1, sox10, and mitfa was observed in embryos by whole-mount in situ hybridization. The swimming behavior of embryos exposed to sublethal concentrations of TMAT-AuNPs showed hypoactivity, and embryos exhibited axonal growth inhibition. Overall, these results demonstrated that TMAT-AuNPs disrupt the progression of eye development and pigmentation that continues to behavioral and neuronal damage in the developing zebrafish.

  6. Exposure to Engineered Nanomaterial Results in Disruption of Brush Borders in Epithelia Models in vitro

    NASA Astrophysics Data System (ADS)

    Faust, James J.

    Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters less than 100 nm in any external dimension. Examples of their use include titanium dioxide added as a pigment in products intended to be ingested by humans, silicon dioxide NPs are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as vectors for drug delivery or contrast agents for specialized medical imaging. Although the intended use of these NPs is often to improve human health, it has come to the attention of investigators that NPs can have unintended or even detrimental effects on the organism. This work describes one such unintended effect of NP exposure from the perspective of exposure via the oral route. First, this Dissertation will explain an event referred to as brush border disruption that occurred after nanoparticles interacted with an in vitro model of the human intestinal epithelium. Second, this Dissertation will identify and characterize several consumer goods that were shown to contain titanium dioxide that are intended to be ingested. Third, this Dissertation shows that sedimentation due to gravity does not artifactually result in disruption of brush borders as a consequence of exposure to food grade titanium dioxide in vitro. Finally, this Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after exposure to an in vitro brush border expressing model of the human placenta. Together, these data suggest that brush border disruption is not an artifact of the material/cell culture model, but instead represents a bona fide biological response as a result of exposure to nanomaterial.

  7. CHILDREN'S EXPOSURES TO ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    EPA is committed to protecting children's health by identifying, assessing, and reducing the risks from chemicals present in the air they breathe, food they eat, water they drink, and surfaces they touch. The Agency is committed to understanding the extent of children's exposure...

  8. Prior Cocaine Exposure Disrupts Extinction of Fear Conditioning

    ERIC Educational Resources Information Center

    Gugsa, Nishan; Schoenbaum, Geoffrey; Burke, Kathryn A.; Franz, Theresa M.

    2006-01-01

    Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we…

  9. Coverage and disruption of phospholipid membranes by oxide nanoparticles.

    PubMed

    Pera, Harke; Nolte, Tom M; Leermakers, Frans A M; Kleijn, J Mieke

    2014-12-01

    We studied the interactions of silica and titanium dioxide nanoparticles with phospholipid membranes and show how electrostatics plays an important role. For this, we systematically varied the charge density of both the membranes by changing their lipid composition and the oxide particles by changing the pH. For the silica nanoparticles, results from our recently presented fluorescence vesicle leakage assay are combined with data on particle adsorption onto supported lipid bilayers obtained by optical reflectometry. Because of the strong tendency of the TiO2 nanoparticles to aggregate, the interaction of these particles with the bilayer was studied only in the leakage assay. Self-consistent field (SCF) modeling was applied to interpret the results on a molecular level. At low charge densities of either the silica nanoparticles or the lipid bilayers, no electrostatic barrier to adsorption exists. However, the adsorption rate and adsorbed amounts drop with increasing (negative) charge densities on particles and membranes because of electric double-layer repulsion, which is confirmed by the effect of the ionic strength. SCF calculations show that charged particles change the structure of lipid bilayers by a reorientation of a fraction of the zwitterionic phosphatidylcholine (PC) headgroups. This explains the affinity of the silica particles for pure PC lipid layers, even at relatively high particle charge densities. Particle adsorption does not always lead to the disruption of the membrane integrity, as is clear from a comparison of the leakage and adsorption data for the silica particles. The attraction should be strong enough, and in line with this, we found that for positively charged TiO2 particles vesicle disruption increases with increasing negative charge density on the membranes. Our results may be extrapolated to a broader range of oxide nanoparticles and ultimately may be used for establishing more accurate nanoparticle toxicity assessments and drug

  10. Effects of ZnO nanoparticles on perfluorooctane sulfonate induced thyroid-disrupting on zebrafish larvae.

    PubMed

    Du, Jia; Wang, Shutao; You, Hong; Liu, Zhongqiang

    2016-09-01

    Perfluorooctane sulfonate (PFOS) and ZnO nanoparticles (nano-ZnO) are widely distributed in the environment. However, the potential toxicity of co-exposure to PFOS and nano-ZnO remains to be fully elucidated. The test investigated the effects of co-exposure to PFOS and nano-ZnO on the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish. Zebrafish embryos were exposed to a combination of PFOS (0.2, 0.4, 0.8mg/L) and nano-ZnO (50mg/L) from their early stages of life (0-14days). The whole-body content of TH and the expression of genes and proteins related to the HPT axis were analyzed. The co-exposure decreased the body length and increased the malformation rates compared with exposure to PFOS alone. Co-exposure also increased the triiodothyronine (T3) levels, whereas the thyroxine (T4) content remained unchanged. Compared with the exposure to PFOS alone, exposure to both PFOS (0.8mg/L) and nano-ZnO (50mg/L) significantly up-regulated the expression of corticotropin-releasing factor, sodium/iodidesymporter, iodothyronine deiodinases and thyroid receptors and significantly down-regulated the expression of thyroid-stimulating hormone, thyroglobulin (TG), transthyretin (TTR) and thyroid receptors. The protein expression levels of TG and TTR were also significantly down-regulated in the co-exposure groups. In addition, the expression of the thyroid peroxidase gene was unchanged in all groups. The results demonstrated that PFOS and nano-ZnO co-exposure could cause more serious thyroid-disrupting effects in zebrafish than exposure to PFOS alone. Our results also provide insight into the mechanism of disruption of the thyroid status by PFOS and nano-ZnO. PMID:27593282

  11. Daily male exposure attenuates estrous cycle disruption by fluoxetine.

    PubMed

    Sarkar, Jhimly; Hiegel, Cindy; Maswood, Navin; Uphouse, Lynda

    2008-05-16

    Fluoxetine (Prozac) produces sexual dysfunction in a substantial number of patients. In the few animal studies designed to address this sexual dysfunction in females, data have been inconsistent. Some investigators report that the drug disrupts sexual behavior without affecting the estrous cycle while we have reported robust effects of fluoxetine on the estrous cycle. The current studies were designed to initiate examination of procedural differences that may account for these contradictory outcomes. In the first experiment, intact, regularly cycling female rats were injected daily for 10 days with 10 mg/kg fluoxetine (intraperitoneally) or vehicle. Male-exposed, fluoxetine- or vehicle-treated rats were housed in a room with males and placed for 5 min/day into a male's cage. Other fluoxetine-treated females were housed in a room separate from males. In the second experiment, this protocol was repeated for 20 days and an additional group of females were exposed to male bedding for 5 min/day. Without male exposure, fluoxetine rapidly disrupted vaginal estrus and sexual receptivity so that approximately 50% of the rats failed to show vaginal estrus during the first 5 days; and the majority of the rats had a blocked cycle by 10 days of treatment. With male exposure, these reproductive effects were attenuated. The majority of rats cycled normally during the first 5 days of treatment and more than half cycled throughout the experiment. Loss of behavioral receptivity occurred even when normal estrous cyclicity was present. Although exposure to the male's bedding may have delayed the onset of estrous cycle disruption, five min daily exposure to a male's bedding did not prevent the disruptive effects of fluoxetine. These findings are consistent with evidence that fluoxetine's effect on female sexual dysfunction may result, in part, from the drugs' disruption of the hypothalamic-pituitary-gonadal axis. However, the data also evidence dissociation between the effects of

  12. Mucoadhesive Nanoparticles May Disrupt the Protective Human Mucus Barrier by Altering Its Microstructure

    PubMed Central

    Wang, Ying-Ying; Lai, Samuel K.; So, Conan; Schneider, Craig; Cone, Richard; Hanes, Justin

    2011-01-01

    Mucus secretions typically protect exposed surfaces of the eyes and respiratory, gastrointestinal and female reproductive tracts from foreign entities, including pathogens and environmental ultrafine particles. We hypothesized that excess exposure to some foreign particles, however, may cause disruption of the mucus barrier. Many synthetic nanoparticles are likely to be mucoadhesive due to hydrophobic, electrostatic or hydrogen bonding interactions. We therefore sought to determine whether mucoadhesive particles (MAP) could alter the mucus microstructure, thereby allowing other foreign particles to more easily penetrate mucus. We engineered muco-inert probe particles 1 µm in diameter, whose diffusion in mucus is limited only by steric obstruction from the mucus mesh, and used them to measure possible MAP-induced changes to the microstructure of fresh human cervicovaginal mucus. We found that a 0.24% w/v concentration of 200 nm MAP in mucus induced a ∼10-fold increase in the average effective diffusivity of the probe particles, and a 2- to 3-fold increase in the fraction capable of penetrating physiologically thick mucus layers. The same concentration of muco-inert particles, and a low concentration (0.0006% w/v) of MAP, had no detectable effect on probe particle penetration rates. Using an obstruction-scaling model, we determined that the higher MAP dose increased the average mesh spacing (“pore” size) of mucus from 380 nm to 470 nm. The bulk viscoelasticity of mucus was unaffected by MAP exposure, suggesting MAP may not directly impair mucus clearance or its function as a lubricant, both of which depend critically on the bulk rheological properties of mucus. Our findings suggest mucoadhesive nanoparticles can substantially alter the microstructure of mucus, highlighting the potential of mucoadhesive environmental or engineered nanoparticles to disrupt mucus barriers and cause greater exposure to foreign particles, including pathogens and other potentially

  13. Exposure to Endocrine Disrupting Chemicals and Male Reproductive Health

    PubMed Central

    Jeng, Hueiwang Anna

    2014-01-01

    Endocrine disrupting chemicals (EDCs) can interfere with normal hormonal balance and may exert adverse consequences on humans. The male reproductive system may be susceptible to the effects of such environmental toxicants. This review discusses the recent progress in scientific data mainly from epidemiology studies on the associations between EDCs and male reproductive health and our understanding of possible mechanisms associated with the effects of EDCs on male reproductive health. Finally, the review provides recommendations on future research to enhance our understanding of EDCs and male reproductive health. The review highlights the need for (1) well-defined longitudinal epidemiology studies, with appropriately designed exposure assessment to determine potential causal relationships; (2) chemical and biochemical approaches aimed at a better understanding of the mechanism of action of xenoestrogens with regard to low-dose effects, and assessment of identify genetic susceptibility factors associated with the risk of adverse effects following exposure to EDCs. PMID:24926476

  14. Aluminium exposure disrupts elemental homeostasis in Caenorhabditis elegans†

    PubMed Central

    Page, Kathryn E.; White, Keith N.; McCrohan, Catherine R.

    2013-01-01

    Aluminium (Al) is highly abundant in the environment and can elicit a variety of toxic responses in biological systems. Here we characterize the effects of Al on Caenorhabditis elegans by identifying phenotypic abnormalities and disruption in whole-body metal homeostasis (metallostasis) following Al exposure in food. Widespread changes to the elemental content of adult nematodes were observed when chronically exposed to Al from the first larval stage (L1). Specifically, we saw increased barium, chromium, copper and iron content, and a reduction in calcium levels. Lifespan was decreased in worms exposed to low levels of Al, but unexpectedly increased when the Al concentration reached higher levels (4.8 mM). This bi-phasic phenotype was only observed when Al exposure occurred during development, as lifespan was unaffected by Al exposure during adulthood. Lower levels of Al slowed C. elegans developmental progression, and reduced hermaphrodite self-fertility and adult body size. Significant developmental delay was observed even when Al exposure was restricted to embryogenesis. Similar changes in Al have been noted in association with Al toxicity in humans and other mammals, suggesting that C. elegans may be of use as a model for understanding the mechanisms of Al toxicity in mammalian systems. PMID:22534883

  15. [Titanium dioxide nanoparticles: occupational exposure limits].

    PubMed

    Swidwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2014-01-01

    Titanium dioxide (TiO2) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to TiO2 nanoparticles. Nanoparticles are potentially responsible for the most adverse effects of titanium dioxide. Due to the absence of separate fraction of nanoobjects and appropriate measurement methods the maximum admissible concentrations (MAC) for particles < 100 nm and nano-TiO2 cannot be established. In the world there are 2 proposals of occupational exposure levels for titanium dioxide nanoparticles: 0.3 mg/m3, proposed by the National Institute for Occupational Safety and Health (NIOSH), and 0.6 mg/m3, proposed by experts of the New Energy and Industrial Technology Development Organization (NEDO). The authors of this article, based on the available data and existing methods for hygiene standards binding in Poland, concluded that the MAC value of 0.3 mg/m3 for nanoparticles TiO2 in the workplace air can be accepted.

  16. Adolescent nicotine exposure disrupts context conditioning in adulthood in rats.

    PubMed

    Spaeth, Andrea M; Barnet, Robert C; Hunt, Pamela S; Burk, Joshua A

    2010-10-01

    Despite the prevalence of smoking among adolescents, few studies have assessed the effects of adolescent nicotine exposure on learning in adulthood. In particular, it remains unclear whether adolescent nicotine exposure has effects on hippocampus-dependent learning that persist into adulthood. The present experiment examined whether there were effects of adolescent nicotine exposure on context conditioning, a form of learning dependent on the integrity of the hippocampus, when tested during adulthood. Rats were exposed to nicotine during adolescence (postnatal days [PD] 28-42) via osmotic minipump (0, 3.0 or 6.0mg/kg/day). Context conditioning occurred in early adulthood (PD 65-70). Animals were exposed to an experimental context and were given 10 unsignaled footshocks or no shock. Additional groups were included to test the effects of adolescent nicotine on delay conditioning, a form of learning that is not dependent upon the hippocampus. Conditioning was assessed using a lick suppression paradigm. For animals in the context conditioning groups, adolescent nicotine resulted in significantly less suppression of drinking in the presence of context cues compared with vehicle-pretreated animals. For animals in the delay conditioning groups, there was a trend for adolescent nicotine (3.0mg/kg/day) to suppress drinking compared to vehicle-pretreated animals. There were no differences in extinction of contextual fear or cued fear between rats previously exposed to vehicle or nicotine. The data indicate that adolescent nicotine administration impairs context conditioning when animals are trained and tested as adults. The present data suggest that adolescent nicotine exposure may disrupt hippocampus-dependent learning when animals are tested during adulthood.

  17. Oral exposure to polystyrene nanoparticles effects iron absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron trans...

  18. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M

  19. Epigenomic Disruption: The Effects of Early Developmental Exposures

    PubMed Central

    Bernal, Autumn J.; Jirtle, Randy L.

    2010-01-01

    Through DNA methylation, histone modifications, and small regulatory RNAs the epigenome systematically controls gene expression during development-- both in utero and throughout life. The epigenome is also a very reactionary system; its labile nature allows it to sense and respond to environmental perturbations to ensure survival during fetal growth. This pliability can lead to aberrant epigenetic modifications that persist into later life and induce numerous disease states. Endocrine disrupting compounds (EDCs) are ubiquitous chemicals that interfere with growth and development. Several EDCs also interfere with epigenetic programming. The investigation of the epigenotoxic effects of bisphenol A (BPA), an EDC used in the production of plastics and resins, has further raised concern for the impact of EDCs on the epigenome. Using the Agouti viable yellow (Avy) mouse model, dietary BPA exposure was shown to hypomethylate both the Avy and the CabpIAP metastable epialleles. This hypomethylating effect was counteracted with dietary supplementation of methyl donors or genistein. These results are consistent with reports of BPA and other EDCs causing epigenetic effects. Epigenotoxicity could lead to numerous developmental, metabolic, and behavioral disorders in exposed populations. The heritable nature of epigenetic changes also increases the risk for transgenerational inheritance of phenotypes. Thus, epigenotoxicity must be considered when assessing these compounds for safety. PMID:20568270

  20. Nanoparticle exposure biomonitoring: exposure/effect indicator development approaches

    NASA Astrophysics Data System (ADS)

    Desvergne, C.; Dubosson, M.; Lacombe, M.; Brun, V.; Mossuz, V.

    2015-05-01

    The use of engineered nanoparticles (NP) is more and more widespread in various industrial sectors. The inhalation route of exposure is a matter of concern (adverse effects of air pollution by ultrafine particles and asbestos). No NP biomonitoring recommendations or standards are available so far. The LBM laboratory is currently studying several approaches to develop bioindicators for occupational health applications. As regards exposure indicators, new tools are being implemented to assess potentially inhaled NP in non-invasive respiratory sampling (nasal sampling and exhaled breath condensates (EBC)). Diverse NP analytical characterization methods are used (ICP-MS, dynamic light scattering and electron microscopy coupled to energy-dispersive X-ray analysis). As regards effect indicators, a methodology has been developed to assess a range of 29 cytokines in EBCs (potential respiratory inflammation due to NP exposure). Secondly, collaboration between the LBM laboratory and the EDyp team has allowed the EBC proteome to be characterized by means of an LC-MS/MS process. These projects are expected to facilitate the development of individual NP exposure biomonitoring tools and the analysis of early potential impacts on health. Innovative techniques such as field-flow fractionation combined with ICP-MS and single particle-ICPMS are currently being explored. These tools are directly intended to assist occupational physicians in the identification of exposure situations.

  1. Functional Connectivity Disruption in Neonates with Prenatal Marijuana Exposure

    PubMed Central

    Grewen, Karen; Salzwedel, Andrew P.; Gao, Wei

    2015-01-01

    Prenatal marijuana exposure (PME) is linked to neurobehavioral and cognitive impairments; however, findings in childhood and adolescence are inconsistent. Type-1 cannabinoid receptors (CB1R) modulate fetal neurodevelopment, mediating PME effects on growth of functional circuitry sub-serving behaviors critical for academic and social success. The purpose of this study was to investigate the effects of prenatal marijuana on development of early brain functional circuitry prior to prolonged postnatal environmental influences. We measured resting state functional connectivity during unsedated sleep in infants at 2–6 weeks (+MJ: 20 with PME in combination with nicotine, alcohol, opiates, and/or selective serotonin reuptake inhibitors; −MJ: 23 exposed to the same other drugs without marijuana, CTR: 20 drug-free controls). Connectivity of subcortical seed regions with high fetal CB1R expression was examined. Marijuana-specific differences were observed in insula and three striatal connections: anterior insula–cerebellum, right caudate–cerebellum, right caudate–right fusiform gyrus/inferior occipital, left caudate–cerebellum. +MJ neonates had hypo-connectivity in all clusters compared with −MJ and CTR groups. Altered striatal connectivity to areas involved in visual spatial and motor learning, attention, and in fine-tuning of motor outputs involved in movement and language production may contribute to neurobehavioral deficits reported in this at-risk group. Disrupted anterior insula connectivity may contribute to altered integration of interoceptive signals with salience estimates, motivation, decision-making, and later drug use. Compared with CTRs, both +MJ and −MJ groups demonstrated hyper-connectivity of left amygdala seed with orbital frontal cortex and hypo-connectivity of posterior thalamus seed with hippocampus, suggesting vulnerability to multiple drugs in these circuits. PMID:26582983

  2. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio).

    PubMed

    Merrifield, Daniel L; Shaw, Benjamin J; Harper, Glenn M; Saoud, Imad P; Davies, Simon J; Handy, Richard D; Henry, Theodore B

    2013-03-01

    Nanoparticles (NPs) can be ingested by organisms, and NPs with antimicrobial properties may disrupt beneficial endogenous microbial communities and affect organism health. Zebrafish were fed diets containing Cu-NPs or Ag-NPs (500 mg kg(-1) food), or an appropriate control for 14 d. Intestinal epithelium integrity was examined by transmission electron microscopy, and microbial community structure within the intestine was assessed by denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA. No lesions were observed in intestinal epithelia; however, presence of NPs in diets changed intestinal microbial community structure. In particular, some beneficial bacterial strains (e.g., Cetobacterium somerae) were suppressed to non-detectable levels by Cu-NP exposure, and two unidentified bacterial clones from the Firmicutes phylum were sensitive (not detected) to Cu, but were present in Ag and control fish. Unique changes in zebrafish microbiome caused by exposure to Ag-NP and Cu-NP indicate that NP ingestion could affect digestive system function and organism health.

  3. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations.

    PubMed

    Pinson, A; Bourguignon, J P; Parent, A S

    2016-07-01

    The developing brain is remarkably malleable as neural circuits are formed and these circuits are strongly dependent on hormones for their development. For those reasons, the brain is very vulnerable to the effects of endocrine-disrupting chemicals (EDCs) during critical periods of development. This review focuses on three ubiquitous endocrine disruptors that are known to disrupt the thyroid function and are associated with neurobehavioral deficits: polychlorinated biphenyls, polybrominated diphenyl ethers, and bisphenol A. The human and rodent data suggesting effects of those EDCs on memory, cognition, and social behavior are discussed. Their mechanisms of action go beyond relative hypothyroidism with effects on neurotransmitter release and calcium signaling. PMID:27285165

  4. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms.

    PubMed

    Wang, Cai-Feng; Tian, Ying

    2015-11-01

    Triclosan has been used as a broad-spectrum antibacterial agent for over 40 years worldwide. Increasing reports indicate frequent detection and broad exposure to triclosan in the natural environment and the human body. Current laboratory studies in various species provide strong evidence for its disrupting effects on the endocrine system, especially reproductive hormones. Multiple modes of action have been suggested, including disrupting hormone metabolism, displacing hormones from hormone receptors and disrupting steroidogenic enzyme activity. Although epidemiological studies on its effects in humans are mostly negative but conflicting, which is typical of much of the early evidence on the toxicity of EDCs, overall, the evidence suggests that triclosan is an EDC. This article reviews human exposure to triclosan, describes the current evidence regarding its reproductive endocrine-disrupting effects, and discusses potential mechanisms to provide insights for further study on its endocrine-disrupting effects in humans.

  5. Disruption of cell membranes via laser-activated, acoustically active, carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Holguin, Stefany; Prausnitz, Mark; Thadhani, Naresh

    2015-06-01

    Physical drug delivery methods provide an avenue to overcome the selectivity of the cell membrane via physical forces that disrupt cell membranes and drive drug molecules into the cytosol. When carbon black nanoparticles in suspension with cells and drug molecules are exposed to nanosecond-pulsed laser light, high uptake and cell viability are observed. This laser-carbon nanoparticle interaction causes thermal expansion and local vaporization that results in the release of acoustic waves into the surrounding medium. These combined energy transduction mechanisms, phenomena called transient nanoparticle energy transduction (TNET), are responsible for disruption of the cell membrane and subsequent efficient intracellular drug uptake while maintaining high cell viability. The overall objective of this work is to investigate TNET and the bioeffects associated with physical disruption of cell membranes for drug delivery via laser-carbon nanoparticle interactions. For example, varying and quantifying energy input to carbon nanoparticles by way of laser beam manipulation, assists in the understanding and assessment of subsequent bioeffects. Results of work performed to date will be presented. National Science Foundation Graduate Research Fellowship under Grant No. 0946809, Georgia Tech University Center of Exemplary Mentoring (UCEM) & the Alfred P. Sloan Foundation.

  6. Cationic Peptide Exposure Enhances Pulsed-Electric-Field-Mediated Membrane Disruption

    PubMed Central

    Kennedy, Stephen M.; Aiken, Erik J.; Beres, Kaytlyn A.; Hahn, Adam R.; Kamin, Samantha J.; Hagness, Susan C.; Booske, John H.; Murphy, William L.

    2014-01-01

    Background The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF’s ability to disrupt plasma membranes. Methodology/Principal Findings We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell’s PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1–2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Conclusions/Significance Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with

  7. Miniature nanoparticle sensors for exposure measurement and TEM sampling

    NASA Astrophysics Data System (ADS)

    Fierz, Martin; Meier, Dominik; Steigmeier, Peter; Burtscher, Heinz

    2015-05-01

    Nanoparticles in workplaces may pose a threat to the health of the workers involved. With the general boom in nanotechnology, an increasing number of workers is potentially exposed, and therefore a comprehensive risk management with respect to nanoparticles appears necessary. One (of many) components of such a risk management is the measurement of personal exposure. Traditional nanoparticle detectors are often cumbersome to use, large, heavy and expensive. We have developed small, reliable and easy to use devices that can be used for routine personal exposure measurement in workplaces.

  8. Quantifying the Evolution of Vascular Barrier Disruption in Advanced Atherosclerosis with Semipermeant Nanoparticle Contrast Agents

    PubMed Central

    Zhang, Huiying; Zhang, Lei; Myerson, Jacob; Bibee, Kristin; Scott, Michael; Allen, John; Sicard, Gregorio; Lanza, Gregory; Wickline, Samuel

    2011-01-01

    Rationale Acute atherothrombotic occlusion in heart attack and stroke implies disruption of the vascular endothelial barrier that exposes a highly procoagulant intimal milieu. However, the evolution, severity, and pathophysiological consequences of vascular barrier damage in atherosclerotic plaque remain unknown, in part because quantifiable methods and experimental models are lacking for its in vivo assessment. Objective To develop quantitative nondestructive methodologies and models for detecting vascular barrier disruption in advanced plaques. Methods and Results Sustained hypercholesterolemia in New Zealand White (NZW) rabbits for >7–14 months engendered endothelial barrier disruption that was evident from massive and rapid passive penetration and intimal trapping of perfluorocarbon-core nanoparticles (PFC-NP: ∼250 nm diameter) after in vivo circulation for as little as 1 hour. Only older plaques (>7 mo), but not younger plaques (<3 mo) demonstrated the marked enhancement of endothelial permeability to these particles. Electron microscopy revealed a complex of subintimal spongiform channels associated with endothelial apoptosis, superficial erosions, and surface-penetrating cholesterol crystals. Fluorine (19F) magnetic resonance imaging and spectroscopy (MRI/MRS) enabled absolute quantification (in nanoMolar) of the passive permeation of PFC-NP into the disrupted vascular lesions by sensing the unique spectral signatures from the fluorine core of plaque-bound PFC-NP. Conclusions The application of semipermeant nanoparticles reveals the presence of profound barrier disruption in later stage plaques and focuses attention on the disrupted endothelium as a potential contributor to plaque vulnerability. The response to sustained high cholesterol levels yields a progressive deterioration of the vascular barrier that can be quantified with fluorine MRI/MRS of passively permeable nanostructures. The possibility of plaque classification based on the metric of

  9. Nanoparticle Mediated Tumor Vascular Disruption: A Novel Strategy in Radiation Therapy.

    PubMed

    Kunjachan, Sijumon; Detappe, Alexandre; Kumar, Rajiv; Ireland, Thomas; Cameron, Lisa; Biancur, Douglas E; Motto-Ros, Vincent; Sancey, Lucie; Sridhar, Srinivas; Makrigiorgos, G Mike; Berbeco, Ross I

    2015-11-11

    More than 50% of all cancer patients receive radiation therapy. The clinical delivery of curative radiation dose is strictly restricted by the proximal healthy tissues. We propose a dual-targeting strategy using vessel-targeted-radiosensitizing gold nanoparticles and conformal-image guided radiation therapy to specifically amplify damage in the tumor neoendothelium. The resulting tumor vascular disruption substantially improved the therapeutic outcome and subsidized the radiation/nanoparticle toxicity, extending its utility to intransigent or nonresectable tumors that barely respond to standard therapies.

  10. Pesticide exposure: the hormonal function of the female reproductive system disrupted?

    PubMed Central

    Bretveld, Reini W; Thomas, Chris MG; Scheepers, Paul TJ; Zielhuis, Gerhard A; Roeleveld, Nel

    2006-01-01

    Some pesticides may interfere with the female hormonal function, which may lead to negative effects on the reproductive system through disruption of the hormonal balance necessary for proper functioning. Previous studies primarily focused on interference with the estrogen and/or androgen receptor, but the hormonal function may be disrupted in many more ways through pesticide exposure. The aim of this review is to give an overview of the various ways in which pesticides may disrupt the hormonal function of the female reproductive system and in particular the ovarian cycle. Disruption can occur in all stages of hormonal regulation: 1. hormone synthesis; 2. hormone release and storage; 3. hormone transport and clearance; 4. hormone receptor recognition and binding; 5. hormone postreceptor activation; 6. the thyroid function; and 7. the central nervous system. These mechanisms are described for effects of pesticide exposure in vitro and on experimental animals in vivo. For the latter, potential effects of endocrine disrupting pesticides on the female reproductive system, i.e. modulation of hormone concentrations, ovarian cycle irregularities, and impaired fertility, are also reviewed. In epidemiological studies, exposure to pesticides has been associated with menstrual cycle disturbances, reduced fertility, prolonged time-to-pregnancy, spontaneous abortion, stillbirths, and developmental defects, which may or may not be due to disruption of the female hormonal function. Because pesticides comprise a large number of distinct substances with dissimilar structures and diverse toxicity, it is most likely that several of the above-mentioned mechanisms are involved in the pathophysiological pathways explaining the role of pesticide exposure in ovarian cycle disturbances, ultimately leading to fertility problems and other reproductive effects. In future research, information on the ways in which pesticides may disrupt the hormonal function as described in this review, can be

  11. Risk of hypospadias in relation to maternal occupational exposure to potential endocrine disrupting chemicals

    PubMed Central

    Vrijheid, M; Armstrong, B; Dolk, H; van Tongeren, M; Botting, B

    2003-01-01

    Background: Reported rises in the prevalence of hypospadias and other abnormalities of the male reproductive system may be a result of exposure to endocrine disrupting chemicals. Aims: To analyse the relation between risk of hypospadias and maternal occupation, particularly with regard to exposure to potential endocrine disrupting chemicals (EDCs). Methods: Data (1980–96) from the National Congenital Anomaly System (NCAS) were used to analyse the proportion of all congenital anomaly cases (n = 35 962) which were notified with hypospadias (n = 3471) by occupational codes (348 individual job titles) and by categories of exposure to potential EDCs from a job exposure matrix. Results: Five individual occupations (of 348) showed nominally statistically significant excesses, none of which had possible or probable exposure to potential EDCs. Odds ratios for "possible" or "probable" compared to "unlikely" exposure to potential EDCs did not show statistically significant increases in any of the EDC categories after adjustment for social class of the mother and father, nor was there evidence of an upward trend in risk with likelihood of exposure. In the 1992–96 time period odds ratios were increased for hairdressers (the largest group exposed to potential EDCs) and for probable exposure to phthalates (of which hairdressers form the largest group) before social class adjustment. Conclusions: There was little evidence for a relation between risk of hypospadias and maternal occupation or occupational exposure to potential EDCs, but as the exposure classification was necessarily crude, these findings should be interpreted with caution. PMID:12883014

  12. Silver nanoparticles disrupt regulation of steroidogenesis in fish ovarian cells.

    PubMed

    Degger, Natalie; Tse, Anna C K; Wu, Rudolf S S

    2015-12-01

    Despite the influx of silver nanoparticles (nAg) into the marine environment, their effects on fish reproduction remain completely unexplored. Using ovarian primary cells from marine medaka (Oryzias melastigma), in vitro studies were carried out to evaluate the effects of two differently coated nAg particles (Oleic Acid, (OA) nAg and Polyvinylpyrrolidone, (PVP) nAg) on fish ovarian tissues, using AgNO3 as a positive control. Cytotoxicity was evaluated by MTT assay and expression of key genes regulating steroidogenesis (StAR, CYP 19a, CYP 11a, 3βHSD and 20βHSD) were determined by Q-RT-PCR. EC50 values for PVP nAg, OA nAg and AgNO3 were 7.25μgL(-1), 924.4μgL(-1), and 42.0μgL(-1) respectively, showing that toxicity of silver was greatly enhanced in the PVP coated nano-form. Down regulation of CYP 19a was observed in both nAg and AgNO3 treatments, while down regulation of 3βHSD was only found in the OA nAg and AgNO3 treatments. For the first time, our results demonstrated that nAg can affect specific genes regulating steroidogenesis, implicating nAg as a potential endocrine disruptor.

  13. Silver nanoparticles disrupt regulation of steroidogenesis in fish ovarian cells.

    PubMed

    Degger, Natalie; Tse, Anna C K; Wu, Rudolf S S

    2015-12-01

    Despite the influx of silver nanoparticles (nAg) into the marine environment, their effects on fish reproduction remain completely unexplored. Using ovarian primary cells from marine medaka (Oryzias melastigma), in vitro studies were carried out to evaluate the effects of two differently coated nAg particles (Oleic Acid, (OA) nAg and Polyvinylpyrrolidone, (PVP) nAg) on fish ovarian tissues, using AgNO3 as a positive control. Cytotoxicity was evaluated by MTT assay and expression of key genes regulating steroidogenesis (StAR, CYP 19a, CYP 11a, 3βHSD and 20βHSD) were determined by Q-RT-PCR. EC50 values for PVP nAg, OA nAg and AgNO3 were 7.25μgL(-1), 924.4μgL(-1), and 42.0μgL(-1) respectively, showing that toxicity of silver was greatly enhanced in the PVP coated nano-form. Down regulation of CYP 19a was observed in both nAg and AgNO3 treatments, while down regulation of 3βHSD was only found in the OA nAg and AgNO3 treatments. For the first time, our results demonstrated that nAg can affect specific genes regulating steroidogenesis, implicating nAg as a potential endocrine disruptor. PMID:26546908

  14. Inside-out disruption of silica/gold core-shell nanoparticles by pulsed laser irradiation.

    PubMed

    Prasad, V; Mikhailovsky, A; Zasadzinski, J A

    2005-08-01

    Near-infrared (NIR) femtosecond laser irradiation of metallodielectric core-shell silica-gold (SiO(2)-Au) nanoparticles can induce extreme local heating prior to the rapid dissipation of energy caused by the large surface area/volume ratio of nanometer-scale objects. At low pulse intensities, the dielectric silica core is removed, leaving an incomplete gold shell behind. The gold shells with water inside and out still efficiently absorb NIR light from subsequent pulses, showing that a complete shell is not necessary for absorption. At higher pulse intensities, the gold shell itself is melted and disrupted, leading to smaller, approximately 20-nm gold nanoparticles. Spectroscopic measurements show that this disruption is accompanied by optical hole burning of the peak at 730 nm and formation of a new peak at 530 nm. The silica removal and gold shell disruption confirms significant temperature rise of the core-shall nanoparticle. However, the entire process leads to minimal heating of the bulk solution due to the low net energy input. PMID:16042490

  15. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  16. DEVELOPMENTAL EXPOSURE TO A THYROID DISRUPTING CHEMICAL STIMULATES PHAGOCYTOSIS IN JUVENILE SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    Developmental Exposure to a Thyroid Disrupting Chemical Stimulates Phagocytosis in Juvenile Sprague-Dawley Rats.
    AA Rooney1, R Matulka2, and R Luebke3. 1NCSU/US EPA CVM, Department of Anatomy, Physiological Sciences and Radiology, Raleigh, NC;2UNC Department of Toxicology, Cha...

  17. Lack of reliability in the disruption of cognitive performance following exposure to protons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of three replications were run to determine the reliability with which exposure to protons produces a disruption of cognitive performance, using a novel object recognition task and operant responding on an ascending fixed-ratio task. For the first two replications, rats were exposed to hea...

  18. ASSESSING ENDOCRINE-DISRUPTING CHEMICAL EXPOSURE IN INDIGENOUS AQUATIC POPULATIONS IN THE OHIO RIVER

    EPA Science Inventory

    The NERL has launched a collaborative study with the ORSANCO to determine the degree of ecologically relevant endocrine-disrupting chemical (EDC) exposure in the New Cumberland Pool of the Ohio River under the Environmental Monitoring and Assessment Program - Great Rivers Project...

  19. Transient Intermittent Hypoxia Exposure Disrupts Neonatal Bone Strength

    PubMed Central

    Kim, Gyuyoup; Elnabawi, Omar; Shin, Daehwan; Pae, Eung-Kwon

    2016-01-01

    A brief intermittent hypoxia (IH, ambient O2 levels alternating between room air and 12% O2) for 1 h immediately after birth resulted in pancreatic islet dysfunction associated with zinc deficiency as previously reported. We hypothesized that IH exposure modulates zinc homeostasis in bone as well, which leads to increased bone fragility. To test this hypothesis, we used neonatal rats and human osteoblasts (HObs). To examine IH influences on osteoblasts devoid of neural influences, we quantified amounts of alkaline phosphatase and mineralization in IH-treated HObs. Bones harvested from IH-treated animals showed significantly reduced hardness and elasticity. The IH group also showed discretely decreased levels of alkaline phosphatase and mineralization amounts. The IH group showed a decreased expression of ZIP8 or Zrt and Irt-like protein 8 (a zinc uptake transporter), Runx2 (or Runt-related transcription factor 2, a master protein in bone formation), Collagen-1 (a major protein comprising the extracellular matrix of the bone), osteocalcin, and zinc content. When zinc was eliminated from the media containing HObs using a zinc chelate and added later with zinc sulfate, Runx2, ZIP8, and osteocalcin expression decreased first, and recovered with zinc supplementation. Adenovirus-mediated ZIP8 over-expression in osteoblasts increased mineralization significantly as well. We conclude that IH impairs zinc homeostasis in bones and osteoblasts, and that such disturbances decrease bone strength, which can be recovered by zinc supplementation. PMID:27014665

  20. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence.

    PubMed

    Horev, Benjamin; Klein, Marlise I; Hwang, Geelsu; Li, Yong; Kim, Dongyeop; Koo, Hyun; Benoit, Danielle S W

    2015-03-24

    Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharides-matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ∼21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (∼244 L-mmol(-1)) to negatively charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, nanoparticles load farnesol, a hydrophobic antibacterial drug, at ∼22 wt %. Farnesol release is pH-dependent with t1/2 = 7 and 15 h for release at pH 4.5 and 7.2, as nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Strikingly, treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free

  1. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence.

    PubMed

    Horev, Benjamin; Klein, Marlise I; Hwang, Geelsu; Li, Yong; Kim, Dongyeop; Koo, Hyun; Benoit, Danielle S W

    2015-03-24

    Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharides-matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ∼21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (∼244 L-mmol(-1)) to negatively charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, nanoparticles load farnesol, a hydrophobic antibacterial drug, at ∼22 wt %. Farnesol release is pH-dependent with t1/2 = 7 and 15 h for release at pH 4.5 and 7.2, as nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Strikingly, treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free

  2. pH-activated Nanoparticles for Controlled Topical Delivery of Farnesol to Disrupt Oral Biofilm Virulence

    PubMed Central

    Horev, Benjamin; Klein, Marlise I.; Hwang, Geelsu; Li, Yong; Kim, Dongyeop; Koo, Hyun; Benoit, Danielle S.W.

    2015-01-01

    Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharide matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug-release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ~21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (~244 L-mmol−1) to negatively-charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, Nanoparticles load farnesol, a hydrophobic antibacterial drug, at ~22 wt%. Farnesol release is pH-dependent with t1/2=7 and 15 h for release at pH 4.5 and 7.2, as Nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically-relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free-farnesol had no effect

  3. Assessment of carbon nanoparticle exposure on murine macrophage function

    NASA Astrophysics Data System (ADS)

    Suro-Maldonado, Raquel M.

    There is growing concern about the potential cytotoxicity of nanoparticles. Exposure to respirable ultrafine particles (2.5uM) can adversely affect human health and have been implicated with episodes of increased respiratory diseases such as asthma and allergies. Nanoparticles are of particular interest because of their ability to penetrate into the lung and potentially elicit health effects triggering immune responses. Nanoparticles are structures and devises with length scales in the 1 to 100-nanometer range. Black carbon (BC) nanoparticles have been observed to be products of combustion, especially flame combustion and multi-walled carbon nanotubes (MWCNT) have been shown to be found in both indoor and outdoor air. Furthermore, asbestos, which have been known to cause mesothelioma as well as lung cancer, have been shown to be structurally identical to MWCNTs. The aims of these studies were to examine the effects of carbon nanoparticles on murine macrophage function and clearance mechanisms. Macrophages are immune cells that function as the first line of defense against invading pathogens and are likely to be amongst the first cells affected by nanoparticles. Our research focused on two manufactured nanoparticles, MWCNT and BC. The two were tested against murine-derived macrophages in a chronic contact model. We hypothesized that long-term chronic exposure to carbon nanoparticles would decrease macrophages ability to effectively respond to immunological challenge. Production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), cell surface macrophage; activation markers, reactive oxygen species formation (ROS), and antigen processing and presentation were examined in response to lipopolysaccharide (LPS) following a 144hr exposure to the particulates. Data demonstrated an increase in TNF-alpha, and NO production; a decrease in phagocytosis and antigen processing and presentation; and a decrease in the expression levels of cell surface macrophage

  4. Responsive polymer brushes for controlled nanoparticle exposure

    NASA Astrophysics Data System (ADS)

    Akkilic, Namik; Leermakers, Frans A. M.; de Vos, Wiebe M.

    2015-10-01

    We propose the design of a novel mixed polymer brush system that could act as a selective sensor with a distinct on-off switch. In the proposed system, a (single) nanoparticle (such as an antibody) is end-attached to a responsive chain, which is surrounded by a brush of nonresponsive chains. The collapse of the responsive chain leads to a protected state, where the nanoparticle is hidden in the polymer brush, while swelling of the responsive chain brings the nanoparticle outside of the brush into an exposed and active state. We investigate this system by numerical self-consistent field theory and predict a first-order like transition between the active state and the protective state at a critical decrease in solvent quality for the responsive chain. We show that by careful design of the brush parameters such as grafting density and chain length, for a given particle size, it is possible to fine-tune the desired switching mechanism.We propose the design of a novel mixed polymer brush system that could act as a selective sensor with a distinct on-off switch. In the proposed system, a (single) nanoparticle (such as an antibody) is end-attached to a responsive chain, which is surrounded by a brush of nonresponsive chains. The collapse of the responsive chain leads to a protected state, where the nanoparticle is hidden in the polymer brush, while swelling of the responsive chain brings the nanoparticle outside of the brush into an exposed and active state. We investigate this system by numerical self-consistent field theory and predict a first-order like transition between the active state and the protective state at a critical decrease in solvent quality for the responsive chain. We show that by careful design of the brush parameters such as grafting density and chain length, for a given particle size, it is possible to fine-tune the desired switching mechanism. Electronic supplementary information (ESI) available: Brush density profiles for different grafting

  5. Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: A review.

    PubMed

    Cao, Yi; Li, Juan; Liu, Fang; Li, Xiyue; Jiang, Qin; Cheng, Shanshan; Gu, Yuxiu

    2016-09-01

    Nanoparticles (NPs) are increasingly used in food, and the toxicity of NPs following oral exposure should be carefully assessed to ensure the safety. Indeed, a number of studies have shown that oral exposure to NPs, especially solid NPs, may induce toxicological responses both in vivo and in vitro. However, most of the toxicological studies only used NPs for oral exposure, and the potential interaction between NPs and food components in real life was ignored. In this review, we summarized the relevant studies and suggested that the interaction between NPs and food components may exist by that 1) NPs directly affect nutrients absorption through disruption of microvilli or alteration in expression of nutrient transporter genes; 2) food components directly affect NP absorption through physico-chemical modification; 3) the presence of food components affect oxidative stress induced by NPs. All of these interactions may eventually enhance or reduce the toxicological responses induced by NPs following oral exposure. Studies only using NPs for oral exposure may therefore lead to misinterpretation and underestimation/overestimation of toxicity of NPs, and it is necessary to assess the synergistic effects of NPs in a complex system when considering the safety of NPs used in food.

  6. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex.

    PubMed

    Rubino, Tiziana; Prini, Pamela; Piscitelli, Fabiana; Zamberletti, Erica; Trusel, Massimo; Melis, Miriam; Sagheddu, Claudia; Ligresti, Alessia; Tonini, Raffaella; Di Marzo, Vincenzo; Parolaro, Daniela

    2015-01-01

    Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation.

  7. Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats.

    PubMed

    Kong, Lu; Tang, Meng; Zhang, Ting; Wang, Dayong; Hu, Ke; Lu, Weiqi; Wei, Chao; Liang, Geyu; Pu, Yuepu

    2014-01-01

    Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions. PMID:25407529

  8. Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats

    PubMed Central

    Kong, Lu; Tang, Meng; Zhang, Ting; Wang, Dayong; Hu, Ke; Lu, Weiqi; Wei, Chao; Liang, Geyu; Pu, Yuepu

    2014-01-01

    Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions. PMID:25407529

  9. Centrifugation-based assay for examining nanoparticle-lipid membrane binding and disruption.

    PubMed

    Xi, Aihong; Bothun, Geoffrey D

    2014-03-01

    Centrifugation-based assays are commonly employed to study protein-membrane affinity or binding using lipid bilayer vesicles. An analogous assay has been developed to study nanoparticle-membrane interactions as a function of nanoparticle surface functionalization, membrane lipid composition, and monovalent salt concentration (NaCl). Anionic (carboxylic acid, Ag-COOH), cationic (amine, Ag-NH), and polyethylene glycol coated (Ag-PEG) silver nanoparticles (AgNPs) were examined based on their surface plasmon resonance (SPR), which was used to determine the degree of binding to anionic, cationic, and zwitterionic membrane vesicles by analyzing supernatant and sediment phases. SPR was also used to examine AgNP aggregation in solution and at membrane-water interfaces, and direct visualization of AgNP-membrane binding, vesicle aggregation, and vesicle disruption was achieved by cryogenic transmission electron microscopy (cryo-TEM). The extent of AgNP binding, based on AgNP + vesicle heteroaggregation, and vesicle disruption was dependent upon the degree of electrostatic attraction. Because of their biological and environmental relevance, Ag-PEG + anionic vesicles systems were examined in detail. Cryo-TEM image analysis was performed to determine apparent membrane-water partition coefficients and AgNP aggregation states (in solution and bound to membranes) as a function of NaCl concentration. Despite possessing a PEG coating and exhibiting a slight negative charge, Ag-PEG was able to bind to model anionic bacterial membranes either as individual AgNPs (low salt) or as AgNP aggregates (high salt). The centrifugation assay provides a rapid and straightforward way to screen nanoparticle-membrane interactions.

  10. Nanoparticle exposure at nanotechnology workplaces: A review

    PubMed Central

    2011-01-01

    Risk, associated with nanomaterial use, is determined by exposure and hazard potential of these materials. Both topics cannot be evaluated absolutely independently. Realistic dose concentrations should be tested based on stringent exposure assessments for the corresponding nanomaterial taking into account also the environmental and product matrix. This review focuses on current available information from peer reviewed publications related to airborne nanomaterial exposure. Two approaches to derive realistic exposure values are differentiated and independently presented; those based on workplace measurements and the others based on simulations in laboratories. An assessment of the current available workplace measurement data using a matrix, which is related to nanomaterials and work processes, shows, that data are available on the likelihood of release and possible exposure. Laboratory studies are seen as an important complementary source of information on particle release processes and hence for possible exposure. In both cases, whether workplace measurements or laboratories studies, the issue of background particles is a major problem. From this review, major areas for future activities and focal points are identified. PMID:21794132

  11. Exposure to butachlor causes thyroid endocrine disruption and promotion of metamorphosis in Xenopus laevis.

    PubMed

    Li, Shuying; Li, Meng; Wang, Qiangwei; Gui, Wenjun; Zhu, Guonian

    2016-06-01

    Butachlor is extensively applied in rice paddy ecosystem in china, and has been widespread contaminant in the aquatic environment. Here, Xenopus laevis was used for the evaluation of teratogenesis developmental toxicity, and disruption of thyroid system when exposure to different concentrations of butachlor by window phase exposure. Acute toxicity investigation shown that 96 h-LC50 value of butachlor was 1.424 mg L(-1) and 0.962 mg L(-1) for tadpoles (starting from stages 46/47) and embryos (starting from stages 8/9), respectively. Exposure to butachlor caused malformation, including abnormal eye, pericardial edema, enlarged proctodaeum and bent tail. Window phase exposure test indicated that butachlor significantly promote the contents of whole-body thyroid hormones (THs, T3 and T4) at higher levels, indicating thyroid endocrine disruption. At 7 days, exposure to butachlor up-regulated the mRNA expression of genes involved in THs synthesis and metabolism (tshα, tg, tpo and dio1) and THs receptors (trα and trβ). At 14 days, up-regulation of the mRNA expression of genes related to THs synthesis and metabolism (tshα, tshβ, tg, tpo, dio1, dio2 and ttr) and THs receptors (trβ) were also observed after the exposure to butachlor. At 21 days, butachlor up-regulated the mRNA expression of tshα, tg, tpo genes and down-regulated the mRNA expression of tshβ, tg, dio1, ttr and trα genes. These results showed that butachlor could change the mRNA expression of genes involved in the HPT axis and increase whole-body thyroid hormones levels of X. laevis tadpoles in a dose- and time-dependent manner, causing thyroid endocrine disruption and developmental toxicity.

  12. Disruption of HepG2 cell adhesion by gold nanoparticle and Paclitaxel disclosed by in situ QCM measurement.

    PubMed

    Wei, Xiao-Lan; Mo, Zhi-Hong; Li, Biao; Wei, Jin-Min

    2007-09-01

    Cell adhesion is a crucial issue for cytotoxicity or anticancer effectiveness for tumor cells. However, how both nanoparticles and drugs affect cell adhesion has not yet been defined. Herein, we report for the first time that gold nanoparticles and Paclitaxel can disrupt adhesion, as well as enhance apoptosis of HepG2 cell individually and synergistically, as observed by in situ measurement using quartz crystal microbalance (QCM). It was also found by MTT assay that gold nanoparticles of low cellular cytotoxicity enhance the antiproliferation and apoptosis of HepG2 cell induced by Paclitaxel. Those findings would be of great potential for biomedical application of nanoparticles.

  13. [Transthyretin-binding activity of hexabromocyclododecanes (HBCDs) and its thyroid hormone disrupting effects after developmental exposure].

    PubMed

    Ji, Xiu-Ling; Liu, Yang; Liu, Fang; Lu, Yue; Zhong, Gao-Ren

    2010-09-01

    In vivo and in vitro research approaches were carried out to survey the potential health risk of environmental exposure by hexabromocyclododecanes (HBCDs). Transthyretin-binding assay was designed to test for the potency of HBCDs to compete with thyroxine (T4) for binding to the transport protein. The results showed that the binding of 25I-T4 and T4 was only slightly inhabited even at the highest competitive concentration of HBCDs (75.08%, 80 micromol x L(-1)), indicating the marginally interfere potency of HBCDs in the transportation of T4. Sprague-Dawley rats of 3-days old were exposed to 0.2 mg/kg and 1 mg/kg HBCDs for 21 d to examine the thyroid hormones (THs) disrupting effects of HBCDs after developmental exposure. Compared with the controls, levels of total 3,3',5-triiodothyronine (TT3), free 3,3',5-triiodothyronine (FT3), increased significantly (p < 0.05, p < 0.05) in low- and high-dose exposures, thyroid stimulating hormone (TSH) also increased slightly while the total thyroxine (TT4), free thyroxine (FT4) had a decline about two-fold inversely. Combined both the in vivo and in vitro results, the possible mode of action of HBCDs on THs disruption may through the synergy or substitution effect of T3. The findings support further investigation of the potential THs disrupting effects of HBCDs on public health, especially on children during brain development. PMID:21072945

  14. Effective biological dose from occupational exposure during nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Demou, Evangelia; Tran, Lang; Housiadas, Christos

    2009-02-01

    Nanomaterial and nanotechnology safety require the characterization of occupational exposure levels for completing a risk assessment. However, equally important is the estimation of the effective internal dose via lung deposition, transport and clearance mechanisms. An integrated source-to-biological dose assessment study is presented using real monitoring data collected during nanoparticle synthesis. Experimental monitoring data of airborne exposure levels during nanoparticle synthesis of CaSO4 and BiPO4 nanoparticles in a research laboratory is coupled with a human lung transport and deposition model, which solves in an Eulerian framework the general dynamic equation for polydisperse aerosols using particle specific physical-chemical properties. Subsequently, the lung deposition model is coupled with a mathematical particle clearance model providing the effective biological dose as well as the time course of the biological dose build-up after exposure. The results for the example of BiPO4 demonstrate that even short exposures throughout the day can lead to particle doses of 1.10·E+08#/(kg-bw·8h-shift), with the majority accumulating in the pulmonary region. Clearance of particles is slow and is not completed within a working shift following a 1 hour exposure. It mostly occurs via macrophage activity in the alveolar region, with small amounts transported to the interstitium and less to the lymph nodes.

  15. Lack of reliability in the disruption of cognitive performance following exposure to protons.

    PubMed

    Rabin, Bernard M; Heroux, Nicholas A; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty L; Beck, Zachary; Baxter, Chelsea

    2015-08-01

    A series of three replications were run to determine the reliability with which exposure to protons produces a disruption of cognitive performance, using a novel object recognition task and operant responding on an ascending fixed-ratio task. For the first two replications, rats were exposed to head-only exposures to 1000 MeV/n protons at the NASA Space Radiation Laboratory. For the third replication, subjects were given head-only or whole-body exposures to both 1000 and 150 MeV/n protons. The results were characterized by a lack of consistency in the effects of exposure to protons on the performance of these cognitive tasks, both within and between replications. The factors that might influence the lack of consistency and the implications for exploratory class missions are discussed.

  16. Hydrogen emission under laser exposure of colloidal solutions of nanoparticles

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Simakin, A. V.; Shafeev, G. A.

    2016-07-01

    We report the generation of molecular hydrogen from water by laser irradiation, without any electrodes and photocatalysts. A near infrared pulsed nanosecond laser is used for exposure of colloidal solution of Au nanoparticles suspended in water. Laser exposure of the colloidal solution results in formation of breakdown plasma in liquid and emission of H2. The rate of H2 emission depends critically on the energy of laser pulses. There is a certain threshold in laser fluence in liquid (around 50 J/cm2) below which plasma disappears and H2 emission stops. H2 emission from colloidal solution of Au nanoparticles in ethanol is higher than that from similar water colloid. It is found that formation of plasma and emission of H2 or D2 can be induced by laser exposure of pure liquids, either H2O or D2O, respectively. The results are interpreted as water molecules splitting by direct electron impact from breakdown plasma.

  17. Relating Nanoparticle Properties to Biological Outcomes in Exposure Escalation Experiments

    PubMed Central

    Patel, T.; Telesca, D.; Low-Kam, C.; Ji, ZX.; Zhang, HY.; Xia, T.; Zinc, J.I.; Nel, A. E.

    2014-01-01

    A fundamental goal in nano-toxicology is that of identifying particle physical and chemical properties, which are likely to explain biological hazard. The first line of screening for potentially adverse outcomes often consists of exposure escalation experiments, involving the exposure of micro-organisms or cell lines to a library of nanomaterials. We discuss a modeling strategy, that relates the outcome of an exposure escalation experiment to nanoparticle properties. Our approach makes use of a hierarchical decision process, where we jointly identify particles that initiate adverse biological outcomes and explain the probability of this event in terms of the particle physicochemical descriptors. The proposed inferential framework results in summaries that are easily interpretable as simple probability statements. We present the application of the proposed method to a data set on 24 metal oxides nanoparticles, characterized in relation to their electrical, crystal and dissolution properties. PMID:24764692

  18. Airline Pilot Cosmic Radiation and Circadian Disruption Exposure Assessment from Logbooks and Company Records

    PubMed Central

    Grajewski, Barbara; Waters, Martha A.; Yong, Lee C.; Tseng, Chih-Yu; Zivkovich, Zachary; Cassinelli II, Rick T.

    2011-01-01

    Objectives: US commercial airline pilots, like all flight crew, are at increased risk for specific cancers, but the relation of these outcomes to specific air cabin exposures is unclear. Flight time or block (airborne plus taxi) time often substitutes for assessment of exposure to cosmic radiation. Our objectives were to develop methods to estimate exposures to cosmic radiation and circadian disruption for a study of chromosome aberrations in pilots and to describe workplace exposures for these pilots. Methods: Exposures were estimated for cosmic ionizing radiation and circadian disruption between August 1963 and March 2003 for 83 male pilots from a major US airline. Estimates were based on 523 387 individual flight segments in company records and pilot logbooks as well as summary records of hours flown from other sources. Exposure was estimated by calculation or imputation for all but 0.02% of the individual flight segments’ block time. Exposures were estimated from questionnaire data for a comparison group of 51 male university faculty. Results: Pilots flew a median of 7126 flight segments and 14 959 block hours for 27.8 years. In the final study year, a hypothetical pilot incurred an estimated median effective dose of 1.92 mSv (absorbed dose, 0.85 mGy) from cosmic radiation and crossed 362 time zones. This study pilot was possibly exposed to a moderate or large solar particle event a median of 6 times or once every 3.7 years of work. Work at the study airline and military flying were the two highest sources of pilot exposure for all metrics. An index of work during the standard sleep interval (SSI travel) also suggested potential chronic sleep disturbance in some pilots. For study airline flights, median segment radiation doses, time zones crossed, and SSI travel increased markedly from the 1990s to 2003 (Ptrend < 0.0001). Dose metrics were moderately correlated with records-based duration metrics (Spearman’s r = 0.61–0.69). Conclusions: The methods

  19. Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole.

    PubMed

    Yu, Liang; Chen, Mengli; Liu, Yihua; Gui, Wenjun; Zhu, Guonian

    2013-08-15

    The widely used triazole fungicides have the potential to disrupt endocrine system, but little is known of such effects or underlying mechanisms of hexaconazole (HEX) and tebuconazole (TEB) in fish. In the present study, zebrafish (Danio rerio) embryos were exposed to various concentrations of HEX (0.625, 1.25 and 2.5 mg/L) and TEB (1, 2 and 4 mg/L) from fertilization to 120 h post-fertilization (hpf). The whole body content of thyroid hormone and transcription of genes in the hypothalamic-pituitary-thyroid (HPT) axis were analyzed. The results showed that thyroxine (T4) levels were significantly decreased, while triiodothyronine (T3) concentrations were significantly increased after exposure to HEX and TEB, indicating thyroid endocrine disruption. Exposure to HEX significantly induced the transcription of all the measured genes (i.e., corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSHβ), sodium/iodide symporter (NIS), transthyretin (TTR), uridine diphosphate glucuronosyltransferase (UGT1ab), thyronine deiodinase (Dio1 and Dio2), thyroid hormone receptors (TRα and TRβ) in the HPT axis, but did not affect the transcription of thyroglobulin (TG). However, TEB exposure resulted in the upregulation of all the measured genes, excepting that TG, Dio1and TRα had not changed significantly. The overall results indicated that exposure to HEX and TEB could alter thyroid hormone levels as well as gene transcription in the HPT axis in zebrafish larvae. PMID:23685399

  20. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  1. Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl) phthalate (MEHP).

    PubMed

    Zhai, Wenhui; Huang, Zhigang; Chen, Li; Feng, Cong; Li, Bei; Li, Tanshi

    2014-01-01

    Phthalates are extensively used as plasticizers in a variety of daily-life products, resulting in widespread distribution in aquatic environments. However, limited information is available on the endocrine disrupting effects of phthalates in aquatic organisms. The aim of the present study was to examine whether exposure to mono-(2-ethylhexyl) phthalate (MEHP), the hydrolytic metabolite of di-(2-ethylhexyl) phthalate (DEHP) disrupts thyroid endocrine system in fish. In this study, zebrafish (Danio rerio) embryos were exposed to different concentrations of MEHP (1.6, 8, 40, and 200 μg/L) from 2 h post-fertilization (hpf) to 168 hpf. The whole-body content of thyroid hormone and transcription of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis were examined. Treatment with MEHP significantly decreased whole-body T4 contents and increased whole-body T3 contents, indicating thyroid endocrine disruption. The upregulation of genes related to thyroid hormone metabolism (Dio2 and UGT1ab) might be responsible for decreased T4 contents. Elevated gene transcription of Dio1 was also observed in this study, which might assist to degrade increased T3 contents. Exposure to MEHP also significantly induced transcription of genes involved in thyroid development (Nkx2.1 and Pax8) and thyroid hormone synthesis (TSHβ, NIS and TG). However, the genes encoding proteins involved in TH transport (transthyretin, TTR) was transcriptionally significantly down-regulated after exposure to MEHP. Overall, these results demonstrate that acute exposure to MEHP alters whole-body contents of thyroid hormones in zebrafish embryos/larvae and changes the transcription of genes involved in the HPT axis, thus exerting thyroid endocrine toxicity. PMID:24658602

  2. Establishment of Airborne Nanoparticle Exposure Chamber System to Assess Nano TiO2 Induced Mice Lung Effects

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Hua; Li, Jui-Ping; Huang, Nai-Chun; Yang, Chung-Shi; Chen, Jen-Kun

    2011-12-01

    A great many governments have schemed their top priority to support the research and development of emerging nanotechnology, which lead to increasing products containing nanomaterials. However, platforms and protocols to evaluate the safety of nanomaterials are not yet established. We therefore design and fabricate a nanoparticle exposure chamber system (NECS) and try to standardize protocols to assess potential health risk of inhalable nanoparticles. This platform comprises: (1) nano-aerosol generators to produce homogeneous airborne nanoparticles, (2) double isolated container to prevent from unexpected exposure to humans, (3) gas supply system for housing animals or incubating cultured cells, and (4) system for automatic control and airborne nanoparticle analysis. The NECS providing multiple functions includes: (1) a secure environment to handle nanomaterials, (2) real-time measurement for the size and distribution of airborne nanoparticles, (3) SOP of safety evaluation for nanomaterials, and (4) key technology for the development of inhalable pharmaceuticals. We used NECS to mimic occupational environment for exploring potential adverse effects of TiO2 nanoparticles. The adult male ICR mice were exposed to 25nm, well-characterized TiO2 particles for 1 and 4 weeks. More than 90% of the inhaled TiO2 nanoparticles deposit in lung tissue, which tends to be captured by alveolar macrophages. Pulmonary function test does not show significant physiological changes between one and 4 weeks exposure. For plasma biochemistry analysis, there are no obvious inflammation responses after exposure for one and 4 weeks; however, disruption of alveolar septa and increased thickness of alveolar epithelial cells were observed. According to our results, the NECS together with our protocols show comprehensive integration and ideally fit the standard of OECD guildelines-TG403, TG412, TG413; it can be further customized to fulfill diverse demands of industry, government, and third party

  3. Reversible Inactivation of the Auditory Thalamus Disrupts HPA Axis Habituation to Repeated Loud Noise Stress Exposures

    PubMed Central

    Day, Heidi E.W.; Masini, Cher V.; Campeau, Serge

    2009-01-01

    Although habituation to stress is a widely observed adaptive mechanism in response to repeated homotypic challenge exposure, its brain location and mechanism of plasticity remains elusive. And while habituation-related plasticity has been suggested to take place in central limbic regions, recent evidence suggests that sensory sites may provide the underlying substrate for this function. For instance, several brainstem, midbrain, thalamic, and/or cortical auditory processing areas, among others, could support habituation-related plasticity to repeated loud noise exposures. In the present study, the auditory thalamus was tested for its putative role in habituation to repeated loud noise exposures, in rats. The auditory thalamus was inactivated reversibly by muscimol injections during repeated loud noise exposures to determine if brainstem or midbrain auditory nuclei would be sufficient to support habituation to this specific stressor, as measured during an additional and drug-free loud noise exposure test. Our results indicate that auditory thalamic inactivation by muscimol disrupts acute HPA axis response specifically to loud noise. Importantly, habituation to repeated loud noise exposures was also prevented by reversible auditory thalamic inactivation, suggesting that this form of plasticity is likely mediated at, or in targets of, the auditory thalamus. PMID:19379718

  4. Waterborne exposure to bisphenol F causes thyroid endocrine disruption in zebrafish larvae.

    PubMed

    Huang, Guo-min; Tian, Xiao-feng; Fang, Xue-dong; Ji, Fu-jian

    2016-03-01

    While bisphenol F (BPF) has been frequently detected in various environmental compartments, limited information is available on its effect on thyroid endocrine system. In the present study, zebrafish (Danio rerio) embryos were exposed to 0.2, 2, 20, and 200 μg/L of BPF from 2 h post-fertilization (hpf) to 144 hpf. The whole-body content of thyroid hormones, thyroid-stimulating hormone (TSH), and transcription of genes belonging to the hypothalamic-pituitary-thyroid (HPT) axis were investigated. BPF exposure resulted in alterations of both T3 and T4 contents, increased the ratios of T3/T4, demonstrating thyroid endocrine disruption. Moreover, TSH content was significantly induced in a concentration-dependent manner after exposure to BPF. The increased gene transcription of dio2 might assist to degrade increased T3 contents. Treatment with BPF also significantly increased transcription of genes involved in thyroid hormone regulation (crh) and synthesis (nis and tg) as a compensatory mechanism for the decrease of T4 contents. However, the gene encoding protein involved in TH transport (ttr) was transcriptionally significantly down-regulated after exposure to BPF. Taken together, these results suggest that BPF alters the transcription of genes involved in the HPT axis as well as changes whole-body contents of thyroid hormones and TSH in zebrafish embryos/larvae, thus causing an endocrine disruption of the thyroid system.

  5. Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells

    SciTech Connect

    Sadikovic, Bekim; Rodenhiser, David I. . E-mail: drodenhi@uwo.ca

    2006-11-01

    Exposures to environmental carcinogens and unhealthy lifestyle choices increase the incidence of breast cancer. One such compound, benzo(a)pyrene (BaP), leads to covalent DNA modifications and the deregulation of gene expression. To date, these mechanisms of BaP-induced carcinogenesis are poorly understood, particularly in the case of breast cancer. We tested the effects of BaP exposure on cellular growth dynamics and DNA methylation in four breast cancer cell lines since disruptions in DNA methylation lead to deregulated gene expression and the loss of genomic integrity. We observed robust time- and concentration-dependent loss of proliferation, S phase and G2M accumulation and apoptosis in p53 positive MCF-7 and T47-D cells. We observed minimal responses in p53 negative HCC-1086 and MDA MB 231 cells. Furthermore, BaP increased p53 levels in both p53 positive cell lines, as well as p21 levels in MCF-7 cells, an effect that was prevented by the p53-specific inhibitor pifithrin-{alpha}. No changes in global levels of DNA methylation levels induced by BaP were detected by the methyl acceptor assay (MAA) in any cell line, however, methylation profiling by AIMS (amplification of intermethylated sites) analysis showed dynamic, sequence-specific hypo- and hypermethylation events in all cell lines. We also identified BaP-induced hypomethylation events at a number of genomic repeats. Our data confirm the p53-specific disruption of the cell cycle as well as the disruption of DNA methylation as a consequence of BaP treatment, thus reinforcing the link between environmental exposures, DNA methylation and breast cancer.

  6. Microcystin-RR exposure results in growth impairment by disrupting thyroid endocrine in zebrafish larvae.

    PubMed

    Xie, Liqiang; Yan, Wei; Li, Jing; Yu, Liqin; Wang, Jianghua; Li, Guangyu; Chen, Nan; Steinman, Alan D

    2015-07-01

    Recent studies have shown that cyanobacteria-derived microcystins (MCs) have the potential to disrupt endocrine systems. However, the effects of microcystin-RR (MC-RR) and their underlying mechanisms are poorly resolved in fish. In this study, MC-RR exposure through submersion caused serious developmental toxicity, such as growth delay and depressed heart rates in zebrafish larvae. We also detected decreased levels of thyroid hormones (THs), suggesting that MC-RR-triggered thyroid endocrine disruption might contribute to the growth impairment observed in developing zebrafish. To further our understanding of mechanisms of MC-RR-induced endocrine toxicity, quantitative real-time PCR (QPCR) analysis was performed on hypothalamic-pituitary-thyroid (HPT) axis related genes, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid receptors (TRα and TRβ) and iodothyronine deiodinases (Dio1 and Dio2), of developing zebrafish embryos exposed to 0, 0.3, 1.0 or 3.0mgL(-1) MC-RR until 96h post-fertilization. Our results showed that transcription pattern of HPT axis related genes were greatly changed by MC-RR exposure, except TG gene. Furthermore, western blot was used to validate the results of gene expression. The results showed protein synthesis of TG was not affected, while that of NIS was significantly up-regulated, which are in accordance with gene expression. The overall results indicated that exposure to MC-RR can induce developmental toxicity, which might be associated with thyroid endocrine disruption in developing zebrafish larvae. PMID:25897773

  7. Late-life effects on rat reproductive system after developmental exposure to mixtures of endocrine disrupters.

    PubMed

    Isling, Louise Krag; Boberg, Julie; Jacobsen, Pernille Rosenskjold; Mandrup, Karen Riiber; Axelstad, Marta; Christiansen, Sofie; Vinggaard, Anne Marie; Taxvig, Camilla; Kortenkamp, Andreas; Hass, Ulla

    2014-01-01

    This study examined late-life effects of perinatal exposure of rats to a mixture of endocrine-disrupting contaminants. Four groups of 14 time-mated Wistar rats were exposed by gavage from gestation day 7 to pup day 22 to a mixture of 13 anti-androgenic and estrogenic chemicals including phthalates, pesticides, u.v.-filters, bisphenol A, parabens, and the drug paracetamol. The groups received vehicle (control), a mixture of all 13 chemicals at 150-times (TotalMix150) or 450-times (TotalMix450) high-end human exposure, or 450-times a mixture of nine predominantly anti-androgenic chemicals (AAMix450). Onset of puberty and estrous cyclicity at 9 and 12 months of age were assessed. Few female offspring showed significantly regular estrus cyclicity at 12 months of age in the TotalMix450 and AAMix450 groups compared with controls. In 19-month-old male offspring, epididymal sperm counts were lower than controls, and in ventral prostate an overrepresentation of findings related to hyperplasia was observed in exposed groups compared with controls, particularly in the group dosed with anti-androgens. A higher incidence of pituitary adenoma at 19 months of age was found in males and females in the AAMix450 group. Developmental exposure of rats to the highest dose of a human-relevant mixture of endocrine disrupters induced adverse effects late in life, manifested as earlier female reproductive senescence, reduced sperm counts, higher score for prostate atypical hyperplasia, and higher incidence of pituitary tumors. These delayed effects highlight the need for further studies on the role of endocrine disrupters in hormone-related disorders in aging humans.

