Sample records for nanoparticle pharmacokinetic profiling

  1. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile

    PubMed Central

    Rafiei, Pedram; Haddadi, Azita

    2017-01-01

    Docetaxel is a highly potent anticancer agent being used in a wide spectrum of cancer types. There are important matters of concern regarding the drug’s pharmacokinetics related to the conventional formulation. Poly(lactide-co-glycolide) (PLGA) is a biocompatible/biodegradable polymer with variable physicochemical characteristics, and its application in human has been approved by the United States Food and Drug Administration. PLGA gives polymeric nanoparticles with unique drug delivery characteristics. The application of PLGA nanoparticles (NPs) as intravenous (IV) sustained-release delivery vehicles for docetaxel can favorably modify pharmacokinetics, biofate, and pharmacotherapy of the drug in cancer patients. Surface modification of PLGA NPs with poly(ethylene glycol) (PEG) can further enhance NPs’ long-circulating properties. Herein, an optimized fabrication approach has been used for the preparation of PLGA and PLGA–PEG NPs loaded with docetaxel for IV application. Both types of NP formulations demonstrated in vitro characteristics that were considered suitable for IV administration (with long-circulating sustained-release purposes). NP formulations were IV administered to an animal model, and docetaxel’s pharmacokinetic and biodistribution profiles were determined and compared between study groups. PLGA and PEGylated PLGA NPs were able to modify the pharmacokinetics and biodistribution of docetaxel. Accordingly, the mode of changes made to pharmacokinetics and biodistribution of docetaxel is attributed to the size and surface properties of NPs. NPs contributed to increased blood residence time of docetaxel fulfilling their role as long-circulating sustained-release drug delivery systems. Surface modification of NPs contributed to more pronounced docetaxel blood concentration, which confirms the role of PEG in conferring long-circulation properties to NPs. PMID:28184163

  2. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content

    PubMed Central

    Li, Mingguang; Panagi, Zoi; Avgoustakis, Konstantinos; Reineke, Joshua

    2012-01-01

    Biodistribution of nanoparticles is dependent on their physicochemical properties (such as size, surface charge, and surface hydrophilicity). Clear and systematic understanding of nanoparticle properties’ effects on their in vivo performance is of fundamental significance in nanoparticle design, development and optimization for medical applications, and toxicity evaluation. In the present study, a physiologically based pharmacokinetic model was utilized to interpret the effects of nanoparticle properties on previously published biodistribution data. Biodistribution data for five poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulations prepared with varied content of monomethoxypoly (ethyleneglycol) (mPEG) (PLGA, PLGA-mPEG256, PLGA-mPEG153, PLGA-mPEG51, PLGA-mPEG34) were collected in mice after intravenous injection. A physiologically based pharmacokinetic model was developed and evaluated to simulate the mass-time profiles of nanoparticle distribution in tissues. In anticipation that the biodistribution of new nanoparticle formulations could be predicted from the physiologically based pharmacokinetic model, multivariate regression analysis was performed to build the relationship between nanoparticle properties (size, zeta potential, and number of PEG molecules per unit surface area) and biodistribution parameters. Based on these relationships, characterized physicochemical properties of PLGA-mPEG495 nanoparticles (a sixth formulation) were used to calculate (predict) biodistribution profiles. For all five initial formulations, the developed model adequately simulates the experimental data indicating that the model is suitable for description of PLGA-mPEG nanoparticle biodistribution. Further, the predicted biodistribution profiles of PLGA-mPEG495 were close to experimental data, reflecting properly developed property–biodistribution relationships. PMID:22419876

  3. Anti-cancerous efficacy and pharmacokinetics of 6-mercaptopurine loaded chitosan nanoparticles.

    PubMed

    Kumar, G Prem; Sanganal, Jagadeesh S; Phani, A R; Manohara, C; Tripathi, Syamantak M; Raghavendra, H L; Janardhana, P B; Amaresha, S; Swamy, K B; Prasad, R G S V

    2015-10-01

    6-Mercaptopurine is a cytotoxic and immunosuppressant drug. The use of this drug is limited due to its poor bioavailability and short plasma half-life. In order to nullify these drawbacks, 6-mercaptopurine-chitosan nanoparticles (6-MP-CNPs) were prepared and evaluated to study the influence of preparation conditions on the physicochemical properties by using DLS, SEM, XRD and FTIR. The in vitro drug release profile at pH 4.8 and 7.4 revealed sustained release patterns for a period of 2 days. The nanoformulations showed enhanced in vitro anti-cancer activities (MTT assay, apoptosis assay, cell cycle arrest and ROS indices) on HT-1080 and MCF-7 cells. In vivo pharmacokinetics profiles of 6-MP-CNPs showed improved bioavailability. Thus, the results of the present study revealed that, the prepared 6-MP-CNPs have a significant role in increasing anti-cancer efficacy, bioavailability and in vivo pharmacokinetics profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles

    PubMed Central

    Baek, Miri; Chung, Hae-Eun; Yu, Jin; Lee, Jung-A; Kim, Tae-Hyun; Oh, Jae-Min; Lee, Won-Jae; Paek, Seung-Min; Lee, Jong Kwon; Jeong, Jayoung; Choy, Jin-Ho; Choi, Soo-Jin

    2012-01-01

    Background This study explored the pharmacokinetics, tissue distribution, and excretion profile of zinc oxide (ZnO) nanoparticles with respect to their particle size in rats. Methods Two ZnO nanoparticles of different size (20 nm and 70 nm) were orally administered to male and female rats, respectively. The area under the plasma concentration-time curve, tissue distribution, excretion, and the fate of the nanoparticles in organs were analyzed. Results The plasma zinc concentration of both sizes of ZnO nanoparticles increased during the 24 hours after administration in a dose-dependent manner. They were mainly distributed to organs such as the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender. Elimination kinetics showed that a small amount of ZnO nanoparticles was excreted via the urine, while most of nanoparticles were excreted via the feces. Transmission electron microscopy and x-ray absorption spectroscopy studies in the tissues showed no noticeable ZnO nanoparticles, while new Zn-S bonds were observed in tissues. Conclusion ZnO nanoparticles of different size were not easily absorbed into the bloodstream via the gastrointestinal tract after a single oral dose. The liver, lung, and kidney could be possible target organs for accumulation and toxicity of ZnO nanoparticles was independent of particle size or gender. ZnO nanoparticles appear to be absorbed in the organs in an ionic form rather than in a particulate form due to newly formed Zn-S bonds. The nanoparticles were mainly excreted via the feces, and smaller particles were cleared more rapidly than the larger ones. ZnO nanoparticles at a concentration below 300 mg/kg were distributed in tissues and excreted within 24 hours. These findings provide crucial information on possible acute and chronic toxicity of ZnO nanoparticles in potential target organs. PMID:22811602

  5. Physiologically based pharmacokinetic modeling of polyethylene glycol-coated polyacrylamide nanoparticles in rats.

    PubMed

    Li, Dingsheng; Johanson, Gunnar; Emond, Claude; Carlander, Ulrika; Philbert, Martin; Jolliet, Olivier

    2014-08-01

    Nanoparticles' health risks depend on their biodistribution in the body. Phagocytosis may greatly affect this distribution but has not yet explicitly accounted for in whole body pharmacokinetic models. Here, we present a physiologically based pharmacokinetic model that includes phagocytosis of nanoparticles to explore the biodistribution of intravenously injected polyethylene glycol-coated polyacrylamide nanoparticles in rats. The model explains 97% of the observed variation in nanoparticles amounts across organs. According to the model, phagocytizing cells quickly capture nanoparticles until their saturation and thereby constitute a major reservoir in richly perfused organs (spleen, liver, bone marrow, lungs, heart and kidneys), storing 83% of the nanoparticles found in these organs 120 h after injection. Key determinants of the nanoparticles biodistribution are the uptake capacities of phagocytizing cells in organs, the partitioning between tissue and blood, and the permeability between capillary blood and tissues. This framework can be extended to other types of nanoparticles by adapting these determinants.

  6. Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models.

    PubMed

    Nascimento, Ana Vanessa; Gattacceca, Florence; Singh, Amit; Bousbaa, Hassan; Ferreira, Domingos; Sarmento, Bruno; Amiji, Mansoor M

    2016-04-01

    The present study focuses on biodistribution profile and pharmacokinetic parameters of EGFR-targeted chitosan nanoparticles (TG CS nanoparticles) for siRNA/cisplatin combination therapy of lung cancer. Mad2 siRNA was encapsulated in EGFR targeted and nontargeted (NTG) CS nanoparticles by electrostatic interaction. The biodistribution of the nanoparticles was assessed qualitatively and quantitatively in cisplatin (DDP) sensitive and resistant lung cancer xenograft model. TG nanoparticles showed a consistent and preferential tumor targeting ability with rapid clearance from the plasma to infiltrate and sustain within the tumor up to 96 h. They exhibit a sixfold higher tumor targeting efficiency compared with the NTG nanoparticles. TG nanoparticles present as an attractive drug delivery platform for RNAi therapeutics against NSCLC.

  7. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Homan; Mintri, Shrutika; Menon, Archita Venugopal; Lee, Hea Yeon; Choi, Hak Soo; Kim, Jonghan

    2015-11-01

    Nanoparticles (NPs) are considered a promising tool in both diagnosis and therapeutics. Theranostic NPs possess the combined properties of targeted imaging and drug delivery within a single entity. While the categorization of theranostic NPs is based on their structure and composition, the pharmacokinetics of NPs are significantly influenced by the physicochemical properties of theranostic NPs as well as the routes of administration. Consequently, altered pharmacokinetics modify the pharmacodynamic efficacy and toxicity of NPs. Although theranostic NPs hold great promise in nanomedicine and biomedical applications, a lack of understanding persists on the mechanisms of the biodistribution and adverse effects of NPs. To better understand the diagnostic and therapeutic functions of NPs, this review discusses the factors that influence the pharmacokinetics, pharmacodynamics and toxicology of theranostic NPs, along with several strategies for developing novel diagnostic and therapeutic modalities.

  8. Biodegradable nanoparticles for improved kidney bioavailability of rhein: preparation, characterization, plasma, and kidney pharmacokinetics.

    PubMed

    Wei, Yinghui; Luo, Xiaoting; Guan, Jiani; Ma, Jianping; Zhong, Yicong; Luo, Jingwen; Li, Fanzhu

    2017-11-01

    The aim of this work is to develop biodegradable nanoparticles for improved kidney bioavailability of rhein (RH). RH-loaded nanoparticles were prepared using an emulsification solvent evaporation method and fully characterized by several techniques. Kidney pharmacokinetics was assessed by implanting a microdialysis probe in rat's kidney cortex. Blood samples were simultaneously collected (via femoral artery) for assessing plasma pharmacokinetics. Optimized nanoparticles were small, with a mean particle size of 132.6 ± 5.95 nm, and homogeneously dispersed. The charge on the particles was nearly zero, the encapsulation efficiency was 62.71 ± 3.02%, and the drug loading was 1.56 ± 0.15%. In vitro release of RH from the nanoparticles showed an initial burst release followed by a sustained release. Plasma and kidney pharmacokinetics showed that encapsulation of RH into nanoparticles significantly increased its kidney bioavailability (AUC kidney /AUC plasma  = 0.586 ± 0.072), clearly indicating that nanoparticles are a promising strategy for kidney drug delivery.

  9. Effective cellular internalization, cell cycle arrest and improved pharmacokinetics of Tamoxifen by cholesterol based lipopolymeric nanoparticles.

    PubMed

    Mazumdar, Samrat; Italiya, Kishan S; Sharma, Saurabh; Chitkara, Deepak; Mittal, Anupama

    2018-05-30

    The present study aims at the development of cholesterol based lipopolymeric nanoparticles for improved entrapment, better cell penetration and improved pharmacokinetics of Tamoxifen (TMX). Self-assembling cholesterol grafted lipopolymer, mPEG-b-(CB-{g-chol}-co-LA) was synthesized from poly(ethyleneglycol)-block-2-methyl-2-carboxyl-propylenecarboxylic acid-co-poly (l-lactide) [mPEG-b-(CB-{g-COOH}-co-LA)] copolymer followed by carbodiimide coupling for attaching cholesterol. Lipopolymeric nanoparticles were prepared using o/w solvent evaporation technique, which were subsequently characterized to determine its particle size, entrapment efficiency, release pattern and compared with mPEG-PLA nanoparticles. Further, in order to assess the in vitro efficacy, cytotoxicity studies, uptake, apoptosis assay and cell cycle analysis were performed in breast cancer cell lines (MCF-7 and 4T1). Finally, the pharmacokinetic profile of TMX loaded mPEG-b-(CB-{g-chol}-co-LA) lipopolymeric nanoparticles was also performed. TMX loaded lipopolymeric nanoparticles of particle size 151.25 ± 3.74 (PDI 0.123) and entrapment efficiency of 73.62 ± 3.08% were formulated. The haemolytic index, protein binding and in vitro drug release of the optimized nanoparticles were found to be comparable to that of the TMX loaded mPEG-PLA nanoparticles. Lipopolymeric nanoparticles demonstrated improved IC 50 values in breast cancer cells (22.2 μM in 4T1; 18.8 μM in MCF-7) than free TMX (27.6 μM and 23.5 μM respectively) and higher uptake efficiency. At IC 50 values, TMX loaded lipopolymeric nanoparticles induced apoptosis and cell cycle arrest (G 0 /G 1 phase) to similar extent as that of free drug. Pharmacokinetic studies indicated ∼2.5-fold increase in the half-life (t 1/2 ) (p < 0.001) and ∼2.7-fold (p < 0.001) increase in the mean residence time (MRT) of TMX following incorporation into lipopolymeric nanoparticles. Thus, mPEG-b-(CB-{g-chol}-co-LA) lipopolymeric

  10. Biodistribution and Pharmacokinetic Analysis of Combination Lonidamine and Paclitaxel Delivery in an Orthotopic Animal Model of Multi-drug Resistant Breast Cancer Using EGFR-Targeted Polymeric Nanoparticles

    PubMed Central

    Milane, Lara; Duan, Zhen-feng; Amiji, Mansoor

    2011-01-01

    The aim of this study was to assess the biodistribution and pharmacokinetics of epidermal growth factor receptor (EGFR)-targeted polymer blend nanoparticles loaded with the anticancer drugs lonidamine and paclitaxel. Plasma, tumor, and tissue distribution profiles were quantified in an orthotopic animal model of multi-drug resistant (MDR) breast cancer and were compared to treatment with non-targeted nanoparticles and to treatment with drug solution. Poly(D,L-lactide-co-glycolide)/poly(ethylene glycol)/EGFR targeting peptide (PLGA/PEG/EFGR peptide) construct was synthesized for incorporation in poly(ε-caprolactone) (PCL) particles to achieve active EGFR targeting. An isocratic HPLC method was developed to quantify lonidamine and paclitaxel in mice plasma, tumors, and vital organs. The targeted nanoparticles demonstrated superior pharmacokinetic profile relative to drug solution and non-targeted nanoparticles, particularly for lonidamine delivery. The first target site of accumulation is the liver, followed by the kidneys, and then the tumor mass; maximal tumor accumulation occurs at 3 hours post-administration. Lonidamine/paclitaxel combination therapy administered via EGFR-targeted polymer blend nanocarriers may become a viable platform for the future treatment of MDR cancer. PMID:21220050

  11. Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile.

    PubMed

    Kumar, Nagendra; Chaurasia, Sundeep; Patel, Ravi R; Khan, Gayasuddin; Kumar, Vikas; Mishra, Brahmeshwar

    2017-03-01

    Atorvastatin calcium (ATR), a second generation statin drug, was encapsulated in eudragit RSPO-based polymeric nanoparticles. The effect of independent variables (polymer content, stabilizer concentration, volume of chloroform and homogenization speed) on response variables (mean diameter particle size and entrapment efficiency) were investigated by employing central composite experimental design. All the independent variables were found to be significant for determining the response variables. Solid-state characterization study indicated the absence of physicochemical interaction between drug and polymer in formulation. Morphological study exhibited homogenous spherical shape of formulated nanoparticles. In vitro release study in phosphate buffer (pH 7.4) demonstrated sustained release profile over 24 h. Pharmacokinetic study in Charles Foster rats showed significant enhancement in oral bioavailability as compared to pure drug suspension. Efficacy study (lipid profile and blood glucose level) significantly justified the effectiveness of formulation having 50% less dose of ATR as compared to pure drug suspension. The effectiveness of formulation was further justified with an improved plasma safety profile of treated rats. Hence, ATR encapsulated eudragit RSPO nanoparticles can serve as potential drug delivery approach to enhance drug bioavailability, efficacy and safety profiles to alter existing marketed drug products.

  12. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction

    PubMed Central

    Hoshyar, Nazanin; Gray, Samantha; Han, Hongbin; Bao, Gang

    2016-01-01

    Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed. PMID:27003448

  13. Nanodrugs: pharmacokinetics and safety

    PubMed Central

    Onoue, Satomi; Yamada, Shizuo; Chan, Hak-Kim

    2014-01-01

    To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhanced bioavailability of orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity), and targeted delivery to specific tissues. Thus, nanodrug systems might lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity. A better understanding of the pharmacokinetic and safety characteristics of nanodrugs and the limitations of each delivery option is necessary for the further development of efficacious nanodrugs with high therapeutic potential and a wide safety margin. This review highlights the recent progress in nanodrug system development, with a focus on the pharmacokinetic advantages and safety challenges. PMID:24591825

  14. Combined image guided monitoring the pharmacokinetics of rapamycin loaded human serum albumin nanoparticles with a split luciferase reporter

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J. Silvio; Hida, Naoki; Niu, Gang; Tian, Jie

    2016-02-01

    Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies.Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery

  15. Polymeric Curcumin Nanoparticle Pharmacokinetics and Metabolism in Bile Duct Cannulated Rats

    PubMed Central

    Zou, Peng; Helson, Lawrence; Maitra, Anirban; Stern, Stephan T.; McNeil, Scott E.

    2013-01-01

    The objective of this study was to compare the pharmacokinetics and metabolism of polymeric nanoparticle encapsulated (nanocurcumin), and solvent solubilized curcumin formulations in Sprague Dawley (SD) rats. Nanocurcumin is currently under development for cancer therapy. Since free, unencapsulated curcumin is rapidly metabolized and excreted in rats, upon i.v. administration of nanocurcumin only nanoparticle encapsulated curcumin can be detected in plasma samples. Hence, the second objective of this study was to utilize the metabolic instability of curcumin to assess in vivo drug release from nanocurcumin. Nanocurcumin and solvent solubilized curcumin were administered at 10 mg curcumin/kg by jugular vein to bile duct-cannulated male SD rats (n = 5). Nanocurcumin increased the plasma Cmax of curcumin 1749 fold relative to the solvent solubilized curcumin. Nanocurcumin also increased the relative abundance of curcumin and glucuronides in bile, but did not dramatically alter urine and tissue metabolite profiles. The observed increase in biliary and urinary excretion of both curcumin and metabolites for the nanocurcumin formulation suggested rapid, “burst” release of curcumin. Although the burst release observed in this study is a limitation for targeted tumor delivery, nanocurcumin still exhibits major advantages over solvent solubilized curcumin, as the nanoformulation does not result in the lung accumulation observed for the solvent solubilized curcumin and increases overall systemic curcumin exposure. Additionally, the remaining encapsulated curcumin fraction following burst release is available for tumor delivery via the enhanced permeation and retention effect commonly observed for nanoparticle formulations. PMID:23534919

  16. In Vivo Biodistribution and Pharmacokinetics of Silica Nanoparticles as a Function of Geometry, Porosity and Surface Characteristics

    PubMed Central

    Yu, Tian; Hubbard, Dallin; Ray, Abhijit; Ghandehari, Hamidreza

    2012-01-01

    The in vivo biodistribution and pharmacokinetics of silica nanoparticles (SiO2) with systematically varied geometries, porosities, and surface characteristics were investigated in immune-competent CD-1 mice via the intravenous injection. The nanoparticles were taken up extensively by the liver and spleen. Mesoporous SiO2 exhibited higher accumulation in the lung than nonporous SiO2 of similar size. This accumulation was reduced by primary amine modification of the nanoparticles. High aspect ratio, amine-modified mesoporous nanorods showed enhanced lung accumulation compared to amine-modified mesoporous nanospheres. Accumulation of the nanoparticles was mainly caused by passive entrapment in the discontinuous openings in the endothelium of the liver and spleen or in the pulmonary capillaries, and was highly dependent on nanoparticle hydrodynamic size in circulation. The SiO2 were likely internalized by the reticulo-endothelial system (RES) following physical sequestration in the liver and spleen. The nanoparticles that were transiently associated with the lung were re-distributed out of this organ without significant internalization. Pharmacokinetic analysis showed that all SiO2 were rapidly cleared from systemic circulation. Amine-modified or nonporous nanoparticles possessed a higher volume of distribution at steady state than their pristine counterparts or mesoporous SiO2. In all, surface characteristics and porosity played important roles in influencing SiO2 biodistribution and pharmacokinetics. Increasing the aspect ratio of amine-modified mesoporous SiO2 from 1 to 8 resulted in increased accumulation in the lung. PMID:22684119

  17. Rapid Pharmacokinetic and Biodistribution Studies Using Cholorotoxin-Conjugated Iron Oxide Nanoparticles: A Novel Non-Radioactive Method

    PubMed Central

    Lee, Michelle Jeung-Eun; Veiseh, Omid; Bhattarai, Narayan; Sun, Conroy; Hansen, Stacey J.; Ditzler, Sally; Knoblaugh, Sue; Lee, Donghoon; Ellenbogen, Richard; Zhang, Miqin; Olson, James M.

    2010-01-01

    Background Recent advances in nanotechnology have led to the development of biocompatible nanoparticles for in vivo molecular imaging and targeted therapy. Many nanoparticles have undesirable tissue distribution or unacceptably low serum half-lives. Pharmacokinetic (PK) and biodistribution studies can help inform decisions determining particle size, coatings, or other features early in nanoparticle development. Unfortunately, these studies are rarely done in a timely fashion because many nanotechnology labs lack the resources and expertise to synthesize radioactive nanoparticles and evaluate them in mice. Methodology/Principal Findings To address this problem, we developed an economical, radioactivity-free method for assessing serum half-life and tissue distribution of nanoparticles in mice. Iron oxide nanoparticles coated with chitosan and polyethylene glycol that utilize chlorotoxin as a targeting molecule have a serum half-life of 7–8 hours and the particles remain stable for extended periods of time in physiologic fluids and in vivo. Nanoparticles preferentially distribute to spleen and liver, presumably due to reticuloendothelial uptake. Other organs have very low levels of nanoparticles, which is ideal for imaging most cancers in the future. No acute toxicity was attributed to the nanoparticles. Conclusions/Significance We report here a simple near-infrared fluorescence based methodology to assess PK properties of nanoparticles in order to integrate pharmacokinetic data into early nanoparticle design and synthesis. The nanoparticles tested demonstrate properties that are excellent for future clinical imaging strategies and potentially suitable for targeted therapy. PMID:20209054

  18. Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles.

    PubMed

    Liang, Xiaowen; Wang, Haolu; Grice, Jeffrey E; Li, Li; Liu, Xin; Xu, Zhi Ping; Roberts, Michael S

    2016-02-10

    A physiologically based pharmacokinetic model was developed for accurately characterizing and predicting the in vivo fate of long-circulating inorganic nanoparticles (NPs). This model is built based on direct visualization of NP disposition details at the organ and cellular level. It was validated with multiple data sets, indicating robust inter-route and interspecies predictive capability. We suggest that the biodistribution of long-circulating inorganic NPs is determined by the uptake and release of NPs by phagocytic cells in target organs.

  19. Assessing pharmacokinetics of indocyanine green-loaded nanoparticle in tumor with a dynamic diffuse fluorescence tomography system

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqi; Yin, Guoyan; Zhao, Huijuan; Ma, Wenjuan; Gao, Feng; Zhang, Limin

    2018-02-01

    Real-time and continuous monitoring of drug release in vivo is an important task in pharmaceutical development. Here, we devoted to explore a real-time continuous study of the pharmacokinetics of free indocyanine green (ICG) and ICG loaded in the shell-sheddable nanoparticles in tumor based on a dynamic diffuse fluorescence tomography (DFT) system: A highly-sensitive dynamic DFT system of CT-scanning mode generates informative and instantaneous sampling datasets; An analysis procedure extracts the pharmacokinetic parameters from the reconstructed time curves of the mean ICG concentration in tumor, using the Gauss-Newton scheme based on two-compartment model. Compared with the pharmacokinetic parameters of free ICG in tumor, the ICG loaded in the shell-sheddable nanoparticles shows efficient accumulation in tumor. The results demonstrate our proposed dynamic-DFT can provide an integrated and continuous view of the drug delivery of the injected agents in different formulations, which is helpful for the development of diagnosis and therapy for tumors.

  20. Pharmacokinetic profiles of repaglinide in elderly subjects with type 2 diabetes.

    PubMed

    Hatorp, V; Huang, W C; Strange, P

    1999-04-01

    Pharmacokinetic profiles of single- and multiple-dose regimens of repaglinide were evaluated in 12 elderly subjects with type 2 diabetes. On day 1, following a 10-hour fast, subjects received a single 2-mg dose of repaglinide. Starting on day 2 and continuing for 7 days, each subject received a 2-mg dose of repaglinide 15 minutes before each of the three main meals. On day 9, subjects received a single 2-mg dose of repaglinide. Pharmacokinetic profiles, including area under the curve (AUC), log(AUC), maximal concentration (Cmax), log(Cmax), time to maximal concentration (Tmax), and half-life (T(1/2)), were determined at completion of the single- and multiple-dose regimens (days 1 and 9, respectively). Trough repaglinide values were collected on days 2 through 7. The mean log(AUC) values after multiple dosing were significantly higher than the values obtained after a single dose. The mean values for log(Cmax), and Tmax were comparable after each dosing regimen. The T(1/2) of repaglinide after multiple dosing was 1.7 hours. The trough values for repaglinide were low. No hypoglycemic events were reported. The pharmacokinetic profiles of repaglinide after single- and multiple-dose regimens were similar, and repaglinide was well tolerated by elderly subjects with type 2 diabetes.

  1. Nanoparticle-Delivered Chemotherapy: Old Drugs in New Packages.

    PubMed

    Lee, Michael S; Dees, E Claire; Wang, Andrew Z

    2017-03-15

    Cytotoxic chemotherapies have a narrow therapeutic window, with high peaks and troughs of plasma concentration. Novel nanoparticle formulations of cytotoxic chemotherapy drugs can enhance pharmacokinetic characteristics and facilitate passive targeting of drugs to tumors via the enhanced permeability and retention effect, thus mitigating toxicity. Nanoparticle vehicles currently in clinical use or undergoing clinical investigation for anticancer therapies include liposomes, polymeric micelles, protein-drug nanoparticles, and dendrimers. Multiple nanoparticle formulations of existing cytotoxic chemotherapies are approved for use in several indications, with clinical data indeed showing optimization of pharmacokinetics and different toxicity profiles compared with their parent drugs. There are also many new nanoparticle drug formulations in development and undergoing early- and late-phase clinical trials, including several that utilize active targeting or triggered release based on environmental stimuli. Here, we review the rationale for nanoparticle formulations of existing or previously investigated cytotoxic drugs, describe currently approved nanoparticle formulations of drugs, and discuss some of the most promising clinical trials currently underway.

  2. Preparation, in vitro release, and pharmacokinetics in rabbits of lyophilized injection of sorafenib solid lipid nanoparticles

    PubMed Central

    Zhang, Hong; Zhang, Fu-Ming; Yan, Shi-Jun

    2012-01-01

    Sorafenib solid lipid nanoparticles (S-SLN) were prepared by emulsion evaporation–solidification at low temperature. Morphology was examined by transmission electron microscope. Particle size and zeta potential were determined by laser granularity equipment. Encapsulation efficiency (EE) was detected by Sephadex gel chromatography and high-performance liquid chromatography (HPLC). The in vitro release profile of S-SLN was studied with dialysis technology. The lyophilized injection of S-SLN was prepared by freeze drying and analyzed by differential scanning calorimetry. The plasma concentration of sorafenib in blood was determined by HPLC. The solid lipid nanoparticles assumed a spherical shape with an even distribution of diameter and particle size 108.23 ± 7.01 nm (n = 3). The polydispersity index, zeta potential, and EE were determined to be 0.25 ± 0.02, −16.37 ± 0.65 mV, and 93.49% ± 1.87%, respectively (n = 3). The in vitro release accorded with the Weibull distribution model. An equal volume of 15% (w/v) mannitol performed better as the protective agent for a lyophilized injection of S-SLN with a new material phase formation. The pharmacokinetic processes of sorafenib solution and lyophilized injection of S-SLN in vivo were in accordance with the two-compartment and one-compartment models, respectively. S-SLN nanoparticles are thus considered a promising drug-delivery system. PMID:22787390

  3. Clinical pharmacokinetic and pharmacodynamic profile of lacosamide.

    PubMed

    Cawello, Willi

    2015-09-01

    Lacosamide-a third-generation antiepileptic drug available in multiple formulations-was first approved in 2008 as adjunctive therapy for partial-onset seizures (POS) in adults. In 2014, lacosamide was approved as monotherapy for POS by the US Food and Drug Administration (FDA). A loading dose administration was approved in 2013 by the European Medicines Agency and in 2014 by the FDA. Unlike traditional sodium channel blockers affecting fast inactivation, lacosamide selectively enhances sodium channel slow inactivation. This mechanism of action results in stabilization of hyperexcitable neuronal membranes, inhibition of neuronal firing and reduction in long-term channel availability without affecting physiological function. Lacosamide is rapidly absorbed, with maximum plasma concentrations reached 0.5-4 h after intake. Oral bioavailability is high (100 %) for a dose up to 800 mg. Bioavailability is irrespective of food intake. Variability in pharmacokinetic parameters is low (coefficients of variation almost all <20 %). The pharmacokinetic profile of lacosamide is consistent in healthy subjects and across different patient populations studied. Lacosamide elimination from plasma occurs with a terminal half-life of approximately 13 h in young subjects and 14-16 h in elderly subjects; this difference does not impact the dose regimen. Lacosamide produces a pharmacodynamic effect that is closely correlated with its plasma concentration. The pharmacokinetic and pharmacodynamic relationship for reduction of seizure frequency can be described by a maximum effect (E max) model. Lacosamide does not induce or inhibit cytochrome P450 enzymes or known drug transporter systems, has low protein binding of less than 15 % and, because it has multiple elimination pathways, it has no clinically relevant interactions with commonly prescribed medications.

  4. Abelmoschi Corolla non-flavonoid components altered the pharmacokinetic profile of its flavonoids in rat.

    PubMed

    Lu, Linling; Qian, Dawei; Guo, Jianming; Qian, Yefei; Xu, Boyi; Sha, Mei; Duan, Jinao

    2013-07-30

    Abelmoschi Corolla is a well-known herbal medicine used for the treatment of chronic renal disease. Flavonoids are the major bioactive ingredients of Abelmoschi Corolla, but some non-flavonoid components also exist in this herb. In order to clarify the influences of non-flavonoid components on the pharmacokinetics profile of the flavonoid fraction from Abelmoschi Corolla (FFA), an investigation was carried out to compare the pharmacokinetic parameters of seven flavonoid components after administration of FFA and after administration of FFA combined with different non-flavonoid fractions. A selective and sensitive UPLC-MS/MS method was established to determine the plasma concentrations of the seven compounds. Sprague-Dawley rats were allocated to four groups which orally administered FFA, FFA combined with macromolecular fraction (FFA-MF), FFA combined with small molecule fraction (FFA-SF) and FFA combined with MF-SF (FFA-MF-SF) with approximately the same dose of FFA. At different time points, the concentration of rutin (1), hyperoside (2), isoquercitrin (3), hibifolin (4), myricetin (5), quercetin-3'-O-glucose (6), quercetin (7) in rat plasma were determined and main pharmacokinetic parameters including T(1/2), T(max), AUC and C(max) were calculated using the DAS 2.0 software package. The statistical analysis was performed using the Student's t-test with P<0.05 as the level of significance. Flavonoids almost had similar pharmacokinetics profile that were rapidly absorbed, reached the peak concentration at 30-60 min in group A, but the pharmacokinetic profiles and parameters of these flavonoids changed when co-administered with non-flavonoid components. It was found that AUC of five flavonoids but not hibifolin and quercetin in group FFA-SF and group FFA-MF-SF increased (P<0.05) in comparison with group FFA while the tendency was not observed in group FFA-MF. Moreover, seven flavonoids had varying degrees of differences in the pharmacokinetics parameters such as C

  5. Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats.

    PubMed

    Páleníček, Tomáš; Balíková, Marie; Rohanová, Miroslava; Novák, Tomáš; Horáček, Jiří; Fujáková, Michaela; Höschl, Cyril

    2011-03-01

    Despite poisoning with the ecstasy substitute para-methoxymethamphetamine (PMMA) being typically associated with severe hyperthermia and death, behavioral and toxicological data on this drug are missing. Herein we present the behavioral profile of PMMA, its hyperthermic potency and pharmacokinetic profile in rats. The effects of PMMA 5 and 20 mg/kg on locomotion, on prepulse inhibition (PPI) of acoustic startle reaction (ASR), on body temperature under isolated and crowded conditions and on the pharmacokinetics analyzed with gas chromatography mass spectrometry (GC-MS) were evaluated. PMMA increased overall locomotion with the higher dose showing a biphasic effect. PPI was decreased dose-dependently. The hyperthermic response was present only with PMMA 20 mg/kg and was accompanied by extensive perspiration under crowded conditions. Serum levels of PMMA peaked at approximately 30 min after both treatments; on the contrary the maximum brain concentrations of PMMA at 20 mg/kg peaked approximately 1h after the administration, which was rather delayed compared to maximum after 5mg/kg dose. These data indicate that PMMA has a similar behavioral profile to stimulants and hallucinogens and that the toxicity might be increased in a crowded environment. High doses of PMMA have a gradual penetration to the brain which might lead to the delayed peak concentrations and prolonged effects of the drug. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin.

    PubMed

    Yamamoto, Syunsuke; Karashima, Masatoshi; Arai, Yuta; Tohyama, Kimio; Amano, Nobuyuki

    2017-09-01

    Although several mathematical models have been reported for the estimation of human plasma concentration profiles of drug substances after dermal application, the successful cases that can predict human pharmacokinetic profiles are limited. Therefore, the aim of this study is to investigate the prediction of human plasma concentrations after dermal application using in vitro permeation parameters obtained from excised human skin. The in vitro skin permeability of 7 marketed drug products was evaluated. The plasma concentration-time profiles of the drug substances in humans after their dermal application were simulated using compartment models and the clinical pharmacokinetic parameters. The transdermal process was simulated using the in vitro skin permeation rate and lag time assuming a zero-order absorption. These simulated plasma concentration profiles were compared with the clinical data. The result revealed that the steady-state plasma concentration of diclofenac and the maximum concentrations of nicotine, bisoprolol, rivastigmine, and lidocaine after topical application were within 2-fold of the clinical data. Furthermore, the simulated concentration profiles of bisoprolol, nicotine, and rivastigmine reproduced the decrease in absorption due to drug depletion from the formulation. In conclusion, this simple compartment model using in vitro human skin permeation parameters as zero-order absorption predicted the human plasma concentrations accurately. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Effect of Nanoparticle Surface on the HPLC Elution Profile of Liposomal Nanoparticles.

    PubMed

    Itoh, Naoki; Yamamoto, Eiichi; Santa, Tomofumi; Funatsu, Takashi; Kato, Masaru

    2016-06-01

    Nanoparticles have been used in diverse areas, and even broader applications are expected in the future. Since surface modification can influence the configuration and toxicity of nanoparticles, a rapid screening method is important to ensure nanoparticle quality. We examined the effect of the nanoparticle surface morphology on the HPLC elution profile using two types of 100-nm liposomal nanoparticles (AmBisome(Ⓡ) and DOXIL(Ⓡ)). These 100-nm-sized nanoparticles eluted before the holdup time (about 4 min), even when a column packed with particles with a relatively large pore size (30 nm) was used. The elution time of the nanoparticles increased with pegylation of the nanoparticles and protein adsorption to the nanoparticles; however, the nanoparticles still eluted before the holdup time. The results of this study indicate that HPLC is a suitable tool for rapid evaluation of the surface of liposomal nanoparticles.

  8. Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants—A comprehensive review

    PubMed Central

    Mehta, Piyush; Shah, Rishi; Lohidasan, Sathiyanarayanan; Mahadik, K.R.

    2015-01-01

    Herbal medicine, the backbone of traditional medicine, has played an important role in human health and welfare for a long period. Traditional therapeutic approaches of regional significance are found in Africa, South and Central America, China, India, Tibet, Indonesia, and the Pacific Islands. The considerable scientific significance and commercial potential of traditional medicines have resulted in increased international attention and global market demands for herbal medicines, especially Chinese herbal medicines. Herbal medicines currently are the primary form of health care for the poor in the developing countries, and also are widely used as a supplement or substitute for conventional drugs in developed countries. These traditional medicines have a pivotal role in the treatment of various ailments and more than 50% of drugs used in Western pharmacopoeia are isolated from herbs or derived from modifications of chemicals found in plants. Herbal medicines usually contain a complex mixture of various bioactive molecules, which make its standardization complicated, and there is little information about all compounds responsible for pharmacological activity. Several research papers have been published that claim pharmacological activity of herbal medicines but few are discussing the role of the exact phytoconstituent. Understanding the pharmacokinetic profile of such phytoconstituents is essential. Although there are research papers that deal with pharmacokinetic properties of phytoconstituents, there are a number of phytoconstituents yet to be explored for their kinetic properties. This article reviews the pharmacokinetic profile of 50 different therapeutically effective traditional medicinal plants from the year 2003 onward. PMID:26587392

  9. Interactions of pharmacokinetic profile of different parts from Ginkgo biloba extract in rats.

    PubMed

    Guan, HanLiang; Qian, Dawei; Ren, Hao; Zhang, Wei; Nie, Hui; Shang, Erxing; Duan, Jinao

    2014-08-08

    Extracts from Ginkgo biloba L. leaves confer their therapeutic effects through the synergistic actions of flavonoid and terpenoid components, but some non-flavonoid and non-terpenoid components also exist in this extract. In the study of this paper, an investigation was carried out to compare the pharmacokinetic parameters of fourteen compounds to clarify the influences of non-flavonoid and non-terpenoid fraction (WEF) on the pharmacokinetics profile of the flavonoid fraction (FF) and the terpene lactone fraction (TLF) from Ginkgo biloba extracts. A selective and sensitive UPLC-MS/MS method was established to determine the plasma concentrations of the fourteen compounds to compare the pharmacokinetic parameters after orally administration of FF, TLF, FF-WEF, FF-TLF, TLF-WEF and FF-TLF-WEF with approximately the same dose. At different time points, the concentration of rutin (1), isoquercitrin (2), quercetin 3-O-[4-O-(-β-D-glucosyl)-α-L-rhamnoside] (3), ginkgolide C (4), bilobalide (5), quercitrin (6), ginkgolide B (7), ginkgolide A (8), luteolin (9), quercetin (10), apigenin (11), kaempferol (12), isorhamnetin (13), genkwanin (14) in rat plasma were determined and main pharmacokinetic parameters including T1/2, Tmax, Cmax and AUC were calculated using the DAS 3.2 software package. The statistical analysis was performed using the Student׳s t-test with P<0.05 as the level of significance. FF and WEF had no effect on the pharmacokinetic behaviors and parameters of the four terpene lactones, but the pharmacokinetic profiles and parameters of flavonoids changed while co-administered with non-flavonoid components. It was found that Cmax and AUC of six flavonoid aglycones in group FF-WEF, FF-TLF and FF-TLF-WEF had varying degrees of reduction in comparison with group FF, especially in group FF-TLF-WEF. On the contrary, the values of Cmax, Tmax and AUC of four flavonoid glycosides in group FF-TLF-WEF were significantly increased compared with those in group FF. These

  10. Nano-Advantage in Enhanced Drug Delivery with Biodegradable Nanoparticles: Contribution of Reduced Clearance

    PubMed Central

    Kadam, Rajendra S.; Bourne, David W. A.

    2012-01-01

    The aim of this study was to investigate the contribution of reduced apparent clearance to the enhanced exposure reported for biodegradable nanoparticles after extravascular and intravascular routes of administration. Plasma concentration profiles for drug and nanoparticle formulations after administration by intravenous, intraduodenal, and oral routes were extracted from the literature. Data were fit to pharmacokinetic models using BOOMER. The compartmental pharmacokinetic analysis of literature data for six drugs (camptothecin, 9-nitrocamptothecin, epirubicin, vinpocetine, clozapine, and cyclosporine) showed that the encapsulation of drug molecules in nanoparticles significantly reduced the apparent clearance and prolonged the apparent circulation half-life compared with those for the plain drug. Positively charged nanoparticles assessed in this study had lower apparent clearance, lower elimination rate constant values, and longer apparent circulation half-life than neutral and negatively charged nanoparticles. After oral administration, a reduction in apparent clearance contributed substantially to elevations in plasma drug exposure with nanoparticles. For the drugs and delivery systems examined, the nano-advantage in drug delivery enhancement can be explained, in part, by reduced clearance. PMID:22498894

  11. Differing disintegration and dissolution rates, pharmacokinetic profiles and gastrointestinal tolerability of over the counter ibuprofen formulations.

    PubMed

    Bjarnason, Ingvar; Sancak, Ozgur; Crossley, Anne; Penrose, Andrew; Lanas, Angel

    2018-02-01

    Formulations of over the counter (OTC) NSAIDs differ substantially, but information is lacking on whether this alters their gastrointestinal profiles. To assess disintegration and dissolution rates and pharmacokinetics of four preparations of OTC ibuprofen and relate these with spontaneously reported gastrointestinal adverse events. Disintegration and dissolution rates of ibuprofen tablets as (a) acid, (b) sodium salt, (c) lysine salt, and (d) as a liquid gelatine capsule were assessed. Pharmacokinetic data gastrointestinal and spontaneously reported adverse events arising from global sales were obtained from files from Reckitt Benckiser. Disintegration at low pH was progressively shorter for the preparations from a-to-d with formation of correspondingly smaller ibuprofen crystals, while dissolution was consistently poor. Dissolution at a neutral pH was least rapid for the liquid gelatine capsule. Pharmacokinetic data showed a shorter t max and a higher C max for preparations b-d as compared with ibuprofen acid. Spontaneously reported abdominal symptoms were rare with the liquid gelatine preparation. The formulations of OTC ibuprofen differ in their disintegration and dissolution properties, pharmacokinetic profiles and apparent gastrointestinal tolerability. Spontaneously reported abdominal symptoms were five times lower with the liquid gelatine capsule as compared with ibuprofen acid despite a 30% increase in C max . © 2017 Royal Pharmaceutical Society.

  12. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation.

    PubMed

    Ravi, Punna Rao; Vats, Rahul; Dalal, Vikas; Murthy, Aditya Narasimha

    2014-07-01

    To prepare stearic acid-based lopinavir (LPV) loaded solid lipid nanoparticles (SLNs) using a hybrid design and compare in-vivo performance of optimized formulation with marketed LPV/ritonavir (RTV) coformulation. LPV SLNs were prepared by hot melt emulsion technique and optimized using Plackett-Burman design and Box-Behnken design. Physical characterization studies were conducted for the optimized SLNs. Comparative oral pharmacokinetic studies and tissue distribution studies of optimized SLNs and LPV/RTV coformulation were done in Wistar rats. In-vitro metabolic stability and intestinal permeability studies for LPV SLNs were undertaken to elucidate the mechanism involved in the pharmacokinetic improvement of LPV. Optimized SLNs exhibited nanometeric size (223 nm) with high entrapment efficiency (83%). In-vitro drug release study of SLNs showed biphasic sustained release behaviour. Significant increase in oral bioavailability of LPV from LPV SLNs (5 folds) and LPV/RTV coformulation (3.7 folds) was observed as compared with free LPV. LPV SLNs showed better tissue distribution of LPV in HIV reservoirs than LPV/RTV coformulation. In-vitro studies demonstrated that SLNs provided metabolic protection of LPV and were endocytosized during absorption. SLNs enhanced oral bioavailability and improved distribution profile of LPV to HIV reservoirs and hence could be better alternative to LPV/RTV coformulation. © 2014 Royal Pharmaceutical Society.

  13. Insulin analogs with improved pharmacokinetic profiles.

    PubMed

    Brange; Vølund

    1999-02-01

    The aim of insulin replacement therapy is to normalize blood glucose in order to reduce the complications of diabetes. The pharmacokinetics of the traditional insulin preparations, however, do not match the profiles of physiological insulin secretion. The introduction of the rDNA technology 20 years ago opened new ways to create insulin analogs with altered properties. Fast-acting analogs are based on the idea that an insulin with less tendency to self-association than human insulin would be more readily absorbed into the systemic circulation. Protracted-acting analogs have been created to mimic the slow, steady rate of insulin secretion in the fasting state. The present paper provides a historical review of the efforts to change the physicochemical and pharmacological properties of insulin in order to improve insulin therapy. The available clinical studies of the new insulins are surveyed and show, together with modeling results, that new strategies for optimal basal-bolus treatment are required for utilization of the new fast-acting analogs.

  14. Psychomotor effect differences between l-methamphetamine and d-methamphetamine are independent of murine plasma and brain pharmacokinetics profiles.

    PubMed

    Nishimura, Tetsuya; Takahata, Kazue; Kosugi, Yuri; Tanabe, Takaaki; Muraoka, Shizuko

    2017-05-01

    l-Methamphetamine has been occasionally referred to as a stimulant similar to d-methamphetamine, probably owing to insufficient comparative studies. Here, we directly compared psychomotor efficacies and pharmacokinetics of methamphetamine enantiomers in mice. Only d-methamphetamine, but not l-methamphetamine, induced stereotypy and sensitization at 1-10 mg/kg. However, plasma pharmacokinetic parameters of 10 mg/kg l-methamphetamine were ≥tenfold those of 1 mg/kg d-methamphetamine. These results clearly indicate that differential psychomotor efficacies of methamphetamine enantiomers are independent of their pharmacokinetic profiles.

  15. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles.

    PubMed

    Xie, Shuyu; Pan, Baoliang; Wang, Ming; Zhu, Luyan; Wang, Fenghua; Dong, Zhao; Wang, Xiaofang; Zhou, WenZhong

    2010-07-01

    The purpose of this study was to formulate praziquantel (PZQ)-loaded hydrogenated castor oil (HCO) solid lipid nanoparticles (SLN) to enhance the bioavailability and prolong the systemic circulation of the drug. PZQ was encapsulated into HCO nanoparticles by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy and photon correlation spectroscopy. Pharmacokinetics were studied after oral, subcutaneous and intramuscular administration in mice. The diameter, polydispersivity index, zeta potential, encapsulation efficiency and loading capacity of the nanoparticles were 344.0 +/- 15.1 nm, 0.31 +/- 0.08, -16.7 +/- 0.5 mV, 62.17 +/- 6.53% and 12.43 +/- 1.31%, respectively. In vitro release of PZQ-loaded HCO-SLN exhibited an initial burst release followed by a sustained release. SLN increased the bioavailability of PZQ by 14.9-, 16.1- and 2.6-fold, and extended the mean residence time of the drug from 7.6, 6.6 and 8.2 to 95.9, 151.6 and 48.2 h after oral, subcutaneous and intramuscular administration, respectively. The PZQ-loaded HCO-SLN could be a promising formulation to enhance the pharmacological activity of PZQ.

  16. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids.

    PubMed

    Xie, Shuyu; Zhu, Luyan; Dong, Zhao; Wang, Xiaofang; Wang, Yan; Li, Xihe; Zhou, WenZhong

    2011-04-01

    Enrofloxacin-loaded solid lipid nanoparticles (SLN) were prepared using fatty acids (tetradecanoic acid, palmitic acid, stearic acid) as lipid matrix by hot homogenization and ultrasonication method. The effect of fatty acids on the characteristics and pharmacokinetics of the SLN were investigated. The results showed that the encapsulation efficiency and loading capacity of nanoparticles varied with fatty acids in the order of stearic acid>palmitic acid>tetradecanoic acid. Furthermore, stearic acid-SLN had larger particle size, bigger polydispersity index (PDI) and higher zeta potential compared with the other two fatty acid formulated SLN. The SLN showed sustained releases in vitro and the released enrofloxacin had the same antibacterial activity as that of the native enrofloxacin. Although in vitro release exhibited similar patterns, within 24 h the releasing rates of the three formulations were significantly different (tetradecanoic acid-SLN>palmitic acid-SLN>stearic acid-SLN). Pharmacokinetic study after a single dose of intramuscular administration to mice demonstrated that tetradecanoic acid-SLN, palmitic acid-SLN, and stearic acid-SLN increased the bioavailability by 6.79, 3.56 and 2.39 folds, and extended the mean residence time (MRT) of the drug from 10.60 h to 180.36, 46.26 and 19.09 h, respectively. These results suggest that the enrofloxacin-fatty acid SLN are promising formulations for sustained release while fatty acids had significant influences on the characteristics and performances of the SLN. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Pharmacokinetic profile of liposome bupivacaine injection following a single administration at the surgical site.

    PubMed

    Hu, DeeDee; Onel, Erol; Singla, Neil; Kramer, William G; Hadzic, Admir

    2013-02-01

    Local anaesthetics are often used as part of multimodal pain management techniques to manage postsurgical pain and lessen the need for opioid analgesics; however, the duration of action of traditional formulations of local anaesthetics is short. Liposome bupivacaine is a novel, multivesicular formulation designed for rapid absorption, prolonged release of bupivacaine, and analgesia following a single intra-operative administration into the surgical wound. This article provides a summary of the pharmacokinetic profile of liposome bupivacaine compared with bupivacaine HCl based on data compiled from four randomized, active- and placebo-controlled trials that included pharmacokinetic assessments following single administrations of study drug. Each study evaluated the safety, efficacy and pharmacokinetic profile of liposome bupivacaine in separate surgical populations (patients undergoing inguinal hernia repair, total knee arthroplasty, haemorrhoidectomy or bunionectomy). Pharmacokinetic parameters included maximum plasma drug concentration (C(max)), area under the curve (AUC) for plasma bupivacaine concentration over time extrapolated to infinity (AUC(∞)), time to observed C(max) (t(max)) and terminal elimination half-life of bupivacaine (t(½)). The studies assessed single administrations of liposome bupivacaine at dose levels ranging from 106 to 532 mg or bupivacaine HCl 100 to 150 mg or placebo (0.9 % sodium chloride) given locally via wound infiltration at the end of surgery prior to wound closure. Male and non-pregnant female patients (n = 253) aged ≥18 years, scheduled to undergo surgery as per the specific protocol for each study, were enrolled. Patient characteristics were stratified by liposome bupivacaine doses ≤266 mg and >266 mg, and bupivacaine HCl treatment arms. Pharmacokinetic parameters for liposome bupivacaine doses of 106, 266, 399 and 532 mg were compared. Plasma concentration versus time profiles were quantitatively similar across these four

  18. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective.

    PubMed

    Moghimi, S M; Hunter, A C; Andresen, T L

    2012-01-01

    Intravenously injected nanoparticulate drug carriers provide a wide range of unique opportunities for site-specific targeting of therapeutic agents to many areas within the vasculature and beyond. Pharmacokinetics and biodistribution of these carriers are controlled by a complex array of interrelated core and interfacial physicochemical and biological factors. Pertinent to realizing therapeutic goals, definitive maps that establish the interdependency of nanoparticle size, shape, and surface characteristics in relation to interfacial forces, biodistribution, controlled drug release, excretion, and adverse effects must be outlined. These concepts are critically evaluated and an integrated perspective is provided on the basis of the recent application of nanoscience approaches to nanocarrier design and engineering. The future of this exciting field is bright; some regulatory-approved products are already on the market and many are in late-phase clinical trials. With concomitant advances in extensive computational knowledge of the genomics and epigenomics of interindividual variations in drug responses, the boundaries toward development of personalized nanomedicines can be pushed further.

  19. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles.

    PubMed

    Peters, Sheila Annie

    2008-01-01

    Despite recent advances in understanding of the role of the gut as a metabolizing organ, recognition of gut wall metabolism and/or other factors contributing to intestinal loss of a compound has been a challenging task due to the lack of well characterized methods to distinguish it from first-pass hepatic extraction. The implications of identifying intestinal loss of a compound in drug discovery and development can be enormous. Physiologically based pharmacokinetic (PBPK) simulations of pharmacokinetic profiles provide a simple, reliable and cost-effective way to understand the mechanisms underlying pharmacokinetic processes. The purpose of this article is to demonstrate the application of PBPK simulations in bringing to light intestinal loss of orally administered drugs, using two example compounds: verapamil and an in-house compound that is no longer in development (referred to as compound A in this article). A generic PBPK model, built in-house using MATLAB software and incorporating absorption, metabolism, distribution, biliary and renal elimination models, was employed for simulation of concentration-time profiles. Modulation of intrinsic hepatic clearance and tissue distribution parameters in the generic PBPK model was done to achieve a good fit to the observed intravenous pharmacokinetic profiles of the compounds studied. These optimized clearance and distribution parameters are expected to be invariant across different routes of administration, as long as the kinetics are linear, and were therefore employed to simulate the oral profiles of the compounds. For compounds with reasonably good solubility and permeability, an area under the concentration-time curve for the simulated oral profile that far exceeded the observed would indicate some kind of loss in the intestine. PBPK simulations applied to compound A showed substantial loss of the compound in the gastrointestinal tract in humans but not in rats. This accounted for the lower bioavailability of the

  20. Enhanced Oral Bioavailability of Efavirenz by Solid Lipid Nanoparticles: In Vitro Drug Release and Pharmacokinetics Studies

    PubMed Central

    Gaur, Praveen Kumar; Mishra, Shikha; Bajpai, Meenakshi; Mishra, Anushika

    2014-01-01

    Solid lipid nanoparticle is an efficient lipid based drug delivery system which can enhance the bioavailability of poorly water soluble drugs. Efavirenz is a highly lipophilic drug from nonnucleoside inhibitor category for treatment of HIV. Present work illustrates development of an SLN formulation for Efavirenz with increased bioavailability. At first, suitable lipid component and surfactant were chosen. SLNs were prepared and analyzed for physical parameters, stability, and pharmacokinetic profile. Efavirenz loaded SLNs were formulated using Glyceryl monostearate as main lipid and Tween 80 as surfactant. ESLN-3 has shown mean particle size of 124.5 ± 3.2 nm with a PDI value of 0.234, negative zeta potential, and 86% drug entrapment. In vitro drug release study has shown 60.6–98.22% drug release in 24 h by various SLN formulations. Optimized SLNs have shown good stability at 40°C ± 2°C and 75 ± 5% relative humidity (RH) for 180 days. ESLN-3 exhibited 5.32-fold increase in peak plasma concentration (C max⁡) and 10.98-fold increase in AUC in comparison to Efavirenz suspension (ES). PMID:24967360

  1. Pharmacokinetics study of Zr-89-labeled melanin nanoparticle in iron-overload mice.

    PubMed

    Zhang, Pengjun; Yue, Yuanyuan; Pan, Donghui; Yang, Runlin; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Li, Xiaotian; Yang, Min

    2016-09-01

    Melanin, a natural biological pigment present in many organisms, has been found to exhibit multiple functions. An important property of melanin is its ability to chelate metal ions strongly, which might be developed as an iron chelator for iron overload therapy. Herein, we prepared the ultrasmall water-soluble melanin nanoparticle (MP) and firstly evaluate the pharmacokinetics of MP in iron-overload mice to provide scientific basis for treating iron-overload. To study the circulation time and biodistribution, MP was labeled with (89)Zr, a long half-life (78.4h) positron-emitting metal which is suited for the labeling of nanoparticles and large bioactive molecule. MP was chelated with (89)Zr directly at pH5, resulting in non-decay-corrected yield of 89.6% and a radiochemical purity of more than 98%. The specific activity was at least190 MBq/μmol. The (89)Zr-MP was stable in human plasma and PBS for at least 48h. The half-life of (89)Zr-MP was about 15.70±1.74h in iron-overload mice. Biodistribution studies and MicroPET imaging showed that (89)Zr-MP mainly accumulated in liver and spleen, which are the target organ of iron-overload. The results indicate that the melanin nanoparticle is promising for further iron overload therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles.

    PubMed

    Haute, Desiree Van; Berlin, Jacob M

    2017-08-01

    The field of nanomedicine has received much attention for its potential to allow for targeted identification and treatment of tumors, while sparing healthy tissue. This promise has yet to be clinically realized; instead nanomedicine has translated into clinical benefit via formulations that improve the pharmacokinetics and toxicity profiles of toxic chemotherapeutic agents. In this perspective, we highlight that several of the defining strategies for using nanoparticles intravenously to target solid tumors have limited supporting data in animal studies. Namely, it does not appear that reducing macrophage (and other cell type) uptake in vitro leads to better biodistribution in vivo, nor does increasing blood circulation time nor active targeting. We suggest instead that the coming decade will primarily see nanoparticles impact immunotherapy and local/pseudolocal cancer therapy.

  3. Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics.

    PubMed

    Cheng, Ka-Wing; Wong, Chi C; Mattheolabakis, George; Xie, Gang; Huang, Liqun; Rigas, Basil

    2013-09-01

    Phospho-sulindac (PS) is a safe sulindac derivative with promising anticancer efficacy in colon cancer. We evaluated whether its combination with curcumin could enhance the efficacy in the treatment of lung cancer. Curcumin, the principal bioactive component in turmeric, has demonstrated versatile capabilities to modify the therapeutic efficacy of a wide range of anticancer agents. Here, we evaluated the effect of co-administration of curcumin on the anticancer activity of PS in a mouse xenograft model of human lung cancer. Curcumin enhanced the cellular uptake of PS in human lung and colon cancer cell lines. To assess the potential synergism between curcumin and PS in vivo, curcumin was suspended in 10% Tween-80 or formulated in micellar nanoparticles and given to mice by oral gavage prior to the administration of PS. Both formulations of curcumin significantly improved the pharmacokinetic profiles of PS, with the 10% Tween-80 suspension being much more effective than the nanoparticle formation. However, curcumin did not exhibit any significant modification of the metabolite profile of PS. Furthermore, in a mouse subcutaneous xenograft model of human lung cancer, PS (200 mg/kg) in combination with curcumin (500 mg/kg) suspended in 10% Tween-80 (51% inhibition, p<0.05) was significantly more efficacious than PS plus micelle curcumin (30%) or PS (25%) or curcumin alone (no effect). Consistent with the improved pharmacokinetics, the combination treatment group had higher levels of PS and its metabolites in the xenografts compared to PS alone. Our results show that curcumin substantially improves the pharmacokinetics of PS leading to synergistic inhibition of the growth of human lung cancer xenografts, representing a promising drug combination.

  4. Alpha-lipoic acid-stearylamine conjugate-based solid lipid nanoparticles for tamoxifen delivery: formulation, optimization, in-vivo pharmacokinetic and hepatotoxicity study.

    PubMed

    Dhaundiyal, Ankit; Jena, Sunil K; Samal, Sanjaya K; Sonvane, Bhavin; Chand, Mahesh; Sangamwar, Abhay T

    2016-12-01

    This study was designed to demonstrate the potential of novel α-lipoic acid-stearylamine (ALA-SA) conjugate-based solid lipid nanoparticles in modulating the pharmacokinetics and hepatotoxicity of tamoxifen (TMX). α-lipoic acid-stearylamine bioconjugate was synthesized via carbodiimide chemistry and used as a lipid moiety for the generation of TMX-loaded solid lipid nanoparticles (TMX-SLNs). TMX-SLNs were prepared by solvent emulsification-diffusion method and optimized for maximum drug loading using rotatable central composite design. The optimized TMX-SLNs were stabilized using 10% w/w trehalose as cryoprotectant. In addition, pharmacokinetics and hepatotoxicity of freeze-dried TMX-SLNs were also evaluated in Sprague Dawley rats. Initial characterization with transmission electron microscopy revealed spherical morphology with smooth surface having an average particle size of 261.08 ± 2.13 nm. The observed entrapment efficiency was 40.73 ± 2.83%. In-vitro release study showed TMX release was slow and pH dependent. Pharmacokinetic study revealed a 1.59-fold increase in relative bioavailability as compared to TMX suspension. A decrease in hepatotoxicity of TMX is evidenced by the histopathological evaluation of liver tissues. α-lipoic acid-stearylamine conjugate-based SLNs have a great potential in enhancing the oral bioavailability of poorly soluble drugs like TMX. Moreover, this ALA-SA nanoparticulate system could be of significant value in long-term anticancer therapy with least side effects. © 2016 Royal Pharmaceutical Society.

  5. Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy.

    PubMed

    Yu, Haiyang; Tang, Zhaohui; Zhang, Dawei; Song, Wantong; Zhang, Ying; Yang, Yan; Ahmad, Zaheer; Chen, Xuesi

    2015-05-10

    Platinum-based polymeric nano-drugs, especially cisplatin-loaded polymeric nanoparticles (CDDP-NPs), have been extensively exploited for the treatment of solid tumors. However, it is still unclear what role the processing procedure and the properties of the polymeric carrier materials may play in influencing the plasma pharmacokinetics, biodistribution and in vivo efficacy of CDDP-NPs. In this study, a series of poly(l-glutamic acid)-g-methoxy poly(ethylene glycol) (PLG-g-mPEG) copolymers were synthesized for the preparation of CDDP-loaded PLG-g-mPEG (CDDP/PLG-g-mPEG) nanoparticles. All of the parameters, including PLG molecular weight, mPEG/PLG weight ratio, mPEG chain length, ultrafiltration purification and cisplatin loading content, were found to have a significant influence on the plasma pharmacokinetics of the CDDP/PLG-g-mPEG nanoparticles. The blood circulation time of the nanoparticles was prolonged with increases in PLG molecular weight, mPEG/PLG weight ratio, mPEG chain length and CDDP loading content. The use of ultrafiltration purification could prolong the blood circulation time of the nanoparticles as well. Experiments to measure the pharmacokinetics and biodistribution demonstrated that the selected CDDP/PLG-g-mPEG nanoparticles, NP10, had a long blood circulation time and could achieve selective and significant accumulation in Lewis lung carcinoma (LLC) tumors. The platinum plasma concentrations in the LLC tumor-bearing mice receiving NP10 remained up to 46-fold higher than that of mice receiving equivalent doses of free CDDP. In addition, the plasma area under the concentration time curve (AUC) of NP10 was 31-fold higher than that of free CDDP in 48h. The platinum concentration ratio of NP10 to free CDDP in tumors reached as high as 9.4. The tumor AUC ratio of NP10 to CDDP was 6. Using a mouse C26 tumor model, here we demonstrate that NP10 improves the safety and tolerance in vivo when compared to CDDP and effectively inhibits the growth of C26

  6. The pharmacokinetics and safety profile of oral ganciclovir in combination with trimethoprim in HIV- and CMV-seropositive patients

    PubMed Central

    Jung, Donald; AbdelHameed, Magdy H; Hunter, John; Teitelbaum, Philip; Dorr, Albert; Griffy, Kay

    1999-01-01

    Aims We investigated the pharmacokinetics and safety profile of oral ganciclovir coadministered with trimethoprim in HIV-and CMV-seropositive patients. Methods In an open-label, randomized, 3-way crossover study, 12 adult males received oral ganciclovir 1000 mg every 8h, oral trimethoprim 200 mg once daily, or both drugs concomitantly in a sequence of three 7-day treatment periods. Pharmacokinetic parameters were determined and adverse events recorded for each treatment. Results The presence of trimethoprim significantly decreased CLr (12.9%, P = 0.0068) and increased t1/2 (18.1%, P = 0.0378) of ganciclovir. However, these changes are unlikely to be clinically meaningful. There were no statistically significant changes in trimethoprim pharmacokinetic parameters in the presence of ganciclovir, with the exception of a 12.7% increase in Cmin. Ganciclovir was well tolerated when administered alone or in combination with trimethoprim. Conclusions There was no clinically significant pharmacokinetic interaction between oral ganciclovir and trimethoprim when coadministered. PMID:10215748

  7. Pharmacokinetic profiles contribute to the differences in behavioral pharmacology of 071031B enantiomers as novel serotonin and norepinephrine reuptake inhibitors.

    PubMed

    Xue, Rui; Li, Ying; He, Xin-Hua; Jin, Zeng-Liang; Fan, Shi-Yong; Zhang, Ting-Ting; Li, Nuo-Min; Yuan, Li; Zheng, Ai-Ping; Zhong, Bo-Hua; Li, Yun-Feng; Zhang, You-Zhi

    2017-03-01

    Our previous study indicated that a chiral compound 071031B was a novel serotonin and noradrenaline reuptake inhibitor with superior antidepressant activity compared to duloxetine. The present study aimed to investigate chiral pharmacology differences of 071031B enantiomers, S-071031B and R-071031B, and disclose mechanisms underlying the behavioral differences based on target profiles and pharmacokinetic profiles. In vivo behavioral tests indicated that S-071031B was more potent than R-071031B in two depression models (the forced swimming test in mice and rats) and two pain models (the acetic acid-induced writhing and formalin tests in mice). In vitro assays revealed that both S-071031B and R-071031B showed high affinity for human serotonin transporters and norepinephrine transporters with equal potency, and showed consistently equipotent inhibitory effects on serotonin and norepinephrine uptake. Pharmacokinetic studies demonstrated that oral availability and hepatic metabolism, rather than pH stability, intestinal transport, and plasma binding, contributed to enantiomers' behavioral differences. Based on these findings, it is suggested that S-071031B is a more active enantiomer, and the differential pharmacokinetic profiles, but not target affinity, contribute to differences of S-071031B and R-071031B in behavioral pharmacology. Moreover, current PK-PD study may provide positive exploration for chiral antidepressants development.

  8. Improved anti-hyperlipidemic activity of Rosuvastatin Calcium via lipid nanoparticles: Pharmacokinetic and pharmacodynamic evaluation.

    PubMed

    Dudhipala, Narendar; Veerabrahma, Kishan

    2017-01-01

    The intent of this investigation was to improve pharmacokinetic (PK) and pharmacodynamic (PD) effects of Rosuvastatin calcium (RC) by solid lipid nanoparticles (SLNs). RC is anti-hyperlipidemic drug with low oral bioavailability (20%) due to first-pass metabolism. Hot homogenization followed by ultrasonication method was used to prepare RC-SLNs with stearic acid, glyceryl behenate and glyceryl trilaurate as lipid matrices, egg lecithin and poloxamer 188 as surfactants. The prepared SLNs were tested for particle size, PDI, zeta potential (ZP), entrapment efficiency (EE), drug content and in vitro release. Further, PK and PD studies were conducted on selected SLNs. No changes in physical stability of the optimized SLN were observed at refrigerated and room temperature for 90days. SLNs prepared with glyceryl trilaurate having average size of 67.21±1.71nm, PDI of 0.25±0.01, ZP of -28.93±0.84mV with 93.51±0.34% EE was considered as optimized. DSC and XRD studies revealed that no interaction occurred between the drug and lipid. SEM and TEM studies revealed that SLNs were nearly spherical in shape. PK studies showed improvement in the oral bioavailability (extent of absorption) of SLNs by 4.6-fold when compared to that of suspension. PD study of SLNs in hyperlipidemic rats exhibited a decrease in lipid profile for 36h, while a suspension exhibited for 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Pharmacokinetics, Metabolism, Distribution and Permeability of Nanomedicine.

    PubMed

    Ravindran, Selvan; Suthar, Jitendra Kumar; Rokade, Rutuja; Deshpande, Pooja; Singh, Pooja; Pratinidhi, Ashutosh; Khambadkhar, Rajeshree; Utekar, Srushti

    2018-01-01

    Medical application of nanotechnology is termed as Nanomedicine and is widely used in healthcare industries. Nanotechnology has helped Physicians, Scientists and Technologists to understand the changes in cellular levels to develop nanomedicines and address the challenges faced by the healthcare sectors. Nanoparticles with less than 1nm in size have been used as drug delivery and gene delivery systems to accelerate the drug action in humans. Size of nanomaterials is akin to that of biomolecules and expected to have better interactions. Hence, its utility for various biomedical applications is explored. Pharmacokinetics, metabolism, permeability, distribution and elimination studies of nanoparticles are essential to understand its potency, toxicity threshold and confirm its safe use in humans. Reports were available for toxicity studies on nanoparticles, but work on metabolism, pharmacokinetics, distribution and permeability of nanomedicine is limited. Hence, the main focus of this review article is about metabolism, pharmacokinetics, permeability and biodistribution of nanomaterials used in nanomedicine. Nanomedicine is increasingly becoming important in the treatment of diseases and diagnosis. Size of the particle plays an important role. As the particle size decreases its effect to cure the disease increases. Pharmacokinetics, bioavailability, half-life, metabolism, biodistribution and permeability of nanomedicine were found to be better than that of microsized drugs. In vitro and In vivo ADME (Absorption, Distribution, Metabolism and Excretion) studies are mandatory for pharmaceutical organic drugs. Similarly, nanomaterials should be subjected to both in vitro and in vivo ADME studies. Thus, nanomedicine can assist in the development of safe personalized medicine in humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. High-throughput profiling of nanoparticle-protein interactions by fluorescamine labeling.

    PubMed

    Ashby, Jonathan; Duan, Yaokai; Ligans, Erik; Tamsi, Michael; Zhong, Wenwan

    2015-02-17

    A rapid, high throughput fluorescence assay was designed to screen interactions between proteins and nanoparticles. The assay employs fluorescamine, a primary-amine specific fluorogenic dye, to label proteins. Because fluorescamine could specifically target the surface amines on proteins, a conformational change of the protein upon interaction with nanoparticles will result in a change in fluorescence. In the present study, the assay was applied to test the interactions between a selection of proteins and nanoparticles made of polystyrene, silica, or iron oxide. The particles were also different in their hydrodynamic diameter, synthesis procedure, or surface modification. Significant labeling differences were detected when the same protein incubated with different particles. Principal component analysis (PCA) on the collected fluorescence profiles revealed clear grouping effects of the particles based on their properties. The results prove that fluorescamine labeling is capable of detecting protein-nanoparticle interactions, and the resulting fluorescence profile is sensitive to differences in nanoparticle's physical properties. The assay can be carried out in a high-throughput manner, and is rapid with low operation cost. Thus, it is well suited for evaluating interactions between a larger number of proteins and nanoparticles. Such assessment can help to improve our understanding on the molecular basis that governs the biological behaviors of nanomaterials. It will also be useful for initial examination of the bioactivity and reproducibility of nanomaterials employed in biomedical fields.

  11. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics.

    PubMed

    Kumar, Venishetty Vinay; Chandrasekar, Durairaj; Ramakrishna, Sistla; Kishan, Veerabrahma; Rao, Yamsani Madhusudan; Diwan, Prakash Vamanrao

    2007-04-20

    Nitrendipine is an antihypertensive drug with poor oral bioavailability ranging from 10 to 20% due to the first pass metabolism. For improving the oral bioavailability of nitrendipine, nitrendipine loaded solid lipid nanoparticles have been developed using triglyceride (tripalmitin), monoglyceride (glyceryl monostearate) and wax (cetyl palmitate). Poloxamer 188 was used as surfactant. Hot homogenization of melted lipids and aqueous phase followed by ultrasonication at temperature above the melting point of lipid was used to prepare SLN dispersions. SLN were characterized for particle size, zeta potential, entrapment efficiency and crystallinity of lipid and drug. In vitro release studies were performed in phosphate buffer of pH 6.8 using Franz diffusion cell. Pharmacokinetics of nitrendipine loaded solid lipid nanoparticles after intraduodenal administration to conscious male Wistar rats was studied. Bioavailability of nitrendipine was increased three- to four-fold after intraduodenal administration compared to that of nitrendipine suspension. The obtained results are indicative of solid lipid nanoparticles as carriers for improving the bioavailability of lipophilic drugs such as nitrendipine by minimizing first pass metabolism.

  12. Design and Modular Construction of A Polymeric Nanoparticle for Targeted Atherosclerosis Positron Emission Tomography Imaging: A Story of 25% 64Cu-CANF-Comb

    PubMed Central

    Woodard, Pamela K.; Liu, Yongjian; Pressly, Eric D.; Luehmann, Hannah P.; Detering, Lisa; Sultan, Deborah; Laforest, Richard; McGrath, Alaina J.; Gropler, Robert J.; Hawker, Craig J.

    2016-01-01

    Purpose To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles. Methods To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after 64Cu radiolabeling. PET imaging was performed on an apolipoprotein E–deficient (ApoE−/−) mouse atherosclerosis model to assess the NPRC targeting efficiency. For comparison, an in vivo blood metabolism study was carried out in WT mice. Results All three 64Cu-CANF-comb nanoparticles showed improved biodistribution profiles, including significantly reduced accumulation in both liver and spleen, compared to the non-targeted 64Cu-comb. Of the three nanoparticles, the 25% 64Cu-CANF-comb demonstrated the best NPRC targeting specificity and sensitivity in ApoE−/− mice. Metabolism studies showed that the radiolabeled CANF-comb was stable in blood up to 9 days. Histopathological analyses confirmed the up-regulation of NPRC along the progression of atherosclerosis. Conclusion The 25% 64Cu-CANF-comb demonstrated its potential as a PET imaging agent to detect atherosclerosis progression and status. PMID:27286872

  13. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles

    PubMed Central

    Lai, Jie; Lu, Yi; Yin, Zongning; Hu, Fuqiang; Wu, Wei

    2010-01-01

    Efforts to improve the oral bioavailability of cyclosporine A (CyA) remains a challenge in the field of drug delivery. In this study, glyceryl monooleate (GMO)/poloxamer 407 cubic nanoparticles were evaluated as potential vehicles to improve the oral bioavailability of CyA. Cubic nanoparticles were prepared via the fragmentation of a bulk GMO/poloxamer 407 cubic phase gel by sonication and homogenization. The cubic inner structure formed was verified using Cryo-TEM. The mean diameters of the nanoparticles were about 180 nm, and the entrapment efficiency of these particles for CyA was over 85%. The in vitro release of CyA from these nanoparticles was less than 5% at 12 h. The results of a pharmacokinetic study in beagle dogs showed improved absorption of CyA from cubic nanoparticles as compared to microemulsion-based Neoral®; higher Cmax (1371.18 ± 37.34 vs 969.68 ± 176.3 ng mL−1), higher AUC0–t (7757.21 ± 1093.64 vs 4739.52 ± 806.30 ng h mL−1) and AUC0–∞ (9004.77 ± 1090.38 vs 5462.31 ± 930.76 ng h mL−1). The relative oral bioavailability of CyA cubic nanoparticles calculated on the basis of AUC0–∞ was about 178% as compared to Neoral®. The enhanced bioavailability of CyA is likely due to facilitated absorption by cubic nanoparticles rather than improved release. PMID:20161984

  14. Pharmacokinetic and toxicological evaluation of multi-functional thiol-6-fluoro-6-deoxy-d-glucose gold nanoparticles in vivo

    NASA Astrophysics Data System (ADS)

    Roa, Wilson; Xiong, Yeping; Chen, Jie; Yang, Xiaoyan; Song, Kun; Yang, Xiaohong; Kong, Beihua; Wilson, John; Xing, James Z.

    2012-09-01

    We synthesized a novel, multi-functional, radiosensitizing agent by covalently linking 6-fluoro-6-deoxy-d-glucose (6-FDG) to gold nanoparticles (6-FDG-GNPs) via a thiol functional group. We then assessed the bio-distribution and pharmacokinetic properties of 6-FDG-GNPs in vivo using a murine model. At 2 h, following intravenous injection of 6-FDG-GNPs into the murine model, approximately 30% of the 6-FDG-GNPs were distributed to three major organs: the liver, the spleen and the kidney. PEGylation of the 6-FDG-GNPs was found to significantly improve the bio-distribution of 6-FDG-GNPs by avoiding unintentional uptake into these organs, while simultaneously doubling the cellular uptake of GNPs in implanted breast MCF-7 adenocarcinoma. When combined with radiation, PEG-6-FDG-GNPs were found to increase the apoptosis of the MCF-7 breast adenocarinoma cells by radiation both in vitro and in vivo. Pharmacokinetic data indicate that GNPs reach their maximal concentrations at a time window of two to four hours post-injection, during which optimal radiation efficiency can be achieved. PEG-6-FDG-GNPs are thus novel nanoparticles that preferentially accumulate in targeted cancer cells where they act as potent radiosensitizing agents. Future research will aim to substitute the 18F atom into the 6-FDG molecule so that the PEG-6-FDG-GNPs can also function as radiotracers for use in positron emission tomography scanning to aid cancer diagnosis and image guided radiation therapy planning.

  15. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Meng, Murtaza Hasan Weiwei; Zhao, Haiwei; Iqbal, Javed; Dai, Rongji; Deng, Yulin; Lv, Fang

    2014-04-01

    Luteolin (LU, 5,7,3',4'-tetrahydroxyflavone) most active compound in Chinese herbal flavones has been acting as a antimicrobial, anti-inflammatory, anti-cancer, and antimutagen. However, its poor bioavailability, hydrophobicity, and pharmacokinetics restrict clinical application. Here in this study, LU-loaded solid lipid nanoparticles have been prepared by hot-microemulsion ultrasonic technique to improve the bioavailability & pharmacokinetics of compound. LU-loaded solid lipid nanoparticle size was confirmed by particle size analyzer with range from 47 to 118 nm, having zepta potential -9.2 mV and polydisperse index 0.247, respectively. Round-shaped SLNPs were obtained by using transmission electron microscope, and encapsulation efficiency 74.80 % was calculated by using HPLC. Both in vitro and vivo studies, LC-MS/MS technique was used for quantification of Luteolin in rat. The T max value of drug with LU-SLNs after the administration was Ten times shorter than pure Luteolin suspension administration. C max value of drug after the administration of LU-SLNs was five times higher than obtained with native drug suspension. Luteolin with SLNs has increased the half-life approximately up to 2 h. Distribution and clearance of drug with SLNs were significantly decreased by 2.16-10.57 fold, respectively. In the end, the relative bioavailability of SLNs has improved about 4.89 compared to Luteolin with SLNs. From this study, it can be concluded that LU-SLNs have not only great potential for improving solubility but also increased the drug concentration in plasma. Furthermore, use of LC-MS/MS for quantification of LU-SLNs in rat plasma is reliable and of therapeutic usefulness, especially for neurodegenerative and cancerous disorders in humans.

  16. Pharmacokinetics of tilmicosin in beef cattle following intravenous and subcutaneous administration.

    PubMed

    Lombardi, K R; Portillo, T; Hassfurther, R; Hunter, R P

    2011-12-01

    The intravenous pharmacokinetic profile of tilmicosin is yet to be achieved because of the cardiovascular effects of tilmicosin. This study summarizes two pharmacokinetic studies that provided complete pharmacokinetic profile of tilmicosin in cattle. The first study was a pharmacokinetic study of tilmicosin in beef calves dosed by i.v. infusion over 5 h. The second study was a subcutaneous (s.c.) pharmacokinetic study comparing the pharmacokinetic profile of tilmicosin in light (approximately 170 kg) and heavy (approximately 335 kg) beef cattle and comparing the labeled dose range of 10 or 20 mg/kg dose. The data from the two different studies were used to calculate bioavailability values, which support the assumption that tilmicosin is 100% bioavailable in cattle. The results from the second study showed that the weight of an animal when administered tilmicosin does not have a significant effect on exposure, but did demonstrate that doubling the dose of tilmicosin administered doubles the systemic exposure to tilmicosin. © 2011 Blackwell Publishing Ltd.

  17. Studies of bioactivity, conformation and pharmacokinetic profiles of site-specific PEGylated thymosin alpha 1 derivatives.

    PubMed

    Qie, Jiankun; Ma, Jinbo; Wang, Liangyou; Xu, Xiaoyu; Zheng, Jianquan; Dong, Sijian; Xie, Jianwei; Sun, Huixian; Zhou, Wenxia; Qi, Chunhui; Zhao, Xiunan; Zhang, Yongxiang; Liu, Keliang

    2007-08-01

    Site-specific mono-PEGylations were performed in different conformational regions of Thymosin alpha 1 (T alpha 1) by introducing one cysteine residue into the chosen site and coupling with thiol-specific mPEG-MAL reagent. Results demonstrated that PEGylated sites and regions influenced the conformations and pharmacokinetic profiles of the peptide greatly with following order: alpha-helix, beta-turn, random coil and terminals, but little on the immunoactivity.

  18. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics

    PubMed Central

    Fatouh, Ahmed M; Elshafeey, Ahmed H; Abdelbary, Ahmed

    2017-01-01

    Purpose Agomelatine is a novel antidepressant drug suffering from an extensive first-pass metabolism leading to a diminished absolute bioavailability. The aim of the study is: first to enhance its absolute bioavailability, and second to increase its brain delivery. Methods To achieve these aims, the nasal route was adopted to exploit first its avoidance of the hepatic first-pass metabolism to increase the absolute bioavailability, and second the direct nose-to-brain pathway to enhance the brain drug delivery. Solid lipid nanoparticles were selected as a drug delivery system to enhance agomelatine permeability across the blood–brain barrier and therefore its brain delivery. Results The optimum solid lipid nanoparticles have a particle size of 167.70 nm ±0.42, zeta potential of −17.90 mV ±2.70, polydispersity index of 0.12±0.10, entrapment efficiency % of 91.25%±1.70%, the percentage released after 1 h of 35.40%±1.13% and the percentage released after 8 h of 80.87%±5.16%. The pharmacokinetic study of the optimized solid lipid nanoparticles revealed a significant increase in each of the plasma peak concentration, the AUC(0–360 min) and the absolute bioavailability compared to that of the oral suspension of Valdoxan® with the values of 759.00 ng/mL, 7,805.69 ng⋅min/mL and 44.44%, respectively. The optimized solid lipid nanoparticles gave a drug-targeting efficiency of 190.02, which revealed more successful brain targeting by the intranasal route compared with the intravenous route. The optimized solid lipid nanoparticles had a direct transport percentage of 47.37, which indicates a significant contribution of the direct nose-to-brain pathway in the brain drug delivery. Conclusion The intranasal administration of agomelatine solid lipid nanoparticles has effectively enhanced both the absolute bioavailability and the brain delivery of agomelatine. PMID:28684900

  19. Safety and Pharmacokinetic Profiles of Repeated-Dose Micafungin in Children and Adolescents Treated for Invasive Candidiasis

    PubMed Central

    Benjamin, Daniel K.; Deville, Jaime G.; Azie, Nkechi; Kovanda, Laura; Roy, Mike; Wu, Chunzhang; Arrieta, Antonio

    2013-01-01

    Background Micafungin is an echinocandin with proven efficacy against a broad range of fungal infections, including those caused by Candida species. Objective To evaluate the safety and pharmacokinetics of once-daily 3 mg/kg and 4.5 mg/kg micafungin in children with proven, probable, or suspected invasive candidiasis. Methods Micafungin safety and pharmacokinetics were assessed in two Phase I, open-label, repeat-dose trials. In Study 2101, children aged 2–16 years were grouped by weight to receive 3 mg/kg (≥25 kg) or 4.5 mg/kg (<25 kg) intravenous micafungin for 10–14 days. In Study 2102, children aged 4 months to <2 years received 4.5 mg/kg micafungin. Study protocols were otherwise identical. Results Safety was analyzed in seventy-eight and nine children in Studies 2101 and 2102, respectively. Although adverse events were experienced by most children (2101: n = 62; 2102: n = 9), micafungin-related adverse events were less common (2101: n = 28; 2102: n = 1), and the number of patients discontinuing due to adverse events was low (2101: n = 4; 2102: n = 1). The most common micafungin-related adverse events were infusion-associated symptoms, pyrexia, and hypomagnesemia (Study 2101), and liver function abnormalities (Study 2102). The micafungin pharmacokinetic profile was similar to that seen in other studies conducted in children, but different than that observed in adults. Conclusions In this small cohort of children, once-daily doses of 3 mg/kg and 4.5 mg/kg micafungin were well tolerated. Pharmacokinetic data will be combined in a population pharmacokinetic analysis to support U.S. dosing recommendations in children. PMID:23958810

  20. Systematic considerations for a multicomponent pharmacokinetic study of Epimedii wushanensis herba: From method establishment to pharmacokinetic marker selection.

    PubMed

    Wang, Caihong; Wu, Caisheng; Zhang, Jinlan; Jin, Ying

    2015-04-15

    Prenylflavonoids are major active components of Epimedii wushanensis herba (EWH). The global pharmacokinetics of prenylflavonoids are unclear, as these compounds yield multiple, often unidentified metabolites. This study successfully elucidated the pharmacokinetic profiles of EWH extract and five EWH-derived prenylflavonoid monomers in rats. The study was a comprehensive analysis of metabolic pathways and pharmacokinetic markers. Major plasma compounds identified after oral administration of EWH-derived prototypes or extract included: (1) prenylflavonoid prototypes, (2) deglycosylated products, and (3) glucuronide conjugates. To select appropriate EWH-derived pharmacokinetic markers, a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established to simultaneously monitor 14 major compounds in unhydrolyzed plasma and 10 potential pharmacokinetic markers in hydrolyzed plasma. The pharmacokinetic profiles indicated that the glucuronide conjugates of icaritin were the principle circulating metabolites and that total icaritin accounted for ∼99% of prenylflavonoid exposure after administration of EWH-derived materials to rats. To further investigate icaritin as a prospective pharmacokinetic marker, correlation analysis was performed between total icaritin and its glucuronide conjugates, and a strong correlation (r > 0.5) was found, indicating that total icaritin content accurately reflected changes in the exposure levels of the glucuronide conjugates over time. Therefore, icaritin is a sufficient pharmacokinetic marker for evaluating dynamic prenylflavonoid exposure levels. Next, a mathematical model was developed based on the prenylflavonoid content of EWH and the exposure levels in rats, using icaritin as the pharmacokinetic marker. This model accurately predicted exposure levels in vivo, with similar predicted vs. experimental area under the curve (AUC)(0-96 h) values for total icaritin (24.1 vs. 32.0 mg/L h). Icaritin in

  1. Pharmacokinetic profile of dextromethorphan hydrobromide in a syrup formulation in children and adolescents.

    PubMed

    Guenin, Eric; Armogida, Marianna; Riff, Dennis

    2014-09-01

    Dextromethorphan hydrobromide (DM) is a widely used antitussive. This study determined, for the first time, the basic pharmacokinetic profile of DM and its active metabolite, dextrorphan (DP) in children and adolescents. Thirty-eight male and female subjects at risk for developing an upper respiratory tract infection (URTI), or symptomatic with cough due to URTI, were enrolled in this single-dose, open-label study: ages 2-5 years (Group A, n = 8), 6-11 years (Group B, n = 17), 12-17 years (Group C, n = 13). Subjects were genotyped for cytochrome P450 (CYP) 2D6 polymorphisms and characterized as poor (PM) or non-poor metabolizers (non-PM). Groups A and B were dosed using an age-weight dosing schedule (DM range 7.5-24.75 mg); a 30-mg dose was used for Group C. Average exposures to total DP increased as age group increased, and average exposure to DM was highest in the adolescent group. One subject in that group was a PM. The terminal half-life (t ½) values were longer in the adolescent group due in part to the single PM subject. No relationship between body weight and pharmacokinetic parameters was noted. This is the first evaluation of the pharmacokinetic characteristics of DM in children and adolescents. A single dose of DM in this population was safe, and well tolerated at all doses tested. The data are used to model and compare pediatric DM exposures with those of adults.