  8. Microcystin-RR exposure results in growth impairment by disrupting thyroid endocrine in zebrafish larvae.

    PubMed

    Xie, Liqiang; Yan, Wei; Li, Jing; Yu, Liqin; Wang, Jianghua; Li, Guangyu; Chen, Nan; Steinman, Alan D

    2015-07-01

    Recent studies have shown that cyanobacteria-derived microcystins (MCs) have the potential to disrupt endocrine systems. However, the effects of microcystin-RR (MC-RR) and their underlying mechanisms are poorly resolved in fish. In this study, MC-RR exposure through submersion caused serious developmental toxicity, such as growth delay and depressed heart rates in zebrafish larvae. We also detected decreased levels of thyroid hormones (THs), suggesting that MC-RR-triggered thyroid endocrine disruption might contribute to the growth impairment observed in developing zebrafish. To further our understanding of mechanisms of MC-RR-induced endocrine toxicity, quantitative real-time PCR (QPCR) analysis was performed on hypothalamic-pituitary-thyroid (HPT) axis related genes, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid receptors (TRα and TRβ) and iodothyronine deiodinases (Dio1 and Dio2), of developing zebrafish embryos exposed to 0, 0.3, 1.0 or 3.0mgL(-1) MC-RR until 96h post-fertilization. Our results showed that transcription pattern of HPT axis related genes were greatly changed by MC-RR exposure, except TG gene. Furthermore, western blot was used to validate the results of gene expression. The results showed protein synthesis of TG was not affected, while that of NIS was significantly up-regulated, which are in accordance with gene expression. The overall results indicated that exposure to MC-RR can induce developmental toxicity, which might be associated with thyroid endocrine disruption in developing zebrafish larvae.

  9. Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A.

    PubMed

    Jašarević, Eldin; Sieli, Paizlee T; Twellman, Erin E; Welsh, Thomas H; Schachtman, Todd R; Roberts, R Michael; Geary, David C; Rosenfeld, Cheryl S

    2011-07-12

    Exposure to endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), may cause adverse health effects in wildlife and humans, but controversy remains as to what traits are most sensitive to EDCs and might serve as barometers of exposure. Expression of sexually selected traits that have evolved through intrasexual competition for mates and intersexual choice of mating partner are more dependent on developmental and physical condition of an animal than naturally selected traits and thus might be particularly vulnerable to disruption by developmental exposure to EDCs. We have used the deer mouse (Peromyscus maniculatus) as a model to test this hypothesis. Adult male-male competition for mates in this species is supported by enhanced spatial navigational and exploratory abilities, which enable males to search for prospective, widely dispersed females. Male deer mice exposed to BPA or ethinyl estradiol (EE) through maternal diet showed no changes in external phenotype, sensory development, or adult circulating concentrations of testosterone and corticosterone, but spatial learning abilities and exploratory behaviors were severely compromised compared with control males. Because these traits are not sexually selected in females, BPA exposure predictably had no effect, although EE-exposed females demonstrated enhanced spatial navigational abilities. Both BPA-exposed and control females preferred control males to BPA-exposed males. Our demonstration that developmental exposure to BPA compromises cognitive abilities and behaviors essential for males to reproduce successfully has broad implications for other species, including our own. Thus, sexually selected traits might provide useful biomarkers to assess risk of environmental contamination in animal and human populations.

  10. Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A

    PubMed Central

    Jašarević, Eldin; Sieli, Paizlee T.; Twellman, Erin E.; Welsh, Thomas H.; Schachtman, Todd R.; Roberts, R. Michael; Geary, David C.; Rosenfeld, Cheryl S.

    2011-01-01

    Exposure to endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), may cause adverse health effects in wildlife and humans, but controversy remains as to what traits are most sensitive to EDCs and might serve as barometers of exposure. Expression of sexually selected traits that have evolved through intrasexual competition for mates and intersexual choice of mating partner are more dependent on developmental and physical condition of an animal than naturally selected traits and thus might be particularly vulnerable to disruption by developmental exposure to EDCs. We have used the deer mouse (Peromyscus maniculatus) as a model to test this hypothesis. Adult male–male competition for mates in this species is supported by enhanced spatial navigational and exploratory abilities, which enable males to search for prospective, widely dispersed females. Male deer mice exposed to BPA or ethinyl estradiol (EE) through maternal diet showed no changes in external phenotype, sensory development, or adult circulating concentrations of testosterone and corticosterone, but spatial learning abilities and exploratory behaviors were severely compromised compared with control males. Because these traits are not sexually selected in females, BPA exposure predictably had no effect, although EE-exposed females demonstrated enhanced spatial navigational abilities. Both BPA-exposed and control females preferred control males to BPA-exposed males. Our demonstration that developmental exposure to BPA compromises cognitive abilities and behaviors essential for males to reproduce successfully has broad implications for other species, including our own. Thus, sexually selected traits might provide useful biomarkers to assess risk of environmental contamination in animal and human populations. PMID:21709224

  11. Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A.

    PubMed

    Jašarević, Eldin; Sieli, Paizlee T; Twellman, Erin E; Welsh, Thomas H; Schachtman, Todd R; Roberts, R Michael; Geary, David C; Rosenfeld, Cheryl S

    2011-07-12

    Exposure to endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), may cause adverse health effects in wildlife and humans, but controversy remains as to what traits are most sensitive to EDCs and might serve as barometers of exposure. Expression of sexually selected traits that have evolved through intrasexual competition for mates and intersexual choice of mating partner are more dependent on developmental and physical condition of an animal than naturally selected traits and thus might be particularly vulnerable to disruption by developmental exposure to EDCs. We have used the deer mouse (Peromyscus maniculatus) as a model to test this hypothesis. Adult male-male competition for mates in this species is supported by enhanced spatial navigational and exploratory abilities, which enable males to search for prospective, widely dispersed females. Male deer mice exposed to BPA or ethinyl estradiol (EE) through maternal diet showed no changes in external phenotype, sensory development, or adult circulating concentrations of testosterone and corticosterone, but spatial learning abilities and exploratory behaviors were severely compromised compared with control males. Because these traits are not sexually selected in females, BPA exposure predictably had no effect, although EE-exposed females demonstrated enhanced spatial navigational abilities. Both BPA-exposed and control females preferred control males to BPA-exposed males. Our demonstration that developmental exposure to BPA compromises cognitive abilities and behaviors essential for males to reproduce successfully has broad implications for other species, including our own. Thus, sexually selected traits might provide useful biomarkers to assess risk of environmental contamination in animal and human populations. PMID:21709224

  12. Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal Disruption.

    PubMed

    Master, Alyssa M; Williams, Philise N; Pothayee, Nikorn; Pothayee, Nipon; Zhang, Rui; Vishwasrao, Hemant M; Golovin, Yuri I; Riffle, Judy S; Sokolsky, Marina; Kabanov, Alexander V

    2016-01-01

    Motion of micron and sub-micron size magnetic particles in alternating magnetic fields can activate mechanosensitive cellular functions or physically destruct cancer cells. However, such effects are usually observed with relatively large magnetic particles (>250 nm) that would be difficult if at all possible to deliver to remote sites in the body to treat disease. Here we show a completely new mechanism of selective toxicity of superparamagnetic nanoparticles (SMNP) of 7 to 8 nm in diameter to cancer cells. These particles are coated by block copolymers, which facilitates their entry into the cells and clustering in the lysosomes, where they are then magneto-mechanically actuated by remotely applied alternating current (AC) magnetic fields of very low frequency (50 Hz). Such fields and treatments are safe for surrounding tissues but produce cytoskeletal disruption and subsequent death of cancer cells while leaving healthy cells intact. PMID:27644858

  13. Nickel oxide nanoparticle-based method for simultaneous harvesting and disruption of microalgal cells.

    PubMed

    Huang, Wen-Can; Kim, Jong-Duk

    2016-10-01

    Microalgae biodiesel is considered one of the most promising renewable fuels. However, the high cost of the downstream process is a major barrier to large-scale microalgal lipid production. In this study, a novel approach based on nickel oxide nanoparticles (NiO NPs) was developed and its effectiveness for simultaneous harvesting and cell disruption in microalgal lipid production was determined. NiO NPs exhibited a microalgal harvesting efficiency of 98.75% in 1min at pH 7. Moreover, after treating with NiO NPs for 96h, the lipid extraction efficiency of microalgae (with 80% water content) reached 91.08% and was 208.37% compared to that without NiO treatment. This approach is simple and does not necessitate drying; furthermore, no equipment with high energy consumption was required.

  14. Nickel oxide nanoparticle-based method for simultaneous harvesting and disruption of microalgal cells.

    PubMed

    Huang, Wen-Can; Kim, Jong-Duk

    2016-10-01

    Microalgae biodiesel is considered one of the most promising renewable fuels. However, the high cost of the downstream process is a major barrier to large-scale microalgal lipid production. In this study, a novel approach based on nickel oxide nanoparticles (NiO NPs) was developed and its effectiveness for simultaneous harvesting and cell disruption in microalgal lipid production was determined. NiO NPs exhibited a microalgal harvesting efficiency of 98.75% in 1min at pH 7. Moreover, after treating with NiO NPs for 96h, the lipid extraction efficiency of microalgae (with 80% water content) reached 91.08% and was 208.37% compared to that without NiO treatment. This approach is simple and does not necessitate drying; furthermore, no equipment with high energy consumption was required. PMID:27481468

  15. Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal Disruption

    PubMed Central

    Master, Alyssa M.; Williams, Philise N.; Pothayee, Nikorn; Pothayee, Nipon; Zhang, Rui; Vishwasrao, Hemant M.; Golovin, Yuri I.; Riffle, Judy S.; Sokolsky, Marina; Kabanov, Alexander V.

    2016-01-01

    Motion of micron and sub-micron size magnetic particles in alternating magnetic fields can activate mechanosensitive cellular functions or physically destruct cancer cells. However, such effects are usually observed with relatively large magnetic particles (>250 nm) that would be difficult if at all possible to deliver to remote sites in the body to treat disease. Here we show a completely new mechanism of selective toxicity of superparamagnetic nanoparticles (SMNP) of 7 to 8 nm in diameter to cancer cells. These particles are coated by block copolymers, which facilitates their entry into the cells and clustering in the lysosomes, where they are then magneto-mechanically actuated by remotely applied alternating current (AC) magnetic fields of very low frequency (50 Hz). Such fields and treatments are safe for surrounding tissues but produce cytoskeletal disruption and subsequent death of cancer cells while leaving healthy cells intact. PMID:27644858

  16. Cypermethrin exposure during puberty disrupts testosterone synthesis via downregulating StAR in mouse testes.

    PubMed

    Wang, Hua; Wang, Qun; Zhao, Xian-Feng; Liu, Ping; Meng, Xiu-Hong; Yu, Tao; Ji, Yan-Li; Zhang, Heng; Zhang, Cheng; Zhang, Ying; Xu, De-Xiang

    2010-01-01

    Cypermethrin is a widely used synthetic pyrethroid insecticide. Previous studies showed that cypermethrin significantly decreased the fertility and reduced the number of implantation sites and viable fetuses in females impregnated by males exposed to cypermethrin. As yet, little is known about the mechanism of cypermethrin-induced reproductive toxicity. In the present study, we investigated the effects of cypermethrin exposure during puberty on steroidogenesis in mice. Young male mice were administered with cypermethrin (25 mg/kg) by gavage daily from postnatal day (PND) 35 to PND70. Results showed that the level of serum and testicular testosterone (T) was markedly decreased in cypermethrin-treated mice. Additional experiment showed that cypermethrin exposure during puberty markedly downregulated mRNA level of steroidogenic acute regulatory protein (StAR) in testes. Correspondingly, protein level of testicular StAR was significantly decreased in cypermethrin-treated mice. Cypermethrin exposure during puberty did not affect the number of Leydig cells in testes. Although cypermethrin exposure during puberty did not affect the weight of testes and epididymides, the number of sperm in the cauda epididymides was significantly decreased in cypermethrin-treated mice. Taken together, these results indicate that cypermethrin exposure during puberty significantly disrupts T synthesis via downregulating the expression of testicular StAR. The decreased T synthesis might be associated with cypermethrin-induced impairment in spermatogenesis in mice.

  17. Metformin Exposure at Environmentally Relevant Concentrations Causes Potential Endocrine Disruption in Adult Male Fish

    PubMed Central

    Niemuth, Nicholas J; Jordan, Renee; Crago, Jordan; Blanksma, Chad; Johnson, Rodney; Klaper, Rebecca D

    2015-01-01

    Pharmaceuticals and personal care products (PPCPs) are emerging contaminants that have been found ubiquitously in wastewater and surface waters around the world. A major source of these compounds is incomplete metabolism in humans and subsequent excretion in human waste, resulting in discharge into surface waters by wastewater treatment plant (WWTP) effluent. One pharmaceutical found in particularly high abundance in recent WWTP effluent and surface water studies is metformin, one of the world's most widely prescribed antidiabetic drugs. Interactions between insulin signaling and steroidogenesis suggest potential endocrine-disrupting effects of metformin found in the aquatic environment. Adult fathead minnows (Pimephales promelas) were chronically exposed to metformin for 4 wk, at 40 µg/L, a level similar to the average found in WWTP effluent in Milwaukee, Wisconsin, USA. Genetic endpoints related to metabolism and endocrine function as well as reproduction-related endpoints were examined. Metformin treatment induced significant up-regulation of messenger ribonucleic acid (mRNA) encoding the egg-protein vitellogenin in male fish, an indication of endocrine disruption. The present study, the first to study the effects of environmentally relevant metformin exposure in fathead minnows, demonstrates the need for further study of the endocrine-disrupting effects of metformin in aquatic organisms. Environ Toxicol Chem 2014;9999:1–6. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:25358780

  18. Thyroid Disruption in Zebrafish Larvae by Short-Term Exposure to Bisphenol AF.

    PubMed

    Tang, Tianle; Yang, Yang; Chen, Yawen; Tang, Wenhao; Wang, Fuqiang; Diao, Xiaoping

    2015-10-01

    Bisphenol AF (BPAF) is extensively used as a raw material in industry, resulting in its widespread distribution in the aqueous environment. However, the effect of BPAF on the hypothalamic-pituitary-thyroidal (HPT) axis remains unknown. For elucidating the disruptive effects of BPAF on thyroid function and expression of the representative genes along the HPT axis in zebrafish (Danio rerio) embryos, whole-body total 3,3',5-triiodothyronine (TT3), total 3,5,3',5'-tetraiodothyronine (TT4), free 3,3',5-triiodothyronine (FT3) and free 3,5,3',5'-tetraiodothyronine (FT4) levels were examined following 168 h post-fertilization exposure to different BPAF concentrations (0, 5, 50 and 500 μg/L). The results showed that whole-body TT3, TT4, FT3 and FT4 contents decreased significantly with the BPAF treatment, indicating an endocrine disruption of thyroid. The expression of thyroid-stimulating hormone-β and thyroglobulin genes increased after exposing to 50 μg/L BPAF in seven-day-old larvae. The expressions of thyronine deiodinases type 1, type 2 and transthyretin mRNAs were also significantly up-regulated, which were possibly associated with a deterioration of thyroid function. However, slc5a5 gene transcription was significantly down-regulated at 50 μg/L and 500 μg/L BPAF exposure. Furthermore, trα and trβ genes were down-regulated transcriptionally after BPAF exposure. It demonstrates that BPAF exposure triggered thyroid endocrine toxicity by altering the whole-body contents of thyroid hormones and changing the transcription of the genes involved in the HPT axis in zebrafish larvae. PMID:26501309

  19. Thyroid Disruption in Zebrafish Larvae by Short-Term Exposure to Bisphenol AF

    PubMed Central

    Tang, Tianle; Yang, Yang; Chen, Yawen; Tang, Wenhao; Wang, Fuqiang; Diao, Xiaoping

    2015-01-01

    Bisphenol AF (BPAF) is extensively used as a raw material in industry, resulting in its widespread distribution in the aqueous environment. However, the effect of BPAF on the hypothalamic-pituitary-thyroidal (HPT) axis remains unknown. For elucidating the disruptive effects of BPAF on thyroid function and expression of the representative genes along the HPT axis in zebrafish (Danio rerio) embryos, whole-body total 3,3′,5-triiodothyronine (TT3), total 3,5,3′,5′-tetraiodothyronine (TT4), free 3,3′,5-triiodothyronine (FT3) and free 3,5,3′,5′-tetraiodothyronine (FT4) levels were examined following 168 h post-fertilization exposure to different BPAF concentrations (0, 5, 50 and 500 μg/L). The results showed that whole-body TT3, TT4, FT3 and FT4 contents decreased significantly with the BPAF treatment, indicating an endocrine disruption of thyroid. The expression of thyroid-stimulating hormone-β and thyroglobulin genes increased after exposing to 50 μg/L BPAF in seven-day-old larvae. The expressions of thyronine deiodinases type 1, type 2 and transthyretin mRNAs were also significantly up-regulated, which were possibly associated with a deterioration of thyroid function. However, slc5a5 gene transcription was significantly down-regulated at 50 μg/L and 500 μg/L BPAF exposure. Furthermore, trα and trβ genes were down-regulated transcriptionally after BPAF exposure. It demonstrates that BPAF exposure triggered thyroid endocrine toxicity by altering the whole-body contents of thyroid hormones and changing the transcription of the genes involved in the HPT axis in zebrafish larvae. PMID:26501309

  20. Repeated amphetamine exposure disrupts dopaminergic modulation of amygdala-prefrontal circuitry and cognitive/emotional functioning.

    PubMed

    Tse, Maric T L; Cantor, Anna; Floresco, Stan B

    2011-08-01

    Repeated exposure to psychostimulants such as amphetamine (AMPH) disrupts cognitive and behavioral processes mediated by the medial prefrontal cortical (mPFC) and basolateral amygdala (BLA). The present study investigated the effects of repeated AMPH exposure on the neuromodulatory actions of dopamine (DA) on BLA-mPFC circuitry and cognitive/emotional processing mediated by these circuits. Rats received five AMPH (2 mg/kg) or saline injections (controls) over 10 d, followed by 2-4 week drug washout. In vivo neurophysiological extracellular recordings in urethane-anesthetized rats were used to obtain data from mPFC neurons that were either inhibited or excited by BLA stimulation. In controls, acute AMPH attenuated BLA-evoked inhibitory or excitatory responses; these effects were mimicked by selective D(2) or D(1) agonists, respectively. However, in AMPH-treated rats, the ability of these dopaminergic manipulations to modulate BLA-driven decreases/increases in mPFC activity was abolished. Repeated AMPH also blunted the excitatory effects of ventral tegmental area stimulation on mPFC neural firing. Behavioral studies assessed the effect of repeated AMPH on decision making with conditioned punishment, a process mediated by BLA-mPFC circuitry and mesocortical DA. These treatments impaired the ability of rats to use conditioned aversive stimuli (footshock-associated cue) to guide the direction of instrumental responding. Collectively, these data suggest that repeated AMPH exposure can lead to persistent disruption of dopaminergic modulation of BLA-mPFC circuitry, which may underlie impairments in cognitive/emotional processing observed in stimulant abusers. Furthermore, they suggest that impairments in decision making guided by aversive stimuli observed in stimulant abusers may be the result of repeated drug exposure. PMID:21813688

  1. Repeated amphetamine exposure disrupts dopaminergic modulation of amygdala-prefrontal circuitry and cognitive/emotional functioning.

    PubMed

    Tse, Maric T L; Cantor, Anna; Floresco, Stan B

    2011-08-01

    Repeated exposure to psychostimulants such as amphetamine (AMPH) disrupts cognitive and behavioral processes mediated by the medial prefrontal cortical (mPFC) and basolateral amygdala (BLA). The present study investigated the effects of repeated AMPH exposure on the neuromodulatory actions of dopamine (DA) on BLA-mPFC circuitry and cognitive/emotional processing mediated by these circuits. Rats received five AMPH (2 mg/kg) or saline injections (controls) over 10 d, followed by 2-4 week drug washout. In vivo neurophysiological extracellular recordings in urethane-anesthetized rats were used to obtain data from mPFC neurons that were either inhibited or excited by BLA stimulation. In controls, acute AMPH attenuated BLA-evoked inhibitory or excitatory responses; these effects were mimicked by selective D(2) or D(1) agonists, respectively. However, in AMPH-treated rats, the ability of these dopaminergic manipulations to modulate BLA-driven decreases/increases in mPFC activity was abolished. Repeated AMPH also blunted the excitatory effects of ventral tegmental area stimulation on mPFC neural firing. Behavioral studies assessed the effect of repeated AMPH on decision making with conditioned punishment, a process mediated by BLA-mPFC circuitry and mesocortical DA. These treatments impaired the ability of rats to use conditioned aversive stimuli (footshock-associated cue) to guide the direction of instrumental responding. Collectively, these data suggest that repeated AMPH exposure can lead to persistent disruption of dopaminergic modulation of BLA-mPFC circuitry, which may underlie impairments in cognitive/emotional processing observed in stimulant abusers. Furthermore, they suggest that impairments in decision making guided by aversive stimuli observed in stimulant abusers may be the result of repeated drug exposure.

  2. Developmental exposure to endocrine disrupting chemicals alters the epigenome: Identification of reprogrammed targets

    PubMed Central

    Prusinski, Lauren; Al-Hendy, Ayman; Yang, Qiwei

    2016-01-01

    Endocrine disruptions induced by environmental toxicants have placed an immense burden on society to properly diagnose, treat and attempt to alleviate symptoms and disease. Environmental exposures during critical periods of development can permanently reprogram normal physiological responses, thereby increasing susceptibility to disease later in life - a process known as developmental reprogramming. During development, organogenesis and tissue differentiation occur through a continuous series of tightly-regulated and precisely-timed molecular, biochemical and cellular events. Humans may encounter endocrine disrupting chemicals (EDCs) daily and during all stages of life, from conception and fetal development through adulthood and senescence. Though puberty and perimenopausal periods may be affected by endocrine disruption due to hormonal effects, prenatal and early postnatal windows are most critical for proper development due to rapid changes in system growth. Developmental reprogramming is shown to be caused by alterations in the epigenome. Development is the time when epigenetic programs are ‘installed’ on the genome by ‘writers’, such as histone methyltransferases (HMTs) and DNA methyltransferases (DNMTs), which add methyl groups to lysine and arginine residues on histone tails and to CpG sites in DNA, respectively. A number of environmental compounds, referred to as estrogenic endocrine disruptors (EEDs), are able to bind to estrogen receptors (ERs) and interfere with the normal cellular development in target tissues including the prostate and uterus. These EEDs, including diethylstilbestrol (DES), bisphenol A (BPA), and genistein (a phytoestrogen derived from soybeans), have been implicated in the malformation of reproductive organs and later development of disease. Due to the lack of fully understanding the underlying mechanisms of how environmental toxicants and their level of exposure affect the human genome, it can be challenging to create clear

  3. TRANSGENERATIONAL (IN UTERO/LACTATIONAL) EXPOSURE PROTOCOL TO INVESTIGATE THE EFFECTS OF ENDOCRINE DISRUPTING COMPOUNDS (EDCS) IN RATS

    EPA Science Inventory

    This protocol is designed to evaluate the effects of Endocrine Disrupting Compounds (EDCs) through fetal (transplacental) and/or neonatal (via the dam's milk) exposure during the critical periods of reproductive organogenesis in the rat. Continued direct exposure to the F1 pups...

  4. Oral Gingival Cell Cigarette Smoke Exposure Induces Muscle Cell Metabolic Disruption

    PubMed Central

    Baeder, Andrea C.; Napa, Kiran; Richardson, Sarah T.; Taylor, Oliver J.; Andersen, Samantha G.; Wilcox, Shalene H.; Winden, Duane R.; Reynolds, Paul R.

    2016-01-01

    Cigarette smoke exposure compromises health through damaging multiple physiological systems, including disrupting metabolic function. The purpose of this study was to determine the role of oral gingiva in mediating the deleterious metabolic effects of cigarette smoke exposure on skeletal muscle metabolic function. Using an in vitro conditioned medium cell model, skeletal muscle cells were incubated with medium from gingival cells treated with normal medium or medium containing suspended cigarette smoke extract (CSE). Following incubation of muscle cells with gingival cell conditioned medium, muscle cell mitochondrial respiration and insulin signaling and action were determined as an indication of overall muscle metabolic health. Skeletal muscle cells incubated with conditioned medium of CSE-treated gingival cells had a profound reduction in mitochondrial respiration and respiratory control. Furthermore, skeletal muscle cells had a greatly reduced response in insulin-stimulated Akt phosphorylation and glycogen synthesis. Altogether, these results provide a novel perspective on the mechanism whereby cigarette smoke affects systemic metabolic function. In conclusion, we found that oral gingival cells treated with CSE create an altered milieu that is sufficient to both disrupted skeletal muscle cell mitochondrial function and insulin sensitivity. PMID:27034671

  5. Embryonic exposure to propylthiouracil disrupts left-right patterning in Xenopus embryos.

    PubMed

    van Veenendaal, Nicole R; Ulmer, Bärbel; Boskovski, Marko T; Fang, Xiefan; Khokha, Mustafa K; Wendler, Christopher C; Blum, Martin; Rivkees, Scott A

    2013-02-01

    Antithyroid medications are the preferred therapy for the treatment of Graves' disease during pregnancy. Propylthiouracil (PTU) is favored over methimazole (MMI) due to potential teratogenic concerns with MMI. This study was to determine the teratogenic potential of MMI and PTU using a validated Xenopus tropicalis embryo model. Embryos were exposed to 1 mM PTU (EC(50)=0.88 mM), 1 mM MMI, or vehicle control (water) from stages 2 to 45. Treated embryos were examined for gross morphological defects, ciliary function, and gene expression by in situ hybridization. Exposure to PTU, but not MMI, led to cardiac and gut looping defects and shortening along the anterior-posterior axis. PTU exposure during gastrulation (stage 8-12.5) was identified as the critical period of exposure leading to left-right (LR) patterning defects. Abnormal cilia polarization, abnormal cilia-driven leftward flow at the gastrocoel roof plate (GRP), and aberrant expression of both Coco and Pitx2c were associated with abnormal LR symmetry observed following PTU exposure. PTU is teratogenic during late blastula, gastrulation, and neurulation; whereas MMI is not. PTU alters ciliary-driven flow and disrupts the normal genetic program involved in LR axis determination. These studies have important implications for women taking PTU during early pregnancy.

  6. Chronic Exposure to Cadmium Disrupts the Adrenal Gland Activity of the Newt Triturus carnifex (Amphibia, Urodela)

    PubMed Central

    Gay, Flaminia; Laforgia, Vincenza; Caputo, Ivana; Esposito, Carla; Lepretti, Marilena

    2013-01-01

    We intended to verify the safety of the freshwater values established for cadmium by the European Community and the Italian Ministry of Health in drinking water (5 μg/L) and sewage waters (20 μg/L). Therefore, we chronically exposed the newt Triturus carnifex to 5 μg/L and 20 μg/L doses of cadmium, respectively, during 3 and 9 months and verified the effects on the adrenal gland. We evaluated the serum concentrations of adrenocorticotropic hormone (ACTH), corticosterone, aldosterone, norepinephrine, and epinephrine. During the 3-month exposure, both doses of cadmium decreased ACTH and corticosterone serum levels and increased aldosterone and epinephrine serum levels. During the 9-month exposure, the 5 μg/L dose decreased ACTH and increased aldosterone and epinephrine serum levels; the 20 μg/L dose decreased norepinephrine and epinephrine serum levels, without affecting the other hormones. It was concluded that (1) chronic exposure to the safety values established for cadmium disrupted the adrenal gland activity and (2) the effects of cadmium were related both to the length of exposure and the dose administered. Moreover, our results suggest probable risks to human health, due to the use of water contaminated by cadmium. PMID:23971036

  7. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem.

    PubMed

    Dubiel, A; Kulesza, R J

    2016-06-01

    Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions characterized by difficulties in communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Notably, the vast majority of individuals with ASD experience some degree of auditory dysfunction and we have recently reported consistent hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is employed as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology of auditory brainstem centers. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal neuronal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4- or 16-kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these exposures, we identified significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Additionally, we observed a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD. PMID:27094734

  8. Endocrine disruption in white ibises (Eudocimus albus) caused by exposure to environmentally relevant levels of methylmercury.

    PubMed

    Jayasena, Nilmini; Frederick, Peter C; Larkin, Iskande L V

    2011-10-01

    Methylmercury is a globally distributed pollutant and upper trophic level aquatic fauna are at particularly high risk of exposure. Although methylmercury is known to have a number of neurological and developmental effects, relatively little is known about effects on endocrine disruption and reproduction in aquatic fauna, particularly in response to chronic exposure at low concentrations. We experimentally exposed captive white ibises for 3.5 years (2005-2008) to dietary methylmercury at three environmentally relevant concentrations (0.05, 0.1 and 0.3 ppm wet weight in diet). We measured fecal concentrations of estradiol and testosterone metabolites in two consecutive breeding seasons (2007 and 2008). When effects were controlled for stage of breeding, this resulted in altered estradiol and testosterone concentrations in adult breeders of both sexes. Changes in endocrine expression were not consistent over both years, and a clear dose-response relationship was not always present. Endocrine changes were, however, associated at all dose levels with changes in reproductive behavior, reduced reproductive success and altered mate choice in males. Male-male pairing and altered courtship behavior in males were related both to dose treatment and, in 2008, to a demasculinized pattern of endocrine expression. Changes in hormone concentrations of dosed homosexually paired males, when present, were in the same direction but at a higher magnitude than those in heterosexual dosed males. Dosed homosexual males showed decreased testosterone during nest-building and elevated testosterone during incubation when compared with their dosed heterosexual counterparts during the 2008 breeding season. In the same year, exposed males had elevated estradiol during courtship, but had decreased estradiol during other stages in comparison with controls. Dosed females generally showed decreased estradiol and testosterone concentrations compared to controls, albeit not with a clear dose

  9. Modeling Population Exposures to Silver Nanoparticles Present in Consumer Products

    PubMed Central

    Royce, Steven G.; Mukherjee, Dwaipayan; Cai, Ting; Xu, Shu S.; Alexander, Jocelyn A.; Mi, Zhongyuan; Calderon, Leonardo; Mainelis, Gediminas; Lee, KiBum; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-01-01

    Exposures of the general population to manufactured nanoparticles (MNPs) are expected to keep rising due to increasing use of MNPs in common consumer products (PEN 2014). The present study focuses on characterizing ambient and indoor population exposures to silver MNPs (nAg). For situations where detailed, case-specific exposure-related data are not available, as in the present study, a novel tiered modeling system, Prioritization/Ranking of Toxic Exposures with GIS (Geographic Information System) Extension (PRoTEGE), has been developed: it employs a product Life Cycle Analysis (LCA) approach coupled with basic human Life Stage Analysis (LSA) to characterize potential exposures to chemicals of current and emerging concern. The PRoTEGE system has been implemented for ambient and indoor environments, utilizing available MNP production, usage, and properties databases, along with laboratory measurements of potential personal exposures from consumer spray products containing nAg. Modeling of environmental and microenvironmental levels of MNPs employs Probabilistic Material Flow Analysis combined with product LCA to account for releases during manufacturing, transport, usage, disposal, etc. Human exposure and dose characterization further employs screening Microenvironmental Modeling and Intake Fraction methods combined with LSA for potentially exposed populations, to assess differences associated with gender, age, and demographics. Population distributions of intakes, estimated using the PRoTEGE framework, are consistent with published individual-based intake estimates, demonstrating that PRoTEGE is capable of capturing realistic exposure scenarios for the US population. Distributions of intakes are also used to calculate biologically-relevant population distributions of uptakes and target tissue doses through human airway dosimetry modeling that takes into account product MNP size distributions and age-relevant physiological parameters. PMID:25745354

  10. Obesity, Diabetes, and Associated Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union

    PubMed Central

    Legler, Juliette; Fletcher, Tony; Govarts, Eva; Porta, Miquel; Blumberg, Bruce; Heindel, Jerrold J.

    2015-01-01

    Context: Obesity and diabetes are epidemic in the European Union (EU). Exposure to endocrine-disrupting chemicals (EDCs) is increasingly recognized as a contributor, independent of diet and physical activity. Objective: The objective was to estimate obesity, diabetes, and associated costs that can be reasonably attributed to EDC exposures in the EU. Design: An expert panel evaluated evidence for probability of causation using weight-of-evidence characterization adapted from that applied by the Intergovernmental Panel on Climate Change. Exposure-response relationships and reference levels were evaluated for relevant EDCs, and biomarker data were organized from peer-reviewed studies to represent European exposure and burden of disease. Cost estimation as of 2010 utilized published cost estimates for childhood obesity, adult obesity, and adult diabetes. Setting, Patients and Participants, and Intervention: Cost estimation was performed from the societal perspective. Results: The panel identified a 40% to 69% probability of dichlorodiphenyldichloroethylene causing 1555 cases of overweight at age 10 (sensitivity analysis: 1555–5463) in 2010 with associated costs of €24.6 million (sensitivity analysis: €24.6–86.4 million). A 20% to 39% probability was identified for dichlorodiphenyldichloroethylene causing 28 200 cases of adult diabetes (sensitivity analysis: 28 200–56 400) with associated costs of €835 million (sensitivity analysis: €835 million–16.6 billion). The panel also identified a 40% to 69% probability of phthalate exposure causing 53 900 cases of obesity in older women and €15.6 billion in associated costs. Phthalate exposure was also found to have a 40% to 69% probability of causing 20 500 new-onset cases of diabetes in older women with €607 million in associated costs. Prenatal bisphenol A exposure was identified to have a 20% to 69% probability of causing 42 400 cases of childhood obesity, with associated lifetime costs of €1.54 billion

  11. Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish

    PubMed Central

    Özel, Rıfat Emrah; Wallace, Kenneth N.

    2014-01-01

    The increased use of engineered nanoparticles (NPs) in manufacturing and consumer products raises concerns about the potential environmental and health implications on the ecosystem and living organisms. Organs initially and more heavily affected by environmental NPs exposure in whole organisms are the skin and digestive system. We investigate the toxic effect of two types of NPs, nickel (Ni) and copper oxide (CuO), on the physiology of the intestine of a living aquatic system, zebrafish embryos. Embryos were exposed to a range of Ni and CuO NP concentrations at different stages of embryonic development. We use changes in the physiological serotonin (5HT) concentrations, determined electrochemically with carbon fiber microelectrodes inserted in the live embryo, to assess this organ dysfunction due to NP exposure. We find that exposure to both Ni and CuO NPs induces changes in the physiological 5HT concentration that varies with the type, exposure period and concentration of NPs, as well as with the developmental stage during which the embryo is exposed. These data suggest that exposure to NPs might alter development and physiological processes in living organisms and provide evidence of the effect of NPs on the physiology of the intestine. PMID:24639893

  12. Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish.

    PubMed

    Ozel, Rıfat Emrah; Wallace, Kenneth N; Andreescu, Silvana

    2014-02-01

    The increased use of engineered nanoparticles (NPs) in manufacturing and consumer products raises concerns about the potential environmental and health implications on the ecosystem and living organisms. Organs initially and more heavily affected by environmental NPs exposure in whole organisms are the skin and digestive system. We investigate the toxic effect of two types of NPs, nickel (Ni) and copper oxide (CuO), on the physiology of the intestine of a living aquatic system, zebrafish embryos. Embryos were exposed to a range of Ni and CuO NP concentrations at different stages of embryonic development. We use changes in the physiological serotonin (5HT) concentrations, determined electrochemically with carbon fiber microelectrodes inserted in the live embryo, to assess this organ dysfunction due to NP exposure. We find that exposure to both Ni and CuO NPs induces changes in the physiological 5HT concentration that varies with the type, exposure period and concentration of NPs, as well as with the developmental stage during which the embryo is exposed. These data suggest that exposure to NPs might alter development and physiological processes in living organisms and provide evidence of the effect of NPs on the physiology of the intestine. PMID:24639893

  13. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota

    PubMed Central

    2014-01-01

    Background The microbiota of the mammalian gastrointestinal (GI) tract consists of diverse populations of commensal bacteria that interact with host physiological function. Dysregulating these populations, through exogenous means such as antibiotics or dietary changes, can have adverse consequences on the health of the host. Studies from laboratories such as ours have demonstrated that exposure to psychological stressors disrupts the population profile of intestinal microbiota. To date, such studies have primarily focused on prolonged stressors (repeated across several days) and have assessed fecal bacterial populations. It is not known whether shorter stressors can also impact the microbiota, and whether colonic mucosa-associated populations can also be affected. The mucosa-associated microbiota exist in close proximity to elements of the host immune system and the two are tightly interrelated. Therefore, alterations in these populations should be emphasized. Additionally, stressors can induce differential responses in anxiety-like behavior and corticosterone outputs in variant strains of mice. Thus, whether stressor exposure can have contrasting effects on the colonic microbiota in inbred C57BL/6 mice and outbred CD-1 mice was also examined. Results In the present study, we used high throughput pyrosequencing to assess the effects of a single 2-hour exposure to a social stressor, called social disruption (SDR), on colonic mucosa-associated microbial profiles of C57BL/6 mice. The data indicate that exposure to the stressor significantly changed the community profile and significantly reduced the relative proportions of two genera and one family of highly abundant intestinal bacteria, including the genus Lactobacillus. This finding was confirmed using a quantitative real-time polymerase chain reaction (qPCR) technique. The use of qPCR also identified mouse strain-specific differences in bacterial abundances. L. reuteri, an immunomodulatory species, was decreased in

  14. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    PubMed Central

    Peres, Tanara Vieira; Pedro, Daniela Zótico; de Cordova, Fabiano Mendes; Lopes, Mark William; Gonçalves, Filipe Marques; Mendes-de-Aguiar, Cláudia Beatriz Nedel; Walz, Roger; Farina, Marcelo; Aschner, Michael; Leal, Rodrigo Bainy

    2013-01-01

    The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain. PMID:24324973

  15. Thalamocortical functional connectivity and behavioral disruptions in neonates with prenatal cocaine exposure.

    PubMed

    Salzwedel, Andrew P; Grewen, Karen M; Goldman, Barbara D; Gao, Wei

    2016-01-01

    Prenatal cocaine exposure (PCE) affects neurobehavioral development, however, disentangling direct drug-related mechanisms from contextual effects (e.g., socioeconomic status) has proven challenging in humans. The effects of environmental confounds are minimal immediately after birth thus we aimed to delineate neurobehavioral correlates of PCE in a large cohort of neonates (2-6weeks of age, N=152) with and without drug exposure using resting state functional magnetic resonance imaging (rsfMRI) and developmental assessments at 3months with the Bayley Scales of Infant & Toddler Development, 3rd edition. The cohort included healthy controls and neonates with similar poly-drug exposure±cocaine. We focused on the thalamus given its critical importance in early brain development and its unique positioning in the dopamine system. Our results revealed PCE-related hyper-connectivity between the thalamus and frontal regions and a drug-common hypo-connective signature between the thalamus and motor-related regions. PCE-specific neonatal thalamo-frontal connectivity was inversely related to cognitive and fine motor scores and thalamo-motor connectivity showed a positive relationship with composite (gross plus fine) motor scores. Finally, cocaine by selective-serotonin-reuptake-inhibitor (SSRI) interactions were detected, suggesting the combined use of these drugs during pregnancy could have additional consequences on fetal development. Overall, our findings provide the first delineation of PCE-related disruptions of thalamocortical functional connectivity, neurobehavioral correlations, and drug-drug interactions during infancy.

  16. Thalamocortical functional connectivity and behavioral disruptions in neonates with prenatal cocaine exposure.

    PubMed

    Salzwedel, Andrew P; Grewen, Karen M; Goldman, Barbara D; Gao, Wei

    2016-01-01

    Prenatal cocaine exposure (PCE) affects neurobehavioral development, however, disentangling direct drug-related mechanisms from contextual effects (e.g., socioeconomic status) has proven challenging in humans. The effects of environmental confounds are minimal immediately after birth thus we aimed to delineate neurobehavioral correlates of PCE in a large cohort of neonates (2-6weeks of age, N=152) with and without drug exposure using resting state functional magnetic resonance imaging (rsfMRI) and developmental assessments at 3months with the Bayley Scales of Infant & Toddler Development, 3rd edition. The cohort included healthy controls and neonates with similar poly-drug exposure±cocaine. We focused on the thalamus given its critical importance in early brain development and its unique positioning in the dopamine system. Our results revealed PCE-related hyper-connectivity between the thalamus and frontal regions and a drug-common hypo-connective signature between the thalamus and motor-related regions. PCE-specific neonatal thalamo-frontal connectivity was inversely related to cognitive and fine motor scores and thalamo-motor connectivity showed a positive relationship with composite (gross plus fine) motor scores. Finally, cocaine by selective-serotonin-reuptake-inhibitor (SSRI) interactions were detected, suggesting the combined use of these drugs during pregnancy could have additional consequences on fetal development. Overall, our findings provide the first delineation of PCE-related disruptions of thalamocortical functional connectivity, neurobehavioral correlations, and drug-drug interactions during infancy. PMID:27242332

  17. Developmental programming: exposure to testosterone excess disrupts steroidal and metabolic environment in pregnant sheep.

    PubMed

    Abi Salloum, B; Veiga-Lopez, A; Abbott, D H; Burant, C F; Padmanabhan, V

    2015-06-01

    Gestational exposure to excess T leads to intrauterine growth restriction, low birth weight, and adult metabolic/reproductive disorders in female sheep. We hypothesized that as early mediators of such disruptions, gestational T disrupts steroidal and metabolic homeostasis in both the mother and fetus by both androgenic and metabolic pathways. Maternal blood samples were measured weekly for levels of insulin, glucose, and progesterone from four groups of animals: control; gestational T (twice weekly im injections of 100 mg of T propionate from d 30 to d 90 of gestation); T plus an androgen antagonist, flutamide (15 mg/kg·d oral; T-Flutamide); and T plus the insulin sensitizer, rosiglitazone (0.11 mg/kg·d oral; T-Rosi) (n = 10-12/group). On day 90 of gestation, maternal and umbilical cord samples were collected after a 48-hour fast from a subset (n = 6/group) for the measurement of steroids, free fatty acids, amino acids, and acylcarnitines. Gestational T decreased maternal progesterone levels by 36.5% (P < .05), which was prevented by flutamide showing direct androgenic mediation. Gestational T also augmented maternal insulin levels and decreased medium chained acylcarnitines, suggesting increased mitochondrial fatty acid oxidation. These changes were prevented by rosiglitazone, suggesting alterations in maternal fuel use. Gestational T-induced increases in fetal estradiol were not prevented by either cotreatment. Gestational T disrupted associations of steroids with metabolites and progesterone with acylcarnitines, which was prevented either by androgen antagonist or insulin sensitizer cotreatment. These findings suggest a future combination of these treatments might be required to prevent alteration in maternal/fetal steroidal and metabolic milieu(s).

  18. Developmental Programming: Exposure to Testosterone Excess Disrupts Steroidal and Metabolic Environment in Pregnant Sheep

    PubMed Central

    Abi Salloum, B.; Veiga-Lopez, A.; Abbott, D. H.; Burant, C. F.

    2015-01-01

    Gestational exposure to excess T leads to intrauterine growth restriction, low birth weight, and adult metabolic/reproductive disorders in female sheep. We hypothesized that as early mediators of such disruptions, gestational T disrupts steroidal and metabolic homeostasis in both the mother and fetus by both androgenic and metabolic pathways. Maternal blood samples were measured weekly for levels of insulin, glucose, and progesterone from four groups of animals: control; gestational T (twice weekly im injections of 100 mg of T propionate from d 30 to d 90 of gestation); T plus an androgen antagonist, flutamide (15 mg/kg·d oral; T-Flutamide); and T plus the insulin sensitizer, rosiglitazone (0.11 mg/kg·d oral; T-Rosi) (n = 10–12/group). On day 90 of gestation, maternal and umbilical cord samples were collected after a 48-hour fast from a subset (n = 6/group) for the measurement of steroids, free fatty acids, amino acids, and acylcarnitines. Gestational T decreased maternal progesterone levels by 36.5% (P < .05), which was prevented by flutamide showing direct androgenic mediation. Gestational T also augmented maternal insulin levels and decreased medium chained acylcarnitines, suggesting increased mitochondrial fatty acid oxidation. These changes were prevented by rosiglitazone, suggesting alterations in maternal fuel use. Gestational T-induced increases in fetal estradiol were not prevented by either cotreatment. Gestational T disrupted associations of steroids with metabolites and progesterone with acylcarnitines, which was prevented either by androgen antagonist or insulin sensitizer cotreatment. These findings suggest a future combination of these treatments might be required to prevent alteration in maternal/fetal steroidal and metabolic milieu(s). PMID:25763641

  19. Engineering bioinspired bacteria-adhesive clay nanoparticles with a membrane-disruptive property for the treatment of Helicobacter pylori infection.

    PubMed

    Ping, Yuan; Hu, Xiurong; Yao, Qi; Hu, Qida; Amini, Shahrouz; Miserez, Ali; Tang, Guping

    2016-09-28

    We present a bioinspired design strategy to engineer bacteria-targeting and membrane-disruptive nanoparticles for the effective antibiotic therapy of Helicobacter pylori (H. pylori) infection. Antibacterial nanoparticles were self-assembled from highly exfoliated montmorillonite (eMMT) and cationic linear polyethyleneimine (lPEI) via electrostatic interactions. eMMT functions as a bioinspired 'sticky' building block for anchoring antibacterial nanoparticles onto the bacterial cell surface via bacteria-secreted extracellular polymeric substances (EPS), whereas membrane-disruptive lPEI is able to efficiently lyse the bacterial outer membrane to allow topical transmembrane delivery of antibiotics into the intracellular cytoplasm. As a result, eMMT-lPEI nanoparticles intercalated with the antibiotic metronidazole (MTZ) not only efficiently target bacteria via EPS-mediated adhesion and kill bacteria in vitro, but also can effectively remain in the stomach where H. pylori reside, thereby serving as an efficient drug carrier for the direct on-site release of MTZ into the bacterial cytoplasm. Importantly, MTZ-intercalated eMMT-lPEI nanoparticles were able to efficiently eradicate H. pylori in vivo and to significantly improve H. pylori-associated gastric ulcers and the inflammatory response in a mouse model, and also showed superior therapeutic efficacy as compared to standard triple therapy. Our findings reveal that bacterial adhesion plays a critical role in promoting efficient antimicrobial delivery and also represent an original bioinspired targeting strategy via specific EPS-mediated adsorption. The bacteria-adhesive eMMT-lPEI nanoparticles with membrane-disruptive ability may constitute a promising drug carrier system for the efficacious targeted delivery of antibiotics in the treatment of bacterial infections.

  20. Engineering bioinspired bacteria-adhesive clay nanoparticles with a membrane-disruptive property for the treatment of Helicobacter pylori infection.

    PubMed

    Ping, Yuan; Hu, Xiurong; Yao, Qi; Hu, Qida; Amini, Shahrouz; Miserez, Ali; Tang, Guping

    2016-09-28

    We present a bioinspired design strategy to engineer bacteria-targeting and membrane-disruptive nanoparticles for the effective antibiotic therapy of Helicobacter pylori (H. pylori) infection. Antibacterial nanoparticles were self-assembled from highly exfoliated montmorillonite (eMMT) and cationic linear polyethyleneimine (lPEI) via electrostatic interactions. eMMT functions as a bioinspired 'sticky' building block for anchoring antibacterial nanoparticles onto the bacterial cell surface via bacteria-secreted extracellular polymeric substances (EPS), whereas membrane-disruptive lPEI is able to efficiently lyse the bacterial outer membrane to allow topical transmembrane delivery of antibiotics into the intracellular cytoplasm. As a result, eMMT-lPEI nanoparticles intercalated with the antibiotic metronidazole (MTZ) not only efficiently target bacteria via EPS-mediated adhesion and kill bacteria in vitro, but also can effectively remain in the stomach where H. pylori reside, thereby serving as an efficient drug carrier for the direct on-site release of MTZ into the bacterial cytoplasm. Importantly, MTZ-intercalated eMMT-lPEI nanoparticles were able to efficiently eradicate H. pylori in vivo and to significantly improve H. pylori-associated gastric ulcers and the inflammatory response in a mouse model, and also showed superior therapeutic efficacy as compared to standard triple therapy. Our findings reveal that bacterial adhesion plays a critical role in promoting efficient antimicrobial delivery and also represent an original bioinspired targeting strategy via specific EPS-mediated adsorption. The bacteria-adhesive eMMT-lPEI nanoparticles with membrane-disruptive ability may constitute a promising drug carrier system for the efficacious targeted delivery of antibiotics in the treatment of bacterial infections. PMID:27605059

  1. Dibutyl Phthalate Exposure Disrupts Evolutionarily Conserved Insulin and Glucagon-Like Signaling in Drosophila Males.

    PubMed

    Williams, Michael J; Wiemerslage, Lyle; Gohel, Priya; Kheder, Sania; Kothegala, Lakshmi V; Schiöth, Helgi B

    2016-06-01

    Phthalate diesters are commonly used as industrial plasticisers, as well as in cosmetics and skin care products, as a result people are constantly exposed to these xenobiotics. Recent epidemiological studies have found a correlation between circulating phthalate levels and type 2 diabetes, whereas animal studies indicate that phthalates are capable of disrupting endocrine signaling. Nonetheless, how phthalates interfere with metabolic function is still unclear. Here, we show that feeding Drosophila males the xenobiotic dibutyl phthalate (DBP) affects conserved insulin- and glucagon-like signaling. We report that raising flies on food containing DBP leads to starvation resistance, increased lipid storage, hyperglycemia, and hyperphagia. We go on to show that the starvation-resistance phenotype can be rescued by overexpression of the glucagon analogue adipokinetic hormone (Akh). Furthermore, although acute DBP exposure in adult flies is able to affect insulin levels, only chronic feeding influences Akh expression. We establish that raising flies on DBP-containing food or feeding adults DBP food affects the expression of homologous genes involved in xenobiotic and lipid metabolism (AHR [Drosophila ss], NR1I2 [Hr96], ABCB1 [MDR50], ABCC3 [MRP], and CYP3A4 [Cyp9f2]). Finally, we determined that the expression of these genes is also influenced by Akh. Our results provide comprehensive evidence that DBP can disrupt metabolism in Drosophila males, by regulating genes involved in glucose, lipid, and xenobiotic metabolism. PMID:27100621

  2. Unpacking the association: Individual differences in the relation of prenatal exposure to cigarettes and disruptive behavior phenotypes.

    PubMed

    Wakschlag, Lauren S; Henry, David B; Blair, R James R; Dukic, Vanja; Burns, James; Pickett, Kate E

    2011-01-01

    Prenatal exposure to cigarettes has been robustly associated with disruptive behavior in diverse samples and across developmental periods. In this paper we aim to elucidate exposure related behavioral phenotypes and developmental pathways by testing: (a) differential associations of exposure and four disruptive behavior dimensional phenotypes: Aggression, Noncompliance, Temper Loss and Low Concern for Others; and (b) moderation of these pathways including sex differences and moderation by parental responsive engagement. Participants were 211 teens and their parents from the East Boston Family Study (EBFS), an adolescent follow-up of a pregnancy cohort over-sampled for exposure. A best estimate serum cotinine corrected score was used to characterize exposure. In multivariate models controlling for parental antisocial behavior, family adversity and secondhand exposure, exposure uniquely predicted Aggression and Noncompliance. Paternal responsiveness moderated exposure effects on disruptive behavior. There were no sex differences in these patterns. Phenotypic findings suggest the possibility of specific neural mechanisms. In conjunction with prior research, protective effects of parental responsiveness occurring as late as adolescence point to the potential benefit of parenting-based prevention efforts to reduce risk to exposed offspring.

  3. In utero exposure to carcinogens: Epigenetics, developmental disruption and consequences in later life.

    PubMed

    Waring, R H; Harris, R M; Mitchell, S C

    2016-04-01

    The uterine environment is often viewed as a relatively safe haven, being guarded by the placenta which acts as a filter, permitting required materials to enter and unwanted products to be removed. However, this defensive barrier is sometimes breached by potential chemical hazards to which the mother may be subjected. Many of these toxins have immediate and recognisable deleterious effects on the embryo, foetus or neonate, but a few are insidious and leave a legacy of health issues that may emerge in later life. Several substances, falling into the categories of metals and metalloids, endocrine disruptors, solvents and other industrial chemicals, have been implicated in the development of long-term health problems in the offspring following maternal and subsequent in utero exposure. The mechanisms involved are complex but often involve epigenetic changes which disrupt normal cell processes leading to the development of cancers and also dysregulation of biochemical pathways. PMID:26921930

  4. Exposure to Exogenous Enkephalins Disrupts Reproductive Development in the Eastern Lubber Grasshopper, Romalea microptera (Insecta: Orthoptera)

    PubMed Central

    Kumar, Sandeep; Ganji, Purnachandra Nagaraju; Song, Hojun; von Kalm, Laurence; Borst, David W.

    2012-01-01

    Enkephalins play a major role in reproductive physiology in crustaceans; however their role in reproductive development in insects is largely unknown. We investigated the effect of exposure to exogenous leucine-enkephalin (Leu-Enk), methionine-enkephalin (Met-Enk), and the opioid antagonist naloxone on gonad development in the Eastern lubber grasshopper, Romalea microptera. Injection of either Leu-Enk or naloxone alone significantly increased the testicular index and testicular follicular diameter in males, and the ovarian index, oocyte length, and oocyte diameter in females. In contrast, injection of Met-Enk inhibited all measures of reproductive development in both sexes. Surprisingly, co-injection of naloxone with either enkephalin enhanced the effect associated with administration of the enkephalin alone. This study clearly demonstrates the ability of enkephalins to disrupt insect sexual development and also suggests the existence of conserved enkephaline-dependent regulatory mechanisms in insects and crustaceans. PMID:23226477

  5. Interactions of Graphene Oxide with Model Cell Membranes: Probing Nanoparticle Attachment and Lipid Bilayer Disruption.

    PubMed

    Liu, Xitong; Chen, Kai Loon

    2015-11-10

    With the rapid growth in the application of graphene oxide (GO) in diverse fields, the toxicity of GO toward bacterial and mammalian cells has recently attracted extensive research attention. While several mechanisms have been proposed for the cytotoxicity of GO, the attachment of GO to cell membranes is expected to be the key initial process that precedes these mechanisms. In this study, we investigate the propensity for GO to attach to and disrupt model cell membranes using supported lipid bilayers (SLBs) and supported vesicular layers (SVLs) that are composed of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The deposition kinetics of GO on SLBs were determined using quartz crystal microbalance with dissipation monitoring and were observed to increase with increasing electrolyte (NaCl and CaCl2) concentrations, indicating that GO attachment to SLBs was controlled by electrostatic interactions. The GO deposition kinetics measured at elevated electrolyte concentrations were lower than mass-transfer-limited kinetics, likely due to the presence of hydration forces between GO and SLBs. Upon the attachment of GO to supported vesicles that were encapsulated with a fluorescent dye, dye leakage was detected, thus indicating that the lipid vesicles were disrupted. When the exposure of the SVL to the GO suspension was terminated, the leakage of dye decreased significantly, demonstrating that the pores on the lipid bilayers have a self-healing ability. PMID:26466194

  6. Prenatal ethanol exposure disrupts the histological stages of fetal bone development.

    PubMed

    Snow, M E; Keiver, K

    2007-08-01

    Maternal ethanol intake during pregnancy results in impairments in general growth and skeletal development in the offspring. We have previously shown that ethanol retards skeletal ossification at doses lower than those that affect growth. Moreover, skeletal sites vary in their sensitivity to ethanol effects, with more severe effects occurring in bones that undergo a greater proportion of their development in utero. Taken together, these data suggest that ethanol has specific effects on bone development, and that later stages in the ossification process may be particularly affected. Such effects could have important implications for the offspring's long-term bone health, as studies suggest that the intrauterine environment can program the skeleton. The present study examined the histological stages of bone development to determine if prenatal ethanol exposure alters the morphological development of the growth plate in the fetal rat. Rats were fed a liquid diet containing ethanol (Ethanol, E group), or without ethanol (Pair-Fed, PF, or Control, C groups) for 6 weeks: 3 weeks prior to breeding and during 3 weeks of pregnancy. Fetal tibiae were fixed, decalcified and stained for histological analysis on day 21 of gestation. Maternal ethanol intake resulted in a significant decrease in fetal total bone and diaphysis lengths, compared with tibiae from PF and C fetuses. Although the lengths of the epiphyses were not affected, ethanol disrupted the organization of the histological zones within the epiphyses. Prenatal ethanol exposure decreased the length of the resting zone, but increased the length of the hypertrophic zone. Enlargement of the hypertrophic zone is consistent with an effect of ethanol on the later stages of bone development; however, ethanol's effect on the resting zone indicates that earlier stages of bone development may also be disrupted. The functional significance of these morphological changes to long-term bone health remains to be determined.

  7. Estimating Burden and Disease Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union

    PubMed Central

    Zoeller, R. Thomas; Hass, Ulla; Kortenkamp, Andreas; Grandjean, Philippe; Myers, John Peterson; DiGangi, Joseph; Bellanger, Martine; Hauser, Russ; Legler, Juliette; Skakkebaek, Niels E.; Heindel, Jerrold J.

    2015-01-01

    Context: Rapidly increasing evidence has documented that endocrine-disrupting chemicals (EDCs) contribute substantially to disease and disability. Objective: The objective was to quantify a range of health and economic costs that can be reasonably attributed to EDC exposures in the European Union (EU). Design: A Steering Committee of scientists adapted the Intergovernmental Panel on Climate Change weight-of-evidence characterization for probability of causation based upon levels of available epidemiological and toxicological evidence for one or more chemicals contributing to disease by an endocrine disruptor mechanism. To evaluate the epidemiological evidence, the Steering Committee adapted the World Health Organization Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group criteria, whereas the Steering Committee adapted definitions recently promulgated by the Danish Environmental Protection Agency for evaluating laboratory and animal evidence of endocrine disruption. Expert panels used the Delphi method to make decisions on the strength of the data. Results: Expert panels achieved consensus at least for probable (>20%) EDC causation for IQ loss and associated intellectual disability, autism, attention-deficit hyperactivity disorder, childhood obesity, adult obesity, adult diabetes, cryptorchidism, male infertility, and mortality associated with reduced testosterone. Accounting for probability of causation and using the midpoint of each range for probability of causation, Monte Carlo simulations produced a median cost of €157 billion (or $209 billion, corresponding to 1.23% of EU gross domestic product) annually across 1000 simulations. Notably, using the lowest end of the probability range for each relationship in the Monte Carlo simulations produced a median range of €109 billion that differed modestly from base case probability inputs. Conclusions: EDC exposures in the EU are likely to contribute substantially to disease and

  8. Occupational exposure to nanoparticles at commercial photocopy centers.

    PubMed

    Martin, John; Bello, Dhimiter; Bunker, Kristin; Shafer, Martin; Christiani, David; Woskie, Susan; Demokritou, Philip

    2015-11-15

    Photocopiers emit high levels of nanoparticles (PM0.1). To-date little is known of physicochemical composition of PM0.1 in real workplace settings. Here we perform a comprehensive physicochemical and morphological characterization of PM0.1 and raw materials (toners and paper) at eight commercial photocopy centers that use color and monochrome photocopiers over the course of a full week. We document high PM0.1 exposures with complex composition and several ENM in toners and PM0.1. Daily geometric mean PM0.1 concentrations ranged from 3700 to 34000 particles/cubic-centimeter (particles/cm(3)) (GSD 1.4-3.3), up to 12 times greater than background, with transient peaks >1.4 million particles/cm(3). PM0.1 contained 6-63% organic carbon, <1% elemental carbon, and 2-8% metals, including iron, zinc, titania, chromium, nickel and manganese, typically in the <0.01-1% range, and in agreement with toner composition. These findings document widespread ENM in toner formulations and high nanoparticle exposures are an industry-wide phenomenon. It further calls attention to the need to substantially redesign the interface of this technology with workers and consumers. PMID:26148960

  9. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    SciTech Connect

    Herbert, Katharine J.; Holloway, Adele; Cook, Anthony L.; Chin, Suyin P.; Snow, Elizabeth T.

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  10. Press or pulse exposures determine the environmental fate of cerium nanoparticles in stream mesocosms.

    PubMed

    Baker, Leanne F; King, Ryan S; Unrine, Jason M; Castellon, Benjamin T; Lowry, Gregory V; Matson, Cole W

    2016-05-01

    Risk-assessment models indicate that stream ecosystems receiving municipal wastewater effluent may have the greatest potential for exposure to manufactured nanoparticles. The authors determined the fate of cerium oxide (CeO2 ) nanoparticles in outdoor stream mesocosms using 1) 1-time pulse addition of CeO2 nanoparticles, representative of accidental release, and 2) continuous, low-level press addition of CeO2 nanoparticles, representative of exposure via wastewater effluent. The pulse addition led to rapid nanoparticle floc formation, which appeared to preferentially deposit on periphyton in low-energy areas downstream from the location of the input, likely as a result of gravitational sedimentation. Floc formation limited the concentration of suspended nanoparticles in stream water to <5% of target and subsequent downstream movement. In contrast, press addition of nanoparticles led to higher suspended nanoparticle concentrations (77% of target) in stream water, possibly as a result of stabilization of suspended nanoparticles through interaction with dissolved organic carbon. Smaller nanoparticle aggregates appeared to preferentially adsorb to stream surfaces in turbulent sections, where Ce concentrations were highest in the press, likely a result of stochastic encounter with the surface. Streams receiving wastewater effluent containing nanoparticles may lead to exposure of aquatic organisms over a greater spatial extent than a similar amount of nanoparticles from an accidental release. Exposure models must take into account these mechanisms controlling transport and depositional processes. PMID:26576038

  11. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis

    NASA Astrophysics Data System (ADS)

    Ong, Cynthia; Lee, Qian Ying; Cai, Yu; Liu, Xiaoli; Ding, Jun; Yung, Lin-Yue Lanry; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2016-02-01

    Silver nanoparticles (AgNPs), one of the most popular nanomaterials, are commonly used in consumer products and biomedical devices, despite their potential toxicity. Recently, AgNP exposure was reported to be associated with male reproductive toxicity in mammalian models. However, there is still a limited understanding of the effects of AgNPs on spermatogenesis. The fruit fly Drosophila testis is an excellent in vivo model to elucidate the mechanisms underlying AgNP-induced defects in spermatogenesis, as germ lineages can be easily identified and imaged. In this study, we evaluated AgNP-mediated toxicity on spermatogenesis by feeding Drosophila with AgNPs at various concentrations. We first observed a dose-dependent uptake of AgNPs in vivo. Concomitantly, AgNP exposure caused a significant decrease in the viability and delay in the development of Drosophila in a dose-dependent manner. Furthermore, AgNP-treated male flies showed a reduction in fecundity, and the resulting testes contained a decreased number of germline stem cells (GSCs) compared to controls. Interestingly, testes exposed to AgNPs exhibited a dramatic increase in reactive oxygen species levels and showed precocious GSC differentiation. Taken together, our study suggests that AgNP exposure may increase ROS levels in the Drosophila testis, leading to a reduction of GSC number by promoting premature GSC differentiation.

  12. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis

    PubMed Central

    Ong, Cynthia; Lee, Qian Ying; Cai, Yu; Liu, Xiaoli; Ding, Jun; Yung, Lin-Yue Lanry; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2016-01-01

    Silver nanoparticles (AgNPs), one of the most popular nanomaterials, are commonly used in consumer products and biomedical devices, despite their potential toxicity. Recently, AgNP exposure was reported to be associated with male reproductive toxicity in mammalian models. However, there is still a limited understanding of the effects of AgNPs on spermatogenesis. The fruit fly Drosophila testis is an excellent in vivo model to elucidate the mechanisms underlying AgNP-induced defects in spermatogenesis, as germ lineages can be easily identified and imaged. In this study, we evaluated AgNP-mediated toxicity on spermatogenesis by feeding Drosophila with AgNPs at various concentrations. We first observed a dose-dependent uptake of AgNPs in vivo. Concomitantly, AgNP exposure caused a significant decrease in the viability and delay in the development of Drosophila in a dose-dependent manner. Furthermore, AgNP-treated male flies showed a reduction in fecundity, and the resulting testes contained a decreased number of germline stem cells (GSCs) compared to controls. Interestingly, testes exposed to AgNPs exhibited a dramatic increase in reactive oxygen species levels and showed precocious GSC differentiation. Taken together, our study suggests that AgNP exposure may increase ROS levels in the Drosophila testis, leading to a reduction of GSC number by promoting premature GSC differentiation. PMID:26847594

  13. Neurotoxicity of Silver Nanoparticles in Rat Brain After Intragastric Exposure.

    PubMed

    Xu, Liming; Shao, Anliang; Zhao, Yanhong; Wang, Zhijie; Zhang, Cuiping; Sun, Yilin; Deng, Jie; Chou, Laisheng Lee

    2015-06-01

    It is known that the biological half-life of silver in the central nervous system is longer than in other organs. However, the potential toxicity of silver nanoparticles (NPs) on brain tissue and the underlying mechanism(s) of action are not well understood. In this study, neurotoxicity of silver NPs was examined in rat after intragastric administration. After a two-week exposure to low-dose (1 mg/kg, body weight) or high-dose (10 mg/kg) silver NPs, the pathological and ultrastructural changes in brain tissue were evaluated with H&E staining and transmission electron microscopy. The mRNA expression levels of key tight junction proteins of the blood-brain barrier (BBB) were analyzed by real-time RT-PCR, and several inflammatory factors were assessed in blood using ELISA assay. We observed neuron shrinkage, cytoplasmic or foot swelling of astrocytes, and extra-vascular lymphocytes in silver NP exposure groups. The cadherin 1 (2(-ΔΔCt): 1.45-fold/control) and Claudin-1 (2(-ΔΔCt): 2.77-fold/control) were slightly increase in mRNA expression levels, and IL-4 significantly increased after silver NP exposure. It was suggest that silver NP can induce neuronal degeneration and astrocyte swelling, even with a low-dose (1 mg/kg) oral exposure. One potential mechanism for the effects of silver NPs to the nervous cells is involved in inflammatory effects.

  14. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption.

    PubMed

    Larese Filon, Francesca; Bello, Dhimiter; Cherrie, John W; Sleeuwenhoek, Anne; Spaan, Suzanne; Brouwer, Derk H

    2016-08-01

    The paper reviews and critically assesses the evidence on the relevance of various skin uptake pathways for engineered nanoparticles, nano-objects, their agglomerates and aggregates (NOAA). It focuses especially in occupational settings, in the context of nanotoxicology, risk assessment, occupational medicine, medical/epidemiological surveillance efforts, and the development of relevant exposure assessment strategies. Skin uptake of nanoparticles is presented in the context of local and systemic health effects, especially contact dermatitis, skin barrier integrity, physico-chemical properties of NOAA, and predisposing risk factors, such as stratum corneum disruption due to occupational co-exposure to chemicals, and the presence of occupational skin diseases. Attention should be given to: (1) Metal NOAA, since the potential release of ions may induce local skin effects (e.g. irritation and contact dermatitis) and absorption of toxic or sensitizing metals; (2) NOAA with metal catalytic residue, since potential release of ions may also induce local skin effects and absorption of toxic metals; (3) rigid NOAA smaller than 45nm that can penetrate and permeate the skin; (4) non rigid or flexible NOAA, where due to their flexibility liposomes and micelles can penetrate and permeate the intact skin; (5) impaired skin condition of exposed workers. Furthermore, we outline possible situations where health surveillance could be appropriate where there is NOAA occupational skin exposures, e.g. when working with nanoparticles made of sensitizer metals, NOAA containing sensitizer impurities, and/or in occupations with a high prevalence of disrupted skin barrier integrity. The paper furthermore recommends a stepwise approach to evaluate risk related to NOAA to be applied in occupational exposure and risk assessment, and discusses implications related to health surveillance, labelling, and risk communication.

  15. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption.

    PubMed

    Larese Filon, Francesca; Bello, Dhimiter; Cherrie, John W; Sleeuwenhoek, Anne; Spaan, Suzanne; Brouwer, Derk H

    2016-08-01

    The paper reviews and critically assesses the evidence on the relevance of various skin uptake pathways for engineered nanoparticles, nano-objects, their agglomerates and aggregates (NOAA). It focuses especially in occupational settings, in the context of nanotoxicology, risk assessment, occupational medicine, medical/epidemiological surveillance efforts, and the development of relevant exposure assessment strategies. Skin uptake of nanoparticles is presented in the context of local and systemic health effects, especially contact dermatitis, skin barrier integrity, physico-chemical properties of NOAA, and predisposing risk factors, such as stratum corneum disruption due to occupational co-exposure to chemicals, and the presence of occupational skin diseases. Attention should be given to: (1) Metal NOAA, since the potential release of ions may induce local skin effects (e.g. irritation and contact dermatitis) and absorption of toxic or sensitizing metals; (2) NOAA with metal catalytic residue, since potential release of ions may also induce local skin effects and absorption of toxic metals; (3) rigid NOAA smaller than 45nm that can penetrate and permeate the skin; (4) non rigid or flexible NOAA, where due to their flexibility liposomes and micelles can penetrate and permeate the intact skin; (5) impaired skin condition of exposed workers. Furthermore, we outline possible situations where health surveillance could be appropriate where there is NOAA occupational skin exposures, e.g. when working with nanoparticles made of sensitizer metals, NOAA containing sensitizer impurities, and/or in occupations with a high prevalence of disrupted skin barrier integrity. The paper furthermore recommends a stepwise approach to evaluate risk related to NOAA to be applied in occupational exposure and risk assessment, and discusses implications related to health surveillance, labelling, and risk communication. PMID:27289581

  16. Environmental exposure to organophosphate pesticides: assessment of endocrine disruption and hepatotoxicity in pregnant women.

    PubMed

    Cecchi, A; Rovedatti, M G; Sabino, G; Magnarelli, G G

    2012-06-01

    In utero exposure is the first point of contact with environmental xenobiotics that may affect the maternal-placental-fetal balance. Considering that maternal pathophysiological changes affect intrauterine development, this pilot study was conducted to address how environmental exposure to organophosphate pesticides (OPs) during pregnancy may contribute to maternal endocrine disruption and disturbed hepatic function. A prospective study was carried out with pregnant women (n=97) living in a rural area of the Rio Negro province where OPs are intensively applied throughout 6 months of the year. Blood samples were obtained and biomarkers of OPs exposure (cholinesterases and β-glucuronidase), cortisol (CT) and progesterone (PG) levels, as well as glycemia, were determined. Parameters of liver injury were assayed by measuring aspartate aminotransferase (AST) and alanine aminotransferase (ALT); liver function was assayed by measuring albumin. Biomonitoring carried out during the pre-spraying period (PreS) and spraying period (SP) showed that the population studied was exposed to OPs, proven by the fact that plasma (PCh) and erythrocyte cholinesterase (AChE) decreased very significantly (p<0.01) during SP. CT values increased very significantly (p<0.01) in the first trimester of pregnancy during SP with respect to PreS. Individual values above the upper limit of the CT and PG reference range were found both in PreS and SP. This finding could be associated with changes in hormone metabolism pathways produced by OPs exposure. During the second trimester of pregnancy there were increases in ALT values and the AST/ALT ratio in SP, suggesting subclinical hepatotoxicity. In SP, glycemia was unchanged while albuminemia increased. Although anthropometric newborn parameters and pregnancy alterations were within normal values for the general population, the increase in CT in the maternal compartment may lead to impaired newborn health later in life.

  17. Prolonged exposure to methylglyoxal causes disruption of vascular KATP channel by mRNA instability

    PubMed Central

    Yang, Yang; Li, Shanshan; Konduru, Anuhya S.; Zhang, Shuang; Trower, Timothy C.; Shi, Weiwei; Cui, Ningren; Yu, Lei; Wang, Yali; Zhu, Daling

    2012-01-01

    Diabetes mellitus is characterized by hyperglycemia and excessive production of intermediary metabolites including methylglyoxal (MGO), a reactive carbonyl species that can lead to cell injuries. Interacting with proteins, lipids, and DNA, excessive MGO can cause dysfunction of various tissues, especially the vascular walls where diabetic complications often take place. However, the potential vascular targets of excessive MGO remain to be fully understood. Here we show that the vascular Kir6.1/SUR2B isoform of ATP-sensitive K+ (KATP) channels is likely to be disrupted with an exposure to submillimolar MGO. Up to 90% of the Kir6.1/SUR2B currents were suppressed by 1 mM MGO with a time constant of ∼2 h. Consistently, MGO treatment caused a vast reduction of both Kir6.1 and SUR2B mRNAs endogenously expressed in the A10 vascular smooth muscle cells. In the presence of the transcriptional inhibitor actinomycin-D, MGO remained to lower the Kir6.1 and SUR2B mRNAs to the same degree as MGO alone, suggesting that the MGO effect is likely to compromise the mRNA stability. Luciferase reporter assays indicated that the 3′-untranslated regions (UTRs) of the Kir6.1 but not SUR2 mRNA were targeted by MGO. In contrast, the SUR2B mRNAs obtained with in vitro transcription were disrupted by MGO directly, while the Kir6.1 transcripts were unaffected. Consistent with these results, the constriction of mesenteric arterial rings was markedly augmented with an exposure to 1 mM MGO for 2 h, and such an MGO effect was totally eliminated in the presence of glibenclamide. These results therefore suggest that acting on the 3′-UTR of Kir6.1 and the coding region of SUR2B, MGO causes instability of Kir6.1 and SUR2B mRNAs, disruption of vascular KATP channels, and impairment of arterial function. PMID:22972803

  18. Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy

    NASA Astrophysics Data System (ADS)

    Sykes, Edward A.; Dai, Qin; Tsoi, Kim M.; Hwang, David M.; Chan, Warren C. W.

    2014-05-01

    The increasing use of nanomaterials raises concerns about the long-term effects of chronic nanoparticle exposure on human health. However, nanoparticle exposure is difficult to evaluate non-invasively using current measurement techniques. Here we show that the skin is an important site of nanoparticle accumulation following systemic administration. Mice injected with high doses of gold nanoparticles have visibly blue skin while quantum dot-treated animals fluoresce under ultraviolet excitation. More importantly, elemental analysis of excised skin correlates with the injected dose and nanoparticle accumulation in the liver and spleen. We propose that skin analysis may be a simple strategy to quantify systemic nanoparticle exposure and predict nanoparticle fate in vivo. Our results suggest that in the future, dermal accumulation may also be exploited to trigger the release of ultraviolet and visible light-sensitive therapeutics that are currently impractical in vivo due to limits in optical penetration of tissues at these wavelengths.

  19. First Production of C60 Nanoparticle Plasma Jet for Study of Disruption Mitigation for ITER

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.; Brockington, S.; Case, A.; Messer, S. J.; Witherspoon, F. D.

    2012-10-01

    Unique fast response and large mass-velocity delivery of nanoparticle plasma jets (NPPJs) provide a novel application for ITER disruption mitigation, runaway electrons diagnostics and deep fueling. NPPJs carry a much larger mass than usual gases. An electromagnetic plasma gun provides a very high injection velocity (many km/s). NPPJ has much higher ram pressure than any standard gas injection method and penetrates the tokamak confining magnetic field. Assimilation is enhanced due to the NP large surface-to-volume ratio. Radially expanding NPPJs help achieving toroidal uniformity of radiation power. FAR-TECH's NPPJ system was successfully tested: a coaxial plasma gun prototype (˜35 cm length, 96 kJ energy) using a solid state TiH2/C60 pulsed power cartridge injector produced a hyper-velocity (>4 km/s), high-density (>10^23 m-3), C60 plasma jet in ˜0.5 ms, with ˜1-2 ms overall response-delivery time. We present the TiH2/C60 cartridge injector output characterization (˜180 mg of sublimated C60 gas) and first production results of a high momentum C60 plasma jet (˜0.6 g.km/s).

  20. Mugilid Fish Are Sentinels of Exposure to Endocrine Disrupting Compounds in Coastal and Estuarine Environments

    PubMed Central

    Ortiz-Zarragoitia, Maren; Bizarro, Cristina; Rojo-Bartolomé, Iratxe; Diaz de Cerio, Oihane; Cajaraville, Miren P.; Cancio, Ibon

    2014-01-01

    Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs) can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition). Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions. PMID:25222666

  1. Mugilid fish are sentinels of exposure to endocrine disrupting compounds in coastal and estuarine environments.

    PubMed

    Ortiz-Zarragoitia, Maren; Bizarro, Cristina; Rojo-Bartolomé, Iratxe; de Cerio, Oihane Diaz; Cajaraville, Miren P; Cancio, Ibon

    2014-09-01

    Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs) can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition). Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions. PMID:25222666

  2. Malathion exposure induces the endocrine disruption and growth retardation in the catfish, Clarias batrachus (Linn.).

    PubMed

    Lal, Bechan; Sarang, Mukesh Kumar; Kumar, Pankaj

    2013-01-15

    Many hormones are known for their role in the regulation of metabolic activities and somatic growth in fishes. The present study deals with the effects of malathion (an organophosphorous pesticide) on the levels of metabolic hormones that are responsible for promotion of somatic and ovarian growth of the freshwater catfish, Clarias batrachus. Malathion treatment for thirty days drastically reduced the food intake and body weight of fish. These fish also exhibited a great avoidance to food. Exposure of catfish to malathion reduced the levels of thyroxine (T(4)), triiodothyronine (T(3)), growth hormone (GH), insulin like growth factor-I (IGF-I), testosterone (T) and estradiol-17β (E(2)) in a dose dependent manner during all the studied reproductive phases, in general, except that malathion increased the level of GH during the quiescence phase. Significant reduction in muscle and hepatic protein content also occurred in the malathion-treated fish. Malathion exposure induced lipolysis too in the liver and muscle. The results thus support that malathion treatment disrupts the endocrine functions and the olfactory sensation responsible for food intake and gustatory feeding behavior, which ultimately leads to retardation of fish growth. PMID:23174696

  3. A Hypothesis About How Early Developmental Methylmercury Exposure Disrupts Behavior in Adulthood

    PubMed Central

    Newland, M. Christopher; Reed, Miranda N.; Rasmussen, Erin

    2015-01-01

    Events that disrupt the early development of the nervous system have lifelong, irreversible behavioral consequences. The environmental contaminant, methylmercury (MeHg), impairs neural development with effects that are manifested well into adulthood and even into aging. Noting the sensitivity of the developing brain to MeHg, the current review advances an argument that one outcome of early MeHg exposure is a distortion in the processing of reinforcing consequences that results in impaired choice, poor inhibition of prepotent responding, and perseveration on discrimination reversals (in the absence of alteration of extradimensional shifts). Neurochemical correlates include increased sensitivity to dopamine agonists and decreased sensitivity to gamma-aminobutyric acid (GABA) agonists. This leads to a hypothesis that the prefrontal cortex or dopamine neurotransmission is especially sensitive to even subtle gestational MeHg exposure and suggests that public health assessments of MeHg based on intellectual performance may underestimate the impact of MeHg in public health. Finally, those interested in modeling neural development may benefit from MeHg as an experimental model. PMID:25795099

  4. Interference in Autophagosome Fusion by Rare Earth Nanoparticles Disrupts Autophagic Flux and Regulation of an Interleukin-1β Producing Inflammasome

    PubMed Central

    2015-01-01

    Engineered nanomaterials (ENMs) including multiwall carbon nanotubes (MWCNTs) and rare earth oxide (REO) nanoparticles, which are capable of activating the NLRP3 inflammasome and inducing IL-1β production, have the potential to cause chronic lung toxicity. Although it is known that lysosome damage is an upstream trigger in initiating this pro-inflammatory response, the same organelle is also an important homeostatic regulator of activated NLRP3 inflammasome complexes, which are engulfed by autophagosomes and then destroyed in lysosomes after fusion. Although a number of ENMs have been shown to induce autophagy, no definitive research has been done on the homeostatic regulation of the NLRP3 inflammasome during autophagic flux. We used a myeloid cell line (THP-1) and bone marrow derived macrophages (BMDM) to compare the role of autophagy in regulating inflammasome activation and IL-1β production by MWCNTs and REO nanoparticles. THP-1 cells express a constitutively active autophagy pathway and are also known to mimic NLRP3 activation in pulmonary macrophages. We demonstrate that, while activated NLRP3 complexes could be effectively removed by autophagosome fusion in cells exposed to MWCNTs, REO nanoparticles interfered in autophagosome fusion with lysosomes. This leads to the accumulation of the REO-activated inflammasomes, resulting in robust and sustained IL-1β production. The mechanism of REO nanoparticle interference in autophagic flux was clarified by showing that they disrupt lysosomal phosphoprotein function and interfere in the acidification that is necessary for lysosome fusion with autophagosomes. Binding of LaPO4 to the REO nanoparticle surfaces leads to urchin-shaped nanoparticles collecting in the lysosomes. All considered, these data demonstrate that in contradistinction to autophagy induction by some ENMs, specific materials such as REOs interfere in autophagic flux, thereby disrupting homeostatic regulation of activated NLRP3 complexes. PMID

  5. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome.

    PubMed

    Li, Ruibin; Ji, Zhaoxia; Qin, Hongqiang; Kang, Xuedong; Sun, Bingbing; Wang, Meiying; Chang, Chong Hyun; Wang, Xiang; Zhang, Haiyuan; Zou, Hanfa; Nel, Andre E; Xia, Tian

    2014-10-28

    Engineered nanomaterials (ENMs) including multiwall carbon nanotubes (MWCNTs) and rare earth oxide (REO) nanoparticles, which are capable of activating the NLRP3 inflammasome and inducing IL-1β production, have the potential to cause chronic lung toxicity. Although it is known that lysosome damage is an upstream trigger in initiating this pro-inflammatory response, the same organelle is also an important homeostatic regulator of activated NLRP3 inflammasome complexes, which are engulfed by autophagosomes and then destroyed in lysosomes after fusion. Although a number of ENMs have been shown to induce autophagy, no definitive research has been done on the homeostatic regulation of the NLRP3 inflammasome during autophagic flux. We used a myeloid cell line (THP-1) and bone marrow derived macrophages (BMDM) to compare the role of autophagy in regulating inflammasome activation and IL-1β production by MWCNTs and REO nanoparticles. THP-1 cells express a constitutively active autophagy pathway and are also known to mimic NLRP3 activation in pulmonary macrophages. We demonstrate that, while activated NLRP3 complexes could be effectively removed by autophagosome fusion in cells exposed to MWCNTs, REO nanoparticles interfered in autophagosome fusion with lysosomes. This leads to the accumulation of the REO-activated inflammasomes, resulting in robust and sustained IL-1β production. The mechanism of REO nanoparticle interference in autophagic flux was clarified by showing that they disrupt lysosomal phosphoprotein function and interfere in the acidification that is necessary for lysosome fusion with autophagosomes. Binding of LaPO4 to the REO nanoparticle surfaces leads to urchin-shaped nanoparticles collecting in the lysosomes. All considered, these data demonstrate that in contradistinction to autophagy induction by some ENMs, specific materials such as REOs interfere in autophagic flux, thereby disrupting homeostatic regulation of activated NLRP3 complexes.

  6. Occupational dermal exposure to nanoparticles and nano-enabled products: Part 2, exploration of exposure processes and methods of assessment.

    PubMed

    Brouwer, Derk H; Spaan, Suzanne; Roff, Martin; Sleeuwenhoek, Anne; Tuinman, Ilse; Goede, Henk; van Duuren-Stuurman, Birgit; Filon, Francesca Larese; Bello, Dhimiter; Cherrie, John W

    2016-08-01

    Over the past decade, the primary focus of nanotoxicology and nanoenvironmental health and safety efforts has been largely on inhalation exposure to engineered nanomaterials, at the production stage, and much less on considering risks along the life cycle of nano-enabled products. Dermal exposure to nanomaterials and its health impact has been studied to a much lesser extent, and mostly in the context of intentional exposure to nano-enabled products such as in nanomedicine, cosmetics and personal care products. How concerning is dermal exposure to such nanoparticles in the context of occupational exposures? When and how should we measure it? In the first of a series of two papers (Larese Filon et al., 2016), we focused our attention on identifying conditions or situations, i.e. a combination of nanoparticle physico-chemical properties, skin barrier integrity, and occupations with high prevalence of skin disease, which deserve further investigation. This second paper focuses on the broad question of dermal exposure assessment to nanoparticles and attempts to give an overview of the mechanisms of occupational dermal exposure to nanoparticles and nano-enabled products and explores feasibility and adequacy of various methods of quantifying dermal exposure to NOAA. We provide here a conceptual framework for screening, prioritization, and assessment of dermal exposure to NOAA in occupational settings, and integrate it into a proposed framework for risk assessment.

  7. Occupational dermal exposure to nanoparticles and nano-enabled products: Part 2, exploration of exposure processes and methods of assessment.

    PubMed

    Brouwer, Derk H; Spaan, Suzanne; Roff, Martin; Sleeuwenhoek, Anne; Tuinman, Ilse; Goede, Henk; van Duuren-Stuurman, Birgit; Filon, Francesca Larese; Bello, Dhimiter; Cherrie, John W

    2016-08-01

    Over the past decade, the primary focus of nanotoxicology and nanoenvironmental health and safety efforts has been largely on inhalation exposure to engineered nanomaterials, at the production stage, and much less on considering risks along the life cycle of nano-enabled products. Dermal exposure to nanomaterials and its health impact has been studied to a much lesser extent, and mostly in the context of intentional exposure to nano-enabled products such as in nanomedicine, cosmetics and personal care products. How concerning is dermal exposure to such nanoparticles in the context of occupational exposures? When and how should we measure it? In the first of a series of two papers (Larese Filon et al., 2016), we focused our attention on identifying conditions or situations, i.e. a combination of nanoparticle physico-chemical properties, skin barrier integrity, and occupations with high prevalence of skin disease, which deserve further investigation. This second paper focuses on the broad question of dermal exposure assessment to nanoparticles and attempts to give an overview of the mechanisms of occupational dermal exposure to nanoparticles and nano-enabled products and explores feasibility and adequacy of various methods of quantifying dermal exposure to NOAA. We provide here a conceptual framework for screening, prioritization, and assessment of dermal exposure to NOAA in occupational settings, and integrate it into a proposed framework for risk assessment. PMID:27283207

  8. Acute exposure to 17α-ethinylestradiol disrupts audience effect on male-female interactions in Betta splendens.

    PubMed

    Forette, Lindsay M; Mannion, Krystal L; Dzieweczynski, Teresa L

    2015-04-01

    Endocrine disrupting chemicals can negatively impact the morphology and behavior of organisms inhabiting polluted waters. Male-typical behaviors are often reduced after exposure, suggesting that exposure may have population-level effects. One way in which exposure may exert population-level effects is by interfering with communication within a network of individuals. Acute exposure to the estrogen mimic 17α-ethinylestradiol (EE2) disrupts the ability of male Siamese fighting fish, Betta splendens, to modify their behavior during male-male interactions when an audience is present. However, it is unknown whether audience effects during male-female interactions may be similarly altered. To examine this, male-female pairs that were given an acute exposure to EE2 or remained unexposed interacted in the presence of a female, male, or no audience. Sex differences were found between unexposed males and females. More interactant-directed gill flaring was displayed by control males when a male audience was present while control females performed this behavior more in the presence of an audience, regardless of sex. Both males and females in the control group performed more interactant-directed tail beats in the presence of a female audience. EE2 exposure made all audience effects disappear as treated males and females did not differ in their responses between audience types. These results demonstrate that acute exposure to EE2 may disrupt behavioral adjustments to audience type within a social network. This disruption may, in turn, influence population dynamics in this species as both males and females use information obtained from observing interactions in later encounters with the observed individuals.

  9. Parental occupational exposure to endocrine disrupting chemicals and male genital malformations: A study in the danish national birth cohort study

    PubMed Central

    2011-01-01

    Background Sex hormones closely regulate development of the male genital organs during fetal life. The hypothesis that xenobiotics may disrupt endogenous hormonal signalling has received considerable scientific attention, but human evidence is scarce. Objectives We analyse occurrence of hypospadias and cryptorchidism according to maternal and paternal occupational exposure to possible endocrine disrupting chemicals. Methods We conducted a follow-up study of 45,341 male singleton deliveries in the Danish National Birth Cohort during 1997-2009. Information on work during pregnancy was obtained by telephone interviews around gestational week 16. Parents' job titles were classified according to DISCO-88. A job exposure matrix for endocrine disrupting chemicals (EDCs) was implemented to assess occupational exposures. The Medical Birth and National Hospital Register provided data on congenital anomalies diagnosed at birth or during follow-up, which ended in 2009. Crude and adjusted hazard ratios (HR) were obtained from Cox regression models. Results Among all pregnancies, 6.3% were classified as possibly or probably exposed to EDCs. The most prevalent occupations conferring possible exposure were cleaners, laboratory technicians, hairdressers and agricultural workers (58% of all potentially exposed). The final cumulative incidence of cryptorchidism in boys was 2.2% (1002 cases), and of hypospadias 0.6% (262 cases). The occurrence of hypospadias increased when mothers were probably [HRa = 1.8 (95% CI 1.0-2.6)] or possibly exposed to one or more EDCs [HRa = 2.6 (95% CI 1.8-3.4). Possible paternal exposure to heavy metals increased the risk of hypospadias [HRa 2.2 (95% CI: 1.0-3.4)] and cryptorchidism [HRa 1.9 (95% CI: 1.1-2.7)]. None of the exposure groups reached statistical significance. Conclusion The study provides some but limited evidence that occupational exposure to possible endocrine disrupting chemicals during pregnancy increases the risk of hypospadias. PMID

  10. Acute exposure to 17α-ethinylestradiol disrupts audience effect on male-female interactions in Betta splendens.

    PubMed

    Forette, Lindsay M; Mannion, Krystal L; Dzieweczynski, Teresa L

    2015-04-01

    Endocrine disrupting chemicals can negatively impact the morphology and behavior of organisms inhabiting polluted waters. Male-typical behaviors are often reduced after exposure, suggesting that exposure may have population-level effects. One way in which exposure may exert population-level effects is by interfering with communication within a network of individuals. Acute exposure to the estrogen mimic 17α-ethinylestradiol (EE2) disrupts the ability of male Siamese fighting fish, Betta splendens, to modify their behavior during male-male interactions when an audience is present. However, it is unknown whether audience effects during male-female interactions may be similarly altered. To examine this, male-female pairs that were given an acute exposure to EE2 or remained unexposed interacted in the presence of a female, male, or no audience. Sex differences were found between unexposed males and females. More interactant-directed gill flaring was displayed by control males when a male audience was present while control females performed this behavior more in the presence of an audience, regardless of sex. Both males and females in the control group performed more interactant-directed tail beats in the presence of a female audience. EE2 exposure made all audience effects disappear as treated males and females did not differ in their responses between audience types. These results demonstrate that acute exposure to EE2 may disrupt behavioral adjustments to audience type within a social network. This disruption may, in turn, influence population dynamics in this species as both males and females use information obtained from observing interactions in later encounters with the observed individuals. PMID:25697944

  11. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures

    PubMed Central

    Allen, Michael Todd; Miller, Daniel P.

    2016-01-01

    Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible

  12. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures.

    PubMed

    Allen, Michael Todd; Miller, Daniel P

    2016-01-01

    Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible

  13. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures.

    PubMed

    Allen, Michael Todd; Miller, Daniel P

    2016-01-01

    Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible

  14. Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides.

    PubMed

    Jacobsen, Pernille Rosenskjold; Axelstad, Marta; Boberg, Julie; Isling, Louise Krag; Christiansen, Sofie; Mandrup, Karen Riiber; Berthelsen, Line Olrik; Vinggaard, Anne Marie; Hass, Ulla

    2012-09-01

    There is growing concern of permanent damage to the endocrine and nervous systems after developmental exposure to endocrine disrupting chemicals. In this study the permanent reproductive and neurobehavioral effects of combined exposure to five endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, were examined. Pregnant and lactating rat dams were dosed with a mixture of the five pesticides at three different doses, or with the individual pesticides at one of two doses. Adverse effects were observed in young and adult male offspring from the group exposed to the highest dose of the mixture. These included reduced prostate and epididymis weights, increased testes weights, altered prostate histopathology, increased density of mammary glands, reduced sperm counts, and decreased spatial learning. As no significant effects were seen following single compound exposure at the doses included in the highest mixture dose, these results indicate cumulative adverse effects of the pesticide mixture. PMID:22677472

  15. Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    PubMed Central

    Dufault, Renee; Schnoll, Roseanne; Lukiw, Walter J; LeBlanc, Blaise; Cornett, Charles; Patrick, Lyn; Wallinga, David; Gilbert, Steven G; Crider, Raquel

    2009-01-01

    Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body. PMID:19860886

  16. Prenatal domoic acid exposure disrupts mouse pro-social behavior and functional connectivity MRI.

    PubMed

    Mills, Brian D; Pearce, Hadley L; Khan, Omar; Jarrett, Ben R; Fair, Damien A; Lahvis, Garet P

    2016-07-15

    Domoic acid (DA) is a toxin produced by marine algae and known primarily for its role in isolated outbreaks of Amnestic Shellfish Poisoning and for the damage it inflicts on marine mammals, particularly California sea lions. Lethal effects of DA are often preceded by seizures and coma. Exposure to DA during development can result in subtle and highly persistent effects on brain development and include behavioral changes that resemble diagnostic features of schizophrenia and anomalies in social behavior we believe are relevant to autism spectrum disorder (ASD). To more fully examine this hypothesis, we chose to examine adolescent mice exposed in utero to DA for endpoints relevant to ASD, specifically changes in social behavior and network structure, the latter measured by resting state functional connectivity (rs-fcMRI). We found that male offspring exposed in utero to DA expressed reproducible declines in social interaction and atypical patterns of functional connectivity in the anterior cingulate, a region of the default mode network that is critical for social functioning. We also found disruptions in global topology in regions involved in the processing of reward, social, and sensory experiences. Finally, we found that DA exposed males expressed a pattern of local over-connectivity. These anomalies in brain connectivity bear resemblance to connectivity patterns in ASD and help validate DA-exposed mice as a model of this mental disability.

  17. Prenatal domoic acid exposure disrupts mouse pro-social behavior and functional connectivity MRI.

    PubMed

    Mills, Brian D; Pearce, Hadley L; Khan, Omar; Jarrett, Ben R; Fair, Damien A; Lahvis, Garet P

    2016-07-15

    Domoic acid (DA) is a toxin produced by marine algae and known primarily for its role in isolated outbreaks of Amnestic Shellfish Poisoning and for the damage it inflicts on marine mammals, particularly California sea lions. Lethal effects of DA are often preceded by seizures and coma. Exposure to DA during development can result in subtle and highly persistent effects on brain development and include behavioral changes that resemble diagnostic features of schizophrenia and anomalies in social behavior we believe are relevant to autism spectrum disorder (ASD). To more fully examine this hypothesis, we chose to examine adolescent mice exposed in utero to DA for endpoints relevant to ASD, specifically changes in social behavior and network structure, the latter measured by resting state functional connectivity (rs-fcMRI). We found that male offspring exposed in utero to DA expressed reproducible declines in social interaction and atypical patterns of functional connectivity in the anterior cingulate, a region of the default mode network that is critical for social functioning. We also found disruptions in global topology in regions involved in the processing of reward, social, and sensory experiences. Finally, we found that DA exposed males expressed a pattern of local over-connectivity. These anomalies in brain connectivity bear resemblance to connectivity patterns in ASD and help validate DA-exposed mice as a model of this mental disability. PMID:27050322

  18. Dermal exposure potential from textiles that contain silver nanoparticles

    PubMed Central

    Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Abbas Virji, M

    2014-01-01

    Background: Factors that influence exposure to silver particles from the use of textiles are not well understood. Objectives: The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Methods: Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Results: Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated “use” and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0.51±0.04%) than the masterbatch process textile (0.21±0.01%); P<0.01. Conclusions: We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva. PMID:25000110

  19. Media ionic strength impacts embryonic responses to engineered nanoparticle exposure

    PubMed Central

    Truong, Lisa; Zaikova, Tatiana; Richman, Erik K.; Hutchison, James E.; Tanguay, Robert L.

    2012-01-01

    Embryonic zebrafish were used to assess the impact of solution ion concentrations on agglomeration and resulting in vivo biological responses of gold nanoparticles (AuNPs). The minimum ion concentration necessary to support embryonic development was determined. Surprisingly, zebrafish exhibit no adverse outcomes when raised in nearly ion-free media. During a rapid throughput screening of AuNPs, 1.2-nm 3-mercaptopropionic acid-functionalized AuNPs (1.2-nm 3-MPA-AuNPs) rapidly agglomerate in exposure solutions. When embryos were exposed to 1.2-nm 3-MPA-AuNPs dispersed in low ionic media, both morbidity and mortality were induced, but when suspended in high ionic media, there was little to no biological response. We demonstrated that the media ionic strength greatly affects agglomeration rates and biological responses. Most importantly, the insensitivity of the zebrafish embryo to external ions indicates that it is possible, and necessary, to adjust the exposure media conditions to optimize NP dispersion prior to assessment. PMID:21809903

  20. Alveolar Epithelial Cell Injury Due to Zinc Oxide Nanoparticle Exposure

    PubMed Central

    Kim, Yong Ho; Fazlollahi, Farnoosh; Kennedy, Ian M.; Yacobi, Nazanin R.; Hamm-Alvarez, Sarah F.; Borok, Zea; Kim, Kwang-Jin; Crandall, Edward D.

    2010-01-01

    Rationale: Although inhalation of zinc oxide (ZnO) nanoparticles (NPs) is known to cause systemic disease (i.e., metal fume fever), little is known about mechanisms underlying injury to alveolar epithelium. Objectives: Investigate ZnO NP–induced injury to alveolar epithelium by exposing primary cultured rat alveolar epithelial cell monolayers (RAECMs) to ZnO NPs. Methods: RAECMs were exposed apically to ZnO NPs or, in some experiments, to culture fluid containing ZnCl2 or free Zn released from ZnO NPs. Transepithelial electrical resistance (RT) and equivalent short-circuit current (IEQ) were assessed as functions of concentration and time. Morphologic changes, lactate dehydrogenase release, cell membrane integrity, intracellular reactive oxygen species (ROS), and mitochondrial activity were measured. Measurements and Main Results: Apical exposure to 176 μg/ml ZnO NPs decreased RT and IEQ of RAECMs by 100% over 24 hours, whereas exposure to 11 μg/ml ZnO NPs had little effect. Changes in RT and IEQ caused by 176 μg/ml ZnO NPs were irreversible. ZnO NP effects on RT yielded half-maximal concentrations of approximately 20 μg/ml. Apical exposure for 24 hours to 176 μg/ml ZnO NPs induced decreases in mitochondrial activity and increases in lactate dehydrogenase release, permeability to fluorescein sulfonic acid, increased intracellular ROS, and translocation of ZnO NPs from apical to basolateral fluid (most likely across injured cells and/or damaged paracellular pathways). Conclusions: ZnO NPs cause severe injury to RAECMs in a dose- and time-dependent manner, mediated, at least in part, by free Zn released from ZnO NPs, mitochondrial dysfunction, and increased intracellular ROS. PMID:20639441

  1. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions?

    PubMed Central

    Panariti, Alice; Miserocchi, Giuseppe; Rivolta, Ilaria

    2012-01-01

    Nanoparticles (NPs) are materials with overall dimensions in the nanoscale range. They have unique physicochemical properties, and have emerged as important players in current research in modern medicine. In the last few decades, several types of NPs and microparticles have been synthesized and proposed for use as contrast agents for diagnostics and imaging and for drug delivery; for example, in cancer therapy. Yet specific targeting that will improve their delivery still represents an unsolved challenge. The mechanism by which NPs enter the cell has important implications not only for their fate but also for their impact on biological systems. Several papers in the literature discuss the potential risks related to NP exposure, and more recently the concept that even sublethal doses of NPs may elicit a cell response has been proposed. In this review, we intend to present an overall view of cell mechanisms that may be perturbed by cell–NP interaction. Published data, in fact, emphasize that NPs should no longer be viewed only as simple carriers for biomedical applications, but that they can also play an active role in mediating biological effects. PMID:24198499

  2. ENDOCRINE-DISRUPTING CHEMICALS: PREPUBERTAL EXPOSURES AND EFFECTS ON SEXUAL MATURATION AND THYROID FUNCTION IN THE MALE RAT. A FOCUS ON THE EDSTAC RECOMMENDATIONS. ENDOCRINE DISRUPTER SCREENING AND TESTING ADVISORY COMMITTEE

    EPA Science Inventory

    Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee.

    Stoker TE, Parks LG, Gray LE, Cooper RL.

  3. Fucoidan Extracted from Hijiki Protects Brain Microvessel Endothelial Cells Against Diesel Exhaust Particle Exposure-Induced Disruption.

    PubMed

    Choi, Young-Sook; Eom, Sang-Yong; Kim, In-Soo; Ali, Syed F; Kleinman, Michael T; Kim, Yong-Dae; Kim, Heon

    2016-05-01

    This study was performed to evaluate the protective effects of fucoidan against the decreased function of primary cultured bovine brain microvessel endothelial cells (BBMECs) after exposure to diesel exhaust particles (DEPs). BBMECs were extracted from bovine brains and cultured until confluent. To evaluate the function of BBMECs, we performed a permeability test using cell-by-cell equipment and by Western blot analysis for zonular occludens-1 (ZO-1), which is a tight junction protein of BMECs, and evaluated oxidative stress in BBMECs using the DCFH-DA assay and the CUPRAC-BCS assay. The increased oxidative stress in BBMECs following DEP exposure was suppressed by fucoidan. In addition, permeability of BBMECs induced by DEP exposure was decreased by fucoidan treatment. Our results showed that fucoidan protects against BBMEC disruption induced by DEP exposure. This study provides evidence that fucoidan might protect the central nervous system (CNS) against DEP exposure.

  4. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis.

    PubMed

    Trasande, L; Zoeller, R T; Hass, U; Kortenkamp, A; Grandjean, P; Myers, J P; DiGangi, J; Hunt, P M; Rudel, R; Sathyanarayana, S; Bellanger, M; Hauser, R; Legler, J; Skakkebaek, N E; Heindel, J J

    2016-07-01

    A previous report documented that endocrine disrupting chemicals contribute substantially to certain forms of disease and disability. In the present analysis, our main objective was to update a range of health and economic costs that can be reasonably attributed to endocrine disrupting chemical exposures in the European Union, leveraging new burden and disease cost estimates of female reproductive conditions from accompanying report. Expert panels evaluated the epidemiologic evidence, using adapted criteria from the WHO Grading of Recommendations Assessment, Development and Evaluation Working Group, and evaluated laboratory and animal evidence of endocrine disruption using definitions recently promulgated by the Danish Environmental Protection Agency. The Delphi method was used to make decisions on the strength of the data. Expert panels consensus was achieved for probable (>20%) endocrine disrupting chemical causation for IQ loss and associated intellectual disability; autism; attention deficit hyperactivity disorder; endometriosis; fibroids; childhood obesity; adult obesity; adult diabetes; cryptorchidism; male infertility, and mortality associated with reduced testosterone. Accounting for probability of causation, and using the midpoint of each range for probability of causation, Monte Carlo simulations produced a median annual cost of €163 billion (1.28% of EU Gross Domestic Product) across 1000 simulations. We conclude that endocrine disrupting chemical exposures in the EU are likely to contribute substantially to disease and dysfunction across the life course with costs in the hundreds of billions of Euros per year. These estimates represent only those endocrine disrupting chemicals with the highest probability of causation; a broader analysis would have produced greater estimates of burden of disease and costs.

  5. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis.

    PubMed

    Trasande, L; Zoeller, R T; Hass, U; Kortenkamp, A; Grandjean, P; Myers, J P; DiGangi, J; Hunt, P M; Rudel, R; Sathyanarayana, S; Bellanger, M; Hauser, R; Legler, J; Skakkebaek, N E; Heindel, J J

    2016-07-01

    A previous report documented that endocrine disrupting chemicals contribute substantially to certain forms of disease and disability. In the present analysis, our main objective was to update a range of health and economic costs that can be reasonably attributed to endocrine disrupting chemical exposures in the European Union, leveraging new burden and disease cost estimates of female reproductive conditions from accompanying report. Expert panels evaluated the epidemiologic evidence, using adapted criteria from the WHO Grading of Recommendations Assessment, Development and Evaluation Working Group, and evaluated laboratory and animal evidence of endocrine disruption using definitions recently promulgated by the Danish Environmental Protection Agency. The Delphi method was used to make decisions on the strength of the data. Expert panels consensus was achieved for probable (>20%) endocrine disrupting chemical causation for IQ loss and associated intellectual disability; autism; attention deficit hyperactivity disorder; endometriosis; fibroids; childhood obesity; adult obesity; adult diabetes; cryptorchidism; male infertility, and mortality associated with reduced testosterone. Accounting for probability of causation, and using the midpoint of each range for probability of causation, Monte Carlo simulations produced a median annual cost of €163 billion (1.28% of EU Gross Domestic Product) across 1000 simulations. We conclude that endocrine disrupting chemical exposures in the EU are likely to contribute substantially to disease and dysfunction across the life course with costs in the hundreds of billions of Euros per year. These estimates represent only those endocrine disrupting chemicals with the highest probability of causation; a broader analysis would have produced greater estimates of burden of disease and costs. PMID:27003928

  6. Penetration of spherical and rod-like gold nanoparticles into intact and barrier-disrupted human skin

    NASA Astrophysics Data System (ADS)

    Graf, Christina; Nordmeyer, Daniel; Ahlberg, Sebastian; Raabe, Jörg; Vogt, Annika; Lademann, Jürgen; Rancan, Fiorenza; Rühl, Eckart

    2015-03-01

    The penetration of spherical and rod-like gold nanoparticles into human skin is reported. Several skin preparation techniques are applied, including cryo techniques, such as plunge freezing and freeze drying, and the use of wet cells. Their advantages and drawbacks for observing nanoparticle uptake are discussed. Independent of the particle shape no uptake into intact skin is observed by a combination of imaging approaches, including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and scanning X-ray microscopy (STXM). These results are discussed along with suitable skin preparation approaches. Experiments on barrier-disrupted skin, i.e. mechanical lesions made by pricking, indicate, however, that gold particles can be identified deep in the dermis, as follows from STXM studies on wet skin samples.

  7. Bisphenol A exposure disrupts the development of the locus coeruleus-noradrenergic system in mice.

    PubMed

    Tando, So; Itoh, Kyoko; Yaoi, Takeshi; Ogi, Hiroshi; Goto, Shoko; Mori, Miyuki; Fushiki, Shinji

    2014-12-01

    It has been reported that bisphenol A (BPA), a widespread xenoestrogen employed in the production of polycarbonate plastics, affects brain development in both humans and rodents. In the present study employing mice, we examined the effects of exposure to BPA (500 μg/kg/day) during fetal and lactational periods on the development of the locus coeruleus (LC) at the age of embryonic day 18 (E18), postnatal 3 weeks (P3W), P8W and P16W. The number of tyrosine hydroxylase-immunoreactive cells (TH-IR cells) in females exposed to BPA was decreased, compared with the control females at P3W. At P8W, the number of TH-IR cells in females exposed to BPA was significantly decreased, compared with the control females, whereas the number of TH-IR cells in males exposed to BPA was significantly increased, compared with the control males, which resulted in reversed transient sexual differences in the numbers of TH-IR cells observed in the controls at P8W. However, no significant changes were demonstrated at E18 or P16W. Next, we examined the density of the fibers containing norepinephrine transporter (NET) in the anterior cingulate cortex (ACC) and prefrontal cortex, at P3W, P8W and P16W, because NET would be beneficial in identifying the targets of the LC noradrenergic neurons. There were no significant differences shown in the density of the NET-positive fibers, between the control and the groups exposed to BPA. These results suggested that BPA might disrupt the development of physiological sexual differences in the LC-noradrenergic system in mice, although further studies are necessary to clarify the underlying mechanisms. PMID:24985408

  8. Different cell responses induced by exposure to maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Luengo, Yurena; Nardecchia, Stefania; Morales, María Puerto; Serrano, M. Concepción

    2013-11-01

    Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible nature of NPs when in contact with biological systems. Herein, we have investigated how controlled changes in the physicochemical properties of iron oxide NPs at their surface (i.e., surface charge and hydrodynamic size) affect, first, their interaction with cell media components and, subsequently, cell responses to NP exposure. For that purpose, we have prepared iron oxide NPs with three different coatings (i.e., dimercaptosuccinic acid - DMSA, (3-aminopropyl)triethoxysilane - APS and dextran) and explored the response of two different cell types, murine L929 fibroblasts and human Saos-2 osteoblasts, to their exposure. Interestingly, different cell responses were found depending on the NP concentration, surface charge and cell type. In this sense, neutral NPs, as those coated with dextran, induced negligible cell damage, as their cellular internalization was significantly reduced. In contrast, surface-charged NPs (i.e., those coated with DMSA and APS) caused significant cellular changes in viability, morphology and cell cycle under certain culture conditions, as a result of a more active cellular internalization. These results also revealed a particular cellular ability to detect and remember the original physicochemical properties of the NPs, despite the formation of a protein corona when incubated in culture media. Overall, conclusions from these studies are of crucial interest for future biomedical applications of iron oxide NPs.Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible

  9. Persistent Seroconversion after Accidental Eye Exposure to Calcifying Nanoparticles

    NASA Technical Reports Server (NTRS)

    Ciftcioglu, Neva; Aho, Katja M.; McKay, David S.; Kajander, E. Olavi

    2007-01-01

    Biosafety of nanomaterials has attracted much attention recently. We report here a case where accidental human eye exposure to biogenic nanosized calcium phosphate in the form of calcifying nanoparticles (CNP) raised a strong IgG immune response against proteins carried by CNP. The antibody titer has persisted over ten years at the high level. The IgG was detected by ELISA using CNPs propagated in media containing bovine and human serum as antigen. The exposure incident occurred to a woman scientist (WS) at a research laboratory in Finland at 1993. CNP, also termed "nanobacteria", is a unique self-replicating agent that has not been fully characterized and no data on biohazards were available at that time. Before the accident, her serum samples were negative for both CNP antigen and anti-CNP antibody using specific ELISA tests (Nanobac Oy, Kuopio, Finland). The accident occurred while WS was harvesting CNP cultures. Due to a high pressure in pipetting, CNP pellet splashed into her right eye. Both eyes were immediately washed with water and saline. The following days there was irritation and redness in the right eye. These symptoms disappeared within two weeks without any treatment. Three months after the accident, blood and urine samples of WS were tested for CNP cultures (2), CNP-specific ELISA tests, and blood cell counts. Blood cell counts were normal, CNP antigen and culture tests were negative. A high IgG anti-CNP antibody titer was detected (see Figure). The antibodies of this person have been used thereafter as positive control and standard in ELISA manufacturing (Nano-Sero IgG ELISA, Nanobac Oy, Kuopio, Finland).

  10. On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles.

    PubMed

    Kim, Donghyuk; Finkenstaedt-Quinn, Solaire; Hurley, Katie R; Buchman, Joseph T; Haynes, Christy L

    2014-03-01

    Mesoporous silica nanoparticles are promising drug delivery agents; however, their interaction with various in vivo biological components is still under investigation. In this work, the impact of sub-50 nm diameter mesoporous silica nanoparticles on platelet function is investigated using a microfluidic platform to model blood vessel characteristics. Platelet adhesion and aggregation in the presence of mesoporous silica nanoparticles is investigated, controlling whether or not platelets are activated ahead of nanoparticle exposure. The results indicate that nanoparticles slightly compromise platelet adhesion to endothelial cells at low nanoparticle doses, but that high nanoparticle doses significantly increase the number of platelet adhesion events, leading to higher probability for uncontrolled platelet actions (e.g. clot formation in vivo). High nanoparticle doses also induced platelet aggregation. While platelet activation and aggregation occurred, in no case did nanoparticle exposure result in significant loss of platelet viability; as such, this work clearly demonstrates that aspects besides viability, such as cellular adhesion and interaction with other cell types, have to be considered in the context of nanotoxicology. This simple and highly adaptable analytical platform will be useful for further nanotoxicity studies involving other nanoparticle and cell types.

  11. Early Exposure to General Anesthesia Disrupts Spatial Organization of Presynaptic Vesicles in Nerve Terminals of the Developing Rat Subiculum.

    PubMed

    Lunardi, N; Oklopcic, A; Prillaman, M; Erisir, A; Jevtovic-Todorovic, V

    2015-10-01

    Exposure to general anesthesia (GA) during critical stages of brain development induces widespread neuronal apoptosis and causes long-lasting behavioral deficits in numerous animal species. Although several studies have focused on the morphological fate of neurons dying acutely by GA-induced developmental neuroapoptosis, the effects of an early exposure to GA on the surviving synapses remain unclear. The aim of this study is to study whether exposure to GA disrupts the fine regulation of the dynamic spatial organization and trafficking of synaptic vesicles in presynaptic terminals. We exposed postnatal day 7 (PND7) rat pups to a clinically relevant anesthetic combination of midazolam, nitrous oxide, and isoflurane and performed a detailed ultrastructural analysis of the synaptic vesicle architecture at presynaptic terminals in the subiculum of rats at PND 12. In addition to a significant decrease in the density of presynaptic vesicles, we observed a reduction of docked vesicles, as well as a reduction of vesicles located within 100 nm from the active zone, in animals 5 days after an initial exposure to GA. We also found that the synaptic vesicles of animals exposed to GA are located more distally with respect to the plasma membrane than those of sham control animals and that the distance between presynaptic vesicles is increased in GA-exposed animals compared to sham controls. We report that exposure of immature rats to GA during critical stages of brain development causes significant disruption of the strategic topography of presynaptic vesicles within the nerve terminals of the subiculum. PMID:26048670

  12. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes.

    PubMed

    Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong

    2015-08-14

    To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K(+), Ca(2+), Na(+), Mg(2+) and SO4(2-) decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L(-1)) and a long nano-TiO2 deposition time (48 h), the concentration of Na(+) decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L(-1), respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO4(2-) decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L(-1), respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.

  13. Effects of engineered iron nanoparticles on the bryophyte, Physcomitrella patens (Hedw.) Bruch & Schimp, after foliar exposure.

    PubMed

    Canivet, L; Dubot, P; Garçon, G; Denayer, F-O

    2015-03-01

    The effects of iron nanoparticles on bryophytes (Physcomitrella patens) were studied following foliar exposure. We used iron nanoparticles (Fe-NP) representative of industrial emissions from the metallurgical industries. After a characterization of iron nanoparticles and the validation of nanoparticle internalization in cells, the effects (cytotoxicity, oxidative stress, lipid peroxidation of membrane) of iron nanoparticles were determined through the axenic culturing of Physcomitrella patens exposed at five different concentrations (5 ng, 50 ng, 500 ng, 5 µg and 50 µg per plant). Following exposure, the plant health, measured as ATP concentrations, was not impacted. Moreover, we studied oxidative stress in three ways: through the measure of reactive oxygen species (ROS) production, through malondialdehyde (MDA) production and also through glutathione regulation. At concentrations tested over a short period, the level of ROS, MDA and glutathione were not significantly disturbed.

  14. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida.

    PubMed

    Novo, Marta; Lahive, Elma; Díez-Ortiz, María; Matzke, Marianne; Morgan, Andrew J; Spurgeon, David J; Svendsen, Claus; Kille, Peter

    2015-10-01

    Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms. PMID:26204059

  15. Occupational Exposure to Endocrine-Disrupting Chemicals and Birth Weight and Length of Gestation: A European Meta-Analysis

    PubMed Central

    Birks, Laura; Casas, Maribel; Garcia, Ana M.; Alexander, Jan; Barros, Henrique; Bergström, Anna; Bonde, Jens Peter; Burdorf, Alex; Costet, Nathalie; Danileviciute, Asta; Eggesbø, Merete; Fernández, Mariana F.; González-Galarzo, M. Carmen; Hanke, Wojciech; Jaddoe, Vincent; Kogevinas, Manolis; Kull, Inger; Lertxundi, Aitana; Melaki, Vasiliki; Andersen, Anne-Marie Nybo; Olea, Nicolás; Polanska, Kinga; Rusconi, Franca; Santa-Marina, Loreto; Santos, Ana Cristina; Vrijkotte, Tanja; Zugna, Daniela; Nieuwenhuijsen, Mark; Cordier, Sylvaine; Vrijheid, Martine

    2016-01-01

    Background: Women of reproductive age can be exposed to endocrine-disrupting chemicals (EDCs) at work, and exposure to EDCs in pregnancy may affect fetal growth. Objectives: We assessed whether maternal occupational exposure to EDCs during pregnancy as classified by application of a job exposure matrix was associated with birth weight, term low birth weight (LBW), length of gestation, and preterm delivery. Methods: Using individual participant data from 133,957 mother–child pairs in 13 European cohorts spanning births from 1994 through 2011, we linked maternal job titles with exposure to 10 EDC groups as assessed through a job exposure matrix. For each group, we combined the two levels of exposure categories (possible and probable) and compared birth outcomes with the unexposed group (exposure unlikely). We performed meta-analyses of cohort-specific estimates. Results: Eleven percent of pregnant women were classified as exposed to EDCs at work during pregnancy, based on job title. Classification of exposure to one or more EDC group was associated with an increased risk of term LBW [odds ratio (OR) = 1.25; 95% CI: 1.04, 1.49], as were most specific EDC groups; this association was consistent across cohorts. Further, the risk increased with increasing number of EDC groups (OR = 2.11; 95% CI: 1.10, 4.06 for exposure to four or more EDC groups). There were few associations (p < 0.05) with the other outcomes; women holding job titles classified as exposed to bisphenol A or brominated flame retardants were at higher risk for longer length of gestation. Conclusion: Results from our large population-based birth cohort design indicate that employment during pregnancy in occupations classified as possibly or probably exposed to EDCs was associated with an increased risk of term LBW. Citation: Birks L, Casas M, Garcia AM, Alexander J, Barros H, Bergström A, Bonde JP, Burdorf A, Costet N, Danileviciute A, Eggesbø M, Fernández MF, González-Galarzo MC, Gražulevičienė R

  16. [Murine peritoneal neutrophil activation upon tungsten nanoparticles exposure in vivo].

    PubMed

    Martinova, E A; Baranov, V I

    2014-01-01

    Two examples of tungsten carbide nanoparticles (d = 15 nm, 50 nm) and tungsten carbide nanoparticles with 8% cobalt (d = 50 nm) have been found to induce the neutrophil activation 3 h and 36 h after intraperitoneal administration in the doses 0.005; 0.025; 0.05; 0.25; 0.5; 1; 2.5 and 5 microgram per 1 gram body weight to FVB mice. Neutrophil activation was calculated based on the CD11b and S100 antigen expression. Effect of nanoparticles is bimodal for all tested examples.

  17. Using biological endpoints for assessing exposures to endocrine disrupting contaminants of emerging concern

    EPA Science Inventory

    Most of what is known about the implications of endocrine disrupting chemicals (EDCs) in the environment is site- or compound-specific. There are numerous reports of gonadal histological abnormalities, alterations in sex ratios, and high vitellogenin protein levels in fish below ...

  18. Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies.

    PubMed

    Zheng, Zhengui; Armfield, Brooke A; Cohn, Martin J

    2015-12-29

    Congenital penile anomalies (CPAs) are among the most common human birth defects. Reports of CPAs, which include hypospadias, chordee, micropenis, and ambiguous genitalia, have risen sharply in recent decades, but the causes of these malformations are rarely identified. Both genetic anomalies and environmental factors, such as antiandrogenic and estrogenic endocrine disrupting chemicals (EDCs), are suspected to cause CPAs; however, little is known about the temporal window(s) of sensitivity to EDCs, or the tissue-specific roles and downstream targets of the androgen receptor (AR) in external genitalia. Here, we show that the full spectrum of CPAs can be produced by disrupting AR at different developmental stages and in specific cell types in the mouse genital tubercle. Inactivation of AR during a narrow window of prenatal development results in hypospadias and chordee, whereas earlier disruptions cause ambiguous genitalia and later disruptions cause micropenis. The neonatal phase of penile development is controlled by the balance of AR to estrogen receptor α (ERα) activity; either inhibition of androgen or augmentation of estrogen signaling can induce micropenis. AR and ERα have opposite effects on cell division, apoptosis, and regulation of Hedgehog, fibroblast growth factor, bone morphogenetic protein, and Wnt signaling in the genital tubercle. We identify Indian hedgehog (Ihh) as a novel downstream target of AR in external genitalia and show that conditional deletion of Ihh inhibits penile masculinization. These studies reveal previously unidentified cellular and molecular mechanisms by which antiandrogenic and estrogenic signals induce penile malformations and demonstrate that the timing of endocrine disruption can determine the type of CPA.

  19. Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies

    PubMed Central

    Armfield, Brooke A.; Cohn, Martin J.

    2015-01-01

    Congenital penile anomalies (CPAs) are among the most common human birth defects. Reports of CPAs, which include hypospadias, chordee, micropenis, and ambiguous genitalia, have risen sharply in recent decades, but the causes of these malformations are rarely identified. Both genetic anomalies and environmental factors, such as antiandrogenic and estrogenic endocrine disrupting chemicals (EDCs), are suspected to cause CPAs; however, little is known about the temporal window(s) of sensitivity to EDCs, or the tissue-specific roles and downstream targets of the androgen receptor (AR) in external genitalia. Here, we show that the full spectrum of CPAs can be produced by disrupting AR at different developmental stages and in specific cell types in the mouse genital tubercle. Inactivation of AR during a narrow window of prenatal development results in hypospadias and chordee, whereas earlier disruptions cause ambiguous genitalia and later disruptions cause micropenis. The neonatal phase of penile development is controlled by the balance of AR to estrogen receptor α (ERα) activity; either inhibition of androgen or augmentation of estrogen signaling can induce micropenis. AR and ERα have opposite effects on cell division, apoptosis, and regulation of Hedgehog, fibroblast growth factor, bone morphogenetic protein, and Wnt signaling in the genital tubercle. We identify Indian hedgehog (Ihh) as a novel downstream target of AR in external genitalia and show that conditional deletion of Ihh inhibits penile masculinization. These studies reveal previously unidentified cellular and molecular mechanisms by which antiandrogenic and estrogenic signals induce penile malformations and demonstrate that the timing of endocrine disruption can determine the type of CPA. PMID:26598695

  20. Effects of age on the disruption of cognitive performance by exposure to space radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure to low doses of heavy particles and protons can cause deficits in cognitive performance when measured within a short time (1-4 months) following irradiation. The long-term effects of such exposures and their relationship to the short-term effects remain to be established. The present exp...

  1. Cutaneous exposure scenarios for engineered nanoparticles used in semiconductor fabrication: a preliminary investigation of workplace surface contamination

    PubMed Central

    Shepard, Michele; Brenner, Sara

    2014-01-01

    Background: Numerous studies are ongoing in the fields of nanotoxicology and exposure science; however, gaps remain in identifying and evaluating potential exposures from skin contact with engineered nanoparticles in occupational settings. Objectives: The aim of this study was to identify potential cutaneous exposure scenarios at a workplace using engineered nanoparticles (alumina, ceria, amorphous silica) and evaluate the presence of these materials on workplace surfaces. Methods: Process review, workplace observations, and preliminary surface sampling were conducted using microvacuum and wipe sample collection methods and transmission electron microscopy with elemental analysis. Results: Exposure scenarios were identified with potential for incidental contact. Nanoparticles of silica or silica and/or alumina agglomerates (or aggregates) were identified in surface samples from work areas where engineered nanoparticles were used or handled. Conclusions: Additional data are needed to evaluate occupational exposures from skin contact with engineered nanoparticles; precautionary measures should be used to minimize potential cutaneous exposures in the workplace. PMID:25000112

  2. Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure.

    PubMed

    Wang, Yun; Wang, Bing; Zhu, Mo-Tao; Li, Ming; Wang, Hua-Jian; Wang, Meng; Ouyang, Hong; Chai, Zhi-Fang; Feng, Wei-Yue; Zhao, Yu-Liang

    2011-08-10

    Microglia as the resident macrophage-like cells in the central nervous system (CNS) play a pivotal role in the innate immune responses of CNS. Understanding the reactions of microglia cells to nanoparticle exposure is important in the exploration of neurobiology of nanoparticles. Here we provide a systemic mapping of microglia and the corresponding pathological changes in olfactory-transport related brain areas of mice with Fe(2)O(3)-nanoparticle intranasal treatment. We showed that intranasal exposure of Fe(2)O(3) nanoparticle could lead to pathological alteration in olfactory bulb, hippocampus and striatum, and caused microglial proliferation, activation and recruitment in these areas, especially in olfactory bulb. Further experiments with BV2 microglial cells showed the exposure to Fe(2)O(3) nanoparticles could induce cells proliferation, phagocytosis and generation of ROS and NO, but did not cause significant release of inflammatory factors, including IL-1β, IL-6 and TNF-α. Our results indicate that microglial activation may act as an alarm and defense system in the processes of the exogenous nanoparticles invading and storage in brain.

  3. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio).

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Wu, Changxing; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2014-12-01

    Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms.

  4. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio).

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Wu, Changxing; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2014-12-01

    Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms. PMID:25304545

  5. Dietary exposure to endocrine disrupting chemicals in metropolitan population from China: a risk assessment based on probabilistic approach.

    PubMed

    He, Dongliang; Ye, Xiaolei; Xiao, Yonghua; Zhao, Nana; Long, Jia; Zhang, Piwei; Fan, Ying; Ding, Shibin; Jin, Xin; Tian, Chong; Xu, Shunqing; Ying, Chenjiang

    2015-11-01

    The intake of contaminated foods is an important exposure pathway for endocrine disrupting chemicals (EDCs). However, data on the occurrence of EDCs in foodstuffs are sporadic and the resultant risk of co-exposure is rarely concerned. In this study, 450 food samples representing 7 food categories (mainly raw and fresh food), collected from three geographic cities in China, were analyzed for eight EDCs using high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Besides estrone (E1), other EDCs including diethylstilbestrol (DES), nonylphenol (NP), bisphenol A (BPA), octylphenol (OP), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3) were ubiquitous in food. Dose-dependent relationships were found between NP and EE2 (r=0.196, p<0.05), BPA (r=0.391, p<0.05). Moreover, there existed a correspondencebetween EDCs congener and food category. Based on the obtained database of EDCs concentration combined with local food consumption, dietary EDCs exposure was estimated using the Monte Carlo Risk Assessment (MCRA) system. The 50th and 95th percentile exposure of any EDCs isomer were far below the tolerable daily intake (TDI) value identically. However, the sum of 17β-estradiol equivalents (∑EEQs) exposure in population was considerably larger than the value of exposure to E2, which implied the underlying resultant risk of multiple EDCs in food should be concern. In conclusion, co-exposure via food consumption should be considered rather than individual EDCs during health risk evaluation. PMID:26025473

  6. Development of a dose-controlled multiculture cell exposure chamber for efficient delivery of airborne and engineered nanoparticles

    NASA Astrophysics Data System (ADS)

    Asimakopoulou, Akrivi; Daskalos, Emmanouil; Lewinski, Nastassja; Riediker, Michael; Papaioannou, Eleni; Konstandopoulos, Athanasios G.

    2013-04-01

    In order to study the various health influencing parameters related to engineered nanoparticles as well as to soot emitted by Diesel engines, there is an urgent need for appropriate sampling devices and methods for cell exposure studies that simulate the respiratory system and facilitate associated biological and toxicological tests. The objective of the present work was the further advancement of a Multiculture Exposure Chamber (MEC) into a dose-controlled system for efficient delivery of nanoparticles to cells. It was validated with various types of nanoparticles (Diesel engine soot aggregates, engineered nanoparticles for various applications) and with state-of-the-art nanoparticle measurement instrumentation to assess the local deposition of nanoparticles on the cell cultures. The dose of nanoparticles to which cell cultures are being exposed was evaluated in the normal operation of the in vitro cell culture exposure chamber based on measurements of the size specific nanoparticle collection efficiency of a cell free device. The average efficiency in delivering nanoparticles in the MEC was approximately 82%. The nanoparticle deposition was demonstrated by Transmission Electron Microscopy (TEM). Analysis and design of the MEC employs Computational Fluid Dynamics (CFD) and true to geometry representations of nanoparticles with the aim to assess the uniformity of nanoparticle deposition among the culture wells. Final testing of the dose-controlled cell exposure system was performed by exposing A549 lung cell cultures to fluorescently labeled nanoparticles. Delivery of aerosolized nanoparticles was demonstrated by visualization of the nanoparticle fluorescence in the cell cultures following exposure. Also monitored was the potential of the aerosolized nanoparticles to generate reactive oxygen species (ROS) (e.g. free radicals and peroxides generation), thus expressing the oxidative stress of the cells which can cause extensive cellular damage or damage on DNA.

  7. Disruption of thyroid hormone functions by low dose exposure of tributyltin: an in vitro and in vivo approach.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2014-09-15

    Triorganotins, such as tributyltin chloride (TBTCl), are environmental contaminants that are commonly found in the antifouling paints used in ships and other vessels. The importance of TBTCl as an endocrine-disrupting chemical (EDC) in different animal models is well known; however, its adverse effects on the thyroid gland are less understood. Hence, in the present study, we aimed to evaluate the thyroid-disrupting effects of this chemical using both in vitro and in vivo approaches. We used HepG2 hepatocarcinoma cells for the in vitro studies, as they are a thyroid hormone receptor (TR)-positive and thyroid responsive cell line. For the in vivo studies, Swiss albino male mice were exposed to three doses of TBTCl (0.5, 5 and 50μg/kg/day) for 45days. TBTCl showed a hypo-thyroidal effect in vivo. Low-dose treatment of TBTCl exposure markedly decreased the serum thyroid hormone levels via the down-regulation of the thyroid peroxidase (TPO) and thyroglobulin (Tg) genes by 40% and 25%, respectively, while augmenting the thyroid stimulating hormone (TSH) levels. Thyroid-stimulating hormone receptor (TSHR) expression was up-regulated in the thyroid glands of treated mice by 6.6-fold relative to vehicle-treated mice (p<0.05). In the transient transactivation assays, TBTCl suppressed T3 mediated transcriptional activity in a dose-dependent manner. In addition, TBTCl was found to decrease the expression of TR. The present study thus indicates that low concentrations of TBTCl suppress TR transcription by disrupting the physiological concentrations of T3/T4, followed by the recruitment of NCoR to TR, providing a novel insight into the thyroid hormone-disrupting effects of this chemical.

  8. Disruption of thyroid hormone functions by low dose exposure of tributyltin: an in vitro and in vivo approach.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2014-09-15

    Triorganotins, such as tributyltin chloride (TBTCl), are environmental contaminants that are commonly found in the antifouling paints used in ships and other vessels. The importance of TBTCl as an endocrine-disrupting chemical (EDC) in different animal models is well known; however, its adverse effects on the thyroid gland are less understood. Hence, in the present study, we aimed to evaluate the thyroid-disrupting effects of this chemical using both in vitro and in vivo approaches. We used HepG2 hepatocarcinoma cells for the in vitro studies, as they are a thyroid hormone receptor (TR)-positive and thyroid responsive cell line. For the in vivo studies, Swiss albino male mice were exposed to three doses of TBTCl (0.5, 5 and 50μg/kg/day) for 45days. TBTCl showed a hypo-thyroidal effect in vivo. Low-dose treatment of TBTCl exposure markedly decreased the serum thyroid hormone levels via the down-regulation of the thyroid peroxidase (TPO) and thyroglobulin (Tg) genes by 40% and 25%, respectively, while augmenting the thyroid stimulating hormone (TSH) levels. Thyroid-stimulating hormone receptor (TSHR) expression was up-regulated in the thyroid glands of treated mice by 6.6-fold relative to vehicle-treated mice (p<0.05). In the transient transactivation assays, TBTCl suppressed T3 mediated transcriptional activity in a dose-dependent manner. In addition, TBTCl was found to decrease the expression of TR. The present study thus indicates that low concentrations of TBTCl suppress TR transcription by disrupting the physiological concentrations of T3/T4, followed by the recruitment of NCoR to TR, providing a novel insight into the thyroid hormone-disrupting effects of this chemical. PMID:25101840

  9. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice.

    PubMed

    Kassotis, Christopher D; Klemp, Kara C; Vu, Danh C; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L; Pinatti, Lisa; Zoeller, R Thomas; Drobnis, Erma Z; Balise, Victoria D; Isiguzo, Chiamaka J; Williams, Michelle A; Tillitt, Donald E; Nagel, Susan C

    2015-12-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.

  10. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice.

    PubMed

    Kassotis, Christopher D; Klemp, Kara C; Vu, Danh C; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L; Pinatti, Lisa; Zoeller, R Thomas; Drobnis, Erma Z; Balise, Victoria D; Isiguzo, Chiamaka J; Williams, Michelle A; Tillitt, Donald E; Nagel, Susan C

    2015-12-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals. PMID:26465197

  11. Endocrine-disrupting activity of hydraulic fracturing chemicals and adverse health outcomes after prenatal exposure in male mice

    USGS Publications Warehouse

    Kassotis, Christopher D.; Klemp, Kara C.; Vu, Danh C.; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L.; Pinatti, Lisa; Zoeller, R. Thomas; Drobnis, Erma Z.; Balise, Victoria D.; Isiguzo, Chiamaka J.; Williams, Michelle A.; Tillitt, Donald E.; Nagel, Susan C.

    2015-01-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.

  12. Assay to detect lipid peroxidation upon exposure to nanoparticles.

    PubMed

    Potter, Timothy M; Neun, Barry W; Stern, Stephan T

    2011-01-01

    This chapter describes a method for the analysis of human hepatocarcinoma cells (HEP G2) for lipid peroxidation products, such as malondialdehyde (MDA), following treatment with nanoparticle formulations. Oxidative stress has been identified as a likely mechanism of nanoparticle toxicity, and cell-based in vitro systems for evaluation of nanoparticle-induced oxidative stress are widely considered to be an important component of biocompatibility screens. The products of lipid peroxidation, lipid hydroperoxides, and aldehydes, such as MDA, can be measured via a thiobarbituric acid reactive substances (TBARS) assay. In this assay, which can be performed in cell culture or in cell lysate, MDA combines with thiobarbituric acid (TBA) to form a fluorescent adduct that can be detected at an excitation wavelength of 530 nm and an emission wavelength of 550 nm. The results are then expressed as MDA equivalents, normalized to total cellular protein (determined by Bradford assay).

  13. Silver Nanoparticles Disrupt GDNF/Fyn kinase Signaling in Spermatogonial Stem Cells

    PubMed Central

    Braydich-Stolle, Laura K.; Lucas, Benjamin; Schrand, Amanda; Murdock, Richard C.; Lee, Timothy; Schlager, John J.; Hussain, Saber M.; Hofmann, Marie-Claude

    2010-01-01

    Silver nanoparticles (Ag-NPs) are being utilized in an increasing number of fields and are components of antibacterial coatings, antistatic materials, superconductors, and biosensors. A number of reports have now described the toxic effects of silver nanoparticles on somatic cells; however, no study has examined their effects on the germ line at the molecular level. Spermatogenesis is a complex biological process that is particularly sensitive to environmental insults. Many chemicals, including ultrafine particles, have a negative effect on the germ line, either by directly affecting the germ cells or by indirectly acting on the somatic cells of the testis. In the present study, we have assessed the impact of different doses of Ag-NPs, as well as their size and biocompatible coating, on the proliferation of mouse spermatogonial stem cells (SSCs), which are at the origin of the germ line in the adult testis. At concentrations ≥ 10 μg/ml, Ag-NPs induced a significant decline in SSCs proliferation, which was also dependent on their size and coating. At the concentration of 10 μg/ml, reactive oxygen species production and/or apoptosis did not seem to play a major role; therefore, we explored other mechanisms to explain the decrease in cell proliferation. Because glial cell line–derived neurotrophic factor (GDNF) is vital for SSC self-renewal in vitro and in vivo, we evaluated the effects of Ag-NPs on GDNF-mediated signaling in these cells. Although the nanoparticles did not reduce GDNF binding or Ret receptor activity, our data revealed that already at a concentration of 10 μg/ml, silver nanoparticles specifically interact with Fyn kinase downstream of Ret and impair SSC proliferation in vitro. In addition, we demonstrated that the particle coating was degraded upon interaction with the intracellular microenvironment, reducing biocompatibility. PMID:20488942

  14. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption.