  2. Pharmacokinetic profile and oral bioavailability of Kaurenoic acid from Copaifera spp. in rats.

    PubMed

    Matos, Dalyara Mendonça de; Viana, Milainy Rocha; Alvim, Marcela Cristina de Oliveira; Carvalho, Lara Soares Aleixo de; Leite, Laura Hora Rios; Da Silva Filho, Ademar Alves; Nascimento, Jorge Willian Leandro

    2018-05-14

    Kaurenoic acid (KA) is a kaurane diterpene found in several medicinal plants that displays biological activities, such as anti-inflammatory, smooth muscle relaxant and hypotensive response. However, there are no pharmacokinetic data available about this molecule. The purpose of the study was to determine the pharmacokinetic profile and the oral bioavailability of KA in rats. Wistar rats submitted to jugular vein cannulation received 50 mg/kg of KA by intravenous or oral route. The implanted cannula allowed intravenous administration and serial blood collection along 10 h. Analytical quantification was performed by reversed phase HPLC-UV and mobile phase composed by acetonitrile:acidified water (70:30 v/v). The validated analytical method showed precision, accuracy, robustness, reliability and linearity between 0.75 and 100 μg/mL. KA administered intravenously showed a linear and two-compartment kinetic behavior at the tested dose. The following pharmacokinetic parameters were determined: C max  = 22.17 ± 1.65 mg/L; V = 14.53 ± 1.47 L/kg; CL = 17.67 ± 1.50 mL/min/kg; AUC 0-∞  = 2859.65 ± 278.42 mg·min/L, K = 0.073 ± 0.005 h -1 and t 1/2β  = 9.52 ± 0.61 h. Oral treatment did not provide detectable plasma levels of KA, avoiding the determination of its bioavailability. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies.

    PubMed

    Chaurasia, Sundeep; Chaubey, Pramila; Patel, Ravi R; Kumar, Nagendra; Mishra, Brahmeshwar

    2016-01-01

    Curcumin (CUR), can inhibit proliferation and induce apoptosis of tumor cells, its extreme insolubility and limited bioavailability restricted its clinical application. An innovative polymeric nanoparticle of CUR has been developed to enhance the bioavailability and anti-cancer efficacy of CUR, in vitro and in vivo. Cationic copolymer Eudragit E 100 was selected as carrier, which can enhance properties of poor bioavailable chemotherapeutic drugs (CUR). The CUR-loaded Eudragit E 100 nanoparticles (CENPs) were prepared by emulsification-diffusion-evaporation method. The in vitro cytotoxicity study of CENPs was carried out using sulphorhodamine B assay. Pharmacokinetic and anti-cancer efficacy of CENPs was investigated in Wister rats as well as colon-26 tumor-bearing mice after oral administration. CENPs showed acceptable particle size and percent entrapment efficiency. In vitro cytotoxicity studies in terms of 50% cell growth inhibition values demonstrated ∼19-fold reduction when treated with CENPs as compared to pure CUR. ∼91-fold increase in Cmax and ∼95-fold increase in AUC0-12h were observed indicating a significant enhancement in the oral bioavailability of CUR when orally administered as CENPs compared to pure CUR. The in vivo anti-cancer study performed with CENPs showed a significant increase in efficacy compared with pure CUR, as observed by tumor volume, body weight and survival rate. The results clearly indicate that the developed polymeric nanoparticles offer a great potential to improve bioavailability and anticancer efficacy of hydrophobic chemotherapeutic drug.

  4. Characteristics and clinical implications of the pharmacokinetic profile of ibuprofen in patients with knee osteoarthritis.

    PubMed

    Gallelli, L; Galasso, O; Urzino, A; Saccà, S; Falcone, D; Palleria, C; Longo, P; Corigliano, A; Terracciano, R; Savino, R; Gasparini, G; De Sarro, G; Southworth, S R

    2012-12-01

    Ibuprofen is a non-selective cyclo-oxygenase (COX)-1/COX-2 inhibitor used to treat pain conditions and inflammation. Limited data have been published concerning the pharmacokinetic profile and clinical effects of ibuprofen in patients with osteoarthritis (OA). In this paper we compared the pharmacokinetic and clinical profile of ibuprofen (at a dosage of from 800 mg/day to 1800 mg/day) administered in patients affected by severe knee OA. Ibuprofen was administered for 7 days to patients who were scheduled to undergo knee arthroplasty due to OA. After 7 days, the ibuprofen concentration in plasma and synovial fluid was measured through both high-performance liquid chromatography (HPLC)-UV and gas chromatography-mass spectroscopy (GC/MS), while clinical effects were evaluated through both visual analogue scale (VAS) and Western Ontario and McMaster Universities (WOMAC) scores. The Naranjo scale and the WHO causality assessment scale were used for estimating the probability of adverse drug reactions (ADRs). The severity of ADRs was assessed by the modified Hartwig and Siegel scale. Ibuprofen showed a dose-dependent diffusion in both plasma and synovial fluid, which was related to the reduction of pain intensity and improvement of health status, without the development of ADRs. Ibuprofen at higher dosages can be expected to provide better control of OA symptoms as a result of higher tissue distribution.

  5. Imipenem in burn patients: pharmacokinetic profile and PK/PD target attainment.

    PubMed

    Gomez, David S; Sanches-Giraud, Cristina; Silva, Carlindo V; Oliveira, Amanda M Ribas Rosa; da Silva, Joao Manoel; Gemperli, Rolf; Santos, Silvia R C J

    2015-03-01

    Unpredictable pharmacokinetics (PK) in burn patients may result in plasma concentrations below concentrations that are effective against common pathogens. The present study evaluated the imipenem PK profile and pharmacokinetic/pharmacodynamics (PK/PD) correlation in burn patients. Fifty-one burn patients, 38.7 years of age (mean), 68.0 kg, 36.3% total burn surface area (TBSA), of whom 84% (43/51) exhibited thermal injury, 63% inhalation injury and 16% electrical injury (8/51), all of whom were receiving imipenem treatment were investigated. Drug plasma monitoring, PK study (120 sets of plasma levels) and PK/PD correlation were performed in a series of blood samples. Only 250 μl of plasma samples were required for drug plasma measurements using the ultra filtration technique for the purification of biological matrix and quantification using liquid chromatography. Probability of target attainment (PTA) was calculated using a PD target of 40% free drug concentrations above the minimum inhibitory concentration (40%fT>MIC). Significant differences in PK parameters (medians), such as biological half-life (2.2 vs 5.5 h), plasma clearance (16.2 vs 1.4 l h(-1)) and volume of distribution (0.86 vs 0.19 l kg(-1)), were registered in burn patients via comparisons of set periods with normal renal function against periods of renal failure. Correlations between creatinine clearance and total body plasma clearance were also obtained. In addition, the PK profile did not change according to TBSA during sets when renal function was preserved. PTA was >89% for MIC values up to 4 mg l(-1). In conclusion, imipenem efficacy for the control of hospital infection on the basis of PK/PD correlation was guaranteed for burn in patients at the recommended dose regimens for normal renal function (31.1±9.7 mg kg(-1) daily), but the daily dose must be reduced to 17.2±9.7 mg kg(-1) during renal failure to avoid neurotoxicity.

  6. Metabolic profiles of pomalidomide in human plasma simulated with pharmacokinetic data in control and humanized-liver mice.

    PubMed

    Shimizu, Makiko; Suemizu, Hiroshi; Mitsui, Marina; Shibata, Norio; Guengerich, F Peter; Yamazaki, Hiroshi

    2017-10-01

    1. Pomalidomide has been shown to be potentially teratogenic in thalidomide-sensitive animal species such as rabbits. Screening for thalidomide analogs devoid of teratogenicity/toxicity - attributable to metabolites formed by cytochrome P450 enzymes - but having immunomodulatory properties is a strategic pathway towards development of new anticancer drugs. 2. In this study, plasma concentrations of pomalidomide, its primary 5-hydroxylated metabolite, and its glucuronide conjugate(s) were investigated in control and humanized-liver mice. Following oral administration of pomalidomide (100 mg/kg), plasma concentrations of 7-hydroxypomalidomide and 5-hydroxypomalidomide glucuronide were slightly higher in humanized-liver mice than in control mice. 3. Simulations of human plasma concentrations of pomalidomide were achieved with simplified physiologically-based pharmacokinetic models in both groups of mice in accordance with reported pomalidomide concentrations after low dose administration in humans. 4. The results indicate that pharmacokinetic profiles of pomalidomide were roughly similar between control mice and humanized-liver mice and that control and humanized-liver mice mediated pomalidomide 5-hydroxylation in vivo. Introducing one aromatic amino group into thalidomide resulted in less species differences in in vivo pharmacokinetics in control and humanized-liver mice.

  7. Exploring the Pharmacokinetic Profile of Remifentanil in Mid-Trimester Gestations Undergoing Fetal Intervention Procedures

    PubMed Central

    Smith, Judith A.; Donepudi, Roopali V.; Argoti, Pedro S.; Giezentanner, Anita L.; Jain, Ranu; Boring, Noemi; Garcia, Elisa; Moise, Kenneth J.

    2017-01-01

    Background: Indications for surgery during pregnancy have increased. Specifically fetal interventions have increased from conditions that were considered lethal like twin-twin transfusion syndrome and severe fetal anemia to non-lethal conditions like myelomeningocele. The optimal anesthetic agent for in utero surgery is yet to be determined. Success of the procedure is often dictated by the efficacy of the anesthetic to immobilize the fetus without over-sedating mom. Remifentanil is used as preferred agent due to its short half-life however pharmacokinetics in pregnancy is unknown. Objective: To determine the pharmacokinetic parameters of remifentanil in a mid-trimester pregnant patient population undergoing fetal intervention. Study Design: A validated liquid chromatography assay with ultraviolet absorbance was employed to estimate maternal serum remifentanil levels. Blood samples were obtained at baseline and at selected time points: 5, 15, 30, 45, 60 min after the beginning of the remifentanil infusion and at 15, 30, and 60 min post end of infusion. Results: Ten pregnant patients were enrolled in the study however only eight patients had sampling obtained at all time points. The mean gestational age was 22.2 (±2.7) weeks, maternal age was 27.8 (±5.1) years and body mass index was 29.6 (±6.3). After receiving a continuous infusion of remifentanil, mean total dose was 975.3 μg, Cmin was 2.0 ng/mL and Cmax was 8.4 ng/mL. A two-compartment model best described the plasma remifentanil data. Mean pharmacokinetic parameters were: volume of distribution (Vdc) = 124.6 L (16.2–530.8 L), maternal remifentanil total clearance (Clt) = 170.7 L/h (17.7–486.9 L/h), and half-life (t½) = 0.6 h (0.2–0.9 h). The maternal remifentanil area under the curve (AUC) ranged from 2.7 to 21.7 μg/L*h. The mean alpha-acidic glycoprotein was 124.8 mg/dL (81.3–149.8). Conclusion: The pharmacokinetic profile of remifentanil in pregnant women is similar to previously reported

  8. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies.

    PubMed

    Anitha, A; Sreeranganathan, Maya; Chennazhi, Krishna Prasad; Lakshmanan, Vinoth-Kumar; Jayakumar, R

    2014-09-01

    Colon cancer is the third most leading causes of death due to cancer worldwide and the chemo drug 5-fluorouracil's (5-FU) applicability is limited due to its non-specificity, low bioavailability and overdose. The efficacy of 5-FU in colon cancer chemo treatment could be improved by nanoencapsulation and combinatorial approach. In the present study curcumin (CUR), a known anticancer phytochemical, was used in combination with 5-FU and the work focuses on the development of a combinatorial nanomedicine based on 5-FU and CUR in N,O-carboxymethyl chitosan nanoparticles (N,O-CMC NPs). The developed 5-FU-N,O-CMC NPs and CUR-N,O-CMC NPs were found to be blood compatible. The in vitro drug release profile in pH 4.5 and 7.4 showed a sustained release profile over a period of 4 days. The combined exposure of the nanoformulations in colon cancer cells (HT 29) proved the enhanced anticancer effects. In addition, the in vivo pharmacokinetic data in mouse model revealed the improved plasma concentrations of 5-FU and CUR which prolonged up to 72 h unlike the bare drugs. In conclusion, the 5-FU and CUR released from the N,O-CMC NPs produced enhanced anticancer effects in vitro and improved plasma concentrations under in vivo conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles

    PubMed Central

    Bachler, Gerald; von Goetz, Natalie; Hungerbühler, Konrad

    2013-01-01

    Silver is a strong antibiotic that is increasingly incorporated into consumer products as a bulk, salt, or nanosilver, thus potentially causing side-effects related to human exposure. However, the fate and behavior of (nano)silver in the human body is presently not well understood. In order to aggregate the existing experimental information, a physiologically based pharmacokinetic model (PBPK) was developed in this study for ionic silver and nanosilver. The structure of the model was established on the basis of toxicokinetic data from intravenous studies. The number of calibrated parameters was minimized in order to enhance the predictive capability of the model. We validated the model structure for both silver forms by reproducing exposure conditions (dermal, oral, and inhalation) of in vivo experiments and comparing simulated and experimentally assessed organ concentrations. Therefore, the percutaneous, intestinal, or pulmonary absorption fraction was estimated based on the blood silver concentration of the respective experimental data set. In all of the cases examined, the model could successfully predict the biodistribution of ionic silver and 15–150 nm silver nanoparticles, which were not coated with substances designed to prolong the circulatory time (eg, polyethylene glycol). Furthermore, the results of our model indicate that: (1) within the application domain of our model, the particle size and coating had a minor influence on the biodistribution; (2) in vivo, it is more likely that silver nanoparticles are directly stored as insoluble salt particles than dissolve into Ag+; and (3) compartments of the mononuclear phagocytic system play a minor role in exposure levels that are relevant for human consumers. We also give an example of how the model can be used in exposure and risk assessments based on five different exposure scenarios, namely dietary intake, use of three separate consumer products, and occupational exposure. PMID:24039420

  10. Influence of administration vehicles and drug formulations on the pharmacokinetic profile of lamotrigine in rats.

    PubMed

    Castel-Branco, M M; Figueiredo, I V; Falcão, A C; Macedo, T R A; Caramona, M M

    2002-10-01

    Given that administration vehicles and drug formulations can affect drug bioavailability, their influence on the pharmacokinetic profile of lamotrigine (LTG), a new-generation anti-epileptic drug, was studied in rats. Three different formulations administered intraperitoneally at a dose of 10 mg/kg were used: (1) LTG suspended in a 0.25% methylcelulose solution, (2) LTG dissolved in a 50% propylene glycol solution, and (3) LTG isethionate dissolved in distilled water. Plasma and brain homogenate levels were determined in order to evaluate vehicle-dependent drug absorption. The results demonstrated rapid absorption of LTG when it was administered as an aqueous solution, in contrast to a slower and more erratic absorption after the injection of either the lipophilic solution or the suspension. A plasma peak was achieved 15 min post-dose with the aqueous solution, with a brain peak being achieved 15 min later, while with the other formulations both plasma and brain homogenate peaks were reached 2 h after LTG administration. This study suggests that LTG isethionate dissolved in distilled water is the most suitable formulation for successful LTG pharmacokinetic studies in rats.

  11. A population pharmacokinetic model of valproic acid in pediatric patients with epilepsy: a non-linear pharmacokinetic model based on protein-binding saturation.

    PubMed

    Ding, Junjie; Wang, Yi; Lin, Weiwei; Wang, Changlian; Zhao, Limei; Li, Xingang; Zhao, Zhigang; Miao, Liyan; Jiao, Zheng

    2015-03-01

    Valproic acid (VPA) follows a non-linear pharmacokinetic profile in terms of protein-binding saturation. The total daily dose regarding VPA clearance is a simple power function, which may partially explain the non-linearity of the pharmacokinetic profile; however, it may be confounded by the therapeutic drug monitoring effect. The aim of this study was to develop a population pharmacokinetic model for VPA based on protein-binding saturation in pediatric patients with epilepsy. A total of 1,107 VPA serum trough concentrations at steady state were collected from 902 epileptic pediatric patients aged from 3 weeks to 14 years at three hospitals. The population pharmacokinetic model was developed using NONMEM(®) software. The ability of three candidate models (the simple power exponent model, the dose-dependent maximum effect [DDE] model, and the protein-binding model) to describe the non-linear pharmacokinetic profile of VPA was investigated, and potential covariates were screened using a stepwise approach. Bootstrap, normalized prediction distribution errors and external evaluations from two independent studies were performed to determine the stability and predictive performance of the candidate models. The age-dependent exponent model described the effects of body weight and age on the clearance well. Co-medication with carbamazepine was identified as a significant covariate. The DDE model best fitted the aim of this study, although there were no obvious differences in the predictive performances. The condition number was less than 500, and the precision of the parameter estimates was less than 30 %, indicating stability and validity of the final model. The DDE model successfully described the non-linear pharmacokinetics of VPA. Furthermore, the proposed population pharmacokinetic model of VPA can be used to design rational dosage regimens to achieve desirable serum concentrations.

  12. Role of Nanoparticles in Drug Delivery and Regenerative Therapy for Bone Diseases.

    PubMed

    Gera, Sonia; Sampathi, Sunitha; Dodoala, Sujatha

    2017-01-01

    Osteoporosis is a disease characterized by progressive bone loss due to aging and menopause in women leading to bone fragility with increased susceptibility towards fractures. The silent disease weakens the bone by altering its microstructure and mass. Therapy is based on either promoting strength (via osteoblast action) or preventing disease (via osteoclast action). Current therapy with different drugs belonging to antiresorptive, anabolic and hormonal classification suffers from poor pharmacokinetic and pharmacodynamic profile. Nanoparticles provide breakthrough as an alternative therapeutic carrier and biomedical imaging tool in bone diseases. The current review highlights bone physiology and pathology along with potential applications of nanoparticles in osteoporosis through use of organic and inorganic particles for drug delivery, biomedical imaging as well as bone tissue regeneration therapy. Inorganic nanoparticles of gold, cerium, platinum and silica have effects on osteoblastic and osteoclastic lineage. Labelling and tracking of bone cells by quantum dots and gold nanoparticles are advanced and non-invasive techniques. Incorporation of nanoparticles into the scaffolds is a more recent technique for improving mechanical strength as well as regeneration during bone grafting. Promising results by in vitro and in vivo studies depicts effects of nanoparticles on biochemical markers and biomechanical parameters during osteoporosis suggesting the bright future of nanoparticles in bone applications. Any therapy which improves the drug profile and delivery to bone tissue will be promising approach. Superparamagnetic, gold, mesoporous silica nanoparticles and quantum dots provide golden opportunities for biomedical imaging by replacing the traditional invasive radionuclide techniques. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. ISONIAZID AND RIFAMPIN PHARMACOKINETICS IN TWO ASIAN ELEPHANTS (ELEPHAS MAXIMUS) INFECTED WITH MYCOBACTERIUM TUBERCULOSIS.

    PubMed

    Egelund, Eric F; Isaza, Ramiro; Alsultan, Abdullah; Peloquin, Charles A

    2016-09-01

    This report describes the pharmacokinetic profiles of chronically administered oral isoniazid and rifampin in one adult male and one adult female Asian elephant ( Elephas maximus ) that were asymptomatically infected with Mycobacterium tuberculosis . Rifampin's half-life was reduced when compared to previous single-dose pharmacokinetic profiles of healthy uninfected Asian elephants. Both elephants experienced delayed absorption of isoniazid and rifampin as compared to previous pharmacokinetic studies in this species. The altered pharmacokinetics of both drugs in repeated-dosing clinical situations underscores the need for individual therapeutic drug monitoring for tuberculosis treatment.

  14. Interaction of silver nanoparticles with proteins: a characteristic protein concentration dependent profile of SPR signal.

    PubMed

    Banerjee, Victor; Das, K P

    2013-11-01

    Silver nanoparticles are finding increasing applications in biological systems, for example as antimicrobial agents and potential candidates for control drug release systems. In all such applications, silver nanoparticles interact with proteins and other biomolecules. Hence, the study of such interactions is of considerable importance. While BSA has been extensively used as a model protein for the study of interaction with the silver nanoparticles, studies using other proteins are rather limited. The interaction of silver nanoparticles with light leads to collective oscillation of the conducting electrons giving rise to surface plasmon resonance (SPR). Here, we have studied the protein concentration dependence of the SPR band profiles for a number of proteins. We found that for all the proteins, with increase in concentration, the SPR band intensity initially decreased, reaching minima and then increased again leading to a characteristic "dip and rise" pattern. Minimum point of the pattern appeared to be related to the isoelectric point of the proteins. Detailed dynamic light scattering and transmission electron microscopy studies revealed that the consistency of SPR profile was dependent on the average particle size and state of association of the silver nanoparticles with the change in the protein concentration. Fluorescence spectroscopic studies showed the binding constants of the proteins with the silver nanoparticles were in the nano molar range with more than one nanoparticle binding to protein molecule. Structural studies demonstrate that protein retains its native-like structure on the nanoparticle surface unless the molar ratio of silver nanoparticles to protein exceeds 10. Our study reveals that nature of the protein concentration dependent profile of SPR signal is a general phenomena and mostly independent of the size and structure of the proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The effects of cimetidine and antacid on the pharmacokinetic profile of sildenafil citrate in healthy male volunteers

    PubMed Central

    Wilner, Keith; Laboy, Lucia; LeBel, Marc

    2002-01-01

    Aims To examine the effect of concomitant cimetidine or antacid administration on the pharmacokinetic profile of sildenafil citrate in healthy male volunteers in two open-label, randomized studies. Methods The first study was a parallel-group design in which 22 healthy male volunteers received sildenafil (50 mg) on days 1 and 5 and cimetidine (800 mg) or placebo on days 3, 4, 5, and 6. Blood samples were collected predose and at specified times up to 48 h postdose on days 1 and 5 to determine plasma levels of sildenafil and its metabolite, UK-103,320. The second study was a two-way crossover design in which 12 volunteers received sildenafil with or without a 30-ml dose of a magnesium hydroxide/aluminium hydroxide antacid. Blood samples were collected and analysed as in the first study. The two study periods were separated by at least 14 days. Results Coadministration of cimetidine had no statistically significant effect on the tmax or kel of sildenafil but caused a statistically significant increase in sildenafil AUCt and Cmax of 56% and 54%, respectively (P<0.01). Differences between the two treatment groups were smaller for the metabolite than for sildenafil, although cimetidine treatment did significantly (P<0.05) increase the AUCt for UK-103,320 by 30%. Antacid coadministration had no statistically significant effect on any pharmacokinetic parameter of sildenafil or UK-103,320. Whether taken alone, with cimetidine, or with an antacid, sildenafil was well tolerated. Most adverse events were mild in nature, and no subject withdrew from either study for any reason related to the drug. Conclusions Cimetidine co-administration produced an increase in sildenafil plasma levels; however, this increase is not sufficient to warrant dosage adjustment of either drug. Antacid coadministration had no effect on the pharmacokinetic profile of sildenafil. PMID:11879257

  16. Hydrophobic Effect from Conjugated Chemicals or Drugs on In Vivo Biodistribution of RNA Nanoparticles.

    PubMed

    Jasinski, Daniel L; Yin, Hongran; Li, Zhefeng; Guo, Peixuan

    2018-01-01

    Liver or other organ accumulation of drugs is one of the major problems that leads to toxicity and side effects in therapy using chemicals or other macromolecules. It has been shown that specially designed RNA nanoparticles can specifically target cancer cells, silence oncogenic genes, and stop cancer growth with little or no accumulation in the liver or other vital organs. It is well known that physical properties of nanoparticles such as size, shape, and surface chemistry affect biodistribution and pharmacokinetic profiles in vivo. This study examined how the hydrophobicity of chemicals conjugated to RNA nanoparticles affect in vivo biodistribution. Weaker organ accumulation was observed for hydrophobic chemicals after they were conjugated to RNA nanoparticles, revealing RNA's ability to solubilize hydrophobic chemicals. It was found that different chemicals conjugated to RNA nanoparticles resulted in the alteration of RNA hydrophobicity. Stronger hydrophobicity induced by chemical conjugates resulted in higher accumulation of RNA nanoparticles in vital organs in mice. This study provides new insights for handling drug insolubility, therapeutic toxicity, and organ clearance in drug development.

  17. Pharmacokinetic Modeling to Simulate the Concentration-Time Profiles After Dermal Application of Rivastigmine Patch.

    PubMed

    Nozaki, Sachiko; Yamaguchi, Masayuki; Lefèvre, Gilbert

    2016-07-01

    Rivastigmine is an inhibitor of acetylcholinesterases and butyrylcholinesterases for symptomatic treatment of Alzheimer disease and is available as oral and transdermal patch formulations. A dermal absorption pharmacokinetic (PK) model was developed to simulate the plasma concentration-time profile of rivastigmine to answer questions relative to the efficacy and safety risks after misuse of the patch (e.g., longer application than 24 h, multiple patches applied at the same time, and so forth). The model comprised 2 compartments which was a combination of mechanistic dermal absorption model and a basic 1-compartment model. The initial values for the model were determined based on the physicochemical characteristics of rivastigmine and PK parameters after intravenous administration. The model was fitted to the clinical PK profiles after single application of rivastigmine patch to obtain model parameters. The final model was validated by confirming that the simulated concentration-time curves and PK parameters (Cmax and area under the drug plasma concentration-time curve) conformed to the observed values and then was used to simulate the PK profiles of rivastigmine. This work demonstrated that the mechanistic dermal PK model fitted the clinical data well and was able to simulate the PK profile after patch misuse. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. One mouse, one pharmacokinetic profile: quantitative whole blood serial sampling for biotherapeutics.

    PubMed

    Joyce, Alison P; Wang, Mengmeng; Lawrence-Henderson, Rosemary; Filliettaz, Cynthia; Leung, Sheldon S; Xu, Xin; O'Hara, Denise M

    2014-07-01

    The purpose of this study was to validate the approach of serial sampling from one mouse through ligand binding assay (LBA) quantification of dosed biotherapeutic in diluted whole blood to derive a pharmacokinetic (PK) profile. This investigation compared PK parameters obtained using serial and composite sampling methods following administration of human IgG monoclonal antibody. The serial sampling technique was established by collecting 10 μL of blood via tail vein at each time point following drug administration. Blood was immediately diluted into buffer followed by analyte quantitation using Gyrolab to derive plasma concentrations. Additional studies were conducted to understand matrix and sampling site effects on drug concentrations. The drug concentration profiles, irrespective of biological matrix, and PK parameters using both sampling methods were not significantly different. There were no sampling site effects on drug concentration measurements except that concentrations were slightly lower in sodium citrated plasma than other matrices. We recommend the application of mouse serial sampling, particularly with limiting drug supply or specialized animal models. Overall the efficiencies gained by serial sampling were 40-80% savings in study cost, animal usage, study length and drug conservation while inter-subject variability across PK parameters was less than 30%.

  19. Predicting Drug Concentration‐Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically‐Based Pharmacokinetic Model

    PubMed Central

    Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.

    2017-01-01

    Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201

  20. Comparative pharmacokinetic and tissue distribution profiles of four major bioactive components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

    PubMed

    Yang, Tao; Liu, Shan; Wang, Chang-Hong; Tao, Yan-Yan; Zhou, Hua; Liu, Cheng-Hai

    2015-10-10

    Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Nicotine pharmacokinetic profiles of the Tobacco Heating System 2.2, cigarettes and nicotine gum in Japanese smokers.

    PubMed

    Brossard, Patrick; Weitkunat, Rolf; Poux, Valerie; Lama, Nicola; Haziza, Christelle; Picavet, Patrick; Baker, Gizelle; Lüdicke, Frank

    2017-10-01

    Two open-label randomized cross-over studies in Japanese smokers investigated the single-use nicotine pharmacokinetic profile of the Tobacco Heating System (THS) 2.2, cigarettes (CC) and nicotine replacement therapy (Gum). In each study, one on the regular and one on the menthol variants of the THS and CC, both using Gum as reference, 62 subjects were randomized to four sequences: Sequence 1: THS - CC (n = 22); Sequence 2: CC - THS (n = 22); Sequence 3: THS - Gum (n = 9); Sequence 4: Gum - THS (n = 9). Plasma nicotine concentrations were measured in 16 blood samples collected over 24 h after single use. Maximal nicotine concentration (C max ) and area under the curve from start of product use to time of last quantifiable concentration (AUC 0-last ) were similar between THS and CC in both studies, with ratios varying from 88 to 104% for C max and from 96 to 98% for AUC 0-last . Urge-to-smoke total scores were comparable between THS and CC. The THS nicotine pharmacokinetic profile was close to CC, with similar levels of urge-to-smoke. This suggests that THS can satisfy smokers and be a viable alternative to cigarettes for adult smokers who want to continue using tobacco. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The Pharmacokinetic Profile of a New Gastroresistant Capsule Preparation of Eicosapentaenoic Acid as the Free Fatty Acid

    PubMed Central

    Scaioli, Eleonora; Munarini, Alessandra; Hull, Mark A.; Belluzzi, Andrea

    2015-01-01

    Supplementation with n-3 polyunsaturated fatty acids (n-3 PUFAs) may be beneficial for patients with inflammatory bowel diseases (IBD). In this study we analyzed the pharmacokinetic profile of eicosapentaenoic acid (EPA), as the free fatty acid (FFA), in an enteric-coated preparation, in 10 ulcerative colitis (UC) and 10 Crohn's disease (CD) patients and 15 healthy volunteers (HV). Subjects received 2 g daily of EPA-FFA for 8 weeks. Plasma phospholipid and red blood cell (RBC) membrane fatty acid content were measured by gas chromatography-mass spectrometry. There was a rapid incorporation of EPA into plasma phospholipids by 2 weeks and a slower, but highly consistent, incorporation into RBC membranes (4% total fatty acid content; coefficient of variation 10–16%). There was a concomitant reduction in relative n-6 PUFA content. Elongation and desaturation of EPA into docosahexaenoic acid (DHA) via docosapentaenoic acid (DPA) were apparent and DHA content also increased in membranes. EPA-FFA is well tolerated and no difference in the pharmacokinetic profile of n-3 PUFA incorporation was detected between IBD patients and HV. Our data support the concept that EPA can be considered the “universal donor” with respect to key n-3 PUFAs and that this enteric-coated formulation allows long term treatment with a high level of compliance. PMID:26339608

  3. Nanoparticles for Imaging: Top or Flop?

    PubMed Central

    Mertens, Marianne E.; Grimm, Jan; Lammers, Twan

    2014-01-01

    Nanoparticles are frequently suggested as diagnostic agents. However, except for iron oxide nanoparticles, diagnostic nanoparticles have been barely incorporated into clinical use so far. This is predominantly due to difficulties in achieving acceptable pharmacokinetic properties and reproducible particle uniformity as well as to concerns about toxicity, biodegradation, and elimination. Reasonable indications for the clinical utilization of nanoparticles should consider their biologic behavior. For example, many nanoparticles are taken up by macrophages and accumulate in macrophage-rich tissues. Thus, they can be used to provide contrast in liver, spleen, lymph nodes, and inflammatory lesions (eg, atherosclerotic plaques). Furthermore, cells can be efficiently labeled with nanoparticles, enabling the localization of implanted (stem) cells and tissue-engineered grafts as well as in vivo migration studies of cells. The potential of using nanoparticles for molecular imaging is compromised because their pharmacokinetic properties are difficult to control. Ideal targets for nanoparticles are localized on the endothelial luminal surface, whereas targeted nanoparticle delivery to extravascular structures is often limited and difficult to separate from an underlying enhanced permeability and retention (EPR) effect. The majority of clinically used nanoparticle-based drug delivery systems are based on the EPR effect, and, for their more personalized use, imaging markers can be incorporated to monitor biodistribution, target site accumulation, drug release, and treatment efficacy. In conclusion, although nanoparticles are not always the right choice for molecular imaging (because smaller or larger molecules might provide more specific information), there are other diagnostic and theranostic applications for which nanoparticles hold substantial clinical potential. PMID:25247562

  4. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    PubMed Central

    Ahmed, Tarek A

    2016-01-01

    In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. PMID:26893559

  5. Pharmacokinetic-pharmacodynamic profile of systemic nitric oxide-synthase inhibition with L-NMMA in humans

    PubMed Central

    Mayer, Bernhard X; Mensik, Christa; Krishnaswami, Sriram; Derendorf, Hartmut; Eichler, Hans-Georg; Schmetterer, Leopold; Wolzt, Michael

    1999-01-01

    Aims It has been demonstrated that inhibition of endothelium derived nitric oxide with NG-monomethyl-l-arginine (l-NMMA) results in a different cardiac and peripheral vascular response. The purpose of this study was to investigate the pharmacokinetic-pharmacodynamic profile of l-NMMA and pharmacokinetic interactions with l-arginine in healthy subjects. Methods Plasma pharmacokinetics were analysed from two different studies: In study 1, 3 mg kg−1 l-NMMA was administered i.v. over 5 min and systemic haemodynamics, cardiac output (CO), fundus pulsation amplitude (FPA), and NO-exhalation (exhNO) were measured at baseline and 15, 65, 95, 155, and 305 min after start of drug administration (n=7). In study 2, 17 mg kg−1 min−1 of the physiologic substrate for nitric oxide synthase, l-arginine, was coinfused i.v. over 30 min with a primed constant infusion of 50 μg kg−1 min−1 l-NMMA (n=8). Results Bolus infusion of l-NMMA resulted in a maximum plasma concentration of 12.9±3.4 μg ml−1 (mean±s.d.) with elimination half-life of 63.5±14.5 min and clearance of 12.2±3.5 ml min−1 kg−1 and caused a small hypertensive response, decreased CO by 13%, FPA by 26%, exhNO by 46% and increased systemic vascular resistance by 16% (P<0.05 each) 15 min after start of drug administration. Although only limited data points were available in the l-NMMA plasma concentration range between 0 and 4 μg ml−1, drug effects over time were in good agreement with an Emax model (r2>0.98 each), which also suggested that concentrations producing half-maximum effects were higher for FPA than for CO and exhNO. The coinfusion with l-arginine caused a nearly two-fold increase in plasma l-NMMA levels, indicating a pharmacokinetic interaction. Conclusions In the absence of a systemic hypertensive response, l-NMMA significantly decreased CO, exhNO, and FPA. The concentration calculated to produce a half maximal effect was equivalent for exhNO and CO, but markedly higher for FPA

  6. Application of Physiologically Based Absorption Modeling to Characterize the Pharmacokinetic Profiles of Oral Extended Release Methylphenidate Products in Adults

    PubMed Central

    Yang, Xiaoxia; Duan, John; Fisher, Jeffrey

    2016-01-01

    A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations. PMID:27723791

  7. An integrated multiple-analyte pharmacokinetic model to characterize trastuzumab emtansine (T-DM1) clearance pathways and to evaluate reduced pharmacokinetic sampling in patients with HER2-positive metastatic breast cancer.

    PubMed

    Lu, Dan; Joshi, Amita; Wang, Bei; Olsen, Steve; Yi, Joo-Hee; Krop, Ian E; Burris, Howard A; Girish, Sandhya

    2013-08-01

    Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate recently approved by the US Food and Drug Administration for the treatment of human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer previously treated with trastuzumab and taxane chemotherapy. It comprises the microtubule inhibitory cytotoxic agent DM1 conjugated to the HER2-targeted humanized monoclonal antibody trastuzumab via a stable linker. To characterize the pharmacokinetics of T-DM1 in patients with metastatic breast cancer, concentrations of multiple analytes were quantified, including serum concentrations of T-DM1 conjugate and total trastuzumab (the sum of conjugated and unconjugated trastuzumab), as well as plasma concentrations of DM1. The clearance of T-DM1 conjugate is approximately 2 to 3 times faster than its parent antibody, trastuzumab. However, the clearance pathways accounting for this faster clearance rate are unclear. An integrated population pharmacokinetic model that simultaneously fits the pharmacokinetics of T-DM1 conjugate and total trastuzumab can help to elucidate the clearance pathways of T-DM1. The model can also be used to predict total trastuzumab pharmacokinetic profiles based on T-DM1 conjugate pharmacokinetic data and sparse total trastuzumab pharmacokinetic data, thereby reducing the frequency of pharmacokinetic sampling. T-DM1 conjugate and total trastuzumab serum concentration data, including baseline trastuzumab concentrations prior to T-DM1 treatment, from phase I and II studies were used to develop this integrated population pharmacokinetic model. Based on a hypothetical T-DM1 catabolism scheme, two-compartment models for T-DM1 conjugate and trastuzumab were integrated by assuming a one-step deconjugation clearance from T-DM1 conjugate to trastuzumab. The ability of the model to predict the total trastuzumab pharmacokinetic profile based on T-DM1 conjugate pharmacokinetics and various sampling schemes of total trastuzumab

  8. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: bioavailability and pharmacokinetic characterization.

    PubMed

    Shahnaz, Gul; Vetter, Anja; Barthelmes, Jan; Rahmat, Deni; Laffleur, Flavia; Iqbal, Javed; Perera, Glen; Schlocker, Wolfgang; Dünnhaput, Sarah; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2012-05-30

    The purpose of this study was to develop thiolated nanoparticles to enhance the bioavailability for the nasal application of leuprolide. Thiolated chitosan-thioglycolic acid (chitosan-TGA) and unmodified chitosan nanoparticles (NPs) were developed via ionic gelation with tripolyphosphate (TPP). Leuprolide was incorporated during the formulation process of NPs. The thiolated (chitosan-TGA) NPs had a mean size of 252 ± 82 nm, a zeta potential of +10.9 ± 4 mV, and payload of leuprolide was 12 ± 2.8. Sustained release of leuprolide from thiolated NPs was demonstrated over 6h, which might be attributed to inter- and/or intramolecular disulfide formation within the NPs network. Ciliary beat frequency (CBF) study demonstrated that thiolated NPs can be considered as suitable additives for nasal drug delivery systems. Compared to leuprolide solution, unmodified NPs and thiolated NPs provoked increased leuprolide transport through porcine nasal mucosa by 2.0 and 5.2 folds, respectively. The results of a pharmacokinetic study in male Sprague-Dawley rats showed improved transport of leuprolide from thiolated NPs as compared to leuprolide solution. Thiolated NPs had a 6.9-fold increase in area under the curve, more than 4-fold increase in elimination half-life, and a ∼3.8-fold increase in maximum plasma concentration compared to nasal solution alone. The relative nasal bioavailability (versus s.c. injection) of leuprolide thiolated NPs calculated on the basis of AUC((0-6)) was about 19.6% as compared to leuprolide solution 2.8%. The enhanced bioavailability of leuprolide is likely due to facilitated transport by thiolated NPs rather than improved release. Copyright © 2012. Published by Elsevier B.V.

  9. Pharmacokinetic properties and safety profile of histamine dihydrochloride injection in Chinese healthy volunteers: a phase I, single-center, open-label, randomized study.

    PubMed

    Li, Jiapeng; Huang, Xiaojun; Wang, Qian; Jing, Shan; Jiang, Hao; Wei, Zhongna; Zang, Yannan; Liu, Yang; Zhao, Libo; Fang, Yi; Feng, Wanyu

    2015-10-01

    Histamine dihydrochloride (HDC) injection has been approved in Europe for the treatment of adults with acute myeloid leukemia, used in combination therapy with the T-cell-derived cytokine interleukin-2. Despite years of clinical applications of HDC in Europe, no data are available on its tolerability and pharmacokinetic properties in Chinese patients. The objective of this study was to determine the safety profile and pharmacokinetic properties of HDC in Chinese healthy volunteers (HVs). In this Phase I, single-center, open-label, randomized study, 20 Chinese HVs were randomized to receive a single dose of 0.5 or 1.0 mg HDC via a 10-minute subcutaneous injection. Whole-blood and urine samples were collected at designated time points after dosing. Plasma and urine concentrations of histamine and metabolite N-methyl histamine were measured using a validated HPLC-MS/MS method. Pharmacokinetic parameters were estimated through noncompartmental procedures based on concentration-time data. Adverse events and evaluation of clinical laboratory tests were used to assess the safety profile. The pharmacokinetic profile for a single-dose of 1.0 mg HDC in Chinese HVs was compared with that in Western HVs. No severe adverse events occurred in this study, and the severity of all adverse events was grade I according to the Common Terminology Criteria for Adverse Events, version 4.0. For the pharmacokinetic parameters of histamine at the 0.5-mg and 1.0-mg dose levels, t½ was 0.50 and 1.02 hours; Tmax was 0.15 and 0.14 hours; mean Cmax was 26.59 and 71.01 nmol/L; AUC0-t was 8.35 and 20.43 nmol/h/L; AUC0-∞ was 9.61 and 22.69 nmol/h/L; accumulated amount excreted in urine within 24 hours was 125.93 and 145.52 nmol; and maximum urine excretion rates were 21.85 and 38.94 nmol/h, respectively. For N-methyl histamine at the 0.5-mg and 1.0-mg dose levels, t½ was 0.58 and 0.66 hours; Tmax was 0.28 and 0.26 hours; mean Cmax was 17.01 and 23.54 nmol/L; AUC0-t was 7.72 and 17.08 nmol

  10. Preparation and in Vitro Analysis of Human Serum Albumin Nanoparticles Loaded with Anthracycline Derivatives.

    PubMed

    Kimura, Kotaro; Yamasaki, Keishi; Nakamura, Hideaki; Haratake, Mamoru; Taguchi, Kazuaki; Otagiri, Masaki

    2018-01-01

    Nanoparticles prepared using human serum albumin (HSA) have emerged as versatile carriers for improving the pharmacokinetic profile of drugs. The desolvation of HSA using ethanol followed by stabilization through crosslinking with glutaraldehyde is a common technique for preparing HSA nanoparticles, but our knowledge concerning the characteristics (or functions) of HSA nanoparticles and their efficiency when loaded with drugs is limited. To address this issue in more detail, we prepared anthracycline-loaded HSA nanoparticles. Doxorubicin-loaded HSA nanoparticles with a size similar to doxorubicin-unloaded particles could be prepared by desolvating at a higher pH (8-9), and the size (100-150 nm) was optimum for delivery to tumor tissues. Using this procedure, HSA nanoparticles were loaded with other anthracycline derivatives, and all showed cytotoxicity in cancer cells. However, the efficiency of drug loading and dissolution rate were different among them possibly due to the differences in the type of association of the drugs on nanoparticles (doxorubicin and daunorubicin; covalently bound to nanoparticles, pirarubicin; both covalently bound to and adsorbed on nanoparticles, aclarubicin; adsorbed on nanoparticles). Since the formulation of such drug-loaded HSA nanoparticles should be modified for efficient delivery to tumors, the findings reported herein provide the useful information for optimizing the formulation and the production process for the HSA nanoparticles using a desolvation technique.