    PubMed

    Chen, Guanliang; Jin, Yuanxiang; Wu, Yan; Liu, Ling; Fu, Zhengwei

    2015-07-01

    Triphenyl phosphate (TPP) and tris(2-chloroethyl) phosphate (TCEP) are two of the most common organophosphate flame retardants in the ecosystem. Effects of TPP and TCEP on the induction of oxidative stress and endocrine disruption were evaluated in five weeks old male mice. After receiving 100, 300 mg/kg/bodyweight oral exposure to TPP and TCEP for 35 days, the body and testis weights decreased in 300 mg/kg TPP and TCEP treated groups. Hepatic malondialdehyde (MDA) contents increased significantly in both TPP treated groups, while the contents of glutathione (GSH) decreased significantly in 300 mg/kg TPP and both TCEP treated groups. In addition, the hepatic activities of antioxidant enzymes including glutathione peroxidase (GPX), catalase (CAT) and glutathione S-transferase (GST) as well as their related gene expression were affected by TPP or TECP exposure. On the other hand, 300 mg/kg of TPP or TECP treatment resulted in histopathological damage and the decrease of testicular testosterone levels. Moreover, the expression of main genes related to testosterone synthesis including steroidogenic acute regulatory protein (StAR), low-density lipoprotein receptor (LDL-R), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and cytochrome P450 17α-hydroxysteroid dehydrogenase (P450-17α) in the testes also decreased after the exposure to 300 mg/kg TPP or TCEP for 35 days. Combined with the effects on physiology, histopathology and the expression of genes, TPP and TCEP can induce oxidative stress and endocrine disruption in mice.

  15. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus-pituitary-thyroid axis in zebrafish embryos.

    PubMed

    Tu, Wenqing; Xu, Chao; Lu, Bin; Lin, Chunmian; Wu, Yongming; Liu, Weiping

    2016-01-15

    Synthetic pyrethroids (SPs) have the potential to disrupt the thyroid endocrine system in mammals; however, little is known of the effects of SPs and underlying mechanisms in fish. In the current study, embryonic zebrafish were exposed to various concentrations (1, 3 and 10 μg/L) of bifenthrin (BF) or λ-cyhalothrin (λ-CH) until 72 h post fertilization, and body condition, bioaccumulation, thyroid hormone levels and transcription of related genes along the hypothalamus-pituitary-thyroid (HPT) axis examined. Body weight was significantly decreased in the λ-CH exposure groups, but not the BF exposure groups. BF and λ-CH markedly accumulated in the larvae, with concentrations ranging from 90.7 to 596.8 ng/g. In both exposure groups, alterations were observed in thyroxine (T4) and triiodothyronine (T3) levels. In addition, the majority of the HPT axis-related genes examined, including CRH, TSHβ, TTR, UGT1ab, Pax8, Dio2 and TRα, were significantly upregulated in the presence of BF. Compared to BF, λ-CH induced different transcriptional regulation patterns of the tested genes, in particular, significant stimulation of TTR, Pax8, Dio2 and TRα levels along with concomitant downregulation of Dio1. Molecular docking analyses revealed that at the atomic level, BF binds to thyroid hormone receptor (TRα) protein more potently than λ-CH, consequently affecting HPT axis signal transduction. In vitro and in silico experiments disclosed that during the early stages of zebrafish development, BF and λ-CH have the potential to disrupt thyroid endocrine system. PMID:26556752

  16. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution

    PubMed Central

    Pettit, Ashley P.; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46–70 years) were taken on a 1.5hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics. PMID:26656561

  17. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    PubMed

    Pettit, Ashley P; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years) were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics.

  18. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong

    2015-07-01

    To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging

  19. Assessment of Nanoparticle Exposure in Nanosilica Handling Process: Including Characteristics of Nanoparticles Leaking from a Vacuum Cleaner

    PubMed Central

    KIM, Boowook; KIM, Hyunwook; YU, Il Je

    2013-01-01

    Nanosilica is one of the most widely used nanomaterials across the world. However, their assessment data on the occupational exposure to nanoparticles is insufficient. The present study performed an exposure monitoring in workplace environments where synthetic powders are prepared using fumed nanosilica. Furthermore, after it was observed during exposure monitoring that nanoparticles were emitted through leakage in a vacuum cleaner (even with a HEPA-filter installed in it), the properties of the leaked nanoparticles were also investigated. Workers were exposed to high-concentration nanosilica emitted into the air while pouring it into a container or transferring the container. The use of a vacuum cleaner with a leak (caused by an inadequate sealing) was found to be the origin of nanosilica dispersion in the indoor air. While the particle size of the nanosilica that emitted into the air (during the handling of nanosilica by a worker) was mostly over 100 nm or several microns (µm) due to the coagulation of particles, the size of nanosilica that leaked out of vacuum cleaner was almost similar to the primary size (mode diameter 11.5 nm). Analysis of area samples resulted in 20% (60% in terms of peak concentration) less than the analysis of the personals sample. PMID:24366536

  20. Assessment of nanoparticle exposure in nanosilica handling process: including characteristics of nanoparticles leaking from a vacuum cleaner.

    PubMed

    Kim, Boowook; Kim, Hyunwook; Yu, Il Je

    2014-01-01

    Nanosilica is one of the most widely used nanomaterials across the world. However, their assessment data on the occupational exposure to nanoparticles is insufficient. The present study performed an exposure monitoring in workplace environments where synthetic powders are prepared using fumed nanosilica. Furthermore, after it was observed during exposure monitoring that nanoparticles were emitted through leakage in a vacuum cleaner (even with a HEPA-filter installed in it), the properties of the leaked nanoparticles were also investigated. Workers were exposed to high-concentration nanosilica emitted into the air while pouring it into a container or transferring the container. The use of a vacuum cleaner with a leak (caused by an inadequate sealing) was found to be the origin of nanosilica dispersion in the indoor air. While the particle size of the nanosilica that emitted into the air (during the handling of nanosilica by a worker) was mostly over 100 nm or several microns (µm) due to the coagulation of particles, the size of nanosilica that leaked out of vacuum cleaner was almost similar to the primary size (mode diameter 11.5 nm). Analysis of area samples resulted in 20% (60% in terms of peak concentration) less than the analysis of the personals sample. PMID:24366536

  1. Assessment of nanoparticle exposure in nanosilica handling process: including characteristics of nanoparticles leaking from a vacuum cleaner.

    PubMed

    Kim, Boowook; Kim, Hyunwook; Yu, Il Je

    2014-01-01

    Nanosilica is one of the most widely used nanomaterials across the world. However, their assessment data on the occupational exposure to nanoparticles is insufficient. The present study performed an exposure monitoring in workplace environments where synthetic powders are prepared using fumed nanosilica. Furthermore, after it was observed during exposure monitoring that nanoparticles were emitted through leakage in a vacuum cleaner (even with a HEPA-filter installed in it), the properties of the leaked nanoparticles were also investigated. Workers were exposed to high-concentration nanosilica emitted into the air while pouring it into a container or transferring the container. The use of a vacuum cleaner with a leak (caused by an inadequate sealing) was found to be the origin of nanosilica dispersion in the indoor air. While the particle size of the nanosilica that emitted into the air (during the handling of nanosilica by a worker) was mostly over 100 nm or several microns (µm) due to the coagulation of particles, the size of nanosilica that leaked out of vacuum cleaner was almost similar to the primary size (mode diameter 11.5 nm). Analysis of area samples resulted in 20% (60% in terms of peak concentration) less than the analysis of the personals sample.

  2. Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity.

    PubMed

    Tu, Wenqing; Niu, Lili; Liu, Weiping; Xu, Chao

    2013-03-01

    Butachlor is a chloroacetanilide herbicide widely employed in weeding important crops. Recently, the study of the possible toxic effects of butachlor in non-target organisms has increased substantially. However, the endocrine disruption, developmental toxicity and immunotoxicity effects of butachlor in fish have not been fully investigated in previous studies. In the present study, zebrafish embryos were exposed to a range of butachlor concentrations from 4 to 20 μM to evaluate the embryonic toxicity of butachlor until 84 hours postfertilization (hpf). The results demonstrated that butachlor was highly toxic to zebrafish embryos, hindering the hatching process, resulting in a series of malformations and followed by mortality. The malformations observed included pericardial edema (PE) and yolk sac edema (YSE), which showed concentration-dependent responses. The analysis of endocrine gene transcription indicated that butachlor significantly induced the expression of the estrogen-responsive gene Vtg1 but had no effect on the expression of the ERα gene. The innate immune system appeared to be another possible target of butachlor. At 72 hpf, butachlor significantly up-regulated the innate immune system-related genes, including IL-1β, CC-chem, CXCL-C1c and IL-8. These data suggest that butachlor causes developmental toxicity, endocrine disruption and immune toxicity in the zebrafish embryo. Bidirectional interactions between the endocrine system and the immune system might be present, and further studies are needed to determine these possible pathways.

  3. Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity.

    PubMed

    Tu, Wenqing; Niu, Lili; Liu, Weiping; Xu, Chao

    2013-03-01

    Butachlor is a chloroacetanilide herbicide widely employed in weeding important crops. Recently, the study of the possible toxic effects of butachlor in non-target organisms has increased substantially. However, the endocrine disruption, developmental toxicity and immunotoxicity effects of butachlor in fish have not been fully investigated in previous studies. In the present study, zebrafish embryos were exposed to a range of butachlor concentrations from 4 to 20 μM to evaluate the embryonic toxicity of butachlor until 84 hours postfertilization (hpf). The results demonstrated that butachlor was highly toxic to zebrafish embryos, hindering the hatching process, resulting in a series of malformations and followed by mortality. The malformations observed included pericardial edema (PE) and yolk sac edema (YSE), which showed concentration-dependent responses. The analysis of endocrine gene transcription indicated that butachlor significantly induced the expression of the estrogen-responsive gene Vtg1 but had no effect on the expression of the ERα gene. The innate immune system appeared to be another possible target of butachlor. At 72 hpf, butachlor significantly up-regulated the innate immune system-related genes, including IL-1β, CC-chem, CXCL-C1c and IL-8. These data suggest that butachlor causes developmental toxicity, endocrine disruption and immune toxicity in the zebrafish embryo. Bidirectional interactions between the endocrine system and the immune system might be present, and further studies are needed to determine these possible pathways. PMID:23294635

  4. Olfactory recognition memory is disrupted in young mice with chronic low-level lead exposure.

    PubMed

    Flores-Montoya, Mayra Gisel; Alvarez, Juan Manuel; Sobin, Christina

    2015-07-01

    Chronic developmental lead exposure yielding very low blood lead burden is an unresolved child public health problem. Few studies have attempted to model neurobehavioral changes in young animals following very low level exposure, and studies are needed to identify tests that are sensitive to the neurobehavioral changes that may occur. Mechanisms of action are not yet known however results have suggested that hippocampus/dentate gyrus may be uniquely vulnerable to early chronic low-level lead exposure. This study examined the sensitivity of a novel odor recognition task to differences in pre-adolescent C57BL/6J mice chronically exposed from birth to PND 28, to 0 ppm (control), 30 ppm (low-dose), or 330 ppm (higher-dose) lead acetate (N=33). Blood lead levels (BLLs) determined by ICP-MS ranged from 0.02 to 20.31 μg/dL. Generalized linear mixed model analyses with litter as a random effect showed a significant interaction of BLL×sex. As BLLs increased olfactory recognition memory decreased in males. Among females, non-linear effects were observed at lower but not higher levels of lead exposure. The novel odor detection task is sensitive to effects associated with early chronic low-level lead exposure in young C57BL/6J mice.

  5. Pubertal cadmium exposure impairs testicular development and spermatogenesis via disrupting testicular testosterone synthesis in adult mice.

    PubMed

    Ji, Yan-Li; Wang, Hua; Liu, Ping; Wang, Qun; Zhao, Xian-Feng; Meng, Xiu-Hong; Yu, Tao; Zhang, Heng; Zhang, Cheng; Zhang, Ying; Xu, De-Xiang

    2010-04-01

    Cadmium (Cd) is a well-known testicular toxicant. However, the effects of pubertal Cd exposure on testicular development and spermatogenesis remained to be elucidated. The present study investigated the effects of pubertal Cd exposure on testicular development and spermatogenesis. Male CD-1 mice were intraperitoneally injected with CdCl(2) (1mg/kg) daily from postnatal day 35 (PND35) to PND70. As expected, pubertal Cd exposure significantly decreased the number of spermatozoa in epididymides. In addition, pubertal Cd exposure markedly reduced the weights of testes, epididymides and prostate and seminal vesicle in adult mice. A significant decrease in serum and testicular testosterone (T) was observed in mice exposed to Cd during puberty. Moreover, pubertal Cd exposure markedly reduced mRNA and protein levels of testicular StAR, P450scc, P450(17alpha) and 17beta-HSD. Taken together, these results suggest that the decreased testicular T synthesis might partially contribute to pubertal Cd-induced impairment on testicular development and spermatogenesis in mice. PMID:19897027

  6. Olfactory recognition memory is disrupted in young mice with chronic low-level lead exposure

    PubMed Central

    Flores-Montoya, Mayra Gisel; Alvarez, Juan Manuel; Sobin, Christina

    2015-01-01

    Chronic developmental lead exposure yielding very low blood lead burden is an unresolved child public health problem. Few studies have attempted to model neurobehavioral changes in young animals following very low level exposure, and studies are needed to identify tests that are sensitive to the neurobehavioral changes that may occur. Mechanisms of action are not yet known however results have suggested that hippocampus/dentate gyrus may be uniquely vulnerable to early chronic low-level lead exposure. This study examined the sensitivity of a novel odor recognition task to differences in pre-adolescent C57BL/6J mice chronically exposed from birth to PND 28, to 0 ppm (control), 30 ppm (low-dose), or 330 ppm (higher-dose) lead acetate (N = 33). Blood lead levels (BLLs) determined by ICP-MS ranged from 0.02 to 20.31 µg/dL. Generalized linear mixed model analyses with litter as a random effect showed a significant interaction of BLL × sex. As BLLs increased olfactory recognition memory decreased in males. Among females, non-linear effects were observed at lower but not higher levels of lead exposure. The novel odor detection task is sensitive to effects associated with early chronic low-level lead exposure in young C57BL/6J mice. PMID:25936521

  7. Prenatal Exposure to Silver Nanoparticles Causes Depression Like Responses in Mice

    PubMed Central

    Tabatabaei, S. R. F.; Moshrefi, M.; Askaripour, M.

    2015-01-01

    Despite increasing studies on silver nanoparticles, their mechanism of action is not so clear, especially their probable toxicity on reproduction procedure, developmental process and offspring behavior. Therefore in the present study the effect of silver nanoparticles exposure during gestational period on offspring's depression behavior was assessed. Thirty virgin female mice were divided into three groups (n=10 for each group) including: one control and two experimental groups, which received an equal volume (0.2 ml) of suspension containing 0, 0.2 and 2 mg/kg of silver nanoparticles, respectively. After mating, the suspension was injected and repeated every 3 days till accouchement. Depression behaviors were assessed by tail suspension test and forced swimming test, in 45-day-old male and female progenies (6 groups, n=10). In males, both dose of silver nanoparticles (0.2 and 2 mg/kg) decreased mobility and increased immobility time in forced swimming test (P<0.05), but in female no effects were observed in mobility and immobility time. In tail suspension test, 2 mg/kg of silver nanoparticles lead to decrease of mobility time (P<0.05) and increase of immobility time (P<0.05) in female offspring but in males no significant effect was observed on mobility and immobility time. We may concluded that the prenatal exposure to silver nanoparticles probably cause gender-specific depression like behaviors in offspring, possibly through neurotoxic effect during neuronal development. PMID:26997695

  8. Exposure to DEHP and MEHP from hatching to adulthood causes reproductive dysfunction and endocrine disruption in marine medaka (Oryzias melastigma).

    PubMed

    Ye, Ting; Kang, Mei; Huang, Qiansheng; Fang, Chao; Chen, Yajie; Shen, Heqing; Dong, Sijun

    2014-01-01

    Concern has increased regarding the adverse effects of di-(2-ethylhexyl)-phthalate (DEHP) on reproduction. However, limited information is available on the effects of DEHP in marine organisms. The aim of the present study was to examine whether long-term exposure to DEHP and its active metabolite mono-(2-ethylhexyl)-phthalate (MEHP) disrupts endocrine function in marine medaka (Oryzias melastigma). Marine medaka larvae were exposed to either DEHP (0.1 and 0.5mg/L) or MEHP (0.1 and 0.5mg/L) for 6 months, and the effects on reproduction, sex steroid hormones, liver vitellogenin (VTG), gonad histology and the expression of genes involved in the hypothalamic-pituitary-gonad (HPG) axis were investigated. Exposure to DEHP, but not MEHP, from hatching to adulthood accelerated the start of spawning and decreased the egg production of exposed females. Moreover, exposure to both DEHP and MEHP resulted in a reduction in the fertilization rate of oocytes spawned by untreated females paired with treated males. A significant increase in plasma 17β-estradiol (E2) along with a significant decrease in testosterone (T)/E2 ratios was observed in males, which was accompanied by the upregulation of ldlr, star, cyp17a1, 17βhsd, and cyp19a transcription in the testis. Increased concentrations of T and E2 were observed in females, which was consistent with the upregulation of ldlr. The expression of brain gnrhr2, fshβ, cyp19b and steroid hormone receptor genes also corresponded well with hormonal and reproductive changes. The liver VTG level was significantly increased after DEHP and MEHP exposure in males. DEHP induced histological changes in the testes and ovaries: the testes displayed a reduced number of spermatozoa, and the ovaries displayed an increased number of atretic follicles. In addition, the tissue concentrations of MEHP, MEHHP and MEOHP in DEHP-exposed groups were much higher than those in MEHP-exposed groups, and there were no dose- or sex-specific effects. Thus, DEHP

  9. Exposure to Endocrine-Disrupting Chemicals during Pregnancy and Weight at 7 Years of Age: A Multi-pollutant Approach

    PubMed Central

    Agay-Shay, Keren; Martinez, David; Valvi, Damaskini; Garcia-Esteban, Raquel; Basagaña, Xavier; Robinson, Oliver; Casas, Maribel; Sunyer, Jordi

    2015-01-01

    Background Prenatal exposure to endocrine-disrupting chemicals (EDCs) may induce weight gain and obesity in children, but the obesogenic effects of mixtures have not been studied. Objective We evaluated the associations between pre- and perinatal biomarker concentrations of 27 EDCs and child weight status at 7 years of age. Methods In pregnant women enrolled in a Spanish birth cohort study between 2004 and 2006, we measured the concentrations of 10 phthalate metabolites, bisphenol A, cadmium, arsenic, and lead in two maternal pregnancy urine samples; 6 organochlorine compounds in maternal pregnancy serum; mercury in cord blood; and 6 polybrominated diphenyl ether congeners in colostrum. Among 470 children at 7 years, body mass index (BMI) z-scores were calculated, and overweight was defined as BMI > 85th percentile. We estimated associations with EDCs in single-pollutant models and applied principal-component analysis (PCA) on the 27 pollutant concentrations. Results In single-pollutant models, HCB (hexachlorobenzene), βHCH (β-hexachlorocyclohexane), and polychlorinated biphenyl (PCB) congeners 138 and 180 were associated with increased child BMI z-scores; and HCB, βHCH, PCB-138, and DDE (dichlorodiphenyldichloroethylene) with overweight risk. PCA generated four factors that accounted for 43.4% of the total variance. The organochlorine factor was positively associated with BMI z-scores and with overweight (adjusted RR, tertile 3 vs. 1: 2.59; 95% CI: 1.19, 5.63), and these associations were robust to adjustment for other EDCs. Exposure in the second tertile of the phthalate factor was inversely associated with overweight. Conclusions Prenatal exposure to organochlorines was positively associated with overweight at age 7 years in our study population. Other EDCs exposures did not confound this association. Citation Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagaña X, Robinson O, Casas M, Sunyer J, Vrijheid M. 2015. Exposure to endocrine-disrupting

  10. The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals

    PubMed Central

    Stel, Jente

    2015-01-01

    Recent research supports a role for exposure to endocrine-disrupting chemicals (EDCs) in the global obesity epidemic. Obesogenic EDCs have the potential to inappropriately stimulate adipogenesis and fat storage, influence metabolism and energy balance and increase susceptibility to obesity. Developmental exposure to obesogenic EDCs is proposed to interfere with epigenetic programming of gene regulation, partly by activation of nuclear receptors, thereby influencing the risk of obesity later in life. The goal of this minireview is to briefly describe the epigenetic mechanisms underlying developmental plasticity and to evaluate the evidence of a mechanistic link between altered epigenetic gene regulation by early life EDC exposure and latent onset of obesity. We summarize the results of recent in vitro, in vivo, and transgenerational studies, which clearly show that the obesogenic effects of EDCs such as tributyltin, brominated diphenyl ether 47, and polycyclic aromatic hydrocarbons are mediated by the activation and associated altered methylation of peroxisome proliferator-activated receptor-γ, the master regulator of adipogenesis, or its target genes. Importantly, studies are emerging that assess the effects of EDCs on the interplay between DNA methylation and histone modifications in altered chromatin structure. These types of studies coupled with genome-wide rather than gene-specific analyses are needed to improve mechanistic understanding of epigenetic changes by EDC exposure. Current advances in the field of epigenomics have led to the first potential epigenetic markers for obesity that can be detected at birth, providing an important basis to determine the effects of developmental exposure to obesogenic EDCs in humans. PMID:26241072

  11. Effects of Exposure to Semiconductor Nanoparticles on Aquatic Organisms

    PubMed Central

    Leigh, Kenton; Bouldin, Jennifer; Buchanan, Roger

    2012-01-01

    Because of their unique physical, optical, and mechanical properties, nanomaterials hold great promise in improving on a wide variety of current technologies. Consequently, their use in research and consumer products is increasing rapidly, and contamination of the environment with various nanomaterials seems inevitable. Because surface waters receive pollutants and contaminants from many sources including nanoparticles and act as reservoirs and conduits for many environmental contaminants, understanding the potential impacts of nanoparticles on the organisms within these environments is critical to evaluating their potential toxicity. While there is much to be learned about interactions between nanomaterials and aquatic systems, there have been a number of recent reports of interactions of quantum dots (QDs) with aquatic environments and aquatic organisms. This review is focused on providing a summary of recent work investigating the impacts of quantum dots on aquatic organisms. PMID:22131989

  12. In utero dimethadione exposure causes postnatal disruption in cardiac structure and function in the rat.

    PubMed

    Aasa, Kristiina L; Purssell, Elizabeth; Adams, Michael A; Ozolinš, Terence R S

    2014-12-01

    In utero exposure of rat embryos to dimethadione (DMO), the N-demethylated teratogenic metabolite of the anticonvulsant trimethadione, induces a high incidence of cardiac heart defects including ventricular septal defects (VSDs). The same exposure regimen also leads to in utero cardiac functional deficits, including bradycardia, dysrhythmia, and a reduction in cardiac output (CO) and ejection fraction that persist until parturition (10 days after the final dose). Despite a high rate of spontaneous postnatal VSD closure, we hypothesize that functional sequelae will persist into adulthood. Pregnant Sprague Dawley rats were administered six 300 mg/kg doses of DMO, one every 12 h in mid-pregnancy beginning on the evening of gestation day 8. Postnatal cardiac function was assessed in control (CTL) and DMO-exposed offspring using radiotelemetry and ultrasound at 3 and 11 months of age, respectively. Adult rats exposed to DMO in utero had an increased incidence of arrhythmia, elevated blood pressure and CO, greater left ventricular volume and elevated locomotor activity versus CTL. The mean arterial pressure of DMO-exposed rats was more sensitive to changes in dietary salt load compared with CTL. Importantly, most treated rats had functional deficits in the absence of a persistent structural defect. It was concluded that in utero DMO exposure causes cardiovascular deficits that persist into postnatal life in the rat, despite absence of visible structural anomalies. We speculate this is not unique to DMO, suggesting possible health implications for infants with unrecognized gestational chemical exposures.

  13. Prenatal exposure to ethanol disrupts spatial memory: effect of the training-testing delay period.

    PubMed

    Matthews, D B; Simson, P E

    1998-04-01

    The present study investigated how variations in the period of delay between training and testing in the Morris water maze task affect the use of spatial memory in adult rats that were prenatally exposed to ethanol. Previous results utilizing the Morris water maze task have shown that prenatal, or early postnatal, exposure to ethanol produces deficits in the use of spatial memory, a type of memory that is dependent on an intact hippocampus. However, in these prior studies the delay period between the training of animals and the testing of spatial memory is typically fixed at only 1 day. In the current study, which utilized a revised training procedure within the Morris water maze task, the period of delay between training and testing was altered such that it was either 1 day or 3 days. Following the 3-day delay, different levels of prenatal exposure to ethanol impaired the use of spatial memory. In contrast, following the 1-day delay, prenatal exposure to ethanol failed to impair the use of spatial memory. The present study thus shows that prenatal exposure to ethanol differentially affects spatial memory in the Morris water maze task depending on the period of delay between training and testing.

  14. Behavioral response of Daphnia magna to silver salt and nanoparticle exposure

    EPA Science Inventory

    Endpoints in the investigation of the toxicity of metallic nanoparticles have varied from genetic and molecular through whole organism responses such as death and reproduction. The work presented here is an effort to quantify behavioral responses of Daphnia magna to exposure to s...

  15. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. PMID:26057477

  16. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish.

  17. Short term exposure to di-n-butyl phthalate (DBP) disrupts ovarian function in young CD-1 mice.

    PubMed

    Sen, Nivedita; Liu, Xiaosong; Craig, Zelieann R

    2015-06-01

    Di-n-butyl phthalate (DBP) is present in many beauty and medical products. Human exposure estimates range from 0.007-0.01 mg/kg/day in the general population and up to 0.233 mg/kg/day in patients taking DBP-coated medications. Levels of phthalates tend to be higher in women, thus, evaluating ovarian effects of DBP exposure is of great importance. Mice were given corn oil (vehicle) or DBP at 0.01, 0.1, and 1000 mg/kg/day (high dose) for 10 days to test whether DBP causes ovarian toxicity. Estrous cyclicity, steroidogenesis, ovarian morphology, and apoptosis and steroidogenesis gene expression were evaluated. DBP exposure decreased serum E2 at all doses, while 0.1DBP increased FSH, decreased antral follicle numbers, and increased mRNA encoding pro-apoptotic genes (Bax, Bad, Bid). Interestingly, mRNAs encoding the steroidogenic enzymes Hsd17b1, Cyp17a1 and Cyp19a1 were increased in all DBP-treated groups. These novel findings show that DBP can disrupt ovarian function in mice at doses relevant to humans. PMID:25765776

  18. Neonatal Parathion Exposure Disrupts Serotonin and Dopamine Synaptic Function in Rat Brain Regions

    PubMed Central

    Slotkin, Theodore A.; Wrench, Nicola; Ryde, Ian T.; Lassiter, T. Leon; Levin, Edward D.; Seidler, Frederic J.

    2009-01-01

    The consequences of exposure to developmental neurotoxicants are influenced by environmental factors. In the present study, we examined the role of dietary fat intake. We administered parathion to neonatal rats and then evaluated whether a high-fat diet begun in adulthood could modulate the persistent effects on 5HT and DA systems. Neonatal rats received parathion on postnatal days 1-4 at 0.1 or 0.2 mg/kg/day, straddling the cholinesterase inhibition threshold. In adulthood, half the animals in each exposure group were given a high-fat diet for 8 weeks. We assessed 5HT and DA concentrations and turnover in brain regions containing their respective cell bodies and projections. In addition, we monitored 5HT1A and 5HT2 receptor binding and the concentration of 5HT presynaptic transporters. Neonatal parathion exposure evoked widespread increases in neurotransmitter turnover, indicative of presynaptic hyperactivity, further augmented by 5HT receptor upregulation. In control rats, consumption of a high-fat diet recapitulated many of the changes seen with neonatal parathion exposure; the effects represented convergent mechanisms, since the high-fat diet often obtunded further increases caused by parathion. Neonatal parathion exposure causes lasting hyperactivity of 5HT and DA systems accompanied by 5HT receptor upregulation, consistent with “miswiring” of neuronal projections. A high-fat diet obtunds the effect of parathion, in part by eliciting similar changes itself. Thus, dietary factors may produce similar synaptic changes as do developmental neurotoxicants, potentially contributing to the increasing incidence in neurodevelopmental disorders. PMID:19616088

  19. Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity

    PubMed Central

    Liu, C; Duan, W; Li, R; Xu, S; Zhang, L; Chen, C; He, M; Lu, Y; Wu, H; Pi, H; Luo, X; Zhang, Y; Zhong, M; Yu, Z; Zhou, Z

    2013-01-01

    The effect of bisphenol A (BPA) on the reproductive system is highly debated but has been associated with meiotic abnormalities. However, evidence is lacking with regard to the mechanisms involved. In order to explore the underlying mechanisms of BPA-induced meiotic abnormalities in adult male rats, we exposed 9-week-old male Wistar rats to BPA by gavage at 0, 2, 20 or 200 μg/kg body weight (bw)/day for 60 consecutive days. 17β-Estradiol (E2) was administered at 10 μg/kg bw/day as the estrogenic positive control. Treatments with 200 μg/kg bw/day of BPA and E2 significantly decreased sperm counts and inhibited spermiation, characterized by an increase in stage VII and decrease in stage VIII in the seminiferous epithelium. This was concomitant with a disruption in the progression of meiosis I and the persistence of meiotic DNA strand breaks in pachytene spermatocytes,and the ataxia–telangiectasia-mutated and checkpoint kinase 2 signal pathway was also activated; Eventually, germ cell apoptosis was triggered as evaluated by terminal dUTP nick-end labeling assay and western blot for caspase 3. Using the estrogen receptor (ER) antagonist ICI 182780, we determined that ER signaling mediated BPA-induced meiotic disruption and reproductive impairment. Our results suggest that ER signaling-mediated meiotic disruption may be a major contributor to the molecular events leading to BPA-related male reproductive disorders. These rodent data support the growing association between BPA exposure and the rapid increase in the incidence of male reproductive disorders. PMID:23788033

  20. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer.

    PubMed

    Dauchy, Robert T; Xiang, Shulin; Mao, Lulu; Brimer, Samantha; Wren, Melissa A; Yuan, Lin; Anbalagan, Muralidharan; Hauch, Adam; Frasch, Tripp; Rowan, Brian G; Blask, David E; Hill, Steven M

    2014-08-01

    Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to antiestrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of estrogen receptor (ERα(+)) MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speed the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characteristics were not observed in animals in which the circadian melatonin rhythm was not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen. PMID:25062775

  1. Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides.

    PubMed

    Hass, Ulla; Boberg, Julie; Christiansen, Sofie; Jacobsen, Pernille Rosenskjold; Vinggaard, Anne Marie; Taxvig, Camilla; Poulsen, Mette Erecius; Herrmann, Susan Strange; Jensen, Bodil Hamborg; Petersen, Annette; Clemmensen, Line Harder; Axelstad, Marta

    2012-09-01

    The present study investigated whether a mixture of low doses of five environmentally relevant endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, would cause adverse developmental toxicity effects in rats. In rat dams, a significant increase in gestation length was seen, while in male offspring increased nipple retention and increased incidence and severity of genital malformations were observed. Severe mixture effects on gestation length, nipple retention and genital malformations were seen at dose levels where the individual pesticides caused no or smaller effects when given alone. Generally, the mixture effect predictions based on dose-additivity were in good agreement with the observed effects. The results indicate that there is a need for modification of risk assessment procedures for pesticides, in order to take account of the mixture effects and cumulative intake, because of the potentially serious impact of mixed exposure on development and reproduction in humans. PMID:22659286

  2. Hydrophilic nanoparticles stabilising mesophase curvature at low concentration but disrupting mesophase order at higher concentrations.

    PubMed

    Beddoes, Charlotte M; Berge, Johanna; Bartenstein, Julia E; Lange, Kathrin; Smith, Andrew J; Heenan, Richard K; Briscoe, Wuge H

    2016-07-13

    Using high pressure small angle X-ray scattering (HP-SAXS), we have studied monoolein (MO) mesophases at 18 wt% hydration in the presence of 10 nm silica nanoparticles (NPs) at NP-lipid number ratios (ν) of 1 × 10(-6), 1 × 10(-5) and 1 × 10(-4) over the pressure range 1-2700 bar and temperature range 20-60 °C. In the absence of the silica NPs, the pressure-temperature (p-T) phase diagram of monoolein exhibited inverse bicontinuous cubic gyroid (Q), lamellar alpha (Lα), and lamellar crystalline (Lc) phases. The addition of the NPs significantly altered the p-T phase diagram, changing the pressure (p) and the temperature (T) at which the transitions between these mesophases occurred. In particular, a strong NP concentration effect on the mesophase behaviour was observed. At low NP concentration, the p-T region pervaded by the Q phase and the Lα-Q mixture increased, and we attribute this behaviour to the NPs forming clusters at the mesophase domain boundaries, encouraging transition to the mesophase with a higher curvature. At high NP concentrations, the Q phase was no longer observed in the p-T phase diagram. Instead, it was dominated by the lamellar (L) phases until the transition to a fluid isotropic (FI) phase at 60 °C at low pressure. We speculate that NPs formed aggregates with a "chain of pearls" structure at the mesophase domain boundaries, hindering transitions to the mesophases with higher curvatures. These observations were supported by small angle neutron scattering (SANS) and scanning electron microscopy (SEM). Our results have implications to nanocomposite materials and nanoparticle cellular entry where the interactions between NPs and organised lipid structures are an important consideration. PMID:27340807

  3. Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring.

    PubMed

    Péan, Samuel; Daouk, Tarek; Vignet, Caroline; Lyphout, Laura; Leguay, Didier; Loizeau, Véronique; Bégout, Marie-Laure; Cousin, Xavier

    2013-01-01

    The use of polychlorinated biphenyls (PCBs) has been banned for several decades. PCBs have a long biological half-life and high liposolubility which leads to their bioaccumulation and biomagnification through food chains over a wide range of trophic levels. Exposure can lead to changes in animal physiology and behavior and has been demonstrated in both experimental and field analyses. There are also potential risks to high trophic level predators, including humans. A maternal transfer has been demonstrated in fish as PCBs bind to lipids in eggs. In this study, behavioral traits (exploration and free swimming, with or without challenges) of contaminated zebrafish (Danio rerio) adults and their offspring (both as five-day-old larvae and as two-month-old fish reared under standard conditions) were measured using video-tracking. Long-term dietary exposure to a mixture of non-coplanar PCBs was used to mimic known environmental contamination levels and congener composition. Eight-week-old fish were exposed for eight months at 26-28 °C. Those exposed to an intermediate dose (equivalent to that found in the Loire Estuary, ∑(CB)=515 ng g⁻¹ dry weight in food) displayed behavioral disruption in exploration capacities. Fish exposed to the highest dose (equivalent to that found in the Seine Estuary, ∑(CB)=2302 ng g⁻¹ dry weight in food) displayed an increased swimming activity at the end of the night. In offspring, larval activity was increased and two-month-old fish occupied the bottom section of the tank less often. These findings call for more long-term experiments using the zebrafish model; the mechanisms underlying behavioral disruptions need to be understood due to their implications for both human health and their ecological relevance in terms of individual fitness and survival.

  4. Short-term exposure to benzo[a]pyrene disrupts reproductive endocrine status in the swimming crab Portunus trituberculatus.

    PubMed

    Wen, Jianmin; Pan, Luqing

    2015-01-01

    The purpose of this study was to investigate the effect of benzo[a]pyrene (B[a]P) on reproductive endocrine disruption and explore the preliminary mechanisms in crustaceans. In this study, sexually mature female Portunus trituberculatus were exposed to 0, 0.1, 0.5 and 2.5 μg/L B[a]P for 10 days. The following were investigated: (1) Gonadosomatic Index (GSI) and oocyte diameter, (2) steroid concentrations in ovary and hemolymph, and (3) mRNA levels of genes involved in sex steroid synthesis (3β-HSD,17β-HSD) or reproduction (estrogen receptor (ER), OUT (Ovarian tumor gene) domain containing ubiquitin aldehyde-binding protein 1 (OTUB1), vitellogenin (VTG),vasa). B[a]P exposure caused significant reductions in the GSI and oocyte diameter in the crabs. Furthermore, 17β-estradiol (E2), testosterone (T) and progesterone (P) levels were inhibited significantly while 3β-HSD and 17β-HSD mRNA expressions were also decreased in a dose-dependent manner at day 10, which suggests that B[a]P can disrupt sex steroid levels through steroid synthesis pathways. In addition, high levels of B[a]P activated transcription of OTUB1 while suppressed ER and VTG expression, which indicates that exposure to waterborne B[a]P could interfere with ubiquitin-proteasome pathway and subsequently affect ER and ER-mediated gene expression. We also observed a reduction in vasa gene expression reflecting the negative effect of B[a]P on oocyte development in the molecular level. This study is the first to demonstrate in vivo B[a]P toxicity in the reproductive endocrine system of female P. trituberculatus and provided a scientific basis of the decline in crustacean populations. PMID:26080309

  5. Short-term exposure to benzo[a]pyrene disrupts reproductive endocrine status in the swimming crab Portunus trituberculatus.

    PubMed

    Wen, Jianmin; Pan, Luqing

    2015-01-01

    The purpose of this study was to investigate the effect of benzo[a]pyrene (B[a]P) on reproductive endocrine disruption and explore the preliminary mechanisms in crustaceans. In this study, sexually mature female Portunus trituberculatus were exposed to 0, 0.1, 0.5 and 2.5 μg/L B[a]P for 10 days. The following were investigated: (1) Gonadosomatic Index (GSI) and oocyte diameter, (2) steroid concentrations in ovary and hemolymph, and (3) mRNA levels of genes involved in sex steroid synthesis (3β-HSD,17β-HSD) or reproduction (estrogen receptor (ER), OUT (Ovarian tumor gene) domain containing ubiquitin aldehyde-binding protein 1 (OTUB1), vitellogenin (VTG),vasa). B[a]P exposure caused significant reductions in the GSI and oocyte diameter in the crabs. Furthermore, 17β-estradiol (E2), testosterone (T) and progesterone (P) levels were inhibited significantly while 3β-HSD and 17β-HSD mRNA expressions were also decreased in a dose-dependent manner at day 10, which suggests that B[a]P can disrupt sex steroid levels through steroid synthesis pathways. In addition, high levels of B[a]P activated transcription of OTUB1 while suppressed ER and VTG expression, which indicates that exposure to waterborne B[a]P could interfere with ubiquitin-proteasome pathway and subsequently affect ER and ER-mediated gene expression. We also observed a reduction in vasa gene expression reflecting the negative effect of B[a]P on oocyte development in the molecular level. This study is the first to demonstrate in vivo B[a]P toxicity in the reproductive endocrine system of female P. trituberculatus and provided a scientific basis of the decline in crustacean populations.

  6. Dioxin Exposure Disrupts the Differentiation of Mouse Embryonic Stem Cells into Cardiomyocytes

    PubMed Central

    Wang, Ying; Fan, Yunxia; Puga, Alvaro

    2010-01-01

    Experimental exposure of fish, birds, and rodents to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) causes multiple Ah receptor–mediated developmental abnormalities, an observation consistent with compelling evidence in human populations that TCDD exposure is responsible for a significant incidence of birth defects. To characterize molecular mechanisms that might explain the developmental effects of dioxin, we have studied the consequences of TCDD exposure on the differentiation of mouse embryonic stem (ES) cells in culture and on the expression of genes, including those coding for homeodomain containing transcription factors, with a role in progression of tissue differentiation and embryonic identity during development. We find that TCDD treatment causes expression changes in a number of homeobox genes concomitant with Ah receptor recruitment to the promoters of many of these genes, whether under naïve or dioxin-activated conditions. TCDD exposure also derails temporal expression trajectories of developmentally regulated genes in a wide diversity of differentiation pathways, including genes with functions in neural and cardiovascular development, self-renewal, hematopoiesis and mesenchymal lineage specification, and Notch and Wnt pathways. Among these, we find that TCDD represses the expression of the cardiac development–specific Nkx2.5 homeobox transcription factor, of cardiac troponin-T and of α- and β-myosin heavy chains, inhibiting the formation of beating cardiomyocytes, a characteristic phenotype of differentiating mouse ES cells in culture. These data identify potential pathways for dioxin to act as a developmental teratogen, possibly critical to cardiovascular development and disease, and provide molecular targets that may help us understand the molecular basis of Ah receptor–mediated developmental toxicity. PMID:20130022

  7. Arsenic exposure in pregnant mice disrupts placental vasculogenesis and causes spontaneous abortion.

    PubMed

    He, Wenjie; Greenwell, Robert J; Brooks, Diane M; Calderón-Garcidueñas, Lilian; Beall, Howard D; Coffin, J Douglas

    2007-09-01

    Arsenic is an abundant toxicant in ground water and soil around areas with extractive industries. Human epidemiological studies have shown that arsenic exposure is linked to developmental defects and miscarriage. The placenta is known to utilize vasculogenesis to develop its circulation. The hypothesis tested here states the following: arsenic exposure causes placental dysmorphogenesis and defective placental vasculogenesis resulting in placental insufficiency and subsequent spontaneous abortion. To test this hypothesis, pregnant mice were exposed to sodium arsenite (AsIII) through drinking water from conception through weanling stages. Neonatal assessment of birth rates, pup weights, and litter sizes in arsenic exposed and control mothers revealed that AsIII-exposed mothers had only 40% the fecundity of controls. Preterm analysis at E12.5 revealed a loss of fecundity at E12.5 from either 20 ppm or greater exposures to AsIII. There was no loss of fecundity at E7.5 suggesting that spontaneous abortion occurs during placentation. Histomorphometry on E12.5 placentae from arsenic-exposed mice revealed placental dysplasia especially in the vasculature. These results suggest that arsenic toxicity is causative for mammalian spontaneous abortion by virtue of aberrant placental vasculogenesis and placental insufficiency. PMID:17569693

  8. Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization.

    PubMed

    Ho, Yi-Ju; Chang, Yuan-Chih; Yeh, Chih-Kuang

    2016-01-01

    Drug penetration influences the efficacy of tumor therapy. Although the leaky vessels of tumors can improve the penetration of nanodrugs via the enhanced permeability and retention (EPR) effect, various aspects of the tumor microenvironment still restrict this process. This study investigated whether vascular disruption using the acoustic vaporization of micro- or nanoscale droplets (MDs or NDs) induced by ultrasound sonication can overcome the limitations of the EPR effect to allow drug diffusion into extensive regions. The intravital penetration of DiI-labeled liposomes (as a drug model with red fluorescence) was observed using an acousto-optical integrated system comprising a 2-MHz focused ultrasound transducer (transmitting a three-cycle single pulse and a peak negative pressure of 10 MPa) in a window-chamber mouse model. Histology images of the solid tumor were also used to quantify and demonstrate the locations where DiI-labeled liposomes accumulated. In the intravital image analyses, the cumulative diffusion area and fluorescence intensity at 180 min were 0.08±0.01 mm(2) (mean±standard deviation) and 8.5±0.4%, respectively, in the EPR group, 0.33±0.01 mm(2) and 13.1±0.4% in the MD group (p<0.01), and 0.63±0.01 mm(2) and 18.9±1.1% in the ND group (p<0.01). The intratumoral accumulations of DiI-labeled liposomes were 1.7- and 2.3-fold higher in the MD and ND groups, respectively, than in the EPR group. These results demonstrate that vascular disruption induced by acoustic droplet vaporization can improve drug penetration more than utilizing the EPR effect. The NDs showed longer lifetime in vivo than MDs and provided potential abilities of long periods of treatment, intertissue ND vaporization, and intertissue NDs-converted bubble cavitation to improve the drug penetration and transport distance. PMID:26909113

  9. Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization

    PubMed Central

    Ho, Yi-Ju; Chang, Yuan-Chih; Yeh, Chih-Kuang

    2016-01-01

    Drug penetration influences the efficacy of tumor therapy. Although the leaky vessels of tumors can improve the penetration of nanodrugs via the enhanced permeability and retention (EPR) effect, various aspects of the tumor microenvironment still restrict this process. This study investigated whether vascular disruption using the acoustic vaporization of micro- or nanoscale droplets (MDs or NDs) induced by ultrasound sonication can overcome the limitations of the EPR effect to allow drug diffusion into extensive regions. The intravital penetration of DiI-labeled liposomes (as a drug model with red fluorescence) was observed using an acousto-optical integrated system comprising a 2-MHz focused ultrasound transducer (transmitting a three-cycle single pulse and a peak negative pressure of 10 MPa) in a window-chamber mouse model. Histology images of the solid tumor were also used to quantify and demonstrate the locations where DiI-labeled liposomes accumulated. In the intravital image analyses, the cumulative diffusion area and fluorescence intensity at 180 min were 0.08±0.01 mm2 (mean±standard deviation) and 8.5±0.4%, respectively, in the EPR group, 0.33±0.01 mm2 and 13.1±0.4% in the MD group (p<0.01), and 0.63±0.01 mm2 and 18.9±1.1% in the ND group (p<0.01). The intratumoral accumulations of DiI-labeled liposomes were 1.7- and 2.3-fold higher in the MD and ND groups, respectively, than in the EPR group. These results demonstrate that vascular disruption induced by acoustic droplet vaporization can improve drug penetration more than utilizing the EPR effect. The NDs showed longer lifetime in vivo than MDs and provided potential abilities of long periods of treatment, intertissue ND vaporization, and intertissue NDs-converted bubble cavitation to improve the drug penetration and transport distance. PMID:26909113

  10. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis.

    PubMed

    Zhu, Mo-Tao; Wang, Bing; Wang, Yun; Yuan, Lan; Wang, Hua-Jian; Wang, Meng; Ouyang, Hong; Chai, Zhi-Fang; Feng, Wei-Yue; Zhao, Yu-Liang

    2011-06-10

    More recently, the correlation between exposure to nanoparticles and cardiovascular diseases is of particular concern in nanotoxicology related fields. Nanoparticle-triggered endothelial dysfunction is hypothesized to be a dominant mechanism in the development of the diseases. To test this hypothesis, iron oxide nanoparticles (Fe₂O₃ and Fe₃O₄), as two widely used nanomaterials and the main metallic components in particulate matter, were selected to assess their potential risks on human endothelial system. The direct effects of iron oxide nanoparticles on human aortic endothelial cells (HAECs) and the possible effects mediated by monocyte (U937 cells) phagocytosis and activation were investigated. In the study, HAECs and U937 cells were exposed to 2, 20, 100 μg/mL of 22-nm-Fe₂O₃ and 43-nm-Fe₃O₄ particles. Our results indicate that cytoplasmic vacuolation, mitochondrial swelling and cell death were induced in HAEC. A significant increase in nitric oxide (NO) production was induced which coincided with the elevation of nitric oxide synthase (NOS) activity in HAECs. Adhesion of monocytes to the HAECs was significantly enhanced as a consequence of the up-regulation of intracellular cell adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) expression, all of which are considered as early steps of atheroscelerosis. Phagocytosis and dissolution of nanoparticles by monocytes were found to simultaneously provoke oxidative stress and mediate severe endothelial toxicity. We conclude that intravascular iron oxide nanoparticles may induce endothelial system inflammation and dysfunction by three ways: (1) nanoparticles may escape from phagocytosis that interact directly with the endothelial monolayer; (2) nanoparticles are phagocytized by monocytes and then dissolved, thus impact the endothelial cells as free iron ions; or (3) nanoparticles are phagocytized by monocytes to provoke oxidative stress responses.

  11. Early Life Exposure to Ractopamine Causes Endocrine-Disrupting Effects in Japanese Medaka (Oryzias latipes).

    PubMed

    Sun, Liwei; Wang, Sisi; Lin, Xia; Tan, Hana; Fu, Zhengwei

    2016-02-01

    β-Agonists, which are used as human pharmaceuticals or feed additives, have been detected in aquatic environments. β-Agonists have also been proposed for use in aquaculture. However, there are limited data available regarding the adverse effects of β-agonists in aquatic organisms. In this study, ractopamine was selected as the representative β-agonist, and medaka embryos were exposed at concentrations ranging from 5 to 625 μg/L for 44 days. In contrast to what has been found in mammals, ractopamine caused no growth response in medaka. However, the transcriptional changes of genes related to the hypothalamic-pituitary-gonadal (HPG) axis, especially in females, suggested that β-agonists may have the potential to disrupt the endocrine system. Moreover, genes involved in anti-oxidative activity or detoxification were affected in a gender-specific manner. These findings, particularly the effects on the endocrine system of fish, will advance our understanding of the ecotoxicity of β-agonists.

  12. Occupation and occupational exposure to endocrine disrupting chemicals in male breast cancer: a case-control study in Europe

    PubMed Central

    Villeneuve, Sara; Cyr, Diane; Lynge, Elsebeth; Orsi, Laurent; Sabroe, Svend; Merletti, Franco; Gorini, Giuseppe; Morales-Suarez-Varela, Maria; Ahrens, Wolfgang; Baumgardt-Elms, Cornelia; Kaerlev, Linda; Eriksson, Mikael; Hardell, Lennart; Févotte, Joëlle; Guénel, Pascal

    2010-01-01

    Objectives Male breast cancer is a rare disease of largely unknown etiology. Besides genetic or hormone-related risk factors, a large number of environmental chemicals are suspected to play a role in breast cancer. The identification of occupations or occupational exposures associated with an increased incidence of breast cancer in men may help to identify mammary carcinogens in the environment. Methods Occupational risk factors of male breast cancer were investigated in a multi-centre case-control study conducted in 8 European countries, including 104 cases and 1901 controls. Lifetime work history was obtained during in-person interviews. Occupational exposures to endocrine disrupting chemicals (alkylphenolic compounds, phthalates, PCBs and dioxins) were assessed on a case-by-case basis from expert judgment. Results Male breast cancer incidence was more particularly increased in motor vehicle mechanics (OR=2.1, CI 1.0–4.4) with a dose-effect relationship with duration employment. It was also increased in paper makers and painters, and in workers in forestry and logging, health and social work, and manufacture of furniture. The odds ratio for exposure to alkylphenolic compounds above median was 3.8 (CI 1.5–9.5). This association persisted after adjustment for occupational exposures to other environmental estrogens. Conclusion These findings suggest that some environmental chemicals are possible mammary carcinogens. Gasoline, organic petroleum solvents or PAH can be suspected from the consistent elevated risk of male breast cancer observed in motor vehicle mechanics. Endocrine disruptors such as alkylphenolic compounds may play a role in breast cancer. PMID:20798010

  13. Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol.

    PubMed

    Soares, J; Coimbra, A M; Reis-Henriques, M A; Monteiro, N M; Vieira, M N; Oliveira, J M A; Guedes-Dias, P; Fontaínhas-Fernandes, A; Parra, S Silva; Carvalho, A P; Castro, L Filipe C; Santos, M M

    2009-12-13

    Exposure of fish to the synthetic estrogen ethinylestradiol (EE2) has been shown to induce a large set of deleterious effects. In addition to the negative impact of EE2 in reproductive endpoints, concern has recently increased on the potential effects of EE2 in fish embryonic development. Therefore, the present study aimed at examining the effects of EE2 on the full embryonic development of zebrafish in order to identify the actual phases where EE2 disrupts this process. Hence, zebrafish were exposed to environmentally relevant low levels of EE2, 0.5, 1 and 2ng/L (actual concentrations of 0.19, 0.24 and 1ng/L, respectively) from egg up to eight months of age (F(1)), and the survival as well as the occurrence of abnormalities in their offsprings (F(2)), per stage of embryonic development, was investigated. A thorough evaluation of reproductive endpoints and transcription of vtg1 gene in the parental generation (F(1)) at adulthood, was performed. No significant differences could be observed for the two lowest EE2 treatments, in comparison with controls, whereas vtg1 transcripts were significantly elevated (40-fold) in the 2ng/L EE2 treatment. In contrast to the findings in the F(1) generation,a significant concentration-dependent increase in egg mortality between 8 and 24hours post-fertilization (hpf) was observed for all EE2 treatments, when compared with controls. The screening of egg and embryo development showed a significant increase in the percentage of abnormalities at 8 hpf for the highest EE2 concentration, a fact that might explain the increased embryo mortality at the 24 hpf time-point observation. Taken together, these findings indicate that the two lowest tested EE2 concentations impact late gastrulation and/or early organogenesis, whereas exposure to 2ng/L EE2 also disrupts development in the blastula phase. After early organogenesis has been completed (24 hpf), no further mortality was observed. These results show that increased embryo mortality occurs

  14. Environmental exposure assessment framework for nanoparticles in solid waste.

    PubMed

    Boldrin, Alessio; Hansen, Steffen Foss; Baun, Anders; Hartmann, Nanna Isabella Bloch; Astrup, Thomas Fruergaard

    2014-01-01

    Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five-step framework for the systematic assessment of ENM exposure during nanowaste management. The framework includes deriving EOL nanoproducts and evaluating the physicochemical properties of the nanostructure, matrix properties and nanowaste treatment processes as well as transformation processes and environment releases, eventually leading to a final assessment of potential ENM exposure. The proposed framework was applied to three selected nanoproducts: nanosilver polyester textile, nanoTiO2 sunscreen lotion and carbon nanotube tennis racquets. We found that the potential global environmental exposure of ENMs associated with these three products was an estimated 0.5-143 Mg/year, which can also be characterised qualitatively as medium, medium, low, respectively. Specific challenges remain and should be subject to further research: (1) analytical techniques for the characterisation of nanowaste and its transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data.

  15. Potential for Inhalation Exposure to Engineered Nanoparticles from Nanotechnology-Based Cosmetic Powders

    PubMed Central

    Nazarenko, Yevgen; Zhen, Huajun; Han, Taewon; Lioy, Paul J.

    2012-01-01

    Background: The market of nanotechnology-based consumer products is rapidly expanding, and the lack of scientific evidence describing the accompanying exposure and health risks stalls the discussion regarding its guidance and regulation. Objectives: We investigated the potential for human contact and inhalation exposure to nanomaterials when using nanotechnology-based cosmetic powders and compare them with analogous products not marketed as nanotechnology based. Methods: We characterized the products using transmission electron microscopy (TEM) and laser diffraction spectroscopy and found nanoparticles in five of six tested products. TEM photomicrographs showed highly agglomerated states of nanoparticles in the products. We realistically simulated the use of cosmetic powders by applying them to the face of a human mannequin head while simultaneously sampling the released airborne particles through the ports installed in the mannequin’s nostrils. Results: We found that a user would be exposed to nanomaterial predominantly through nanoparticle-containing agglomerates larger than the 1–100-nm aerosol fraction. Conclusions: Predominant deposition of nanomaterial(s) will occur in the tracheobronchial and head airways—not in the alveolar region as would be expected based on the size of primary nanoparticles. This could potentially lead to different health effects than expected based on the current understanding of nanoparticle behavior and toxicology studies for the alveolar region. PMID:22394622

  16. Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis.

    PubMed

    Gomes, Tânia; Pereira, Catarina G; Cardoso, Cátia; Sousa, Vânia Serrão; Teixeira, Margarida Ribau; Pinheiro, José P; Bebianno, Maria João

    2014-10-01

    Silver nanoparticles (Ag NPs) have emerged as one of the most commonly used NPs in a wide range of industrial and commercial applications. This has caused increasing concern about their fate in the environment as well as uptake and potential toxicity towards aquatic organisms. Accordingly, mussels Mytilus galloprovincialis were exposed to 10 μg L(-1) of Ag NPs and ionic silver (Ag+) for 15 days, and biomarkers of oxidative stress and metal accumulation were determined. Accumulation results show that both Ag NPs and Ag+ accumulated in both gills and digestive glands. Antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) were activated by Ag NPs and Ag+, showing different antioxidant patterns in both gills and digestive glands. Moreover, metallothionein was inducted in gills, directly related to Ag accumulation, while in the digestive glands only a small fraction of Ag seems to be associated with this protein. Lipid peroxidation was higher in gills exposed to Ag NPs, whereas in the digestive glands only Ag+ induced lipid peroxidation. Ag NPs and Ag+ cause oxidative stress with distinct modes of action and it's not clear if for Ag NPs the observed effects are attributed to free Ag+ ions associated with the nanoparticle effect.

  17. Exposure assessment and risk management of engineered nanoparticles: Investigation in semiconductor wafer processing

    NASA Astrophysics Data System (ADS)

    Shepard, Michele N.

    Engineered nanomaterials (ENMs) are currently used in hundreds of commercial products and industrial processes, with more applications being investigated. Nanomaterials have unique properties that differ from bulk materials. While these properties may enable technological advancements, the potential risks of ENMs to people and the environment are not yet fully understood. Certain low solubility nanoparticles are more toxic than their bulk material, such that existing occupational exposure limits may not be sufficiently protective for workers. Risk assessments are currently challenging due to gaps in data on the numerous emerging materials and applications as well as method uncertainties and limitations. Chemical mechanical planarization (CMP) processes with engineered nanoparticle abrasives are used for research and commercial manufacturing applications in the semiconductor and related industries. Despite growing use, no published studies addressed occupational exposures to nanoparticles associated with CMP or risk assessment and management practices for these scenarios. Additional studies are needed to evaluate potential sources of workplace exposure or emission, as well as to help test and refine assessment methods. This research was conducted to: identify the lifecycle stages and potential exposure sources for ENMs in CMP processes; characterize worker exposure; determine recommended engineering controls and compare risk assessment models. The study included workplace air and surface sampling and an evaluation of qualitative risk banding approaches. Exposure assessment results indicated the potential for worker contact with ENMs on workplace surfaces but did not identify nanoparticles readily dispersed in air during work tasks. Some increases in respirable particle concentrations were identified, but not consistently. Measured aerosol concentrations by number and mass were well below current reference values for poorly soluble low toxicity nanoparticles. From

  18. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  19. Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails (Collembola).

    PubMed

    Kwak, Jin Il; An, Youn-Joo

    2016-09-01

    Understanding how nanomaterials are transferred through food chains and evaluating their resulting toxicity is important. However, limited research has been conducted on the toxic consequences of trophically transferred nanomaterials in terrestrial ecosystems. In this study, we documented the adverse effects of trophically transferred silver nanoparticles (AgNPs) in a soil-earthworm (Eisenia andrei)-Collembola (Lobella sokamensis) food chain. We exposed E. andrei to soil with AgNPs at concentrations of 50, 200, and 500μg AgNPs/g soil dry weight and assessed their survival after 7days. Trophic-transfer containers were then prepared and E. andrei that survived the 7days test period were washed, killed in boiling water, and added to the containers with L. sokamensis. We noted negligible effects and low bioaccumulation at the lowest AgNP concentration (50μg AgNPs/g soil dry weight) in earthworms and the L. sokamensis that fed on them. The highest concentration of AgNPs (500μg AgNPs/g soil dry weight) resulted in juvenile earthworm mortality and increased transfer of AgNPs to Collembola, which subsequently inhibited their locomotion. To our knowledge, this is the first study to document the trophic transfer and adverse effects of AgNPs in a soil-earthworm-Collembola food chain, a common prey-decomposer interaction in soil ecosystems. PMID:27187058

  20. Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach.

    PubMed

    Small, Taika; Ochoa-Zapater, M Amparo; Gallello, Gianni; Ribera, Antonio; Romero, Francisco M; Torreblanca, Amparo; Garcerá, M Dolores

    2016-09-15

    The present work shows the effects of gold nanoparticles (AuNPs) orally administered on reproduction and development of the insect Blattella germanica. Newly emerged females were provided with food containing AuNPs (87.44μg/g) of a size between 15 and 30nm (mean 21.8nm), and were allowed to mate with males. Food ingestion, mortality, reproductive parameters (time to ootheca formation and eclosion, ootheca viability and fertility) as well as postembryonic developmental parameters of the first ootheca (nymphal survival and life span) were recorded throughout the experiment. Gold from AuNPs was accumulated by adults of B. germanica with a bioaccumulation factor of 0.1. Ingestion of AuNPs did not disturb the time for ootheca formation nor ootheca eclosion. However, ootheca viability was decreased almost by 25% in AuNPs treated females in comparison to controls. At the same time the number of hatched nymphs was decreased by 32.8% (p<0.001) in AuNP group respect to control one. The postembryonic developmental parameters were also affected by AuNPs treatment, with a 35.8% of decrease (p<0.01) in number of nymphs that moulted to second and third instars and a reduction of their life span. Ingestion of AuNPs causes sublethal effects in B. germanica that compromises life-traits involved in population dynamics. B. germanica is proposed as a model species in nanotoxicological studies for urban environments.

  1. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption.

    PubMed

    Chen, Lili; Jiang, Xiaolong; Feng, Haiwei; Shi, Hongjuan; Sun, Lina; Tao, Wenjing; Xi, Qingping; Wang, Deshou

    2016-03-01

    Estrogen, which is synthesized earlier in females than androgen in males, is critical for sex determination in non-mammalian vertebrates. However, it remains unknown that what would happen to the gonadal phenotype if estrogen and androgen were administrated simultaneously. In this study, XY and XX tilapia fry were treated with the same dose of 17α-methyltestosterone (MT) and 17β-estradiol (E2) alone and in combination from 0 to 30 days after hatching. Treatment of XY fish with E2 resulted in male to female sex reversal, while treatment of XX fish with MT resulted in female to male sex reversal. In contrast, simultaneous treatment of XX and XY fish with MT and E2 resulted in female, but with cyp11b2 and cyp19a1a co-expressed in the ovary. Serum 11-ketotestosteron level of the MT and E2 simultaneously treated XX and XY female was similar to that of the XY control, while serum E2 level of these two groups was similar to that of the XX control. Transcriptomic cluster analysis revealed that the MT and E2 treated XX and XY gonads clustered into the same branch with the XX control. However a small fraction of genes, which showed disordered expression, may be associated with stress response. These results demonstrated that estrogen could maintain the female phenotype of XX fish and feminize XY fish even in the presence of androgen. Simultaneous treatment with estrogen and androgen up-regulated the endogenous estrogen and androgen synthesis, and resulted in disordered gene expression and endocrine disruption in tilapia. PMID:26759274

  2. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption.

    PubMed

    Chen, Lili; Jiang, Xiaolong; Feng, Haiwei; Shi, Hongjuan; Sun, Lina; Tao, Wenjing; Xi, Qingping; Wang, Deshou

    2016-03-01

    Estrogen, which is synthesized earlier in females than androgen in males, is critical for sex determination in non-mammalian vertebrates. However, it remains unknown that what would happen to the gonadal phenotype if estrogen and androgen were administrated simultaneously. In this study, XY and XX tilapia fry were treated with the same dose of 17α-methyltestosterone (MT) and 17β-estradiol (E2) alone and in combination from 0 to 30 days after hatching. Treatment of XY fish with E2 resulted in male to female sex reversal, while treatment of XX fish with MT resulted in female to male sex reversal. In contrast, simultaneous treatment of XX and XY fish with MT and E2 resulted in female, but with cyp11b2 and cyp19a1a co-expressed in the ovary. Serum 11-ketotestosteron level of the MT and E2 simultaneously treated XX and XY female was similar to that of the XY control, while serum E2 level of these two groups was similar to that of the XX control. Transcriptomic cluster analysis revealed that the MT and E2 treated XX and XY gonads clustered into the same branch with the XX control. However a small fraction of genes, which showed disordered expression, may be associated with stress response. These results demonstrated that estrogen could maintain the female phenotype of XX fish and feminize XY fish even in the presence of androgen. Simultaneous treatment with estrogen and androgen up-regulated the endogenous estrogen and androgen synthesis, and resulted in disordered gene expression and endocrine disruption in tilapia.

  3. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure

    PubMed Central

    Opris, Ioan; Gerhardt, Greg A.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    Prefrontal cortical activity in primate brain plays a critical role in cognitive processes involving working memory and the executive control of behavior. Groups of prefrontal cortical neurons within specified cortical layers along cortical minicolumns differentially generate inter- and intra-laminar firing to process relevant information for goal oriented behavior. However, it is not yet understood how cocaine modulates such differential firing in prefrontal cortical layers. Rhesus macaque nonhuman primates (NHPs) were trained in a visual delayed match-to-sample (DMS) task while the activity of prefrontal cortical neurons (areas 46, 8 and 6) was recorded simultaneously with a custom multielectrode array in cell layers 2/3 and 5. Animals were reinforced with juice for correct responses. The first half of the recording session (control) was conducted following saline injection and in the second half of the same session cocaine was administered. Prefrontal neuron activity with respect to inter- and intra-laminar firing in layers 2/3 and 5 was assessed in the DMS task before and after the injection of cocaine. Results showed that firing rates of both pyramidal cells and interneurons increased on Match phase presentation and the Match Response (MR) in both control and cocaine halves of the session. Differential firing under cocaine vs. control in the Match phase was increased for interneurons but decreased for pyramidal cells. In addition, functional’ interactions between prefrontal pyramidal cells in layer 2/3 and 5 decreased while intra-laminar cross-correlations in both layers increased. These neural recordings demonstrate that prefrontal neurons differentially encode and process information within and between cortical cell layers via cortical columns which is disrupted in a differential manner by cocaine: administration. PMID:26074787

  4. Male Reproductive Disorders, Diseases, and Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union

    PubMed Central

    Hauser, Russ; Skakkebaek, Niels E.; Hass, Ulla; Toppari, Jorma; Juul, Anders; Andersson, Anna Maria; Kortenkamp, Andreas; Heindel, Jerrold J.

    2015-01-01

    Introduction: Increasing evidence suggests that endocrine-disrupting chemicals (EDCs) contribute to male reproductive diseases and disorders. Purpose: To estimate the incidence/prevalence of selected male reproductive disorders/diseases and associated economic costs that can be reasonably attributed to specific EDC exposures in the European Union (EU). Methods: An expert panel evaluated evidence for probability of causation using the Intergovernmental Panel on Climate Change weight-of-evidence characterization. Exposure-response relationships and reference levels were evaluated, and biomarker data were organized from carefully identified studies from the peer-reviewed literature to represent European exposure and approximate burden of disease as it occurred in 2010. The cost-of-illness estimation utilized multiple peer-reviewed sources. Results: The expert panel identified low epidemiological and strong toxicological evidence for male infertility attributable to phthalate exposure, with a 40–69% probability of causing 618 000 additional assisted reproductive technology procedures, costing €4.71 billion annually. Low epidemiological and strong toxicological evidence was also identified for cryptorchidism due to prenatal polybrominated diphenyl ether exposure, resulting in a 40–69% probability that 4615 cases result, at a cost of €130 million (sensitivity analysis, €117–130 million). A much more modest (0–19%) probability of causation in testicular cancer by polybrominated diphenyl ethers was identified due to very low epidemiological and weak toxicological evidence, with 6830 potential cases annually and costs of €848 million annually (sensitivity analysis, €313–848 million). The panel assigned 40–69% probability of lower T concentrations in 55- to 64-year-old men due to phthalate exposure, with 24 800 associated deaths annually and lost economic productivity of €7.96 billion. Conclusions: EDCs may contribute substantially to male

  5. Low level exposure to the flame retardant BDE-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows

    PubMed Central

    Noyes, Pamela D.; Lema, Sean C.; Macaulay, Laura J.; Douglas, Nora K.; Stapleton, Heather M.

    2013-01-01

    Polybrominated diphenyl ether (PBDE) flame retardants have been shown to disrupt thyroid hormone regulation, neurodevelopment, and reproduction in some animals. However, effects of the most heavily used PBDE, decabromodiphenyl ether (BDE-209), on thyroid functioning remain unclear. This study examined low-dose effects of BDE-209 on thyroid hormone levels and signaling in fathead minnows. Adult males received dietary exposures of BDE-209 at a low dose (~3 ng/g bw-day) and high dose (~300 ng/g bw-day) for 28 days followed by a 14-day depuration to evaluate recovery. Compared to controls, fish exposed to the low dose for 28 days experienced a 53% and 46% decline in circulating total thyroxine (TT4) and 3,5,3'-triiodothyronine (TT3), respectively, while TT4 and TT3 deficits at the high dose were 59% and 62%. Brain deiodinase activity (T4-ORD) was reduced by ~65% at both doses. BDE-209 elevated the relative mRNA expression of genes encoding deiodinases, nuclear thyroid receptors, and membrane transporters in the brain and liver in patterns that varied with time and dose, likely in compensation to hypothyroidism. Declines in the gonadal-somatic index (GSI) and increased mortality were also measured. Effects at the low dose were consistent with the high dose, suggesting non-linear relationships between BDE-209 exposures and thyroid dysfunction. PMID:23899252

  6. Exposure to monocrotophos pesticide causes disruption of the hypothalamic-pituitary-thyroid axis in adult male goldfish (Carassius auratus).

    PubMed

    Zhang, Xiaona; Tian, Hua; Wang, Wei; Ru, Shaoguo

    2013-11-01

    The thyroid hormones (THs) 3,3',5-triiodo-l-thyronine (T3) and l-thyroxine (T4) exert a wide range of biological effects on physiological processes of fish. To elucidate the thyroid disruption effects of monocrotophos (MCP), an organophosphate pesticide, on male goldfish (Carassius auratus), thyroid follicle histology, plasma total T3 (TT3), total T4 (TT4), free T3 (FT3) and free T4 levels, and the mRNA expression of indices involved in the hypothalamic-pituitary-thyroid axis (HPT axis) were examined following 21-day exposure to 0.01, 0.10 and 1.00mg/L of a 40% MCP-based pesticide. The results showed that MCP exposure induced the hyperplasia and hypertrophy of thyroid follicular epithelium and led to decreased plasma TT3 levels and TT3-to-TT4 ratios, without effect on plasma TT4 levels. Profiles of the changes in the relative abundance of deiodinase (D1, D2 and D3) transcripts were observed in the liver, brain and kidneys, during MCP exposure. An increase in the metabolism of T3, expressed as highly elevated hepatic d1 and d3 mRNA levels, might be associated with the reduction in plasma TT3 levels in both the 0.01 and 0.10mg/L groups, while in the 1.00mg/L MCP group, inhibited hepatic d2 transcripts might have also resulted in decreased TT3 levels by preventing the activation of T4 to T3. As a compensatory response to decreased T3 levels, pituitary thyroid-stimulating hormone β subunit mRNA transcription was up-regulated by the MCP pesticide. Decreases in plasma FT3 levels were also correlated with the modulation of hepatic transthyretin mRNA expression. Overall, the MCP pesticide exhibited thyroid-disrupting effects via interference with the HPT axis at multiple potential sites, resulting in disturbance of TH homeostasis.

  7. Potential exposure of German consumers to engineered nanoparticles in cosmetics and personal care products.

    PubMed

    Lorenz, Christiane; Von Goetz, Natalie; Scheringer, Martin; Wormuth, Matthias; Hungerbühler, Konrad

    2011-03-01

    The rapid increase in the number of consumer products containing engineered nanoparticles (ENP) raises concerns about an appropriate risk assessment of these products. Along with toxicological data, exposure estimates are essential for assessing risk. Currently, cosmetics and personal care products (C&PCP) represent the largest ENP-containing consumer product class on the market. We analyzed factors influencing the likelihood that ENP-containing products are available to consumers. We modelled potential external exposure of German consumers, assuming a maximum possible case where only ENP-containing products are used. The distribution of exposure levels within the population due to different behavior patterns was included by using data from an extensive database on consumer behavior. Exposure levels were found to vary significantly between products and between consumers showing different behavior patterns. The assessment scheme developed here represents a basis for refined exposure modelling as soon as more specific information about ENPs in C&PCP becomes available.

  8. Subchronic atrazine exposure changes defensive behaviour profile and disrupts brain acetylcholinesterase activity of zebrafish.

    PubMed

    Schmidel, Ademir J; Assmann, Karla L; Werlang, Chariane C; Bertoncello, Kanandra T; Francescon, Francini; Rambo, Cassiano L; Beltrame, Gabriela M; Calegari, Daiane; Batista, Cibele B; Blaser, Rachel E; Roman Júnior, Walter A; Conterato, Greicy M M; Piato, Angelo L; Zanatta, Leila; Magro, Jacir Dal; Rosemberg, Denis B

    2014-01-01

    Animal behaviour is the interaction between environment and an individual organism, which also can be influenced by its neighbours. Variations in environmental conditions, as those caused by contaminants, may lead to neurochemical impairments altering the pattern of the behavioural repertoire of the species. Atrazine (ATZ) is an herbicide widely used in agriculture that is frequently detected in surface water, affecting non-target species. The zebrafish is a valuable model organism to assess behavioural and neurochemical effects of different contaminants since it presents a robust behavioural repertoire and also all major neurotransmitter systems described for mammalian species. The goal of this study was to evaluate the effects of subchronic ATZ exposure in defensive behaviours of zebrafish (shoaling, thigmotaxis, and depth preference) using the split depth tank. Furthermore, to investigate a putative role of cholinergic signalling on ATZ-mediated effects, we tested whether this herbicide alters acetylcholinesterase (AChE) activity in brain and muscle preparations. Fish were exposed to ATZ for 14days and the following groups were tested: control (0.2% acetone) and ATZ (10 and 1000μg/L). The behaviour of four animals in the same tank was recorded for 6min and biological samples were prepared. Our results showed that 1000μg/L ATZ significantly increased the inter-fish distance, as well as the nearest and farthest neighbour distances. This group also presented an increase in the shoal area with decreased social interaction. No significant differences were detected for the number of animals in the shallow area, latency to enter the shallow and time spent in shallow and deep areas of the apparatus, but the ATZ 1000 group spent significantly more time near the walls. Although ATZ did not affect muscular AChE, it significantly reduced AChE activity in brain. Exposure to 10μg/L ATZ did not affect behaviour or AChE activity. These data suggest that ATZ impairs defensive

  9. Effects of exposure to four endocrine disrupting-chemicals on fertilization and embryonic development of Barbel chub ( Squaliobarbus curriculus)

    NASA Astrophysics Data System (ADS)

    Niu, Cuijuan; Wang, Wei; Gao, Ying; Li, Li

    2013-09-01

    The toxicities of 4 common endocrine-disrupting chemicals (EDCs), 17β-estradiol (E2), p,p'-dichlorodiphenyldichloro-ethylene (DDE), 4-nonylphenol (NP) and tributyltin (TBT), to sperm motility, fertilization rate, hatching rate and embryonic development of Barbel chub ( Squaliobarbus curriculus) were investigated in this study. The duration of sperm motility was significantly shortened by exposure to the EDCs at the threshold concentrations of 10 ng L-1 for E2 and TBT, 1 μg L-1 for NP and 100 μg L-1 for DDE, respectively. The fertilization rate was substantially reduced by the EDCs at the lowest observable effect concentrations (LOECs) of 10 ng L-1 for E2 and TBT and 10 μg L-1 for DDE and NP, respectively. Of the tested properties of S. curriculus, larval deformity rate was most sensitive to EDC exposure and was significantly increased by DDE at the lowest experimental level of 0.1 μg L-1. Other EDCs increased the larval deformity rate at the LOECs of 1 ng L-1 for E2, 10 ng L-1 for TBT and 1 μg L-1 for NP, respectively. Despite their decreases with the increasing EDC concentrations, the hatching rate and larval survival rate of S. curriculus were not significantly affected by the exposure to EDCs. The results indicated that all the 4 EDCs affected significantly and negatively the early life stages of the freshwater fish S. curriculus. Overall, E2 and TBT were more toxic than NP and DDE, while DDE might be more toxic to larval deformity rate than to other measured parameters. Thus, the 4 EDCs showed potential negative influences on natural population dynamics of S. curriculus. Our findings provided valuable basic data for the ecological risk assessment of E2, DDE, NP and TBT.

  10. The role of peri-traumatic stress and disruption distress in predicting post-traumatic stress disorder symptoms following exposure to a natural disaster

    PubMed Central

    Fergusson, David M.; Horwood, L. John; Mulder, Roger T.

    2015-01-01

    Background Few studies have examined the contribution of specific disaster-related experiences to post-traumatic stress disorder (PTSD) symptoms. Aims To examine the roles of peri-traumatic stress and distress due to lingering disaster-related disruption in explaining linkages between disaster exposure and PTSD symptoms among a cohort exposed to the 2010–2011 Canterbury (New Zealand) earthquakes. Method Structural equation models were fitted to data obtained from the Christchurch Health and Development Study at age 35 (n=495), 20–24 months following the onset of the disaster. Measures included: earthquake exposure, peri-traumatic stress, disruption distress and PTSD symptoms. Results The associations between earthquake exposure and PTSD symptoms were explained largely by the experience of peri-traumatic stress during the earthquakes (β=0.189, P<0.0001) and disruption distress following the earthquakes (β=0.105, P<0.0001). Conclusions The results suggest the importance of minimising post-event disruption distress following exposure to a natural disaster. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2015. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence. PMID:27703727

  11. The effects of exposure to titanium dioxide nanoparticles during lactation period on learning and memory of rat offspring.

    PubMed

    Mohammadipour, Abbas; Hosseini, Mahmoud; Fazel, Alireza; Haghir, Hossein; Rafatpanah, Houshang; Pourganji, Masoume; Bideskan, Alireza Ebrahimzadeh

    2016-02-01

    Nanoscale titanium dioxide (TiO2), which is massively produced and widely used in living environment, seems to have a potential risk on human health. The central nervous system (CNS) is the potential susceptible target of nanoparticles, but the studies on this aspect are limited so far. The aim of this study was to evaluate the effects of exposure to TiO2 nanoparticles during lactation period on learning and memory of offspring. Lactating Wistar rats were exposed to TiO2 nanoparticles (100 mg/kg; gavage) for 21 days. The Morris water maze and passive avoidance tests showed that the exposure to TiO2 nanoparticles could significantly impair the memory and learning in the offspring. Therefore, the application of TiO2 nanoparticles and the effects of their exposure, especially during developmental period on human brain should be cautious.

  12. CHANGES IN GENE AND PROTEIN EXPRESSION IN ZEBRAFISH (DANIO RERIO) FOLLOWING EXPOSURE TO ENVIRONMENTALLY-RELEVANT ENDOCRINE DISRUPTING COMPOUNDS (EDCS)

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs) are increasingly being reported in waterways worldwide and have been shown to affect fish species by disrupting numerous aspects of development, behavior, reproduction, and survival. Furthermore, new data have suggested that the reduced repr...

  13. Developmental nicotine exposure disrupts dendritic arborization patterns of hypoglossal motoneurons in the neonatal rat.

    PubMed

    Powell, Gregory L; Gaddy, Joshua; Xu, Fei; Fregosi, Ralph F; Levine, Richard B

    2016-10-01

    Maternal smoking or use of other products containing nicotine during pregnancy can have significant adverse consequences for respiratory function in neonates. We have shown, in previous studies, that developmental nicotine exposure (DNE) in a model system compromises the normal function of respiratory circuits within the brainstem. The effects of DNE include alterations in the excitability and synaptic interactions of the hypoglossal motoneurons, which innervate muscles of the tongue. This study was undertaken to test the hypothesis that these functional consequences of DNE are accompanied by changes in the dendritic morphology of hypoglossal motoneurons. Hypoglossal motoneurons in brain stem slices were filled with neurobiotin during whole-cell patch clamp recordings and subjected to histological processing to reveal dendrites. Morphometric analysis, including the Sholl method, revealed significant effects of DNE on dendritic branching patterns. In particular, whereas within the first five postnatal days there was significant growth of the higher-order dendritic branches of motoneurons from control animals, the growth was compromised in motoneurons from neonates that were subjected to DNE. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1125-1137, 2016. PMID:26818139

  14. In utero exposures to environmental organic pollutants disrupt epigenetic marks linked to fetoplacental development

    PubMed Central

    Kappil, Maya A.; Li, Qian; Li, An; Dassanayake, Priyanthi S.; Xia, Yulin; Nanes, Jessica A.; Landrigan, Philip J.; Stodgell, Christopher J.; Aagaard, Kjersti M.; Schadt, Eric E.; Dole, Nancy; Varner, Michael; Moye, John; Kasten, Carol; Miller, Richard K.; Ma, Yula; Chen, Jia; Lambertini, Luca

    2016-01-01

    While the developing fetus is largely shielded from the external environment through the protective barrier provided by the placenta, it is increasingly appreciated that environmental agents are able to cross and even accumulate in this vital organ for fetal development. To examine the potential influence of environmental pollutants on the placenta, we assessed the relationship between polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) and several epigenetic marks linked to fetoplacental development. We measured IGF2/H19 imprint control region methylation, IGF2 and H19 expression, IGF2 loss of imprinting (LOI) and global DNA methylation levels in placenta (n = 116) collected in a formative research project of the National Children’s Study to explore the relationship between these epigenetic marks and the selected organic environmental pollutants. A positive association was observed between global DNA methylation and total PBDE levels (P <0.01) and between H19 expression and total PCB levels (P = 0.04). These findings suggest that differences in specific epigenetic marks linked to fetoplacental development occur in association with some, but not all, measured environmental exposures. PMID:27308065

  15. Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release.

    PubMed

    Fonseca, A S; Maragkidou, A; Viana, M; Querol, X; Hämeri, K; de Francisco, I; Estepa, C; Borrell, C; Lennikov, V; de la Fuente, G F

    2016-09-15

    The ceramic industry is an industrial sector in need of significant process changes, which may benefit from innovative technologies such as laser sintering of ceramic tiles. Such innovations result in a considerable research gap within exposure assessment studies for process-generated ultrafine and nanoparticles. This study addresses this issue aiming to characterise particle formation, release mechanisms and their impact on personal exposure during a tile sintering activity in an industrial-scale pilot plant, as a follow-up of a previous study in a laboratory-scale plant. In addition, possible particle transformations in the exhaust system, the potential for particle release to the outdoor environment, and the effectiveness of the filtration system were also assessed. For this purpose, a tiered measurement strategy was conducted. The main findings evidence that nanoparticle emission patterns were strongly linked to temperature and tile chemical composition, and mainly independent of the laser treatment. Also, new particle formation (from gaseous precursors) events were detected, with nanoparticles <30nm in diameter being formed during the thermal treatment. In addition, ultrafine and nano-sized airborne particles were generated and emitted into workplace air during sintering process on a statistically significant level. These results evidence the risk of occupational exposure to ultrafine and nanoparticles during tile sintering activity since workers would be exposed to concentrations above the nano reference value (NRV; 4×10(4)cm(-3)), with 8-hour time weighted average concentrations in the range of 1.4×10(5)cm(-3) and 5.3×10(5)cm(-3). A potential risk for nanoparticle and ultrafine particle release to the environment was also identified, despite the fact that the efficiency of the filtration system was successfully tested and evidenced a >87% efficiency in particle number concentrations removal.

  16. Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Caglayan, Cihan; Zurbenko, Igor G

    2015-01-01

    This study characterized potential inhalation exposures of workers to nanometal oxides associated with industrial wastewater treatment processes in a semiconductor research and development facility. Exposure assessment methodology was designed to capture aerosolized engineered nanomaterials associated with the chemical mechanical planarization wafer polishing process that were accessible for worker contact via inhalation in the on-site wastewater treatment facility. The research team conducted air sampling using a combination of filter-based capture methods for particle identification and characterization and real-time direct-reading instruments for semi-quantitation of particle number concentration. Filter-based samples were analyzed using electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling conducted over 14 months included 5 discrete sampling series events for 7 job tasks in coordination with on-site employees. The number of filter-based samples captured for analysis by electron microscopy was: 5 from personal breathing zone, 4 from task areas, and 3 from the background. Direct-reading instruments collected data for 5 sample collection periods in the task area and the background, and 2 extended background collection periods. Engineered nanomaterials of interest (Si, Al, Ce) were identified by electron microscopy in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100 nm-500 nm). Particle counts showed an increase in number concentration during and after selected tasks above background. While additional data is needed to support further statistical analysis and determine trends, this initial investigation suggests that nanoparticles used or generated by chemical mechanical planarization become aerosolized and may be accessible for inhalation exposures by workers in wastewater treatment facilities. Additional research is

  17. Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Caglayan, Cihan; Zurbenko, Igor G

    2015-01-01

    This study characterized potential inhalation exposures of workers to nanometal oxides associated with industrial wastewater treatment processes in a semiconductor research and development facility. Exposure assessment methodology was designed to capture aerosolized engineered nanomaterials associated with the chemical mechanical planarization wafer polishing process that were accessible for worker contact via inhalation in the on-site wastewater treatment facility. The research team conducted air sampling using a combination of filter-based capture methods for particle identification and characterization and real-time direct-reading instruments for semi-quantitation of particle number concentration. Filter-based samples were analyzed using electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling conducted over 14 months included 5 discrete sampling series events for 7 job tasks in coordination with on-site employees. The number of filter-based samples captured for analysis by electron microscopy was: 5 from personal breathing zone, 4 from task areas, and 3 from the background. Direct-reading instruments collected data for 5 sample collection periods in the task area and the background, and 2 extended background collection periods. Engineered nanomaterials of interest (Si, Al, Ce) were identified by electron microscopy in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100 nm-500 nm). Particle counts showed an increase in number concentration during and after selected tasks above background. While additional data is needed to support further statistical analysis and determine trends, this initial investigation suggests that nanoparticles used or generated by chemical mechanical planarization become aerosolized and may be accessible for inhalation exposures by workers in wastewater treatment facilities. Additional research is

  18. A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures

    USGS Publications Warehouse

    Croteau, M.-N.; Dybowska, A.D.; Luoma, S.N.; Valsami-Jones, E.

    2011-01-01

    If engineered nanomaterials are released into the environment, some are likely to end up associated with the food of animals due to aggregation and sorption processes. However, few studies have considered dietary exposure of nanomaterials. Here we show that zinc (Zn) from isotopically modified 67ZnO particles is efficiently assimilated by freshwater snails when ingested with food. The 67Zn from nano-sized 67ZnO appears as bioavailable as 67Zn internalized by diatoms. Apparent agglomeration of the zinc oxide (ZnO) particles did not reduce bioavailability, nor preclude toxicity. In the diet, ZnO nanoparticles damage digestion: snails ate less, defecated less and inefficiently processed the ingested food when exposed to high concentrations of ZnO. It was not clear whether the toxicity was due to the high Zn dose achieved with nanoparticles or to the ZnO nanoparticles themselves. Further study of exposure from nanoparticles in food would greatly benefit assessment of ecological and human health risks. ?? 2011 Informa UK, Ltd.

  19. Isotopically modified silver nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures

    USGS Publications Warehouse

    Croteau, Marie-Noële; Dybowska, Agnieszka D.; Luoma, Samuel N.; Misra, Superb K.; Valsami-Jones, Eugenia

    2014-01-01

    A major challenge in understanding the environmental implications of nanotechnology lies in studying nanoparticle uptake in organisms at environmentally realistic exposure concentrations. Typically, high exposure concentrations are needed to trigger measurable effects and to detect accumulation above background. But application of tracer techniques can overcome these limitations. Here we synthesised, for the first time, citrate-coated Ag nanoparticles using Ag that was 99.7 % 109Ag. In addition to conducting reactivity and dissolution studies, we assessed the bioavailability and toxicity of these isotopically modified Ag nanoparticles (109Ag NPs) to a freshwater snail under conditions typical of nature. We showed that accumulation of 109Ag from 109Ag NPs is detectable in the tissues of Lymnaea stagnalis after 24-h exposure to aqueous concentrations as low as 6 ng L–1 as well as after 3 h of dietary exposure to concentrations as low as 0.07 μg g–1. Silver uptake from unlabelled Ag NPs would not have been detected under similar exposure conditions. Uptake rates of 109Ag from 109Ag NPs mixed with food or dispersed in water were largely linear over a wide range of concentrations. Particle dissolution was most important at low waterborne concentrations. We estimated that 70 % of the bioaccumulated 109Ag concentration in L. stagnalis at exposures –1 originated from the newly solubilised Ag. Above this concentration, we predicted that 80 % of the bioaccumulated 109Ag concentration originated from the 109Ag NPs. It was not clear if agglomeration had a major influence on uptake rates.

  20. Effects of carbon-based nanoparticles (CNPs) on the fate of endocrine disrupting chemicals (EDCs) in different agricultural soils.

    NASA Astrophysics Data System (ADS)

    Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd

    2013-04-01

    Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.

  1. Cytotoxicity of TiO{sub 2} nanoparticles towards freshwater sediment microorganisms at low exposure concentrations

    SciTech Connect

    Kumari, Jyoti; Kumar, Deepak; Mathur, Ankita; Naseer, Arif; Kumar, Ravi Ranjan; Thanjavur Chandrasekaran, Prathna; Chaudhuri, Gouri; Pulimi, Mrudula; Raichur, Ashok M.; Babu, S.; Chandrasekaran, Natarajan; Nagarajan, R.; Mukherjee, Amitava

    2014-11-15

    There is a persistent need to assess the effects of TiO{sub 2} nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO{sub 2} nanoparticle-induced acute toxicity at sub-ppm level (≤1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both light and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. - Highlights: • Toxicity of NPs towards freshwater sediment bacteria at sub-ppm concentrations. • Decreased toxicity of the nanoparticles in the consortium of microorganisms. • Enhanced bacterial resistance through EPS and biofilm formation in the presence of NPs. • Considerable surface damage of cells and internalization of NPs. • Gene expression analyses related to biofilm formation in the presence of NPs.

  2. Risk Evaluation of Endocrine-Disrupting Chemicals: Effects of Developmental Exposure to Low Doses of Bisphenol A on Behavior and Physiology in Mice (Mus musculus).

    PubMed

    Gioiosa, Laura; Palanza, Paola; Parmigiani, Stefano; Vom Saal, Frederick S

    2015-01-01

    We review here our studies on early exposure to low doses of the estrogenic endocrine-disrupting chemical bisphenol A (BPA) on behavior and metabolism in CD-1 mice. Mice were exposed in utero from gestation day (GD) 11 to delivery (prenatal exposure) or via maternal milk from birth to postnatal day 7 (postnatal exposure) to 10 µg/kg body weight/d of BPA or no BPA (controls). Bisphenol A exposure resulted in long-term disruption of sexually dimorphic behaviors. Females exposed to BPA pre- and postnatally showed increased anxiety and behavioral profiles similar to control males. We also evaluated metabolic effects in prenatally exposed adult male offspring of dams fed (from GD 9 to 18) with BPA at doses ranging from 5 to 50 000 µg/kg/d. The males showed an age-related significant change in a number of metabolic indexes ranging from food intake to glucose regulation at BPA doses below the no observed adverse effect level (5000 µg/kg/d). Consistent with prior findings, low but not high BPA doses produced significant effects for many outcomes. These findings provide further evidence of the potential risks that developmental exposure to low doses of the endocrine disrupter BPA may pose to human health, with fetuses and infants being highly vulnerable. PMID:26740806

  3. Blood-Brain Barrier Disruption and Oxidative Stress in Guinea Pig after Systemic Exposure to Modified Cell-Free Hemoglobin

    PubMed Central

    Butt, Omer I.; Buehler, Paul W.; D'Agnillo, Felice

    2011-01-01

    Systemic exposure to cell-free hemoglobin (Hb) or its breakdown products after hemolysis or with the use of Hb-based oxygen therapeutics may alter the function and integrity of the blood-brain barrier. Using a guinea pig exchange transfusion model, we investigated the effect of a polymerized cell-free Hb (HbG) on the expression of endothelial tight junction proteins (zonula occludens 1, claudin-5, and occludin), astrocyte activation, IgG extravasation, heme oxygenase (HO), iron deposition, oxidative end products (4-hydroxynonenal adducts and 8-hydroxydeoxyguanosine), and apoptosis (cleaved caspase 3). Reduced zonula occludens 1 expression was observed after HbG transfusion as evidenced by Western blot and confocal microscopy. Claudin-5 distribution was altered in small- to medium-sized vessels. However, total expression of claudin-5 and occludin remained unchanged except for a notable increase in occludin 72 hours after HbG transfusion. HbG-transfused animals also showed increased astrocytic glial fibrillary acidic protein expression and IgG extravasation after 72 hours. Increased HO activity and HO-1 expression with prominent enhancement of HO-1 immunoreactivity in CD163-expressing perivascular cells and infiltrating monocytes/macrophages were also observed. Consistent with oxidative stress, HbG increased iron deposition, 4-hydroxynonenal and 8-hydroxydeoxyguanosine immunoreactivity, and cleaved caspase-3 expression. Systemic exposure to an extracellular Hb triggers blood-brain barrier disruption and oxidative stress, which may have important implications for the use of Hb-based therapeutics and may provide indirect insight on the central nervous system vasculopathies associated with excessive hemolysis. PMID:21356382

  4. Developmental endpoints of chronic exposure to suspected endocrine-disrupting chemicals on benthic and hyporheic freshwater copepods.

    PubMed

    Di Marzio, W D; Castaldo, D; Di Lorenzo, T; Di Cioccio, A; Sáenz, M E; Galassi, D M P

    2013-10-01

    The aims of this study were: (i) to assess if carbamate pesticides and ammonium, widely detected in European freshwater bodies, can be considered ecologically relevant endocrine-disrupting chemicals (EDCs) for benthic and interstitial freshwater copepods; and (ii) to evaluate the potential of copepods as sentinels for monitoring ecosystem health. In order to achieve these objectives, four species belonging to the harpacticoid copepod genus Bryocamptus, namely B. (E.) echinatus, B. (R.) zschokkei, B. (R.) pygmaeus and B. (B.) minutus, were subjected to chronic exposures to Aldicarb and ammonium. A significant deviation from the developmental time of unexposed control cultures was observed for all the species in test cultures. Aldicarb caused an increase in generation time over 80% in both B. minutus and B. zschokkei, but less than 35% in B. pygmaeus and B. echinatus. Ammonium increased generation time over 33% in B. minutus, and 14, 12 and 3.5% for B. pygmaeus, B. zschokkei and B. echinatus, respectively. On the basis of these results it can be concluded that chronic exposure to carbamate pesticides and ammonium alters the post-naupliar development of the test-species and propose their potential role as EDCs, leaving open the basis to search what are the mechanism underlying. A prolonged developmental time would probably produce a detrimental effect on population attributes, such as age structure and population size. These deviations from a pristine population condition may be considered suitable biological indicators of ecosystem stress, particularly useful to compare polluted to unpolluted reference sites. Due to their dominance in both benthic and interstitial habitats, and their sensitivity as test organisms, freshwater benthic and hyporheic copepods can fully be used as sentinel species for assessing health condition of aquatic ecosystems as required by world-wide water legislation. PMID:23890366

  5. Endocrine disrupting chemicals-Linking internal exposure to vitellogenin levels and ovotestis in Abramis brama from Dutch surface waters.

    PubMed

    Reinen, Jelle; Suter, Marc J-F; Vögeli, A Christiane; Fernandez, Mariana F; Kiviranta, Hannu; Eggen, Rik I L; Vermeulen, Nico P E

    2010-11-01

    The exposure of male bream from three Dutch freshwater locations to endocrine disrupting compounds (EDCs) and corresponding effects are described in this study. Fish specimen displaying reproductive disorders associated with high levels of plasma vitellogenin (VTG) concentrations and occurrence of ovotestis (OT) were investigated. To provide information on the full spectrum of EDCs in fish tissue, adipose tissue samples of individual fish were analyzed for nearly 130 chemicals targeting different compound classes (bisphenols, alkylphenols, pesticides, polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), hydroxylated polychlorinated biphenyls (OH-PCBs), polybrominated diphenyl ethers (PBDEs) and biphenyls (PBBs)) and steroid hormones. To establish whether tissue from specimen with reproductive disorders shows a spectrum of EDCs that is qualitatively and quantitatively different from that of controls free of symptoms, bioassay-directed fractionation was performed using the recombinant yeast estrogen screen (YES), the E-Screen bioassay, the human sulfotransferase 1E1 (SULT1E1) inhibition assay, and the coumestrol-based estrogen receptor α (ERα) high resolution screening (HRS) assay. No differences in estrogenicity could be observed between the cases and controls and steroidal estrogens accounted for the majority of estrogenicity found in the complex mixtures. In this study, the combination of the different assays employed to measure total estrogenicity and the SULT1E1 inhibition does not predict the outcome of unwanted physiological effects, however, it can be used to determine the presence of EDCs in fish samples and their estrogenic effects. PMID:21787654

  6. Long-term disruption of growth, reproduction, and behavior after embryonic exposure of zebrafish to PAH-spiked sediment.

    PubMed

    Vignet, Caroline; Devier, Marie-Hélène; Le Menach, Karyn; Lyphout, Laura; Potier, Jérémy; Cachot, Jérôme; Budzinski, Hélène; Bégout, Marie-Laure; Cousin, Xavier

    2014-12-01

    A natural sediment spiked with three individual polycyclic aromatic hydrocarbons (PAHs; pyrene, phenanthrene and benzo[a]pyrene) was used to expose zebrafish embryos and larvae during 4 days. The total PAH concentration was 4.4 μg g(-1) which is in the range found in sediment from contaminated areas. Quantification of metabolites in the larvae after exposure confirmed the actual contamination of the larvae and indicated an active metabolism especially for pyrene and benzo[a]pyrene. After a transfer in a clean medium, the larvae were reared to adulthood and evaluated for survival, growth, reproduction, and behavior. Measured endpoints revealed a late disruption of growth (appearing at 5 months) and a trend toward a lower reproductive ability. Adults of embryos exposed to sediment spiked with PAHs displayed lethargic and/or anxiety-like behaviors. This latter behavior was also identified in offspring at larval stage. All together, these effects could have detrimental consequences on fish performances and contribution to recruitment.

  7. Childhood Maltreatment Exposure and Disruptions in Emotion Regulation: A Transdiagnostic Pathway to Adolescent Internalizing and Externalizing Psychopathology

    PubMed Central

    Jenness, Jessica L.; Stoep, Ann Vander; McCauley, Elizabeth; McLaughlin, Katie A.

    2016-01-01

    Child maltreatment is a robust risk factor for internalizing and externalizing psychopathology in children and adolescents. We examined the role of disruptions in emotion regulation processes as a developmental mechanism linking child maltreatment to the onset of multiple forms of psychopathology in adolescents. Specifically, we examined whether child maltreatment was associated with emotional reactivity and maladaptive cognitive and behavioral responses to distress, including rumination and impulsive behaviors, in two separate samples. We additionally investigated whether each of these components of emotion regulation were associated with internalizing and externalizing psychopathology and mediated the association between child maltreatment and psychopathology. Study 1 included a sample of 167 adolescents recruited based on exposure to physical, sexual, or emotional abuse. Study 2 included a sample of 439 adolescents in a community-based cohort study followed prospectively for 5 years. In both samples, child maltreatment was associated with higher levels of internalizing psychopathology, elevated emotional reactivity, and greater habitual engagement in rumination and impulsive responses to distress. In Study 2, emotional reactivity and maladaptive responses to distress mediated the association between child maltreatment and both internalizing and externalizing psychopathology. These findings provide converging evidence for the role of emotion regulation deficits as a transdiagnostic developmental pathway linking child maltreatment with multiple forms of psychopathology. PMID:27695145

  8. Analytical methods for the assessment of endocrine disrupting chemical exposure during human fetal and lactation stages: a review.

    PubMed

    Jiménez-Díaz, I; Vela-Soria, F; Rodríguez-Gómez, R; Zafra-Gómez, A; Ballesteros, O; Navalón, A

    2015-09-10

    In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs -substances able to alter the normal hormone function of wildlife and humans-. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid-liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation. PMID:26388473

  9. Childhood Maltreatment Exposure and Disruptions in Emotion Regulation: A Transdiagnostic Pathway to Adolescent Internalizing and Externalizing Psychopathology

    PubMed Central

    Jenness, Jessica L.; Stoep, Ann Vander; McCauley, Elizabeth; McLaughlin, Katie A.

    2016-01-01

    Child maltreatment is a robust risk factor for internalizing and externalizing psychopathology in children and adolescents. We examined the role of disruptions in emotion regulation processes as a developmental mechanism linking child maltreatment to the onset of multiple forms of psychopathology in adolescents. Specifically, we examined whether child maltreatment was associated with emotional reactivity and maladaptive cognitive and behavioral responses to distress, including rumination and impulsive behaviors, in two separate samples. We additionally investigated whether each of these components of emotion regulation were associated with internalizing and externalizing psychopathology and mediated the association between child maltreatment and psychopathology. Study 1 included a sample of 167 adolescents recruited based on exposure to physical, sexual, or emotional abuse. Study 2 included a sample of 439 adolescents in a community-based cohort study followed prospectively for 5 years. In both samples, child maltreatment was associated with higher levels of internalizing psychopathology, elevated emotional reactivity, and greater habitual engagement in rumination and impulsive responses to distress. In Study 2, emotional reactivity and maladaptive responses to distress mediated the association between child maltreatment and both internalizing and externalizing psychopathology. These findings provide converging evidence for the role of emotion regulation deficits as a transdiagnostic developmental pathway linking child maltreatment with multiple forms of psychopathology.

  10. Exposure to Endocrine Disrupters and Nuclear Receptor Gene Expression in Infertile and Fertile Women from Different Italian Areas

    PubMed Central

    La Rocca, Cinzia; Tait, Sabrina; Guerranti, Cristiana; Busani, Luca; Ciardo, Francesca; Bergamasco, Bruno; Stecca, Laura; Perra, Guido; Mancini, Francesca Romana; Marci, Roberto; Bordi, Giulia; Caserta, Donatella; Focardi, Silvano; Moscarini, Massimo; Mantovani, Alberto

    2014-01-01

    Within the PREVIENI project, infertile and fertile women were enrolled from metropolitan, urban and rural Italian areas. Blood/serum levels of several endocrine disrupters (EDs) (perfluorooctane sulfonate, PFOS; perfluorooctanoic acid, PFOA; di-2-ethylhexyl-phthalate, DEHP; mono-(2-ethylhexyl)-phthalate, MEHP; bisphenol A, BPA) were evaluated concurrently with nuclear receptors (NRs) gene expression levels (ERα, ERβ, AR, AhR, PPARγ, PXR) in peripheral blood mononuclear cells (PBMCs). Infertile women from the metropolitan area displayed significantly higher levels of: BPA compared to fertile women (14.9 vs. 0.5 ng/mL serum); BPA and MEHP compared to infertile women from urban and rural areas; enhanced expression levels of NRs, except PPARγ. Infertile women from urban and rural areas had PFOA levels significantly higher than those from metropolitan areas. Our study indicates the relevance of the living environment when investigating the exposure to EDs and the modulation of the NR panel in PBMC as a suitable biomarker of the effect, to assess the EDs impact on reproductive health. PMID:25268510

  11. Endocrine disrupting chemicals-Linking internal exposure to vitellogenin levels and ovotestis in Abramis brama from Dutch surface waters.

    PubMed

    Reinen, Jelle; Suter, Marc J-F; Vögeli, A Christiane; Fernandez, Mariana F; Kiviranta, Hannu; Eggen, Rik I L; Vermeulen, Nico P E

    2010-11-01

    The exposure of male bream from three Dutch freshwater locations to endocrine disrupting compounds (EDCs) and corresponding effects are described in this study. Fish specimen displaying reproductive disorders associated with high levels of plasma vitellogenin (VTG) concentrations and occurrence of ovotestis (OT) were investigated. To provide information on the full spectrum of EDCs in fish tissue, adipose tissue samples of individual fish were analyzed for nearly 130 chemicals targeting different compound classes (bisphenols, alkylphenols, pesticides, polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), hydroxylated polychlorinated biphenyls (OH-PCBs), polybrominated diphenyl ethers (PBDEs) and biphenyls (PBBs)) and steroid hormones. To establish whether tissue from specimen with reproductive disorders shows a spectrum of EDCs that is qualitatively and quantitatively different from that of controls free of symptoms, bioassay-directed fractionation was performed using the recombinant yeast estrogen screen (YES), the E-Screen bioassay, the human sulfotransferase 1E1 (SULT1E1) inhibition assay, and the coumestrol-based estrogen receptor α (ERα) high resolution screening (HRS) assay. No differences in estrogenicity could be observed between the cases and controls and steroidal estrogens accounted for the majority of estrogenicity found in the complex mixtures. In this study, the combination of the different assays employed to measure total estrogenicity and the SULT1E1 inhibition does not predict the outcome of unwanted physiological effects, however, it can be used to determine the presence of EDCs in fish samples and their estrogenic effects.

  12. Chronic Exposure to Aroclor 1254 Disrupts Glucose Homeostasis in Male Mice via Inhibition of the Insulin Receptor Signal Pathway.

    PubMed

    Zhang, Shiqi; Wu, Tian; Chen, Meng; Guo, Zhizhun; Yang, Zhibin; Zuo, Zhenghong; Wang, Chonggang

    2015-08-18

    Epidemiological studies demonstrate that polychlorinated biphenyls (PCBs) induce diabetes and insulin resistance. However, the development of diabetes caused by PCBs and its underlying mechanisms are still unclear. In the present study, male C57BL/6 mice were orally administered with Aroclor 1254 (0.5, 5, 50, and 500 μg/kg) once every 3 days for 60 days. The body weight and the fasting blood glucose levels were significantly elevated; the levels of serum insulin, resistin, tumor necrosis factor α (TNFα), and interleukin-6 (IL-6) increased, while glucagon levels decreased in the animals treated with Aroclor 1254. Pancreatic β-cell mass significantly increased, while α-cell mass was reduced. Aroclor 1254 inhibited the expression of the insulin receptor signaling cascade, including insulin receptor, insulin receptor substrate, phosphatidylinositol 3-kinase-Akt, and protein kinase B and glucose transporter 4, both in the skeletal muscle and the liver. The results suggested that chronic exposure to Aroclor 1254 disrupted glucose homeostasis and induced hyperinsulinemia. The significant elevation of serum resistin, TNFα and IL-6 indicated that obesity caused by Aroclor 1254 is associated with insulin resistance. The elevation of blood glucose levels could have been mainly as a result of insulin receptor signals pathway suppression in skeletal muscle and liver, and a decrease in pancreatic α-cells, accompanied by a reduction of serum glucagon levels, may play an important role in the development of type 2 diabetes.

  13. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose-Angel; Sahi, Shivendra; Gardea-Torresdey, Jorge L

    2014-08-15

    Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO2) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼ 8 ± 1 nm nCeO2 (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO2 exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO2, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO2/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO2 exposure in order to maintain cellular homeostasis. PMID:24981679

  14. Risks from accidental exposures to engineered nanoparticles and neurological health effects: A critical review

    PubMed Central

    2010-01-01

    There are certain concerns regarding the safety for the environment and human health from the use of engineered nanoparticles (ENPs) which leads to unintended exposures, as opposed to the use of ENPs for medical purposes. This review focuses on the unintended human exposure of ENPs. In particular, possible effects in the brain are discussed and an attempt to assess risks is performed. Animal experiments have shown that investigated ENPs (metallic nanoparticles, quantum dots, carbon nanotubes) can translocate to the brain from different entry points (skin, blood, respiratory pathways). After inhalation or instillation into parts of the respiratory tract a very small fraction of the inhaled or instilled ENPs reaches the blood and subsequently secondary organs, including the CNS, at a low translocation rate. Experimental in vivo and in vitro studies have shown that several types of ENPs can have various biological effects in the nervous system. Some of these effects could also imply that ENPs can cause hazards, both acutely and in the long term. The relevance of these data for risk assessment is far from clear. There are at present very few data on exposure of the general public to either acute high dose exposure or on chronic exposure to low levels of air-borne ENPs. It is furthermore unlikely that acute high dose exposures would occur. The risk from such exposures for damaging CNS effects is thus probably very low, irrespective of any biological hazard associated with ENPs. The situation is more complicated regarding chronic exposures, at low doses. The long term accumulation of ENPs can not be excluded. However, we do not have exposure data for the general public regarding ENPs. Although translocation to the brain via respiratory organs and the circulation appears to be very low, there remains a possibility that chronic exposures, and/or biopersistent ENPs, can influence processes within the brain that are triggering or aggravating pathological processes. In

  15. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model

    PubMed Central

    Xu, Liming; Dan, Mo; Shao, Anliang; Cheng, Xiang; Zhang, Cuiping; Yokel, Robert A; Takemura, Taro; Hanagata, Nobutaka; Niwa, Masami; Watanabe, Daisuke

    2015-01-01

    Background Silver nanoparticles (Ag-NPs) can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood–brain barrier (BBB) and the underlying mechanism(s) of action on the BBB and the brain are not well understood. Method To investigate Ag-NP suspension (Ag-NPS)-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM). Global gene expression of astrocytes was measured using a DNA microarray. Results A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm2. After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the tight junction (TJ) protein ZO-1 was decreased. Discontinuous TJs were also observed between microvascular endothelial cells. After Ag-NPS exposure, severe mitochondrial shrinkage, vacuolations, endoplasmic reticulum expansion, and Ag-NPs were observed in astrocytes by TEM. Global gene expression analysis showed that three genes were upregulated and 20 genes were downregulated in astrocytes treated with Ag-NPS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the 23 genes were associated with metabolic processes, biosynthetic processes, response to stimuli, cell death, the MAPK pathway, and so on. No GO term and KEGG pathways were changed in the released-ion or polystyrene-NP groups. Ag-NPS inhibited the antioxidant defense of the astrocytes by increasing thioredoxin interacting protein, which inhibits the Trx system, and

  16. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood–brain barrier

    PubMed Central

    Sun, Zhizhi; Worden, Matthew; Wroczynskyj, Yaroslav; Yathindranath, Vinith; van Lierop, Johan; Hegmann, Torsten; Miller, Donald W

    2014-01-01

    Purpose The present study examines the use of an external magnetic field in combination with the disruption of tight junctions to enhance the permeability of iron oxide nanoparticles (IONPs) across an in vitro model of the blood–brain barrier (BBB). The feasibility of such an approach, termed magnetic field enhanced convective diffusion (MFECD), along with the effect of IONP surface charge on permeability, was examined. Methods The effect of magnetic field on the permeability of positively (aminosilane-coated [AmS]-IONPs) and negatively (N-(trimethoxysilylpropyl)ethylenediaminetriacetate [EDT]-IONPs) charged IONPs was evaluated in confluent monolayers of mouse brain endothelial cells under normal and osmotically disrupted conditions. Results Neither IONP formulation was permeable across an intact cell monolayer. However, when tight junctions were disrupted using D-mannitol, flux of EDT-IONPs across the bEnd.3 monolayers was 28%, increasing to 44% when a magnetic field was present. In contrast, the permeability of AmS-IONPs after osmotic disruption was less than 5%. The cellular uptake profile of both IONPs was not altered by the presence of mannitol. Conclusions MFECD improved the permeability of EDT-IONPs through the paracellular route. The MFECD approach favors negatively charged IONPs that have low affinity for the brain endothelial cells and high colloidal stability. This suggests that MFECD may improve IONP-based drug delivery to the brain. PMID:25018630

  17. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms--a review.

    PubMed

    Gaillet, Sylvie; Rouanet, Jean-Max

    2015-03-01

    Because of their antimicrobial properties, the use of silver nanoparticles (AgNPs) is increasing fast in industry, food, and medicine. In the food industry, nanoparticles are used in packaging to enable better conservation products such as sensors to track their lifetime, and as food additives, such as anti-caking agents and clarifying agents for fruit juices. Nanoemulsions, used to encapsulate, protect and deliver additives are also actively developed. Nanomaterials in foods will be ingested and passed through the digestive tract. Those incorporated in food packaging may also be released unintentionally into food, ending up in the gastrointestinal tract. It is therefore important to make a risk assessment of nanomaterials to the consumer. Thus, exposure to AgNPs is increasing in quantity and it is imperative to know their adverse effects in man. However, controversies still remain with respect to their toxic effects and their mechanisms. Understanding the toxic effects and the interactions of AgNPs with biological systems is necessary to handle these nanoparticles and their use. They usually generate reactive oxygen species resulting in increased pro-inflammatory reactions and oxidative stress via intracellular signalling pathways. Here, we mainly focus on the routes of exposure of AgNPs, toxic effects and the mechanisms underlying the induced toxicity.

  18. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles - A review.

    PubMed

    Hadrup, Niels; Sharma, Anoop K; Poulsen, Morten; Nielsen, Elsa

    2015-07-01

    Elemental gold is used as a food coloring agent and in dental fillings. In addition, gold nanoparticles are gaining increasing attention due to their potential use as inert carriers for medical purposes. Although elemental gold is considered to be inert, there is evidence to suggest the release of gold ions from its surface. Elemental gold, or the released ions, is, to some extent, absorbed in the gastrointestinal tract. Gold is distributed to organs such as the liver, heart, kidneys and lungs. The main excretion route of absorbed gold is through urine. Data on the oral toxicity of elemental gold is limited. The acute toxicity of elemental gold seems to be low, as rats were unaffected by a single dose of 2000mg nanoparticles/kg of body weight. Information on repeated dose toxicity is very limited. Skin rashes have been reported in humans following the ingestion of liquors containing gold. In addition, gold released from dental restorations has been reported to increase the risk of developing gold hypersensitivity. Regarding genotoxicity, in vitro studies indicate that gold nanoparticles induce DNA damage in mammalian cells. In vivo, gold nanoparticles induce genotoxic effects in Drosophila melanogaster; however, genotoxicity studies in mammals are lacking. Overall, based on the literature and taking low human exposure into account, elemental gold via the oral route is not considered to pose a health concern to humans in general.

  19. Comparative modeling of exposure to airborne nanoparticles released by consumer spray products.

    PubMed

    Riebeling, Christian; Luch, Andreas; Götz, Mario Enrico

    2016-01-01

    Consumer exposure to sprays containing nano-objects is a continuing concern as a potential health hazard. One potential hazard has been formulated in the overload hypothesis. It describes a volume fraction of the macrophages that is occupied by deposited nanoparticles that leads to reduced macrophage mobility. Subsequent chronic inflammation may then lead to severe health consequences including cancer. To calculate lung deposition of spherical particles, the Multiple-Path Particle Dosimetry (MPPD) model (ARA, Albuquerque, NM) provides different kinds of lung models and age settings. Using the MPPD v 2.11 software, we modeled several consumer-related exposure scenarios. Different body orientations and age groups were investigated. Moreover, a number of materials representing different densities were used, and the exposure calculated using MPPD is compared to the hazard derived from the overload hypothesis. Conditions leading to macrophage overload were found for exposures to high particle doses for prolonged times and repeated exposure. Such conditions are unlikely in the context of regular consumer exposure. The overload hypothesis assumes the particles to be inert and biopersistent, a condition that currently lacks a clear regulatory definition and is valid only for a few selected materials. Furthermore, because of material-specific effects and the possibility of surface adsorption of hazardous chemicals, nano-objects in propellant sprays remain of concern for consumer health.

  20. Co-exposure of silver nanoparticles and chiral herbicide imazethapyr to Arabidopsis thaliana: Enantioselective effects.

    PubMed

    Wen, Yuezhong; Zhang, Lijuan; Chen, Zunwei; Sheng, Xiaolin; Qiu, Jiguo; Xu, Dongmei

    2016-02-01

    In this study, we investigated the possible combined exposure effects of silver nanoparticles (Ag-NPs) and chiral herbicide imazethapyr (IM) on Arabidopsis thaliana. Herein, we show that co-exposure of Ag-NPs and chiral herbicide IM to A. thaliana can amplify the enantioselective ecotoxicity. It was found that after co-exposure of the herbicidally active 0.2 μM (R)-IM and 100 μM Ag-NPs, the silver concentration in roots was 1.40-fold higher than the co-exposure of Ag-NPs and (S)-enantiomer, as well as occurring in shoots that Ag-NPs combined with (R)-IM increased the Ag(+) concentration 77.78% than that with (S)-IM, suggesting an (R)-enantiomer preferential silver uptake. Increase of Ag(+) release under co-exposure of Ag-NPs and (R)-enantiomer was also observed. Our experiments indicated that under co-exposure of Ag-NPs and (R)-enantiomers, more accumulated amino acids can form more adducts with Ag(+), resulting in more Ag(+) release from Ag-NPs and higher ecotoxicity.

  1. How important is drinking water exposure for the risks of engineered nanoparticles to consumers?

    PubMed

    Tiede, Karen; Hanssen, Steffen Foss; Westerhoff, Paul; Fern, Gordon J; Hankin, Steven M; Aitken, Robert J; Chaudhry, Qasim; Boxall, Alistair B A

    2016-01-01

    This study explored the potential for engineered nanoparticles (ENPs) to contaminate the UK drinking water supplies and established the significance of the drinking water exposure route compared to other routes of human exposure. A review of the occurrence and quantities of ENPs in different product types on the UK market as well as release scenarios, their possible fate and behaviour in raw water and during drinking water treatment was performed. Based on the available data, all the ENPs which are likely to reach water sources were identified and categorized. Worst case concentrations of ENPs in raw water and treated drinking water, using a simple exposure model, were estimated and then qualitatively compared to available estimates for human exposure through other routes. A range of metal, metal oxide and organic-based ENPs were identified that have the potential to contaminate drinking waters. Worst case predicted concentrations in drinking waters were in the low- to sub-µg/l range and more realistic estimates were tens of ng/l or less. For the majority of product types, human exposure via drinking water was predicted to be less important than exposure via other routes. The exceptions were some clothing materials, paints and coatings and cleaning products containing Ag, Al, TiO2, Fe2O3 ENPs and carbon-based materials.

  2. How important is drinking water exposure for the risks of engineered nanoparticles to consumers?

    PubMed

    Tiede, Karen; Hanssen, Steffen Foss; Westerhoff, Paul; Fern, Gordon J; Hankin, Steven M; Aitken, Robert J; Chaudhry, Qasim; Boxall, Alistair B A

    2016-01-01

    This study explored the potential for engineered nanoparticles (ENPs) to contaminate the UK drinking water supplies and established the significance of the drinking water exposure route compared to other routes of human exposure. A review of the occurrence and quantities of ENPs in different product types on the UK market as well as release scenarios, their possible fate and behaviour in raw water and during drinking water treatment was performed. Based on the available data, all the ENPs which are likely to reach water sources were identified and categorized. Worst case concentrations of ENPs in raw water and treated drinking water, using a simple exposure model, were estimated and then qualitatively compared to available estimates for human exposure through other routes. A range of metal, metal oxide and organic-based ENPs were identified that have the potential to contaminate drinking waters. Worst case predicted concentrations in drinking waters were in the low- to sub-µg/l range and more realistic estimates were tens of ng/l or less. For the majority of product types, human exposure via drinking water was predicted to be less important than exposure via other routes. The exceptions were some clothing materials, paints and coatings and cleaning products containing Ag, Al, TiO2, Fe2O3 ENPs and carbon-based materials. PMID:25962682

  3. Chemical analysis of fish bile extracts for monitoring endocrine disrupting chemical exposure in water: Bisphenol A, alkylphenols, and norethindrone.

    PubMed

    Wu, Minghong; Pan, Chenyuan; Yang, Ming; Xu, Bentuo; Lei, Xiangjie; Ma, Jing; Cai, Ling; Chen, Jingsi

    2016-01-01

    The present study determined concentrations of estrogenic bisphenol A (BPA), nonylphenol, octylphenol (4-tert-octylphenol), butylphenol (4-tert-butylphenol), and progestogenic norethindrone by liquid chromatography-tandem mass spectrometry in bile extracts from field fish from the Xin'an River and market fish in Shanghai, China. Compared with the field fish, endocrine disrupting chemical (EDC) concentrations in market fish bile were at relatively high levels with high detectable rates. The average concentrations of BPA, nonylphenol, 4-tert-octylphenol, 4-tert-butylphenol, and norethindrone in field fish bile were 30.1 µg/L, 203 µg/L, 4.69 µg/L, 7.84 µg/L, and 0.514 µg/L, respectively; in market fish bile they were 240 µg/L, 528 µg/L, 76.5 µg/L, 12.8 µg/L, and 5.26 µg/L, respectively; and in the surface water of Xin'an River they were 38.8 ng/L, 7.91 ng/L, 1.98 ng/L, 2.66 ng/L, and 0.116 ng/L, respectively. The average of total estrogenic activity of river water was 3.32 ng/L estradiol equivalents. High bioconcentration factors (BCFs) were discovered for all 5 EDCs (≧998-fold) in field fish bile. Furthermore, the authors analyzed the BCF value of BPA in fish bile after 30-d exposure to environmentally relevant concentrations of BPA in the laboratory, and the analysis revealed that BCF in fish bile (BCF(Fish bile)) changed in an inverse concentration-dependent manner based on the log10-transformed BPA concentration in water. Strikingly, the data from the field study were well fitted within this trend. The data together suggested that analysis of fish bile extracts could be an efficient method for assessing waterborne EDCs exposure for aquatic biota. PMID:26206390

  4. Exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of ERK signal pathway.

    PubMed

    Li, Juan; Mao, Rui; Zhou, Qin; Ding, Ling; Tao, Jin; Ran, Mao-Mei; Gao, Er-Sheng; Yuan, Wei; Wang, Jin-Tao; Hou, Li-Fang

    2016-01-01

    Bisphenol A (BPA) is an estrogenic environmental toxin widely used in the production of plastics and ubiquitous human exposure to this chemical has been proposed to be a potential risk to human health. Exposure to BPA can negatively impact sperm quality. However, the mechanism remains largely unknown. The objectives of this study were to assess the role of BPA on sperm quality and explore the possible mechanisms. The Wistar male rats (aged 28 days) were administered BPA by oral gavage for 28 days at dose of 50, 100 and 200 mg/kg/day; meanwhile, the negative control with corn oil (0 mg/kg/day BPA) and positive control with E2 at the dose of 100 μg/kg/day. The sperm density, sperm activity and sperm survival rate were analyzed byCASA system, and the sperm abnormality rate was analyzed by improved Papanicolaou stained. The protein expression levels of Src/p-Src, ERK1/2, p-ERK1/2 and CREB/p-CREB were detected by Western bolt. The results showed that the body weight gain, testes weight, testis coefficient, sperm density, sperm activity, sperm survival rate and protein expression levels of p-ERK1, p-ERK2 and p-CREB decreased, but the sperm abnormality rate increased with increasing BPA concentrations. There were positive correlations between sperm density, sperm activity and sperm survival rate with protein expression levels of p-ERK1, p-ERK2 and p-CREB, and negative correlations between sperm abnormality rate with the protein expression levels of p-ERK1, p-ERK2 and p-CREB. Results from the structural equation model demonstrated that BPA retained a significant negative effect to p-ERK, whereas p-ERK retained a significant positive effect to sperm quality and acted as the mediate variable. This study provides a novel insight regarding the potential role of p-ERK1 and p-ERK2 protein kinase on reproductive toxicity of BPA. The adverse effects of BPA on adult male sperm quality may be through the induction of the disruption of ERK signal pathway. However, additional

  5. Chemical analysis of fish bile extracts for monitoring endocrine disrupting chemical exposure in water: Bisphenol A, alkylphenols, and norethindrone.

    PubMed

    Wu, Minghong; Pan, Chenyuan; Yang, Ming; Xu, Bentuo; Lei, Xiangjie; Ma, Jing; Cai, Ling; Chen, Jingsi

    2016-01-01

    The present study determined concentrations of estrogenic bisphenol A (BPA), nonylphenol, octylphenol (4-tert-octylphenol), butylphenol (4-tert-butylphenol), and progestogenic norethindrone by liquid chromatography-tandem mass spectrometry in bile extracts from field fish from the Xin'an River and market fish in Shanghai, China. Compared with the field fish, endocrine disrupting chemical (EDC) concentrations in market fish bile were at relatively high levels with high detectable rates. The average concentrations of BPA, nonylphenol, 4-tert-octylphenol, 4-tert-butylphenol, and norethindrone in field fish bile were 30.1 µg/L, 203 µg/L, 4.69 µg/L, 7.84 µg/L, and 0.514 µg/L, respectively; in market fish bile they were 240 µg/L, 528 µg/L, 76.5 µg/L, 12.8 µg/L, and 5.26 µg/L, respectively; and in the surface water of Xin'an River they were 38.8 ng/L, 7.91 ng/L, 1.98 ng/L, 2.66 ng/L, and 0.116 ng/L, respectively. The average of total estrogenic activity of river water was 3.32 ng/L estradiol equivalents. High bioconcentration factors (BCFs) were discovered for all 5 EDCs (≧998-fold) in field fish bile. Furthermore, the authors analyzed the BCF value of BPA in fish bile after 30-d exposure to environmentally relevant concentrations of BPA in the laboratory, and the analysis revealed that BCF in fish bile (BCF(Fish bile)) changed in an inverse concentration-dependent manner based on the log10-transformed BPA concentration in water. Strikingly, the data from the field study were well fitted within this trend. The data together suggested that analysis of fish bile extracts could be an efficient method for assessing waterborne EDCs exposure for aquatic biota.

  6. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust

    SciTech Connect

    Win-Shwe, Tin-Tin; Fujimaki, Hidekazu; Fujitani, Yuji; Hirano, Seishiro

    2012-08-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m{sup 3}), high-dose NRDE (H-NRDE, 129 μg/m{sup 3}), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. -- Highlights: ► The effects of nanoparticle-induced neurotoxicity remain unclear. ► We investigated the effect of exposure to

  7. Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta).

    PubMed

    Lapied, Emmanuel; Moudilou, Elara; Exbrayat, Jean-Marie; Oughton, Deborah Helen; Joner, Erik Jautris

    2010-08-01

    In terrestrial ecotoxicology there is a serious lack of data for potential hazards posed by engineered nanoparticles (ENPs). This is partly due to complex interactions between ENPs and the soil matrix, but also to the lack of suitable toxicological end points in organisms that are exposed to ENPs in a relevant manner. Earthworms are key organisms in terrestrial ecosystems, but so far only physiological end points of low sensitivity have been used in ecotoxicity studies with ENPs. We exposed the earthworm Lumbricus terrestris to silver nanoparticles and measured their impact on apoptosis in different tissues. Increased apoptotic activity was detected in a range of tissues both at acute and sublethal concentrations (down to 4 mg/kg soil). Comparing exposure in water and soil showed reduced bioavailability in soil reflected in the apoptotic response. Apoptosis appears to be a sensitive end point and potentially a powerful tool for quantifying environmental hazards of ENPs.

  8. Zeta potential change of Neuro-2a tumor cells after exposure to alumina nanoparticles

    NASA Astrophysics Data System (ADS)

    Kazantsev, Sergey O.; Fomenko, Alla N.; Korovin, Matvey S.

    2016-08-01

    In recent years, researches have paid much attention to the physical, chemical, biophysical and biochemical properties of a cell surface. It is known that most of the cells' surfaces are charged. This charge depends on the biochemical structure of the cell membranes. Therefore, measurement of a cell surface charge is a significant criterion that gives information about the cell surface. Evaluation of the cells zeta-potential is important to understand the interaction mechanisms of various drugs, antibiotics, as well as the interaction of nanoparticles with the cell surface. In this study, we use the dynamic light scattering method to detect the zeta-potential change of Neuro-2a tumor cells. It has been observed that zeta-potential shifted to negative values after exposure to metal oxide nanoparticles and inducing apoptosis.

  9. Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta).

    PubMed

    Lapied, Emmanuel; Moudilou, Elara; Exbrayat, Jean-Marie; Oughton, Deborah Helen; Joner, Erik Jautris

    2010-08-01

    In terrestrial ecotoxicology there is a serious lack of data for potential hazards posed by engineered nanoparticles (ENPs). This is partly due to complex interactions between ENPs and the soil matrix, but also to the lack of suitable toxicological end points in organisms that are exposed to ENPs in a relevant manner. Earthworms are key organisms in terrestrial ecosystems, but so far only physiological end points of low sensitivity have been used in ecotoxicity studies with ENPs. We exposed the earthworm Lumbricus terrestris to silver nanoparticles and measured their impact on apoptosis in different tissues. Increased apoptotic activity was detected in a range of tissues both at acute and sublethal concentrations (down to 4 mg/kg soil). Comparing exposure in water and soil showed reduced bioavailability in soil reflected in the apoptotic response. Apoptosis appears to be a sensitive end point and potentially a powerful tool for quantifying environmental hazards of ENPs. PMID:20735231

  10. Comparison of the effectiveness of exposure to low LET helium particles (4He) and gamma rays (137Cs) on the disruption of cognitive performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rats were exposed to either Helium (4He) particles (1000 MeV/n; 0.1 – 10 cGy; head-only) or Cesium 137Cs gamma rays (50 – 400 cGy; whole body) and the effects of irradiation on cognitive performance evaluated. The results indicated that exposure to doses of 4He particles as low as 0.1 cGy disrupted...

  11. Persistent Adult Zebrafish Behavioral Deficits Results from Acute Embryonic Exposure to Gold Nanoparticles

    PubMed Central

    Truong, Lisa; Saili, Katerine S.; Miller, John M.; Hutchison, James E.; Tanguay, Robert L.

    2011-01-01

    As the number of products containing nanomaterials increase, human exposure to nanoparticles (NPs) is unavoidable. Presently, few studies focus on the potential long-term consequences of developmental NP exposure. In this study, zebrafish embryos were acutely exposed to three gold NPs that possess functional groups with differing surface charge. Embryos were exposed to 50 μg/mL of 1.5 nm gold nanoparticles (AuNPs) possessing negatively charged 2-mercaptoethanesulfonic acid (MES) or neutral 2-(2-(2-mercaptoethoxy)ethoxy)ethanol (MEEE) ligands or 10 μg/mL of the AuNPs possessing positively charged trimethylammoniumethanethiol (TMAT). Both MES- and TMAT-AuNP exposed embryos exhibited hypo-locomotor activity, while those exposed to MEEE-AuNPs did not. A subset of embryos that were exposed to 1.5 nm MES- and TMAT-AuNPs during development from 6–120 hours post fertilization were raised to adulthood. Behavioral abnormalities and the number of survivors into adulthood were evaluated at 122 days post fertilization. We found that both treatments induced abnormal startle behavior following a tap stimulus. However, the MES-AuNPs exposed group also exhibited abnormal adult behavior in the light and had a lower survivorship into adulthood. This study demonstrates that acute, developmental exposure to 1.5 nm MES- and TMAT- AuNPs, two NPs differing only in the functional group, affects larval behavior, with behavioral effects persisting into adulthood. PMID:21946249

  12. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons

    PubMed Central

    2013-01-01

    Background Silver nanoparticles (AgNPs), owing to their effective antimicrobial properties, are being widely used in a broad range of applications. These include, but are not limited to, antibacterial materials, the textile industry, cosmetics, coatings of various household appliances and medical devices. Despite their extensive use, little is known about AgNP safety and toxicity vis-à-vis human and animal health. Recent studies have drawn attention towards potential neurotoxic effects of AgNPs, however, the primary cellular and molecular targets of AgNP action/s remain to be defined. Results Here we examine the effects of ultra fine scales (20 nm) of AgNPs at various concentrations (1, 5, 10 and 50 μg/ml) on primary rat cortical cell cultures. We found that AgNPs (at 1-50 μg/ml) not only inhibited neurite outgrowth and reduced cell viability of premature neurons and glial cells, but also induced degeneration of neuronal processes of mature neurons. Our immunocytochemistry and confocal microscopy studies further demonstrated that AgNPs induced the loss of cytoskeleton components such as the β-tubulin and filamentous actin (F-actin). AgNPs also dramatically reduced the number of synaptic clusters of the presynaptic vesicle protein synaptophysin, and the postsynaptic receptor density protein PSD-95. Finally, AgNP exposure also resulted in mitochondria dysfunction in rat cortical cells. Conclusions Taken together, our data show that AgNPs induce toxicity in neurons, which involves degradation of cytoskeleton components, perturbations of pre- and postsynaptic proteins, and mitochondrial dysfunction leading to cell death. Our study clearly demonstrates the potential detrimental effects of AgNPs on neuronal development and physiological functions and warns against its prolific usage. PMID:23782671

  13. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data.

    PubMed

    Rasier, G; Toppari, J; Parent, A-S; Bourguignon, J-P

    2006-07-25

    Natural hormones and some synthetic chemicals spread into our surrounding environment share the capacity to interact with hormone action and metabolism. Exposure to such compounds can cause a variety of developmental and reproductive detrimental abnormalities in wildlife species and, potentially, in human. Many experimental and epidemiological data have reported that exposure of the developing fetus or neonate to environmentally relevant concentrations of some among these endocrine disrupters induces morphological, biochemical and/or physiological disorders in brain and reproductive organs, by interfering with the hormone actions. The impact of such exposures on the hypothalamic-pituitary-gonadal axis and subsequent sexual maturation is the subject of the present review. We will highlight epidemiological human studies and the effects of early exposure during gestational, perinatal or postnatal life in female rodents.

  14. Optimization of an air–liquid interface exposure system for assessing toxicity of airborne nanoparticles

    PubMed Central

    Latvala, Siiri; Hedberg, Jonas; Möller, Lennart; Odnevall Wallinder, Inger; Karlsson, Hanna L.

    2016-01-01

    Abstract The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air–liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for characterizing toxicological effects induced by airborne NPs. The purpose of this study was to investigate how the deposition of silver NPs (AgNPs) is affected by different conditions of the ALI system. Additionally, the viability and metabolic activity of A549 cells was studied following AgNP exposure. Particle deposition increased markedly with increasing aerosol flow rate and electrostatic field strength. The highest amount of deposited particles (2.2 μg cm–2) at cell‐free conditions following 2 h exposure was observed for the highest flow rate (390 ml min–1) and the strongest electrostatic field (±2 kV). This was estimated corresponding to deposition efficiency of 94%. Cell viability was not affected after 2 h exposure to clean air in the ALI system. Cells exposed to AgNPs (0.45 and 0.74 μg cm–2) showed significantly (P < 0.05) reduced metabolic activities (64 and 46%, respectively). Our study shows that the ALI exposure system can be used for generating conditions that were more realistic for in vitro exposures, which enables improved mechanistic and toxicological studies of NPs in contact with human lung cells.Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. PMID:26935862

  15. Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin Reductase

    PubMed Central

    Srivastava, Milan; Singh, Sanjay

    2011-01-01

    Background: Silver nanoparticles (AgNPs) and silver (Ag)-based materials are increasingly being incorporated into consumer products, and although humans have been exposed to colloidal Ag in many forms for decades, this rise in the use of Ag materials has spurred interest into their toxicology. Recent reports have shown that exposure to AgNPs or Ag ions leads to oxidative stress, endoplasmic reticulum stress, and reduced cell proliferation. Previous studies have shown that Ag accumulates in tissues as silver sulfides (Ag2S) and silver selenide (Ag2Se). Objectives: In this study we investigated whether exposure of cells in culture to AgNPs or Ag ions at subtoxic doses would alter the effective metabolism of selenium, that is, the incorporation of selenium into selenoproteins. Methods: For these studies we used a keratinocyte cell model (HaCat) and a lung cell model (A549). We also tested (in vitro, both cellular and chemical) whether Ag ions could inhibit the activity of a key selenoenzyme, thioredoxin reductase (TrxR). Results: We found that exposure to AgNPs or far lower levels of Ag ions led to a dose-dependent inhibition of selenium metabolism in both cell models. The synthesis of protein was not altered under these conditions. Exposure to nanomolar levels of Ag ions effectively blocked selenium metabolism, suggesting that Ag ion leaching was likely the mechanism underlying observed changes during AgNP exposure. Exposure likewise inhibited TrxR activity in cultured cells, and Ag ions were potent inhibitors of purified rat TrxR isoform 1 (cytosolic) (TrxR1) enzyme. Conclusions: Exposure to AgNPs leads to the inhibition of selenoprotein synthesis and inhibition of TrxR1. Further, we propose these two sites of action comprise the likely mechanism underlying increases in oxidative stress, increases endoplasmic reticulum stress, and reduced cell proliferation during exposure to Ag. PMID:21965219

  16. Immunomodulatory effects in the spleen-injured mice following exposure to titanium dioxide nanoparticles.

    PubMed

    Sang, Xuezi; Fei, Min; Sheng, Lei; Zhao, Xiaoyang; Yu, Xiaohong; Hong, Jie; Ze, Yuguan; Gui, Suxin; Sun, Qingqing; Ze, Xiao; Wang, Ling; Hong, Fashui

    2014-10-01

    Immune injuries following the exposure of titanium dioxide nanoparticles (TiO₂ NPs) have been greatly concerned along with the TiO₂ NPs are widely used in pharmacology and daily life. However, very little is known about the immunomodulatory mechanisms in the spleen-injured mice due to TiO₂ NPs exposure. In this study, mice were continuously exposed to 2.5, 5, or 10 TiO₂ NPs mg kg(-1) body weight for 90 days with intragastric administration to investigate the immunomodulatory mechanisms in the spleen. The findings showed that TiO₂ NPs exposure resulted in significant increases in spleen and thymus indices, and titanium accumulation, in turn led to histopathological changes and splenocyte apoptosis. Furthermore, the exposure of TiO₂ NPs could significantly increase the levels of macrophage inflammatory protein (MIP)-1α, MIP-2, Eotaxin, monocyte chemotactic protein-1, interferon-γ, vascular cell adhesion molecule-1, interleukin-13, interferon-γ-inducible protein-10, migration inhibitory factor, CD69, major histocompatibility complex, protein tyrosine phosphatase, protein tyrosine kinase 1, basic fibroblast growth factor, Fasl, and GzmB expression, whereas markedly decrease the levels of NKG2D, NKp46, 2B4 expression involved in immune responses, lymphocyte healing and apoptosis. These findings would better understand toxicological effects induced by TiO₂ NPs exposure.