  11. Gold nanoparticles: From nanomedicine to nanosensing

    PubMed Central

    Chen, Po C; Mwakwari, Sandra C; Oyelere, Adegboyega K

    2008-01-01

    Because of their photo-optical distinctiveness and biocompatibility, gold nanoparticles (AuNPs) have proven to be powerful tools in various nanomedicinal and nanomedical applications. In this review article, we discuss recent advances in the application of AuNPs in diagnostic imaging, biosensing and binary cancer therapeutic techniques. We also provide an eclectic collection of AuNPs delivery strategies, including assorted classes of delivery vehicles, which are showing great promise in specific targeting of AuNPs to diseased tissues. However, successful clinical implementations of the promised applications of AuNPs are still hampered by many barriers. In particular, more still needs to be done regarding our understanding of the pharmacokinetics and toxicological profiles of AuNPs and AuNPs-conjugates. PMID:24198460

  12. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability.

    PubMed

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, -32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, -18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties.

  13. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability

    PubMed Central

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, −32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, −18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties. PMID:22346351

  14. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.

    PubMed

    Pitek, Andrzej S; Jameson, Slater A; Veliz, Frank A; Shukla, Sourabh; Steinmetz, Nicole F

    2016-05-01

    Plant virus-based nanoparticles (VNPs) are a novel class of nanocarriers with unique potential for biomedical applications. VNPs have many advantageous properties such as ease of manufacture and high degree of quality control. Their biocompatibility and biodegradability make them an attractive alternative to synthetic nanoparticles (NPs). Nevertheless, as with synthetic NPs, to be successful in drug delivery or imaging, the carriers need to overcome several biological barriers including innate immune recognition. Plasma opsonization can tag (V)NPs for clearance by the mononuclear phagocyte system (MPS), resulting in shortened circulation half lives and non-specific sequestration in non-targeted organs. PEG coatings have been traditionally used to 'shield' nanocarriers from immune surveillance. However, due to broad use of PEG in cosmetics and other industries, the prevalence of anti-PEG antibodies has been reported, which may limit the utility of PEGylation in nanomedicine. Alternative strategies are needed to tailor the in vivo properties of (plant virus-based) nanocarriers. We demonstrate the use of serum albumin (SA) as a viable alternative. SA conjugation to tobacco mosaic virus (TMV)-based nanocarriers results in a 'camouflage' effect more effective than PEG coatings. SA-'camouflaged' TMV particles exhibit decreased antibody recognition, as well as enhanced pharmacokinetics in a Balb/C mouse model. Therefore, SA-coatings may provide an alternative and improved coating technique to yield (plant virus-based) NPs with improved in vivo properties enhancing drug delivery and molecular imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biodistribution and pharmacokinetics of dapivirine-loaded nanoparticles after vaginal delivery in mice.

    PubMed

    das Neves, José; Araújo, Francisca; Andrade, Fernanda; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2014-07-01

    To assess the potential of polymeric nanoparticles (NPs) to affect the genital distribution and local and systemic pharmacokinetics (PK) of the anti-HIV microbicide drug candidate dapivirine after vaginal delivery. Dapivirine-loaded, poly(ethylene oxide)-coated poly(epsilon-caprolactone) (PEO-PCL) NPs were prepared by a nanoprecipitation method. Genital distribution of NPs and their ability to modify the PK of dapivirine up to 24 h was assessed after vaginal instillation in a female mouse model. Also, the safety of NPs upon daily administration for 14 days was assessed by histological analysis and chemokine/cytokine content in vaginal lavages. PEO-PCL NPs (180-200 nm) were rapidly eliminated after administration but able to distribute throughout the vagina and lower uterus, and capable of tackling mucus and penetrate the epithelial lining. Nanocarriers modified the PK of dapivirine, with higher drug levels being recovered from vaginal lavages and vaginal/lower uterine tissues as compared to a drug suspension. Systemic drug exposure was reduced when NPs were used. Also, NPs were shown safe upon administration for 14 days. Dapivirine-loaded PEO-PCL NPs were able to provide likely favorable genital drug levels, thus attesting the potential value of using this vaginal drug delivery nanosystem in the context of HIV prophylaxis.

  16. Intravenous application of HI-6 salts (dichloride and dimethansulphonate) in pigs: comparison with pharmacokinetics profile after intramuscular administration.

    PubMed

    Zdarova Karasova, Jana; Zemek, Filip; Kunes, Martin; Kvetina, Jaroslav; Chladek, Jaroslav; Jun, Daniel; Bures, Jan; Tachecí, Ilja; Kuca, Kamil

    2013-01-01

    Oxime HI-6 is an acetylcholinesterase reactivator therapeutically efficient against nerve agents. Because of their physico-chemical properties, oximes are typically applied intramuscularly (i.m.). This route of administration has also some disadvantages, and alternative strategies ought to be examined. We evaluated the pharmacokinetic profiles of two HI-6 salts after their intravenous (i.v.) administration, and compare the results with the known pharmacokinetics after i.m. administration. Pigs were administered with HI-6 salts (i.v), either HI-6 dichloride (10.71 mg/kg) or molar equivalent HI-6 dimethansulphonate (13.59 mg/kg). Doses of the HI-6 salts corresponded with a standard HI-6 dichloride dose in one autoinjector (500 mg) and were recalculated for one kilogram of body weight. The main pharmacokinetic parameters are comparable after i.v. and i.m. HI-6 administration. The compared pharmacokinetic parameters were half-life, terminal rate constant, mean residence time of the molecule in the body, clearance, and the apparent volume in the terminal phase. The bioavailability after i.m. administration was comparable with that of i.v.; these results suggest that the oxime is well released from the muscle depot. Significant differences were found in parameters Cmax and Tmax which are important in cases of emergency when rapidity and bioavailability are paramount for the success of treatment. I.v. administration should solve the problem of rapid clearance. Infusion or bolus administration may be considered as a logical subsequent step in oxime treatment strategy. The main advantage is in maintenance of an effective therapeutic plasma concentration, a more easily achievable effective therapeutic concentration, and fewer local adverse reactions.

  17. Laser focal profiler based on forward scattering of a nanoparticle

    NASA Astrophysics Data System (ADS)

    Ota, Taisuke

    2018-03-01

    A laser focal intensity profiling method based on the forward scattering from a nanoparticle is demonstrated for in situ measurements using a laser focusing system with six microscope objective lenses with different numerical apertures ranging from 0.15 to 1.4. The measured profiles showed Airy disc patterns although their rings showed some imperfections due to aberrations and misalignment of the test system. The dipole radiation model revealed that the artefact of this method was much smaller than the influence of the deterioration in the experimental system; a condition where no artefact appears was predicted based on proper selection of measurement angles.

  18. Release profile and stability evaluation of optimized chitosan/alginate nanoparticles as EGFR antisense vector

    PubMed Central

    Azizi, Ebrahim; Namazi, Alireza; Haririan, Ismaeil; Fouladdel, Shamileh; Khoshayand, Mohammad R; Shotorbani, Parisa Y; Nomani, Alireza; Gazori, Taraneh

    2010-01-01

    Chitosan/alginate nanoparticles which had been optimized in our previous study using two different N/P ratios were chosen and their ability to release epidermal growth factor receptor (EGFR) antisense was investigated. In addition, the stability of these nanoparticles in aqueous medium and after freeze-drying was investigated. In the case of both N/P ratios (5, 25), nanoparticles started releasing EGFR antisense as soon as they were exposed to the medium and the release lasted for approximately 50 hours. Nanoparticle size, shape, zeta potential, and release profile did not show any significant change after the freeze-drying process (followed by reswelling). The nanoparticles were reswellable again after freeze-drying in phosphate buffer with a pH of 7.4 over a period of six hours. Agarose gel electrophoresis of the nanoparticles with the two different N/P ratios showed that these nanoparticles could protect EGFR antisense molecules for six hours. PMID:20957167

  19. Pharmacokinetic Profiles of Ticagrelor Orodispersible Tablets in Healthy Western and Japanese Subjects.

    PubMed

    Teng, Renli; Hammarberg, Maria; Carlson, Glenn F; Bokelund-Singh, Sara; Ruderfelt, Terese; Blychert, Eva

    2017-11-01

    Ticagrelor is an antiplatelet agent for patients with acute coronary syndrome or a history of myocardial infarction. Two studies compared pharmacokinetic profiles of orodispersible (OD) ticagrelor tablets versus immediate-release (IR) tablets in Western and Japanese subjects. Both studies were open-label, randomized, crossover, single-center trials. Thirty-six healthy subjects (94% white, 6% other race; Western study NCT02400333) and 42 Japanese healthy subjects (Japanese study NCT02436577) received a single 90-mg ticagrelor dose as an OD tablet [with/without water, and via a nasogastric tube (Western study only)], and an IR tablet; washout between treatments was ≥7 days. Assessments included ticagrelor and AR-C124910XX (active metabolite) plasma concentrations for pharmacokinetic analyses, and safety evaluations. In the Western study, the 90% confidence intervals (CIs) of the geometric mean ratios (GMRs) for ticagrelor and AR-C124910XX maximum plasma concentration (C max ) and area under the plasma concentration-time curve (AUC) were within the acceptance interval (80%-125%) for OD tablets (with/without water, via a nasogastric tube) versus the IR tablet; except for an ~15% lowering of ticagrelor C max (90% CI: 76.77%-93.78%) for the OD tablet taken with water. In the Japanese study, 90% CIs of the GMRs for AUC and C max of both ticagrelor and AR-C124910XX were all within the acceptance intervals for the OD (with/without water) versus IR tablet. No new safety issues were identified. Ticagrelor administered as an OD tablet to Western (without water, and via a nasogastric tube) and Japanese (with/without water) subjects was bioequivalent to the IR tablet.

  20. Bioavailability and Pharmacokinetics of Oral Cocaine in Humans.

    PubMed

    Coe, Marion A; Jufer Phipps, Rebecca A; Cone, Edward J; Walsh, Sharon L

    2018-06-01

    The pharmacokinetic profile of oral cocaine has not been fully characterized and prospective data on oral bioavailability are limited. A within-subject study was performed to characterize the bioavailability and pharmacokinetics of oral cocaine. Fourteen healthy inpatient participants (six males) with current histories of cocaine use were administered two oral doses (100 and 200 mg) and one intravenous (IV) dose (40 mg) of cocaine during three separate dosing sessions. Plasma samples were collected for up to 24 h after dosing and analyzed for cocaine and metabolites by gas chromatography-mass spectrometry. Pharmacokinetic parameters were calculated by non-compartmental analysis, and a two-factor model was used to assess for dose and sex differences. The mean ± SEM oral cocaine bioavailability was 0.32 ± 0.04 after 100 and 0.45 ± 0.06 after 200 mg oral cocaine. Volume of distribution (Vd) and clearance (CL) were both greatest after 100 mg oral (Vd = 4.2 L/kg; CL = 116.2 mL/[min kg]) compared to 200 mg oral (Vd = 2.9 L/kg; CL = 87.5 mL/[min kg]) and 40 mg IV (Vd = 1.3 L/kg; CL = 32.7 mL/[min kg]). Oral cocaine area-under-thecurve (AUC) and peak concentration increased in a dose-related manner. AUC metabolite-to-parent ratios of benzoylecgonine and ecgonine methyl ester were significantly higher after oral compared to IV administration and highest after the lower oral dose. In addition, minor metabolites were detected in higher concentrations after oral compared to IV cocaine. Oral cocaine produced a pharmacokinetic profile different from IV cocaine, which appears as a rightward and downward shift in the concentration-time profile. Cocaine bioavailability values were similar to previous estimates. Oral cocaine also produced a unique metabolic profile, with greater concentrations of major and minor metabolites.

  1. The pharmacokinetic profile of a novel fixed-dose combination tablet of ibuprofen and paracetamol

    PubMed Central

    2010-01-01

    paracetamol in a fixed-dose combination tablet does not significantly alter the pharmacokinetic profiles of either drug, except for enhancing the rate of paracetamol absorption, offering potential therapeutic benefits in relation to the onset of analgesia. Concentrations of both drugs reached previously reported therapeutic levels when the combination tablet was administrated in the fed or fasted state. Three times daily dosing may offer enhanced therapeutic effect for longer than twice daily dosing. PMID:20602760

  2. Pharmacokinetics and pharmacodynamics of SCT800, a new recombinant FVIII, in hemophilia A mice

    PubMed Central

    Gu, Ruo-lan; Liu, Liang; Xie, Liang-zhi; Gai, Wen-lin; Cao, Si-shuo; Meng, Zhi-yun; Gan, Hui; Wu, Zhuo-na; Li, Jian; Zheng, Ying; Zhu, Xiao-xia; Dou, Gui-fang

    2016-01-01

    Aim: SCT800 is a new third-generation recombinant FVIII agent that is undergoing promising preclinical study. This study aimed to investigate the pharmacokinetic and pharmacodynamic profiles of SCT800 in hemophilia A mice. Methods: After hemophilia A mice were intravenously injected with single dose of SCT800 (80, 180, and 280 IU/kg) or the commercially available product Xyntha (280 IU/kg), pharmacokinetics profiles were evaluated based on measuring plasma FVIII: C. For pharmacodynamics study, dose-response curves of SCT800 and Xyntha (1–200 IU/kg) were constructed using a tail bleeding model monitoring both bleeding time and blood loss. Results: Pharmacokinetics profile analysis showed a dose independency of SCT800 ranging from 80 to 280 IU/kg and comparable pharmacokinetic profiles between SCT800 and Xyntha at the doses tested. Pharmacodynamics study revealed comparable ED50 values of SCT800 and Xyntha in the tail bleeding model: 14.78 and 15.81 IU/kg for bleeding time, respectively; 13.50 and 13.58 IU/kg for blood loss, respectively. Moreover, at the doses tested, the accompanying dose-related safety evaluation in the tail bleeding model showed lower hypercoagulable tendency and wider dosage range potential for SCT800 than Xyntha. Conclusion: In hemophilia A mice, SCT800 shows comparable pharmacokinetics and pharmacodynamics to Xyntha at the doses tested, and possibly with better safety properties. PMID:26806305

  3. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans.

    PubMed

    Castello, Fabio; Costabile, Giuseppina; Bresciani, Letizia; Tassotti, Michele; Naviglio, Daniele; Luongo, Delia; Ciciola, Paola; Vitale, Marilena; Vetrani, Claudia; Galaverna, Gianni; Brighenti, Furio; Giacco, Rosalba; Del Rio, Daniele; Mena, Pedro

    2018-05-15

    Grape pomace, the major byproduct of the wine and juice industry, is a relevant source of bioactive phenolic compounds. However, polyphenol bioavailability in humans is not well understood, and the inter-individual variability in the production of phenolic metabolites has not been comprehensively assessed to date. The pharmacokinetic and excretive profiles of phenolic metabolites after the acute administration of a drink made from red grape pomace was here investigated in ten volunteers. A total of 35 and 28 phenolic metabolites were quantified in urine and plasma, respectively. The main circulating metabolites included phenyl-γ-valerolactones, hydroxybenzoic acids, simple phenols, hydroxyphenylpropionic acids, hydroxycinnamates, and (epi)catechin phase II conjugates. A high inter-individual variability was shown both in urine and plasma samples, and different patterns of circulating metabolites were unravelled by applying unsupervised multivariate analysis. Besides the huge variability in the production of microbial metabolites of colonic origin, an important variability was observed due to phase II conjugates. These results are of interest to further understand the potential health benefits of phenolic metabolites on individual basis. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Development, optimization and characterization of glycyrrhetinic acid-chitosan nanoparticles of atorvastatin for liver targeting.

    PubMed

    Rohilla, Raman; Garg, Tarun; Bariwal, Jitender; Goyal, Amit K; Rath, Goutam

    2016-09-01

    Glycyrrhetinic acid-modified chitosan (mGA-suc-CTS) is used as liver-targeted carrier for drug delivery. In this study, nanoparticles were prepared by ionic gelation process, and glycyrrhetinic acid act as the targeting ligand. The structure of the product was confirmed by IR and NMR techniques. The main aim of this study was to deliver atorvastatin directly to the liver by using same conjugate and reduce the associated side-effects, i.e. hepatotoxicity at high dose. Characterization of the developed formulation was performed by differential scanning calorimetry, particle size measurements and cellular uptake studies. Release profile, pharmacokinetics studies and organ distribution studies showed that developed formulation shows a relative higher liver uptake. The optimized formulation showed increased plasma concentration than the CTS nanoparticles as well as plain drug and the accumulation in the liver was nearly 2.59 times more than that of obtained with the CTS nanoparticles. Pharmaceutical and pharmacological indicators suggested that the proposed strategy can be successfully utilized for liver targeting of therapeutics.

  5. In vitro and in vivo pharmacokinetics and toxicity evaluation of curcumin incorporated titanium dioxide nanoparticles for biomedical applications.

    PubMed

    Sherin, Sainulabdeen; Sheeja, Sathyabhama; Sudha Devi, Rukhmini; Balachandran, Sreedharan; Soumya, Rema Sreenivasan; Abraham, Annie

    2017-09-25

    The present study deals with the preparation of stable Curcumin incorporated Titaniumdioxide Nanoparticles (CTNPs) by coprecipitation method for improving the bioavailability of curcumin and site specific drug delivery. The prepared nanoparticles were characterized by UV visible spectroscopy, FTIR, XRD, DLS, SEM and EDX. The characterization studies showed the interaction of curcumin to titanium dioxide nanoparticles. The average size of the prepared CTNPs was found to be ∼29 nm with zetapotential of-53.790 mV. In vivo and in vitro toxicological evaluations were carried out to determine the biological effect of CTNPs. In vitro parameters like cell viability, Lactate dehydrogenase (LDH) Assay, Neutral red uptake (NRU) assay and uptake of curcumin from CTNPs by the cells had been investigated. In vitro toxicity studies in THP1 and H9c2 cell lines showed that CTNPs are safe even at a dose of 200 ng. The in vivo part of the study was carried out with different doses of Curcumin (1 mg-20 mg/kg body weight), Titaniumdioxide Nanoparticles (TNPs) (1 mg-5 mg/kg Body weight) and CTNPs (5 mg-10 mg/kg Body weight) in Sprague dawley rat models to determine the pharmacokinetics and genotoxicity of the nanoparticle. This was done by analysing the parameters like SGPT, SGOT, LDH, hematological parameters and biodistribution of the nanomaterial at different organ sites. Genotoxicity of samples were done by comet assay on blood cells. No significant toxicity was observed in the parameters in samples treated group compared to controls. The overall results indicated that the CTNPs are nontoxic and is highly stable with improved site specific application compared to native curcumin and are suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Achieving a physiological cortisol profile with once-daily dual-release hydrocortisone: a pharmacokinetic study.

    PubMed

    Johannsson, Gudmundur; Lennernäs, Hans; Marelli, Claudio; Rockich, Kevin; Skrtic, Stanko

    2016-07-01

    Oral once-daily dual-release hydrocortisone (DR-HC) replacement therapy was developed to provide a cortisol exposure-time profile that closely resembles the physiological cortisol profile. This study aimed to characterize single-dose pharmacokinetics (PK) of DR-HC 5-20mg and assess intrasubject variability. Thirty-one healthy Japanese or non-Hispanic Caucasian volunteers aged 20-55 years participated in this randomized, open-label, PK study. Single doses of DR-HC 5, 15 (3×5), and 20mg were administered orally after an overnight fast and suppression of endogenous cortisol secretion. After estimating the endogenous cortisol profile, PK of DR-HC over 24h were evaluated to assess dose proportionality and impact of ethnicity. Plasma cortisol concentrations were analyzed using liquid chromatography-tandem mass spectrometry. PK parameters were calculated from individual cortisol concentration-time profiles. DR-HC 20mg provided higher than endogenous cortisol plasma concentrations 0-4h post-dose but similar concentrations later in the profile. Cortisol concentrations and PK exposure parameters increased with increasing doses. Mean maximal serum concentration (Cmax) was 82.0 and 178.1ng/mL, while mean area under the concentration-time curve (AUC)0-∞ was 562.8 and 1180.8h×ng/mL with DR-HC 5 and 20mg respectively. Within-subject PK variability was low (<15%) for DR-HC 20mg. All exposure PK parameters were less than dose proportional (slope <1). PK differences between ethnicities were explained by body weight differences. DR-HC replacement resembles the daily normal cortisol profile. Within-subject day-to-day PK variability was low, underpinning the safety of DR-HC for replacement therapy. DR-HC PK were less than dose proportional - an important consideration when managing intercurrent illness in patients with adrenal insufficiency. © 2016 The authors.

  7. Achieving a physiological cortisol profile with once-daily dual-release hydrocortisone: a pharmacokinetic study

    PubMed Central

    Lennernäs, Hans; Marelli, Claudio; Rockich, Kevin; Skrtic, Stanko

    2016-01-01

    Objective Oral once-daily dual-release hydrocortisone (DR-HC) replacement therapy was developed to provide a cortisol exposure−time profile that closely resembles the physiological cortisol profile. This study aimed to characterize single-dose pharmacokinetics (PK) of DR-HC 5–20mg and assess intrasubject variability. Methods Thirty-one healthy Japanese or non-Hispanic Caucasian volunteers aged 20−55 years participated in this randomized, open-label, PK study. Single doses of DR-HC 5, 15 (3×5), and 20mg were administered orally after an overnight fast and suppression of endogenous cortisol secretion. After estimating the endogenous cortisol profile, PK of DR-HC over 24h were evaluated to assess dose proportionality and impact of ethnicity. Plasma cortisol concentrations were analyzed using liquid chromatography−tandem mass spectrometry. PK parameters were calculated from individual cortisol concentration−time profiles. Results DR-HC 20mg provided higher than endogenous cortisol plasma concentrations 0−4h post-dose but similar concentrations later in the profile. Cortisol concentrations and PK exposure parameters increased with increasing doses. Mean maximal serum concentration (Cmax) was 82.0 and 178.1ng/mL, while mean area under the concentration−time curve (AUC)0−∞ was 562.8 and 1180.8h×ng/mL with DR-HC 5 and 20mg respectively. Within-subject PK variability was low (<15%) for DR-HC 20mg. All exposure PK parameters were less than dose proportional (slope <1). PK differences between ethnicities were explained by body weight differences. Conclusions DR-HC replacement resembles the daily normal cortisol profile. Within-subject day-to-day PK variability was low, underpinning the safety of DR-HC for replacement therapy. DR-HC PK were less than dose proportional – an important consideration when managing intercurrent illness in patients with adrenal insufficiency. PMID:27129362

  8. Predicting the oral pharmacokinetic profiles of multiple-unit (pellet) dosage forms using a modeling and simulation approach coupled with biorelevant dissolution testing: case example diclofenac sodium.

    PubMed

    Kambayashi, Atsushi; Blume, Henning; Dressman, Jennifer B

    2014-07-01

    The objective of this research was to characterize the dissolution profile of a poorly soluble drug, diclofenac, from a commercially available multiple-unit enteric coated dosage form, Diclo-Puren® capsules, and to develop a predictive model for its oral pharmacokinetic profile. The paddle method was used to obtain the dissolution profiles of this dosage form in biorelevant media, with the exposure to simulated gastric conditions being varied in order to simulate the gastric emptying behavior of pellets. A modified Noyes-Whitney theory was subsequently fitted to the dissolution data. A physiologically-based pharmacokinetic (PBPK) model for multiple-unit dosage forms was designed using STELLA® software and coupled with the biorelevant dissolution profiles in order to simulate the plasma concentration profiles of diclofenac from Diclo-Puren® capsule in both the fasted and fed state in humans. Gastric emptying kinetics relevant to multiple-units pellets were incorporated into the PBPK model by setting up a virtual patient population to account for physiological variations in emptying kinetics. Using in vitro biorelevant dissolution coupled with in silico PBPK modeling and simulation it was possible to predict the plasma profile of this multiple-unit formulation of diclofenac after oral administration in both the fasted and fed state. This approach might be useful to predict variability in the plasma profiles for other drugs housed in multiple-unit dosage forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof-of-Concept Study Using Computational Fluid Dynamics.

    PubMed

    Rygg, Alex; Hindle, Michael; Longest, P Worth

    2016-06-01

    The objective of this study was to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics, to in vivo human pharmacokinetic plasma concentration profiles. This is accomplished through the use of computational fluid dynamics simulations coupled with compartmental pharmacokinetic modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics, and clinical studies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches.

    PubMed

    Madureira, Ana Raquel; Nunes, Sara; Campos, Débora A; Fernandes, João C; Marques, Cláudia; Zuzarte, Monica; Gullón, Beatriz; Rodríguez-Alcalá, Luís M; Calhau, Conceição; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Maria Manuela; Reis, Flávio

    2016-01-01

    Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications.

  11. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches

    PubMed Central

    Madureira, Ana Raquel; Nunes, Sara; Campos, Débora A; Fernandes, João C; Marques, Cláudia; Zuzarte, Monica; Gullón, Beatriz; Rodríguez-Alcalá, Luís M; Calhau, Conceição; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Maria Manuela; Reis, Flávio

    2016-01-01

    Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications. PMID:27536103

  12. Comparison of pharmacokinetic profiles of Terminalia phenolics after intragastric administration of the aqueous extracts of the fruit of Terminalia chebula and a Mongolian compound medicine-Gurigumu-7.

    PubMed

    Gao, Jie; Ajala, Olusegun S; Wang, Chun-Ying; Xu, Hai-Yan; Yao, Jia-Huan; Zhang, Hai-Peng; Jukov, Azzaya; Ma, Chao-Mei

    2016-06-05

    The dried fruit of Terminalia chebula (fructus chebulae) is an important Traditional Medicine used for intestinal and hepatic detoxification. Gurigumu-7 which is made of fructus chebulae and 6 other traditional medicines is one of the most frequently used compound Mongolian and Tibet medicines for liver diseases. Terminalia phenolics are considered as the bioactive constituents of fructus chebulae and consequently of Gurigumu-7. To compare the pharmacokinetic profiles of Terminalia phenolics after intragastric administration of the aqueous extracts of fructus chebulae and Gurigumu-7 and to evaluate the possible influence of intestinal bacterial metabolism on these pharmacokinetic profiles. An ultra performance liquid chromatography with triple quadrupole mass spectrometry method was established and validated for simultaneously determining the pharmacokinetic profiles of seven Terminalia phenolics after intragastric administration of pure compounds, fructus chebulae extract, and Gurigumu-7 extract. In vitro rat fecal lysates experiments were carried out to explore the metabolic discrepancy between fructus chebulae and Gurigumu-7. Seven Terminalia phenolics were detected in rat plasma after intragastric administration of the aqueous extracts of fructus chebulae and Gurigumu-7. Administration of Gurigumu-7 could promote the absorption and increase the Cmax and AUC values of these phenolic constituents compared to fructus chebulae administration. The fecal lysates studies showed that the Terminalia phenolics in Gurigumu-7 were less rapidly bio-transformed than those in fructus chebulae. This may be a contributing factor to the pharmacokinetic discrepancy between the phenolics in fructus chebulae and Gurigumu-7. Administration of Gurigumu-7 could increase the absorption of Terminalia phenolics through slowing down the intestinal bacteria metabolism. These results provide, in part, an in vivo rationale for the formulation of the traditional Mongolia / Tibet medicine

  13. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics.

    PubMed

    Ahmed, Osama A A; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid-liquid phase separation method, according to the Box-Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.

  14. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics

    PubMed Central

    Ahmed, Osama AA; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance. PMID:25670883

  15. Pharmacokinetic profiles of a biosimilar filgrastim and Amgen filgrastim: results from a randomized, phase I trial

    PubMed Central

    Bronchud, Miguel; Mair, Stuart; Challand, Rodeina

    2010-01-01

    Recombinant human granulocyte colony-stimulating factor (filgrastim) has multiple hematologic and oncologic indications as Neupogen® (Amgen filgrastim). Hospira has developed a biosimilar filgrastim (Nivestim™). Here, results are reported from a phase I trial, primarily designed to compare the pharmacokinetic profiles of Hospira filgrastim and Amgen filgrastim. A phase I, single-center, open-label, randomized trial was undertaken to demonstrate equivalence of the pharmacokinetic characteristics of Hospira filgrastim and Amgen filgrastim. Forty-eight healthy volunteers were randomized to receive intravenous (i.v.) or subcutaneous (s.c.) dosing and then further randomized to order of treatment. Volunteers in each of the two dosing groups received a single 10µg/kg dose of Hospira filgrastim or Amgen filgrastim, with subsequent crossover. Bioequivalence was evaluated by analysis of variance; if the estimated 90% confidence intervals (CIs) for the ratio of ‘test’ to ‘reference’ treatment means were within the conventional equivalence limits of 0.80–1.25, then bioequivalence was concluded. Forty-six volunteers completed the study. Geometric mean area under the curve from time 0 to the last time point (primary endpoint) was similar in volunteers given Hospira filgrastim or Amgen filgrastim following i.v. (ratio of means: 0.96; 90% CI: 0.90–1.02) or s.c. (ratio of means: 1.02; 90% CI: 0.95–1.09) dosing; 90% CIs were within the predefined range necessary to demonstrate bioequivalence. Hospira filgrastim was well tolerated with no additional safety concerns over Amgen filgrastim. Hospira filgrastim is bioequivalent with Amgen filgrastim in terms of its pharmacokinetic properties and may provide a clinically effective alternative. PMID:20428872

  16. Stability and Ocular Pharmacokinetics of Celecoxib-Loaded Nanoparticles Topical Ophthalmic Formulations.

    PubMed

    Ibrahim, Mohammed Mostafa; Abd-Elgawad, Abd-Elgawad Helmy; Soliman, Osama Abd-Elazeem; Jablonski, Monica M

    2016-12-01

    A spontaneous emulsification and/or solvent diffusion method was used for the preparation of celecoxib-loaded nanoparticles (NPs) using polymers, including chitosan (CS), sodium alginate, poly-ε-caprolactone (PCL), poly-l-lactide, and poly-d,l-lactide-co-glycolide. NPs were incorporated into vehicles (eye drops, in situ gelling system, and gel). Formulations were subjected to an accelerated stability study by storing them at elevated temperatures of 30, 35, and 45°C for 6 months. Formulations were evaluated monthly for general appearance, pH, viscosity, particle size, polydispersity index, zeta potential, and drug content. Gels containing CS-NPs and PCL-NPs were selected for an ocular pharmacokinetics study using Sprague-Dawley rats due to their high stability and long shelf lives (24.56 and 33.76 months, respectively). The gel improved NP stability by keeping it inside its network structure, which protected them from aggregation and interacting with water. Our formulations improved celecoxib bioavailability due to their bioadhesivness, thus preventing their rapid removal. Also, NPs acted as drug reservoirs that adhered to eye surface and continuously released the drug. The availability of celecoxib in all eye tissues and its absence in plasma suggests that our formulation could be used for anterior eye disorders and also for treatment of diseases associated with the posterior eye with no systemic side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Microcomputer-Based Programs for Pharmacokinetic Simulations.

    ERIC Educational Resources Information Center

    Li, Ronald C.; And Others

    1995-01-01

    Microcomputer software that simulates drug-concentration time profiles based on user-assigned pharmacokinetic parameters such as central volume of distribution, elimination rate constant, absorption rate constant, dosing regimens, and compartmental transfer rate constants is described. The software is recommended for use in undergraduate…

  18. Abnormal olanzapine toxicokinetic profiles--population pharmacokinetic analysis.

    PubMed

    Tylutki, Zofia; Jawień, Wojciech; Ciszowski, Krzysztof; Wilimowska, Jolanta; Anand, Jacek Sein

    2015-01-01

    Olanzapine is widely used in the treatment of schizophrenia and it is becoming more frequently responsible for overdoses. Standard pharmacokinetic models do not fit to the toxic concentration data. The aim of present study is to investigate the reasons for an abnormal olanzapine plasma concentration time curve in the range of toxic concentrations. Two hypotheses were verified: entering the enterohepatic cycle, and drug deposition and its desorption from activated charcoal used for gastrointestinal decontamination. One-hundred thirty-five plasma concentration data from 21 patients hospitalized for acute olanzapine poisoning were analyzed with the use of the population pharmacokinetic approach. A non-linear mixed-effects modeling approach with Monolix 4.3.1 was employed. A model assuming gallbladder emptying at irregular intervals was developed. Also, a model that describes desorption of olanzapine from the charcoal surface, in which the dose is divided into two absorbed fractions, was constructed. The analysis has found gastrointestinal decontamination and previous olanzapine treatment, as the significant covariates for toxicokinetic parameters of olanzapine. Our study provides interesting models for investigation of toxic concentration of olanzapine, which may also be used as the basis for further model development for other drugs as well. The investigated population was not large enough to reliably confirm any of the proposed models. It would be well worth continuing this study with more substantial data. Also, any additional information about olanzapine metabolite concentration could be vital.

  19. Pharmacokinetic and pharmacodynamic profile of supratherapeutic oral doses of Δ9-THC in cannabis users

    PubMed Central

    Lile, Joshua A.; Kelly, Thomas H.; Charnigo, Richard J.; Stinchcomb, Audra L.; Hays, Lon R.

    2013-01-01

    Oral Δ9-tetrahydrocannabinol (Δ9-THC) has been evaluated as a medication for cannabis dependence, but repeated administration of acute oral doses up to 40 mg has not been effective at reducing drug-taking behavior. Larger doses might be necessary to affect cannabis use. The purpose of the present study was therefore to determine the physiological and behavioral effects of oral Δ9-THC at acute doses higher than those tested previously. The pharmacokinetic and pharmacodynamic profile of oral Δ9-THC, administered in ascending order in 15 mg increments across separate sessions, up to a maximum of 90 mg, was determined in seven cannabis users. Five subjects received all doses and two experienced untoward side effects at lower doses. Δ9-THC produced a constellation of effects consistent with previous clinical studies. Low cannabinoid concentrations were associated with significant effects on drug- sensitive measures, although progressively greater levels did not lead to proportionately larger drug effects. Considerable variability in Cmax and tmax was observed. Doses of oral Δ9-THC larger than those tested previously can be administered to individuals with a history of cannabis use, although given the pharmacokinetic variability of oral Δ9-THC and individual differences in sensitivity, individualized dose adjustment is needed to avoid side effects and maximize therapeutic response. PMID:23754596

  20. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications.

    PubMed

    Zarschler, Kristof; Rocks, Louise; Licciardello, Nadia; Boselli, Luca; Polo, Ester; Garcia, Karina Pombo; De Cola, Luisa; Stephan, Holger; Dawson, Kenneth A

    2016-08-01

    Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics

    PubMed Central

    Ding, Hong; Wu, Fang

    2012-01-01

    Image guided technique is playing an increasingly important role in the investigation of the biodistribution and pharmacokinetics of drugs or drug delivery systems in various diseases, especially cancers. Besides anatomical imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), molecular imaging strategy including optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) will facilitate the localization and quantization of radioisotope or optical probe labeled nanoparticle delivery systems in the category of theranostics. The quantitative measurement of the bio-distribution and pharmacokinetics of theranostics in the fields of new drug/probe development, diagnosis and treatment process monitoring as well as tracking the brain-blood-barrier (BBB) breaking through by high sensitive imaging method, and the applications of the representative imaging modalities are summarized in this review. PMID:23227121

  2. Checking distributional assumptions for pharmacokinetic summary statistics based on simulations with compartmental models.

    PubMed

    Shen, Meiyu; Russek-Cohen, Estelle; Slud, Eric V

    2016-08-12

    Bioequivalence (BE) studies are an essential part of the evaluation of generic drugs. The most common in vivo BE study design is the two-period two-treatment crossover design. AUC (area under the concentration-time curve) and Cmax (maximum concentration) are obtained from the observed concentration-time profiles for each subject from each treatment under each sequence. In the BE evaluation of pharmacokinetic crossover studies, the normality of the univariate response variable, e.g. log(AUC) 1 or log(Cmax), is often assumed in the literature without much evidence. Therefore, we investigate the distributional assumption of the normality of response variables, log(AUC) and log(Cmax), by simulating concentration-time profiles from two-stage pharmacokinetic models (commonly used in pharmacokinetic research) for a wide range of pharmacokinetic parameters and measurement error structures. Our simulations show that, under reasonable distributional assumptions on the pharmacokinetic parameters, log(AUC) has heavy tails and log(Cmax) is skewed. Sensitivity analyses are conducted to investigate how the distribution of the standardized log(AUC) (or the standardized log(Cmax)) for a large number of simulated subjects deviates from normality if distributions of errors in the pharmacokinetic model for plasma concentrations deviate from normality and if the plasma concentration can be described by different compartmental models.

  3. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles.

    PubMed

    Carlander, Ulrika; Li, Dingsheng; Jolliet, Olivier; Emond, Claude; Johanson, Gunnar

    2016-01-01

    To assess the potential toxicity of nanoparticles (NPs), information concerning their uptake and disposition (biokinetics) is essential. Experience with industrial chemicals and pharmaceutical drugs reveals that biokinetics can be described and predicted accurately by physiologically-based pharmacokinetic (PBPK) modeling. The nano PBPK models developed to date all concern a single type of NP. Our aim here was to extend a recent model for pegylated polyacrylamide NP in order to develop a more general PBPK model for nondegradable NPs injected intravenously into rats. The same model and physiological parameters were applied to pegylated polyacrylamide, uncoated polyacrylamide, gold, and titanium dioxide NPs, whereas NP-specific parameters were chosen on the basis of the best fit to the experimental time-courses of NP accumulation in various tissues. Our model describes the biokinetic behavior of all four types of NPs adequately, despite extensive differences in this behavior as well as in their physicochemical properties. In addition, this simulation demonstrated that the dose exerts a profound impact on the biokinetics, since saturation of the phagocytic cells at higher doses becomes a major limiting step. The fitted model parameters that were most dependent on NP type included the blood:tissue coefficients of permeability and the rate constant for phagocytic uptake. Since only four types of NPs with several differences in characteristics (dose, size, charge, shape, and surface properties) were used, the relationship between these characteristics and the NP-dependent model parameters could not be elucidated and more experimental data are required in this context. In this connection, intravenous biodistribution studies with associated PBPK analyses would provide the most insight.

  4. Luminescent gold nanoparticles for bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Chen

    Inorganic nanoparticles (NPs) with tunable and diverse material properties hold great potential as contrast agents for better disease management. Over the past decades, luminescent gold nanoparticles (AuNPs) with intrinsic emissions ranging from the visible to the near infrared have been synthesized and emerge as a new class of fluorophores for bioimaging. This dissertation aims to fundamentally understand the structure-property relationships in luminescent AuNPs and apply them as contrast agents to address some critical challenges in bioimaging at both the in vitro and in vivo level. In Chapter 2, we described the synthesized ~20 nm polycrystalline AuNPs (pAuNPs), which successfully integrated and enhanced plasmonic and fluorescence properties into a single AuNP through the grain size effect. The combination of these properties in one NP enabled AuNPs to serve as a multimodal contrast agent for in vitro optical microscopic imaging, making it possible to develop correlative microscopic imaging techniques. In Chapters 3-5, we proposed a feasible approach to optimize the in vivo kinetics and clearance profile of nanoprobes for multimodality in vivo bioimaging applications by using straightforward surface chemistry with luminescent AuNPs as a model. Luminescent glutathione-coated AuNPs of ~2 nm were synthesized. Investigation of the biodistribution showed that these glutathione-coated AuNPs (GS-AuNPs) exhibit stealthiness to the reticuloendothelial system (RES) organs and efficient renal clearance, with only 3.7+/-1.9% and 0.3+/-0.1% accumulating in the liver and spleen, and over 65% of the injection dose cleared out via the urine within the first 72 hours. In addition, ~2.5 nm NIR-emitting radioactive glutathione-coated [198Au]AuNPs (GS-[198Au]AuNPs) were synthesized for further evaluation of the pharmacokinetic profile of GS-AuNPs and potential multimodal imaging. The results showed that the GS-[198Au]AuNPs behave like small-molecule contrast agents in

  5. Preparation, characterization, and pharmacokinetics of tilmicosin- and florfenicol-loaded hydrogenated castor oil-solid lipid nanoparticles.

    PubMed

    Ling, Z; Yonghong, L; Changqing, S; Junfeng, L; Li, Z; Chunyu, J; Xianqiang, L

    2017-06-01

    To effectively control bovine mastitis, tilmicosin (TIL)- and florfenicol (FF)-loaded solid lipid nanoparticles (SLN) with hydrogenated castor oil (HCO) were prepared by a hot homogenization and ultrasonication method. In vitro antibacterial activity, properties, and pharmacokinetics of the TIL-FF-SLN were studied. The results demonstrated that TIL and FF had a synergistic or additive antibacterial activity against Streptococcus dysgalactiae, Streptococcus uberis, and Streptococcus agalactiae. The size, polydispersity index, and zeta potential of nanoparticles were 289.1 ± 13.7 nm, 0.31 ± 0.05, and -26.7 ± 1.3 mV, respectively. The encapsulation efficiencies for TIL and FF were 62.3 ± 5.9% and 85.1 ± 5.2%, and the loading capacities for TIL and FF were 8.2 ± 0.6% and 3.3 ± 0.2%, respectively. The TIL-FF-SLN showed no irritation in the injection site and sustained release in vitro. After medication, TIL and FF could maintain about 0.1 μg/mL for 122 and 6 h. Compared to the control solution, the SLN increased the area under the concentration-time curve (AUC 0-t ), elimination half-life (T ½ke ), and mean residence time (MRT) of TIL by 33.09-, 23.29-, and 37.53-fold, and 1.69-, 5.00-, and 3.83-fold for FF, respectively. These results of this exploratory study suggest that the HCO-SLN could be a useful system for the delivery of TIL and FF for bovine mastitis therapy. © 2016 John Wiley & Sons Ltd.

  6. [A prospective study of antipyrine pharmacokinetics in pregnancy].

    PubMed

    Asymbekova, G U

    1995-01-01

    Pharmacokinetics of a single dose of antipyrin (10 mg/kg) subjected to biotransformation at the expense of microsomal oxidation of its molecule in the liver was studied in 6 healthy nonpregnant women and in 24 women within the frames of a prospective follow-up starting from the early terms of gestation; 7 of these women developed edemas, proteinuria and/or hypertension in the course of follow-up. The results permit us consider that a test with a single antipyrin dose may be used as a marker to characterize drugs with similar metabolic transformations when used in pregnant women. The identity of pharmacokinetic regularities of antipyrin in samples of blood plasma and saliva permit the use of saliva as biological material for assessment of the metabolic profile of pregnant women. The problem of drug therapy in the third trimester is closely connected with specific features of pharmacokinetic profile detected by antipyrin test both in normal and complicated gestation. Our data evidence that the third trimester is characterized by special tension of the metabolic processes. A complicated course is associated with unambiguous changes in the metabolic activity of drugs, this necessitating special attention of a physician to drug dose.