  17. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings.

    PubMed

    Nair, Prakash M Gopalakrishnan; Chung, Ill Min

    2014-10-01

    The physiological and molecular level changes of silver nanoparticles (AgNPs) exposure were investigated in rice (Oryza sativa L.) seedlings. The seedlings were exposed to different concentrations of (0, 0.2, 0.5 and 1 mg L(-1)) AgNPs for one week. Significant reduction in root elongation, shoot and root fresh weights, total chlorophyll and carotenoids contents were observed. Exposure to 0.5 and 1 mg L(-1) of AgNPs caused significant increase in hydrogen peroxide formation and lipid peroxidation in shoots and roots, increased foliar proline accumulation and decreased sugar contents. AgNPs exposure resulted in a dose dependant increase in reactive oxygen species generation and also caused cytotoxicity as evidenced by increased dihydroethidium, 3'-(p-hydroxyphenyl) fluorescein and propidium iodide fluorescence. Tetramethylrhodamine methyl ester assay showed decreased mitochondrial membrane potential with increasing concentrations of AgNPs exposure in roots. Real Time PCR analysis showed differential transcription of genes related to oxidative stress tolerance viz. FSD1, MSD1, CSD1, CSD2, CATa, CATb, CATc, APXa and APXb in shoots and roots of rice seedlings. The overall results suggest that exposure to AgNPs caused significant physiological and molecular level changes, oxidative stress and also resulted in the induction oxidative stress tolerance mechanisms in rice seedlings.

  18. Oxidative DNA Damage from Nanoparticle Exposure and Its Application to Workers' Health: A Literature Review

    PubMed Central

    Rim, Kyung-Taek; Song, Se-Wook; Kim, Hyeon-Yeong

    2013-01-01

    The use of nanoparticles (NPs) in industry is increasing, bringing with it a number of adverse health effects on workers. Like other chemical carcinogens, NPs can cause cancer via oxidative DNA damage. Of all the molecules vulnerable to oxidative modification by NPs, DNA has received the greatest attention, and biomarkers of exposure and effect are nearing validation. This review concentrates on studies published between 2000 and 2012 that attempted to detect oxidative DNA damage in humans, laboratory animals, and cell lines. It is important to review these studies to improve the current understanding of the oxidative DNA damage caused by NP exposure in the workplace. In addition to examining studies on oxidative damage, this review briefly describes NPs, giving some examples of their adverse effects, and reviews occupational exposure assessments and approaches to minimizing exposure (e.g., personal protective equipment and engineering controls such as fume hoods). Current recommendations to minimize exposure are largely based on common sense, analogy to ultrafine material toxicity, and general health and safety recommendations. PMID:24422173

  19. Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee.

    PubMed

    Stoker, T E; Parks, L G; Gray, L E; Cooper, R L

    2000-03-01

    Puberty in mammalian species is a period of rapid interactive endocrine and morphological changes. Therefore, it is not surprising that exposure to a variety of pharmaceutical and environmental compounds has been shown to dramatically alter pubertal development. This concern was recognized by the Endocrine Disrupter Screening and Testing Advisory Committee (EDSTAC) that acknowledged the need for the development and standardization of a protocol for the assessment of the impact of endocrine-disrupting compounds (EDC) in the pubertal male and recommended inclusion of an assay of this type as an alternative test in the EDSTAC tier one screen (EPA, 98). The pubertal male protocol was designed to detect alterations of pubertal development, thyroid function, and hypothalamic-pituitary-gonadal (HPG) system peripubertal maturation. In this protocol, intact 23-day-old weanling male rats are exposed to the test substance for 30 days during which pubertal indices are measured. After necropsy, reproductive and thyroid tissues are weighed and evaluated histologically and serum taken for hormone analysis. The purpose of this review was to examine the available literature on pubertal development in the male rat and evaluate the efficacy of the proposed protocol for identifying endocrine-disrupting chemicals. The existing data indicate that this assessment of puberty in the male rat is a simple and effective method to detect the EDC activity of pesticides and toxic substances.

  20. IN UTERO EXPOSURE TO THE FUNGICIDE PROCYMIDONE AND DIBUTYL PHTHALATE PRODUCE DOSE ADDITIVE DISRUPTIONS OF MALE RAT SEXUAL DIFFERENTIATION

    EPA Science Inventory

    Procymidone (PRO) and dibutyl phthalate (DBP) alter male rat sexual differentiation by disrupting the androgen-signaling pathway via distinctly different cellular mechanisms of toxicity. DBP inhibits fetal Leydig cell androgen production whereas PRO binds AR and blocks androgen a...

  1. USE OF POPULATION STUDIES TO IDENTIFY ASSOCIATIONS BETWEEN ADVERSE HEALTH EFFECTS AND ENVIRONMENTAL EXPOSURES TO ENDOCRINE DISRUPTING HERBICIDES

    EPA Science Inventory

    Not only animal studies, but also population (ecologic) studies can contribute to the identification of endocrine disrupting chemicals. Population studies are fundamental in identifying public health hazards, and provide hypotheses for more targeted studies. Chlorophenoxy herb...

  2. Regulation of plasminogen activator inhibitor-1 expression in endothelial cells with exposure to metal nanoparticles.

    PubMed

    Yu, Min; Mo, Yiqun; Wan, Rong; Chien, Sufan; Zhang, Xing; Zhang, Qunwei

    2010-05-19

    Recent studies demonstrated that exposure to nanoparticles could enhance the adhesion of endothelial cells and modify the membrane structure of vascular endothelium. The endothelium plays an important role in the regulation of fibrinolysis, and imbalance of the fibrinolysis system potential contributes to the development of thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is the most potent endogenous inhibitor of fibrinolysis and is involved in the pathogenesis of several cardiovascular diseases. The aim of this study was to investigate the alteration of PAI-1 expression in mouse pulmonary microvascular endothelial cells (MPMVEC) exposed to the metal nanoparticles that are known to be reactive, and the potential underlying mechanisms. We compared the alteration of PAI-1 expression in MPMVEC exposed to non-toxic doses of nano-size copper (II) oxide (Nano-CuO) and nano-size titanium dioxide (Nano-TiO(2)). Our results showed that Nano-CuO caused a dose- and time-dependent increase in PAI-1 expression. Moreover, exposure of MPMVEC to Nano-CuO caused reactive oxygen species (ROS) generation that was abolished by pre-treatment of cells with ROS scavengers or inhibitors, DPI, NAC and catalase. Exposure of MPMVEC to Nano-CuO also caused a dose- and time-dependent increase in p38 phosphorylation by Western blot. These effects were significantly attenuated when MPMVEC were pre-treated with DPI, NAC and catalase. To further investigate the role of p38 phosphorylation in Nano-CuO-induced PAI-1 overexpression, the p38 inhibitor, SB203580, was used to pre-treat cells prior to Nano-CuO exposure. We found that Nano-CuO-induced overexpression of PAI-1 was attenuated by p38 inhibitor pre-treatment. However, Nano-TiO(2) did not show the same results. Our results suggest that Nano-CuO caused up-regulation of PAI-1 in endothelial cells is mediated by p38 phosphorylation due to oxidative stress. These findings have important implications for understanding the potential health

  3. Sex-specific enhanced behavioral toxicity induced by maternal exposure to a mixture of low dose endocrine-disrupting chemicals.

    PubMed

    Sobolewski, Marissa; Conrad, Katherine; Allen, Joshua L; Weston, Hiromi; Martin, Kyle; Lawrence, B Paige; Cory-Slechta, Deborah A

    2014-12-01

    Humans are increasingly and consistently exposed to a variety of endocrine disrupting chemicals (EDCs), chemicals that have been linked to neurobehavioral disorders such as ADHD and autism. Many of such EDCs have been shown to adversely influence brain mesocorticolimbic systems raising the potential for cumulative toxicity. As such, understanding the effects of developmental exposure to mixtures of EDCs is critical to public health protection. Consequently, this study compared the effects of a mixture of four EDCs to their effects alone to examine potential for enhanced toxicity, using behavioral domains and paradigms known to be mediated by mesocorticolimbic circuits (fixed interval (FI) schedule controlled behavior, novel object recognition memory and locomotor activity) in offspring of pregnant mice that had been exposed to vehicle or relatively low doses of four EDCs, atrazine (ATR - 10mg/kg), perfluorooctanoic acid (PFOA - 0.1mg/kg), bisphenol-A (BPA - 50 μg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD - 0.25 μg/kg) alone or combined in a mixture (MIX), from gestational day 7 until weaning. EDC-treated males maintained significantly higher horizontal activity levels across three testing sessions, indicative of delayed habituation, whereas no effects were found in females. Statistically significant effects of MIX were seen in males, but not females, in the form of increased FI response rates, in contrast to reductions in response rate with ATR, BPA and TCDD, and reduced short term memory in the novel object recognition paradigm. MIX also reversed the typically lower neophobia levels of males compared to females. With respect to individual EDCs, TCDD produced notable increases in FI response rates in females, and PFOA significantly increased ambulatory locomotor activity in males. Collectively, these findings show the potential for enhanced behavioral effects of EDC mixtures in males and underscore the need for animal studies to fully investigate mixtures

  4. Sex-Specific Enhanced Behavioral Toxicity Induced by Maternal Exposure to a Mixture of Low Dose Endocrine-Disrupting Chemicals

    PubMed Central

    Sobolewski, Marissa; Conrad, Katherine; Allen, Joshua L.; Weston, Hiromi; Martin, Kyle; Lawrence, B. Paige; Cory-Slechta, Deborah A.

    2014-01-01

    Humans are increasingly and consistently exposed to a variety of endocrine disrupting chemicals (EDCs), chemicals that have been linked to neurobehavioral disorders such as ADHD and autism. Many of such EDCs have been shown to adversely influence brain mesocorticolimbic systems raising the potential for cumulative toxicity. As such, understanding the effects of developmental exposure to mixtures of EDCs is critical to public health protection. Consequently, this study compared the effects of a mixture of four EDCs to their effects alone to examine potential for enhanced toxicity, using behavioral domains and paradigms known to be mediated by mesocorticolimbic circuits (Fixed Interval (FI) schedule controlled behavior, novel object recognition memory and locomotor activity) in offspring of pregnant mice that had been exposed to vehicle or relatively low doses of four EDCs, Atrazine (ATR – 10mg/kg), Perfluorooctanoic acid (PFOA – 0.1 mg/kg), Bisphenol-A (BPA - 50μg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD – 0.25μg/kg) alone or combined in a mixture (MIX), from gestational day 7 until weaning. EDC-treated males maintained significantly higher horizontal activity levels across 3 testing sessions, indicative of delayed habituation, whereas no effects were found in females. Statistically significant effects of MIX were seen in males, but not females, in the form of increased FI response rates, in contrast to reductions in response rate with ATR, BPA and TCDD, and reduced short term memory in the novel object recognition paradigm. MIX also reversed the typically lower neophobia levels of males compared to females. With respect to individual EDCs, TCDD produced notable increases in FI response rates in females, and PFOA significantly increased ambulatory locomotor activity in males. Collectively, these findings show the potential for enhanced behavioral effects of EDC mixtures in males and underscore the need for animal studies to more fully investigate

  5. Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure.

    PubMed

    Botha, Tarryn Lee; Boodhia, Kailen; Wepener, Victor

    2016-01-01

    Gold nanoparticles (nAu) have recently been studied and developed within the biological and photothermal therapeutic contexts. The major clinical interest is within the application of novel drug delivery systems. Environmental exposure to nanoparticles can occur in different stages of the lifecycle of the product; from their synthesis, applications, product weathering and their disposal. Freshwater Daphnids, specifically Daphnia magna, have been used since the 1960s as a standard species in acute and chronic aquatic toxicity testing. Visualization of the interactions and uptake of nAu by D. magna was related to reproduction and molting patterns. Exposure to nAu was done using a chronic reproduction test performed for 14 days at six concentrations (0.5mg/L, 2mg/L, 5mg/L, 10mg/L, 15mg/L and 20mg/L). Microscopy was used to determine whether there was any uptake or interaction of nAu with daphnia. However the concentration of nAu in the media and the charge of particles played a role in the uptake and surface adsorption. As exposure concentrations of nAu increased it appeared that the nAu aggregated onto the surface and in the gut of the organisms in higher concentrations. There was no evidence of nAu internalization into the body cavity of the daphnia. Aquatic exposure to nAu resulted in increased adhesion of the particles to the carapace of daphnia, ingestion and uptake into the gut of daphnia and had no significant effect on reproduction and molting patterns.

  6. Necrotic cell death caused by exposure to graphitic carbon-coated magnetic nanoparticles.

    PubMed

    Kim, Jung-Hee; Sanetuntikul, Jakkid; Shanmugam, Sangaraju; Kim, Eunjoo

    2015-09-01

    We synthesized graphitic carbon-coated magnetic nanoparticles (Fe@C NPs) and evaluated their physicochemical properties and mechanism of cytotoxicity in vitro. The structure of these nanocomposites consisted of an iron core encapsulated by a graphitic-carbon shell. The diameter of these Fe@C NPs was 81 ± 14 nm, and the thickness of the carbon layer encapsulating the core was 7.0 ± 0.5 nm. Inhibition of cell proliferation was induced by exposure to Fe@C NPs at doses above 50 μg mL(-1) . The exposed cells did not show increased activation of apoptosis biomarkers such as PARP, caspase-3, caspase-7, and caspase-9, and apoptosis-specific responses such as DNA laddering and annexin V binding to the cell membranes. In addition, the expression levels of autophagy-specific biomarkers such as ATG5 and LC3 after exposure were not enhanced, either. Instead, we observed increased release of lactate dehydrogenase in the culture media and red-fluorescent cell cytosol stained with ethidium homodimer I after the exposure. These results indicated enhanced cell membrane permeability after exposure to Fe@C NPs, probably caused by necrosis. The analysis of the regulatory molecules of cell cycling and proliferation, ERK, p53, and AKT, implied that cell cycle arrest was initiated and the cells were sensitized to necrosis. This necrotic cell death was also observed in carbon shells from Fe@C NPs obtained by removing the metal core. In conclusion, the graphitic carbon-encapsulated magnetic nanoparticles synthesized by one-pot synthesis induced necrotic cell death to human HEK293 cells, which was caused by graphitic carbon surface encapsulating the metal core.

  7. Hemopexin as biomarkers for analyzing the biological responses associated with exposure to silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Higashisaka, Kazuma; Yoshioka, Yasuo; Yamashita, Kohei; Morishita, Yuki; Pan, Huiyan; Ogura, Toshinobu; Nagano, Takashi; Kunieda, Akiyoshi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-10-01

    Practical uses of nanomaterials are rapidly spreading to a wide variety of fields. However, potential harmful effects of nanomaterials are raising concerns about their safety. Therefore, it is important that a risk assessment system is developed so that the safety of nanomaterials can be evaluated or predicted. Here, we attempted to identify novel biomarkers of nanomaterial-induced health effects by a comprehensive screen of plasma proteins using two-dimensional differential in gel electrophoresis (2D-DIGE) analysis. Initially, we used 2D-DIGE to analyze changes in the level of plasma proteins in mice after intravenous injection via tail veins of 0.8 mg/mouse silica nanoparticles with diameters of 70 nm (nSP70) or saline as controls. By quantitative image analysis, protein spots representing >2.0-fold alteration in expression were found and identified by mass spectrometry. Among these proteins, we focused on hemopexin as a potential biomarker. The levels of hemopexin in the plasma increased as the silica particle size decreased. In addition, the production of hemopexin depended on the characteristics of the nanomaterials. These results suggested that hemopexin could be an additional biomarker for analyzing the biological responses associated with exposure to silica nanoparticles. We believe that this study will contribute to the development of biomarkers to ensure the safety of silica nanoparticles.

  8. Comparison of Nanoparticle Exposures Between Fumed and Sol-gel Nano-silica Manufacturing Facilities

    PubMed Central

    OH, Sewan; KIM, Boowook; KIM, Hyunwook

    2014-01-01

    Silica nanoparticles (SNPs) are widely used all around the world and it is necessary to evaluate appropriate risk management measures. An initial step in this process is to assess worker exposures in their current situation. The objective of this study was to compare concentrations and morphologic characteristics of fumed (FS) and sol-gel silica nanoparticles (SS) in two manufacturing facilities. The number concentration (NC) and particle size were measured by a real-time instrument. Airborne nanoparticles were subsequently analyzed using a TEM/EDS. SNPs were discharged into the air only during the packing process, which was the last manufacturing step in both the manufacturing facilities studied. In the FS packing process, the geometric mean (GM) NC in the personal samples was 57,000 particles/cm3. The geometric mean diameter (GMD) measured by the SMPS was 64 nm. Due to the high-temperature formation process, the particles exhibited a sintering coagulation. In the SS packing process that includes a manual jet mill operation, the GM NC was calculated to be 72,000 particles/cm3 with an assumption of 1,000,000 particles/cm3 when the upper limit is exceeded (5% of total measure). The particles from SS process had a spherical-shaped morphology with GMD measured by SMPS of 94 nm. PMID:24583511

  9. Disruption and activation of blood platelets in contact with an antimicrobial composite coating consisting of a pyridinium polymer and AgBr nanoparticles.

    PubMed

    Stevens, Kris N; Knetsch, Menno L; Sen, Ayusman; Sambhy, Varun; Koole, Leo H

    2009-09-01

    Composite materials made up from a pyridinium polymer matrix and silver bromide nanoparticles embedded therein feature excellent antimicrobial properties. Most probably, the antimicrobial activity is related to the membrane-disrupting effect of both the polymer matrix and Ag(+) ions; both may work synergistically. One of the most important applications of antimicrobial materials would be their use as surface coatings for percutaneous (skin-penetrating) catheters, such as central venous catheters (CVCs). These are commonly used in critical care, and serious complications due to bacterial infection occur frequently. This study aimed at examining the possible effects of a highly antimicrobial pyridinium polymer/AgBr composite on the blood coagulation system, i.e., (i) on the coagulation cascade, leading to the formation of thrombin and a fibrin cross-linked network, and (ii) on blood platelets. Evidently, pyridinium/AgBr composites could not qualify as coatings for CVCs if they trigger blood coagulation. Using a highly antimicrobial composite of poly(4-vinylpyridine)-co-poly(4-vinyl-N-hexylpyridinium bromide) (NPVP) and AgBr nanoparticles as a thin adherent surface coating on Tygon elastomer tubes, it was found that contacting blood platelets rapidly acquire a highly activated state, after which they become substantially disrupted. This implies that NPVP/AgBr is by no means blood-compatible. This disqualifies the material for use as a CVC coating. This information, combined with earlier findings on the hemolytic effects (i.e., disruption of contacting red blood cells) of similar materials, implies that this class of antimicrobial materials affects not only bacteria but also mammalian cells. This would render them more useful outside the biomedical field.

  10. Comparison of the Effectiveness of Exposure to Low-LET Helium Particles ((4)He) and Gamma Rays ((137)Cs) on the Disruption of Cognitive Performance.

    PubMed

    Rabin, Bernard M; Carrihill-Knoll, Kirsty L; Shukitt-Hale, Barbara

    2015-09-01

    In this study, the effects of radiation exposure on cognitive performance were evaluated. Rats were exposed to either helium ((4)He) particles (1,000 MeV/n; 0.1-10 cGy; head only) or cesium (137)Cs gamma rays (50-400 cGy; whole body), after which their cognitive performance was evaluated. The results indicated that exposure to doses of (4)He particles as low as 0.1 cGy disrupted performance in a variety of cognitive tasks, including plus-maze performance (baseline anxiety), novel location recognition (spatial performance) and operant responding on an ascending fixed-ratio reinforcement schedule (motivation and responsiveness to changes in environmental contingencies) but not on novel object recognition performance (learning and memory). In contrast, after exposure to (137)Cs gamma rays only plus-maze performance was affected. There were no significant effects on any other task. Because exposure to both types of radiation produce oxidative stress, these results indicate that radiation-produced oxidative stress may be a necessary condition for the radiation-induced disruption of cognitive performance, but it is not a sufficient condition.

  11. Comparison of the Effectiveness of Exposure to Low-LET Helium Particles ((4)He) and Gamma Rays ((137)Cs) on the Disruption of Cognitive Performance.

    PubMed

    Rabin, Bernard M; Carrihill-Knoll, Kirsty L; Shukitt-Hale, Barbara

    2015-09-01

    In this study, the effects of radiation exposure on cognitive performance were evaluated. Rats were exposed to either helium ((4)He) particles (1,000 MeV/n; 0.1-10 cGy; head only) or cesium (137)Cs gamma rays (50-400 cGy; whole body), after which their cognitive performance was evaluated. The results indicated that exposure to doses of (4)He particles as low as 0.1 cGy disrupted performance in a variety of cognitive tasks, including plus-maze performance (baseline anxiety), novel location recognition (spatial performance) and operant responding on an ascending fixed-ratio reinforcement schedule (motivation and responsiveness to changes in environmental contingencies) but not on novel object recognition performance (learning and memory). In contrast, after exposure to (137)Cs gamma rays only plus-maze performance was affected. There were no significant effects on any other task. Because exposure to both types of radiation produce oxidative stress, these results indicate that radiation-produced oxidative stress may be a necessary condition for the radiation-induced disruption of cognitive performance, but it is not a sufficient condition. PMID:26284421

  12. The Speciation of Silver Nanoparticles in Antimicrobial Fabric Before and After Exposure to a Hypochlorite/Detergent Solution

    SciTech Connect

    Impellitteri, Christopher A.; Tolaymat, Thabet M.; Scheckel, Kirk G.; EPA

    2009-07-14

    Because of their antibacterial properties, silver nanoparticles are often used in consumer products. To assess environmental and/or human health risks from these nanoparticles, there is a need to identify the chemical transformations that silver nanoparticles undergo in different environments. Thus an antimicrobial sock material containing Ag nanoparticles was examined by X-ray absorption spectroscopy to identify the speciation of Ag. The material was exposed to a hypochlorite/detergent solution and subjected to agitation. An elemental Ag nanopowder was also exposed to the hypochlorite/detergent solution or to a 1 mol L{sup -1} NaCl solution. Results showed that the sock material nanoparticles consisted of elemental Ag. After exposure to the hypochlorite/detergent solution, a significant portion (more than 50%) of the sock nanoparticles were converted, in situ, to AgCl. Results from exposures to elemental Ag nanopowder suggest that an oxidation step is necessary for the elemental Ag nanoparticles to transform into AgCl as there was no evidence of AgCl formation in the presence of chloride alone. As a result, if Ag ions leach from consumer products, any chloride present may quickly scavenge the ions. In addition, the efficacy of Ag, as an antimicrobial agent in fabrics, may be limited, or even negated, after washing in solutions containing oxidizers as AgCl is much less reactive than Ag ion.

  13. A novel nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents

    SciTech Connect

    Lu, Donglai; Wang, Jun; Wang, Limin; Du, Dan; Timchalk, Charles; Barry, Richard C.; Lin, Yuehe

    2011-11-15

    We present a novel disposable electrochemical immunosensor for highly selective and sensitive detection of organophosphorylated butyrylcholinesterase (OP-BChE), a specific biomarker for exposure to toxic organophosphorus agents. In our new approach, the zirconia nanoparticles (ZrO-2) were employed to selectively capture the OP moiety of OP-BChE adducts, and followed by quantum dot (QD)-tagged anti-BChE antibodies for amplified quantification. The captured CdSe-QD tags can be sensitively detected by stripping voltammetry using in situ bismuth-plating method. The OP agent, diisopropylfluorophosphate (DFP), was selected to prepare OP-BChE adducts in various matrices. The formation of OP-BChE adducts in plasma sample was confirmed using mass spectroscopy. The developed electrochemical immunosensor demonstrates a highly linear voltammetric response over the range of 0.1 to 30 nM OP-BChE. Moreover, the immunosensor has been successfully applied for the detection of OP-BChE adducts in the plasma samples. This novel nanoparticle-based electrochemical immunosensor thus provides an alternative way for designing simple, fast, sensitive, and cost-effective sensing platform for on-site screening/evaluating exposure to a variety of OP agents.

  14. Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant.

    PubMed

    Vignet, Caroline; Joassard, Lucette; Lyphout, Laura; Guionnet, Tiphaine; Goubeau, Manon; Le Menach, Karyn; Brion, François; Kah, Olivier; Chung, Bon-Chu; Budzinski, Hélène; Bégout, Marie-Laure; Cousin, Xavier

    2015-11-01

    The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades. PAHs are hydrophobic molecules which can accumulate in high concentrations in sediments acting then as major secondary sources. Fish contamination can occur through contact or residence nearby sediments or though dietary exposure. In this study, we analyzed certain physiological traits in unexposed fish (F1) issued from parents (F0) exposed through diet to three PAH mixtures at similar and environmentally relevant concentrations but differing in their compositions. For each mixture, no morphological differences were observed between concentrations. An increase in locomotor activity was observed in larvae issued from fish exposed to the highest concentration of a pyrolytic (PY) mixture. On the contrary, a decrease in locomotor activity was observed in larvae issued from heavy oil mixture (HO). In the case of the third mixture, light oil (LO), a reduction of the diurnal activity was observed during the setup of larval activity. Behavioral disruptions persisted in F1-PY juveniles and in their offspring (F2). Endocrine disruption was analyzed using cyp19a1b:GFP transgenic line and revealed disruptions in PY and LO offspring. Since no PAH metabolites were dosed in larvae, these findings suggest possible underlying mechanisms such as altered parental signaling molecule and/or hormone transferred in the gametes, eventually leading to early imprinting. Taken together, these results indicate that physiological disruptions are observed in offspring of fish exposed to PAH mixtures through diet.

  15. Controlling silver nanoparticle exposure in algal toxicity testing – A matter of timing

    PubMed Central

    Baun, Anders

    2015-01-01

    The aquatic ecotoxicity testing of nanoparticles is complicated by unstable exposure conditions resulting from various transformation processes of nanoparticles in aqueous suspensions. In this study, we investigated the influence of exposure timing on the algal test response to silver nanoparticles (AgNPs), by reducing the incubation time and by aging the AgNPs in algal medium prior to testing. The freshwater green algae Pseudokirchneriella subcapitata were exposed to AgNO3, NM-300 K (a representative AgNP) and citrate stabilized AgNPs from two different manufacturers (AgNP1 and AgNP2) in a standard algal growth inhibition test (ISO 8692:2004) for 48 h and a short-term (2 h) 14C-assimilation test. For AgNO3, similar responses were obtained in the two tests, whereas freshly prepared suspensions of citrate stabilized AgNPs were less toxic in the 2-h tests compared to the 48-h tests. The 2-h test was found applicable for dissolved silver, but yielded non-monotonous concentration–response relationships and poor reproducibility for freshly prepared AgNP suspensions. However, when aging AgNPs in algal medium 24 h prior to testing, clear concentration–response patterns emerged and reproducibility increased. Prolonged aging to 48 h increased toxicity in the 2-h tests whereas aging beyond 48 h reduced toxicity. Our results demonstrate that the outcome of algal toxicity testing of AgNPs is highly influenced not only by the test duration, but also by the time passed from the moment AgNPs are added to the test medium. This time-dependency should be considered when nanomaterial dispersion protocols for ecotoxicity testing are developed. PMID:24842597

  16. Strategy for the lowering and the assessment of exposure to nanoparticles at workspace - Case of study concerning the potential emission of nanoparticles of Lead in an epitaxy laboratory

    NASA Astrophysics Data System (ADS)

    Artous, Sébastien; Zimmermann, Eric; Douissard, Paul-Antoine; Locatelli, Dominique; Motellier, Sylvie; Derrough, Samir

    2015-05-01

    The implementation in many products of manufactured nanoparticles is growing fast and raises new questions. For this purpose, the CEA - NanoSafety Platform is developing various research topics for health and safety, environment and nanoparticles exposure in professional activities. The containment optimisation for the exposition lowering, then the exposure assessment to nanoparticles is a strategy for safety improvement at workplace and workspace. The lowering step consists in an optimisation of dynamic and static containment at workplace and/or workspace. Generally, the exposure risk due to the presence of nanoparticles substances does not allow modifying the parameters of containment at workplace and/or workspace. Therefore, gaseous or nanoparticulate tracers are used to evaluate performances of containment. Using a tracer allows to modify safely the parameters of the dynamic containment (ventilation, flow, speed) and to study several configurations of static containment. Moreover, a tracer allows simulating accidental or incidental situation. As a result, a safety procedure can be written more easily in order to manage this type of situation. The step of measurement and characterization of aerosols can therefore be used to assess the exposition at workplace and workspace. The case of study, aim of this paper, concerns the potential emission of Lead nanoparticles at the exhaust of a furnace in an epitaxy laboratory. The use of Helium tracer to evaluate the performance of containment is firstly studied. Secondly, the exposure assessment is characterised in accordance with the French guide “recommendations for characterizing potential emissions and exposure to aerosols released from nanomaterials in workplace operations”. Thirdly the aerosols are sampled, on several places, using collection membranes to try to detect traces of Lead in air.

  17. Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions.

    PubMed

    Xiao, Yinlong; Peijnenburg, Willie J G M; Chen, Guangchao; Vijver, Martina G

    2016-09-01

    Although the risks of metallic nanoparticles (NPs) to aquatic organisms have already been studied for >10years, our understanding of the link between the fate of particles in exposure medium and their toxicity is still in its infancy. Moreover, most of the earlier studies did not distinguish the contribution of particles and soluble ions to the toxic effects caused by suspensions of metallic NPs. In this study, the toxicity of CuNPs to Daphnia magna upon modification of the exposure conditions, achieved by aging the suspensions of CuNPs and by altering water chemistry parameters like the pH and levels of dissolved organic carbon (DOC), was investigated. The LC50 values for CuNPs exposure decreased by about 30% after 7days of aging. The LC50 values increased >12-fold upon addition of DOC at concentrations ranging from 0 to 10mg/L to the exposure medium. Changing the pH from 6.5 to 8.5 resulted in a 3-fold higher LC50 value. Furthermore, it was found that during 7days of aging of the exposure medium (without addition of DOC and at pH7.8), the toxicity could be mostly ascribed to the particles present in the suspension (around 70%). However, adding DOC or decreasing the pH of the exposure medium reduced the contribution of the particles to the observed toxicity. We thus found that the effective concentration regarding the toxicity was mainly driven by the contribution of the soluble ions in the presence of DOC or at pH6.5. Our results suggest that the toxicity results of CuNPs obtained from laboratory tests may overestimate the risk of the particles in polluted waters due to the common absence of DOC in laboratory test solutions. Moreover, the role of the ions shedding from CuNPs is very important in explaining the toxicity in natural waters. PMID:27135569

  18. Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions.

    PubMed

    Xiao, Yinlong; Peijnenburg, Willie J G M; Chen, Guangchao; Vijver, Martina G

    2016-09-01

    Although the risks of metallic nanoparticles (NPs) to aquatic organisms have already been studied for >10years, our understanding of the link between the fate of particles in exposure medium and their toxicity is still in its infancy. Moreover, most of the earlier studies did not distinguish the contribution of particles and soluble ions to the toxic effects caused by suspensions of metallic NPs. In this study, the toxicity of CuNPs to Daphnia magna upon modification of the exposure conditions, achieved by aging the suspensions of CuNPs and by altering water chemistry parameters like the pH and levels of dissolved organic carbon (DOC), was investigated. The LC50 values for CuNPs exposure decreased by about 30% after 7days of aging. The LC50 values increased >12-fold upon addition of DOC at concentrations ranging from 0 to 10mg/L to the exposure medium. Changing the pH from 6.5 to 8.5 resulted in a 3-fold higher LC50 value. Furthermore, it was found that during 7days of aging of the exposure medium (without addition of DOC and at pH7.8), the toxicity could be mostly ascribed to the particles present in the suspension (around 70%). However, adding DOC or decreasing the pH of the exposure medium reduced the contribution of the particles to the observed toxicity. We thus found that the effective concentration regarding the toxicity was mainly driven by the contribution of the soluble ions in the presence of DOC or at pH6.5. Our results suggest that the toxicity results of CuNPs obtained from laboratory tests may overestimate the risk of the particles in polluted waters due to the common absence of DOC in laboratory test solutions. Moreover, the role of the ions shedding from CuNPs is very important in explaining the toxicity in natural waters.

  19. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests.

    PubMed

    Römer, Isabella; White, Thomas A; Baalousha, Mohammed; Chipman, Kevin; Viant, Mark R; Lead, Jamie R

    2011-07-01

    Silver nanoparticles (AgNPs) are currently being very widely used in industry, mainly because of their anti-bacterial properties, with applications in many areas. Once released into the environment, the mobility, bioavailability, and toxicity of AgNPs in any ecosystem are dominated by colloidal stability. There have been studies on the stability or the aggregation of various nanoparticles (NPs) under a range of environmental conditions, but there is little information on fully characterised AgNPs in media used in (eco)toxicity studies. In this study, monodisperse 7, 10 and 20 nm citrate-stabilised AgNPs were synthesised, characterised and then fractionated and sized by flow field-flow fractionation (FFF) and measured with dynamic light scattering (DLS) in different dilutions of the media recommended by OECD for Daphnia magna (water flea) toxicity testing. Stability of NPs was assessed over 24 h, and less so over 21 days, similar time periods to the OECD acute and chronic toxicity tests for D. magna. All particles aggregated quickly in the media with high ionic strength (media1), resulting in a loss of colour from the solution. The size of particles could be measured by DLS in most cases after 24h, although a fractogram by FFF could not be obtained due to aggregation and polydispersity of the sample. After diluting the media by a factor of 2, 5 or 10, aggregation was reduced, although the smallest NPs were unstable under all media conditions. Media diluted up to 10-fold in the absence of AgNPs did not induce any loss of mobility or fecundity in D. magna. These results confirm that standard OECD media causes aggregation of AgNPs, which result in changes in organism exposure levels and the nature of the exposed particles compared to exposure to fully dispersed particles. Setting aside questions of dose metrics, significant and substantial reduction in concentration over exposure period suggests that literature data are in the main improperly interpreted and

  20. Genetic variation influences immune responses in sensitive rats following exposure to TiO2 nanoparticles.

    PubMed

    Gustafsson, Asa; Jonasson, Sofia; Sandström, Thomas; Lorentzen, Johnny C; Bucht, Anders

    2014-12-01

    This study examines the immunological responses in rats following inhalation to titanium dioxide nanoparticles (TiO2 NPs), in naïve rats and in rats with induced allergic airway disease. The responses of two different inbred rat strains were compared: the Dark Aguoti (DA), susceptible to chronic inflammatory disorders, and the Brown Norwegian (BN), susceptible to atopic allergic inflammation. Naïve rats were exposed to an aerosol of TiO2 NPs once daily for 10 days. Another subset of rats was sensitized to the allergen ovalbumin (OVA) in order to induce airway inflammation. These sensitized rats were exposed to TiO2 NPs before and during the allergen challenge. Naïve rats exposed to TiO2 NPs developed an increase of neutrophils and lymphocytes in both rat strains. Airway hyperreactivity and production of inflammatory mediators typical of a T helper 1 type immune response were significantly increased, only in DA rats. Sensitization of the rats induced a prominent OVA-specific-IgE and IgG response in the BN rat while DA rats only showed an increased IgG response. Sensitized rats of both strains developed airway eosinophilia following allergen challenge, which declined upon exposure to TiO2 NPs. The level of neutrophils and lymphocytes increased upon exposure to TiO2 NPs in the airways of DA rats but remained unchanged in the airways of BN rats. In conclusion, the responses to TiO2 NPs were strain-dependent, indicating that genetics play a role in both immune and airway reactivity. DA rats were found to be higher responder compared to BN rats, both when it comes to responses in naïve and sensitized rats. The impact of genetically determined factors influencing the inflammatory reactions pinpoints the complexity of assessing health risks associated with nanoparticle exposures.

  1. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites.

    PubMed

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2016-01-01

    Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP.

  2. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites.

    PubMed

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2016-01-01

    Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP. PMID:26447230

  3. Investigation of superparamagnetic (Fe3O4) nanoparticles and magnetic field exposures on CHO-K1 cell line

    NASA Astrophysics Data System (ADS)

    Coker, Zachary; Estlack, Larry; Hussain, Saber; Choi, Tae-Youl; Ibey, Bennett L.

    2016-03-01

    Rapid development in nanomaterial synthesis and functionalization has led to advanced studies in actuation and manipulation of cellular functions for biomedical applications. Often these actuation techniques employ externally applied magnetic fields to manipulate magnetic nanomaterials inside cell bodies in order to drive or trigger desired effects. While cellular interactions with low-frequency magnetic fields and nanoparticles have been extensively studied, the fundamental mechanisms behind these interactions remain poorly understood. Additionally, modern investigations on these concurrent exposure conditions have been limited in scope, and difficult to reproduce. This study presents an easily reproducible method of investigating the biological impact of concurrent magnetic field and nanoparticle exposure conditions using an in-vitro CHO-K1 cell line model, with the purpose of establishing grounds for in-depth fundamental studies of the mechanisms driving cellular-level interactions. Cells were cultured under various nanoparticle and magnetic field exposure conditions from 0 to 500 μg/ml nanoparticle concentrations, and DC, 50 Hz, or 100 Hz magnetic fields with 2.0 mT flux density. Cells were then observed by confocal fluorescence microscopy, and subject to biological assays to determine the effects of concurrent extreme-low frequency magnetic field and nanoparticle exposures on cellnanoparticle interactions, such as particle uptake and cell viability by MTT assay. Current results indicate little to no variation in effect on cell cultures based on magnetic field parameters alone; however, it is clear that deleterious synergistic effects of concurrent exposure conditions exist based on a significant decrease in cell viability when exposed to high concentrations of nanoparticles and concurrent magnetic field.

  4. Endocrine Disrupting Chemicals in Fish: Developing Exposure Indicators and Predictive Models of Effects Based on Mechanism of Action

    EPA Science Inventory

    In this paper we provide an overview and illustrative results from a large, integrated project that assesses the effects of endocrine-disrupting chemicals (EDCs) on two small fish models, the fathead minnow (Pimephales promelas) and zebrafish (Danio rerio). For this work a syste...

  5. Assessment of exposure to composite nanomaterials and development of a personal respiratory deposition sampler for nanoparticles

    NASA Astrophysics Data System (ADS)

    Cena, Lorenzo

    2011-12-01

    The overall goals of this doctoral dissertation are to provide knowledge of workers' exposure to nanomaterials and to assist in the development of standard methods to measure personal exposure to nanomaterials in workplace environments. To achieve the first goal, a field study investigated airborne particles generated from the weighing of bulk carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. This study also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood and biosafety cabinet) for control of exposure to particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured with direct-read instruments, and particle morphology was determined by electron microscopy. Sanding of CNT-epoxy nanocomposites released respirable size airborne particles with protruding CNTs very different in morphology from bulk CNTs that tended to remain in clusters (>1mum). Respirable mass concentrations in the operator's breathing zone were significantly greater when sanding took place in the custom hood (p <0.0001) compared to the other LEV conditions. This study found that workers' exposure was to particles containing protruding CNTs rather than to bulk CNT particles. Particular attention should be placed in the design and selection of hoods to minimize exposure. Two laboratory studies were conducted to realize the second goal. Collection efficiency of submicrometer particles was evaluated for nylon mesh screens with three pore sizes (60, 100 and 180 mum) at three flow rates (2.5, 4, and 6 Lpm). Single-fiber efficiency of nylon mesh screens was then calculated and compared to a theoretical estimation expression. The effects of particle morphology on collection efficiency were also experimentally measured. The collection efficiency of the screens was found to vary by less than 4% regardless of particle morphology. Single

  6. Reproduction impairment and endocrine disruption in female zebrafish after long-term exposure to MC-LR: A life cycle assessment.

    PubMed

    Hou, Jie; Li, Li; Wu, Ning; Su, Yujing; Lin, Wang; Li, Guangyu; Gu, Zemao

    2016-01-01

    Microcystin-LR (MC-LR) has been found to cause reproductive and developmental impairments as well as to disrupt sex hormone homeostasis of fish during acute and sub-chronic toxic experiments. However, fish in natural environments are continuously exposed to MC-LR throughout their entire life cycle as opposed to short-term exposure. Here, we tested the hypothesis that the mechanism by which MC-LR harms female fish reproduction and development within natural water bodies is through interference of the reproductive endocrine system. In the present study, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30 μg/L MC-LR for 90 d until reaching sexual maturity. Female zebrafish were selected, and the changes in growth and developmental indicators, ovarian ultrastructure as well as the levels of gonadal steroid hormones and vitellogenin (VTG) were examined along with the transcription of related genes in the hypothalamic-pituitary-gonadal-liver axis (HPGL-axis). The results showed for the first time, a life cycle exposure to MC-LR caused growth inhibition, decreased ovary weight and ovarian ultra-pathological lesions. Decreased ovarian testosterone levels indicated that MC-LR disrupted sex steroid hormone balance. Significantly up-regulated transcription of brain FSHβ and LHβ along with ovarian ERα, FSHR and LHR suggested positive feedback regulation in the HPGL-axis was induced as a compensatory mechanism for MC-LR damage. It was also noted that ovarian VTG content and hepatic ERα and VTG1 expression were all down-regulated, which might be responsible for reduced vitellus storage noted in our histological observations. Our findings indicate that a life cycle exposure to MC-LR impairs the development and reproduction of female zebrafish by disrupting the transcription of related HPGL-axis genes, suggesting that MC-LR has potential adverse effects on fish reproduction and thus population dynamics in MCs-contaminated aquatic environment.

  7. Reproduction impairment and endocrine disruption in female zebrafish after long-term exposure to MC-LR: A life cycle assessment.

    PubMed

    Hou, Jie; Li, Li; Wu, Ning; Su, Yujing; Lin, Wang; Li, Guangyu; Gu, Zemao

    2016-01-01

    Microcystin-LR (MC-LR) has been found to cause reproductive and developmental impairments as well as to disrupt sex hormone homeostasis of fish during acute and sub-chronic toxic experiments. However, fish in natural environments are continuously exposed to MC-LR throughout their entire life cycle as opposed to short-term exposure. Here, we tested the hypothesis that the mechanism by which MC-LR harms female fish reproduction and development within natural water bodies is through interference of the reproductive endocrine system. In the present study, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30 μg/L MC-LR for 90 d until reaching sexual maturity. Female zebrafish were selected, and the changes in growth and developmental indicators, ovarian ultrastructure as well as the levels of gonadal steroid hormones and vitellogenin (VTG) were examined along with the transcription of related genes in the hypothalamic-pituitary-gonadal-liver axis (HPGL-axis). The results showed for the first time, a life cycle exposure to MC-LR caused growth inhibition, decreased ovary weight and ovarian ultra-pathological lesions. Decreased ovarian testosterone levels indicated that MC-LR disrupted sex steroid hormone balance. Significantly up-regulated transcription of brain FSHβ and LHβ along with ovarian ERα, FSHR and LHR suggested positive feedback regulation in the HPGL-axis was induced as a compensatory mechanism for MC-LR damage. It was also noted that ovarian VTG content and hepatic ERα and VTG1 expression were all down-regulated, which might be responsible for reduced vitellus storage noted in our histological observations. Our findings indicate that a life cycle exposure to MC-LR impairs the development and reproduction of female zebrafish by disrupting the transcription of related HPGL-axis genes, suggesting that MC-LR has potential adverse effects on fish reproduction and thus population dynamics in MCs-contaminated aquatic environment. PMID

  8. Toxicity and endocrine disruption in zebrafish (Danio rerio) and two freshwater invertebrates (Daphnia magna and Moina macrocopa) after chronic exposure to mefenamic acid.

    PubMed

    Collard, Hyo-rin Jung; Ji, Kyunghee; Lee, Sangwoo; Liu, Xiaoshan; Kang, Sungeun; Kho, Younglim; Ahn, Byeongwoo; Ryu, Jisung; Lee, Jaean; Choi, Kyungho

    2013-08-01

    Pharmaceuticals have been frequently detected in the aquatic environment. Their potential effects on the endocrine system in wildlife are of special concern because these alterations could lead to impaired reproduction. We evaluated ecotoxicities associated with long-term exposure to mefenamic acid (MFA) and potential endocrine disruption. For this purpose, acute and chronic toxicities of MFA on several aquatic organisms, including two cladocerans, Daphnia magna and Moina macrocopa, and a teleost, Danio rerio were evaluated. The 48 h acute median effective concentration (EC50) of D. magna and M. macrocopa was 17.16 mg/L and 2.93 mg/L, respectively. In chronic toxicity test, D. magna and M. macrocopa showed significant changes in reproduction (number of young per adult) after the exposure to 1.0 mg/L and 0.25 mg/L MFA, respectively. In early life stage exposure using D. rerio, significant decrease of larval survival was observed at 1 mg/L. Changes in vitellogenin (VTG) protein concentrations in 32 day post fertilization fish and vtgI mRNA expression in adult male fish suggest endocrine disruption potentials of MFA. Among the genes of hypothalamus-pituitary-gonad axis, transcriptions of gnrh, gnrhr, cyp19a, and cyp19b increased, supporting estrogenic potential of MFA. Along with histological changes in ovaries, the results of this study provide evidences of endocrine disruption capacity of MFA. However, the effective concentrations are orders of magnitude greater than those occurring in the ambient aquatic environment. PMID:23725676

  9. Chronic exposure to a low dose of ingested petroleum disrupts corticosterone receptor signalling in a tissue-specific manner in the house sparrow (Passer domesticus)

    PubMed Central

    Lattin, Christine R.; Romero, L. Michael

    2014-01-01

    Stress-induced concentrations of glucocorticoid hormones (including corticosterone, CORT) can be suppressed by chronic exposure to a low dose of ingested petroleum. However, endocrine-disrupting chemicals could interfere with CORT signalling beyond the disruption of hormone titres, including effects on receptors in different target tissues. In this study, we examined the effects of 6 weeks of exposure to a petroleum-laced diet (1% oil weight:food weight) on tissue mass and intracellular CORT receptors in liver, fat, muscle and kidney (metabolic tissues), spleen (an immune tissue) and testes (a reproductive tissue). In the laboratory, male house sparrows were fed either a 1% weathered crude oil (n = 12) or a control diet (n = 12); glucocorticoid receptors and mineralocorticoid receptors were quantified using radioligand binding assays. In oil-exposed birds, glucocorticoid receptors were lower in one metabolic tissue (liver), higher in another metabolic tissue (fat) and unchanged in four other tissues (kidney, muscle, spleen and testes) compared with control birds. We saw no differences in mineralocorticoid receptors between groups. We also saw a trend towards reduced mass of the testes in oil-exposed birds compared with controls, but no differences in fat, kidney, liver, muscle or spleen mass between the two groups. This is the first study to examine the effects of petroleum on CORT receptor density in more than one or two target tissues. Given that a chronic low dose of ingested petroleum can affect stress-induced CORT titres as well as receptor density, this demonstrates that oil can act at multiple levels to disrupt an animal’s response to environmental stressors. This also highlights the potential usefulness of the stress response as a bioindicator of chronic crude oil exposure. PMID:27293679

  10. Endocrine disruption effects of long-term exposure to perfluorodecanoic acid (PFDA) and perfluorotridecanoic acid (PFTrDA) in zebrafish (Danio rerio) and related mechanisms.

    PubMed

    Jo, Areum; Ji, Kyunghee; Choi, Kyungho

    2014-08-01

    Perfluoroalkyl acids (PFAAs) have been frequently detected in both the environment and biota, however the endocrine disruption potentials and underlying mechanism of long-chain PFAAs have not yet been fully understood in fish. In the present study, the effects of perfluorodecanoic acid (PFDA) and perfluorotridecanoic acid (PFTrDA) on sex steroid hormones and expression of mRNA of selected genes in hypothalamic-pituitary-gonad (HPG) axis were evaluated after 120 d exposure of zebrafish. In addition, production of sex hormones and transcription of steroidogenic genes were measured after in vitro exposure of H295R cells for 48 h. Exposure to PFTrDA resulted in reduced production of testosterone (T) along with lesser expression of CYP17A mRNA in H295R cells. In zebrafish, significant up-regulation of vtg1 was observed in males exposed to PFDA, whereas down-regulation was observed in females exposed to PFTrDA. In male zebrafish, concentrations of 17β-estradiol (E2) were significantly increased at 0.01 mg L(-1) PFTrDA. Significant increases in ratios of E2/T and E2/11-ketotestosterone (11-KT) were observed in male zebrafish after exposure to PFDA or PFTrDA, indicating estrogenic potentials of these compounds. The results of this study showed that long-term exposure to PFDA or PFTrDA could modulate sex steroid hormone production and related gene transcription of the HPG axis in a sex-dependent manner. Consequences of endocrine disruptions in reproduction performances of the fish warrant further investigation.

  11. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products.

    PubMed

    Witorsch, Raphael J

    2014-07-01

    This review examines the mammalian and human literature pertaining to the potential endocrine disruptive effects of triclosan (TCS). Dietary exposure to TCS consistently produces a dose-dependent decrease in serum thyroxine (T4) in rats without any consistent change in TSH or triiodothyronine (T3). Human studies reveal no evidence that the TCS exposure through personal care product use affects the thyroid system. TCS binds to both androgen and estrogen receptors in vitro with low affinity and evokes diverse responses (e.g., agonist, antagonist, or none) in steroid receptor transfected cell-based reporter assays. Two of three studies in rats have failed to show that TCS exposure suppresses male reproductive function in vivo. Three of four studies have failed to show that TCS possesses estrogenic (or uterotrophic) activity in rats. However, two studies reported that, while TCS lacks estrogenic activity, it can amplify the action of estrogen in vivo. The in vitro, in vivo, and epidemiologic studies reviewed herein show little evidence that TCS adversely affects gestation or postpartum development of offspring. Furthermore, previously reported toxicity testing in a variety of mammalian species shows little evidence that TCS adversely affects thyroid function, male and female reproductive function, gestation, or postpartum development of offspring. Finally, doses of TCS reported to produce hypothyroxinemia, and occasional effects on male and female reproduction, gestation, and offspring in animal studies are several orders of magnitude greater than the estimated exposure levels of TCS in humans. Overall, little evidence exists that TCS exposure through personal care product use presents a risk of endocrine disruptive adverse health effects in humans. PMID:24897554

  12. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products.

    PubMed

    Witorsch, Raphael J

    2014-07-01

    This review examines the mammalian and human literature pertaining to the potential endocrine disruptive effects of triclosan (TCS). Dietary exposure to TCS consistently produces a dose-dependent decrease in serum thyroxine (T4) in rats without any consistent change in TSH or triiodothyronine (T3). Human studies reveal no evidence that the TCS exposure through personal care product use affects the thyroid system. TCS binds to both androgen and estrogen receptors in vitro with low affinity and evokes diverse responses (e.g., agonist, antagonist, or none) in steroid receptor transfected cell-based reporter assays. Two of three studies in rats have failed to show that TCS exposure suppresses male reproductive function in vivo. Three of four studies have failed to show that TCS possesses estrogenic (or uterotrophic) activity in rats. However, two studies reported that, while TCS lacks estrogenic activity, it can amplify the action of estrogen in vivo. The in vitro, in vivo, and epidemiologic studies reviewed herein show little evidence that TCS adversely affects gestation or postpartum development of offspring. Furthermore, previously reported toxicity testing in a variety of mammalian species shows little evidence that TCS adversely affects thyroid function, male and female reproductive function, gestation, or postpartum development of offspring. Finally, doses of TCS reported to produce hypothyroxinemia, and occasional effects on male and female reproduction, gestation, and offspring in animal studies are several orders of magnitude greater than the estimated exposure levels of TCS in humans. Overall, little evidence exists that TCS exposure through personal care product use presents a risk of endocrine disruptive adverse health effects in humans.

  13. Endocrine disrupting chemicals and other substances of concern in food contact materials: an updated review of exposure, effect and risk assessment.

    PubMed

    Muncke, Jane

    2011-10-01

    Food contact materials (FCM) are an underestimated source of chemical food contaminants and a potentially relevant route of human exposure to endocrine disrupting chemicals (EDCs). Quantifying the exposure of the general population to substances from FCM relies on estimates of food consumption and leaching into food. Recent studies using polycarbonate plastics show that food simulants do not always predict worst-case leaching of bisphenol A, a common FCM substance. Also, exposure of children to FCM substances is not always realistically predicted using the common conventions and thus possibly misjudged. Further, the exposure of the whole population to substances leaching into dry foods is underestimated. Consumers are exposed to low levels of substances from FCM across their entire lives. Effects of these compounds currently are assessed with a focus on mutagenicity and genotoxicity. This approach however neglects integrating recent new toxicological findings, like endocrine disruption, mixture toxicity, and developmental toxicity. According to these new toxicology paradigms women of childbearing age and during pregnancy are a new sensitive population group requiring more attention. Furthermore, in overweight and obese persons a change in the metabolism of xenobiotics is observed, possibly implying that this group of consumers is insufficiently protected by current risk assessment practice. Innovations in FCM risk assessment should therefore include routine testing for EDCs and an assessment of the whole migrate toxicity of a food packaging, taking into account all sensitive population groups. In this article I focus on recent issues of interest concerning either exposure to or effects of FCM-related substances. Further, I review the use of benzophenones and organotins, two groups of known or suspected EDCs, in FCM authorized in the US and EU.

  14. Exposure to CeO(2) nanoparticles during flame spray process.

    PubMed

    Leppänen, Maija; Lyyränen, Jussi; Järvelä, Merja; Auvinen, Ari; Jokiniemi, Jorma; Pimenoff, Joe; Tuomi, Timo

    2012-09-01

    The use of nanotechnology in different fields is increasing rapidly. Engineered nanoparticles (ENPs) may have adverse effect on human health, but little is known about the exposure levels of ENPs at occupational settings. In this study, exposure levels of cerium oxide (CeO(2)) ENPs were measured during enclosed flame spray process used for coating and surface modification of materials. Particle number concentration, mass concentration, and morphology and composition of the ENPs were studied. The average particle number concentration varied from 4.7·10(3) to 2.1·10(5) 1/cm(3) inside the enclosure, and from 4.6·10(3) to 1.4·10(4) 1/cm(3) outside the enclosure. The average mass concentrations inside and outside the enclosure were 320 and 66 μg/m(3), respectively. A batch-type process caused significant variation in the concentrations, especially inside the enclosure. CeO(2) ENPs were mainly chainlike aggregates, consisting of spherical 20-40 nm primary particles having crystalline structure. In conclusion, enclosure of the process with efficient ventilation seemed to be an effective means to reduce the exposure to CeO(2) ENPs as expected. PMID:21770722

  15. Management of occupational exposure to engineered nanoparticles through a chance-constrained nonlinear programming approach.

    PubMed

    Chen, Zhi; Yuan, Yuan; Zhang, Shu-Shen; Chen, Yu; Yang, Feng-Lin

    2013-03-26

    Critical environmental and human health concerns are associated with the rapidly growing fields of nanotechnology and manufactured nanomaterials (MNMs). The main risk arises from occupational exposure via chronic inhalation of nanoparticles. This research presents a chance-constrained nonlinear programming (CCNLP) optimization approach, which is developed to maximize the nanaomaterial production and minimize the risks of workplace exposure to MNMs. The CCNLP method integrates nonlinear programming (NLP) and chance-constrained programming (CCP), and handles uncertainties associated with both the nanomaterial production and workplace exposure control. The CCNLP method was examined through a single-walled carbon nanotube (SWNT) manufacturing process. The study results provide optimal production strategies and alternatives. It reveal that a high control measure guarantees that environmental health and safety (EHS) standards regulations are met, while a lower control level leads to increased risk of violating EHS regulations. The CCNLP optimization approach is a decision support tool for the optimization of the increasing MNMS manufacturing with workplace safety constraints under uncertainties.

  16. Species sensitivity and dependence on exposure conditions impacting the phototoxicity of TiO2 nanoparticles to benthic organisms

    EPA Science Inventory

    Toxicity of TiO2 nanoparticles (nano-TiO2) to aquatic organisms can be greatly increased upon the exposure to ultraviolet radiation (UV). This phenomenon has received some attention for pelagic species, however, investigations of nano-TiO2 phototoxicity in benthic organisms are s...

  17. Developing exposure indices of graphene-based nanoparticles by coupling lipid-membrane interactions and in vitro cellular response

    EPA Science Inventory

    Graphene-based nanoparticles (NPs) are used extensively in industrial, consumer, and mechanical applications based on their unique structural properties. Due to increasing use of these NPs, environmental exposure to graphene oxide (GO) is probable. GO has been shown to compromise...

  18. Serum metabolomics reveals that arsenic exposure disrupted lipid and amino acid metabolism in rats: a step forward in understanding chronic arsenic toxicity.

    PubMed

    Wang, Xiaoxue; Mu, Xiaoli; Zhang, Jie; Huang, Qingyu; Alamdar, Ambreen; Tian, Meiping; Liu, Liangpo; Shen, Heqing

    2015-03-01

    Chronic arsenic exposure through drinking water threatens public health worldwide. Although its multiorgan toxicity has been reported, the impact of chronic arsenic exposure on the metabolic network remains obscure. In this study, male Sprague Dawley rats were exposed to 0.5, 2 or 10 ppm sodium arsenite for three months. An ultra-high performance liquid chromatography/mass spectrometry based metabolomics approach was utilized to unveil the global metabolic response to chronic arsenic exposure in rats. Distinct serum metabolome profiles were found to be associated with the doses. Eighteen differential metabolites were identified, and most of them showed dose-dependent responses to arsenic exposure. Metabolic abnormalities mainly involved lipid metabolism and amino acid metabolism. The metabolic alterations were further confirmed by hepatic gene expression. Expressions of cpt2, lcat, cact, crot and mtr were significantly elevated in high dose groups. This study provides novel evidence to support the association between arsenic exposure and metabolic disruption, and it contributes to understanding the mechanism of chronic arsenic toxicity.

  19. Serum metabolomics reveals that arsenic exposure disrupted lipid and amino acid metabolism in rats: a step forward in understanding chronic arsenic toxicity.

    PubMed

    Wang, Xiaoxue; Mu, Xiaoli; Zhang, Jie; Huang, Qingyu; Alamdar, Ambreen; Tian, Meiping; Liu, Liangpo; Shen, Heqing

    2015-03-01

    Chronic arsenic exposure through drinking water threatens public health worldwide. Although its multiorgan toxicity has been reported, the impact of chronic arsenic exposure on the metabolic network remains obscure. In this study, male Sprague Dawley rats were exposed to 0.5, 2 or 10 ppm sodium arsenite for three months. An ultra-high performance liquid chromatography/mass spectrometry based metabolomics approach was utilized to unveil the global metabolic response to chronic arsenic exposure in rats. Distinct serum metabolome profiles were found to be associated with the doses. Eighteen differential metabolites were identified, and most of them showed dose-dependent responses to arsenic exposure. Metabolic abnormalities mainly involved lipid metabolism and amino acid metabolism. The metabolic alterations were further confirmed by hepatic gene expression. Expressions of cpt2, lcat, cact, crot and mtr were significantly elevated in high dose groups. This study provides novel evidence to support the association between arsenic exposure and metabolic disruption, and it contributes to understanding the mechanism of chronic arsenic toxicity. PMID:25697676

  20. Skin exposure to micro- and nano-particles can cause haemostasis in zebrafish larvae.

    PubMed

    McLeish, Jennifer A; Chico, Timothy J A; Taylor, Harriet B; Tucker, Carl; Donaldson, Ken; Brown, Simon B

    2010-04-01

    Low mass ambient exposure to airborne particles is associated with atherothrombotic events that may be a consequence of the combustion-derived nanoparticle content. There is concern also over the potential cardiovascular impact of manufactured nanoparticles. To better understand the mechanism by which toxic airborne particles can affect cardiovascular function we utilised zebrafish as a genetically tractable model. Using light and confocal fluorescence video-microscopy, we measured heart-rate and blood flow in the dorsal aorta and caudal artery of zebrafish larvae that had been exposed to a number of toxic and non-toxic microparticles and nanoparticles. Diesel exhaust particles (DEP), carboxy-charged Latex beads (carboxy-beads) and toxic alumina (Taimicron TM300), but not non-toxic alumina (Baikalox A125), were found to promote both skin and gut cell damage, increased leukocyte invasion into the epidermis, tail muscle ischaemia and haemostasis within the caudal artery of free swimming zebrafish larvae. The presence of sodium sulfite, a reducing agent, or warfarin, an anticoagulant, within the system water abrogated the effects of both toxic alumina and carboxy-beads but not DEP. Genetic manipulation of skin barrier function augmented skin damage and haemostasis, even for the non-toxic alumina. The toxic effects of carboxy-beads were still apparent after leukocyte numbers were depleted with anti-Pu.1 morpholino. We conclude that particle uptake across skin epithelium and gut mucosal barriers, or the presence of leukocytes, is not required for particle-induced haemostasis while a compromised skin barrier function accentuated tissue injury and haemostasis.

  1. Self-Assembly of Oligosaccharide-b-PMMA Block Copolymer Systems: Glyco-Nanoparticles and Their Degradation under UV Exposure.

    PubMed

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2016-05-10

    This paper discusses the self-assembly of oligosaccharide-containing block copolymer and the use of ultraviolet (UV) to obtain nanoporous glyco-nanoparticles by photodegradation of the synthetic polymer block. Those glyco-nanoparticles consisting of oligosaccharide-based shell and a photodegradable core domain were obtained from the self-assembly of maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA48) using the nanoprecipitation protocol. MH-b-PMMA48 self-assembled into well-defined spherical micelles (major compound) with a hydrodynamic radius (Rh) of ca. 10 nm and also into large compound micellar aggregates (minor compound) with an Rh of ca. 65 nm. The oligosaccharide shells of these glyco-nanoparticles were cross-linked through the Michael-type addition of divinyl sulfone under dilute conditions to minimize the intermicellar cross-linking. The core domain photodegradation of the cross-linked glyco-nanoparticles was induced under exposure to 254 nm UV radiation, resulting in porous glyco-nanoparticles with an Rh of ca. 44 nm. The morphology of the cross-linked shell and the core photodegradation of these glyco-nanoparticles were characterized using static light scattering, dynamic light scattering, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, field-emission gun-scanning electron microscopy, and transmission electron microscopy. The innovative aspect of this approach concerns the fact that after removing the PMMA domains the porous nanoparticles are mostly composed of biocompatible and nontoxic oligosaccharides. PMID:27054350

  2. Self-Assembly of Oligosaccharide-b-PMMA Block Copolymer Systems: Glyco-Nanoparticles and Their Degradation under UV Exposure.

    PubMed

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2016-05-10

    This paper discusses the self-assembly of oligosaccharide-containing block copolymer and the use of ultraviolet (UV) to obtain nanoporous glyco-nanoparticles by photodegradation of the synthetic polymer block. Those glyco-nanoparticles consisting of oligosaccharide-based shell and a photodegradable core domain were obtained from the self-assembly of maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA48) using the nanoprecipitation protocol. MH-b-PMMA48 self-assembled into well-defined spherical micelles (major compound) with a hydrodynamic radius (Rh) of ca. 10 nm and also into large compound micellar aggregates (minor compound) with an Rh of ca. 65 nm. The oligosaccharide shells of these glyco-nanoparticles were cross-linked through the Michael-type addition of divinyl sulfone under dilute conditions to minimize the intermicellar cross-linking. The core domain photodegradation of the cross-linked glyco-nanoparticles was induced under exposure to 254 nm UV radiation, resulting in porous glyco-nanoparticles with an Rh of ca. 44 nm. The morphology of the cross-linked shell and the core photodegradation of these glyco-nanoparticles were characterized using static light scattering, dynamic light scattering, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, field-emission gun-scanning electron microscopy, and transmission electron microscopy. The innovative aspect of this approach concerns the fact that after removing the PMMA domains the porous nanoparticles are mostly composed of biocompatible and nontoxic oligosaccharides.

  3. Combustion-derived nanoparticle exposure and household solid fuel use in Xuanwei and Fuyuan, China

    PubMed Central

    Hosgood, H. Dean; Lan, Qing; Vermeulen, Roel; Wei, Hu; Reiss, Boris; Coble, Joseph; Wei, Fusheng; Jun, Xu; Wu, Guoping; Rothman, Nat

    2014-01-01

    Combustion-derived nanoparticles (CDNPs) have not been readably measurable until recently. We conducted a pilot study to determine CDNP levels during solid fuel burning. The aggregate surface area of CDNP (μm2/cm3) was monitored continuously in 15 Chinese homes using varying fuel types (i.e. bituminous coal, anthracite coal, wood) and stove types (i.e. portable stoves, stoves with chimneys, firepits). Information on fuel burning activities was collected and PM2.5 levels were measured. Substantial exposure differences were observed during solid fuel burning (mean: 228.1 μm2/cm3) compared to times without combustion (mean: 14.0 μm2/cm3). The observed levels during burning were reduced by about four-fold in homes with a chimney (mean: 92.1 μm2/cm3; n = 9), and effects were present for all fuel types. Each home’s CDNP measurement was only moderately correlated with the respective PM2.5 measurements (r2 = 0.43; p = 0.11). Our results indicate that household coal and wood burning contributes to indoor nanoparticle levels, which are not fully reflected in PM2.5 measurements. PMID:22639822

  4. Electrothermal piezoresistive cantilever resonators for personal measurements of nanoparticles in workplace exposure

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Wu, Wenze; Uhde, Erik; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Low-cost and low-power piezoresistive cantilever resonators with integrated electrothermal heaters are developed to support the sensing module enhancement of the second generation of handheld cantilever-based airborne nanoparticle (NP) detector (CANTOR-2). These sensors are used for direct-reading of exposure to carbon engineered nanoparticles (ENPs) at indoor workplaces. The cantilever structures having various shapes of free ends are created using silicon bulk micromachining technologies (i.e, rectangular, hammer-head, triangular, and U-shaped cantilevers). For a complete wearable CANTOR-2, all components of the proposed detector can be grouped into two main units depending on their packaging placements (i.e., the NP sampler head and the electronics mounted in a handy-format housing). In the NP sampler head, a miniaturized electrophoretic aerosol sampler and a resonant silicon cantilever mass sensor are employed to collect the ENPs from the air stream to the cantilever surfaces and measuring their mass concentration, respectively. After calibration, the detected ENP mass concentrations of CANTOR-2 show a standard deviation from fast mobility particle sizer (FMPS, TSI 3091) of 8-14%.

  5. DNA damage and repair following In vitro exposure to two different forms of titanium dioxide nanoparticles on trout erythrocyte.

    PubMed

    Sekar, Durairaj; Falcioni, Maria Letizia; Barucca, Gianni; Falcioni, Giancarlo

    2014-01-01

    TiO2 has been widely used to promote organic compounds degradation on waste aqueous solution, however, data on TiO2 nanotoxicity to aquatic life are still limited. In this in vitro study, we compare the toxicity of two different families of TiO2 nanoparticles on erythrocytes from Oncorhynchus mykiss trout. The crystal structure of the two TiO2 nanoparticles was analyzed by XRD and the results indicated that one sample is composed of TiO2 in the anatase crystal phase, while the other sample contains a mixture of both the anatase and the rutile forms of TiO2 in a 2:8 ratio. Further characterization of the two families of TiO2 nanoparticles was determined by SEM high resolution images and BET technique. The toxicity results indicate that both TiO2 nanoparticles increase the hemolysis rate in a dose dependent way (1.6, 3.2, 4.8 μg mL(-1) ) but they do not influence superoxide anion production due to NADH addition measured by chemiluminescence. Moreover, TiO2 nanoparticles (4.8 μg mL(-1) ) induce DNA damage and the entity of the damage is independent from the type of TiO2 nanoparticles used. Modified comet assay (Endo III and Fpg) shows that TiO2 oxidizes not only purine but also pyrimidine bases. In our experimental conditions, the exposure to TiO2 nanoparticles does not affect the DNA repair system functionality. The data obtained contribute to better characterize the aqueous environmental risks linked to TiO2 nanoparticles exposure.