  7. Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose.

    PubMed

    Ieiri, Ichiro; Nishimura, Chisa; Maeda, Kazuya; Sasaki, Tomohiro; Kimura, Miyuki; Chiyoda, Takeshi; Hirota, Tekeshi; Irie, Shin; Shimizu, Hitoshi; Noguchi, Takanori; Yoshida, Kenji; Sugiyama, Yuichi

    2011-08-01

    In this study, we evaluated (a) the contribution of SLCO1B3 and UGT1A polymorphisms to the pharmacokinetics of telmisartan in two forms, a microdose (MD) and a therapeutic dose (TD); (b) linkage disequilibrium (LD) between UGT1A1 and UGT1A3; and (c) linearity in the pharmacokinetics of telmisartan between the two forms. Telmisartan was orally administered at MD condition (100 μg), and then at TD condition (80 mg) to 33 healthy volunteers whose genotypes were prescreened by DMET Plus. Plasma concentrations of telmisartan and its glucuronide were measured by LC-MS/MS, and population pharmacokinetic analysis was performed. No obvious effect of SLCO1B3 polymorphisms (334T>G, 699G>A, and rs11045585) on the pharmacokinetics of telmisartan was observed. The strong LD between UGT1A1*6 and UGT1A3*4a, and between UGT1A1*28 and UGT1A3*2a were observed. After both MD and TD administration, the mean area under the curve0-24 (±standard deviation) of telmisartan was significantly lower and higher in individuals with the UGT1A3*2a (TD, 1701±970 ng hr/ml; MD, 978±537 pg hr/ml) and *4a variants (TD, 5340±1168; MD, 3145±1093), respectively, compared with those in individuals with UGT1A3*1/*1 (TD, 2969±1456; MD, 1669±726). These results were quantitatively confirmed by population pharmacokinetic analysis. Nonlinearity of the dose-exposure relationship was observed between the MD and TD. The haplotypes of UGT1A3 significantly influenced pharmacokinetics of telmisartan and a strong LD between UGT1A1 genotype and UGT1A3 haplotype was observed. These findings are potentially of pharmacological and toxicological importance to the development and clinical use of drugs.

  8. Pharmacokinetic profile of nifedipine GITS in hypertensive patients with chronic renal impairment.

    PubMed

    Schneider, R; Stolero, D; Griffel, L; Kobelt, R; Brendel, E; Iaina, A

    1994-01-01

    25 hypertensive patients with normal or impaired renal function underwent pharmacokinetic and safety studies after single and multiple dose administration of nifedipine GITS (Gastro-Intestinal Therapeutic System) 60mg tablets. Complete pharmacokinetic data were obtained from 23 of these patients. Blood pressure and heart rate changes were compatible with the known properties of the drug. Impaired renal function did not affect the maximum plasma concentrations or bioavailability of nifedipine after single or multiple dose administration of nifedipine GITS, nor was there any evidence of excessive drug accumulation in the presence of renal impairment.

  9. Development of ionic-complex-based nanostructured lipid carriers to improve the pharmacokinetic profiles of breviscapine.

    PubMed

    Li, Mei; Zheng, Yong; Shan, Feng-ying; Zhou, Jing; Gong, Tao; Zhang, Zhi-rong

    2013-08-01

    Breviscapine isolated from the Chinese herb Erigeron breviscapus (Vant) Hand-Mazz is widely used to treat cardiovascular and cerebrovascular diseases. The aim of this study was to improve the pharmacokinetic profiles of breviscapine using nanostructured lipid carrier based on an ionic complex formation. Breviscapine nanostructured lipid carrier (Bre-NLC) was prepared using the thin film homogenization method. The morphology of Bre-NLCs was determined using transmission electron microscopy. The mean particle size, polydispersity index, zeta-potential analysis and entrapment efficiency were analized. In vitro release was studied using the dialysis method. In vitro stability was studied in fresh plasma and liver slurry of rats. In vivo pharmacokinetics was analyzed in rats after intravenous injection of a dose equivalent to breviscapine (10 mg/kg). The Bre-NLCs were spherical with a mean particle size of ~170 nm, a zeta potential of ∼20 mV and a high entrapment efficiency of ~89%. Compared with a commercially available solution, a substantial decrease in the cumulative release of breviscapine was found for the Bre-NLCs. The NLC has a significantly protective effect against the liver enzyme degradation of breviscapine. After intravenous administration in rats, the Bre-NLCs exhibited a 32 times increase in the AUC0-t and a 12 times increase in T1/2 as compared to the commercially available breviscapine solution. The results demonstrate that the NLC has great potential to use as a novel sustained release system for breviscapine.

  10. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.

    PubMed

    Woźniak, Anna; Malankowska, Anna; Nowaczyk, Grzegorz; Grześkowiak, Bartosz F; Tuśnio, Karol; Słomski, Ryszard; Zaleska-Medynska, Adriana; Jurga, Stefan

    2017-06-01

    Metallic nanoparticles, in particular gold nanoparticles (AuNPs), offer a wide spectrum of applications in biomedicine. A crucial issue is their cytotoxicity, which depends greatly on various factors, including morphology of nanoparticles. Because metallic nanoparticles have an effect on cell membrane integrity, their shape and size may affect the viability of cells, due to their different geometries as well as physical and chemical interactions with cell membranes. Variations in the size and shape of gold nanoparticles may indicate particular nanoparticle morphologies that provide strong cytotoxicity effects. Synthesis of different sized and shaped bare AuNPs was performed with spherical (~ 10 nm), nanoflowers (~ 370 nm), nanorods (~ 41 nm), nanoprisms (~ 160 nm) and nanostars (~ 240 nm) morphologies. These nanostructures were characterized and interacting with cancer (HeLa) and normal (HEK293T) cell lines and cell viability tests were performed by WST-1 tests and fluorescent live/dead cell imaging experiments. It was shown that various shapes and sizes of gold nanostructures may affect the viability of the cells. Gold nanospheres and nanorods proved to be more toxic than star, flower and prism gold nanostructures. This may be attributed to their small size and aggregation process. This is the first report concerning a comparison of cytotoxic profile in vitro with a wide spectrum of bare AuNPs morphology. The findings show their possible use in biomedical applications.

  11. Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids.

    PubMed

    Kim, Iltai; Kihm, Kenneth D

    2010-02-01

    Time-dependent and near-field nanoparticle concentrations are determined by correlating the surface plasmon resonance (SPR) reflectance intensities with the effective refractive index (ERI) of the nanofluid under evaporation. A critical angle measurement for total internal reflection identifies the ERI of the nanofluid at different nanoparticle concentrations. The corresponding SPR reflectance intensities correlate the nanofluidic ERI with the nanoparticle concentrations. Example applications for evaporating nanofluidic droplets containing 47 nmAl(2)O(3) particles demonstrate the feasibility of this new imaging tool for measuring time-resolved and full-field nanoparticle concentration profiles.

  12. Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18mg tablet in healthy adult volunteers.

    PubMed

    Muñoz, Jose; Ballester, Maria Rosa; Antonijoan, Rosa Maria; Gich, Ignasi; Rodríguez, Montse; Colli, Enrico; Gold, Silvia; Krolewiecki, Alejandro J

    2018-01-01

    Ivermectin is a pivotal drug for the control of onchocerciasis and lymphatic filariasis, which is increasingly identified as a useful drug for the control of other Neglected Tropical Diseases. Its role in the treatment of soil transmitted helminthiasis through improved efficacy against Trichuris trichiura in combination with other anthelmintics might accelerate the progress towards breaking transmission. Ivermectin is a derivative of Avermectin B1, and consists of an 80:20 mixture of the equipotent homologous 22,23 dehydro B1a and B1b. Pharmacokinetic characteristics and safety profile of ivermectin allow to explore innovative uses to further expand its utilization through mass drug administration campaigns to improve coverage rates. We conducted a phase I clinical trial with 54 healthy adult volunteers who sequentially received 2 experimental treatments using a new 18 mg ivermectin tablet in a fixed-dose strategy of 18 and 36 mg single dose regimens, compared to the standard, weight based 150–200 μg/kg, regimen. Volunteers were recruited in 3 groups based on body weight. Plasma concentrations of ivermectin were measured through HPLC up to 168 hours post treatment. Safety data showed no significant differences between groups and no serious adverse events: headache was the most frequent adverse event in all treatment groups, none of them severe. Pharmacokinetic parameters showed a half-life between 81 and 91 h in the different treatment groups. When comparing the systemic bioavailability (AUC0t and Cmax) of the reference product (WA-ref) with the other two study groups using fixed doses, we observed an overall increase in AUC0t and Cmax for the two experimental treatments of 18 mg and 36 mg. Body mass index (BMI) and weight were associated with t1/2 and V/F, probably reflecting the high liposolubility of IVM with longer retention times proportional to the presence of more adipose tissue. Systemic exposure to ivermectin (AUC0t or Cmax) was not associated with BMI

  13. Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18mg tablet in healthy adult volunteers

    PubMed Central

    Antonijoan, Rosa Maria; Gich, Ignasi; Rodríguez, Montse; Colli, Enrico; Gold, Silvia

    2018-01-01

    Ivermectin is a pivotal drug for the control of onchocerciasis and lymphatic filariasis, which is increasingly identified as a useful drug for the control of other Neglected Tropical Diseases. Its role in the treatment of soil transmitted helminthiasis through improved efficacy against Trichuris trichiura in combination with other anthelmintics might accelerate the progress towards breaking transmission. Ivermectin is a derivative of Avermectin B1, and consists of an 80:20 mixture of the equipotent homologous 22,23 dehydro B1a and B1b. Pharmacokinetic characteristics and safety profile of ivermectin allow to explore innovative uses to further expand its utilization through mass drug administration campaigns to improve coverage rates. We conducted a phase I clinical trial with 54 healthy adult volunteers who sequentially received 2 experimental treatments using a new 18 mg ivermectin tablet in a fixed-dose strategy of 18 and 36 mg single dose regimens, compared to the standard, weight based 150–200 μg/kg, regimen. Volunteers were recruited in 3 groups based on body weight. Plasma concentrations of ivermectin were measured through HPLC up to 168 hours post treatment. Safety data showed no significant differences between groups and no serious adverse events: headache was the most frequent adverse event in all treatment groups, none of them severe. Pharmacokinetic parameters showed a half-life between 81 and 91 h in the different treatment groups. When comparing the systemic bioavailability (AUC0t and Cmax) of the reference product (WA-ref) with the other two study groups using fixed doses, we observed an overall increase in AUC0t and Cmax for the two experimental treatments of 18 mg and 36 mg. Body mass index (BMI) and weight were associated with t1/2 and V/F, probably reflecting the high liposolubility of IVM with longer retention times proportional to the presence of more adipose tissue. Systemic exposure to ivermectin (AUC0t or Cmax) was not associated with BMI

  14. Pharmacological Characterization of Chemically Synthesized Monomeric phi29 pRNA Nanoparticles for Systemic Delivery

    PubMed Central

    Abdelmawla, Sherine; Guo, Songchuan; Zhang, Limin; Pulukuri, Sai M; Patankar, Prithviraj; Conley, Patrick; Trebley, Joseph; Guo, Peixuan; Li, Qi-Xiang

    2011-01-01

    Previous studies have shown that the packaging RNA (pRNA) of bacteriophage phi29 DNA packaging motor folds into a compact structure, constituting a RNA nanoparticle that can be modularized with functional groups as a nanodelivery system. pRNA nanoparticles can also be self-assembled by the bipartite approach without altering folding property. The present study demonstrated that 2′-F-modified pRNA nanoparticles were readily manufactured through this scalable bipartite strategy, featuring total chemical synthesis and permitting diverse functional modularizations. The RNA nanoparticles were chemically and metabolically stable and demonstrated a favorable pharmacokinetic (PK) profile in mice (half-life (T1/2): 5–10 hours, clearance (Cl): <0.13 l/kg/hour, volume of distribution (Vd): 1.2 l/kg). It did not induce an interferon (IFN) response nor did it induce cytokine production in mice. Repeat intravenous administrations in mice up to 30 mg/kg did not result in any toxicity. Fluorescent folate-pRNA nanoparticles efficiently and specifically bound and internalized to folate receptor (FR)-bearing cancer cells in vitro. It also specifically and dose-dependently targeted to FR+ xenograft tumor in mice with minimal accumulation in normal tissues. This first comprehensive pharmacological study suggests that the pRNA nanoparticle had all the preferred pharmacological features to serve as an efficient nanodelivery platform for broad medical applications. PMID:21468004

  15. A Review on Pharmacokinetic Modeling and the Effects of Environmental Stressors on Pharmacokinetics for Operational Medicine: Operational Pharmacokinetics

    DTIC Science & Technology

    2009-09-01

    hypercholesterolemia Two-compartment model Ezzet, Krishna et al. 2001 Antilipemics Statins: simvastatin, rosuvastatin, atorvastatin Treatment of...Pharmacokinetic model* & rosuvastatin Scopus 14 3 PubMed 9 3 Pharmacokinetic model* & atorvastatin Scopus 49 4 Pharmacokinetic model* & zaleplon...Fentanyl & pharmacokinetic & heat 9 2 Fentanyl & pharmacokinetic & cold 4 0 Fentanyl & pharmacokinetic & blood loss 19 5 Atorvastatin

  16. Differential effects of liver steatosis on pharmacokinetic profile of two closely related hepatoselective NO-donors; V-PYRRO/NO and V-PROLI/NO.

    PubMed

    Kus, Kamil; Kus, Edyta; Zakrzewska, Agnieszka; Jawien, Wojciech; Sitek, Barbara; Walczak, Maria; Chlopicki, Stefan

    2017-06-01

    To analyze the effect of liver steatosis and obesity on pharmacokinetic profile of two structurally-related liver-selective NO-donors - V-PYRRO/NO and V-PROLI/NO. C57BL/6 mice were fed control or high-fat diet for 15 weeks to induced liver steatosis and obesity (HFD mice). Pharmacokinetics and renal elimination studies were conducted in vivo following iv dosing of V-PYRRO/NO and V-PROLI/NO (0.03mmol/kg). Hepatic clearance was evaluated ex vivo in the isolated perfused mice liver and in vitro with the use of liver microsomes. V-PYRRO/NO and V-PROLI/NO, despite similar structure, displayed different pharmacokinetic properties. V-PYRRO/NO was uptaken and metabolized by the liver, while V-PROLI/NO was eliminated unchanged with urine. In HFD mice, despite increased CYP450 metabolism of V-PYRRO/NO the elimination rate was slower most likely due to the impairment of hepatic microcirculation caused by liver fat accumulation. In turn, in HFD mice renal clearence of V-PROLI/NO was accelerated and volume of distribution was increased most likely due to additional intracellular water in HFD mice. The pharmacokinetics of V-PROLI/NO, the novel proline-based analog of V-PYRRO/NO with additional single carboxylic acid moiety, attached to the molecule of V-PYRRO/NO to improve the water solubility, was differently affected by liver steatosis and obesity as compared with the parent compound V-PYRRO/NO. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Effect of the cytochrome P450 2C19 inhibitor omeprazole on the pharmacokinetics and safety profile of bortezomib in patients with advanced solid tumours, non-Hodgkin's lymphoma or multiple myeloma.

    PubMed

    Quinn, David I; Nemunaitis, John; Fuloria, Jyotsna; Britten, Carolyn D; Gabrail, Nashat; Yee, Lorrin; Acharya, Milin; Chan, Kai; Cohen, Nadine; Dudov, Assen

    2009-01-01

    Bortezomib, an antineoplastic for the treatment of relapsed multiple myeloma and mantle cell lymphoma, undergoes metabolism through oxidative deboronation by cytochrome P450 (CYP) enzymes, primarily CYP3A4 and CYP2C19. Omeprazole, a proton-pump inhibitor, is primarily metabolized by and demonstrates high affinity for CYP2C19. This study investigated whether coadministration of omeprazole affected the pharmacokinetics, pharmacodynamics and safety profile of bortezomib in patients with advanced cancer. The variability of bortezomib pharmacokinetics with CYP enzyme polymorphism was also investigated. This open-label, crossover, pharmacokinetic drug-drug interaction study was conducted at seven institutions in the US and Europe between January 2005 and August 2006. Patients who had advanced solid tumours, non-Hodgkin's lymphoma or multiple myeloma, were aged >/=18 years, weighed >/=50 kg and had a life expectancy of >/=3 months were eligible. Patients received bortezomib 1.3 mg/m2 on days 1, 4, 8 and 11 for two 21-day cycles, plus omeprazole 40 mg in the morning of days 6-10 and in the evening of day 8 in either cycle 1 (sequence 1) or cycle 2 (sequence 2). On day 21 of cycle 2, patients benefiting from therapy could continue to receive bortezomib for six additional cycles. Blood samples for pharmacokinetic/pharmacodynamic evaluation were collected prior to and at various timepoints after bortezomib administration on day 8 of cycles 1 and 2. Blood samples for pharmacogenomics were also collected. Pharmacokinetic parameters were calculated by noncompartmental analysis of plasma concentration-time data for bortezomib administration on day 8 of cycles 1 and 2, using WinNonlin version 4.0.1.a software. The pharmacodynamic profile was assessed using a whole-blood 20S proteasome inhibition assay. Twenty-seven patients (median age 64 years) were enrolled, 12 in sequence 1 and 15 in sequence 2, including eight and nine pharmacokinetic-evaluable patients, respectively

  18. Simultaneous optimization of limited sampling points for pharmacokinetic analysis of amrubicin and amrubicinol in cancer patients.

    PubMed

    Makino, Yoshinori; Watanabe, Michiko; Makihara, Reiko Ando; Nokihara, Hiroshi; Yamamoto, Noboru; Ohe, Yuichiro; Sugiyama, Erika; Sato, Hitoshi; Hayashi, Yoshikazu

    2016-09-01

    Limited sampling points for both amrubicin (AMR) and its active metabolite amrubicinol (AMR-OH) were simultaneously optimized using Akaike's information criterion (AIC) calculated by pharmacokinetic modeling. In this pharmacokinetic study, 40 mg/m(2) of AMR was administered as a 5-min infusion on three consecutive days to 21 Japanese lung cancer patients. Blood samples were taken at 0, 0.08, 0.25, 0.5, 1, 2, 4, 8 and 24 h after drug infusion, and AMR and AMR-OH concentrations in plasma were quantitated using a high-performance liquid chromatography. The pharmacokinetic profile of AMR was characterized using a three-compartment model and that of AMR-OH using a one-compartment model following a first-order absorption process. These pharmacokinetic profiles were then integrated into one pharmacokinetic model for simultaneous fitting of AMR and AMR-OH. After fitting to the pharmacokinetic model, 65 combinations of four sampling points from the concentration profiles were evaluated for their AICs. Stepwise regression analysis was applied to select the sampling points for AMR and AMR-OH to predict the area under the concentration-time curves (AUCs) at best. Of the three combinations that yielded favorable AIC values, 0.25, 2, 4 and 8 h yielded the best AUC prediction for both AMR (R(2) = 0.977) and AMR-OH (R(2) = 0.886). The prediction error for AUC was less than 15%. The optimal limited sampling points of AMR and AMR-OH after AMR infusion were found to be 0.25, 2, 4 and 8 h, enabling less frequent blood sampling in further expanded pharmacokinetic studies for both AMR and AMR-OH. © 2016 John Wiley & Sons Australia, Ltd.

  19. Influence of platinum nanoparticles orally administered to rats evaluated by systemic gene expression profiling.

    PubMed

    Katao, Kazuo; Honma, Reiko; Kato, Satoko; Watanabe, Shinya; Imai, Jun-ichi

    2011-01-01

    Platinum is recognized as a harmless metal and is widely used in many industrial products. Recent studies have proposed that platinum in the form of nanoparticles has antioxidant properties, suggesting potential uses for platinum nanoparticles as additives in foods and cosmetics, with direct exposure consequences for humans. However, the influence of platinum nanoparticles on humans has not been sufficiently evaluated, thus far. Therefore, to investigate the influence of platinum nanoparticles on a living body, we comprehensively examined the expression profiles of genes obtained from 25 organs and tissues of rats after oral administration of platinum nanoparticles by gavage. Comparative analysis revealed that the expression levels of 18 genes were altered in 12 organs and tissues after the administration (approximately 0.17% of all the genes examined). Of the tissues examined, those of the glandular stomach, which were most directly exposed to the orally administered platinum nanoparticles, showed altered expression levels of genes associated with inflammation. In subcutaneous adipose tissue, the expression levels of genes whose products exhibited ATPase activity were altered. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) analysis confirmed the alteration in the expression levels of these genes in these 2 different tissues. Our findings indicate that orally administered platinum nanoparticles do not have a marked effect on systemic gene expression levels, except on a small number of genes expressed in rat tissues, including peripheral tissues indirectly exposed to the orally administered nanoparticles.

  20. Efficacy and pharmacokinetics of a modified acid-labile docetaxel-PRINT(®) nanoparticle formulation against non-small-cell lung cancer brain metastases.

    PubMed

    Sambade, Maria; Deal, Allison; Schorzman, Allison; Luft, J Christopher; Bowerman, Charles; Chu, Kevin; Karginova, Olga; Swearingen, Amanda Van; Zamboni, William; DeSimone, Joseph; Anders, Carey K

    2016-08-01

    Particle Replication in Nonwetting Templates (PRINT(®)) PLGA nanoparticles of docetaxel and acid-labile C2-dimethyl-Si-Docetaxel were evaluated with small molecule docetaxel as treatments for non-small-cell lung cancer brain metastases. Pharmacokinetics, survival, tumor growth and mice weight change were efficacy measures against intracranial A549 tumors in nude mice. Treatments were administered by intravenous injection. Intracranial tumor concentrations of PRINT-docetaxel and PRINT-C2-docetaxel were 13- and sevenfold greater, respectively, than SM-docetaxel. C2-docetaxel conversion to docetaxel was threefold higher in intracranial tumor as compared with nontumor tissues. PRINT-C2-docetaxel increased median survival by 35% with less toxicity as compared with other treatments. The decreased toxicity of the PRINT-C2-docetaxel improved treatment efficacy against non-small-cell lung cancer brain metastasis.

  1. Shape of Nanoparticles as a Design Parameter to Improve Docetaxel Antitumor Efficacy.

    PubMed

    Guo, Yifei; Zhao, Shuang; Qiu, Hanhong; Wang, Ting; Zhao, Yanna; Han, Meihua; Dong, Zhengqi; Wang, Xiangtao

    2018-04-18

    It was reported that the shape of nanocarriers played an important role in achieving a better therapeutic effect. To optimize the morphology and enhance the antitumor efficacy, in this study based on the amphiphilic PAMAM- b-OEG codendrimer (POD), docetaxel-loaded spherical and flake-like nanoparticles (DTX nanospheres and nanosheets) were prepared via an antisolvent precipitation method with similar particle size, surface charge, stability, and release profiles. The feed weight ratio of DTX/POD and the branched structure of OEG dendron were suggested to influence the shapes of the self-assembled nanostructures. As expected, DTX nanospheres and nanosheets exhibited strong shape-dependent cellular internalization efficiency and antitumor activity. The clathrin-mediated endocytosis and macropincytosis-dependent endocytosis were proven to be the main uptake mechanism for DTX nanospheres, while it was clathrin-mediated endocytosis for DTX nanosheets. More importantly, DTX nanosheets presented obviously superior antitumor efficacy over nanospheres, the tumor inhibition rate was increased 2-fold in vitro and 1.3-fold in vivo. An approximately 2-fold increase in pharmacokinetic parameter (AUC, MRT, and T 1/2 ) and tumor accumulation were observed in the DTX nanosheets group. These results suggested that the particle shape played a key role in influencing cellular uptake behavior, pharmacokinetics, biodistribution, and antitumor activity; the shape of drug-loaded nanoparticles should be considered in the design of a new generation of nanoscale drug delivery systems for better therapeutic efficacy of anticancer drug.

  2. Development of ionic-complex-based nanostructured lipid carriers to improve the pharmacokinetic profiles of breviscapine

    PubMed Central

    Li, Mei; Zheng, Yong; Shan, Feng-ying; Zhou, Jing; Gong, Tao; Zhang, Zhi-rong

    2013-01-01

    Aim: Breviscapine isolated from the Chinese herb Erigeron breviscapus (Vant) Hand-Mazz is widely used to treat cardiovascular and cerebrovascular diseases. The aim of this study was to improve the pharmacokinetic profiles of breviscapine using nanostructured lipid carrier based on an ionic complex formation. Methods: Breviscapine nanostructured lipid carrier (Bre-NLC) was prepared using the thin film homogenization method. The morphology of Bre-NLCs was determined using transmission electron microscopy. The mean particle size, polydispersity index, zeta-potential analysis and entrapment efficiency were analized. In vitro release was studied using the dialysis method. In vitro stability was studied in fresh plasma and liver slurry of rats. In vivo pharmacokinetics was analyzed in rats after intravenous injection of a dose equivalent to breviscapine (10 mg/kg). Results: The Bre-NLCs were spherical with a mean particle size of ∼170 nm, a zeta potential of ∼20 mV and a high entrapment efficiency of ∼89%. Compared with a commercially available solution, a substantial decrease in the cumulative release of breviscapine was found for the Bre-NLCs. The NLC has a significantly protective effect against the liver enzyme degradation of breviscapine. After intravenous administration in rats, the Bre-NLCs exhibited a 32 times increase in the AUC0–t and a 12 times increase in T1/2 as compared to the commercially available breviscapine solution. Conclusion: The results demonstrate that the NLC has great potential to use as a novel sustained release system for breviscapine. PMID:23770990

  3. Abuse-Deterrent Opioid Formulations: Pharmacokinetic and Pharmacodynamic Considerations.

    PubMed

    Walter, Carmen; Knothe, Claudia; Lötsch, Jörn

    2016-07-01

    Abuse-deterrent formulations (ADFs) are technologically sophisticated pharmaceutical formulations that impede manipulation and extraction of opioids and/or provoke unpleasant effects when they are taken in excessive quantity. This is implemented by creating physical barriers, inseparably combining the opioid with an opioid antagonist or adding aversive agents to the formulation. These pharmaceutical changes may potentially alter the pharmacokinetics and consequently the pharmacodynamics of the opioid. In this review, comparative evidence on pharmacokinetic differences between abuse-deterrent and classical formulations of the same opioids is summarized; furthermore, pharmacodynamic differences, with a focus on analgesia and abuse-related symptoms, are addressed. Most of the 12 studies comparing opioid pharmacokinetics have judged the physically intact ADF as being bioequivalent to the corresponding classical formulation. Pharmacokinetic differences have, however, been reported with physically manipulated ADFs and have ranged from moderate deviations from bioequivalence to complete changes in the pharmacokinetic profile (e.g. from a sustained-release formulation to a fast-release formulation). Pharmacodynamic effects were assessed in 14 comparative studies, which reported that intact ADFs usually provided clinically equivalent analgesia and clear advantages with respect to their addiction potential. However, withdrawal symptoms could be induced by the ADFs, although rarely and, in particular, when the ADFs had been physically altered. This evidence suggests that opioid ADFs are a working concept resulting in mostly minor pharmacokinetic and pharmacodynamic differences in comparison with classical formulations; however, they may deviate from this equivalence when physically altered.

  4. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure-Activity Relationships, and Pharmacokinetic Profiling.

    PubMed

    Wodtke, Robert; Hauser, Christoph; Ruiz-Gómez, Gloria; Jäckel, Elisabeth; Bauer, David; Lohse, Martin; Wong, Alan; Pufe, Johanna; Ludwig, Friedrich-Alexander; Fischer, Steffen; Hauser, Sandra; Greif, Dieter; Pisabarro, M Teresa; Pietzsch, Jens; Pietsch, Markus; Löser, Reik

    2018-05-24

    Transglutaminase 2 (TGase 2)-catalyzed transamidation represents an important post-translational mechanism for protein modification with implications in physiological and pathophysiological conditions, including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis of and therapy for these diseases. In this study, we report on the synthesis and kinetic characterization of N ε -acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100 to 10 000 M -1 s -1 , which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity toward transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed, including the assessment of potential membrane permeability and liver microsomal stability.

  5. Stabilization of Resveratrol in Blood Circulation by Conjugation to mPEG and mPEG-PLA Polymers: Investigation of Conjugate Linker and Polymer Composition on Stability, Metabolism, Antioxidant Activity and Pharmacokinetic Profile

    PubMed Central

    Siddalingappa, Basavaraj; Benson, Heather A. E.; Brown, David H.; Batty, Kevin T.; Chen, Yan

    2015-01-01

    Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol. PMID:25799413

  6. Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine.

    PubMed

    Li, Su; Ji, Zhaoshuai; Zou, Meijuan; Nie, Xin; Shi, Yijie; Cheng, Gang

    2011-09-01

    Tetrandrine (TET) is a poorly water-soluble bisbenzylisoquinoline alkaloid. In this study, TET solid lipid nanoparticles (SLNs) were prepared by a melt-emulsification and ultrasonication technique. Precirol(®) ATO 5, glyceryl monostearate, and stearic acid were used as the lipid matrix for the SLNs, while Lipoid E80, Pluronic F68, and sodium deoxycholate were used as emulsifying and stabilizing agents. The physicochemical characteristics of the TET-SLNs were investigated when it was found that the mean particle size and zeta potential of the TET-SLNs were 134 ± 1.3 nm and -53.8 ± 1.7 mV, respectively, and the entrapment efficiency (EE) was 89.57% ± 0.39%. Differential scanning calorimetry indicated that TET was in an amorphous state in SLNs. TET-SLNs exhibited a higher release rate at a lower pH and a lower release rate at a higher pH. The release pattern of the TET-SLNs followed the Weibull model. The pharmacokinetics of TET-SLNs after intravenous administration to male rats was studied. TET-SLN resulted in a higher plasma concentration and lower clearance. The biodistribution study indicated that TET-SLN showed a high uptake in reticuloendothelial system organs. In conclusion, TET-SLNs with a small particle size, and high EE, can be produced by the method described in this study. The SLN system is a promising approach for the intravenous delivery of tetrandrine.

  7. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung

    2009-04-01

    In general, gold nanoparticles are recognized as being as nontoxic. Still, there have been some reports on their toxicity, which has been shown to depend on the physical dimension, surface chemistry, and shape of the nanoparticles. In this study, we carry out an in vivo toxicity study using 13 nm-sized gold nanoparticles coated with PEG (MW 5000). In our findings the 13 nm sized PEG-coated gold nanoparticles were seen to induce acute inflammation and apoptosis in the liver. These nanoparticles were found to accumulate in the liver and spleen for up to 7 days after injection and to have longmore » blood circulation times. In addition, transmission electron microscopy showed that numerous cytoplasmic vesicles and lysosomes of liver Kupffer cells and spleen macrophages contained the PEG-coated gold nanoparticles. These findings of toxicity and kinetics of PEG-coated gold nanoparticles may have important clinical implications regarding the safety issue as PEG-coated gold nanoparticles are widely used in biomedical applications.« less

  8. Pharmacokinetics and Concentration-Effect Relationship of Oral LSD in Humans.

    PubMed

    Dolder, Patrick C; Schmid, Yasmin; Haschke, Manuel; Rentsch, Katharina M; Liechti, Matthias E

    2015-06-24

    The pharmacokinetics of oral lysergic acid diethylamide are unknown despite its common recreational use and renewed interest in its use in psychiatric research and practice. We characterized the pharmacokinetic profile, pharmacokinetic-pharmacodynamic relationship, and urine recovery of lysergic acid diethylamide and its main metabolite after administration of a single oral dose of lysergic acid diethylamide (200 μg) in 8 male and 8 female healthy subjects. Plasma lysergic acid diethylamide concentrations were quantifiable (>0.1 ng/mL) in all the subjects up to 12 hours after administration. Maximal concentrations of lysergic acid diethylamide (mean±SD: 4.5±1.4 ng/mL) were reached (median, range) 1.5 (0.5-4) hours after administration. Concentrations then decreased following first-order kinetics with a half-life of 3.6±0.9 hours up to 12 hours and slower elimination thereafter with a terminal half-life of 8.9±5.9 hours. One percent of the orally administered lysergic acid diethylamide was eliminated in urine as lysergic acid diethylamide, and 13% was eliminated as 2-oxo-3-hydroxy-lysergic acid diethylamide within 24 hours. No sex differences were observed in the pharmacokinetic profiles of lysergic acid diethylamide. The acute subjective and sympathomimetic responses to lysergic acid diethylamide lasted up to 12 hours and were closely associated with the concentrations in plasma over time and exhibited no acute tolerance. These first data on the pharmacokinetics and concentration-effect relationship of oral lysergic acid diethylamide are relevant for further clinical studies and serve as a reference for the assessment of intoxication with lysergic acid diethylamide. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  9. Pharmacokinetics and Concentration-Effect Relationship of Oral LSD in Humans

    PubMed Central

    Dolder, Patrick C.; Schmid, Yasmin; Haschke, Manuel; Rentsch, Katharina M.

    2016-01-01

    Background: The pharmacokinetics of oral lysergic acid diethylamide are unknown despite its common recreational use and renewed interest in its use in psychiatric research and practice. Methods: We characterized the pharmacokinetic profile, pharmacokinetic-pharmacodynamic relationship, and urine recovery of lysergic acid diethylamide and its main metabolite after administration of a single oral dose of lysergic acid diethylamide (200 μg) in 8 male and 8 female healthy subjects. Results: Plasma lysergic acid diethylamide concentrations were quantifiable (>0.1ng/mL) in all the subjects up to 12 hours after administration. Maximal concentrations of lysergic acid diethylamide (mean±SD: 4.5±1.4ng/mL) were reached (median, range) 1.5 (0.5–4) hours after administration. Concentrations then decreased following first-order kinetics with a half-life of 3.6±0.9 hours up to 12 hours and slower elimination thereafter with a terminal half-life of 8.9±5.9 hours. One percent of the orally administered lysergic acid diethylamide was eliminated in urine as lysergic acid diethylamide, and 13% was eliminated as 2-oxo-3-hydroxy-lysergic acid diethylamide within 24 hours. No sex differences were observed in the pharmacokinetic profiles of lysergic acid diethylamide. The acute subjective and sympathomimetic responses to lysergic acid diethylamide lasted up to 12 hours and were closely associated with the concentrations in plasma over time and exhibited no acute tolerance. Conclusions: These first data on the pharmacokinetics and concentration-effect relationship of oral lysergic acid diethylamide are relevant for further clinical studies and serve as a reference for the assessment of intoxication with lysergic acid diethylamide. PMID:26108222

  10. Design of a dynamic optical tissue phantom to model extravasation pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Zhang, Jane Y.; Ergin, Aysegul; Andken, Kerry Lee; Sheng, Chao; Bigio, Irving J.

    2010-02-01

    We describe an optical tissue phantom that enables the simulation of drug extravasation from microvessels and validates computational compartmental models of drug delivery. The phantom consists of a microdialysis tubing bundle to simulate the permeable blood vessels, immersed in either an aqueous suspension of titanium dioxide (TiO2) or a TiO2 mixed agarose scattering medium. Drug administration is represented by a dye circulated through this porous microdialysis tubing bundle. Optical pharmacokinetic (OP) methods are used to measure changes in the absorption coefficient of the scattering medium due to the arrival and diffusion of the dye. We have established particle sizedependent concentration profiles over time of phantom drug delivery by intravenous (IV) and intra-arterial (IA) routes. Additionally, pharmacokinetic compartmental models are implemented in computer simulations for the conditions studied within the phantom. The simulated concentration-time profiles agree well with measurements from the phantom. The results are encouraging for future optical pharmacokinetic method development, both physical and computational, to understand drug extravasation under various physiological conditions.

  11. Formulation of enrofloxacin SLNs and its pharmacokinetics in emu ( Dromaius novaehollandiae) birds

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, P.; Arivuchelvan, A.; Jagadeeswaran, A.; Punniamurthy, N.; Selvaraj, P.; Richard Jagatheesan, P. N.; Mekala, P.

    2015-08-01

    The study was conducted to formulate the enrofloxacin solid lipid nanoparticles (SLNs) with sustained release profile and improved pharmacological activity and evaluate the pharmacokinetic behaviour of enrofloxacin SLNs after oral routes of administration in emus. The SLNs were prepared using tripalmitin as lipid carrier, Tween 80 and Span 80 as surfactants and polyvinyl alcohol (PVA) as a stabilizer by a hot homogenization coupled with ultrasonication method. The prepared enrofloxacin SLNs formulations were characterized for further investigation in emu birds. The pharmacokinetics of native enrofloxacin was studied after i.v. and oral bolus administration at 10 mg/kg in emu birds and compared with the disposition kinetics of enrofloxacin SLNs. Enrofloxacin and its metabolite ciprofloxacin in plasma were estimated using HPLC and the pharmacokinetic parameters were calculated by a non-compartmental analysis. The results demonstrated that the particle size, polydispersity index, zeta potential, encapsulation efficiency and loading capacity of the SLNs were 154.72 ± 6.11 nm, 0.42 ± 0.11, -28.83 ± 0.60 mV, 59.66 ± 3.22 and 6.13 ± 0.32 %, respectively. AFM and TEM images showed spherical to circular particles with well-defined periphery. In vitro drug release exhibited biphasic pattern with an initial burst release of 18 % within 2 h followed by sustained release over 96 h. Pharmacokinetic results showed that the t 1/2 β , AUC0-∞, V darea/ F, MRT and bioavailability were 3.107, 1.894, 1.594, 2.993 and 1.895 times enhanced ( p < 0.01), while CLB and β were significantly ( p < 0.01) decreased by 1.958 and 3.056 times compared to the values of native enrofloxacin administered orally. The ratio of AUC0- t cipro/AUC0- t enro after administration of native enrofloxacin and enrofloxacin SLNs was less than 10 %. The t 1/2 β and MRT of the metabolite were longer than those of the parent substance. The PK/PD results confirmed that the SLNs extended the enrofloxacin

  12. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy

    PubMed Central

    2012-01-01

    Background Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. Methods In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 ± 9.8 nm and the drug loading was determined to be 10.32 ± 1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. Conclusions A successful effort towards

  13. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Helson, Lawrence; Vishwanatha, Jamboor K

    2012-08-31

    Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5±9.8 nm and the drug loading was determined to be 10.32±1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. A successful effort towards formulating, optimizing and scaling up PLGA-CURC by using

  14. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    PubMed Central

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  15. The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Pallon, J.; Alves, L. C.; Veríssimo, A.; Filipe, P.; Silva, J. N.; Silva, R.

    2007-07-01

    The permeability of skin to nanoparticles of titanium dioxide (TiO 2) used in sunscreens as a reflector of the UV wavelengths of sunlight, was examined using nuclear microscopy techniques. Special attention was given to the permeation characteristics of these nanoparticles across the outer layers of skin, the stratum corneum, in healthy and psoriatic skin condition. Aspects that may influence the interpretation of results such as sample preparation difficulties and skin condition were focused. Sample preparation can damage the integrity of the corneocyte layers inducing unwanted artefacts that may bias the evaluation of results. Irradiation conditions may also introduce distortions in the labile structures of human skin. Skin condition, such as loss of corneocyte cohesion occurring in psoriasis also influence the permeation profile of the nanoparticles. Weighing and accounting for these features in the examination of skin by nuclear microscopy is crucial to accurately assess the TiO 2 nanoparticles permeation depth.

  16. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    NASA Astrophysics Data System (ADS)

    Djenadic, Ruzica; Winterer, Markus

    2017-02-01

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  17. Amorphization strategy affects the stability and supersaturation profile of amorphous drug nanoparticles.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Yang, Yue; Hadinoto, Kunn

    2014-05-05

    Amorphous drug nanoparticles have recently emerged as a promising bioavailability enhancement strategy of poorly soluble drugs attributed to the high supersaturation solubility generated by the amorphous state and fast dissolution afforded by the nanoparticles. Herein we examine the effects of two amorphization strategies in the nanoscale, i.e., (1) molecular mobility restrictions and (2) high energy surface occupation, both by polymer excipient stabilizers, on the (i) morphology, (ii) colloidal stability, (iii) drug loading, (iv) amorphous state stability after three-month storage, and (v) in vitro supersaturation profiles, using itraconazole (ITZ) as the model drug. Drug-polyelectrolyte complexation is employed in the first strategy to prepare amorphous ITZ nanoparticles using dextran sulfate as the polyelectrolyte (ITZ nanoplex), while the second strategy employs pH-shift precipitation using hydroxypropylmethylcellulose as the surface stabilizer (nano-ITZ), with both strategies resulting in >90% ITZ utilization. Both amorphous ITZ nanoparticles share similar morphology (∼300 nm spheres) with the ITZ nanoplex exhibiting better colloidal stability, albeit at lower ITZ loading (65% versus 94%), due to the larger stabilizer amount used. The ITZ nanoplex also exhibits superior amorphous state stability, attributed to the ITZ molecular mobility restriction by electrostatic complexation with dextran sulfate. The higher stability, however, is obtained at the expense of slower supersaturation generation, which is maintained over a prolonged period, compared to the nano-ITZ. The present results signify the importance of selecting the optimal amorphization strategy, in addition to formulating the excipient stabilizers, to produce amorphous drug nanoparticles having the desired characteristics.

  18. Pharmacokinetics, Dose Proportionality, and Bioavailability of Bazedoxifene in Healthy Postmenopausal Women.

    PubMed

    McKeand, William

    2017-09-01

    Bazedoxifene is a selective estrogen receptor modulator that has estrogen agonist effects on bone and lipid metabolism while having neutral or estrogen antagonist effects on the breast and endometrium. The present report describes findings from 3 Phase I clinical studies that evaluated the single-dose pharmacokinetics (study 1; n = 84), multiple-dose pharmacokinetics (study 2; n = 23), and absolute bioavailability (study 3; n = 18) of bazedoxifene. All 3 studies enrolled healthy postmenopausal women who were either naturally postmenopausal or had undergone bilateral oophorectomy at least 6 months before the start of the study. Study 1 showed that unconjugated and total (unconjugated and conjugated) bazedoxifene levels increased proportionally with ascending oral doses of bazedoxifene (through the dose range of 5-120 mg). Evaluation with or without food intake was conducted at the 10-mg dose, with no clinically relevant effect on pharmacokinetic parameters. Study 2 showed that bazedoxifene achieved steady state in 1 week and exhibited linear pharmacokinetics in doses of 5 to 40 mg with no unexpected accumulation over the dose range. In accordance with a linear pharmacokinetic profile, mean maximum plasma concentration values increased with increasing dose, with values of 1.6, 6.2, and 12.5 ng/mL for the 5-, 20-, and 40-mg doses, respectively. In study 3, tablet and capsule formulations of bazedoxifene formulations had an estimated oral bioavailability of ~6%. The clearance of bazedoxifene was 0.4 (0.1) L/h/kg based on intravenous administration. The oral formulations had comparable exposure profiles with respect to AUC and AUC0-t, and the 90% CIs for these values were within the bioequivalence limits of 80% to 125%. Bazedoxifene was safe and well tolerated in all 3 studies. These pharmacokinetic evaluations in healthy postmenopausal women found that bazedoxifene displayed linear pharmacokinetics with doses ranging from 5 to 40 mg, with no unexpected accumulation

  19. Pharmacokinetic interactions of herbal medicines for the treatment of chronic hepatitis.

    PubMed

    Hsueh, Tun-Pin; Lin, Wan-Ling; Tsai, Tung-Hu

    2017-04-01

    Chronic liver disease is a serious global health problem, and an increasing number of patients are seeking alternative medicines or complementary treatment. Herbal medicines account for 16.8% of patients with chronic liver disease who use complementary and alternative therapies. A survey of the National Health Insurance Research Database in Taiwan reported that Long-Dan-Xie-Gan-Tang, Jia-Wei-Xia-Yao-San, and Xiao-Chai-Hu-Tang (Sho-saiko-to) were the most frequent formula prescriptions for chronic hepatitis used by traditional Chinese medicine physicians. Bioanalytical methods of herbal medicines for the treatment of chronic hepatitis were developed to investigate pharmacokinetics properties, but multicomponent herbal formulas have been seldom discussed. The pharmacokinetics of herbal formulas is closely related to efficacy, efficiency, and patient safety of traditional herbal medicines. Potential herbal formula-drug interactions are another essential issue during herbal formula administration in chronic hepatitis patients. In a survey with the PubMed database, this review article evaluates the existing evidence-based data associated with the documented pharmacokinetics profiles and potential herbal-drug interactions of herbal formulas for the treatment of chronic hepatitis. In addition, the existing pharmacokinetic profiles were further linked with clinical practice to provide insight for the safety and specific use of traditional herbal medicines. Copyright © 2016. Published by Elsevier B.V.

  20. Population Pharmacokinetics of Atazanavir in Patients with Human Immunodeficiency Virus Infection▿

    PubMed Central

    Colombo, Sara ; Buclin, Thierry; Cavassini, Matthias; Décosterd, Laurent A.; Telenti, Amalio; Biollaz, Jérôme; Csajka, Chantal

    2006-01-01

    Atazanavir (ATV) is a new azapeptide protease inhibitor recently approved and currently used at a fixed dose of either 300 mg once per day (q.d.) in combination with 100 mg ritonavir (RTV) or 400 mg q.d. without boosting. ATV is highly bound to plasma proteins and extensively metabolized by CYP3A4. Since ATV plasma levels are highly variable and seem to be correlated with both viral response and toxicity, dosage individualization based on plasma concentration monitoring might be indicated. This study aimed to assess the ATV pharmacokinetic profile in a target population of HIV patients, to characterize interpatient and intrapatient variability, and to identify covariates that might influence ATV disposition. A population analysis was performed with NONMEM with 574 plasma samples from a cohort of 214 randomly selected patients receiving ATV. A total of 346 randomly collected ATV plasma levels and 19 full concentration-time profiles at steady state were available. The pharmacokinetic parameter estimates were an oral clearance (CL) of 12.9 liters/h (coefficient of variation [CV], 26%), a volume of distribution of 88.3 liters (CV, 29%), an absorption rate constant of 0.405 h−1 (CV, 122%), and a lag time of 0.88 h. A relative bioavailability value was introduced to account for undercompliance due to infrequent follow-ups (0.81; CV, 45%). Among the covariates tested, only RTV significantly reduced CL by 46%, thereby increasing the ATV elimination half-life from 4.6 h to 8.8 h. The pharmacokinetic parameters of ATV were adequately described by a one-compartment population model. The concomitant use of RTV improved the pharmacokinetic profile. However, the remaining high interpatient variability suggests the possibility of an impact of unmeasured covariates, such as genetic traits or environmental influences. This population pharmacokinetic model, together with therapeutic drug monitoring and Bayesian dosage adaptation, can be helpful in the selection and adaptation of

  1. The biodistribution and pharmacokinetic evaluation of choline-bound gold nanoparticles in a human prostate tumor xenograft model.

    PubMed

    Razzak, Rene; Zhou, Joe; Yang, XiaoHong; Pervez, Nadim; Bédard, Eric Lr; Moore, Ronald B; Shaw, Andrew; Amanie, John; Roa, Wilson H

    2013-06-01

    Gold nanoparticles (GNPs) have attracted significant attention in the treatment of cancer due to their potential as novel radiation enhancers, particularly when functionalized with various targeting ligands. The aim of this study was to assess the biodistribution and pharmacokinetic characteristics of a novel choline-bound GNP (choline-GNP) stabilized with polyethelenimine (PEI). Choline bound to 27 nm diameter GNPs was characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Toxicity of choline-GNPs was examined on DU-145 prostate cancer cells using an MTT assay. Using balb/c mice bearing flank DU-145 prostate tumors, choline-GNPs bio-distribution was measured using inductively coupled mass spectroscopy (ICP-MS). Blood, heart, lung, liver, spleen, brain, kidney and tumor gold content were examined at multiple time points over a 24-hour period after tail vein injection. An MTT assay using DU-145 prostate cancer cells yielded a 95% cell viability 72 hours after choline-GNP administration. The tumor GNP area under the concentration-time curve during the first 4 hours (AUC0-4) was 2.2 µg/ml h, representing 13% of the circulating blood GNP concentration over the same time period. The maximum intra-tumor GNP concentration observed was 1.4% of the injected dose per gram of tumor tissue (%ID/g) one hour post injection. GNPs functionalized with choline demonstrates a viable future nanoparticle platform with increased intra-tumor uptake as compared to unconjugated GNPs. Decreased intra-hepatic accumulation appears to be the reason for the improved systemic bioavailability. The next logical translational investigation will incorporate external beam radiation with the observed maximum intra-tumor uptake.

  2. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole.

    PubMed

    Qi, Fang; Zhu, Liqin; Li, Na; Ge, Tingyue; Xu, Gaoqi; Liao, Shasha

    2017-04-01

    This study aimed to determine the influence of proton pump inhibitors (PPIs) on the pharmacokinetics of voriconazole and to characterise potential drug-drug interactions (DDIs) between voriconazole and various PPIs (omeprazole, esomeprazole, lansoprazole and rabeprazole). Using adjusted physicochemical data and the pharmacokinetic (PK) parameters of voriconazole and PPIs, physiologically based pharmacokinetic (PBPK) models were built and were verified in healthy subjects using GastroPlus TM to predict the plasma concentration-time profiles of voriconazole and PPIs. These models were then used to assess potential DDIs for voriconazole when administered with PPIs. The results indicated the PBPK model-simulated plasma concentration-time profiles of both voriconazole and PPIs were consistent with the observed profiles. In addition, the DDI simulations suggested that the PK values of voriconazole increased to various degrees when combined with several PPIs. The area under the plasma concentration-time curve for the time of the simulation (AUC 0- t ) of voriconazole was increased by 39%, 18%, 12% and 1% when co-administered with omeprazole, esomeprazole, lansoprazole and rabeprazole, respectively. Omeprazole was the most potent CYP2C19 inhibitor tested, whereas rabeprazole had no influence on voriconazole (omeprazole > esomeprazole > lansoprazole > rabeprazole). However, in consideration of the therapeutic concentration range, dosage adjustment of voriconazole is unnecessary regardless of which PPI was co-administered. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  3. Pharmacokinetic profile and clinical efficacy of a once-daily ondansetron suppository in cyclophosphamide-induced emesis: a double blind comparative study with ondansetron tablets.

    PubMed Central

    de Wit, R.; Beijnen, J. H.; van Tellingen, O.; Schellens, J. H.; de Boer-Dennert, M.; Verweij, J.

    1996-01-01

    We investigated the pharmacokinetic profile and the efficacy of ondansetron (day 1) given as 16 mg suppository once a day, as compared with ondansetron 8 mg tablets twice daily, in patients receiving moderately emetogenic chemotherapy. The study was primarily aimed at investigating the pharmacokinetics and was part of a large multinational, randomised, double-blind, double-dummy efficacy trial. Pharmacokinetic data were obtained in a total of 20 patients, 11 of whom had received a suppository containing ondansetron, and nine patients had received the oral formulation. The median area under the plasma concentration curve (AUC) obtained with the oral formulation was 226 ng ml-1h-1 (range 91-750), and the median maximum plasma level (Cmax) was 50.5 ng ml-1 (range 24.7-199.6) after a dose of 8 mg. For the ondansetron suppository the median AUC was 140 ng ml-1h-1 range (77-405) and the median Cmax was 17.1 ng ml-1 (range 13-48.3) after a dose of 16 mg. The systemic exposure after correction for the dose difference after the suppository was on average 70% lower than after the tablet. The median time to reach the maximum level (Tmax) was 60 min (range 28-120) with the oral formulation and 209 min (range 90-420) with the suppository. For both the tablet and suppository, there was no apparent relationship between either Cmax or AUC, and efficacy. Although the patient numbers were too small for a formal exposure-response relationship to be derived, the slightly poorer pharmacokinetic performance of the suppository did not appear to be associated with a lessening of control of emesis following chemotherapy. The study demonstrates that the pharmacokinetic analysis of a once-daily 16 mg ondansetron suppository results in appropriate plasma concentrations and AUC, and that this rectal formulation is effective in the protection against nausea and vomiting associated with cyclophosphamide chemotherapy. This formulation will provide a useful alternative to the currently available

  4. Pharmacokinetic profile and clinical efficacy of a once-daily ondansetron suppository in cyclophosphamide-induced emesis: a double blind comparative study with ondansetron tablets.

    PubMed

    de Wit, R; Beijnen, J H; van Tellingen, O; Schellens, J H; de Boer-Dennert, M; Verweij, J

    1996-07-01

    We investigated the pharmacokinetic profile and the efficacy of ondansetron (day 1) given as 16 mg suppository once a day, as compared with ondansetron 8 mg tablets twice daily, in patients receiving moderately emetogenic chemotherapy. The study was primarily aimed at investigating the pharmacokinetics and was part of a large multinational, randomised, double-blind, double-dummy efficacy trial. Pharmacokinetic data were obtained in a total of 20 patients, 11 of whom had received a suppository containing ondansetron, and nine patients had received the oral formulation. The median area under the plasma concentration curve (AUC) obtained with the oral formulation was 226 ng ml-1h-1 (range 91-750), and the median maximum plasma level (Cmax) was 50.5 ng ml-1 (range 24.7-199.6) after a dose of 8 mg. For the ondansetron suppository the median AUC was 140 ng ml-1h-1 range (77-405) and the median Cmax was 17.1 ng ml-1 (range 13-48.3) after a dose of 16 mg. The systemic exposure after correction for the dose difference after the suppository was on average 70% lower than after the tablet. The median time to reach the maximum level (Tmax) was 60 min (range 28-120) with the oral formulation and 209 min (range 90-420) with the suppository. For both the tablet and suppository, there was no apparent relationship between either Cmax or AUC, and efficacy. Although the patient numbers were too small for a formal exposure-response relationship to be derived, the slightly poorer pharmacokinetic performance of the suppository did not appear to be associated with a lessening of control of emesis following chemotherapy. The study demonstrates that the pharmacokinetic analysis of a once-daily 16 mg ondansetron suppository results in appropriate plasma concentrations and AUC, and that this rectal formulation is effective in the protection against nausea and vomiting associated with cyclophosphamide chemotherapy. This formulation will provide a useful alternative to the currently available

  5. Pharmacokinetics and pharmacokinetic-pharmacodynamic relationships of monoclonal antibodies in children.

    PubMed

    Edlund, Helena; Melin, Johanna; Parra-Guillen, Zinnia P; Kloft, Charlotte

    2015-01-01

    Monoclonal antibodies (mAbs) constitute a therapeutically and economically important drug class with increasing use in both adult and paediatric patients. The rather complex pharmacokinetic and pharmacodynamic properties of mAbs have been extensively reviewed in adults. In children, however, limited information is currently available. This paper aims to comprehensively review published pharmacokinetic and pharmacokinetic-pharmacodynamic studies of mAbs in children. The current status of mAbs in the USA and in Europe is outlined, including a critical discussion of the dosing strategies of approved mAbs. The pharmacokinetic properties of mAbs in children are exhaustively summarised along with comparisons to reports in adults: for each pharmacokinetic process, we discuss the general principles and mechanisms of the pharmacokinetic/pharmacodynamic characteristics of mAbs, as well as key growth and maturational processes in children that might impact these characteristics. Throughout this review, considerable knowledge gaps are identified, especially regarding children-specific properties that influence pharmacokinetics, pharmacodynamics and immunogenicity. Furthermore, the large heterogeneity in the presentation of pharmacokinetic/pharmacodynamic data limited clinical inferences in many aspects of paediatric mAb therapy. Overall, further studies are needed to fully understand the impact of body size and maturational changes on drug exposure and response. To maximise future knowledge gain, we propose a 'Guideline for Best Practice' on how to report pharmacokinetic and pharmacokinetic-pharmacodynamic results from mAb studies in children which also facilitates comparisons. Finally, we advocate the use of more sophisticated modelling strategies (population analysis, physiology-based approaches) to appropriately characterise pharmacokinetic-pharmacodynamic relationships of mAbs and, thus, allow for a more rational use of mAb in the paediatric population.

  6. Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity.

    PubMed

    Kanoujia, Jovita; Singh, Mahendra; Singh, Pooja; Saraf, Shubhini A

    2016-12-01

    The objective of this study was to demonstrate the therapeutic as well as biopolymer like characteristics of naturally occurring sericin protein for development of nanoparticulate system of atorvastatin (Atr) to improve therapeutic effect and to reduce toxicity. The sericin encapsulated atorvastatin nanoparticles (Seri-Atr NPs) were prepared by desolvation method utilizing genipin (Gn) as a natural and nontoxic crosslinker. The optimized NPs exhibited small particle size (166±0.30nm), high entrapment efficiency (91±0.69%) and uniform spherical shape with sustained release profile. Moreover, the results of pharmacokinetic studies indicated an increase in AUC0-∞ of NPs (1189.74±52.3hng/ml) compared with Atr (501.84±66hng/ml). The cellular uptake of NPs suggested an interaction of negatively charged particles with the cell surface and considerable reduction in systemic toxicity. Histopathology studies also demonstrated the therapeutic potential of sericin and cytocompatibility. Hence, genipin crosslinked sericin based nanoparticles represents a promising nanoplatform for improved therapeutic efficiency of Atr. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fabrication and evaluation of valsartan–polymer– surfactant composite nanoparticles by using the supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Baek, In-hwan

    2014-01-01

    The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS) process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions) and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability. PMID:25404856

  8. Pharmacokinetic and pharmacogenetic markers of irinotecan toxicity.

    PubMed

    Hahn, Roberta Zilles; Antunes, Marina Venzon; Verza, Simone Gasparin; Perassolo, Magda Susana; Suyenaga, Edna Sayuri; Schwartsmann, Gilberto; Linden, Rafael

    2018-06-22

    Irinotecan (IRI) is a widely used chemotherapeutic drug, mostly used for first-line treatment of colorectal and pancreatic cancer. IRI doses are usually established based on patient's body surface area, an approach associated with large inter-individual variability in drug exposure and high incidence of severe toxicity. Toxic and therapeutic effects of IRI are also due to its active metabolite SN-38, reported to be up to 100 times more cytotoxic than IRI. SN-38 is detoxified by the formation of SN-38 glucuronide, through UGT1A1. Genetic polymorphisms in the UGT1A1 gene are associated to higher exposures to SN-38 and severe toxicity. Pharmacokinetic models to describe IRI and SN-38 kinetic profiles are available, with few studies exploring pharmacokinetic and pharmacogenetic-based dose individualization. The aim of this manuscript is to review the available evidence supporting pharmacogenetic and pharmacokinetic dose individualization of IRI in order to reduce the occurrence of severe toxicity during cancer treatment. The PubMed database was searched, considering papers published in the period from 1995-2017, using the keywords irinotecan, pharmacogenetics, metabolic genotyping, dose individualization, therapeutic drug monitoring, pharmacokinetics and pharmacodynamics, either alone or in combination, with original papers being selected based on the presence of relevant data. The findings of this review confirm the importance of considering individual patient characteristics to select IRI doses. Currently, the most straightforward approach for IRI dose individualization is UGT1A1 genotyping. However, this strategy is sub-optimal due to several other genetic and environmental contributions to the variable pharmacokinetics of IRI and its active metabolite. The use of dried blood spot sampling could allow the clinical application of complex sampling for the clinical use of limited sampling and population pharmacokinetic models for IRI doses individualization. Copyright

  9. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    PubMed

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A Randomized Pharmacokinetic Study of Generic Tacrolimus Versus Reference Tacrolimus in Kidney Transplant Recipients

    PubMed Central

    Alloway, R R; Sadaka, B; Trofe-Clark, J; Wiland, A; Bloom, R D

    2012-01-01

    Pharmacokinetic analyses comparing generic tacrolimus preparations versus the reference drug in kidney transplant patients are lacking. A prospective, multicenter, open-label, randomized, two-period (14 days per period), two-sequence, crossover and steady-state pharmacokinetic study was undertaken to compare twice-daily generic tacrolimus (Sandoz) versus reference tacrolimus (Prograf®) in stable renal transplant patients. AUC0–12h and peak concentration (Cmax) were calculated from 12 h pharmacokinetic profiles at the end of each period (days 14 and 28). Of 71 patients enrolled, 68 provided evaluable pharmacokinetic data. The ratios of geometric means were 1.02 (90% CI 97–108%, p = 0.486) for AUC0–12h and 1.09 (90% CI 101–118%, p = 0.057) for Cmax. Mean (SD) C0 was 7.3(1.8) ng/mL for generic tacrolimus versus 7.0(2.1) ng/mL for reference tacrolimus based on data from days 14 and 28. Correlations between 12 h trough levels and AUC were r = 0.917 for generic tacrolimus and r = 0.887 for reference drug at day 28. These data indicate that generic tacrolimus (Sandoz) has a similar pharmacokinetic profile to the reference drug and is bioequivalent in kidney transplant recipients according to US Food and Drug Administration and European Medicines Agency guidelines. PMID:22759200

  11. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension.

    PubMed

    Pandya, Nilima T; Jani, Parva; Vanza, Jigar; Tandel, Hemal

    2018-05-01

    The aim of the current investigation was to develop solid lipid nanoparticles of olmesartan medoxomil using hot homogenization method to improve its oral bioavailability. Central composite design was applied to optimize the formulation variables; lipid X1 (Glyceryl monostearate) and surfactant X2 (Poloxamer: Tween 80). The particle sizes were in the nanometer range and spherical shaped for all prepared solid lipid nanoparticles formulations and the zeta potential absolute values were high, predicting good long-term stability. In vitro study of olmesartan loaded solid lipid nanoparticle exhibited controlled release profile for at least 24 h. The rate and extent of drug diffusion was studied using dialysis sac, rat's stomach and intestine tissues; study demonstrated that drug release from the solid lipid nanoparticles was significantly higher than drug suspension. In vivo pharmacokinetic study of olmesartan loaded solid lipid nanoparticles revealed higher Cmax of 1610 ng/mL, higher AUC of 15492.50 ng/mL and increased relative bioavailability by almost 2.3 folds compared to marketed formulation. These results clearly indicate that olmesartan loaded solid lipid nanoparticles are shown to have enhanced bioavailability and effective therapeutic result and thus would be an excellent way to treat hypertension. Hence, these solid lipid nanoparticles could represent as a great potential for a possible alternative to conventional oral formulation in the treatment of hypertension. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA) Nanoparticles in Rat Plasma

    PubMed Central

    Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi

    2013-01-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283

  13. Pharmacokinetic study of gallocatechin-7-gallate from Pithecellobium clypearia Benth. in rats.

    PubMed

    Li, Chao; Song, Xiaowei; Song, Junke; Pang, Xiaocong; Wang, Zhe; Zhao, Ying; Lian, Wenwen; Liu, Ailin; Du, Guanhua

    2016-01-01

    The pharmacokinetic profile of gallocatechin-7-gallate (J10688) was studied in rats after intravenous administration. Male and female Sprague-Dawley (SD) rats received 1, 3, and 10 mg/kg (i.v.) of J10688 and plasma drug concentrations were determined by a high performance liquid chromatography-mass spectrometry (LC-MS) method. The pharmacokinetic software Data Analysis System (Version 3.0) was used to calculate the pharmacokinetic parameters. For different i.v. doses of J10688, the mean peak plasma concentration (C 0) values ranged from 11.26 to 50.82 mg/L, and mean area under the concentration-time curve (AUC0-t ) values ranged from 1.75 to 11.80 (mg·h/L). J10688 lacked dose-dependent pharmacokinetic properties within doses between 1 and 10 mg/kg, based on the power model. The method developed in this study was sensitive, precise, and stable. The pharmacokinetic properties of J10688 in SD rats were shown to have rapid distribution and clearance values. These pharmacokinetic results may contribute to an improved understanding of the pharmacological actions of J10688.

  14. Pharmacokinetics of Peptide Mediated Delivery of Anticancer Drug Ellipticine

    PubMed Central

    Pan, Pei; Sadatmousavi, Parisa; Yuan, Yongfang; Chen, P.

    2012-01-01

    The amino acid pairing peptide EAK16-II (EAK) has shown the ability to stabilize the hydrophobic anticancer agent ellipticine (EPT) in aqueous solution. In this study, we investigate pharmacokinetics of the formulation of EAK-EPT complexes in vivo. The developed formulation can achieve a sufficiently high drug concentration required in vivo animal models. The nanostructure and surface properties of EAK-EPT complexes or nanoparticle were characterized by transmission electron microscopy (TEM) and zeta potential measurements, respectively. 12 healthy male SD rats were divided into EPT group and EAK-EPT group randomly. Rats in EPT group were tail intravenously injected with the EPT (20 mg/kg); rats in EAK-EPT group were injected with EAK-EPT complexes (EPT's concentration is 20 mg/kg). EPT was extracted from rat plasma with dexamethasone sodium phosphate as internal standards (IS). The pharmacokinetic parameters were obtained using high pressure liquid chromatography (HPLC). Significant differences in main pharmacokinetic parameters between EPT and EAK-EPT complexes were observed, demonstrating that the complexation with EAK prolongs the residence time of the drug and enlarges the area under the concentration-time curve (AUC). This means that EAK can serve as a suitable carrier to increase the bioavailability of EPT. PMID:22952737

  15. Thromboelastographic and Pharmacokinetic Profiles of Micro- and Macro-emulsions of Propofol in the Swine

    PubMed Central

    Morey, Timothy E.; Modell, Jerome H.; Garcia, Jorge E.; Bewernitz, Michael; Derendorf, Hartmut; Varshney, Manoj; Gravenstein, Nikolaus; Shah, Dinesh O.; Dennis, Donn M.

    2010-01-01

    Purpose Compared to traditional macroemulsion propofol formulations currently in clinical use, microemulsion formulations of this common intravenous anesthetic may offer advantages. We characterized the pharmacokinetics and coagulation effects as assessed by thromboelastography of these formulations in swine. Methods Yorkshire swine (20-30 kg, either sex, n=15) were sedated, anesthetized with isoflurane, and instrumented to obtain a tracheostomy, internal jugular access, and carotid artery catheterization. Propofol (2 mg/kg, 30 s) was administered as macroemulsion (10 mg/mL; Diprivan®; n=7) or a custom (2 mg/kg, 30 s) microemulsion (10 mg/mL; n=8). Arterial blood specimens acquired pre- and post-injection (1 and 45 min) were used for thromboelastography. Arterial blood specimens (n=12 samples / subject, 60 min) were serially collected, centrifuged, and analyzed with solid-phase extraction with UPLC to determine propofol plasma concentrations. Non-compartmental pharmacokinetic analysis was applied to plasma concentrations. Results No changes were noted in thromboelastographic R time (P=0.74), K time (P=0.41), α angle (P=0.97), or maximal amplitude (P=0.71) for either propofol preparation. Pharmacokinetic parameters k (P=0.45), t1/2 (P=0.26), Co (P=0.89), AUC0-∞ (P=0.23), Cl (P=0.14), MRT (P=0.47), Vss (P=0.11) of the two formulations were not significantly different. Conclusion The microemulsion and macroemulsion propofol formulations had similar pharmacokinetics and did not modify thromboelastographic parameters in swine. PMID:20578214

  16. Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.

    2018-05-01

    This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.

  17. Impact of Renal Impairment on the Pharmacokinetics of Apremilast and Metabolite M12

    PubMed Central

    Liu, Yong; Zhou, Simon; Assaf, Mahmoud; Nissel, Jim

    2016-01-01

    Abstract The pharmacokinetics of apremilast and its major metabolite M12 were evaluated in subjects with varying degrees of renal impairment. Men and women with renal impairment (estimated glomerular filtration rate, 60‒89 mL/min [mild, n = 8], 30‒59 mL/min [moderate, n = 8], or <30 mL/min [severe, n = 8]) or demographically healthy matched (control) subjects (n = 24) received a single oral dose of apremilast 30 mg. Plasma apremilast and metabolite M12 concentrations were determined, and pharmacokinetic parameters were calculated from samples obtained predose and up to 72 hours postdose. In subjects with mild to moderate renal impairment, apremilast pharmacokinetic profiles were similar to healthy matched subjects. In subjects with severe renal impairment, apremilast elimination was significantly slower, and exposures based on area under the plasma concentration‐versus‐time curve from time zero extrapolated to infinity and maximum observed plasma concentration were increased versus healthy matched subjects. Metabolite M12 pharmacokinetic profiles for subjects with mild renal impairment were similar to those of the healthy matched subjects; however, they were increased in both the moderate and severe renally impaired subjects. Dose reduction of apremilast is recommended in individuals with severe renal impairment, but not in those with mild to moderate renal impairment. PMID:27870479

  18. A physiologically based model for tramadol pharmacokinetics in horses.

    PubMed

    Abbiati, Roberto Andrea; Cagnardi, Petra; Ravasio, Giuliano; Villa, Roberto; Manca, Davide

    2017-09-21

    This work proposes an application of a minimal complexity physiologically based pharmacokinetic model to predict tramadol concentration vs time profiles in horses. Tramadol is an opioid analgesic also used for veterinary treatments. Researchers and medical doctors can profit from the application of mathematical models as supporting tools to optimize the pharmacological treatment of animal species. The proposed model is based on physiology but adopts the minimal compartmental architecture necessary to describe the experimental data. The model features a system of ordinary differential equations, where most of the model parameters are either assigned or individualized for a given horse, using literature data and correlations. Conversely, residual parameters, whose value is unknown, are regressed exploiting experimental data. The model proved capable of simulating pharmacokinetic profiles with accuracy. In addition, it provides further insights on un-observable tramadol data, as for instance tramadol concentration in the liver or hepatic metabolism and renal excretion extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles

    PubMed Central

    Mui, Barbara L; Tam, Ying K; Jayaraman, Muthusamy; Ansell, Steven M; Du, Xinyao; Tam, Yuen Yi C; Lin, Paulo JC; Chen, Sam; Narayanannair, Jayaprakash K; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Akinc, Akin; Maier, Martin A; Cullis, Pieter; Madden, Thomas D; Hope, Michael J

    2013-01-01

    Lipid nanoparticles (LNPs) encapsulating short interfering RNAs that target hepatic genes are advancing through clinical trials, and early results indicate the excellent gene silencing observed in rodents and nonhuman primates also translates to humans. This success has motivated research to identify ways to further advance this delivery platform. Here, we characterize the polyethylene glycol lipid (PEG-lipid) components, which are required to control the self-assembly process during formation of lipid particles, but can negatively affect delivery to hepatocytes and hepatic gene silencing in vivo. The rate of transfer from LNPs to plasma lipoproteins in vivo is measured for three PEG-lipids with dialkyl chains 14, 16, and 18 carbons long. We show that 1.5 mol % PEG-lipid represents a threshold concentration at which the chain length exerts a minimal effect on hepatic gene silencing but can still modify LNPs pharmacokinetics and biodistribution. Increasing the concentration to 2.5 and 3.5 mol % substantially compromises hepatocyte gene knockdown for PEG-lipids with distearyl (C18) chains but has little impact for shorter dimyristyl (C14) chains. These data are discussed with respect to RNA delivery and the different rates at which the steric barrier disassociates from LNPs in vivo. PMID:24345865

  20. Nanocarriers for cancer-targeted drug delivery.

    PubMed

    Kumari, Preeti; Ghosh, Balaram; Biswas, Swati

    2016-01-01

    Nanoparticles as drug delivery system have received much attention in recent years, especially for cancer treatment. In addition to improving the pharmacokinetics of the loaded poorly soluble hydrophobic drugs by solubilizing them in the hydrophobic compartments, nanoparticles allowed cancer specific drug delivery by inherent passive targeting phenomena and adopted active targeting strategies. For this reason, nanoparticles-drug formulations are capable of enhancing the safety, pharmacokinetic profiles and bioavailability of the administered drugs leading to improved therapeutic efficacy compared to conventional therapy. The focus of this review is to provide an overview of various nanoparticle formulations in both research and clinical applications with a focus on various chemotherapeutic drug delivery systems for the treatment of cancer. The use of various nanoparticles, including liposomes, polymeric nanoparticles, dendrimers, magnetic and other inorganic nanoparticles for targeted drug delivery in cancer is detailed.

  1. Population pharmacokinetics of phenytoin in critically ill children.

    PubMed

    Hennig, Stefanie; Norris, Ross; Tu, Quyen; van Breda, Karin; Riney, Kate; Foster, Kelly; Lister, Bruce; Charles, Bruce

    2015-03-01

    The objective was to study the population pharmacokinetics of bound and unbound phenytoin in critically ill children, including influences on the protein binding profile. A population pharmacokinetic approach was used to analyze paired protein-unbound and total phenytoin plasma concentrations (n = 146 each) from 32 critically ill children (0.08-17 years of age) who were admitted to a pediatric hospital, primarily intensive care unit. The pharmacokinetics of unbound and bound phenytoin and the influence of possible influential covariates were modeled and evaluated using visual predictive checks and bootstrapping. The pharmacokinetics of protein-unbound phenytoin was described satisfactorily by a 1-compartment model with first-order absorption in conjunction with a linear partition coefficient parameter to describe the binding of phenytoin to albumin. The partitioning coefficient describing protein binding and distribution to bound phenytoin was estimated to be 8.22. Nonlinear elimination of unbound phenytoin was not supported in this patient group. Weight, allometrically scaled for clearance and volume of distribution for the unbound and bound compartments, and albumin concentration significantly influenced the partition coefficient for protein binding of phenytoin. The population model can be applied to estimate the fraction of unbound phenytoin in critically ill children given an individual's albumin concentration. © 2014, The American College of Clinical Pharmacology.

  2. Herbal medicines in Brazil: pharmacokinetic profile and potential herb-drug interactions

    PubMed Central

    Mazzari, Andre L. D. A.; Prieto, Jose M.

    2014-01-01

    A plethora of active compounds found in herbal medicines can serve as substrate for enzymes involved in the metabolism of xenobiotics. When a medicinal plant is co-administered with a conventional drug and little or no information is known about the pharmacokinetics of the plant metabolites, there is an increased risk of potential herb-drug interactions. Moreover, genetic polymorphisms in a population may act to predispose individuals to adverse reactions. The use of herbal medicines is rapidly increasing in many countries, particularly Brazil where the vast biodiversity is a potential source of new and more affordable treatments for numerous conditions. Accordingly, the Brazilian Unified Public Health System (SUS) produced a list of 71 plant species of interest, which could be made available to the population in the near future. Physicians at SUS prescribe a number of essential drugs and should herbal medicines be added to this system the chance of herb-drug interactions further increases. A review of the effects of these medicinal plants on Phase 1 and Phase 2 metabolic mechanisms and the transporter P-glycoprotein was conducted. The results have shown that approximately half of these medicinal plants lack any pharmacokinetic data. Moreover, most of the studies carried out are in vitro. Only a few reports on herb-drug interactions with essential drugs prescribed by SUS were found, suggesting that very little attention is being given to the safety of herbal medicines. Here we have taken this information to discuss the potential interactions between herbal medicines and essential drugs prescribed to Brazilian patients whilst taking into account the most common polymorphisms present in the Brazilian population. A number of theoretical interactions are pinpointed but more pharmacokinetic studies and pharmacovigilance data are needed to ascertain their clinical significance. PMID:25071580

  3. Real-time Monitoring of Nanoparticle-based Therapeutics: A Review.

    PubMed

    Han, Qingqing; Niu, Meng; Wu, Qirun; Zhong, Hongshan

    2018-01-01

    With the development of nanomaterials, nanoparticle-based therapeutics have found increasing application in various fields, including clinical and basic medicine. Real-time monitoring of nanoparticle-based therapeutics is considered critical to both pharmacology and pharmacokinetics. In this review, we discuss the different methods of real-time monitoring of nanoparticle-based therapeutics comprising different types of nanoparticle carriers, such as metal nanoparticles, inorganic nonmetallic nanoparticles, biodegradable polymer nanoparticles, and biological nanoparticles. In the light of examples and analyses, we conclude that the methods of analysis of the four types of nanoparticle carriers are commonly used methods and mostly not necessary. Under most circumstances, real-time monitoring differs according to nanoparticle type, drugs, diseases, and surroundings. With technology development and advanced researches, there have been increasing measures to track the real-time changes in nanoparticles, and this has led to great progress in pharmacology and therapeutics. However, future studies are warranted to determine the accuracy, applicability, and practicability of different technologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Effect of nanoparticle nature on hydrogen concentration profiles and improved switching characteristics in Gd switchable mirrors.

    PubMed

    Aruna, I; Mehta, B R; Malhotra, L K; Khan, S A; Avasthi, D K

    2005-10-01

    A detailed elastic recoil detection analysis using 40 MeV 28Si5+ ions has been carried out to study the changes in the H concentration and concentration profiles during the hydrogenation/dehydrogenation process in polycrystalline and nanoparticle Gd layers formed using vacuum evaporation and inert gas evaporation techniques, respectively. Nanoparticle sample exhibits a larger difference in the [H]/[Gd] values (2.9 and 1.7) in comparison to polycrystalline sample (2.4 and 2.0) in the loaded and deloaded states. Hydrogenation/dehydrogenation activity is restricted to the top portion in case of polycrystalline sample. In contrast to this, size induced structural transformation; enhanced surface area and the presence of large number of inter particle boundaries due to nanoparticle character result in the complete Gd layer becoming active during switching.

  5. Pharmacokinetic modulation of oral etoposide by ketoconazole in patients with advanced cancer.

    PubMed

    Yong, Wei Peng; Desai, Apurva A; Innocenti, Federico; Ramirez, Jacqueline; Shepard, Dale; Kobayashi, Ken; House, Larry; Fleming, Gini F; Vogelzang, Nicholas J; Schilsky, Richard L; Ratain, Mark J

    2007-11-01

    Etoposide is a widely used cytotoxic drug that is commercially available in both intravenous and oral formulations. High interpatient pharmacokinetic variability has been associated with oral etoposide administration. Various strategies used in the past to reduce such variability have not been successful. Hence, this study was designed to evaluate if pharmacokinetic modulation of oral etoposide with ketoconazole could lead to a favorable alteration of etoposide pharmacokinetics, and to assess the feasibility and safety of this approach. Thirty-two patients were treated with ketoconazole 200 mg daily with an escalating dose of oral etoposide starting at a dose of 50 mg every other day. Pharmacokinetic samples were obtained during the first treatment cycle after the administration of an oral etoposide and ketoconazole dose. Additional baseline pharmacokinetic studies of etoposide alone were performed 4 days prior to the first treatment cycle. Dose limiting toxicities were neutropenia and fatigue. Ketoconazole increased the area under the plasma concentration-time curve (AUC) of oral etoposide by a median of 20% (p < 0.005). Ketoconazole did not reduce the interpatient variability in etoposide pharmacokinetics. Pretreatment bilirubin levels correlated with etoposide clearance (Spearman's r = -0.48, p = 0.008). The maximum tolerated dose was etoposide administered at 50 mg daily and ketoconazole 200 mg qd for 3 of 5 weeks. Ketoconazole reduces the apparent clearance of oral etoposide, does not alter its toxicity profile and does not reduce interpatient pharmacokinetic variability. Other methods to reduce the pharmacokinetic variability of oral etoposide are needed.

  6. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine

    PubMed Central

    Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S.; Khandhar, Amit; Krishnan, Kannan M.

    2015-01-01

    We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body –– an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field. PMID:26586919

  7. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine.

    PubMed

    Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S; Khandhar, Amit; Krishnan, Kannan M

    2016-01-01

    We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body -- an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.

  8. A novel delivery vector for targeted delivery of the antiangiogenic drug paclitaxel to angiogenic blood vessels: TLTYTWS-conjugated PEG-PLA nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Mo, Xiao-hui; Zhao, Jian; Liang, Hui; Chen, Zhong-jian; Wang, Xiu-li

    2017-02-01

    Antiangiogenesis has been widely accepted as an attractive strategy to combat tumor growth, invasion, and metastasis. An actively targeting nanoparticle-based drug delivery system (nano-DDS) would provide an alternative method to achieve antiangiogenic antitumor therapy. In the present study, our group fabricated novel nano-DDS, TLTYTWS (TS) peptide-modified poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (TS-NPs) encapsulating a drug with antiangiogenic potential, paclitaxel (Ptx) (TS-Ptx-NPs). The nanoparticles were uniformly spherical and had a unimodal particle size distribution and slightly negative zeta potential. TS-NPs accumulated significantly in human umbilical vein endothelial cells (HUVECs) via energy-dependent and caveolae- and lipid raft-mediated endocytosis and improved the antiproliferative, antimigratory, and antitube-forming abilities of paclitaxel in vitro. Following intravenous administration, TS-Ptx-NPs presented favorable pharmacokinetic profiles. Melanoma distribution assays confirmed that TS-NPs achieved higher accumulation and penetration at melanoma sites. These results collectively indicated that TLTYTWS-decorated nanoparticles can be considered to be a promising nano-DDS for chemotherapies targeting tumor angiogenesis and have great potential to improve the efficacy of antiangiogenic therapy in melanoma tumor-bearing nude mice.

  9. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine.

    PubMed

    Silverman, Jeffrey A; Deitcher, Steven R

    2013-03-01

    Vincristine (VCR) is a mainstay of treatment of hematologic malignancies and solid tumors due to its well-defined mechanism of action, demonstrated anticancer activity and its ability to be combined with other agents. VCR is an M-phase cell cycle-specific anticancer drug with activity that is concentration and exposure duration dependent. The pharmacokinetic profile of standard VCR is described by a bi-exponential elimination pattern with a very fast initial distribution half-life followed by a longer elimination half-life. VCR also has a large volume of distribution, suggesting diffuse distribution and tissue binding. These properties may limit optimal drug exposure and delivery to target tissues as well as clinical utility as a single agent or as an effective component of multi-agent regimens. Vincristine sulfate liposome injection (VSLI), Marqibo(®), is a sphingomyelin and cholesterol-based nanoparticle formulation of VCR that was designed to overcome the dosing and pharmacokinetic limitations of standard VCR. VSLI was developed to increase the circulation time, optimize delivery to target tissues and facilitate dose intensification without increasing toxicity. In xenograft studies in mice, VSLI had a higher maximum tolerated dose, superior antitumor activity and delivered higher amounts of active drug to target tissues compared to standard VCR. VSLI recently received accelerated FDA approval for use in adults with advanced, relapsed and refractory Philadelphia chromosome-negative ALL and is in development for untreated adult ALL, pediatric ALL and untreated aggressive NHL. Here, we summarize the nonclinical data for VSLI that support its continued clinical development and recent approval for use in adult ALL.

  10. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling.

    PubMed

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of

  11. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling

    PubMed Central

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Background Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients’ compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. Methods The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box–Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Results and Discussion Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box–Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry

  12. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding.

    PubMed

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2016-04-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Population pharmacokinetic model of THC integrates oral, intravenous, and pulmonary dosing and characterizes short- and long-term pharmacokinetics.

    PubMed

    Heuberger, Jules A A C; Guan, Zheng; Oyetayo, Olubukayo-Opeyemi; Klumpers, Linda; Morrison, Paul D; Beumer, Tim L; van Gerven, Joop M A; Cohen, Adam F; Freijer, Jan

    2015-02-01

    Δ(9)-Tetrahydrocannobinol (THC), the main psychoactive compound of Cannabis, is known to have a long terminal half-life. However, this characteristic is often ignored in pharmacokinetic (PK) studies of THC, which may affect the accuracy of predictions in different pharmacologic areas. For therapeutic use for example, it is important to accurately describe the terminal phase of THC to describe accumulation of the drug. In early clinical research, the THC challenge test can be optimized through more accurate predictions of the dosing sequence and the wash-out between occasions in a crossover setting, which is mainly determined by the terminal half-life of the compound. The purpose of this study is to better quantify the long-term pharmacokinetics of THC. A population-based PK model for THC was developed describing the profile up to 48 h after an oral, intravenous, and pulmonary dose of THC in humans. In contrast to earlier models, the current model integrates all three major administration routes and covers the long terminal phase of THC. Results show that THC has a fast initial and intermediate half-life, while the apparent terminal half-life is long (21.5 h), with a clearance of 38.8 L/h. Because the current model characterizes the long-term pharmacokinetics, it can be used to assess the accumulation of THC in a multiple-dose setting and to forecast concentration profiles of the drug under many different dosing regimens or administration routes. Additionally, this model could provide helpful insights into the THC challenge test used for the development of (novel) compounds targeting the cannabinoid system for different therapeutic applications and could improve decision making in future clinical trials.

  14. Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates

    PubMed Central

    Dostalek, Miroslav; Prueksaritanont, Thomayant; Kelley, Robert F.

    2017-01-01

    ABSTRACT Pharmacokinetic studies play an important role in all stages of drug discovery and development. Recent advancements in the tools for discovery and optimization of therapeutic proteins have created an abundance of candidates that may fulfill target product profile criteria. Implementing a set of in silico, small scale in vitro and in vivo tools can help to identify a clinical lead molecule with promising properties at the early stages of drug discovery, thus reducing the labor and cost in advancing multiple candidates toward clinical development. In this review, we describe tools that should be considered during drug discovery, and discuss approaches that could be included in the pharmacokinetic screening part of the lead candidate generation process to de-risk unexpected pharmacokinetic behaviors of Fc-based therapeutic proteins, with an emphasis on monoclonal antibodies. PMID:28463063

  15. Lipid nanoparticle interactions and assemblies

    NASA Astrophysics Data System (ADS)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  16. Comparison of pharmacokinetic profiles of moxifloxacin in Caesarean versus non-pregnant sectioned women by fully validated HPLC with fluorescence detection.