  6. Progress in Development of C60 Nanoparticle Plasma Jet for Diagnostic of Runaway Electron Beam-Plasma Interaction and Disruption Mitigation Study for ITER

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.

    2013-10-01

    We produced a C60 nanoparticle plasma jet (NPPJ) with uniquely fast response-to-delivery time (~ 1 - 2 ms) and unprecedentedly high momentum (~ 0 . 6 g .km/s). The C60 NPPJ was obtained by using a solid state TiH2/C60 pulsed power cartridge producing ~180 mg of C60 molecular gas by sublimation and by electromagnetic acceleration of the C60 plasma in a coaxial gun (~35 cm length, 96 kJ energy) with the output of a high-density (>1023 m-3) hyper-velocity (>4 km/s) plasma jet. The ~ 75 mg C60/C plasma jet has the potential to rapidly and deeply deliver enough mass to significantly increase electron density (to ne ~ 2 . 4 ×1021 m-3, i.e. ~ 60 times larger than typical DIII-D pre-disruption value, ne 0 ~ 4 ×1019 m-3), and to modify the 'critical electric field' and the runaway electrons (REs) collisional drag during different phases of REs dynamics. The C60 NPPJ, as a novel injection technique, allows RE beam-plasma interaction diagnostic by quantitative spectroscopy of C ions visible/UV line intensity. The system is scalable to ~ 1 - 2 g C60/C plasma jet output and technology is adaptable to ITER acceptable materials (BN and Be) for disruption mitigation. Work supported by US DOE DE-FG02-08ER85196 grant.

  7. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures.

    PubMed

    Tulve, Nicolle S; Stefaniak, Aleksandr B; Vance, Marina E; Rogers, Kim; Mwilu, Samuel; LeBouf, Ryan F; Schwegler-Berry, Diane; Willis, Robert; Thomas, Treye A; Marr, Linsey C

    2015-05-01

    Due to their antifungal, antibacterial, antiviral, and antimicrobial properties, silver nanoparticles (AgNPs) are used in consumer products intended for use by children or in the home. Children may be especially affected by the normal use of consumer products because of their physiological functions, developmental stage, and activities and behaviors. Despite much research to date, children's potential exposures to AgNPs are not well characterized. Our objectives were to characterize selected consumer products containing AgNPs and to use the data to estimate a child's potential non-dietary ingestion exposure. We identified and cataloged 165 consumer products claiming to contain AgNPs that may be used by or near children or found in the home. Nineteen products (textile, liquid, plastic) were selected for further analysis. We developed a tiered analytical approach to determine silver content, form (particulate or ionic), size, morphology, agglomeration state, and composition. Silver was detected in all products except one sippy cup body. Among products in a given category, silver mass contributions were highly variable and not always uniformly distributed within products, highlighting the need to sample multiple areas of a product. Electron microscopy confirmed the presence of AgNPs. Using this data, a child's potential non-dietary ingestion exposure to AgNPs when drinking milk formula from a sippy cup is 1.53 μg Ag/kg. Additional research is needed to understand the number and types of consumer products containing silver and the concentrations of silver in these products in order to more accurately predict children's potential aggregate and cumulative exposures to AgNPs.

  8. Acute systemic exposure to silver-based nanoparticles induces hepatotoxicity and NLRP3-dependent inflammation.

    PubMed

    Ramadi, Khalil B; Mohamed, Yassir A; Al-Sbiei, Ashraf; Almarzooqi, Saeeda; Bashir, Ghada; Al Dhanhani, Aisha; Sarawathiamma, Dhanya; Qadri, Shahnaz; Yasin, Javed; Nemmar, Abderrahim; Fernandez-Cabezudo, Maria J; Haik, Yousef; Al-Ramadi, Basel K

    2016-10-01

    Nanoparticles (NPs) are increasingly being commercialized for use in biomedicine. NP toxicity following acute or chronic exposure has been described, but mechanistic insight into this process remains incomplete. Recent evidence from in vitro studies suggested a role for NLRP3 in NP cytotoxicity. In this study, we investigated the effect of systemic administration of composite inorganic NP, consisting of Ag:Cu:B (dose range 1-20 mg/kg), on the early acute (4-24 h post-exposure) and late phase response (96 h post-exposure) in normal and NLRP3-deficient mice. Our findings indicate that systemic exposure (≥2 mg/kg) was associated with acute liver injury due to preferential accumulation of NP in this organ and resulted in elevated AST, ALT and LDH levels. Moreover, within 24 h of NP administration, there was a dose-dependent increase in intraperitoneal neutrophil recruitment and upregulation in gene expression of several proinflammatory mediators, including TNF-α, IL-1β and S100A9. Histological analysis of liver tissue revealed evidence of dose-dependent hepatocyte necrosis, increase in sinusoidal Kupffer cells, lobular granulomas and foci of abscess formation which were most pronounced at 24 h following NP administration. NP deposition in the liver led to a significant upregulation in gene expression of S100A9, an endogenous danger signal recognition molecule of phagocytes, IL-1β and IL-6. The extent of proinflammatory cytokine activation and hepatotoxicity was significantly attenuated in mice deficient in the NLRP3 inflammasome, demonstrating the critical role of this innate immune system recognition receptor in the response to NP. PMID:26956548

  9. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures.

    PubMed

    Tulve, Nicolle S; Stefaniak, Aleksandr B; Vance, Marina E; Rogers, Kim; Mwilu, Samuel; LeBouf, Ryan F; Schwegler-Berry, Diane; Willis, Robert; Thomas, Treye A; Marr, Linsey C

    2015-05-01

    Due to their antifungal, antibacterial, antiviral, and antimicrobial properties, silver nanoparticles (AgNPs) are used in consumer products intended for use by children or in the home. Children may be especially affected by the normal use of consumer products because of their physiological functions, developmental stage, and activities and behaviors. Despite much research to date, children's potential exposures to AgNPs are not well characterized. Our objectives were to characterize selected consumer products containing AgNPs and to use the data to estimate a child's potential non-dietary ingestion exposure. We identified and cataloged 165 consumer products claiming to contain AgNPs that may be used by or near children or found in the home. Nineteen products (textile, liquid, plastic) were selected for further analysis. We developed a tiered analytical approach to determine silver content, form (particulate or ionic), size, morphology, agglomeration state, and composition. Silver was detected in all products except one sippy cup body. Among products in a given category, silver mass contributions were highly variable and not always uniformly distributed within products, highlighting the need to sample multiple areas of a product. Electron microscopy confirmed the presence of AgNPs. Using this data, a child's potential non-dietary ingestion exposure to AgNPs when drinking milk formula from a sippy cup is 1.53 μg Ag/kg. Additional research is needed to understand the number and types of consumer products containing silver and the concentrations of silver in these products in order to more accurately predict children's potential aggregate and cumulative exposures to AgNPs. PMID:25747543

  10. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic-pituitary-testicular axis.

    PubMed

    Wisniewski, Patricia; Romano, Renata M; Kizys, Marina M L; Oliveira, Kelen C; Kasamatsu, Teresa; Giannocco, Gisele; Chiamolera, Maria I; Dias-da-Silva, Magnus R; Romano, Marco A

    2015-03-01

    Reproductive physiology involves complex biological processes that can be disrupted by exposure to environmental contaminants. The effects of bisphenol A (BPA) on spermatogenesis and sperm quality is still unclear. The objective of this study was to investigate the reproductive toxicity of BPA at dosages considered to be safe (5 or 25mg BPA/kg/day). We assessed multiple sperm parameters, the relative expression of genes involved in the central regulation of the hypothalamic-pituitary-testicular axis, and the serum concentrations of testosterone, estradiol, LH and FSH. BPA exposure reduced sperm production, reserves and transit time. Significant damage to the acrosomes and the plasma membrane with reduced mitochondrial activity and increased levels of defective spermatozoa may have compromised sperm function and caused faster movement through the epididymis. BPA exposure reduced the serum concentrations of testosterone, LH and FSH and increased the concentration of estradiol. The relative gene expression revealed an increase in gonadotropin releasing hormone receptor (Gnrhr), luteinizing hormone beta (Lhb), follicle stimulating hormone beta (Fshb), estrogen receptor beta (Esr2) and androgen receptor (Ar) transcripts in the pituitary and a reduction in estrogen receptor alpha (Esr1) transcripts in the hypothalamus. In this study, we demonstrated for the first time that adult male exposure to BPA caused a reduction in sperm production and specific functional parameters. The corresponding pattern of gene expression is indicative of an attempt by the pituitary to reestablish normal levels of LH, FSH and testosterone serum concentrations. In conclusion, these data suggest that at dosages previously considered nontoxic to reproductive function, BPA compromises the spermatozoa and disrupts the hypothalamic-pituitary-gonadal axis, causing a state of hypogonadotropic hypogonadism.

  11. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells.

    PubMed

    Yu, Kyeong-Nam; Chang, Seung-Hee; Park, Soo Jin; Lim, Joohyun; Lee, Jinkyu; Yoon, Tae-Jong; Kim, Jun-Sung; Cho, Myung-Haing

    2015-01-01

    Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application. PMID:26121477

  12. Neonatal Persistent Exposure to 6-Propyl-2-thiouracil, a Thyroid-Disrupting Chemical, Differentially Modulates Expression of Hepatic Catalase and C/EBP-β in Adult Rats.

    PubMed

    Bunker, Suresh Kumar; Dandapat, Jagneshwar; Sahoo, Sunil Kumar; Roy, Anita; Chainy, Gagan B N

    2016-02-01

    Persistent exposure of rats to 6-propyl-2-thiouracil (PTU) from birth resulted in decreases in plasma thyroid hormone (TH) levels and hepatic expression of catalase and CCAAT enhancer binding protein β (C/EBP-β). Catalase promoter region (-185 to +52) that contains binding sites for C/EBP-β showed an augmentation in the methylation level along with a change in methylation pattern of CpG islands in response to PTU treatment. PTU withdrawal on 30 days of birth restored TH levels and C/EBP-β to control rats in adulthood. Although catalase expression was restored to some extent in adult rats in response to PTU withdrawal, a permanent change in its promoter CpG methylation pattern was recorded. The results suggest that downregulation of adult hepatic catalase gene in response to persistent neonatal PTU exposure may not solely be attributed to thyroid-disrupting properties of PTU. It is possible that besides thyroid-disrupting behavior, PTU may impair expression of hepatic catalase by altering methylation pattern of its promoter.

  13. Neonatal Persistent Exposure to 6-Propyl-2-thiouracil, a Thyroid-Disrupting Chemical, Differentially Modulates Expression of Hepatic Catalase and C/EBP-β in Adult Rats.

    PubMed

    Bunker, Suresh Kumar; Dandapat, Jagneshwar; Sahoo, Sunil Kumar; Roy, Anita; Chainy, Gagan B N

    2016-02-01

    Persistent exposure of rats to 6-propyl-2-thiouracil (PTU) from birth resulted in decreases in plasma thyroid hormone (TH) levels and hepatic expression of catalase and CCAAT enhancer binding protein β (C/EBP-β). Catalase promoter region (-185 to +52) that contains binding sites for C/EBP-β showed an augmentation in the methylation level along with a change in methylation pattern of CpG islands in response to PTU treatment. PTU withdrawal on 30 days of birth restored TH levels and C/EBP-β to control rats in adulthood. Although catalase expression was restored to some extent in adult rats in response to PTU withdrawal, a permanent change in its promoter CpG methylation pattern was recorded. The results suggest that downregulation of adult hepatic catalase gene in response to persistent neonatal PTU exposure may not solely be attributed to thyroid-disrupting properties of PTU. It is possible that besides thyroid-disrupting behavior, PTU may impair expression of hepatic catalase by altering methylation pattern of its promoter. PMID:26459835

  14. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    PubMed

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs. PMID:26399585

  15. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    PubMed

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs.

  16. Cytotoxic effects of gold nanoparticles exposure employing in vitro animal cell culture system as part of nanobiosafety

    NASA Astrophysics Data System (ADS)

    Ambwani, Sonu; Kakade Datta, P.; Kandpal, Deepika; Arora, Sandeep; Ambwani, Tanuj Kumar

    2016-04-01

    Metal Nanoparticles are exploited in different fields that include biomedical sector where they are utilized in drug and gene delivery, biosensors, cancer treatment and diagnostic tools. Despite of their benefits, there has been serious concerns about possible side effects of several nanoparticles. Gold nanoparticles (AuNPs) are exploited for bio-imaging, biosensing, drug delivery, transfection and diagnosis. These nanoparticles may get released into the environment in high amounts at all stages of production, recycling and disposal. Since the manufacture and use of nanoparticles are increasing, humans/ animals are more likely to be exposed occupationally or via consumer products and the environment. The emergence of the new field of nanotoxicity has spurred great interest in a wide variety of materials and their possible effects on living systems. Animal cell culture system is considered as a sensitive indicator against exposure of such materials. Keeping in view the above scenario, present study was carried out to evaluate effect of AuNPs exposure in primary and cell line culture system employing chicken embryo fibroblast (CEF) culture and HeLa cell line culture through MTT assay. Minimum cytotoxic dose was found to be 60 µg/ml and 50 µg/ml in CEF and HeLa cells, respectively. Thus, it could be inferred that even a very low concentration of AuNPs could lead to cytotoxic effects in cell culture based studies.

  17. Effect of chronic exposure to acetaminophen and lincomycin on Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa, and potential mechanisms of endocrine disruption.

    PubMed

    Kim, PanGyi; Park, Yena; Ji, Kyunghee; Seo, Jihyun; Lee, Sangwoo; Choi, Kyunghee; Kho, Younglim; Park, Jeongim; Choi, Kyungho

    2012-09-01

    Chronic toxicity of acetaminophen and lincomycin were evaluated using freshwater organisms including two crustaceans (Daphnia magna and Moina macrocopa) and a fish (Oryzias latipes). H295R, a human adrenal cell was also used to understand the effects on steroidogenesis. In 21 d D. magna exposure, survival NOEC was found at 5.72 mg L(-1) and no reproduction related effects were noted at this level of exposure to acetaminophen, while 21 d survival or growth effects were not observed even at the highest exposure levels (153 mg L(-1)) for lincomycin. In the chronic fish toxicity test, significant reduction in juvenile survival was observed at 30 d post-hatch (dph) at 95 mg L(-1) of acetaminophen, and 0.42 mg L(-1) of lincomycin. After the exposure to both pharmaceuticals, vitellogenin levels tended to increase in male fish at 90 dph. In the eggs which were prenatally exposed to 9.5 mg L(-1) of acetaminophen, reduced hatchability was observed. The results of H295R cell assay showed that both pharmaceuticals could alter steroidogenic pathway and increase estrogenicity. Endocrine disruption potentials and their ecological implication may deserve further studies. Our observations suggest however that ecological risks of both pharmaceuticals are negligible at the concentrations currently found in the environment. PMID:22560975

  18. Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure

    PubMed Central

    Sooklert, Kanidta; Chattong, Supreecha; Manotham, Krissanapong; Boonwong, Chawikan; Klaharn, I-yanut; Jindatip, Depicha; Sereemaspun, Amornpun

    2016-01-01

    The toxic effects from exposure to silver nanoparticles (AgNPs), which are broadly present in many consumer products, have long raised concerns. Many studies have focused on the mechanisms of nanosilver, which cause toxicity in human cells, but little is known about prevention of this type of injury. This study investigated the in vitro effects of glutaraldehyde erythropoietin (GEPO), a cytoprotective compound derived from erythropoietin, in terms of cell protection against AgNP-induced injury. HEK293 cells were pretreated with or without GEPO before administration of AgNPs. The protective effects of GEPO in this cell line were assessed by the percentage of viable cells, alterations of cell morphology, and the proliferative capability of the cells. In addition, we assessed the role of GEPO in lowering cellular oxidative stress and regulating expression of the anti-apoptotic protein Bcl2. The results showed rescue effects on the percentage of viable and proliferative cells among GEPO pretreated cells. Pretreatment with GEPO maintained the normal cell shape and ultrastructural morphology. Moreover, GEPO reduced the generation of reactive oxygen species in cells and activated expression of Bcl2, which are the major mechanisms in protection against cellular toxicity induced by AgNPs. In conclusion, our study showed that the cytotoxic effects from exposure to AgNPs can be prevented by GEPO. PMID:26929619

  19. Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures

    SciTech Connect

    Paik, S Y; Zalk, D M; Swuste, P

    2008-03-03

    Control Banding (CB) strategies offer simplified solutions for controlling worker exposures to constituents that are found in the workplace in the absence of firm toxicological and exposure data. These strategies may be particularly useful in nanotechnology applications, considering the overwhelming level of uncertainty over what nanomaterials and nanotechnologies present as potential work-related health risks, what about these materials might lead to adverse toxicological activity, how risk related to these might be assessed, and how to manage these issues in the absence of this information. This study introduces a pilot CB tool or 'CB Nanotool' that was developed specifically for characterizing the health aspects of working with engineered nanoparticles and determining the level of risk and associated controls for five ongoing nanotechnology-related operations being conducted at two Department of Energy (DOE) research laboratories. Based on the application of the CB Nanotool, four of the five operations evaluated in this study were found to have implemented controls consistent with what was recommended by the CB Nanotool, with one operation even exceeding the required controls for that activity. The one remaining operation was determined to require an upgrade in controls. By developing this dynamic CB Nanotool within the realm of the scientific information available, this application of CB appears to be a useful approach for assessing the risk of nanomaterial operations, providing recommendations for appropriate engineering controls, and facilitating the allocation of resources to the activities that most need them.

  20. Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure.

    PubMed

    Sooklert, Kanidta; Chattong, Supreecha; Manotham, Krissanapong; Boonwong, Chawikan; Klaharn, I-yanut; Jindatip, Depicha; Sereemaspun, Amornpun

    2016-01-01

    The toxic effects from exposure to silver nanoparticles (AgNPs), which are broadly present in many consumer products, have long raised concerns. Many studies have focused on the mechanisms of nanosilver, which cause toxicity in human cells, but little is known about prevention of this type of injury. This study investigated the in vitro effects of glutaraldehyde erythropoietin (GEPO), a cytoprotective compound derived from erythropoietin, in terms of cell protection against AgNP-induced injury. HEK293 cells were pretreated with or without GEPO before administration of AgNPs. The protective effects of GEPO in this cell line were assessed by the percentage of viable cells, alterations of cell morphology, and the proliferative capability of the cells. In addition, we assessed the role of GEPO in lowering cellular oxidative stress and regulating expression of the anti-apoptotic protein Bcl2. The results showed rescue effects on the percentage of viable and proliferative cells among GEPO pretreated cells. Pretreatment with GEPO maintained the normal cell shape and ultrastructural morphology. Moreover, GEPO reduced the generation of reactive oxygen species in cells and activated expression of Bcl2, which are the major mechanisms in protection against cellular toxicity induced by AgNPs. In conclusion, our study showed that the cytotoxic effects from exposure to AgNPs can be prevented by GEPO. PMID:26929619

  1. Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action

    EPA Science Inventory

    Knowledge of possible toxic mechanisms/modes of action (MOA) of chemicals can provide valuable insights as to appropriate methods for assessing exposure and effects, such as reducing uncertainties related to extrapolation across species, endpoints and chemical structure. However,...

  2. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse

    SciTech Connect

    Wang, Wei Hafner, Katlyn S. Flaws, Jodi A.

    2014-04-15

    Bisphenol A (BPA) is a known reproductive toxicant in rodents. However, the effects of in utero BPA exposure on early ovarian development and the consequences of such exposure on female reproduction in later reproductive life are unclear. Thus, we determined the effects of in utero BPA exposure during a critical developmental window on germ cell nest breakdown, a process required for establishment of the finite primordial follicle pool, and on female reproduction. Pregnant FVB mice (F0) were orally dosed daily with tocopherol-striped corn oil (vehicle), diethylstilbestrol (DES; 0.05 μg/kg, positive control), or BPA (0.5, 20, and 50 μg/kg) from gestational day 11 until birth. Ovarian morphology and gene expression profiles then were examined in F1 female offspring on postnatal day (PND) 4 and estrous cyclicity was examined daily after weaning for 30 days. F1 females were also subjected to breeding studies with untreated males at three to nine months. The results indicate that BPA inhibits germ cell nest breakdown via altering expression of selected apoptotic factors. BPA also significantly advances the age of first estrus, shortens the time that the females remain in estrus, and increases the time that the females remain in metestrus and diestrus compared to controls. Further, F1 females exposed to low doses of BPA exhibit various fertility problems and have a significantly higher percentage of dead pups compared to controls. These results indicate that in utero exposure to low doses of BPA during a critical ovarian developmental window interferes with early ovarian development and reduces fertility with age. - Highlights: • In utero BPA exposure inhibits germ cell nest breakdown in female mouse offspring. • In utero BPA exposure alters expression of apoptosis regulators in the ovaries of mouse offspring. • In utero BPA exposure advances first estrus age and alters cyclicity in mouse offspring. • In utero BPA exposure causes various fertility problems in

  3. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.

    PubMed

    Tsai, Su-Jung Candace; Huang, Rong Fung; Ellenbecker, Michael J

    2010-01-01

    Tsai et al. (Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009; 11: 147-61) found that the handling of dry nanoalumina and nanosilver inside laboratory fume hoods can cause a significant release of airborne nanoparticles from the hood. Hood design affects the magnitude of release. With traditionally designed fume hoods, the airflow moves horizontally toward the hood cupboard; the turbulent airflow formed in the worker wake region interacts with the vortex in the constant-flow fume hood and this can cause nanoparticles to be carried out with the circulating airflow. Airborne particle concentrations were measured for three hood designs (constant-flow, constant-velocity, and air-curtain hoods) using manual handling of nanoalumina particles. The hood operator's airborne nanoparticle breathing zone exposure was measured over the size range from 5 nm to 20 mum. Experiments showed that the exposure magnitude for a constant-flow hood had high variability. The results for the constant-velocity hood varied by operating conditions, but were usually very low. The performance of the air-curtain hood, a new design with significantly different airflow pattern from traditional hoods, was consistent under all operating conditions and release was barely detected. Fog tests showed more intense turbulent airflow in traditional hoods and that the downward airflow from the double-layered sash to the suction slot of the air-curtain hood did not cause turbulence seen in other hoods. PMID:19933309

  4. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures.

    PubMed

    Luzio, Ana; Matos, Manuela; Santos, Dércia; Fontaínhas-Fernandes, António A; Monteiro, Sandra M; Coimbra, Ana M

    2016-08-01

    Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE2, 4ng/L) and fadrozole (Fad, 50μg/L) from 2h to 35days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and -6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the "juvenile ovary" development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved in zebrafish spermatogenesis. Both EDCs, EE2 and Fad, increased the apoptosis stimulus in zebrafish gonad. It was noticed that the few females that were resistant to Fad-induced sex reversal had increased anti-apoptotic factor levels, while males exposed to EE2 showed increased pro-apoptotic genes/proteins and were more advanced in gonad differentiation. Overall, our findings show that apoptosis pathways are involved in zebrafish gonad differentiation and that EDCs can disrupt this process. PMID:27337697

  5. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures.

    PubMed

    Luzio, Ana; Matos, Manuela; Santos, Dércia; Fontaínhas-Fernandes, António A; Monteiro, Sandra M; Coimbra, Ana M

    2016-08-01

    Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE2, 4ng/L) and fadrozole (Fad, 50μg/L) from 2h to 35days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and -6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the "juvenile ovary" development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved in zebrafish spermatogenesis. Both EDCs, EE2 and Fad, increased the apoptosis stimulus in zebrafish gonad. It was noticed that the few females that were resistant to Fad-induced sex reversal had increased anti-apoptotic factor levels, while males exposed to EE2 showed increased pro-apoptotic genes/proteins and were more advanced in gonad differentiation. Overall, our findings show that apoptosis pathways are involved in zebrafish gonad differentiation and that EDCs can disrupt this process.

  6. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol.

    PubMed

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne; Rehberger, Kristina; Volz, Sina; Schiller, Viktoria; Fenske, Martina; Holbech, Henrik; Segner, Helmut; Braunbeck, Thomas

    2014-08-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1-10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish. PMID:24832493

  7. In-vitro Cell Exposure Studies for the Assessment of Nanoparticle Toxicity in the Lung - A Dialogue between Aerosol Science and Biology

    SciTech Connect

    Hanns-Rudolf, Paur; Cassee, Flemming R.; Teeguarden, Justin G.; Fissan, Heinz; Diabate, Silvia; Aufderheide, M.; Kreyling, Wolfgang G.; Hanninen, Otto; Kasper, G.; Riediker, Michael; Rothen-Rutishauser, Barbara; Schmid, Otmar

    2011-10-01

    The rapid introduction of engineered nanostructured materials into numerous industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of consumer products. The dynamic development of new nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety. In this consensus document from a workshop on in-vitro cell systems for nanotoxicity testing an overview is given of the main issues concerning inhalation exposure to nanoparticles, lung physiology, nanoparticle-related biological mechanisms, in-vitro cell exposure systems for nanoparticles and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanotoxicity. For the investigation of pulmonary nanotoxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.

  8. Assessment of nanoparticles and metal exposure of airport workers using exhaled breath condensate.

    PubMed

    Marie-Desvergne, Caroline; Dubosson, Muriel; Touri, Léa; Zimmermann, Eric; Gaude-Môme, Marcelline; Leclerc, Lara; Durand, Catherine; Klerlein, Michel; Molinari, Nicolas; Vachier, Isabelle; Chanez, Pascal; Mossuz, Véronique Chamel

    2016-01-01

    Aircraft engine exhaust increases the number concentration of nanoparticles (NP) in the surrounding environment. Health concerns related to NP raise the question of the exposure and health monitoring of airport workers. No biological monitoring study on this profession has been reported to date. The aim was to evaluate the NP and metal exposure of airport workers using exhaled breath condensate (EBC) as a non-invasive biological matrix representative of the respiratory tract. EBC was collected from 458 French airport workers working either on the apron or in the offices. NP exposure was characterized using particle number concentration (PNC) and size distribution. EBC particles were analyzed using dynamic light scattering (DLS) and scanning electron microscopy coupled to x-ray spectroscopy (SEM-EDS). Multi-elemental analysis was performed for aluminum (Al), cadmium (Cd) and chromium (Cr) EBC contents. Apron workers were exposed to higher PNC than administrative workers (p  <  0.001). Workers were exposed to very low particle sizes, the apron group being exposed to even smaller NP than the administrative group (p  <  0.001). The particulate content of EBC was brought out by DLS and confirmed with SEM-EDS, although no difference was found between the two study groups. Cd concentrations were higher in the apron workers (p  <  0.001), but still remained very low and close to the detection limit. Our study reported the particulate and metal content of airport workers airways. EBC is a potential useful tool for the non-invasive monitoring of workers exposed to NP and metals. PMID:27409350

  9. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.

    PubMed

    Miller, Arthur; Drake, Pamela L; Hintz, Patrick; Habjan, Matt

    2010-07-01

    An air quality survey was conducted at a precious metals refinery in order to evaluate worker exposures to airborne metals and to provide detailed characterization of the aerosols. Two areas within the refinery were characterized: a furnace room and an electro-refining area. In line with standard survey practices, both personal and area air filter samples were collected on 37-mm filters and analyzed for metals by inductively coupled plasma-atomic emission spectroscopy. In addition to the standard sampling, measurements were conducted using other tools, designed to provide enhanced characterization of the workplace aerosols. The number concentration and number-weighted particle size distribution of airborne particles were measured with a fast mobility particle sizer (FMPS). Custom-designed software was used to correlate particle concentration data with spatial location data to generate contour maps of particle number concentrations in the work areas. Short-term samples were collected in areas of localized high concentrations and analyzed using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to determine particle morphology and elemental chemistry. Analysis of filter samples indicated that all of the workers were exposed to levels of silver above the Occupational Safety and Health Administration permissible exposure limit of 0.01 mg m(-3) even though the localized ventilation was functioning. Measurements with the FMPS indicated that particle number concentrations near the furnace increased up to 1000-fold above the baseline during the pouring of molten metal. Spatial mapping revealed localized elevated particle concentrations near the furnaces and plumes of particles rising into the stairwells and traveling to the upper work areas. Results of TEM/EDS analyses confirmed the high number of nanoparticles measured by the FMPS and indicated the aerosols were rich in metals including silver, lead, antimony, selenium, and zinc. Results of

  10. Solid Lipid Nanoparticles Loaded with Edaravone for Inner Ear Protection After Noise Exposure

    PubMed Central

    Gao, Gang; Liu, Ya; Zhou, Chang-Hua; Jiang, Ping; Sun, Jian-Jun

    2015-01-01

    Background: Antioxidants and the duration of treatment after noise exposure on hearing recovery are important. We investigated the protective effects of an antioxidant substance, edaravone, and its slow-release dosage form, edaravone solid lipid nanoparticles (SLNs), in steady noise-exposed guinea pigs. Methods: SLNs loaded with edaravone were produced by an ultrasound technique. Edaravone solution or edaravone SLNs were administered by intratympanic or intravenous injection after the 1st day of noise exposure. Guinea pigs were exposed to 110 dB sound pressure level (SPL) noise, centered at 0.25–4.0 kHz, for 4 days at 2 h/d. After noise exposure, the guinea pigs underwent auditory brainstem response (ABR) threshold measurements, reactive oxygen species (ROS) were detected in their cochleas with electron spin resonance (ESR), and outer hair cells (OHCs) were counted with silvernitrate (AgNO3) staining at 1, 4, and 6 days. Results: The ultrasound technique was able to prepare adequate edaravone SLNs with a mean particle size of 93.6 nm and entrapment efficiency of 76.7%. Acoustic stress-induced ROS formation and edaravone exerted a protective effect on the cochlea. Comparisons of hearing thresholds and ROS changes in different animal groups showed that the threshold shift and ROS generation were significantly lower in treated animals than in those without treatment, especially in the edaravone SLN intratympanic injection group. Conclusions: Edaravone SLNs show noticeable slow-release effects and have certain protective effects against noise-induced hearing loss (NIHL). PMID:25591563

  11. Prior Exposure to Interpersonal Violence and Long-term Treatment Response for Boys with a Disruptive Behavior Disorder

    PubMed Central

    Shenk, Chad E.; Dorn, Lorah D.; Kolko, David J.; Rausch, Joseph R.; Insana, Salvatore P.

    2016-01-01

    Interpersonal violence (IPV) is common in children with a disruptive behavior disorder (DBD) and increases the risk for greater DBD symptom severity, callous-unemotional (CU) traits, and neuroendocrine disruption. Thus, IPV may make it difficult to change symptom trajectories for families receiving DBD interventions given these relationships. The current study examined whether IPV prior to receiving treatment for a DBD predicted trajectories of a variety of associated outcomes, specifically DBD symptoms, CU traits, and cortisol concentrations. Boys with a DBD diagnosis (N = 66; age range = 6-11 years; 54.5% of whom experienced IPV prior to treatment) of either oppositional defiant disorder or conduct disorder participated in a randomized clinical trial and were assessed 3 years following treatment. Multilevel modeling demonstrated that prior IPV predicted smaller rates of change in DBD symptoms, CU traits, and cortisol trajectories, indicating less benefit from intervention. The effect size magnitudes of IPV were large for each outcome (d = 0.88 – 1.07). These results suggest that IPV is a predictor of the long-term treatment response for boys with a DBD. Including trauma-focused components into existing DBD interventions may be worth testing to improve treatment effectiveness for boys with a prior history of IPV. PMID:25270151

  12. Disruption of Aedes aegypti Olfactory System Development through Chitosan/siRNA Nanoparticle Targeting of semaphorin-1a

    PubMed Central

    Mysore, Keshava; Flannery, Ellen M.; Tomchaney, Michael; Severson, David W.; Duman-Scheel, Molly

    2013-01-01

    Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a) during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention. PMID:23696908

  13. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.

    PubMed

    Mysore, Keshava; Flannery, Ellen M; Tomchaney, Michael; Severson, David W; Duman-Scheel, Molly

    2013-01-01

    Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a) during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention.

  14. Toxicity assessment of TiO₂ nanoparticles in zebrafish embryos under different exposure conditions.

    PubMed

    Clemente, Z; Castro, V L S S; Moura, M A M; Jonsson, C M; Fraceto, L F

    2014-02-01

    The popularity of TiO2 nanoparticles (nano-TiO2) lies in their wide range of nanotechnological applications, together with low toxicity. Meanwhile, recent studies have shown that the photocatalytic properties of this material can result in alterations in their behavior in the environment, causing effects that have not yet been fully elucidated. The objective of this study was to evaluate the toxicity of two formulations of nano-TiO2 under different illumination conditions, using an experimental model coherent with the principle of the three Rs of alternative animal experimentation (reduction, refinement, and replacement). Embryos of the fish Danio rerio were exposed for 96h to different concentrations of nano-TiO2 in the form of anatase (TA) or an anatase/rutile mixture (TM), under either visible light or a combination of visible and ultraviolet light (UV). The acute toxicity and sublethal parameters evaluated included survival rates, malformation, hatching, equilibrium, and overall length of the larvae, together with biochemical biomarkers (specific activities of catalase (CAT), glutathione S-transferase (GST), and acid phosphatase (AP)). Both TA and TM caused accelerated hatching of the larvae. Under UV irradiation, there was greater mortality of the larvae of the groups exposed to TM, compared to those exposed to TA. Exposure to TM under UV irradiation altered the equilibrium of the larvae. Alterations in the activities of CAT and GST were indicative of oxidative stress, although no clear dose-response relationship was observed. The effects of nano-TiO2 appeared to depend on both the type of formulation and the illumination condition. The findings contribute to elucidation of the factors involved in the toxicity of these nanoparticles, as well as to the establishment of protocols for risk assessments of nanotechnology. PMID:24418748

  15. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol

    SciTech Connect

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne; Rehberger, Kristina; Volz, Sina; Schiller, Viktoria; Fenske, Martina; Holbech, Henrik; Segner, Helmut; Braunbeck, Thomas

    2014-08-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1–10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish. - Highlights: • Zebrafish were exposed to 17α-ethinylestradiol during their sexual differentiation. • Reversibility of effects was investigated after depuration of 40 days. • Morphological and physiological parameters were compared. • Zebrafish were able to recover at all different levels from mRNA to population.

  16. Insulin signaling disruption in male mice due to perinatal bisphenol A exposure: Role of insulin signaling in the brain.

    PubMed

    Fang, Fangfang; Gao, Yue; Wang, Tingwei; Chen, Donglong; Liu, Jingli; Qian, Wenyi; Cheng, Jie; Gao, Rong; Wang, Jun; Xiao, Hang

    2016-03-14

    Bisphenol A (BPA), an environmental estrogenic endocrine disruptor, is widely used for producing polycarbonate plastics and epoxy resins. Available data have shown that perinatal exposure to BPA contributes to peripheral insulin resistance, while in the present study, we aimed to investigate the effects of perinatal BPA exposure on insulin signaling and glucose transport in the cortex of offspring mice. The pregnant mice were administrated either vehicle or BPA (100 μg/kg/day) at three perinatal stages. Stage I: from day 6 of gestation until parturition (P6-PND0 fetus exposure); Stage II: from lactation until delactation (PND0-PND21 newborn exposure) and Stage III: from day 6 of pregnancy until delactation (P6-PND21 fetus and newborn exposure). At 8 months of age for the offspring mice, the insulin signaling pathways and glucose transporters (GLUTs) were detected. Our data indicated that the insulin signaling including insulin, phosphorylated insulin receptor (IR), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular signal regulated protein kinase (p-ERK) were significantly decreased in the brain. In parallel, GLUTs (GLUT1/3/4) were obviously decreased as well in BPA-treated group in mice brain. Noteworthily, the phosphorylated tau (p-tau) and amyloid precursor protein (APP) were markedly up-regulated in all BPA-treated groups. These results, taken together, suggest the adverse effects of BPA on insulin signaling and GLUTs, which might subsequently contribute to the increment of p-tau and APP in the brain of adult offspring. Therefore, perinatal BPA exposure might be a risk factor for the long-term neurodegenerative changes in offspring male mice. PMID:26779933

  17. Insulin signaling disruption in male mice due to perinatal bisphenol A exposure: Role of insulin signaling in the brain.

    PubMed

    Fang, Fangfang; Gao, Yue; Wang, Tingwei; Chen, Donglong; Liu, Jingli; Qian, Wenyi; Cheng, Jie; Gao, Rong; Wang, Jun; Xiao, Hang

    2016-03-14

    Bisphenol A (BPA), an environmental estrogenic endocrine disruptor, is widely used for producing polycarbonate plastics and epoxy resins. Available data have shown that perinatal exposure to BPA contributes to peripheral insulin resistance, while in the present study, we aimed to investigate the effects of perinatal BPA exposure on insulin signaling and glucose transport in the cortex of offspring mice. The pregnant mice were administrated either vehicle or BPA (100 μg/kg/day) at three perinatal stages. Stage I: from day 6 of gestation until parturition (P6-PND0 fetus exposure); Stage II: from lactation until delactation (PND0-PND21 newborn exposure) and Stage III: from day 6 of pregnancy until delactation (P6-PND21 fetus and newborn exposure). At 8 months of age for the offspring mice, the insulin signaling pathways and glucose transporters (GLUTs) were detected. Our data indicated that the insulin signaling including insulin, phosphorylated insulin receptor (IR), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular signal regulated protein kinase (p-ERK) were significantly decreased in the brain. In parallel, GLUTs (GLUT1/3/4) were obviously decreased as well in BPA-treated group in mice brain. Noteworthily, the phosphorylated tau (p-tau) and amyloid precursor protein (APP) were markedly up-regulated in all BPA-treated groups. These results, taken together, suggest the adverse effects of BPA on insulin signaling and GLUTs, which might subsequently contribute to the increment of p-tau and APP in the brain of adult offspring. Therefore, perinatal BPA exposure might be a risk factor for the long-term neurodegenerative changes in offspring male mice.

  18. Neonatal sensitization to ethanol-induced breathing disruptions as a function of late prenatal exposure to the drug in the rat: modulatory effects of ethanol's chemosensory cues.

    PubMed

    Cullere, Marcela; Macchione, Ana Fabiola; Haymal, Beatriz; Paradelo, Martin; Langer, Marcos Daniel; Spear, Norman E; Molina, Juan Carlos

    2015-02-01

    results indicate that even brief exposure to the drug during late gestation is sufficient to sensitize the organism to later disruptive effects of the drug upon breathing responsiveness. These deficits are potentiated through the re-exposure to the olfactory context perceived in utero which is known to be associated with ethanol's unconditioned effects. As a function of these observations it is possible to suggest a critical role of fetal sensory and learning capabilities in terms of modulating later ethanol-related breathing disruptions.

  19. The effect of perinatal exposure to ethinyl oestradiol or a mixture of endocrine disrupting pesticides on kisspeptin neurons in the rat hypothalamus.

    PubMed

    Overgaard, Agnete; Holst, Klaus; Mandrup, Karen R; Boberg, Julie; Christiansen, Sofie; Jacobsen, Pernille R; Hass, Ulla; Mikkelsen, Jens D

    2013-07-01

    Early life exposure to endocrine disruptors is considered to disturb normal development of hormone sensitive parameters and contribute to advanced puberty and reduced fecundity in humans. Kisspeptin is a positive regulator of the hypothalamic-pituitary-gonadal axis, and plays a key role in the initiation of puberty. In the adult, Kiss1 gene expression occurs in two hypothalamic nuclei, namely the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC), which are differentially regulated by peripheral sex steroid hormones. In this study we determined the effects on puberty onset and Kiss1 mRNA levels in each of the two nuclei after long-term perinatal exposure of rats to ethinyl oestradiol (EE2) or to five different pesticides, individually and in a mixture. Rat dams were per orally administered with three doses of EE2 (5, 15 or 50 μg/kg/day) or with the pesticides epoxiconazole, mancozeb, prochloraz, tebuconazole, and procymidone, alone or in a mixture of the five pesticides at three different doses. Kiss1 mRNA expression was determined in the AVPV and in the ARC of the adult male and female pups in the EE2 experiment, and in the adult female pups in the pesticide experiment. We find that perinatal EE2 exposure did not affect Kiss1 mRNA expression in this study designed to model human exposure to estrogenic compounds, and we find only minor effects on puberty onset. Further, the Kiss1 system does not exhibit persistent changes and puberty onset is not affected after perinatal exposure to a pesticide mixture in this experimental setting. However, we find that the pesticide mancozeb tends to increase Kiss1 expression in the ARC, presumably through neurotoxic mechanisms rather than via classical endocrine disruption, calling for increased awareness that Kiss1 expression can be affected by environmental pollutants through multiple mechanisms.

  20. The effect of perinatal exposure to ethinyl oestradiol or a mixture of endocrine disrupting pesticides on kisspeptin neurons in the rat hypothalamus.

    PubMed

    Overgaard, Agnete; Holst, Klaus; Mandrup, Karen R; Boberg, Julie; Christiansen, Sofie; Jacobsen, Pernille R; Hass, Ulla; Mikkelsen, Jens D

    2013-07-01

    Early life exposure to endocrine disruptors is considered to disturb normal development of hormone sensitive parameters and contribute to advanced puberty and reduced fecundity in humans. Kisspeptin is a positive regulator of the hypothalamic-pituitary-gonadal axis, and plays a key role in the initiation of puberty. In the adult, Kiss1 gene expression occurs in two hypothalamic nuclei, namely the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC), which are differentially regulated by peripheral sex steroid hormones. In this study we determined the effects on puberty onset and Kiss1 mRNA levels in each of the two nuclei after long-term perinatal exposure of rats to ethinyl oestradiol (EE2) or to five different pesticides, individually and in a mixture. Rat dams were per orally administered with three doses of EE2 (5, 15 or 50 μg/kg/day) or with the pesticides epoxiconazole, mancozeb, prochloraz, tebuconazole, and procymidone, alone or in a mixture of the five pesticides at three different doses. Kiss1 mRNA expression was determined in the AVPV and in the ARC of the adult male and female pups in the EE2 experiment, and in the adult female pups in the pesticide experiment. We find that perinatal EE2 exposure did not affect Kiss1 mRNA expression in this study designed to model human exposure to estrogenic compounds, and we find only minor effects on puberty onset. Further, the Kiss1 system does not exhibit persistent changes and puberty onset is not affected after perinatal exposure to a pesticide mixture in this experimental setting. However, we find that the pesticide mancozeb tends to increase Kiss1 expression in the ARC, presumably through neurotoxic mechanisms rather than via classical endocrine disruption, calling for increased awareness that Kiss1 expression can be affected by environmental pollutants through multiple mechanisms. PMID:23660487

  1. Persistence of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the androgen 17β-trenbolone.

    PubMed

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne; Nagel, Tina; Rehberger, Kristina; Volz, Sina; Oberrauch, Sophia; Schiller, Viktoria; Fenske, Martina; Holbech, Henrik; Segner, Helmut; Braunbeck, Thomas

    2014-11-01

    The aim of the present study was to investigate the effects of the androgenic endocrine disruptor 17β-trenbolone on the sexual development of zebrafish (Danio rerio) with special emphasis on the question of whether adverse outcomes of developmental exposure are reversible or persistent. An exposure scenario including a recovery phase was chosen to assess the potential reversibility of androgenic effects. Zebrafish were exposed to environmentally relevant concentrations of 17β-trenbolone (1 ng/L-30 ng/L) from fertilization until completion of gonad sexual differentiation (60 d posthatch). Thereafter, exposure was either followed by 40 d of recovery in clean water or continued until 100 d posthatch, the age when zebrafish start being able to reproduce. Fish exposed for 100 d to 10 ng/L or 30 ng/L 17β-trenbolone were masculinized at different biological effect levels, as evidenced from a concentration-dependent shift of the sex ratio toward males as well as a significantly increased maturity of testes. Gonad morphological masculinization occurred in parallel with decreased vitellogenin concentrations in both sexes. Changes of brain aromatase (cyp19b) mRNA expression showed no consistent trend with respect to either exposure duration or concentration. Gonad morphological masculinization as well as the decrease of vitellogenin persisted after depuration over 40 d in clean water. This lack of recovery suggests that androgenic effects on sexual development of zebrafish are irreversible. PMID:25070268

  2. Chronic dietary exposure to pyrolytic and petrogenic mixtures of PAHs causes physiological disruption in zebrafish--part I: Survival and growth.

    PubMed

    Vignet, Caroline; Le Menach, Karyn; Mazurais, David; Lucas, Julie; Perrichon, Prescilla; Le Bihanic, Florane; Devier, Marie-Hélène; Lyphout, Laura; Frère, Laura; Bégout, Marie-Laure; Zambonino-Infante, José-Luis; Budzinski, Hélène; Cousin, Xavier

    2014-12-01

    The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades leading to high concentrations in sediments of contaminated areas. To evaluate the consequences of long-term chronic exposure to PAHs, zebrafish were exposed, from their first meal at 5 days post fertilisation until they became reproducing adults, to diets spiked with three PAH fractions at three environmentally relevant concentrations with the medium concentration being in the range of 4.6-6.7 μg g(-1) for total quantified PAHs including the 16 US-EPA indicator PAHs and alkylated derivatives. The fractions used were representative of PAHs of pyrolytic (PY) origin or of two different oils of differing compositions, a heavy fuel (HO) and a light crude oil (LO). Fish growth was inhibited by all PAH fractions and the effects were sex specific: as determined with 9-month-old adults, exposure to the highest PY inhibited growth of females; exposure to the highest HO and LO inhibited growth of males; also, the highest HO dramatically reduced survival. Morphological analysis indicated a disruption of jaw growth in larvae and malformations in adults. Intestinal and pancreatic enzyme activities were abnormal in 2-month-old exposed fish. These effects may contribute to poor growth. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can promote lethal and sublethal effects which are likely to be detrimental for fish recruitment.

  3. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    PubMed

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony. PMID:26802564

  4. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    PubMed

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony.

  5. Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure.

    PubMed

    Burić, Petra; Jakšić, Željko; Štajner, Lara; Dutour Sikirić, Maja; Jurašin, Darija; Cascio, Claudia; Calzolai, Luigi; Lyons, Daniel Mark

    2015-10-01

    With the ever growing use of nanoparticles in a broad range of industrial and consumer applications there is increasing likelihood that such nanoparticles will enter the aquatic environment and be transported through freshwater systems, eventually reaching estuarine or marine waters. Due to silver's known antimicrobial properties and widespread use of silver nanoparticles (AgNP), their environmental fate and impact is therefore of particular concern. In this context we have investigated the species-specific effects of low concentrations of 60 nm AgNP on embryonal development in Mediterranean sea urchins Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis. The sensitivity of urchin embryos was tested by exposing embryos to nanoparticle concentrations in the 1-100 μg L(-1) range, with times of exposure varying from 30 min to 24 h (1 h-48 h for S. granularis) post-fertilisation which corresponded with fertilized egg, 4 cell, blastula and gastrula development phases. The most sensitive species to AgNP was A. lixula with significant modulation of embryonal development at the lowest AgNP concentrations of 1-10 μg L(-1) with high numbers of malformed embryos or arrested development. The greatest impact on development was noted for those embryos first exposed to nanoparticles at 6 and 24 h post fertilisation. For P. lividus, similar effects were noted at higher concentrations of 50 μg L(-1) and 100 μg L(-1) for all times of first exposure. The S. granularis embryos indicated a moderate AgNP impact, and significant developmental abnormalities were recorded in the concentration range of 10-50 μg L(-1). As later post-fertilisation exposure times to AgNP caused greater developmental changes in spite of a shorter total exposure time led us to postulate on additional mechanisms of AgNP toxicity. The results herein indicate that toxic effects of AgNP are species-specific. The moment at which embryos first encounter AgNP is also shown to be

  6. Developmental programming: Impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus

    SciTech Connect

    Mahoney, Megan M.; Padmanabhan, Vasantha

    2010-09-01

    Bisphenol-A (BPA) and methoxychlor (MXC), two endocrine-disrupting chemicals (EDCs) with estrogenic and antiandrogenic effects, disrupt the reproductive system. BPA has profound effects on luteinizing hormone (LH) surge amplitude, and MXC has profound effects on on LH surge timing in sheep. The neural mechanisms involved in the differential disruption of the LH surge by these two EDCs remain to be elucidated. We tested the hypothesis that the differential effects of BPA and MXC on LH surge system involved changes in hypothalamic gonadotropin-releasing hormone (GnRH) and estrogen receptors (ESR), ESR1 and ESR2, mRNA expression. Pregnant sheep were given daily injections of cottonseed oil (controls), MXC, or BPA (5 mg/kg/day) from day 30 to 90 of gestation (term 147 d). Offspring from these animals were euthanized as adults, during the late follicular phase following synchronization of estrus with prostaglandin F{sub 2{alpha}}, just before the expected onset of preovulatory LH surge and changes in mRNA expression of hypothalamic GnRH, ESR1, and ESR2 quantified following in situ hybridization. GnRH mRNA expression was significantly lower in both groups of EDC-treated females compared to controls. ESR1 expression was increased in prenatal BPA- but not MXC-treated females in medial preoptic area relative to controls. In contrast, ESR2 expression was reduced in the medial preoptic area of both EDC-treated groups. Differences in expression of ESR1/ESR2 receptors may contribute to the differential effects of BPA and MXC on the LH surge system. These findings provide support that prenatal exposure to EDCs alters the neural developmental trajectory leading to long-term reproductive consequences in the adult female.

  7. Endocrine disruption and oxidative stress in larvae of Chironomus dilutus following short-term exposure to fresh or aged oil sands process-affected water.

    PubMed

    Wiseman, S B; Anderson, J C; Liber, K; Giesy, J P

    2013-10-15

    Understanding the toxicity of oil sands process-affected water (OSPW) is a significant issue associated with the production of oil from the Alberta oil sands. OSPW is acutely and chronically toxic to organisms, including larvae of Chironomus dilutus. In this study, fresh OSPW ('WIP-OSPW') was collected from the West In-Pit settling pond and aged OSPW ('FE5-OSPW') was collected from the FE5 experimental reclamation pond, both of which are located on the Syncrude Canada Ltd. lease site near Fort McMurray, Alberta, Canada. Larvae of C. dilutus were exposed to a freshwater control, WIP-OSPW, or FE5-OSPW for 4 or 7 days and survival, growth, and markers of oxidative stress and endocrine disruption were assessed. Survival was not significantly different among treatment groups. Compared to masses of larvae exposed to freshwater, masses of larvae exposed to WIP-OSPW were 49% lesser on day 4 and 62% lesser on day 7. However, organisms exposed to FE5-OSPW did not have significantly lesser masses than controls. Abundances of transcripts of glutathione-s-transferase (gst), catalase (cat), and glutathione peroxidase (gpx), which are important for the response to oxidative stress, were significantly altered in larvae exposed to WIP-OSPW, but not FE5-OSPW, relative to controls. Peroxidation of lipids was greater in larvae exposed to WIP-OSPW, but not FE5-OSPW. Exposure to fresh OSPW might have caused endocrine disruption because abundances of transcripts of the steroid hormone receptors, ultraspiricle protein (usp), ecysteroid receptor (esr), and estrogen related receptor (err) were greater in larvae exposed to WIP-OSPW for 7 days, but not FE5-OSPW. These results suggest that lesser growth of larvae of C. dilutus exposed to fresh OSPW might be due to oxidative stress and disruption of endocrine processes, and that aging of OSPW attenuates these adverse effects. PMID:24096237

  8. Exposure to a Complex Cocktail of Environmental Endocrine-Disrupting Compounds Disturbs the Kisspeptin/GPR54 System in Ovine Hypothalamus and Pituitary Gland

    PubMed Central

    Bellingham, Michelle; Fowler, Paul A.; Amezaga, Maria R.; Rhind, Stewart M.; Cotinot, Corinne; Mandon-Pepin, Beatrice; Sharpe, Richard M.; Evans, Neil P.

    2009-01-01

    Background Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to “real-life,” environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal. Objectives We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein–coupled receptor 54) system. Methods KiSS-1, GPR54, and ERα (estrogen receptor α) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHβ (luteinizing hormone β) and ERα in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry. Results Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHβ and ERα in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary. Conclusions This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction. PMID:20019906

  9. Lead exposure results in hearing loss and disruption of the cochlear blood-labyrinth barrier and the protective role of iron supplement.

    PubMed

    Liu, Xinqin; Zheng, Gang; Wu, Yongxiang; Shen, Xuefeng; Jing, Jinfei; Yu, Tao; Song, Han; Chen, Jingyuan; Luo, Wenjing

    2013-12-01

    This study was designed to investigate the impact of lead (Pb(2+)) on the auditory system and its molecular mechanisms. Pb(AC)2 was administrated to male SD rats aged 21-22 d for 8 weeks at a dose of 300ppm. Male guinea pigs were also administrated with 50mg/kg Pb(AC)2 two times a week for 8 weeks. The auditory nerve-brainstem evoked responses (ABR) was recorded and the morphological changes of the outer hair cells (OHCs) were observed with Phallodin-FITC staining. In addition, the integrity of the blood-labyrinth barrier was observed by TEM and the expression of tight junction proteins (TJPs) in the cochlear stria vascularis was determined by immunofluorescence. Our results showed that Pb(2+) exposure resulted in increased ABR threshold in both rats and guinea pigs. Abnormal shapes and loss of OHCs were found in the cochlear basilar membrane following the Pb(2+) exposure. TEM study showed that the tight junctions between the endothelial cells and the border cells were lost and disrupted. Down-regulation of the occludin, ZO-1 and claudin-5 in the stria vascularis suggested that the increased permeability of the blood-labyrinth barrier may attribute to the Pb(2+)-induced decrease of TJPs' expression. Additionally, Fe(2+) supplement partly reversed the Pb(2+)-induced hearing loss and down-regulation of TJPs. Taken together, these data indicate that the disruption of blood-labyrinth barrier by down-regulating the expression of TJPs plays a role in the Pb(2+)-induced hearing loss, and Fe(2+) supplement protects the auditory system against Pb(2+)-induced toxicity and may have significant clinical implications. PMID:24144481

  10. Larval Exposure to the Juvenile Hormone Analog Pyriproxyfen Disrupts Acceptance of and Social Behavior Performance in Adult Honeybees

    PubMed Central

    Fourrier, Julie; Deschamps, Matthieu; Droin, Léa; Alaux, Cédric; Fortini, Dominique; Beslay, Dominique; Le Conte, Yves; Devillers, James; Aupinel, Pierrick; Decourtye, Axel

    2015-01-01

    Background Juvenile hormone (JH) plays an important role in honeybee development and the regulation of age-related division of labor. However, honeybees can be exposed to insect growth regulators (IGRs), such as JH analogs developed for insect pest and vector control. Although their side effects as endocrine disruptors on honeybee larval or adult stages have been studied, little is known about the subsequent effects on adults of a sublethal larval exposure. We therefore studied the impact of the JH analog pyriproxyfen on larvae and resulting adults within a colony under semi-field conditions by combining recent laboratory larval tests with chemical analysis and behavioral observations. Oral and chronic larval exposure at cumulative doses of 23 or 57 ng per larva were tested. Results Pyriproxyfen-treated bees emerged earlier than control bees and the highest dose led to a significant rate of malformed adults (atrophied wings). Young pyriproxyfen-treated bees were more frequently rejected by nestmates from the colony, inducing a shorter life span. This could be linked to differences in cuticular hydrocarbon (CHC) profiles between control and pyriproxyfen-treated bees. Finally, pyriproxyfen-treated bees exhibited fewer social behaviors (ventilation, brood care, contacts with nestmates or food stocks) than control bees. Conclusion Larval exposure to sublethal doses of pyriproxyfen affected several life history traits of the honeybees. Our results especially showed changes in social integration (acceptance by nestmates and social behaviors performance) that could potentially affect population growth and balance of the colony. PMID:26171610

  11. Development of a highly controlled gas-phase nanoparticle generator for inhalation exposure studies.

    PubMed

    Miettinen, M; Riikonen, J; Tapper, U; Backman, U; Joutsensaari, J; Auvinen, A; Lehto, V P; Jokiniemi, J

    2009-06-01

    We have developed a gas-phase nanoparticle generator that produces stable and well-defined size distributions for TiO(2). The online analyses of the gas-phase compounds and total number concentration of the generated particles as well as the off-line analysis of the filter samples confirmed the stability of the production. The major advantage of this reactor is that the test substance is directly in the aerosol phase, and thus no preprocessing is needed. This eliminates the physicochemical changes between bulk and administrated material during storing or processing. This system is easy to adjust to different experimental setups and precursors. As a result, well-characterized nanomaterials for inhalation exposure studies can be produced. At mass concentration of 30 mg/Nm(3), the count mean diameter was 126 nm (geometric SD 1.6), mass mean diameter was 161 nm (2.0), mass median aerodynamic diameter was 125 nm, and the concentrations of harmful gas-phase by-products remained low. The produced powder consisted of crystals of anatase (77 vol%) and brookite (23 vol%), and its specific surface area was 69 m(2)/g.

  12. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure

    PubMed Central

    Donaldson, Ken; Tran, Lang; Jimenez, Luis Albert; Duffin, Rodger; Newby, David E; Mills, Nicholas; MacNee, William; Stone, Vicki

    2005-01-01

    This review considers the molecular toxicology of combustion-derived nanoparticles (CDNP) following inhalation exposure. CDNP originate from a number of sources and in this review we consider diesel soot, welding fume, carbon black and coal fly ash. A substantial literature demonstrates that these pose a hazard to the lungs through their potential to cause oxidative stress, inflammation and cancer; they also have the potential to redistribute to other organs following pulmonary deposition. These different CDNP show considerable heterogeneity in composition and solubility, meaning that oxidative stress may originate from different components depending on the particle under consideration. Key CDNP-associated properties of large surface area and the presence of metals and organics all have the potential to produce oxidative stress. CDNP may also exert genotoxic effects, depending on their composition. CDNP and their components also have the potential to translocate to the brain and also the blood, and thereby reach other targets such as the cardiovascular system, spleen and liver. CDNP therefore can be seen as a group of particulate toxins unified by a common mechanism of injury and properties of translocation which have the potential to mediate a range of adverse effects in the lungs and other organs and warrant further research. PMID:16242040

  13. Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice.

    PubMed

    Smulders, Stijn; Larue, Camille; Sarret, Geraldine; Castillo-Michel, Hiram; Vanoirbeek, Jeroen; Hoet, Peter H M

    2015-10-01

    Large knowledge gaps still exist on the toxicological mechanisms of silver (Ag) engineered nanoparticles (ENPs); a comprehensive understanding of the sources, biodistribution, toxicity and transformation of Ag ENPs along their life cycle and after transfer in living organisms is needed. In a previous study, mice were pulmonary exposed to Ag ENPs and local (lung) and systemic toxic effects together with biodistribution to organs including heart, liver, spleen and kidney were investigated. Here, Ag lung distribution, local concentration, co-localization with other elements such as Fe, Cu and S, and speciation were determined after lung exposure to Ag ENPs using micro X-ray fluorescence (μXRF), micro X-ray absorption near edge structure spectroscopy (μXANES) and micro proton-induced X-ray emission (μPIXE) techniques. We found that approximately a quarter of all macrophages in the lumen of the airways contained ENPs. High local concentrations of Ag were also detected in the lung tissue, probably phagocytized by macrophages. The largest part of the ENPs was dissolved and complexed to thiol-containing molecules. Increased concentrations of Fe and Cu observed in the Ag-rich spots suggest that these molecules are metallothioneins (MTs). These results give more insights on the behavior of Ag ENPs in the lung in vivo and will help in the understanding of the toxicological mechanisms of Ag ENPs. PMID:26162856

  14. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    PubMed

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  15. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats

    PubMed Central

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs. PMID:27524893

  16. Disruption of iron homeostasis and resultant health effects upon exposure to various environmental pollutants: A critical review.

    PubMed

    Guo, Wenli; Zhang, Jie; Li, Wenjun; Xu, Ming; Liu, Sijin

    2015-08-01

    Environmental pollution has become one of the greatest problems in the world, and the concerns about environmental pollutants released by human activities from agriculture and industrial production have been continuously increasing. Although intense efforts have been made to understand the health effects of environmental pollutants, most studies have only focused on direct toxic effects and failed to simultaneously evaluate the long-term adaptive, compensatory and secondary impacts on health. Burgeoning evidence suggests that environmental pollutants may directly or indirectly give rise to disordered element homeostasis, such as for iron. It is crucially important to maintain concerted cellular and systemic iron metabolism. Otherwise, disordered iron metabolism would lead to cytotoxicity and increased risk for various diseases, including cancers. Thus, study on the effects of environmental pollutants upon iron homeostasis is urgently needed. In this review, we recapitulate the available findings on the direct or indirect impacts of environmental pollutants, including persistent organic pollutants (POPs), heavy metals and pesticides, on iron homeostasis and associated adverse health problems. In view of the unanswered questions, more efforts are warranted to investigate the disruptive effects of environmental pollutants on iron homeostasis and consequent toxicities.

  17. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Cooper, Ryan; Ducharme, Danica M.K.; Tennant, Raymond; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2007-05-01

    Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p < 0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17{beta}-hydroxysteroid dehydrogenase-7 (HSD17{beta}7; involved in estradiol production) and decreased expression of HSD17{beta}5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood.

  18. Acute exposure to 17α-ethinylestradiol disrupts audience effects on male-male interactions in Siamese fighting fish, Betta splendens.

    PubMed

    Dzieweczynski, Teresa L; Buckman, Christina M

    2013-03-01

    Endocrine disrupting chemicals can have profound effects on the behavior of aquatic organisms residing in polluted waters. Males are especially sensitive to the effects of estrogen mimics and both courtship and aggression may be dramatically reduced by chemical exposure. Population-level impacts may occur if these chemicals decrease the ability of males to obtain mates or defend territories. Exposure might also have far-reaching impacts by interfering with information transfer within a network of individuals. For example, males exposed to an endocrine disruptor may be less sensitive to the presence of an audience. Male Siamese fighting fish were used to examine how short-term exposure to 17α-ethinylestradiol (EE2) alters audience effects on male-male interactions. Males either received a nominal dose of EE2 or remained unexposed and then interacted with an opponent in one of three treatments (female, male, or no audience). EE2 altered audience effects in this study. Opponent-directed gill flaring was lower when a female audience was present compared to when there was a male or no audience in both EE2 and control males. The number of opponent-directed tail beats did not differ as a function of audience type in EE2 males. In contrast, unexposed males increased opponent-directed tail beats when a female audience is present. Therefore, EE2 reduces the ability of males to communicate with multiple individuals simultaneously. If this is the case, endocrine disruptor exposure may alter population structure as selection should favor individuals that are able to readily adjust their signaling behavior as a function of social context.

  19. Acute exposure to 17α-ethinylestradiol disrupts audience effects on male-male interactions in Siamese fighting fish, Betta splendens.

    PubMed

    Dzieweczynski, Teresa L; Buckman, Christina M

    2013-03-01

    Endocrine disrupting chemicals can have profound effects on the behavior of aquatic organisms residing in polluted waters. Males are especially sensitive to the effects of estrogen mimics and both courtship and aggression may be dramatically reduced by chemical exposure. Population-level impacts may occur if these chemicals decrease the ability of males to obtain mates or defend territories. Exposure might also have far-reaching impacts by interfering with information transfer within a network of individuals. For example, males exposed to an endocrine disruptor may be less sensitive to the presence of an audience. Male Siamese fighting fish were used to examine how short-term exposure to 17α-ethinylestradiol (EE2) alters audience effects on male-male interactions. Males either received a nominal dose of EE2 or remained unexposed and then interacted with an opponent in one of three treatments (female, male, or no audience). EE2 altered audience effects in this study. Opponent-directed gill flaring was lower when a female audience was present compared to when there was a male or no audience in both EE2 and control males. The number of opponent-directed tail beats did not differ as a function of audience type in EE2 males. In contrast, unexposed males increased opponent-directed tail beats when a female audience is present. Therefore, EE2 reduces the ability of males to communicate with multiple individuals simultaneously. If this is the case, endocrine disruptor exposure may alter population structure as selection should favor individuals that are able to readily adjust their signaling behavior as a function of social context. PMID:23333768

  20. Considerable exposure to the endocrine disrupting chemicals phthalates and bisphenol-A in intensive care unit (ICU) patients.

    PubMed

    Huygh, Johan; Clotman, Katrien; Malarvannan, Govindan; Covaci, Adrian; Schepens, Tom; Verbrugghe, Walter; Dirinck, Eveline; Van Gaal, Luc; Jorens, Philippe G

    2015-08-01

    Critical care medicine has largely benefited from plastic-containing medical devices. However, bisphenol-A (BPA) and phthalates present in the plastics can leach from such devices. We hypothesized that intensive care unit (ICU) patients are exposed to BPA and phthalates through (plastic) medical devices. Serum (n = 118) and urine (n= 102) samples of adult ICU patients (n = 35) were analyzed for total BPA and phthalate metabolites (PMs). Our results showed that adult ICU patients are continuously exposed to phthalates, such as di(2-ethylhexyl)phthalate (DEHP), as well as to BPA, albeit to a lesser extent. This exposure resulted in detectable high serum and urinary levels in almost every patient and at every studied time point. Moreover, these levels were significantly higher than in controls or compared to referenced literature. The chronology of exposure was demonstrated: pre-operative urinary and serum levels of the DEHP metabolites were often below the detection limit. Plastic-containing medical devices were the main source of DEHP exposure: post-operative patients on hemofiltration, extracorporeal membrane oxygenation or both showed serum levels 100-or 1000-fold higher than the levels in the general population reported in the literature. The serum and some of the urinary levels of the DEHP metabolites are the highest ever reported in humans; some at biologically highly relevant concentrations of ≥ 10-50 μM. Despite the continuously tightening regulations, BPA and DEHP appear to be still present in (some) medical devices. Because patient safety is a concern in the ICU, further research into the (possibly toxic and clinical) effects of these chemicals released from medical devices is imperiously necessary. PMID:25955314

  1. Considerable exposure to the endocrine disrupting chemicals phthalates and bisphenol-A in intensive care unit (ICU) patients.

    PubMed

    Huygh, Johan; Clotman, Katrien; Malarvannan, Govindan; Covaci, Adrian; Schepens, Tom; Verbrugghe, Walter; Dirinck, Eveline; Van Gaal, Luc; Jorens, Philippe G

    2015-08-01

    Critical care medicine has largely benefited from plastic-containing medical devices. However, bisphenol-A (BPA) and phthalates present in the plastics can leach from such devices. We hypothesized that intensive care unit (ICU) patients are exposed to BPA and phthalates through (plastic) medical devices. Serum (n = 118) and urine (n= 102) samples of adult ICU patients (n = 35) were analyzed for total BPA and phthalate metabolites (PMs). Our results showed that adult ICU patients are continuously exposed to phthalates, such as di(2-ethylhexyl)phthalate (DEHP), as well as to BPA, albeit to a lesser extent. This exposure resulted in detectable high serum and urinary levels in almost every patient and at every studied time point. Moreover, these levels were significantly higher than in controls or compared to referenced literature. The chronology of exposure was demonstrated: pre-operative urinary and serum levels of the DEHP metabolites were often below the detection limit. Plastic-containing medical devices were the main source of DEHP exposure: post-operative patients on hemofiltration, extracorporeal membrane oxygenation or both showed serum levels 100-or 1000-fold higher than the levels in the general population reported in the literature. The serum and some of the urinary levels of the DEHP metabolites are the highest ever reported in humans; some at biologically highly relevant concentrations of ≥ 10-50 μM. Despite the continuously tightening regulations, BPA and DEHP appear to be still present in (some) medical devices. Because patient safety is a concern in the ICU, further research into the (possibly toxic and clinical) effects of these chemicals released from medical devices is imperiously necessary.

  2. Exposure to Palladium Nanoparticles Affects Serum Levels of Cytokines in Female Wistar Rats

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Corbi, Maddalena; Leso, Veruscka; Marinaccio, Alessandro; Leopold, Kerstin; Schindl, Roland; Sgambato, Alessandro

    2015-01-01

    Background Information currently available on the impact of palladium on the immune system mainly derives from studies assessing the biological effects of palladium salts. However, in the last years, there has been a notable increase in occupational and environmental levels of fine and ultrafine palladium particles released from automobile catalytic converters, which may play a role in palladium sensitization. In this context, the evaluation of the possible effects exerted by palladium nanoparticles (Pd-NPs) on the immune system is essential to comprehensively assess palladium immunotoxic potential. Aim Therefore, the aim of this study was to investigate the effects of Pd-NPs on the immune system of female Wistar rats exposed to this xenobiotic for 14 days, by assessing possible quantitative changes in a number of cytokines: IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, GM-CSF, INF-γ and TNF-α. Methods Twenty rats were randomly divided into four exposure groups and one of control. Animals were given a single tail vein injection of vehicle (control group) and different concentrations of Pd-NPs (0.012, 0.12, 1.2 and 12 μg/kg). A multiplex biometric enzyme linked immunosorbent assay was used to evaluate cytokine serum levels. Results The mean serum concentrations of all cytokines decreased after the administration of 0.012 μg/kg of Pd-NPs, whereas exceeded the control levels at higher exposure doses. The highest concentration of Pd-NPs (12 μg/kg) induced a significant increase of IL-1α, IL-4, IL-6, IL-10, IL-12, GM-CSF and INF-γ compared to controls. Discussion and Conclusions These results demonstrated that Pd-NP exposure can affect the immune response of rats inducing a stimulatory action that becomes significant at the highest administered dose. Our findings did not show an imbalance between cytokines produced by CD4+ T helper (Th) cells 1 and 2, thus suggesting a generalized stimulation of the immune system with a simultaneous activation and polarization of the

  3. Cerium Dioxide Nanoparticle Exposure Improves Microvascular Dysfunction and Reduces Oxidative Stress in Spontaneously Hypertensive Rats

    PubMed Central

    Minarchick, Valerie C.; Stapleton, Phoebe A.; Sabolsky, Edward M.; Nurkiewicz, Timothy R.

    2015-01-01

    The elevated production of reactive oxygen species (ROS) in the vascular wall is associated with cardiovascular diseases such as hypertension. This increase in oxidative stress contributes to various mechanisms of vascular dysfunction, such as decreased nitric oxide bioavailability. Therefore, anti-oxidants are being researched to decrease the high levels of ROS, which could improve the microvascular dysfunction associated with various cardiovascular diseases. From a therapeutic perspective, cerium dioxide nanoparticles (CeO2 NP) hold great anti-oxidant potential, but their in vivo activity is unclear. Due to this potential anti-oxidant action, we hypothesize that injected CeO2 NP would decrease microvascular dysfunction and oxidative stress associated with hypertension. In order to simulate a therapeutic application, spontaneously hypertensive (SH) and Wistar-Kyoto (WKY) rats were intravenously injected with either saline or CeO2 NP (100 μg suspended in saline). Twenty-four hours post-exposure mesenteric arteriolar reactivity was assessed via intravital microscopy. Endothelium-dependent and –independent function was assessed via acetylcholine and sodium nitroprusside. Microvascular oxidative stress was analyzed using fluorescent staining in isolated mesenteric arterioles. Finally, systemic inflammation was examined using a multiplex analysis and venular leukocyte flux was counted. Endothelium-dependent dilation was significantly decreased in the SH rats (29.68 ± 3.28%, maximal response) and this microvascular dysfunction was significantly improved following CeO2 NP exposure (43.76 ± 4.33%, maximal response). There was also an increase in oxidative stress in the SH rats, which was abolished following CeO2 NP treatment. These results provided evidence that CeO2 NP act as an anti-oxidant in vivo. There were also changes in the inflammatory profile in the WKY and SH rats. In WKY rats, IL-10 and TNF-α were increased following CeO2 NP treatment. Finally, leukocyte

  4. Aroclor 1248 exposure leads to immunomodulation, decreased disease resistance and endocrine disruption in the brown bullhead, Ameiurus nebulosus

    USGS Publications Warehouse

    Iwanowicz, L.R.; Blazer, V.S.; McCormick, S.D.; Van Veld, P.A.; Ottinger, C.A.

    2009-01-01

    The brown bullhead Ameiurus nebulosus is a species of the family Ictaluridae commonly used as a sentinel of environmental contamination. While these fish have been utilized for this purpose in areas contaminated with polychlorinated biphenyls (PCBs), few controlled, laboratory-based studies have been designed to document the effects of PCB mixtures in this species. Here, brown bullhead were exposed to the PCB mixture, Aroclor 1248, via intraperitoneal injection and the effects on immune function, plasma hormones and disease resistance were evaluated. Exposure to this mixture led to a decrease in bactericidal activity and circulating antibodies to Edwardsiella ictaluri present from a previous exposure to this pathogen. A subsequent E. ictaluri disease challenge led to significantly higher mortality in A1248 treated fish compared to vehicle-control fish. The mitogenic response to the T-cell mitogen, phytohemaglutinin-P, was increased compared to vehicle-control fish. The steroid hormone, cortisol, and the thyroid hormone, T3, were also significantly lower in A1248 exposed fish. In summary, we have validated a number of functional immune assays for application in brown bullhead immunotoxicity studies. Additionally, we have demonstrated that the PCB mixture (A1248) modulates both immune function and endocrine physiology in brown bullhead. Such data may compliment the interpretation of data yielded from applied field studies conducted in PCB contaminated aquatic ecosystems.

  5. Lithium an emerging contaminant: bioavailability, effects on protein expression, and homeostasis disruption in short-term exposure of rainbow trout.

    PubMed

    Tkatcheva, Victoria; Poirier, David; Chong-Kit, Richard; Furdui, Vasile I; Burr, Christopher; Leger, Ray; Parmar, Jaspal; Switzer, Teresa; Maedler, Stefanie; Reiner, Eric J; Sherry, James P; Simmons, Denina B D

    2015-04-01

    Worldwide production of lithium (Li) has increased dramatically during the past decade, driven by the demand for high charge density batteries. Information about Li in the aquatic environment is limited. The present study was designed to explore the effects of Li in rainbow trout (Oncorhynchus mykiss). Juvenile trout were exposed to a nominal concentration of 1.0mg Li/L in three separate exposures. Major ion concentrations were measured in brain and plasma by ion chromatography. Plasma proteins and fatty acids were measured by HPLC-MS/MS. Lithium accumulated in the brain and plasma. Arachidonic acid was elevated in plasma after 48h. Elevated concentrations of Li in brain were associated with depressed concentrations of sodium, magnesium, potassium and ammonium relative to the control. In plasma, sodium and calcium were also depressed. Several changes occurred to plasma proteins corresponding to Li exposure: inhibition of prostaglandin synthase (Ptgs2), increased expression of copper transporting ATP synthases, and Na(+)/K(+) ATPase. To our knowledge, ours is the first study to demonstrate elevated Li concentrations in fish brain, with associated effects on ion regulation. PMID:25678467

  6. TOLUENE DISRUPTION OF THE FUNCTIONS OF L1 CELL ADHESION MOLECULE AT CONCENTRATIONS ASSOCIATED WITH OCCUPATIONAL EXPOSURES

    PubMed Central

    White, Kimberly M.R.; Sabatino, Julia A.; He, Min; Davis, Natalie; Tang, Ningfeng; Bearer, Cynthia F

    2016-01-01

    Background Prenatal toluene exposure can cause neurodevelopmental disabilities similar to fetal alcohol syndrome. Both share neuroanatomic pathologies similar to children with mutations in L1 cell adhesion molecule (L1). L1 mediates neurite outgrowth (NOG) via signaling through ERK1/2 which require trafficking of L1 through lipid rafts. Our objective is to determine if (1) toluene inhibits L1-mediated NOG and (2) toluene inhibits L1 signaling at concentrations achieved during occupational exposure. Methods Concentrations of toluene reflective of blood concentrations achieved in solvent abusers and occupational settings are used. Cerebellar granule neurons (CGN) harvested from postnatal day 6 rat pups are plated on coverslips coated with poly-L-lysine (PLL) alone or PLL followed by laminin. L1 is added to the media of CGN plated on PLL alone. Toluene is added 2 hours after plating. Cells are fixed at 24 h and neurite length is measured. ERK1/2 activation by L1 in CGN is analyzed by immunoblot. Results Toluene significantly reduced mean neurite length of CGN exposed to L1 but not laminin. Toluene significantly reduced L1-mediated ERK1/2 phosphorylation. Conclusion Results suggest that toluene inhibits L1-lipid raft interactions at occupationally relevant concentrations and may lead to a fetal solvent spectrum disorder similar to fetal alcohol spectrum disorder. PMID:27027721

  7. Lithium an emerging contaminant: bioavailability, effects on protein expression, and homeostasis disruption in short-term exposure of rainbow trout.

    PubMed

    Tkatcheva, Victoria; Poirier, David; Chong-Kit, Richard; Furdui, Vasile I; Burr, Christopher; Leger, Ray; Parmar, Jaspal; Switzer, Teresa; Maedler, Stefanie; Reiner, Eric J; Sherry, James P; Simmons, Denina B D

    2015-04-01

    Worldwide production of lithium (Li) has increased dramatically during the past decade, driven by the demand for high charge density batteries. Information about Li in the aquatic environment is limited. The present study was designed to explore the effects of Li in rainbow trout (Oncorhynchus mykiss). Juvenile trout were exposed to a nominal concentration of 1.0mg Li/L in three separate exposures. Major ion concentrations were measured in brain and plasma by ion chromatography. Plasma proteins and fatty acids were measured by HPLC-MS/MS. Lithium accumulated in the brain and plasma. Arachidonic acid was elevated in plasma after 48h. Elevated concentrations of Li in brain were associated with depressed concentrations of sodium, magnesium, potassium and ammonium relative to the control. In plasma, sodium and calcium were also depressed. Several changes occurred to plasma proteins corresponding to Li exposure: inhibition of prostaglandin synthase (Ptgs2), increased expression of copper transporting ATP synthases, and Na(+)/K(+) ATPase. To our knowledge, ours is the first study to demonstrate elevated Li concentrations in fish brain, with associated effects on ion regulation.

  8. Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles

    PubMed Central

    Chen, Ni; Song, Zheng-Mei; Tang, Huan; Xi, Wen-Song; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2016-01-01

    Extensive utilization increases the exposure of humans to Ag nanoparticles (NPs) via the oral pathway. To comprehensively address the action of Ag NPs to the gastrointestinal systems in real situations, i.e., the long-term low-dose exposure, we evaluated and compared the toxicity of three Ag NPs (20–30 nm with different surface coatings) to the human intestine cell Caco-2 after 1-day and 21-day exposures, using various biological assays. In both the short- and long-term exposures, the variety of surface coating predominated the toxicity of Ag NPs in a descending order of citrate-coated Ag NP (Ag-CIT), bare Ag NP (Ag-B), and poly (N-vinyl-2-pyrrolidone)-coated Ag NP (Ag-PVP). The short-term exposure induced cell growth inhibition and death. The cell viability loss appeared after cells were exposed to 0.7 μg/mL Ag-CIT, 0.9 μg/mL Ag-B or >1.0 μg/mL Ag-PVP for 24 h. The short-term and higher-dose exposure also induced reactive oxygen species (ROS) generation, mitochondrial damage, cell membrane leakage, apoptosis, and inflammation (IL-8 level). The long-term exposure only inhibited the cell proliferation. After 21-day exposure to 0.4 μg/mL Ag-CIT, the cell viability dropped to less than 50%, while cells exposed to 0.5 μg/mL Ag-PVP remained normal as the control. Generally, 0.3 μg/mL is the non-toxic dose for the long-term exposure of Caco-2 cells to Ag NPs in this study. However, cells presented inflammation after exposure to Ag NPs with the non-toxic dose in the long-term exposure. PMID:27338357

  9. The interacting role of media violence exposure and aggressive-disruptive behavior in adolescent brain activation during an emotional Stroop task.

    PubMed

    Kalnin, Andrew J; Edwards, Chad R; Wang, Yang; Kronenberger, William G; Hummer, Tom A; Mosier, Kristine M; Dunn, David W; Mathews, Vincent P

    2011-04-30

    Only recently have investigations of the relationship between media violence exposure (MVE) and aggressive behavior focused on brain functioning. In this study, we examined the relationship between brain activation and history of media violence exposure in adolescents, using functional magnetic resonance imaging (fMRI). Samples of adolescents with no psychiatric diagnosis or with disruptive behavior disorder (DBD) with aggression were compared to investigate whether the association of MVE history and brain activation is moderated by aggressive behavior/personality. Twenty-two adolescents with a history of aggressive behavior and diagnosis of either conduct disorder or oppositional-defiant disorder (DBD sample) and 22 controls completed an emotional Stroop task during fMRI. Primary imaging results indicated that controls with a history of low MVE demonstrated greater activity in the right inferior frontal gyrus and rostral anterior cingulate during the violent word condition. In contrast, in adolescents with DBD, those with high MVE exhibited decreased activation in the right amygdala, compared with those with low MVE. These findings are consistent with research demonstrating the importance of fronto-limbic structures for processing emotional stimuli, and with research suggesting that media violence may affect individuals in different ways depending on the presence of aggressive traits. PMID:21376543

  10. A longitudinal study of the long-term consequences of drinking during pregnancy: heavy in utero alcohol exposure disrupts the normal processes of brain development.

    PubMed

    Lebel, Catherine; Mattson, Sarah N; Riley, Edward P; Jones, Kenneth L; Adnams, Colleen M; May, Philip A; Bookheimer, Susan Y; O'Connor, Mary J; Narr, Katherine L; Kan, Eric; Abaryan, Zvart; Sowell, Elizabeth R

    2012-10-31

    Exposure to alcohol in utero can cause birth defects, including face and brain abnormalities, and is the most common preventable cause of intellectual disabilities. Here we use structural magnetic resonance imaging to measure cortical volume change longitudinally in a cohort of human children and youth with prenatal alcohol exposure (PAE) and a group of unexposed control subjects, demonstrating that the normal processes of brain maturation are disrupted in individuals whose mothers drank heavily during pregnancy. Trajectories of cortical volume change within children and youth with PAE differed from those of unexposed control subjects in posterior brain regions, particularly in the parietal cortex. In these areas, control children appear to show a particularly plastic cortex with a prolonged pattern of cortical volume increases followed by equally vigorous volume loss during adolescence, while the alcohol-exposed participants showed primarily volume loss, demonstrating decreased plasticity. Furthermore, smaller volume changes between scans were associated with lower intelligence and worse facial morphology in both groups, and were related to the amount of PAE during each trimester of pregnancy in the exposed group. This demonstrates that measures of IQ and facial dysmorphology predict, to some degree, the structural brain development that occurs in subsequent years. These results are encouraging in that interventions aimed at altering "experience" over time may improve brain trajectories in individuals with heavy PAE and possibly other neurodevelopmental disorders. PMID:23115162

  11. Long-term exposure to gold nanoparticles accelerates larval metamorphosis without affecting mass in wood frogs (Lithobates sylvaticus) at environmentally relevant concentrations.

    PubMed

    Fong, Peter P; Thompson, Lucas B; Carfagno, Gerardo L F; Sitton, Andrea J

    2016-09-01

    Nanoparticles are environmental contaminants of emerging concern. Exposure to engineered nanoparticles has been shown to have detrimental effects on aquatic organisms. The authors synthesized gold nanoparticles (18.1 ± 3.5 nm) and tested their effects on time to and weight at metamorphosis in wood frog (Lithobates sylvaticus) tadpoles, a species known to be sensitive to environmental stressors. Continuous exposure to all concentrations of gold nanoparticles (0.05 pM, 0.5 pM, and 5 pM in particles) for up to 55 d significantly reduced time to metamorphosis by as much as an average of 3 d (p < 0.05). However, exposure to gold nanoparticles had no effect on tadpole mass at metamorphosis. The approximately 18-nm gold nanoparticles used were metastable in dechlorinated tap water, resulting in a change in surface charge and aggregation over time, leading to negatively charged aggregates that were on the order of 60 nm to 110 nm. Nanoparticle aggregation could exacerbate the effect on time to metamorphosis. To the authors' knowledge, the present study is the first report on the effect of engineered nanoparticles of any kind on life-history variables in an amphibian, a taxonomic group that has been declining globally for at least 25 yr. Environ Toxicol Chem 2016;35:2304-2310. © 2016 SETAC. PMID:26873819

  12. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures

    USGS Publications Warehouse

    Croteau, Marie-Noele; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    The incidental ingestion of engineered nanoparticles (NPs) can be an important route of uptake for aquatic organisms. Yet, knowledge of dietary bioavailability and toxicity of NPs is scarce. Here we used isotopically modified copper oxide (65CuO) NPs to characterize the processes governing their bioaccumulation in a freshwater snail after waterborne and dietborne exposures. Lymnaea stagnalis efficiently accumulated 65Cu after aqueous and dietary exposures to 65CuO NPs. Cu assimilation efficiency and feeding rates averaged 83% and 0.61 g g–1 d–1 at low exposure concentrations (–1), and declined by nearly 50% above this concentration. We estimated that 80–90% of the bioaccumulated 65Cu concentration in L. stagnalis originated from the 65CuO NPs, suggesting that dissolution had a negligible influence on Cu uptake from the NPs under our experimental conditions. The physiological loss of 65Cu incorporated into tissues after exposures to 65CuO NPs was rapid over the first days of depuration and not detectable thereafter. As a result, large Cu body concentrations are expected in L. stagnalis after exposure to CuO NPs. To the degree that there is a link between bioaccumulation and toxicity, dietborne exposures to CuO NPs are likely to elicit adverse effects more readily than waterborne exposures.

  13. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: Developmental exposure of rats to 4-methylbenzylidene camphor

    SciTech Connect

    Maerkel, Kirsten; Durrer, Stefan; Henseler, Manuel; Schlumpf, Margret; Lichtensteiger, Walter . E-mail: Walter.Lichtensteiger@access.unizh.ch

    2007-01-15

    The developing neuroendocrine brain represents a potential target for endocrine active chemicals. The UV filter 4-methylbenzylidene camphor (4-MBC) exhibits estrogenic activity, but also interferes with the thyroid axis. We investigated effects of pre- and postnatal exposure to 4-MBC in the same rat offspring at brain and reproductive organ levels. 4-MBC (7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to the offspring until adulthood. mRNA of estrogen target genes involved in control of sexual behavior and gonadal functions was measured by real-time RT-PCR in ventromedial hypothalamic nucleus (VMH) and medial preoptic area (MPO) of adult offspring. 4-MBC exposure affected mRNA levels of ER alpha, progesterone receptor (PR), preproenkephalin (PPE) and insulin-like growth factor-I (IGF-I) in a sex- and region-specific manner. In order to assess possible changes in sensitivity of target genes to estrogens, offspring were gonadectomized on day 70, injected with estradiol (E2, 10 or 50 {mu}g/kg s.c.) or vehicle on day 84, and sacrificed 6 h later. The acute induction of PR mRNA, and repression (at 6 h) of PPE mRNA by E2 was enhanced by 4-MBC in male and female VMH and female MPO, whereas male MPO exhibited reduced responsiveness of both genes. Steroid receptor coactivator SRC-1 mRNA levels were increased in female VMH and MPO. The data indicate profound sex- and region-specific alterations in the regulation of estrogen target genes at brain level. Effect patterns in baseline and E2-induced gene expression differ from those in uterus and prostate.

  14. Disruptions in the hypothalamic-pituitary-gonadal axis in rat offspring following prenatal maternal exposure to lipopolysaccharide.

    PubMed

    Izvolskaia, Marina S; Tillet, Yves; Sharova, Viktoria S; Voronova, Svetlana N; Zakharova, Lyudmila A

    2016-01-01

    Postnatal treatment with bacterial endotoxin lipopolysaccharide (LPS) changes the activity of the hypothalamic-pituitary-gonadal (HPG) axis and the gonadotropin-releasing hormone (GnRH) surge in rats. Exposure to an immune challenge in the critical periods of development has profound and long-lasting effects on the stress response, immune, metabolic, and reproductive functions. Prenatal LPS treatment delays the migration of GnRH neurons associated with increased cytokine release in maternal and fetal compartments. We investigated the effects of a single maternal exposure to LPS (18 μg/kg, i.p.) on day 12 (embryonic day (E)12) of pregnancy on reproductive parameters in rat offspring. Hypothalamic GnRH content, plasma luteinizing hormone (LH), testosterone, and estradiol concentrations were measured in both male and female offsprings at different stages of postnatal development by RIA and ELISA (n = 10 each per group). Body weight and in females day of vaginal opening (VO) were recorded. In offspring exposed to LPS prenatally, compared with controls, body weight was decreased in both sexes at P5 and P30; in females, VO was delayed; hypothalamic GnRH content was decreased at postnatal days 30-60 (P30-P60) in both sexes; plasma LH concentration was decreased at P14-P60 in females; plasma concentrations of testosterone/estradiol were increased at P14 in females, and plasma estradiol was increased at P14 in males. Hence activation of the maternal immune system by LPS treatment at a prenatal critical period leads to decreased GnRH and LH levels in pre- and postpubertal life and sex steroid imbalance in the prepubertal period, and delayed sexual maturation of female offspring.

  15. Transcriptome Alterations Following Developmental Atrazine Exposure in Zebrafish Are Associated with Disruption of Neuroendocrine and Reproductive System Function, Cell Cycle, and Carcinogenesis

    PubMed Central

    Freeman, Jennifer L.

    2013-01-01

    Atrazine, a herbicide commonly applied to agricultural areas and a common contaminant of potable water supplies, is implicated as an endocrine-disrupting chemical (EDC) and potential carcinogen. Studies show that EDCs can cause irreversible changes in tissue formation, decreased reproductive potential, obesity, and cancer. The U.S. Environmental Protection Agency considers an atrazine concentration of ≤ 3 ppb in drinking water safe for consumption. The specific adverse human health effects associated with a developmental atrazine exposure and the underlying genetic mechanisms of these effects are not well defined. In this study, zebrafish embryos were exposed to a range of atrazine concentrations to establish toxicity. Morphological, transcriptomic, and protein alterations were then assessed at 72h postfertilization following developmental atrazine exposure at 0, 0.3, 3, or 30 ppb. A significant increase in head length was observed in all three atrazine treatments. Transcriptomic profiles revealed 21, 62, and 64 genes with altered expression in the 0.3, 3, and 30 ppb atrazine treatments, respectively. Altered genes were associated with neuroendocrine and reproductive system development, function, and disease; cell cycle control; and carcinogenesis. There was a significant overlap (42 genes) between the 3 and 30 ppb differentially expressed gene lists, with two of these genes (CYP17A1 and SAMHD1) present in all three atrazine treatments. Increased transcript levels were translated to significant upregulation in protein expression. Overall, this study identifies genetic and molecular targets altered in response to a developmental atrazine exposure to further define the biological pathways and mechanisms of toxicity. PMID:23358194

  16. Occupational exposure to airborne nanomaterials: An assessment of worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fab and subfab.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Caglayan, Cihan; Zurbenko, Igor G

    2016-09-01

    This occupational exposure assessment study characterized potential inhalation exposures of workers to engineered nanomaterials associated with chemical mechanical planarization wafer polishing processes in a semiconductor research and development facility. Air sampling methodology was designed to capture airborne metal oxide nanoparticles for characterization. The research team obtained air samples in the fab and subfab areas using a combination of filter-based capture methods to determine particle morphology and elemental composition and real-time direct-reading instruments to determine airborne particle counts. Filter-based samples were analyzed by electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling was conducted during worker tasks associated with preventive maintenance and quality control that were identified as having medium to high potential for inhalation exposure based on qualitative assessments. For each sampling event, data was collected for comparison between the background, task area, and personal breathing zone. Sampling conducted over nine months included five discrete sampling series events in coordination with on-site employees under real working conditions. The number of filter-based samples captured was: eight from worker personal breathing zones; seven from task areas; and five from backgrounds. A complementary suite of direct-reading instruments collected data for seven sample collection periods in the task area and six in the background. Engineered nanomaterials of interest (Si, Al, Ce) were identified in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100-500 nm). Particle counts showed an increase in number concentration above background during a subset of the job tasks, but particle counts in the task areas were otherwise not significantly higher than background. Additional data is needed to

  17. Occupational exposure to airborne nanomaterials: An assessment of worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fab and subfab.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Caglayan, Cihan; Zurbenko, Igor G

    2016-09-01

    This occupational exposure assessment study characterized potential inhalation exposures of workers to engineered nanomaterials associated with chemical mechanical planarization wafer polishing processes in a semiconductor research and development facility. Air sampling methodology was designed to capture airborne metal oxide nanoparticles for characterization. The research team obtained air samples in the fab and subfab areas using a combination of filter-based capture methods to determine particle morphology and elemental composition and real-time direct-reading instruments to determine airborne particle counts. Filter-based samples were analyzed by electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling was conducted during worker tasks associated with preventive maintenance and quality control that were identified as having medium to high potential for inhalation exposure based on qualitative assessments. For each sampling event, data was collected for comparison between the background, task area, and personal breathing zone. Sampling conducted over nine months included five discrete sampling series events in coordination with on-site employees under real working conditions. The number of filter-based samples captured was: eight from worker personal breathing zones; seven from task areas; and five from backgrounds. A complementary suite of direct-reading instruments collected data for seven sample collection periods in the task area and six in the background. Engineered nanomaterials of interest (Si, Al, Ce) were identified in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100-500 nm). Particle counts showed an increase in number concentration above background during a subset of the job tasks, but particle counts in the task areas were otherwise not significantly higher than background. Additional data is needed to

  18. Delayed adverse effects of neonatal exposure to polymeric nanoparticle poly(ethylene glycol)-block-polylactide methyl ether on hypothalamic-pituitary-ovarian axis development and function in Wistar rats.

    PubMed

    Rollerova, Eva; Jurcovicova, Jana; Mlynarcikova, Alzbeta; Sadlonova, Irina; Bilanicova, Dagmar; Wsolova, Ladislava; Kiss, Alexander; Kovriznych, Jevgenij; Kronek, Juraj; Ciampor, Fedor; Vavra, Ivo; Scsukova, Sona

    2015-11-01

    We studied delayed effects of neonatal exposure to polymeric nanoparticle poly(ethylene glycol)-block-polylactide methyl ether (PEG-b-PLA) on the endpoints related to pubertal development and reproductive function in female Wistar rats from postnatal day 4 (PND4) to PND 176. Female pups were injected intraperitoneally, daily, from PND4 to PND7 with PEG-b-PLA (20 or 40mg/kg b.w.). Both doses of PEG-b-PLA accelerated the onset of vaginal opening compared with the control group. In the low-dose PEG-b-PLA-treated group, a significantly reduced number of regular estrous cycles, increased pituitary weight due to hyperemia, vascular dilatation and congestion, altered course of hypothalamic gonadotropin-releasing hormone-stimulated luteinizing hormone secretion, and increased progesterone serum levels were observed. The obtained data indicate that neonatal exposure to PEG-b-PLA might affect the development and function of hypothalamic-pituitary-ovarian axis (HPO), and thereby alter functions of the reproductive system in adult female rats. Our study indicates a possible neuroendocrine disrupting effect of PEG-b-PLA nanoparticles.

  19. Delayed adverse effects of neonatal exposure to polymeric nanoparticle poly(ethylene glycol)-block-polylactide methyl ether on hypothalamic-pituitary-ovarian axis development and function in Wistar rats.

    PubMed

    Rollerova, Eva; Jurcovicova, Jana; Mlynarcikova, Alzbeta; Sadlonova, Irina; Bilanicova, Dagmar; Wsolova, Ladislava; Kiss, Alexander; Kovriznych, Jevgenij; Kronek, Juraj; Ciampor, Fedor; Vavra, Ivo; Scsukova, Sona

    2015-11-01

    We studied delayed effects of neonatal exposure to polymeric nanoparticle poly(ethylene glycol)-block-polylactide methyl ether (PEG-b-PLA) on the endpoints related to pubertal development and reproductive function in female Wistar rats from postnatal day 4 (PND4) to PND 176. Female pups were injected intraperitoneally, daily, from PND4 to PND7 with PEG-b-PLA (20 or 40mg/kg b.w.). Both doses of PEG-b-PLA accelerated the onset of vaginal opening compared with the control group. In the low-dose PEG-b-PLA-treated group, a significantly reduced number of regular estrous cycles, increased pituitary weight due to hyperemia, vascular dilatation and congestion, altered course of hypothalamic gonadotropin-releasing hormone-stimulated luteinizing hormone secretion, and increased progesterone serum levels were observed. The obtained data indicate that neonatal exposure to PEG-b-PLA might affect the development and function of hypothalamic-pituitary-ovarian axis (HPO), and thereby alter functions of the reproductive system in adult female rats. Our study indicates a possible neuroendocrine disrupting effect of PEG-b-PLA nanoparticles. PMID:26193689

  20. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.

    PubMed

    Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero

    2016-07-01

    The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin.

  1. Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers

    PubMed Central

    Negoda, Alexander; Kim, Kwang-Jin; Crandall, Edward D.; Worden, Robert M.

    2014-01-01

    A diverse range of molecular interactions can occur between engineered nanomaterials (ENM) and biomembranes, some of which could lead to toxic outcomes following human exposure to ENM. In this study, we adapted electrophysiology methods to investigate the ability of 20 nm polystyrene nanoparticles (PNP) to induce pores in model bilayer lipid membranes (BLM) that mimic biomembranes. PNP charge was varied using PNP decorated with either positive (amidine) groups or negative (carboxyl) groups, and BLM charge was varied using dioleoyl phospholipids having cationic (ethylphosphocholine), zwitterionic (phosphocholine), or anionic (phosphatidic acid) headgroups. Both positive and negative PNP induced BLM pores for all lipid compositions studied, as evidenced by current spikes and integral conductance. Stable PNP-induced pores exhibited ion selectivity, with the highest selectivity for K+ (PK/PCl ~ 8.3) observed when both the PNP and lipids were negatively charged, and the highest selectivity for Cl− (PK/PCl ~ 0.2) observed when both the PNP and lipids were positively charged. This trend is consistent with the finding that selectivity for an ion in channel proteins is imparted by oppositely charged functional groups within the channel’s filter region. The PK/PCl value was unaffected by the voltage-ramp method, the pore conductance, or the side of the BLM to which the PNP were applied. These results demonstrate for the first time that PNP can induce ion-selective pores in BLM, and that the degree of ion selectivity is influenced synergistically by the charges of both the lipid headgroups and functional groups on the PNP. PMID:23747366

  2. Exposure Characteristics of Nanoparticles as Process By-products for the Semiconductor Manufacturing Industry.

    PubMed

    Choi, Kwang-Min; Kim, Jin-Ho; Park, Ju-Hyun; Kim, Kwan-Sick; Bae, Gwi-Nam

    2015-01-01

    This study aims to elucidate the exposure properties of nanoparticles (NPs; <100 nm in diameter) in semiconductor manufacturing processes. The measurements of airborne NPs were mainly performed around process equipment during fabrication processes and during maintenance. The number concentrations of NPs were measured using a water-based condensation particle counter having a size range of 10-3,000 nm. The chemical composition, size, and shape of NPs were determined by scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy. The resulting concentrations of NPs ranged from 0.00-11.47 particles/cm(3). The concentration of NPs measured during maintenance showed a tendency to increase, albeit incrementally, compared to that measured during normal conditions (under typical process conditions without maintenance). However, the increment was small. When comparing the mean number concentration and standard deviation (n ± σ) of NPs, the chemical mechanical polishing (CMP) process was the highest (3.45 ± 3.65 particles/cm(3)), and the dry etch (ETCH) process was the lowest (0.11 ± 0.22 particles/cm(3)). The major NPs observed were silica (SiO2) and titania (TiO2) particles, which were mainly spherical agglomerates ranging in size from 25-280 nm. Sampling of semiconductor processes in CMP, chemical vapor deposition, and ETCH reveled NPs were <100 nm in those areas. On the other hand, particle size exceeded 100 nm in diffusion, metallization, ion implantation, and wet cleaning/etching process. The results show that the SiO2 and TiO2 are the major NPs present in semiconductor cleanroom environments.

  3. Aqueous exposure to 4-nonylphenol and 17beta-estradiol increases stress sensitivity and disrupts ion regulatory ability of juvenile Atlantic salmon.

    PubMed

    Lerner, Darren T; Björnsson, Björn Thrandur; McCormick, Stephen D

    2007-07-01

    Population declines of wild Atlantic salmon have been attributed to an array of anthropogenic disturbances, including dams, commercial and recreational fishing, habitat loss, and pollution. Environmental contaminants in particular, can act as environmental stressors on fish, typically causing disruption of ion homeostasis due to their close association with the aquatic environment. To examine the effects of the xenoestrogen 4-nonylphenol (NP) or 17beta-estradiol (E2) on stress sensitivity and ion regulation, we exposed juvenile Atlantic salmon continuously for 21 d to either 10 or 100 microg/L NP (NP-L or NP-H), 2 microg/L E2 (positive control), or vehicle control during the parr-smolt transformation in April. After treatment, fish were sampled in freshwater (FW), transferred to 30 per thousand seawater (SW) for 24 h, or subjected to a handling stress. Estradiol and NP-H increased plasma vitellogenin in males and females, and E2 increased gonadosomatic index only in males. In FW, E2 reduced sodium potassium-activated adenosine triphosphatase activity as well as plasma levels of growth hormone, insulin-like growth factor I, and triiodothyronine. Both E2 and NP-H reduced plasma sodium in FW and increased plasma chloride in SW. Plasma cortisol levels pre- and poststressor were significantly elevated by all treatments relative to controls, but only E2 increased plasma glucose before and after the stressor. These results indicate that exposure of anadromous salmonids to environmental estrogens heightens sensitivity to external stressors, impairs ion regulation in both FW and SW, and disrupts endocrine pathways critical for smolt development. PMID:17665683

  4. Aqueous exposure to 4-nonylphenol and 17β-estradiol increases stress sensitivity and disrupts ion regulatory ability of juvenile atlantic salmon

    USGS Publications Warehouse

    Lerner, Darrren T.; Bjornsson, Bjorn Thrandur; McCormick, Stephen D.

    2007-01-01

    Population declines of wild Atlantic salmon have been attributed to an array of anthropogenic disturbances, including dams, commercial and recreational fishing, habitat loss, and pollution. Environmental contaminants in particular, can act as environmental stressors on fish, typically causing disruption of ion homeostasis due to their close association with the aquatic environment. To examine the effects of the xenoestrogen 4-nonylphenol (NP) or 17β-estradiol (E2) on stress sensitivity and ion regulation, we exposed juvenile Atlantic salmon continuously for 21 d to either 10 or 100 μg/L NP (NP-L or NP-H), 2 μg/L E2 (positive control), or vehicle control during the parr-smolt transformation in April. After treatment, fish were sampled in freshwater (FW), transferred to 30‰ seawater (SW) for 24 h, or subjected to a handling stress. Estradiol and NP-H increased plasma vitellogenin in males and females, and E2 increased gonadosomatic index only in males. In FW, E2 reduced sodium potassium–activated adenosine triphosphatase activity as well as plasma levels of growth hormone, insulin-like growth factor I, and triiodothyronine. Both E2 and NP-H reduced plasma sodium in FW and increased plasma chloride in SW. Plasma Cortisol levels pre- and poststressor were significantly elevated by all treatments relative to controls, but only E2 increased plasma glucose before and after the stressor. These results indicate that exposure of anadromous salmonids to environmental estrogens heightens sensitivity to external stressors, impairs ion regulation in both FW and SW, and disrupts endocrine pathways critical for smolt development.

  5. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure.

    PubMed

    Wu, Jianhong; Liu, Wei; Xue, Chenbing; Zhou, Shunchang; Lan, Fengli; Bi, Lei; Xu, Huibi; Yang, Xiangliang; Zeng, Fan-Dian

    2009-12-01

    The present study investigated the penetration and potential toxicity of titanium dioxide (TiO(2)) nanoparticles following its dermal exposure in vitro and in vivo. In vitro, after exposure to isolated porcine skin for 24h, titanium dioxide nanoparticles of carious sizes cannot penetrate through stratum corneum. Interestingly, when studied in vivo, quite different results were obtained. After topically applied on pig ear for 30 days, TiO(2) nanomaterials (4 nm and 60 nm) can penetrate through horny layer, and be located in deep layer of epidermis. Furthermore, after 60 days dermal exposure in hairless mice, nano-TiO(2) particles can penetrate through the skin, reach different tissues and induce diverse pathological lesions in several major organs. Notably, P25 (21 nm) TiO(2) nanomaterials shows a wider tissue distribution, and can even be found in the brain without inducing any pathological changes. Among all of the organs examined, the skin and liver displayed the most severe pathological changes that correspond to the significant changes in SOD and MDA levels. These results suggest that the pathological lesions are likely to be mediated through the oxidative stress induced by the deposited nanoparticles. Accordingly, the collagen content expressed as HYP content are also significantly reduced in mouse skin samples, indicating that topically applied nano-TiO(2) in skin for a prolonged time can induce skin aging. Altogether, the present study indicates that nanosize TiO(2) may pose a health risk to human after dermal exposure over a relative long time period.

  6. A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections

    NASA Astrophysics Data System (ADS)

    Goel, Anju; Kumar, Prashant

    2014-11-01

    Signalised traffic intersections (TIs) are considered as pollution hot-spots in urban areas, but the knowledge of fundamental drivers governing emission, dispersion and exposure to vehicle-emitted nanoparticles (represented by particle number concentration, PNC) at TIs is yet to be established. A number of following key factors, which are important for developing an emission and exposure framework for nanoparticles at TIs, are critically evaluated as a part of this review article. In particular, (i) how do traffic- and wind-flow features affect emission and dispersion of nanoparticles? (ii) What levels of PNCs can be typically expected under diverse signal- and traffic-conditions? (iii) How does the traffic driving condition affect the particle number (PN) emissions and the particle number emission factors (PNEF)? (iv) What is the relative importance of particle transformation processes in affecting the PNCs? (v) What are important considerations for the dispersion modelling of nanoparticles? (vi) What is extent of exposure at TIs with respect to other locations in urban settings? (vii) What are the gaps in current knowledge on this topic where the future research should focus? We found that the accurate consideration of dynamic traffic flow features at TIs is essential for reliable estimates of PN emissions. Wind flow features at TIs are generally complex to generalise. Only a few field studies have monitored PNCs at TIs until now, reporting over an order of magnitude larger peak PNCs (0.7-5.4 × 105 cm-3) compared with average PNCs at typical roadsides (˜0.3 × 105 cm-3). The PN emission and thus the PNEFs can be up to an order of magnitude higher during acceleration compared with steady speed conditions. The time scale analysis suggests nucleation as the fastest transformation process, followed by dilution, deposition, coagulation and condensation. Consideration of appropriate flow features, PNEFs and transformation processes emerged as important parameters for

  7. Disruption of steroidogenesis after dimethoate exposure and efficacy of N-acetylcysteine in rats: an old drug with new approaches.

    PubMed

    Jallouli, Manel; El Bini Dhouib, Ines; Dhouib, Hanène; Lasram, Montassar; Gharbi, Najoua; El Fazaa, Saloua

    2016-04-01

    Organophosphates (OPs) like dimethoate (DMT), are pesticides used worldwide, which can affect both animals and human. Whereas their toxicity is due to acetylcholinesterase inhibition, their secondary toxic effects have been related to free oxygen radical biosynthesis. The present study was designed to investigate the reprotoxic effects of DMT and the protective role of N-acetylcysteine (NAC) in male rat. DMT (20 mg/ kg/body weight) was administered daily to rats via gavage in corn oil and NAC (2 g/l) was added to drinking water for 30 days. Rats were sacrificed on the 30th day, 2 h after the last administration. Markers of testis injury (steroidogenesis impairment) and oxidative stress (lipid peroxidation, reduced glutathione, and antioxidant status) were assessed. In DMT-exposed rats, the serum level of testosterone was decreased. Further, a significant increase in lipid peroxidation level and a significant decrease in the activities of antioxidant enzymes were observed in the testis of rats during DMT intoxication. Real-time PCR (RT-PCR) analysis demonstrated a decrease in messenger RNA (mRNA) levels for testicular steroidogenic acute regulatory StAR protein, cytochrome P450scc, 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β hydroxysteroid dehydrogenase (17β-HSD) in the testis after DMT exposure. No significant changes in the oxidative stress status and selected reproductive variables were observed on CTN group, whereas NAC restored the oxidative stress and the steroidogenesis on NAC group. Dimethoate induces reprotoxicity and oxidative stress. N-acetylcysteine showed therapeutic recovery effects against dimethoate toxicity. PMID:26769589

  8. Disruption of steroidogenesis after dimethoate exposure and efficacy of N-acetylcysteine in rats: an old drug with new approaches.

    PubMed

    Jallouli, Manel; El Bini Dhouib, Ines; Dhouib, Hanène; Lasram, Montassar; Gharbi, Najoua; El Fazaa, Saloua

    2016-04-01

    Organophosphates (OPs) like dimethoate (DMT), are pesticides used worldwide, which can affect both animals and human. Whereas their toxicity is due to acetylcholinesterase inhibition, their secondary toxic effects have been related to free oxygen radical biosynthesis. The present study was designed to investigate the reprotoxic effects of DMT and the protective role of N-acetylcysteine (NAC) in male rat. DMT (20 mg/ kg/body weight) was administered daily to rats via gavage in corn oil and NAC (2 g/l) was added to drinking water for 30 days. Rats were sacrificed on the 30th day, 2 h after the last administration. Markers of testis injury (steroidogenesis impairment) and oxidative stress (lipid peroxidation, reduced glutathione, and antioxidant status) were assessed. In DMT-exposed rats, the serum level of testosterone was decreased. Further, a significant increase in lipid peroxidation level and a significant decrease in the activities of antioxidant enzymes were observed in the testis of rats during DMT intoxication. Real-time PCR (RT-PCR) analysis demonstrated a decrease in messenger RNA (mRNA) levels for testicular steroidogenic acute regulatory StAR protein, cytochrome P450scc, 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β hydroxysteroid dehydrogenase (17β-HSD) in the testis after DMT exposure. No significant changes in the oxidative stress status and selected reproductive variables were observed on CTN group, whereas NAC restored the oxidative stress and the steroidogenesis on NAC group. Dimethoate induces reprotoxicity and oxidative stress. N-acetylcysteine showed therapeutic recovery effects against dimethoate toxicity.

  9. Refinement of the Nanoparticle Emission Assessment Technique into the Nanomaterial Exposure Assessment Technique (NEAT 2.0)

    PubMed Central

    Eastlake, Adrienne C; Beaucham, Catherine; Martinez, Kenneth F; Dahm, Matthew M; Sparks, Christopher; Hodson, Laura L; Geraci, Charles L

    2016-01-01

    Engineered nanomaterial emission and exposure characterization studies have been completed at more than 60 different facilities by the National Institute for Occupational Safety and Health (NIOSH). These experiences have provided NIOSH the opportunity to refine an earlier published technique, the Nanoparticle Emission Assessment Technique (NEAT 1.0), into a more comprehensive technique for assessing worker and workplace exposures to engineered nanomaterials. This change is reflected in the new name Nanomaterial Exposure Assessment Technique (NEAT 2.0) which distinguishes it from NEAT 1.0. NEAT 2.0 places a stronger emphasis on time-integrated, filter-based sampling (i.e., elemental mass analysis and particle morphology) in the worker's breathing zone (full shift and task specific) and area samples to develop job exposure matrices. NEAT 2.0 includes a comprehensive assessment of emissions at processes and job tasks, using direct-reading instruments (i.e., particle counters) in data-logging mode to better understand peak emission periods. Evaluation of worker practices, ventilation efficacy, and other engineering exposure control systems and risk management strategies serve to allow for a comprehensive exposure assessment. PMID:27027845

  10. Refinement of the Nanoparticle Emission Assessment Technique into the Nanomaterial Exposure Assessment Technique (NEAT 2.0).

    PubMed

    Eastlake, Adrienne C; Beaucham, Catherine; Martinez, Kenneth F; Dahm, Matthew M; Sparks, Christopher; Hodson, Laura L; Geraci, Charles L

    2016-09-01

    Engineered nanomaterial emission and exposure characterization studies have been completed at more than 60 different facilities by the National Institute for Occupational Safety and Health (NIOSH). These experiences have provided NIOSH the opportunity to refine an earlier published technique, the Nanoparticle Emission Assessment Technique (NEAT 1.0), into a more comprehensive technique for assessing worker and workplace exposures to engineered nanomaterials. This change is reflected in the new name Nanomaterial Exposure Assessment Technique (NEAT 2.0) which distinguishes it from NEAT 1.0. NEAT 2.0 places a stronger emphasis on time-integrated, filter-based sampling (i.e., elemental mass analysis and particle morphology) in the worker's breathing zone (full shift and task specific) and area samples to develop job exposure matrices. NEAT 2.0 includes a comprehensive assessment of emissions at processes and job tasks, using direct-reading instruments (i.e., particle counters) in data-logging mode to better understand peak emission periods. Evaluation of worker practices, ventilation efficacy, and other engineering exposure control systems and risk management strategies serve to allow for a comprehensive exposure assessment.

  11. Exposure to bleached kraft pulp mill effluent disrupts the pituitary-gonadal axis of white sucker at multiple sites

    SciTech Connect

    Van Der Kraak, G.J.; Munkittrick, K.R.; McMaster, M.E.; Portt, C.B.; Chang, J.P. )

    1992-08-01

    Recent studies have demonstrated reproductive problems in white sucker (Catostomus commersoni) exposed to bleached kraft pulp mill effluent (BKME) at Jackfish Bay on Lake Superior. These fish exhibit delayed sexual maturity, reduced gonadal size, reduced secondary sexual characteristics, and circulating steroid levels depressed relative to those of reference populations. The present studies were designed to evaluate sites in the pituitary-gonadal axis of prespawning white sucker affected by BKME exposure. At the time of entry to the spawning stream, plasma levels of immunoreactive gonadotropin (GtH)-II (LH-type GtH) in male and female white sucker were 30- and 50-fold lower, respectively, than the levels in fish from a reference site. A single intraperitoneal injection of D-Arg6, Pro9N-Et sGnRH (sGnRH-A, 0.1 mg/kg) increased plasma GtH levels in male and female fish at both sites, although the magnitude of the response was greatly reduced in BKME-exposed fish. Fish at the BKME site did not ovulate in response to sGnRH-A, while 10 of 10 fish from the reference site ovulated within 6 hr. Plasma 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (17,20 beta-P) levels were depressed in BKME-exposed fish and unlike fish at the reference site, failed to increase in response to sGnRH-A. Testosterone levels in both sexes and 11-ketostestosterone levels in males were elevated in fish from the reference site but were not further increased by GnRH treatment. In contrast, BKME-exposed fish exhibit a transitory increase in testosterone levels in response to the GnRH analog. In vitro incubations of ovarian follicles obtained from fish at the BKME site revealed depressed basal secretion of testosterone and 17,20 beta-P and reduced responsiveness to the GtH analog human chorionic gonadotropin and to forskolin, a direct activator of adenylate cyclase.

  12. Histomorphological changes in testes of broad-snouted caimans (Caiman latirostris) associated with in ovo exposure to endocrine-disrupting chemicals.

    PubMed

    Durando, Milena; Canesini, Guillermina; Cocito, Laura L; Galoppo, Germán H; Zayas, Marcelo A; Luque, Enrique H; Muñoz-de-Toro, Mónica

    2016-01-01

    Studies regarding the effects of endocrine-disrupting chemicals (EDCs) on the reproductive functions of wild animals have raised increasing concern. Thus, here we evaluated the consequences of in ovo exposure to endosulfan (END) and bisphenol A (BPA) in testes from neonatal to juvenile (Juv) caimans (Caiman latirostris). Caiman eggs were collected from areas with low to moderate anthropogenic intervention and incubated at male-producing temperature. At stage 20 of embryonic development (previous to gonad sex determination), eggs were exposed to either END (20 ppm) or BPA (1.4 ppm) and male gonad histomorphology examined in 10-day-old, 90-day-old, and Juv caimans. The relative seminiferous tubular area (RTA) was measured in testes and the proliferation index and the expression of estrogen receptor alpha (ERα) were quantified in intratubular cells. Regardless of the treatment, all eggs resulted in male hatchlings. The testes of EDC-exposed caimans presented tortuous seminiferous tubules with empty tubular lumens. The RTA of 10-day-old caimans exposed to BPA was decreased. The percentage of cells expressing ERα was not different after in ovo treatment with EDCs (compared to the Control group), although caimans exposed to END showed a different ERα distribution pattern. The proliferation index was lower in 90-day-old caimans exposed to END, and higher in Juv caimans exposed to BPA. In ovo exposure to END or BPA modified sensitive parameters of C. latirostris male gonads. The alterations described here might compromise not only the sexual maturation but also the reproductive performance of adult caimans. J. Exp. Zool. 325A:84-96, 2016. © 2015 Wiley Periodicals, Inc. PMID:26639912

  13. DISRUPTED FEMALE REPRODUCTIVE PHYSIOLOGY FOLLOWING NEONATAL EXPOSURE TO PHYTOESTROGENS OR ESTROGEN SPECIFIC LIGANDS IS ASSOCIATED WITH DECREASED GNRH ACTIVATION AND KISSPEPTIN FIBER DENSITY IN THE HYPOTHALAMUS

    PubMed Central

    Bateman, Heather L.; Patisaul, Heather B.

    2008-01-01

    It is well established that estrogen administration during neonatal development can advance pubertal onset and prevent the maintenance of regular estrous cycles in female rats. This treatment paradigm also eliminates the preovulatory rise of gonadotropin releasing hormone (GnRH). It remains unclear, however, through which of the two primary forms of the estrogen receptor (ERα or ERβ) this effect is mediated. It is also unclear whether endocrine disrupting compounds (EDCs) can produce similar effects. Here we compared the effect of neonatal exposure to estradiol benzoate (EB), the ERα specific agonist 1,3,5-tris(4-Hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), the ERβ specific agonist diarylpropionitrile (DPN) and the naturally occurring EDCs genistein (GEN) and equol (EQ) on pubertal onset, estrous cyclicity, GnRH activation, and kisspeptin content in the anteroventral periventricular (AVPV) and arcuate (ARC) nuclei. Vaginal opening was significantly advanced by EB and GEN. By ten weeks post-puberty, irregular estrous cycles were observed in all groups except the control group. GnRH activation, as measured by the percentage of immunopositive GnRH neurons that were also immunopositive for Fos, was significantly lower in all treatment groups except the DPN group compared to the control group. GnRH activation was absent in the PPT group. These data suggest that neonatal exposure to EDCs can suppress GnRH activity in adulthood, and that ERα plays a pivotal role in this process. Kisspeptins (KISS) have recently been characterized to be potent stimulators of GnRH secretion. Therefore we quantified the density of KISS immunolabeled fibers in the AVPV and ARC. In the AVPV, KISS fiber density was significantly lower in the EB and GEN groups compared to the control group but only in the EB and PPT groups in the ARC. The data suggest that decreased stimulation of GnRH neurons by KISS could be a mechanism by which EDCs can impair female reproductive function. PMID:18656497

  14. Exposure and response prevention with or without parent management training for children with obsessive-compulsive disorder complicated by disruptive behavior: a multiple-baseline across-responses design study.

    PubMed

    Sukhodolsky, Denis G; Gorman, Bernard S; Scahill, Lawrence; Findley, Diane; McGuire, Joseph

    2013-04-01

    Comorbidity with disruptive behavior disorders may have important implications for exposure-based cognitive behavioral treatments of children with OCD. Child noncompliance and parent-child conflict may interfere with performance of exposure activities and completion of therapeutic homework assignments, thus diminishing response to treatment. We investigated whether response to exposure and response prevention (ERP) can be enhanced if disruptive behavior is treated first with parent management training (PMT). A multiple-baseline across-responses design was used to investigate the effects of ERP with or without PMT in six children (age range 9-14 years) with OCD and disruptive behavior. Weekly ratings of OCD were conducted for four weeks to establish baseline. After that, children were randomly assigned to receive six weekly sessions of PMT and then twelve weekly sessions of ERP (ERP-plus-PMT condition) or to receive ERP after a six week waiting period (ERP-only condition). The outcome assessments were conducted weekly using the Child Yale-Brown Obsessive Compulsive Scale (CY-BOCS) administered by an experienced clinician, who was blind to treatment assignment. Three subjects in the ERP-plus-PMT condition evidenced a 39 percent reduction in the CY-BOCS score versus a 10 percent reduction in three subjects in the ERP-only condition. The results of our single-subject study suggest the feasibility and positive effects of combining ERP with PMT for children with OCD complicated by disruptive behavior.

  15. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice

    PubMed Central

    Jacobsen, Nicklas Raun; Møller, Peter; Jensen, Keld Alstrup; Vogel, Ulla; Ladefoged, Ole; Loft, Steffen; Wallin, Håkan

    2009-01-01

    Background The toxic and inflammatory potential of 5 different types of nanoparticles were studied in a sensitive model for pulmonary effects in apolipoprotein E knockout mice (ApoE-/-). We studied the effects instillation or inhalation Printex 90 of carbon black (CB) and compared CB instillation in ApoE-/- and C57 mice. Three and 24 h after pulmonary exposure, inflammation was assessed by mRNA levels of cytokines in lung tissue, cell composition, genotoxicity, protein and lactate dehydrogenase activity in broncho-alveolar lavage (BAL) fluid. Results Firstly, we found that intratracheal instillation of CB caused far more pulmonary toxicity in ApoE-/- mice than in C57 mice. Secondly, we showed that instillation of CB was more toxic than inhalation of a presumed similar dose with respect to inflammation in the lungs of ApoE-/- mice. Thirdly, we compared effects of instillation in ApoE-/- mice of three carbonaceous particles; CB, fullerenes C60 (C60) and single walled carbon nanotubes (SWCNT) as well as gold particles and quantum dots (QDs). Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2 and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C60 particles caused much weaker inflammatory responses. Conclusion Our data suggest that ApoE-/- model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles. The strong effects of QDs were likely due to Cd release. The surface area of the instilled dose correlated well the inflammatory response for low toxicity particles. PMID:19138394

  16. Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis

    PubMed Central

    2014-01-01

    Background Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. Methods Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. Results Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. Conclusions Despite lacking alterations in lung deposition and

  17. Bacterial exposure to metal-oxide nanoparticles: Methods, physical interactions, and biological effects

    NASA Astrophysics Data System (ADS)

    Horst, Allison Marie

    Nanotechnology is a major endeavor of this century, with proposed applications in fields ranging from agriculture to energy to medicine. Nanoscale titanium dioxide (nano-TiO2) is among the most widely produced nanoparticles worldwide, and already exists in consumer products including impermanent personal care products and surface coatings. Inevitably, nano-TiO2 will be transported into the environment via consumer or industrial waste, where its effects on organisms are largely unknown. Out of concern for the possible ill-effects of nanoparticles in the environment, there is now a field of study in nanotoxicology. Bacteria are ideal organisms for nanotoxicology research because they are environmentally important, respond rapidly to intoxication, and provide evidence for effects in higher organisms. My doctoral research focuses on the effects and interactions of nano-TiO2 in aqueous systems with planktonic bacteria. This dissertation describes four projects and the outcomes of the research: (1) A discovery, using a combination of environmental- and cryogenic-scanning electron microscopy and dynamic light scattering (DLS), that initially agglomerated nano-TiO2 is dispersed upon bacterial contact, as nanoparticles preferentially sorbed to cell surfaces. (2) Establishment of a method to disperse nanoparticles in an aqueous culture medium for nanotoxicology studies. A combination of electrostatic repulsion, steric hindrance and sonication yielded a high initial level of nano-TiO2 dispersion (i.e. < 300 nm average agglomerate size) and reduced nanoparticle sedimentation. The approach is described in the context of general considerations for dispersion that are transferable to other nanoparticle and media chemistries. (3) Assessment and optimization of optically-based assays to simultaneously study effects of nanoparticles on bacterial membranes (membrane potential, membrane permeability, and electron transport chain function) and generation of reactive oxygen species. A

  18. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types.

    PubMed

    Mahmoud, Abudayyak; Ezgi, Öztaş; Merve, Arici; Özhan, Gül

    2016-07-01

    Worldwide researchers have rising concerns about magnesium-based materials, especially magnesium oxide (MgO) nanaoparticles, due to increasing usage as promising structural materials in various fields including cancer treatment. However, there is a serious lack of information about their toxicity at the cellular and molecular levels. In this study, the toxic potentials of MgO nanoparticles were investigated on liver (HepG2), kidney (NRK-52E), intestine (Caco-2), and lung (A549) cell lines. For the toxicological assessment, the following assays were used: the particle characterization by transmission electron microscopy, the determination of cellular uptake by inductively coupled plasma-mass spectrometry, MTT and neutral red uptake assays for cytotoxicity, comet assay for genotoxicity, and the determination of malondialdehyde (MDA), 8-hydroxydeoxyguanosine, protein carbonyl, and glutathione levels by enzyme-linked immune sorbent assays for the potential of oxidative damage and annexin V-fluorescein isothiocyanate (FITC) apoptosis detection assay with propidium iodide (PI) for apoptosis. Magnesium oxide nanoparticles were taken up by the cells depending on their concentration and agglomeration/aggregation potentials. Magnesium oxide nanoparticles induced DNA (≤14.27 fold) and oxidative damage. At a concentration of ≥323.39 µg/mL, MgO nanoparticles caused 50% inhibition in cell viability by 2 different cytotoxicity assays. The cell sensitivity to cytotoxic and genotoxic damage induced by MgO nanoparticles was ranked as HepG2 < A549 < Caco-2 < NRK-52E. Although it was observed that MgO nanoparticles induced apoptotic effects on the cells, apoptosis was not the main cell death. DNA damage, cell death, and oxidative damage effects of MgO nanoparticles should raise concern about the safety associated with their applications in consumer products. PMID:27177543

  19. Male reprotoxicity and endocrine disruption

    PubMed Central

    Campion, Sarah; Catlin, Natasha; Heger, Nicholas; McDonnell, Elizabeth V.; Pacheco, Sara E.; Saffarini, Camelia; Sandrof, Moses A.; Boekelheide, Kim

    2013-01-01

    Mammalian reproductive tract development is a tightly regulated process that can be disrupted following exposure to drugs, toxicants, endocrine disrupting chemicals or other compounds via alterations to gene and protein expression or epigenetic regulation. Indeed, the impacts of developmental exposure to certain toxicants may not be fully realized until puberty or adulthood when the reproductive tract becomes sexually mature and altered functionality is manifested. Exposures that occur later in life, once development is complete, can also disrupt the intricate hormonal and paracrine interactions responsible for adult functions, such as spermatogenesis. In this chapter, the biology and toxicology of the male reproductive tract is explored, proceeding through the various life stages including in utero development, puberty, adulthood and senescence. Special attention is given to the discussion of endocrine disrupting chemicals, chemical mixtures, low dose effects, transgenerational effects, and potential exposure-related causes of male reproductive tract cancers. PMID:22945574

  20. Exposure to Cerium Oxide Nanoparticles Is Associated With Activation of Mitogen-activated Protein Kinases Signaling and Apoptosis in Rat Lungs

    PubMed Central

    Rice, Kevin M.; Nalabotu, Siva K.; Manne, Nandini D.P.K.; Kolli, Madhukar B.; Nandyala, Geeta; Arvapalli, Ravikumar; Ma, Jane Y.; Blough, Eric R.

    2015-01-01

    Objectives: With recent advances in nanoparticle manufacturing and applications, potential exposure to nanoparticles in various settings is becoming increasing likely. No investigation has yet been performed to assess whether respiratory tract exposure to cerium oxide (CeO2) nanoparticles is associated with alterations in protein signaling, inflammation, and apoptosis in rat lungs. Methods: Specific-pathogen-free male Sprague-Dawley rats were instilled with either vehicle (saline) or CeO2 nanoparticles at a dosage of 7.0 mg/kg and euthanized 1, 3, 14, 28, 56, or 90 days after exposure. Lung tissues were collected and evaluated for the expression of proteins associated with inflammation and cellular apoptosis. Results: No change in lung weight was detected over the course of the study; however, cerium accumulation in the lungs, gross histological changes, an increased Bax to Bcl-2 ratio, elevated cleaved caspase-3 protein levels, increased phosphorylation of p38 MAPK, and diminished phosphorylation of ERK-1/2-MAPK were detected after CeO2 instillation (p<0.05). Conclusions: Taken together, these data suggest that high-dose respiratory exposure to CeO2 nanoparticles is associated with lung inflammation, the activation of signaling protein kinases, and cellular apoptosis, which may be indicative of a long-term localized inflammatory response. PMID:26081650

  1. Synergistic Effect of Bolus Exposure to Zinc Oxide Nanoparticles on Bleomycin-Induced Secretion of Pro-Fibrotic Cytokines without Lasting Fibrotic Changes in Murine Lungs

    PubMed Central

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D’Alessandro-Gabazza, Corina N.; Gabazza, Esteban C.; Ichihara, Sahoko

    2014-01-01

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs. PMID:25561223

  2. Effects of Silver Nitrate and Silver Nanoparticles on a Planktonic Community: General Trends after Short-Term Exposure

    PubMed Central

    Boenigk, Jens; Beisser, Daniela; Zimmermann, Sonja; Bock, Christina; Jakobi, Jurij; Grabner, Daniel; Großmann, Lars; Rahmann, Sven; Barcikowski, Stephan; Sures, Bernd

    2014-01-01

    Among metal pollutants silver ions are one of the most toxic forms, and have thus been assigned to the highest toxicity class. Its toxicity to a wide range of microorganisms combined with its low toxicity to humans lead to the development of a wealth of silver-based products in many bactericidal applications accounting to more than 1000 nano-technology-based consumer products. Accordingly, silver is a widely distributed metal in the environment originating from its different forms of application as metal, salt and nanoparticle. A realistic assessment of silver nanoparticle toxicity in natural waters is, however, problematic and needs to be linked to experimental approaches. Here we apply metatranscriptome sequencing allowing for elucidating reactions of whole communities present in a water sample to stressors. We compared the toxicity of ionic silver and ligand-free silver nanoparticles by short term exposure on a natural community of aquatic microorganisms. We analyzed the effects of the treatments on metabolic pathways and species composition on the eukaryote metatranscriptome level in order to describe immediate molecular responses of organisms using a community approach. We found significant differences between the samples treated with 5 µg/L AgNO3 compared to the controls, but no significant differences in the samples treated with AgNP compared to the control samples. Statistical analysis yielded 126 genes (KO-IDs) with significant differential expression with a false discovery rate (FDR) <0.05 between the control (KO) and AgNO3 (NO3) groups. A KEGG pathway enrichment analysis showed significant results with a FDR below 0.05 for pathways related to photosynthesis. Our study therefore supports the view that ionic silver rather than silver nanoparticles are responsible for silver toxicity. Nevertheless, our results highlight the strength of metatranscriptome approaches for assessing metal toxicity on aquatic communities. PMID:24755991

  3. Exposure to 2,5-hexanedione is accompanied by ovarian and uterine oxidative stress and disruption of endocrine balance in rats.

    PubMed

    Abolaji, Amos O; Adedara, Isaac A; Soladogun, Adedamola; Salau, Veronica; Oguaka, Maureen; Farombi, Ebenezer O

    2015-10-01

    2,5-Hexanedione (2,5-HD) is an aliphatic diketone identified as the main neurotoxic metabolite of the industrial chemicals n-hexane and methyl-n-butyl ketone. Considering the dearth of information on the female reproductive toxicity effects of 2,5-HD in the literature, we assessed the potential oxidative stress mechanisms of 2,5-HD in the ovary and uterus of Wistar rats. A total of 32 female rats were randomly allotted to four groups, in which rats were exposed to 2,5-HD at doses of 0% (control), 0.25%, 0.5% and 1.0% respectively in their drinking water for 21 days. The results showed that 2,5-HD significantly increased ovarian and uterine malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels (p < 0.05). Additionally, while significant decreases in ovarian catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activities occurred in all the 2,5-HD-treated groups, uterine catalase, GST, and GPx activities increased. Further, 2,5-HD increased follicle stimulating hormone, but decreased estrogen levels in all the 2,5-HD-treated groups, while prolactin increased in the 0.5, and 1.0% 2,5-HD-treated rats compared with the control (p < 0.05). Thus, these data imply that 2,5-HD exposure disrupts hormonal homeostasis and induces oxidative stress in the ovary and uterus of rats. These findings may therefore have toxicological implications in women occupationally exposed to n-hexane and methyl-n-butyl ketone.

  4. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    PubMed

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  5. NIOSH field studies team assessment: Worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Eastlake, Adrienne C; Beaucham, Catherine C; Geraci, Charles L

    2016-11-01

    The ubiquitous use of engineered nanomaterials-particulate materials measuring approximately 1-100 nanometers (nm) on their smallest axis, intentionally engineered to express novel properties-in semiconductor fabrication poses unique issues for protecting worker health and safety. Use of new substances or substances in a new form may present hazards that have yet to be characterized for their acute or chronic health effects. Uncharacterized or emerging occupational health hazards may exist when there is insufficient validated hazard data available to make a decision on potential hazard and risk to exposed workers under condition of use. To advance the knowledge of potential worker exposure to engineered nanomaterials, the National Institute for Occupational Safety and Health Nanotechnology Field Studies Team conducted an on-site field evaluation in collaboration with on-site researchers at a semiconductor research and development facility on April 18-21, 2011. The Nanomaterial Exposure Assessment Technique (2.0) was used to perform a complete exposure assessment. A combination of filter-based sampling and direct-reading instruments was used to identify, characterize, and quantify the potential for worker inhalation exposure to airborne alumina and amorphous silica nanoparticles associated with th e chemical mechanical planarization wafer polishing process. Engineering controls and work practices were evaluated to characterize tasks that might contribute to potential exposures and to assess existing engineering controls. Metal oxide structures were identified in all sampling areas, as individual nanoparticles and agglomerates ranging in size from 60 nm to >1,000 nm, with varying structure morphology, from long and narrow to compact. Filter-based samples indicated very little aerosolized material in task areas or worker breathing zone. Direct-reading instrument data indicated increased particle counts relative to background in the wastewater treatment area; however

  6. NIOSH field studies team assessment: Worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility.

    PubMed

    Brenner, Sara A; Neu-Baker, Nicole M; Eastlake, Adrienne C; Beaucham, Catherine C; Geraci, Charles L

    2016-11-01

    The ubiquitous use of engineered nanomaterials-particulate materials measuring approximately 1-100 nanometers (nm) on their smallest axis, intentionally engineered to express novel properties-in semiconductor fabrication poses unique issues for protecting worker health and safety. Use of new substances or substances in a new form may present hazards that have yet to be characterized for their acute or chronic health effects. Uncharacterized or emerging occupational health hazards may exist when there is insufficient validated hazard data available to make a decision on potential hazard and risk to exposed workers under condition of use. To advance the knowledge of potential worker exposure to engineered nanomaterials, the National Institute for Occupational Safety and Health Nanotechnology Field Studies Team conducted an on-site field evaluation in collaboration with on-site researchers at a semiconductor research and development facility on April 18-21, 2011. The Nanomaterial Exposure Assessment Technique (2.0) was used to perform a complete exposure assessment. A combination of filter-based sampling and direct-reading instruments was used to identify, characterize, and quantify the potential for worker inhalation exposure to airborne alumina and amorphous silica nanoparticles associated with th e chemical mechanical planarization wafer polishing process. Engineering controls and work practices were evaluated to characterize tasks that might contribute to potential exposures and to assess existing engineering controls. Metal oxide structures were identified in all sampling areas, as individual nanoparticles and agglomerates ranging in size from 60 nm to >1,000 nm, with varying structure morphology, from long and narrow to compact. Filter-based samples indicated very little aerosolized material in task areas or worker breathing zone. Direct-reading instrument data indicated increased particle counts relative to background in the wastewater treatment area; however

  7. NIOSH Field Studies Team Assessment: Worker Exposure to Aerosolized Metal Oxide Nanoparticles in a Semiconductor Fabrication Facility

    PubMed Central

    Brenner, Sara A.; Neu-Baker, Nicole M.; Eastlake, Adrienne C.; Beaucham, Catherine C.; Geraci, Charles L.

    2016-01-01

    The ubiquitous use of engineered nanomaterials – particulate materials measuring approximately 1–100 nanometers (nm) on their smallest axis, intentionally engineered to express novel properties – in semiconductor fabrication poses unique issues for protecting worker health and safety. Use of new substances or substances in a new form may present hazards that have yet to be characterized for their acute or chronic health effects. Uncharacterized or emerging occupational health hazards may exist when there is insufficient validated hazard data available to make a decision on potential hazard and risk to exposed workers under condition of use. To advance the knowledge of potential worker exposure to engineered nanomaterials, the National Institute for Occupational Safety and Health Nanotechnology Field Studies Team conducted an on-site field evaluation in collaboration with on-site researchers at a semiconductor research and development facility on April 18–21, 2011. The Nanomaterial Exposure Assessment Technique (2.0) was used to perform a complete exposure assessment. A combination of filter-based sampling and direct-reading instruments was used to identify, characterize, and quantify the potential for worker inhalation exposure to airborne alumina and amorphous silica nanopartic