    PubMed

    Nemutlu, Emirhan; Kir, Sedef; Eroglu, Hakan; Katlan, Doruk; Ozek, Aykut; Özyüncü, Özgür; Oyüncü, Ozgür; Beksaç, M Sinan

    2010-07-01

    In this study, a simple, rapid, cost-effective, and sensitive reversed-phase high-performance liquid chromatographic method has been developed and validated for the analysis of moxifloxacin in plasma. The chromatographic separation was achieved on a Zorbax Eclipse XDB-C18 column (150 mm x 4.6 mm i.d.) connected to a Phenomenex C(18) column (4 mm x 3.0 mm i.d.) using a mixture of acetonitrile: 15 mM citrate buffer (pH 3) (23:77, v/v) as the mobile phase with isocratic system at a flow rate of 1 mL/min. Fluorescence detection was employed with excitation at 290 nm and emission at 500 nm. Lomefloxacin was used as internal standard. Plasma samples were prepared with addition of acetonitrile only. The method was fully validated according to the International Conference on Harmonization (ICH) guidelines. The results of the validation parameters were: linearity range, 3-6000 ng/mL (R(2) = 0.9994); mean recovery, 100.48 %; limit of quantification, 5 ng/mL; limit of detection, 1 ng/mL; and intra- and inter-day precision less than 3.2% and 5.1%, respectively. The robustness of the method was evaluated and confirmed with fractional factorial design. After validation studies, the method was applied in order to conclude the effects of pregnancy on postoperative pharmacokinetic profiles of moxifloxacin. For this aim, moxifloxacin was given to non-pregnant women (n=9) and caesarean-sectioned women (n=6) as a single intravenous dose (400 mg Avelox(R) infusion). Plasma samples were analyzed in order to compare pharmacokinetic profiles of pregnants and non-pregnants. Peak serum concentrations of non-pregnant and caesarean-sectioned women at the arterial port after the infusion were 4.95 +/- 1.50 and 1.56 +/- 0.16 microg/mL, respectively. The mean elimination half-life, volume of distribution and calculated area under the concentration-time curve (AUC)(0-infinity) were 5.54 +/- 0.73 h, 65.58 +/- 6.30 L and 49.95 +/- 6.30 microg.h/mL for non-pregnant women and 3.50 +/- 0.37 h, 215

  17. Integrated pharmacokinetics of major bioactive components in MCAO rats after oral administration of Huang-Lian-Jie-Du-Tang.

    PubMed

    Zhu, Huaxu; Qian, Zhilei; Li, Huan; Guo, Liwei; Pan, Linmei; Zhang, Qichun; Tang, Yuping

    2012-05-07

    Huang-Lian-Jie-Du-Tang (HLJDT, or Oren-gedoku-to in Japanese), an important multi-herb remedy in China and other Asia countries, has been used clinically to treat cerebral ischemia for decades. According to the previous studies we have reported, an HPLC method was developed and validated for determination of berberine, palmatine, baicalin, baicalein and geniposide simultaneously in MCAO rat plasma after administration of HLJDT aqueous extract. A classified integral pharmacokinetic method was put forward after having compared the integrated concentration-time profile with that of single component. An AUC based weighting approach was used for integrated principle. The results indicated the classified integral pharmacokinetic profile of index components from HLJDT could reveal the pharmacokinetic behavior of original components, and was corresponding to the holistic pharmacological effects of anti-ischemia with HLJDT. This study was aimed to explore an approach that could be applied to integrate the pharmacokinetic behavior of different components derived from HLJDT. The integrated pharmacokinetic results also provided more information for further understanding of the clinical cerebrovascular disease in use of HLJDT. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Population pharmacokinetics and dosing regimen design of milrinone in preterm infants

    PubMed Central

    Paradisis, Mary; Jiang, Xuemin; McLachlan, Andrew J; Evans, Nick; Kluckow, Martin; Osborn, David

    2007-01-01

    Aims To define the pharmacokinetics of milrinone in very preterm infants and determine an optimal dose regimen to prevent low systemic blood flow in the first 12 h after birth. Methods A prospective open‐labelled, dose‐escalation pharmacokinetic study was undertaken in two stages. In stage one, infants received milrinone at 0.25 μg/kg/min (n = 8) and 0.5 μg/kg/min (n = 11) infused from 3 to 24 h of age. Infants contributed 4–5 blood samples for concentration–time data which were analysed using a population modelling approach. A simulation study was used to explore the optimal dosing regimen to achieve target milrinone concentrations (180–300 ng/ml). This milrinone regimen was evaluated in stage two (n = 10). Results Infants (n = 29) born before 29 weeks gestation were enrolled. Milrinone pharmacokinetics were described using a one‐compartment model with first‐order elimination rate, with a population mean clearance (CV%) of 35 ml/h (24%) and volume of distribution of 512 ml (21%) and estimated half‐life of 10 h. The 0.25 and 0.5 μg/kg/min dosage regimens did not achieve optimal milrinone concentration‐time profiles to prevent early low systemic blood flow. Simulation studies predicted a loading infusion (0.75 μg/kg/min for 3 h) followed by maintenance infusion (0.2 μg/kg/min until 18 h of age) would provide an optimal milrinone concentration profile. This was confirmed in stage two of the study. Conclusion Population pharmacokinetic modelling in the preterm infant has established an optimal dose regimen for milrinone that increases the likelihood of achieving therapeutic aims and highlights the importance of pharmacokinetic studies in neonatal clinical pharmacology. PMID:16690639

  19. A randomized pharmacokinetic study of generic tacrolimus versus reference tacrolimus in kidney transplant recipients.

    PubMed

    Alloway, R R; Sadaka, B; Trofe-Clark, J; Wiland, A; Bloom, R D

    2012-10-01

    Pharmacokinetic analyses comparing generic tacrolimus preparations versus the reference drug in kidney transplant patients are lacking. A prospective, multicenter, open-label, randomized, two-period (14 days per period), two-sequence, crossover and steady-state pharmacokinetic study was undertaken to compare twice-daily generic tacrolimus (Sandoz) versus reference tacrolimus (Prograf®) in stable renal transplant patients. AUC(0-12h) and peak concentration (C(max) ) were calculated from 12 h pharmacokinetic profiles at the end of each period (days 14 and 28). Of 71 patients enrolled, 68 provided evaluable pharmacokinetic data. The ratios of geometric means were 1.02 (90% CI 97-108%, p = 0.486) for AUC(0-12h) and 1.09 (90% CI 101-118%, p = 0.057) for C(max) . Mean (SD) C(0) was 7.3(1.8) ng/mL for generic tacrolimus versus 7.0(2.1) ng/mL for reference tacrolimus based on data from days 14 and 28. Correlations between 12 h trough levels and AUC were r = 0.917 for generic tacrolimus and r = 0.887 for reference drug at day 28. These data indicate that generic tacrolimus (Sandoz) has a similar pharmacokinetic profile to the reference drug and is bioequivalent in kidney transplant recipients according to US Food and Drug Administration and European Medicines Agency guidelines. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Pharmacokinetics of Intravenous Finafloxacin in Healthy Volunteers

    PubMed Central

    Chiesa, Joseph; Lückermann, Mark; Fischer, Carsten; Dalhoff, Axel; Fuhr, Uwe

    2017-01-01

    ABSTRACT Finafloxacin is a novel fluoroquinolone exhibiting enhanced activity under acidic conditions and a broad-spectrum antibacterial profile. The present study assessed the pharmacokinetic properties and the safety and tolerability of finafloxacin following intravenous infusions. In this mixed-parallel-group, crossover study, healthy male and female volunteers received single ascending doses (18 volunteers, 200 to 1,000 mg) or multiple ascending doses (40 volunteers, 600 to 1,000 mg) of finafloxacin or placebo. Plasma and urine samples were collected by a dense sampling scheme to determine the pharmacokinetics of finafloxacin using a noncompartmental approach. Standard safety and tolerability data were documented. Finafloxacin had a volume of distribution of 90 to 127 liters (range) at steady state and 446 to 550 liters at pseudoequilibrium, indicating the elimination of a large fraction before pseudoequilibrium was reached. Areas under the concentration-time curves and maximum plasma concentrations (geometric means) increased slightly more than proportionally (6.73 to 45.9 μg · h/ml and 2.56 to 20.2 μg/ml, respectively), the terminal elimination half-life increased (10.6 to 17.1 h), and the urinary recovery decreased (44.2% to 31.7%) with increasing finafloxacin doses (single doses of 200 to 1,000 mg). The pharmacokinetic profiles suggested multiphasic elimination by both glomerular filtration and saturable tubular secretion. The values of the parameters were similar for single and multiple administrations. The coefficient of variation for the between-subject variability of exposure ranged from 10% (≤600 mg) to 38% (>600 mg). Adverse events were mild and nonspecific, with no dependence of adverse events on dose or treatment (including placebo) being detected. Despite a relatively high interindividual variability at higher doses, the level of exposure following intravenous administration of finafloxacin appears to be predictable. Individual elimination

  1. Progesterone PLGA/mPEG-PLGA Hybrid Nanoparticle Sustained-Release System by Intramuscular Injection.

    PubMed

    Xie, Bin; Liu, Yang; Guo, Yuting; Zhang, Enbo; Pu, Chenguang; He, Haibing; Yin, Tian; Tang, Xing

    2018-02-14

    To prepare sustained-release PLGA/mPEG-PLGA hybrid nanoparticles of progesterone (PRG), and evaluate the descending required administration dosage in vivo. PRG hybrid nanoparticles (PRG H-NPs) based on PLGA/mPEG-PLGA were compared with PRG nanoparticles (PRG-NPs) of pure PLGA as the matrix and PRG-oil solutions. Nanoparticles (NPs) were formed by the method of nanoemulsion, and the pharmacokinetics of the sustained-release PRG H-NPs in male Sprague dawley (SD) rats were investigated. The rats were randomly divided into four groups, each group received: single dose of PRG H-NPs (14.58 mg/kg, i.m.) and PRG-NPs (14.58 mg/kg, i.m.), repeated dosing for 7 days of PRG-oil (2.08 mg/kg, i.m.) solution (Oil-L) and a higher dosage of PRG-oil (6.24 mg/kg, i.m.) solution (Oil-H), respectively. In the pharmacokinetic test, the PRG H-NPs exhibited a comparatively good sustained-release effect against the PRG-NPs without mPEG-PLGA and PRG-oil solution. The pharmacokinetic parameters of the PRG H-NPs, PRG-NPs, Oil-L and Oil-H were AUC 0-t (ng·h·mL -1 ) 8762.1, 1546.1, 1914.5, and 12,138.9, t 1/2 (h)52.7, 44.1, 8.4 and 44.6 respectively. Owing to the modification of PEG, PRG H-NPs can act as safe delivery platforms for sustained-release of drugs with a lower dosage required.

  2. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  3. Improved Pharmacokinetic and Pharmacodynamic Profile of Rapid-Acting Insulin Using Needle-Free Jet Injection Technology

    PubMed Central

    Engwerda, Elsemiek E.C.; Abbink, Evertine J.; Tack, Cees J.; de Galan, Bastiaan E.

    2011-01-01

    OBJECTIVE Insulin administered by jet injectors is dispensed over a larger subcutaneous area than insulin injected with a syringe, which may facilitate a more rapid absorption. This study compared the pharmacologic profile of administration of insulin aspart by jet injection to that by conventional insulin pen. RESEARCH DESIGN AND METHODS Euglycemic glucose clamp tests were performed in 18 healthy volunteers after subcutaneous administration of 0.2 units/kg body wt of aspart, either administered by jet injection or by conventional pen, using a randomized, double-blind, double-dummy, cross over study design. Pharmacodynamic and pharmacokinetic profiles were derived from the glucose infusion rate (GIR) needed to maintain euglycemia and from plasma insulin levels, respectively. RESULTS The time to maximal GIR was significantly shorter when insulin was injected with the jet injector compared with conventional pen administration (51 ± 3 vs. 105 ± 11 min, P < 0.0001). The time to peak insulin concentration was similarly reduced (31 ± 3 vs. 64 ± 6 min, P < 0.0001) and peak insulin concentrations were increased (108 ± 13 vs. 79 ± 7 mU/L, P = 0.01) when insulin was injected by jet injection compared with conventional pen injection. Jet injector insulin administration reduced the time to 50% glucose disposal by ∼40 min (P < 0.0001). There were no differences in maximal GIR, total insulin absorption, or total insulin action between the two devices. CONCLUSIONS Administration of insulin aspart by jet injection enhances insulin absorption and reduces the duration of glucose-lowering action. This profile resembles more closely the pattern of endogenous insulin secretion and may help to achieve better meal insulin coverage and correction of postprandial glucose excursions. PMID:21715522

  4. Simultaneous pharmacogenetics-based population pharmacokinetic analysis of darunavir and ritonavir in HIV-infected patients.

    PubMed

    Moltó, José; Xinarianos, George; Miranda, Cristina; Pushpakom, Sudeep; Cedeño, Samandhy; Clotet, Bonaventura; Owen, Andrew; Valle, Marta

    2013-07-01

    Darunavir is a potent protease inhibitor of HIV. To enhance its pharmacokinetic profile, darunavir must be co-administered with ritonavir. There is wide inter-patient variability in darunavir pharmacokinetics among HIV-infected individuals, however. Darunavir is a known substrate for influx transporters, such as the 1A2 and the 1B1 members of the solute carrier organic anion transporter family (SLCO1A2, SLCO1B1), as well as for efflux transporters such as the multi-drug resistance protein 1 (MRP1). The aim of this study was to develop a semi-mechanistic population pharmacokinetic model for darunavir and ritonavir administered in HIV-infected adults. The desired model would incorporate patient characteristics and pharmacogenetic data contributing to variability in drug concentrations and also take into account the interaction between the two compounds. A population pharmacokinetic analysis was performed with 705 plasma samples from 75 Caucasian individuals receiving darunavir/ritonavir (600/100 mg twice daily) for at least 4 weeks. At least one full pharmacokinetic profile was obtained for each participant, and darunavir and ritonavir concentrations in plasma were determined by high performance liquid chromatography. Genotyping for 148 polymorphisms in genes coding for transporters or metabolizing enzymes was conducted by two methods: MALDI-TOF mass spectrometry and real-time polymerase chain reaction-based allelic discrimination. A population pharmacokinetic model was developed for darunavir and for ritonavir. The effect of single nucleotide polymorphisms on the post hoc individual pharmacokinetic parameters was first explored using graphic methods and regression analysis. Those covariates related to changes in darunavir or ritonavir pharmacokinetic parameters were then further evaluated using non-linear mixed effects modeling (NONMEM version VII). Darunavir and ritonavir pharmacokinetics were best described by a two- and one-compartment model, respectively, both

  5. Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo evaluation.

    PubMed

    Hu, Sanyuan; Zhang, Yangde

    2010-11-24

    Endostar, a novel recombinant human endostatin, which was approved by the Chinese State Food and Drug Administration in 2005, has a broad spectrum of activity against solid tumors. In this study, we aimed to determine whether the anticancer effect of Endostar is increased by using a nanocarrier system. It is expected that the prolonged circulation of endostar will improve its anticancer activity. Endostar-loaded nanoparticles were prepared to improve controlled release of the drug in mice and rabbits, as well as its anticancer effects in mice with colon cancer. A protein release system could be exploited to act as a drug carrier. Nanoparticles were formulated from poly (ethylene glycol) modified poly (DL-lactide-co-glycolide) (PEG-PLGA) by a double emulsion technique. Physical and release characteristics of endostar-loaded nanoparticles in vitro were evaluated by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and micro bicinchoninic acid protein assay. The pharmacokinetic parameters of endostar nanoparticles in rabbit and mice plasma were measured by enzyme-linked immunosorbent assay. Western blot was used to detect endostatin in different tissues. To study the effects of endostar-loaded nanoparticles in vivo, nude mice in which tumor cells HT-29 were implanted, were subsequently treated with endostar or endostar-loaded PEG-PLGA nanoparticles. Using TEM and PCS, endostar-loaded PEG-PLGA nanoparticles were found to have a spherical core-shell structure with a diameter of 169.56 ± 35.03 nm. Drug-loading capacity was 8.22% ± 2.35% and drug encapsulation was 80.17% ± 7.83%. Compared with endostar, endostar-loaded PEG-PLGA nanoparticles had a longer elimination half-life and lower peak concentration, caused slower growth of tumor cell xenografts, and prolonged tumor doubling times. The nanoparticles changed the pharmacokinetic characteristics of endostar in mice and rabbits, thereby reinforcing anticancer activity. In conclusion, PEG

  6. Comparative pharmacokinetics and tissue distribution profiles of lignan components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

    PubMed

    Yang, Tao; Liu, Shan; Zheng, Tian-Hui; Tao, Yan-Yan; Liu, Cheng-Hai

    2015-05-26

    Fuzheng Huayu recipe (FZHY) is formulated on the basis of Chinese medicine theory in treating liver fibrosis. To illuminate the influence of the pathological state of liver fibrosis on the pharmacokinetics and tissue distribution profiles of lignan components from FZHY. Male Wistar rats were randomly divided into normal group and Hepatic fibrosis group (induced by dimethylnitrosamine). Six lignan components were detected and quantified by ultrahigh performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS)in the plasma and tissue of normal and hepatic fibrosis rats. A rapid, sensitive and convenient UHPLC-MS/MS method has been developed for the simultaneous determination of six lignan components in different rat biological samples successfully. After oral administration of FZHY at a dose of 15g/kg, the pharmacokinetic behaviors of schizandrin A (SIA), schizandrin B (SIB), schizandrin C (SIC), schisandrol A (SOA), Schisandrol B (SOB) and schisantherin A (STA) have been significantly changed in hepatic fibrosis rats compared with the normal rats, and their AUC(0-t) values were increased by 235.09%, 388.44%, 223.30%, 669.30%, 295.08% and 267.63% orderly (P<0.05). Tissue distribution results showed the amount of SIA, SIB, SOA and SOB were significant increased in heart, lung, spleen and kidney of hepatic fibrosis rats compared with normal rats at most of the time point (P<0.05). Meanwhile, the result also reveals that the hepatic fibrosis could delay the peak time of lignans in liver. The results proved that the established UHPLC-MS/MS method could be applied to the comparative study on pharmacokinetics and tissue distribution of lignan components in normal and hepatic fibrosis rats. The hepatic fibrosis could alter the pharmacokinetics and tissue distribution properties of lignan components in rats after administration of FZHY. The results might be helpful for guide the clinical application of this medicine. Copyright © 2015 Elsevier Ireland Ltd. All

  7. Exploration and pharmacokinetic profiling of phenylalanine based carbamates as novel substance p 1-7 analogues.

    PubMed

    Fransson, Rebecca; Nordvall, Gunnar; Bylund, Johan; Carlsson-Jonsson, Anna; Kratz, Jadel M; Svensson, Richard; Artursson, Per; Hallberg, Mathias; Sandström, Anja

    2014-12-11

    The bioactive metabolite of Substance P, the heptapeptide SP1-7 (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), has been shown to attenuate signs of hyperalgesia in diabetic mice, which indicate a possible use of compounds targeting the SP1-7 binding site as analgesics for neuropathic pain. Aiming at the development of drug-like SP1-7 peptidomimetics we have previously reported on the discovery of H-Phe-Phe-NH2 as a high affinity lead compound. Unfortunately, the pharmacophore of this compound was accompanied by a poor pharmacokinetic (PK) profile. Herein, further lead optimization of H-Phe-Phe-NH2 by substituting the N-terminal phenylalanine for a benzylcarbamate group giving a new type of SP1-7 analogues with good binding affinities is reported. Extensive in vitro as well as in vivo PK characterization is presented for this compound. Evaluation of different C-terminal functional groups, i.e., hydroxamic acid, acyl sulfonamide, acyl cyanamide, acyl hydrazine, and oxadiazole, suggested hydroxamic acid as a bioisosteric replacement for the original primary amide.

  8. Population Pharmacokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  9. Lipid nanocarriers: influence of lipids on product development and pharmacokinetics.

    PubMed

    Pathak, Kamla; Keshri, Lav; Shah, Mayank

    2011-01-01

    Lipid nanocarriers are on the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery. Owing to their size-dependent properties, lipid nanoparticles offer the possibility for development of new therapeutics and an alternative system to other colloidal counterparts for drug administration. An important point to be considered in the selection of a lipid for the carrier system is its effect on the properties of the nanocarrier and also its intended use, as different types of lipids differ in their nature. Researchers around the globe have tapped the potential of solid lipid nanoparticles (SLNs) in developing formulation(s) that can be administered by various routes such as oral, ocular, parenteral, topical, and pulmonary. Since the start of this millennium, a new generation of lipid nanoparticles, namely nanostructured lipid carriers (NLCs), lipid drug conjugates (LDCs), and pharmacosomes, has evolved that have the potential to overcome the limitations of SLNs. The current review article presents broad considerations on the influence of various types of lipids on the diverse characteristics of nanocarriers, encompassing their physicochemical, formulation, pharmacokinetic, and cytotoxic aspects.

  10. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules

    PubMed Central

    Lockwood, Sarah Y.; Meisel, Jayda E.; Monsma, Frederick J.; Spence, Dana M.

    2016-01-01

    The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ~5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule. PMID:26727249

  11. Pharmacokinetics of isotretinoin during repetitive dosing to patients.

    PubMed

    Brazzell, R K; Vane, F M; Ehmann, C W; Colburn, W A

    1983-01-01

    The multiple dose pharmacokinetics of isotretinoin and its major blood metabolite, 4-oxo-isotretinoin, were studied in 10 patients with cystic acne and 11 patients with various keratinization disorders. Blood samples were obtained at predetermined times following the first dose, interim doses and the final dose. Blood concentrations of isotretinoin and 4-oxo-isotretinoin were measured by a specific and sensitive HPLC method. A lag time was usually observed prior to the onset of absorption following oral administration of the drug in a soft elastic gelatin capsule. Absorption then proceeded rapidly and maximum blood concentrations usually occurred within 4 h of drug administration. The harmonic mean half-life for the elimination of isotretinoin by the cystic acne patients was approximately 10 h after the initial dose and did not change significantly following 25 days of 40 mg b.i.d. dosing. Steady-state blood concentrations remained relatively constant after the fifth day of dosing. The harmonic mean elimination half-life in the patients with various disorders of keratinization was about 16 h. The results of the 2 studies suggest that no significant changes in the pharmacokinetics of isotretinoin occur during multiple dosing and that the multiple dose pharmacokinetic profile is predictable and can be described using a linear pharmacokinetic model. This suggests that the steady-state concentrations of isotretinoin can be predicted from single dose data.

  12. Evaluation of the nutrient profile of Trachyspermum ammi L. seed under the influence of nanoparticles during germination.

    PubMed

    Ahmad, I Z; Fatima, U; Tabassum, H; Mabood, A; Ahmad, A; Srivastava, G; Das, M

    2017-07-31

    Trachyspermum ammi L. commonly known as Ajwain is an annual herb belonging to the family Apiaceae. It is enormously grown in Egypt, Iran, Pakistan, Afghanistan, and India as well as European region. Seeds of Ajwain were highly administered by traditional healers and usually employed for different ailments. Nanomaterials are known to have plant growth promoting effects, which could find applications in agriculture. In this study, the nanoparticles (NPs) showed the potential to enhance the primary metabolites when administered during germination. Therefore, nanoparticles elicitation can be used to increase the productivity, nutritional values and metabolite contents in Trachyspermum ammi L. This study aimed to provide new insight of the potential growth promoting effects of the nanoparticles () on plant system. Different concentrations of two nanoparticles, that is, iron pyrite (FeS2) and molybdenum disulphide (MoS2) at three different concentrations of 25ug/ml, 50ug/ml and 75ug/ml were tested on the seeds of Trachyspermum ammi L. The data indicated that nanoparticles enhanced the seedling growth as greener leafs and increased lengths of epicotyl and hypocotyls were seen. These nanoparticles also showed the potential to increase the contents of primary metabolites during germination and the total soluble protein content in seed was increased in nanoparticles-treated seeds as compared to control. The total protein profiling by SDS-PAGE indicated significant differences in number and molecular weights of protein bands upon exposure to nanoparticles.

  13. Repaglinide pharmacokinetics in healthy young adult and elderly subjects.

    PubMed

    Hatorp, V; Huang, W C; Strange, P

    1999-04-01

    In this open-label, single-center, pharmacokinetic study of repaglinide, 12 healthy volunteers (6 men, 6 women) were enrolled in each of 2 groups (total, 24 volunteers). One group consisted of young adult subjects (18 to 40 years), and the other group consisted of elderly subjects (> or = 65 years). On day 1, after a 10-hour fast, all 24 subjects received a single 2-mg dose of repaglinide. Starting on day 2 and continuing for 7 days, subjects received a 2-mg dose of repaglinide 15 minutes before each of 3 meals. On day 9, subjects received a single 2-mg dose of repaglinide. Pharmacokinetic profiles, including area under the curve, maximum concentration (Cmax), time to Cmax, and half-life, were determined at completion of the single-dose and multiple-dose regimens (days 1 and 9, respectively). Trough repaglinide values were collected on days 2 through 7 to assess steady state. The single-dose and multiple-dose pharmacokinetic variables of serum repaglinide were not significantly different between young adult and elderly subjects. Repaglinide was well tolerated in both groups. Hypoglycemic events occurred in 5 young adult and 5 elderly subjects. This study demonstrates that the pharmacokinetics of repaglinide are similar in healthy young adult and elderly subjects.

  14. Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles.

    PubMed

    Mui, Barbara L; Tam, Ying K; Jayaraman, Muthusamy; Ansell, Steven M; Du, Xinyao; Tam, Yuen Yi C; Lin, Paulo Jc; Chen, Sam; Narayanannair, Jayaprakash K; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Akinc, Akin; Maier, Martin A; Cullis, Pieter; Madden, Thomas D; Hope, Michael J

    2013-12-17

    Lipid nanoparticles (LNPs) encapsulating short interfering RNAs that target hepatic genes are advancing through clinical trials, and early results indicate the excellent gene silencing observed in rodents and nonhuman primates also translates to humans. This success has motivated research to identify ways to further advance this delivery platform. Here, we characterize the polyethylene glycol lipid (PEG-lipid) components, which are required to control the self-assembly process during formation of lipid particles, but can negatively affect delivery to hepatocytes and hepatic gene silencing in vivo. The rate of transfer from LNPs to plasma lipoproteins in vivo is measured for three PEG-lipids with dialkyl chains 14, 16, and 18 carbons long. We show that 1.5 mol % PEG-lipid represents a threshold concentration at which the chain length exerts a minimal effect on hepatic gene silencing but can still modify LNPs pharmacokinetics and biodistribution. Increasing the concentration to 2.5 and 3.5 mol % substantially compromises hepatocyte gene knockdown for PEG-lipids with distearyl (C18) chains but has little impact for shorter dimyristyl (C14) chains. These data are discussed with respect to RNA delivery and the different rates at which the steric barrier disassociates from LNPs in vivo.Molecular Therapy-Nucleic Acids (2013) 2, e139; doi:10.1038/mtna.2013.66; published online 17 December 2013.

  15. Heat exposure of Cannabis sativa extracts affects the pharmacokinetic and metabolic profile in healthy male subjects.

    PubMed

    Eichler, Martin; Spinedi, Luca; Unfer-Grauwiler, Sandra; Bodmer, Michael; Surber, Christian; Luedi, Markus; Drewe, Juergen

    2012-05-01

    The most important psychoactive constituent of CANNABIS SATIVA L. is Δ (9)-tetrahydrocannabinol (THC). Cannabidiol (CBD), another important constituent, is able to modulate the distinct unwanted psychotropic effect of THC. In natural plant extracts of C. SATIVA, large amounts of THC and CBD appear in the form of THCA-A (THC-acid-A) and CBDA (cannabidiolic acid), which can be transformed to THC and CBD by heating. Previous reports of medicinal use of cannabis or cannabis preparations with higher CBD/THC ratios and use in its natural, unheated form have demonstrated that pharmacological effects were often accompanied with a lower rate of adverse effects. Therefore, in the present study, the pharmacokinetics and metabolic profiles of two different C. SATIVA extracts (heated and unheated) with a CBD/THC ratio > 1 were compared to synthetic THC (dronabinol) in a double-blind, randomized, single center, three-period cross-over study involving 9 healthy male volunteers. The pharmacokinetics of the cannabinoids was highly variable. The metabolic pattern was significantly different after administration of the different forms: the heated extract showed a lower median THC plasma AUC (24 h) than the unheated extract of 2.84 vs. 6.59 pmol h/mL, respectively. The later was slightly higher than that of dronabinol (4.58 pmol h/mL). On the other hand, the median sum of the metabolites (THC, 11-OH-THC, THC-COOH, CBN) plasma AUC (24 h) was higher for the heated than for the unheated extract. The median CBD plasma AUC (24 h) was almost 2-fold higher for the unheated than for the heated extract. These results indicate that use of unheated extracts may lead to a beneficial change in metabolic pattern and possibly better tolerability. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

    PubMed

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach.

  17. Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles

    PubMed Central

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F.; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn2+ leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach. PMID:23894303

  18. Celecoxib, a specific COX-2 inhibitor, has no significant effect on methotrexate pharmacokinetics in patients with rheumatoid arthritis.

    PubMed

    Karim, A; Tolbert, D S; Hunt, T L; Hubbard, R C; Harper, K M; Geis, G S

    1999-12-01

    To determine the effects of celecoxib, a specific inhibitor of cyclooxygenase 2 (COX-2) on the renal clearance and plasma pharmacokinetic profile of stable methotrexate (MTX) doses in patients with rheumatoid arthritis (RA). Fourteen adult female patients with RA taking a stable weekly dose of MTX (5 to 15 mg/wk) for a minimum of 3 months were randomized to receive concomitantly either celecoxib (200 mg BID) or placebo for a period of 7 days in a single blind, 2 period crossover study of MTX pharmacokinetics and renal clearance. The plasma pharmacokinetic profile of MTX did not change significantly when celecoxib or a placebo was coadministered. The mean renal clearance of MTX alone, 7.98+/-2.18 l/h, was virtually unchanged by coadministration of celecoxib (7.94+/-1.61 l/h) or placebo (7.97+/-1.19 l/h). Celecoxib has no significant effect on the pharmacokinetics or renal clearance of MTX in patients with RA, although these results should be confirmed in prospective studies of elderly and renally impaired patients.

  19. Systematic Evaluation of Wajima Superposition (Steady-State Concentration to Mean Residence Time) in the Estimation of Human Intravenous Pharmacokinetic Profile.

    PubMed

    Lombardo, Franco; Berellini, Giuliano; Labonte, Laura R; Liang, Guiqing; Kim, Sean

    2016-03-01

    We present a systematic evaluation of the Wajima superpositioning method to estimate the human intravenous (i.v.) pharmacokinetic (PK) profile based on a set of 54 marketed drugs with diverse structure and range of physicochemical properties. We illustrate the use of average of "best methods" for the prediction of clearance (CL) and volume of distribution at steady state (VDss) as described in our earlier work (Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):178-191; Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):167-177). These methods provided much more accurate prediction of human PK parameters, yielding 88% and 70% of the prediction within 2-fold error for VDss and CL, respectively. The prediction of human i.v. profile using Wajima superpositioning of rat, dog, and monkey time-concentration profiles was tested against the observed human i.v. PK using fold error statistics. The results showed that 63% of the compounds yielded a geometric mean of fold error below 2-fold, and an additional 19% yielded a geometric mean of fold error between 2- and 3-fold, leaving only 18% of the compounds with a relatively poor prediction. Our results showed that good superposition was observed in any case, demonstrating the predictive value of the Wajima approach, and that the cause of poor prediction of human i.v. profile was mainly due to the poorly predicted CL value, while VDss prediction had a minor impact on the accuracy of human i.v. profile prediction. Copyright © 2016. Published by Elsevier Inc.

  20. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    NASA Astrophysics Data System (ADS)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  1. Pharmacokinetic variability of long-acting stimulants in the treatment of children and adults with attention-deficit hyperactivity disorder.

    PubMed

    Ermer, James C; Adeyi, Ben A; Pucci, Michael L

    2010-12-01

    Methylphenidate- and amfetamine-based stimulants are first-line pharmacotherapies for attention-deficit hyperactivity disorder, a common neurobehavioural disorder in children and adults. A number of long-acting stimulant formulations have been developed with the aim of providing once-daily dosing, employing various means to extend duration of action, including a transdermal delivery system, an osmotic-release oral system, capsules with a mixture of immediate- and delayed-release beads, and prodrug technology. Coefficients of variance of pharmacokinetic measures can estimate the levels of pharmacokinetic variability based on the measurable variance between different individuals receiving the same dose of stimulant (interindividual variability) and within the same individual over multiple administrations (intraindividual variability). Differences in formulation clearly impact pharmacokinetic profiles. Many medications exhibit wide interindividual variability in clinical response. Stimulants with low levels of inter- and intraindividual variability may be better suited to provide consistent levels of medication to patients. The pharmacokinetic profile of stimulants using pH-dependent bead technology can vary depending on food consumption or concomitant administration of medications that alter gastric pH. While delivery of methylphenidate with the transdermal delivery system would be unaffected by gastrointestinal factors, intersubject variability is nonetheless substantial. Unlike the beaded formulations and, to some extent (when considering total exposure) the osmotic-release formulation, systemic exposure to amfetamine with the prodrug stimulant lisdexamfetamine dimesylate appears largely unaffected by such factors, likely owing to its dependence on systemic enzymatic cleavage of the precursor molecule, which occurs primarily in the blood involving red blood cells. The high capacity but as yet unidentified enzymatic system for conversion of lisdexamfetamine

  2. Pharmacokinetic profile of extended-release versus immediate-release oral naproxen sodium after single and multiple dosing under fed and fasting conditions: two randomized, open-label trials.

    PubMed

    Laurora, Irene; Wang, Yuan

    2016-10-01

    Extended-release (ER) naproxen sodium provides pain relief for up to 24 hours with a single dose (660 mg/day). Its pharmacokinetic profile after single and multiple dosing was compared to immediate release (IR) naproxen sodium in two randomized, open-label, crossover studies, under fasting and fed conditions. Eligible healthy subjects were randomized to ER naproxen sodium 660-mg tablet once daily or IR naproxen sodium 220-mg tablet twice daily (440 mg initially, followed by 220 mg 12 hours later). Primary variables: pharmacokinetic parameters after singleday administration (day 1) and at steady state after multiple-day administration (day 6). Total exposure was comparable for both treatments under fasting and fed conditions. After fasting: peak naproxen concentrations were slightly lower with ER naproxen sodium than with IR naproxen sodium but were reached at a similar time. Fed conditions: mean peak concentrations were comparable but reached after a longer time with ER vs. IR naproxen sodium. ER naproxen sodium was well tolerated, with a similar safety profile to IR naproxen sodium. The total exposure of ER naproxen sodium (660 mg) is comparable to IR naproxen sodium (220 mg) when administered at the maximum over the counter (OTC) dose of 660-mg daily dose on a single day and over multiple days. The rate of absorption is delayed under fed conditions.

  3. Sex- and dose-dependency in the pharmacokinetics and pharmacodynamics of (+)-methamphetamine and its metabolite (+)-amphetamine in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milesi-Halle, Alessandra; Hendrickson, Howard P.; Laurenzana, Elizabeth M.

    These studies investigated how (+)-methamphetamine (METH) dose and rat sex affect the pharmacological response to METH in Sprague-Dawley rats. The first set of experiments determined the pharmacokinetics of METH and its pharmacologically active metabolite (+)-amphetamine (AMP) in male and female Sprague-Dawley rats after 1.0 and 3.0 mg/kg METH doses. The results showed significant sex-dependent changes in METH pharmacokinetics, and females formed significantly lower amounts of AMP. While the area under the serum concentration-time curve in males increased proportionately with the METH dose, the females showed a disproportional increase. The sex differences in systemic clearance, renal clearance, volume of distribution, andmore » percentage of unchanged METH eliminated in the urine suggested dose-dependent pharmacokinetics in female rats. The second set of studies sought to determine the behavioral implications of these pharmacokinetic differences by quantifying locomotor activity in male and female rats after saline, 1.0, and 3.0 mg/kg METH. The results showed sex- and dose-dependent differences in METH-induced locomotion, including profound differences in the temporal profile of effects at higher dose. These findings show that the pharmacokinetic and metabolic profile of METH (slower METH clearance and lower AMP metabolite formation) plays a significant role in the differential pharmacological response to METH in male and female rats.« less

  4. Time-dependent pharmacokinetics of dexamethasone and its efficacy in human breast cancer xenograft mice: a semi-mechanism-based pharmacokinetic/pharmacodynamic model.

    PubMed

    Li, Jian; Chen, Rong; Yao, Qing-Yu; Liu, Sheng-Jun; Tian, Xiu-Yun; Hao, Chun-Yi; Lu, Wei; Zhou, Tian-Yan

    2018-03-01

    Dexamethasone (DEX) is the substrate of CYP3A. However, the activity of CYP3A could be induced by DEX when DEX was persistently administered, resulting in auto-induction and time-dependent pharmacokinetics (pharmacokinetics with time-dependent clearance) of DEX. In this study we investigated the pharmacokinetic profiles of DEX after single or multiple doses in human breast cancer xenograft nude mice and established a semi-mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for characterizing the time-dependent PK of DEX as well as its anti-cancer effect. The mice were orally given a single or multiple doses (8 mg/kg) of DEX, and the plasma concentrations of DEX were assessed using LC-MS/MS. Tumor volumes were recorded daily. Based on the experimental data, a two-compartment model with first order absorption and time-dependent clearance was established, and the time-dependence of clearance was modeled by a sigmoid E max equation. Moreover, a semi-mechanism-based PK/PD model was developed, in which the auto-induction effect of DEX on its metabolizing enzyme CYP3A was integrated and drug potency was described using an E max equation. The PK/PD model was further used to predict the drug efficacy when the auto-induction effect was or was not considered, which further revealed the necessity of adding the auto-induction effect into the final PK/PD model. This study established a semi-mechanism-based PK/PD model for characterizing the time-dependent pharmacokinetics of DEX and its anti-cancer effect in breast cancer xenograft mice. The model may serve as a reference for DEX dose adjustments or optimization in future preclinical or clinical studies.

  5. Omeprazole does not change the oral bioavailability or pharmacokinetics of vinpocetine in rats.

    PubMed

    Sozański, Tomasz; Magdalan, Jan; Trocha, Małgorzata; Szumny, Antoni; Merwid-Ląd, Anna; Słupski, Wojciech; Karaźniewicz-Łada, Marta; Kiełbowicz, Grzegorz; Ksiądzyna, Dorota; Szeląg, Adam

    2011-01-01

    Previous studies proved that food strongly enhanced the bioavailability of vinpocetine. Food may change the pharmacokinetics of a drug by affecting various factors, including gastrointestinal pH. However, the influence of proton pump inhibitor-induced pH alterations on vinpocetine pharmacokinetics is not known. The aim was to evaluate the influence of omeprazole on the pharmacokinetics of oral vinpocetine. One group of male Wistar rats received single oral doses of vinpocetine (2 mg/kg - regimen V). In the second group, omeprazole (10 mg/kg) was administered intraperitoneally for 5 days before vinpocetine administration (regimen OV). For analysis of vinpocetine pharmacokinetics, blood samples were obtained before and 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10 and 12 h after vinpocetine administration. Vinpocetine concentrations were measured by high performance liquid chromatography (HPLC). The mean values of AUC(0-t), AUC(0-inf) and C(max) in regimen V were very similar to respective values in regimen OV. The mean T(max) in both regimens was estimated for 1.5 h. There were no statistically significant differences between both regimens. In conclusion, omeprazole did not affect the pharmacokinetic profile of vinpocetine.

  6. A Population Pharmacokinetic Model for a Solid Oral Tablet Formulation of Posaconazole.

    PubMed

    van Iersel, Marlou L P S; Rossenu, Stefaan; de Greef, Rik; Waskin, Hetty

    2018-04-30

    A delayed-release solid tablet formulation that releases posaconazole in the small intestine was developed to maximize systemic absorption. This study aimed to characterize the pharmacokinetics of the posaconazole solid tablet formulation in adult subjects and to investigate the potential impact of demographic and clinical factors on posaconazole exposure through a population pharmacokinetic approach. Nonlinear mixed-effects modeling was performed using data from several studies conducted in healthy volunteers and patients. The influence of demographic and clinical factors on pharmacokinetic parameters was evaluated using a stepwise forward inclusion/backward exclusion procedure. The final pharmacokinetic model was used to simulate posaconazole exposure in patients at high risk for invasive fungal diseases treated with the proposed posaconazole dose of 300 mg twice daily on day 1, followed by 300 mg daily for 27 days. A one-compartment pharmacokinetic model with sequential zero-order and first-order absorption and a first-order disposition from the central compartment adequately described the pharmacokinetic profile of the posaconazole solid tablet formulation. Significant covariates included disease state (acute myeloid leukemia/myelodysplasia vs allogeneic hematopoietic stem cell transplantation), body weight, and formulation on bioavailability; food status on first-order absorption rate; and dosing regimen (single dose vs multiple doses) on clearance. Except for body weight, the impact of these covariates on posaconazole exposure was considered clinically irrelevant. This population pharmacokinetic analysis confirmed that the proposed dose of the posaconazole solid tablet formulation provides adequate target therapeutic exposure (>0.5 mg/l) to a broad range of patients at high risk for invasive fungal disease. Copyright © 2018 American Society for Microbiology.

  7. Organophosphorus Insecticide Pharmacokinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Charles

    2010-01-01

    This chapter highlights a number of current and future applications of pharmacokinetics to assess organophosphate (OP) insecticide dosimetry, biological response and risk in humans exposed to these agents. Organophosphates represent a large family of pesticides where insecticidal as well as toxicological mode of action is associated with their ability to target and inhibit acetylcholinesterase (AChE). Pharmacokinetics entails the quantitative integration of physiological and metabolic processes associated with the absorption, distribution, metabolism and excretion (ADME) of drugs and xenobiotics. Pharmacokinetic studies provide important data on the amount of toxicant delivered to a target site as well as species-, age-, gender-specific andmore » dose-dependent differences in biological response. These studies have been conducted with organophosphorus insecticides in multiple species, at various dose levels, and across different routes of exposure to understand their in vivo pharmacokinetics and how they contribute to the observed toxicological response. To access human exposure to organophosphorus insecticides, human pharmacokinetic studies have been conducted and used to develop biological monitoring strategies based on the quantitation of key metabolites in biological fluids. Pharmacokinetic studies with these insecticides are also useful to facilitate extrapolation of dosimetry and biological response from animals to humans and for the assessment of human health risk. In this regard, physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models are being utilized to assess risk and understand the toxicological implications of known or suspected exposures to various insecticides. In this chapter a number of examples are presented that illustrate the utility and limitation of pharmacokinetic studies to address human health concerns associated with organophosphorus insecticides.« less

  8. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics

    PubMed Central

    Elzoghby, Ahmed O; Helmy, Maged W; Samy, Wael M; Elgindy, Nazik A

    2013-01-01

    A novel particulate delivery matrix based on ionically crosslinked casein (CAS) nanoparticles was developed for controlled release of the poorly soluble anticancer drug flutamide (FLT). Nanoparticles were fabricated via oil-in-water emulsification then stabilized by ionic crosslinking of the positively charged CAS molecules below their isoelectric point, with the polyanionic crosslinker sodium tripolyphosphate. With the optimal preparation conditions, the drug loading and incorporation efficiency achieved were 8.73% and 64.55%, respectively. The nanoparticles exhibited a spherical shape with a size below 100 nm and a positive zeta potential (+7.54 to +17.3 mV). FLT was molecularly dispersed inside the nanoparticle protein matrix, as revealed by thermal analysis. The biodegradability of CAS nanoparticles in trypsin solution could be easily modulated by varying the sodium tripolyphosphate crosslinking density. A sustained release of FLT from CAS nanoparticles for up to 4 days was observed, depending on the crosslinking density. After intravenous administration of FLT-CAS nanoparticles into rats, CAS nanoparticles exhibited a longer circulation time and a markedly delayed blood clearance of FLT, with the half-life of FLT extended from 0.88 hours to 14.64 hours, compared with drug cosolvent. The results offer a promising method for tailoring biodegradable, drug-loaded CAS nanoparticles as controlled, long-circulating drug delivery systems of hydrophobic anticancer drugs in aqueous vehicles. PMID:23658490

  9. Exploration and Pharmacokinetic Profiling of Phenylalanine Based Carbamates as Novel Substance P 1–7 Analogues

    PubMed Central

    2014-01-01

    The bioactive metabolite of Substance P, the heptapeptide SP1–7 (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), has been shown to attenuate signs of hyperalgesia in diabetic mice, which indicate a possible use of compounds targeting the SP1–7 binding site as analgesics for neuropathic pain. Aiming at the development of drug-like SP1–7 peptidomimetics we have previously reported on the discovery of H-Phe-Phe-NH2 as a high affinity lead compound. Unfortunately, the pharmacophore of this compound was accompanied by a poor pharmacokinetic (PK) profile. Herein, further lead optimization of H-Phe-Phe-NH2 by substituting the N-terminal phenylalanine for a benzylcarbamate group giving a new type of SP1–7 analogues with good binding affinities is reported. Extensive in vitro as well as in vivo PK characterization is presented for this compound. Evaluation of different C-terminal functional groups, i.e., hydroxamic acid, acyl sulfonamide, acyl cyanamide, acyl hydrazine, and oxadiazole, suggested hydroxamic acid as a bioisosteric replacement for the original primary amide. PMID:25516784

  10. Novel cationic lipid nanoparticles as an ophthalmic delivery system for multicomponent drugs: development, characterization, in vitro permeation, in vivo pharmacokinetic, and molecular dynamics studies.

    PubMed

    Wang, Jialu; Zhao, Fang; Liu, Rui; Chen, Jingjing; Zhang, Qinghua; Lao, Ruijuan; Wang, Ze; Jin, Xin; Liu, Changxiao

    2017-01-01

    The purpose of this study was to prepare, optimize, and characterize a cationic lipid nanoparticle (CLN) system containing multicomponent drugs using a molecular dynamics model as a novel method of evaluating formulations. Puerarin (PUE) and scutellarin (SCU) were used as model drugs. CLNs were successfully prepared using melt-emulsion ultrasonication and low temperature-solidification technique. The properties of CLNs such as morphology, particle size, zeta potential, entrapment efficiency (EE), drug loading (DL), and drug release behavior were investigated. The CLNs were evaluated by corneal permeation, preocular retention time, and pharmacokinetics in the aqueous humor. Additionally, a molecular dynamics model was used to evaluate the formulation. Electron microscopy results showed that the nanoparticles were approximately spherical in shape. The EE (%) and DL (%) values of PUE and SCU in the optimal formulation were 56.60±3.73, 72.31±1.96 and 1.68±0.17, 2.44±1.14, respectively. The pharmacokinetic study in the aqueous humor showed that compared with the PUE and SCU solution, the area under the concentration-time curve (AUC) value of PUE was enhanced by 2.33-fold for PUE-SCU CLNs ( p <0.01), and the SCU AUC was enhanced by 2.32-fold ( p <0.01). In the molecular dynamics model, PUE and SCU passed through the POPC bilayer, with an obvious difference in the free energy well depth. It was found that the maximum free energy required for PUE and SCU transmembrane movement was ~15 and 88 kJ·mol -1 , respectively. These findings indicated that compared with SCU, PUE easily passed through the membrane. The diffusion coefficient for PUE and SCU were 4.1×10 -3 ±0.0027 and 1.0×10 -3 ±0.0006 e -5 cm 2 ·s -1 , respectively. Data from the molecular dynamics model were consistent with the experimental data. All data indicated that CLNs have a great potential for ocular administration and can be used as an ocular delivery system for multicomponent drugs. Moreover, the

  11. A comparison of the pharmacokinetic profile of an ascending-dose, extended-regimen combined oral contraceptive to those of other extended regimens.

    PubMed

    Darwish, Mona; Bond, Mary; Ricciotti, Nancy; Hsieh, Jennifer; Fiedler-Kelly, Jill; Grasela, Thaddeus

    2014-11-01

    Quartette (levonorgestrel [LNG]/ethinyl estradiol [EE] and EE) is an ascending-dose, extended-regimen combined oral contraceptive (COC) that consists of a constant dose of LNG 150 µg on days 1 to 84 with EE 20 µg on days 1 to 42, 25 µg on days 43 to 63, 30 µg on days 64 to 84, and 10 µg of EE monotherapy on days 85 to 91. A population pharmacokinetic (PK) model for EE was developed using nonlinear mixed-effects modeling to characterize the PK profile of EE administered in Quartette and other extended-regimen LNG/EE COCs. Model-predicted plasma concentration-time profiles demonstrated a stepwise increase in systemic exposure to EE during the first 84 days of the cycle following each EE dose change. Lower concentrations of EE were noted during the final 7-day period of EE 10 µg. Gradual increases in EE seen with Quartette may decrease the incidence of unscheduled bleeding frequently observed during early cycles of extended-regimen COCs. © The Author(s) 2014.

  12. Pharmacokinetic Profile and Tolerability of Liposomal Bupivacaine Following a Repeated Dose via Local Subcutaneous Infiltration in Healthy Volunteers.

    PubMed

    Rice, David; Heil, Justin W; Biernat, Lukasz

    2017-03-01

    Liposomal bupivacaine is indicated for administration into the surgical site to produce post-surgical analgesia. The objectives of this study were to characterize the pharmacokinetic and safety profiles of liposomal bupivacaine following a repeated dose in healthy volunteers. Healthy adults were assigned to receive liposomal bupivacaine via subcutaneous infiltration in a single 266 mg dose (cohort 1) or in two 266 mg doses, with the second dose given immediately, 24, 48, or 72 h after the first dose (cohorts 2-5). Pharmacokinetic parameters were estimated from blood samples collected up to day 14. Subjects were monitored for adverse events and assessed for neurologic function, cardiac function, and infiltration area abnormalities. Twelve subjects were assigned to each cohort. The mean ± standard deviation maximum observed plasma concentration (C max ) of bupivacaine after a single dose was 129 ± 47 ng/mL. The mean C max after the second dose was higher, but always less than double the C max for cohort 1. The highest individual C max (589 ng/mL) was observed in a subject who received the second dose 24 h after the first dose (cohort 4), but was well below the reported thresholds for neurotoxicity and cardiac toxicity (2000 and 4000 ng/mL, respectively). A single and repeated dose were well-tolerated, and there were no clinically meaningful findings regarding neurologic examinations and electrocardiography. The mean C max following a repeated dose of liposomal bupivacaine remained well below accepted values for central nervous system and cardiac toxicity. Liposomal bupivacaine was well-tolerated and revealed no clinically important safety signals. CLINICALTRIALS. NCT02210247.

  13. Lack of effect of lacosamide on the pharmacokinetic and pharmacodynamic profiles of warfarin.

    PubMed

    Stockis, Armel; van Lier, Jan Jaap; Cawello, Willi; Kumke, Thomas; Eckhardt, Klaus

    2013-07-01

    The aim of this study was to evaluate the effect of the antiepileptic drug lacosamide on the pharmacokinetics and pharmacodynamics of the anticoagulant warfarin. In this open-label, two-treatment crossover study, 16 healthy adult male volunteers were randomized to receive a single 25-mg dose of warfarin alone in one period and lacosamide 200 mg twice daily on days 1-9 with a single 25 mg dose of warfarin coadministered on day 3 in the other period. There was a 2-week washout between treatments. Pharmacokinetic end points were area under the plasma concentration-time curve (AUC(0,last) and AUC(0,∞) ) and maximum plasma concentration (Cmax ) for S- and R-warfarin. Pharmacodynamic end points were area under the international normalized ratio (INR)-time curve (AUCINR ), maximum INR (INRmax ), maximum prothrombin time (PTmax ) and area under the PT-time curve (AUCPT ). Following warfarin and lacosamide coadministration, Cmax and AUC of S- and R-warfarin, as well as peak value and AUC of PT and INR, were equivalent to those after warfarin alone. In particular, the AUC(0,∞) ratio (90% confidence interval) for coadministration of warfarin and lacosamide versus warfarin alone was 0.97 (0.94-1.00) for S-warfarin and 1.05 (1.02-1.09) for R-warfarin, and the AUCINR ratio was 1.04 (1.01-1.06). All participants completed the study. Coadministration of lacosamide 400 mg/day did not alter the pharmacokinetics of warfarin 25 mg or the anticoagulation level. These results suggest that there is no need for dose adjustment of warfarin when coadministered with lacosamide. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  14. Co-delivery of docetaxel and gemcitabine by anacardic acid modified self-assembled albumin nanoparticles for effective breast cancer management.

    PubMed

    Kushwah, Varun; Katiyar, Sameer S; Dora, Chander Parkash; Kumar Agrawal, Ashish; Lamprou, Dimitrios A; Gupta, Ramesh C; Jain, Sanyog

    2018-06-01

    In the present study, we have modified bovine serum albumin (BSA) by covalently conjugating with anacardic acid (AA) and gemcitabine (GEM) and further used for development of docetaxel (DTX) loaded nanoparticles (AA-GEM-BSA NPs). AA is supposed to provide tumor targeting through VEGF receptors overexpressed in tumors, while the combination of GEM and DTX is supposed to provide synergistic activity by targeting multiple pathways. The conjugate was synthesized via carbodiimide chemistry and characterized by 1 H NMR, FTIR, MALDI-TOF and elemental analysis. Conformational changes owing to conjugation of AA and GEM were estimated via fluorescence, Raman and CD spectroscopy, while changes in physiochemical properties were studied by differential scanning calorimetry (DSC), thermogravimetry (TGA) and contact angle goniometry (CAG). Synthesized conjugate was further transformed into DTX loaded NPs and freeze dried. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) demonstrated formation of spherical NPs having particle size, 163 ± 8 nm, PDI, 0.13 ± 0.09 and ZP, -27 ± 1 mV. Cellular uptake in MCF-7 and MDA-MB-231 revealed hNTs, OATP1B3 independent, clathrin mediated internalization followed via nuclear co-localization of C-6 loaded AA-GEM-BSA NPs, responsible for significantly higher apoptosis index. Pharmacokinetic profile of DTX loaded AA-GEM-BSA NPs revealed 6.12 and 3.27-fold and 6.28 and 8.9-fold higher AUC and T 1/2 values of DTX and GEM as compared to Taxotere® and Gemzar®, respectively. Interestingly, the developed NPs were found safe with no marked effect on RBCs, lower hepato and nephro toxicity. Data in hand suggest promising potential of developed NPs in ameliorating the pharmacokinetic and therapeutic profile of combinatorial regimen of DTX and GEM. The present report is the original state of art technology to selectively target dual drug (DTX and GEM) loaded BSA NPs via exploring tumor targeting potential of AA, having

  15. Delivery of RNA interference therapeutics using polycation-based nanoparticles.

    PubMed

    Howard, Kenneth Alan

    2009-07-25

    RNAi-based therapies are dependent on extracellular and intracellular delivery of RNA molecules for enabling target interaction. Polycation-based nanoparticles (or polyplexes) formed by self-assembly with RNA can be used to modulate pharmacokinetics and intracellular trafficking to improve the therapeutic efficacy of RNAi-based therapeutics. This review describes the application of polyplexes for extracellular and intracellular delivery of synthetic RNA molecules. Focus is given to routes of administration and silencing effects in animal disease models. The inclusion of functional components into the nanoparticle for controlling cellular trafficking and RNA release is discussed. This work highlights the versatile nature of polycation-based nanoparticles to fulfil the delivery requirements for RNA molecules with flexibility in design to evolve alongside an expanding repertoire of RNAi-based drugs.

  16. Population pharmacokinetic modeling and simulation of huperzine A in elderly Chinese subjects

    PubMed Central

    Sheng, Lei; Qu, Yi; Yan, Jing; Liu, Gang-yi; Wang, Wei-liang; Wang, Yi-jun; Wang, Hong-yi; Zhang, Meng-qi; Lu, Chuan; Liu, Yun; Jia, Jing-yin; Hu, Chao-ying; Li, Xue-ning; Yu, Chen; Xu, Hong-rong

    2016-01-01

    Aim: Our preliminary results show that huperzine A, an acetylcholinesterase inhibitor used to treat Alzheimer's disease (AD) patients in China, exhibits different pharmacokinetic features in elderly and young healthy subjects. However, its pharmacokinetic data in elderly subjects remains unavailable to date. Thus, we developed a population pharmacokinetic (PPK) model of huperzine A in elderly Chinese people, and identified the covariate affecting its pharmacokinetics for optimal individual administration. Methods: A total of 341 serum huperzine A concentration records was obtained from 2 completed clinical trials (14 elderly healthy subjects in a phase I pharmacokinetic study; 35 elderly AD patients in a phase II study). Population pharmacokinetic analysis was performed using the non-linear mixed-effect modeling software Phoenix NLME1.1.1. The effects of age, gender, body weight, height, creatinine, endogenous creatinine clearance rate as well as drugs administered concomitantly were analyzed. Bootstrap and visual predictive checks were used simultaneously to validate the final population pharmacokinetics models. Results: The plasma concentration-time profile of huperzine A was best described by a one-compartment model with first-order absorption and elimination. Age was identified as the covariate having significant influence on huperzine A clearance. The final PPK model of huperzine A was: CL (L/h)=2.4649*(age/86)(−3.3856), Ka=0.6750 h−1, V (L)=104.216. The final PPK model was demonstrated to be suitable and effective by the bootstrap and visual predictive checks. Conclusion: A PPK model of huperzine A in elderly Chinese subjects is established, which can be used to predict PPK parameters of huperzine A in the treatment of elderly AD patients. PMID:27180987

  17. Evaluation of the whole body physiologically based pharmacokinetic (WB-PBPK) modeling of drugs.

    PubMed

    Munir, Anum; Azam, Shumaila; Fazal, Sahar; Bhatti, A I

    2018-08-14

    The Physiologically based pharmacokinetic (PBPK) modeling is a supporting tool in drug discovery and improvement. Simulations produced by these models help to save time and aids in examining the effects of different variables on the pharmacokinetics of drugs. For this purpose, Sheila and Peters suggested a PBPK model capable of performing simulations to study a given drug absorption. There is a need to extend this model to the whole body entailing all another process like distribution, metabolism, and elimination, besides absorption. The aim of this scientific study is to hypothesize a WB-PBPK model through integrating absorption, distribution, metabolism, and elimination processes with the existing PBPK model.Absorption, distribution, metabolism, and elimination models are designed, integrated with PBPK model and validated. For validation purposes, clinical records of few drugs are collected from the literature. The developed WB-PBPK model is affirmed by comparing the simulations produced by the model against the searched clinical data. . It is proposed that the WB-PBPK model may be used in pharmaceutical industries to create of the pharmacokinetic profiles of drug candidates for better outcomes, as it is advance PBPK model and creates comprehensive PK profiles for drug ADME in concentration-time plots. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Constraints, Construction, and Verification of a Strain-Specific Physiologically Based Pharmacokinetic Rat Model.

    PubMed

    Musther, Helen; Harwood, Matthew D; Yang, Jiansong; Turner, David B; Rostami-Hodjegan, Amin; Jamei, Masoud

    2017-09-01

    The use of in vitro-in vivo extrapolation (IVIVE) techniques, mechanistically incorporated within physiologically based pharmacokinetic (PBPK) models, can harness in vitro drug data and enhance understanding of in vivo pharmacokinetics. This study's objective was to develop a user-friendly rat (250 g, male Sprague-Dawley) IVIVE-linked PBPK model. A 13-compartment PBPK model including mechanistic absorption models was developed, with required system data (anatomical, physiological, and relevant IVIVE scaling factors) collated from literature and analyzed. Overall, 178 system parameter values for the model are provided. This study also highlights gaps in available system data required for strain-specific rat PBPK model development. The model's functionality and performance were assessed using previous literature-sourced in vitro properties for diazepam, metoprolol, and midazolam. The results of simulations were compared against observed pharmacokinetic rat data. Predicted and observed concentration profiles in 10 tissues for diazepam after a single intravenous (i.v.) dose making use of either observed i.v. clearance (CL iv ) or in vitro hepatocyte intrinsic clearance (CL int ) for simulations generally led to good predictions in various tissue compartments. Overall, all i.v. plasma concentration profiles were successfully predicted. However, there were challenges in predicting oral plasma concentration profiles for metoprolol and midazolam, and the potential reasons and according solutions are discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  20. Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof of Concept Study using Computational Fluid Dynamics

    PubMed Central

    Rygg, Alex; Hindle, Michael; Longest, P. Worth

    2016-01-01

    The objective of this study is to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics (CFD), to in vivo human pharmacokinetic (PK) plasma concentration profiles. This is accomplished through the use of CFD simulations coupled with compartmental PK modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all of the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long time periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics and clinical studies. PMID:27238495

  1. Clearance Pathways and Tumor Targeting of Imaging Nanoparticles

    PubMed Central

    Yu, Mengxiao; Zheng, Jie

    2016-01-01

    A basic understanding of how imaging nanoparticles are removed from the normal organs/tissues but retained in the tumors is important for their future clinical applications in early cancer diagnosis and therapy. In this review, we discuss current understandings of clearance pathways and tumor targeting of small-molecule- and inorganic-nanoparticle-based imaging probes with an emphasis on molecular nanoprobes, a class of inorganic nanoprobes that can escape reticuloendothelial system (RES) uptake and be rapidly eliminated from the normal tissues/organs via kidneys but can still passively target the tumor with high efficiency through the enhanced permeability permeability and retention (EPR) effect. The impact of nanoparticle design (size, shape, and surface chemistry) on their excretion, pharmacokinetics, and passive tumor targeting were quantitatively discussed. Synergetic integration of effective renal clearance and EPR effect offers a promising pathway to design low-toxicity and high-contrast-enhancement imaging nanoparticles that could meet with the clinical translational requirements of regulatory agencies. PMID:26149184

  2. Physiologically based pharmacokinetic modeling for predicting irinotecan exposure in human body.

    PubMed

    Fan, Yingfang; Mansoor, Najia; Ahmad, Tasneem; Khan, Rafeeq Alam; Czejka, Martin; Sharib, Syed; Yang, Dong-Hua; Ahmed, Mansoor

    2017-07-18

    Colorectal cancer is the third leading cause of cancer-related deaths in the United States. Treatment of colorectal cancer remains a challenge to clinicians as well as drug developers. Irinotecan, a Camptothecin derivative, is successfully used for the treatment of this rapidly progressing malignancy and finds its place in the first line of therapeutic agents. Irinotecan is also effective in treating SCLC, malignant glioma and pancreatic adenocarcinoma. However, its adverse effects limit its clinical application. Mainly metabolized by hepatic route, and excreted through biliary tract, this dug has been found to possess high variation in patients in its pharmacokinetic (PK) profile. Physiologically based pharmacokinetic (PBPK) models using compartmental approach have attained their position to foresee the possible PK behavior of different drugs before their administration to patients and such models have been proposed for several anticancer agents. In this work, we used WB-PBPK technology to develop a model in a population of tumor patients who used IV irinotecan therapy. This model depicted the concentration of drug and its pharmacologically active metabolite in human body over a specific period of time. Knowledge about pharmacokinetic parameters is extracted from this profile and the model is evaluated by the observed results of clinical study presented in literature. The predicted behavior of the drug by this approach is in good agreement with the observed results and can aid in further exploration of PK of irinotecan in cancer patients, especially in those concomitantly suffer from other morbidity.

  3. Physiologically based pharmacokinetic modeling for predicting irinotecan exposure in human body

    PubMed Central

    Ahmad, Tasneem; Khan, Rafeeq Alam; Czejka, Martin; Sharib, Syed; Yang, Dong-Hua; Ahmed, Mansoor

    2017-01-01

    Colorectal cancer is the third leading cause of cancer-related deaths in the United States. Treatment of colorectal cancer remains a challenge to clinicians as well as drug developers. Irinotecan, a Camptothecin derivative, is successfully used for the treatment of this rapidly progressing malignancy and finds its place in the first line of therapeutic agents. Irinotecan is also effective in treating SCLC, malignant glioma and pancreatic adenocarcinoma. However, its adverse effects limit its clinical application. Mainly metabolized by hepatic route, and excreted through biliary tract, this dug has been found to possess high variation in patients in its pharmacokinetic (PK) profile. Physiologically based pharmacokinetic (PBPK) models using compartmental approach have attained their position to foresee the possible PK behavior of different drugs before their administration to patients and such models have been proposed for several anticancer agents. In this work, we used WB-PBPK technology to develop a model in a population of tumor patients who used IV irinotecan therapy. This model depicted the concentration of drug and its pharmacologically active metabolite in human body over a specific period of time. Knowledge about pharmacokinetic parameters is extracted from this profile and the model is evaluated by the observed results of clinical study presented in literature. The predicted behavior of the drug by this approach is in good agreement with the observed results and can aid in further exploration of PK of irinotecan in cancer patients, especially in those concomitantly suffer from other morbidity. PMID:28636998

  4. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound

    PubMed Central

    Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong

    2017-01-01

    In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA

  5. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound.

    PubMed

    Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong

    2017-04-13

    In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA

  6. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine.

    PubMed

    Hartmanshenn, Clara; Scherholz, Megerle; Androulakis, Ioannis P

    2016-10-01

    Personalized medicine strives to deliver the 'right drug at the right dose' by considering inter-person variability, one of the causes for therapeutic failure in specialized populations of patients. Physiologically-based pharmacokinetic (PBPK) modeling is a key tool in the advancement of personalized medicine to evaluate complex clinical scenarios, making use of physiological information as well as physicochemical data to simulate various physiological states to predict the distribution of pharmacokinetic responses. The increased dependency on PBPK models to address regulatory questions is aligned with the ability of PBPK models to minimize ethical and technical difficulties associated with pharmacokinetic and toxicology experiments for special patient populations. Subpopulation modeling can be achieved through an iterative and integrative approach using an adopt, adapt, develop, assess, amend, and deliver methodology. PBPK modeling has two valuable applications in personalized medicine: (1) determining the importance of certain subpopulations within a distribution of pharmacokinetic responses for a given drug formulation and (2) establishing the formulation design space needed to attain a targeted drug plasma concentration profile. This review article focuses on model development for physiological differences associated with sex (male vs. female), age (pediatric vs. young adults vs. elderly), disease state (healthy vs. unhealthy), and temporal variation (influence of biological rhythms), connecting them to drug product formulation development within the quality by design framework. Although PBPK modeling has come a long way, there is still a lengthy road before it can be fully accepted by pharmacologists, clinicians, and the broader industry.

  7. The absorption profile of pregabalin in chronic pancreatitis.

    PubMed

    Olesen, Anne E; Olofsen, Erik; Olesen, Søren S; Staahl, Camilla; Andresen, Trine; Dahan, Albert; Drewes, Asbjørn M

    2012-12-01

    It was recently shown that pregabalin decreased pain associated with chronic pancreatitis. It is well known that pancreatitis patients suffer from fat malabsorption with accompanying diarrhoea because of loss of exocrine pancreatic enzyme production. This may lead to changes in the mucosal surface in the small intestine and possibly affect the absorption of pregabalin. The pharmacokinetics of pregabalin has never been investigated in patients suffering from chronic pancreatitis. The aim of this study was to develop a population pharmacokinetic model of pregabalin administered to patients with chronic pancreatitis. The pregabalin population pharmacokinetic analysis was conducted on data from fifteen patients with chronic pancreatitis. Each patient received 75 mg of pregabalin (oral capsule). Pregabalin concentrations were measured using a validated liquid chromatographic method. Data analysis was performed using non-linear mixed effects modelling methodology as implemented by NONMEM. A one-compartment model with first-order absorption and elimination adequately described pregabalin pharmacokinetics. Time to maximum observed plasma concentration (T(max) ) was 1.53 (95% CI 1.09-2.05). The maximum plasma concentration (C(max) ) was 1.98 μg/ml (95% CI 1.69-2.34), and area under the plasma concentration-time profile (area under the curve) was 18.2 μg*hr/ml (95% CI 14.7-26.3). Pregabalin is well absorbed in patients with chronic pancreatitis, and the pharmacokinetic profile of pregabalin is not extensively affected by chronic pancreatitis. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  8. [Pharmacokinetics of α-asarone after intranasal and intravenous administration with PLA-α-asarone nanoparticles].

    PubMed

    Lu, Jin; Guo, Li-Wei; Fu, Ting-Ming; Zhu, Guo-Long; Dai, Zhen-Nan; Zhan, Guan-Jun; Chen, Li-Li

    2017-06-01

    PLA-α-asarone nanoparticles were prepared by using organic solvent evaporation method, and their in vivo distribution and brain targeting after intranasal administration were studied as compared with intravenous administration. The results showed that brain targeting coefficient of PLA-α-asarone nanoparticles after intranasal and intravenous administration was 1.65 and 1.16 respectively. The absolute bioavailability, brain-targeting efficiency and the percentage of nasal-brain delivery of PLA-α-asarone nanoparticles were 74.2%, 142.24 and 29.83%, respectively after intranasal administration. The results of fluorescence labeling showed that the fluorescent intensity of coumarin-6 in the brain tissue was the highest after intranasal administration of PLA-α-asarone fluorescent nanoparticles, achieving the purpose of brain-targeted drug delivery. The fluorescent intensity of coumarin-6 in liver tissue after intravenous administration of PLA-α-asarone nanoparticles was much higher than that after intranasal administration, indicating that intranasal administration of PLA-α-asarone nanoparticles could decrease drug-induced hepatotoxicity. In addition, the fluorescent intensity of coumarin-6 in lung tissue was weaker after intranasal administration, which solved the shortcomings of intranasal administration of α-asarone dry powder prepared by airflow pulverization method. In vivo studies indicated that PLA-α-asarone nanoparticles after intranasal administration had a stronger brain targeting as compared with intravenous administration. Copyright© by the Chinese Pharmaceutical Association.

  9. A Phase I study to determine the pharmacokinetic profile, safety and tolerability of sildenafil (Revatio®) in cardiac surgery: the REVAKI‐1 study

    PubMed Central

    Ring, Arne; Morris, Tom; Wozniak, Marcin; Sullo, Nikol; Dott, William; Verheyden, Veerle; Kumar, Tracy; Brunskill, Nigel; Vaja, Rakesh

    2016-01-01

    Aims Acute kidney injury (AKI) is a common and severe complication of cardiac surgery. There is no effective prevention or treatment. Sildenafil citrate (Revatio®, Pfizer Inc.), a phosphodiesterase type 5 inhibitor, prevents post cardiac surgery AKI in pre‐clinical studies, however its use is contraindicated in patients with symptomatic cardiovascular disease. The aim of this study is to assess the safety and pharmacokinetics of intravenous sildenafil in cardiac surgery patients. Methods We conducted an open label, dose escalation study with six patients per dose level. The six doses were 2.5 mg, 5 mg or 10 mg as a bolus, either alone or followed by an additional 2 h infusion of 2.5 mg sildenafil. Results Thirty‐six patients entered the trial, of which 33 completed it. The mean age was 69.9 years. One patient died during surgery, two others were removed from the trial before dosing (all at dose level 5 mg + 2.5 mg). The pharmacokinetic profile of sildenafil was similar to previously published studies. For a dose of 10 mg administered as a bolus followed by 2.5 mg administered over 2 h the results were AUC∞ 537 ng h ml−1, C max 189.4 ng ml−1 and t 1/2 10.5 h. The drug was well tolerated with no serious adverse events related to drug administration. Higher sildenafil doses stabilized post‐surgery nitric oxide bioavailability. Conclusions Pharmacokinetics of sildenafil during cardiopulmonary bypass were comparable to those of other patient groups. The drug was well tolerated at therapeutic plasma levels. These results support the further evaluation of sildenafil for the prevention of AKI in cardiac surgery. PMID:27779776

  10. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ⁹-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour.

    PubMed

    Deiana, Serena; Watanabe, Akihito; Yamasaki, Yuki; Amada, Naoki; Arthur, Marlene; Fleming, Shona; Woodcock, Hilary; Dorward, Patricia; Pigliacampo, Barbara; Close, Steve; Platt, Bettina; Riedel, Gernot

    2012-02-01

    Phytocannabinoids are useful therapeutics for multiple applications including treatments of constipation, malaria, rheumatism, alleviation of intraocular pressure, emesis, anxiety and some neurological and neurodegenerative disorders. Consistent with these medicinal properties, extracted cannabinoids have recently gained much interest in research, and some are currently in advanced stages of clinical testing. Other constituents of Cannabis sativa, the hemp plant, however, remain relatively unexplored in vivo. These include cannabidiol (CBD), cannabidivarine (CBDV), Δ(9)-tetrahydrocannabivarin (Δ(9)-THCV) and cannabigerol (CBG). We here determined pharmacokinetic profiles of the above phytocannabinoids after acute single-dose intraperitoneal and oral administration in mice and rats. The pharmacodynamic-pharmacokinetic relationship of CBD (120 mg/kg, ip and oral) was further assessed using a marble burying test in mice. All phytocannabinoids readily penetrated the blood-brain barrier and solutol, despite producing moderate behavioural anomalies, led to higher brain penetration than cremophor after oral, but not intraperitoneal exposure. In mice, cremophor-based intraperitoneal administration always attained higher plasma and brain concentrations, independent of substance given. In rats, oral administration offered higher brain concentrations for CBD (120 mg/kg) and CBDV (60 mg/kg), but not for Δ(9)-THCV (30 mg/kg) and CBG (120 mg/kg), for which the intraperitoneal route was more effective. CBD inhibited obsessive-compulsive behaviour in a time-dependent manner matching its pharmacokinetic profile. These data provide important information on the brain and plasma exposure of new phytocannabinoids and guidance for the most efficacious administration route and time points for determination of drug effects under in vivo conditions.

  11. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice.

    PubMed

    Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi

    2018-02-01

    1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.

  12. Influence of Panax ginseng on the steady state pharmacokinetic profile of lopinavir-ritonavir in healthy volunteers.

    PubMed

    Calderón, Mónica M; Chairez, Cheryl L; Gordon, Lori A; Alfaro, Raul M; Kovacs, Joseph A; Penzak, Scott R

    2014-11-01

    Panax ginseng has been shown in preclinical studies to modulate cytochrome P450 enzymes involved in the metabolism of HIV protease inhibitors. Therefore, the purpose of this study was to determine the influence of P. ginseng on the pharmacokinetics of the HIV protease inhibitor combination lopinavir-ritonavir (LPV-r) in healthy volunteers. Single-sequence, open-label, single-center pharmacokinetic investigation. Government health care facility. Twelve healthy human volunteers. Twelve healthy volunteers received LPV-r (400-100 mg) twice/day for 29.5 days. On day 15 of LPV-r administration, serial blood samples were collected over 12 hours for determination of lopinavir and ritonavir concentrations. On study day 16, subjects began taking P. ginseng 500 mg twice/day, which they continued for 2 weeks in combination with LPV-r. On day 30 of LPV-r administration, serial blood samples were again collected over 12 hours for determination of lopinavir and ritonavir concentrations. Lopinavir and ritonavir pharmacokinetic parameter values were determined using noncompartmental methods, and preadministration and postadministration ginseng values were compared using a Student t test, where p<0.05 was accepted as statistically significant. Neither lopinavir nor ritonavir steady-state pharmacokinetics were altered by 2 weeks of P. ginseng administration to healthy human volunteers. Thus, a clinically significant interaction between P. ginseng and LPV-r is unlikely to occur in HIV-infected patients who choose to take these agents concurrently. It is also unlikely that P. ginseng will interact with other ritonavir-boosted protease inhibitor combinations, although confirmatory data are necessary. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  13. Synthesis and plasma pharmacokinetics in CD-1 mice of a 18β-glycyrrhetinic acid derivative displaying anti-cancer activity.

    PubMed

    Lallemand, Benjamin; Ouedraogo, Moustapha; Wauthoz, Nathalie; Lamkami, Touria; Mathieu, Veronique; Jabin, Ivan; Amighi, Karim; Kiss, Robert; Dubois, Jacques; Goole, Jonathan

    2013-03-01

    The plasma pharmacokinetic profile in CD-1 mice of a novel 18β-glycyrrhetinic acid (GA) derivative, which displays in vitro anti-cancer activity, was assessed. This study involved an original one-step synthesis of N-(2-{3-[3,5-bis(trifluoromethyl)phenyl]ureido}ethyl)-glycyrrhetinamide, (2) a compound that displays marked anti-proteasome and anti-kinase activity. The bioselectivity profile of 2 on human normal NHDF fibroblasts vs human U373 glioblastoma cells was assessed. Maximal tolerated dose (MTD) profiling of 2 was carried out in CD1 mice, and its serum pharmacokinetics were profiled using an acute intravenous administration of 40 mg/kg body weight. Compound 2 displayed IC(50) in vitro growth inhibitory concentrations of 29 and 8 μm on NHDF fibroblasts and U373 glioblastoma cells, respectively, thus a bioselectivity index of ∼4. The intravenous pharmacokinetic parameters revealed that 2 was rapidly distributed (t(1/2dist) of ∼3 min) but slowly eliminated (t(1/2elim)  = ∼77 min). This study describes an original and reliable nanoemulsion of a GA derivative with both anti-proteasome and anti-kinase properties and that should be further tested in vivo using various human xenograft or murine syngeneic tumour models with both single and chronic intravenous administration. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.

  14. Task-based exposure assessment of nanoparticles in the workplace

    NASA Astrophysics Data System (ADS)

    Ham, Seunghon; Yoon, Chungsik; Lee, Euiseung; Lee, Kiyoung; Park, Donguk; Chung, Eunkyo; Kim, Pilje; Lee, Byoungcheun

    2012-09-01

    Although task-based sampling is, theoretically, a plausible approach to the assessment of nanoparticle exposure, few studies using this type of sampling have been published. This study characterized and compared task-based nanoparticle exposure profiles for engineered nanoparticle manufacturing workplaces (ENMW) and workplaces that generated welding fumes containing incidental nanoparticles. Two ENMW and two welding workplaces were selected for exposure assessments. Real-time devices were utilized to characterize the concentration profiles and size distributions of airborne nanoparticles. Filter-based sampling was performed to measure time-weighted average (TWA) concentrations, and off-line analysis was performed using an electron microscope. Workplace tasks were recorded by researchers to determine the concentration profiles associated with particular tasks/events. This study demonstrated that exposure profiles differ greatly in terms of concentrations and size distributions according to the task performed. The size distributions recorded during tasks were different from both those recorded during periods with no activity and from the background. The airborne concentration profiles of the nanoparticles varied according to not only the type of workplace but also the concentration metrics. The concentrations measured by surface area and the number concentrations measured by condensation particle counter, particulate matter 1.0, and TWA mass concentrations all showed a similar pattern, whereas the number concentrations measured by scanning mobility particle sizer indicated that the welding fume concentrations at one of the welding workplaces were unexpectedly higher than were those at workplaces that were engineering nanoparticles. This study suggests that a task-based exposure assessment can provide useful information regarding the exposure profiles of nanoparticles and can therefore be used as an exposure assessment tool.

  15. SIMS depth profiling of working environment nanoparticles

    NASA Astrophysics Data System (ADS)

    Konarski, P.; Iwanejko, I.; Mierzejewska, A.

    2003-01-01

    Morphology of working environment nanoparticles was analyzed using sample rotation technique in secondary ion mass spectrometry (SIMS). The particles were collected with nine-stage vacuum impactor during gas tungsten arc welding (GTAW) process of stainless steel and shielded metal arc welding (SMAW) of mild steel. Ion erosion of 300-400 nm diameter nanoparticles attached to indium substrate was performed with 2 keV, 100 μm diameter, Ar + ion beam at 45° ion incidence and 1 rpm sample rotation. The results show that both types of particles have core-shell morphology. A layer of fluorine, chlorine and carbon containing compounds covers stainless steel welding fume particles. The cores of these particles are enriched in iron, manganese and chromium. Outer shell of mild steel welding fume particles is enriched in carbon, potassium, chlorine and fluorine, while the deeper layers of these nanoparticles are richer in main steel components.

  16. Comparison of the In Vivo Pharmacokinetics and In Vitro Dissolution of Raltegravir in HIV Patients Receiving the Drug by Swallowing or by Chewing

    PubMed Central

    Baldelli, Sara; Cerea, Matteo; Landonio, Simona; Meraviglia, Paola; Simioni, Emanuela; Cozzi, Valeria; Fucile, Serena; Gazzaniga, Andrea; Clementi, Emilio; Galli, Massimo; Rizzardini, Giuliano; Gervasoni, Cristina

    2012-01-01

    The pharmacokinetics of raltegravir (RAL) in HIV patients is characterized by high interpatient/intrapatient variability. We investigated the potential contribution of the drug pharmaceutical formulation to RAL pharmacokinetics. We first compared in vivo the pharmacokinetics of RAL for 67 patients to whom the drug was administered by swallowing the intact tablet with those obtained from 13 HIV-infected patients who chewed the RAL tablet due to swallowing difficulties. Subsequently, we evaluated in vitro the dissolution of RAL tablets under different conditions. In the in vivo study, we found that patients given RAL by chewing the tablets presented pharmacokinetic profiles characterized by significantly higher RAL absorption than did patients receiving the drug by swallowing. The in vitro studies showed that when the whole tablets were exposed to an acidic medium, the release of RAL was very low, whereas when the tablets were crushed, the profiles presented significantly higher concentrations of RAL. Crushed tablets tested in water or in a pH 6.8 buffer exhibited prompt and complete dissolution of RAL. HIV-infected patients receiving RAL by chewing the tablet showed higher drug absorption and reduced pharmacokinetic variability compared with patients swallowing the intact tablet. This is related to problems in tablet disintegration and to erratic drug absorption. The amelioration of the RAL pharmaceutical formulation could improve drug pharmacokinetics. PMID:22964253

  17. Do drug metabolism and pharmacokinetic departments make any contribution to drug discovery?

    PubMed

    Smith, Dennis; Schmid, Esther; Jones, Barry

    2002-01-01

    The alignment of drug metabolism and pharmacokinetic departments with drug discovery has not produced a radical improvement in the pharmacokinetic properties of new chemical entities. The reason for this is complex, reflecting in part the difficulty of combining potency, selectivity, water solubility, metabolic stability and membrane permeability into a single molecule. This combination becomes increasingly problematic as the drug targets become more distant from aminergic seven-transmembrane-spanning receptors (7-TMs). The leads available for aminergic 7-TMs, like the natural agonists, are invariably small molecular weight, water soluble and potent. Even moving to 7-TMs for which the agonist is a peptide invariably produces lead matter that is less drug-like (higher molecular weight and lipophilic). The role of drug metabolism departments, therefore, has been to guide chemistry to obtaining adequate, rather than optimal, pharmacokinetic properties for these 'difficult' drug targets. A consistent belief of many researchers is that a high value is placed on optimal, rather than adequate, pharmacokinetic properties. One measure of value is market sales, and when these are examined no clear pattern emerges. Part of the success of amlodipine in the calcium channel antagonist sector must be due to its excellent pharmacokinetic profile, but the best-selling drugs among the angiotensin antagonists and beta-blockers have a much greater market share than other agents with better pharmacokinetic properties. Clearly, many other factors are important in the successful launch of a medicine, some reflected in the manner the compound is developed and the subsequent structure of the labelling. Overall, therefore the presence of drug metabolism in drug discovery has probably contributed most by allowing 'difficult' drug targets to be prosecuted, rather than by guiding medicinal chemists to optimal pharmacokinetics. These 'difficult' target candidates become successful drugs when

  18. Second-Generation Phenylthiazole Antibiotics with Enhanced Pharmacokinetic Properties.

    PubMed

    Seleem, Mohammed A; Disouky, Ahmed M; Mohammad, Haroon; Abdelghany, Tamer M; Mancy, Ahmed S; Bayoumi, Sammar A; Elshafeey, Ahmed; El-Morsy, Ahmed; Seleem, Mohamed N; Mayhoub, Abdelrahman S

    2016-05-26

    A series of second-generation analogues for 2-(1-(2-(4-butylphenyl)-4-methylthiazol-5-yl)ethylidene)aminoguanidine (1) have been synthesized and tested against methicillin-resistant Staphylococcus aureus (MRSA). The compounds were designed with the objective of improving pharmacokinetic properties. This main aim has been accomplished by replacing the rapidly hydrolyzable Schiff-base moiety of first-generation members with a cyclic, unhydrolyzable pyrimidine ring. The hydrazide-containing analogue 17 was identified as the most potent analogue constructed thus far. The corresponding amine 8 was 8 times less active. Finally, incorporating the nitrogenous side chain within an aromatic system completely abolished the antibacterial character. Replacement of the n-butyl group with cyclic bioisosteres revealed cyclohexenyl analogue 29, which showed significant improvement in in vitro anti-MRSA potency. Increasing or decreasing the ring size deteriorated the antibacterial activity. Compound 17 demonstrated a superior in vitro and in vivo pharmacokinetic profile, providing compelling evidence that this particular analogue is a good drug candidate worthy of further analysis.

  19. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier.

    PubMed

    Gou, Jingxin; Chao, Yanhui; Liang, Yuheng; Zhang, Ning; He, Haibing; Yin, Tian; Zhang, Yu; Xu, Hui; Tang, Xing

    2016-09-01

    Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.

  20. Differential cytochrome P450 2D metabolism alters tafenoquine pharmacokinetics.

    PubMed

    Vuong, Chau; Xie, Lisa H; Potter, Brittney M J; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Nanayakkara, N P Dhammika; Tekwani, Babu L; Walker, Larry A; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Smith, Bryan; Marcsisin, Sean R

    2015-07-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Lisdexamfetamine: A pharmacokinetic review.

    PubMed

    Comiran, Eloisa; Kessler, Félix Henrique; Fröehlich, Pedro Eduardo; Limberger, Renata Pereira

    2016-06-30

    Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED) symptoms. The in vivo pharmacodynamics of LDX is the same as that of its active product d-AMPH, although there are a few qualitative and quantitative differences due to pharmacokinetics. Due to the specific pharmacokinetics of the long-acting stimulants, this article revises the pharmacokinetic studies on LDX, the newest amphetamine pro-drug. The Medline/Pubmed, Science Direct and Biblioteca Virtual em Saúde (Lilacs and Ibecs) (2007-2016) databases were searched for articles and their list of references. As for basic pharmacokinetics studies, since LDX is a newly developed medication, there are few results concerning biotransformation, distribution and the use of different biological matrices for analysis. This is the first robust review on this topic, gathering data from all clinical pharmacokinetics studies available in the literature. The particular pharmacokinetics of LDX plays a major role in studying this pro-drug, since this knowledge was essential to understand some reports on clinical effects in literature, e.g. the small likelihood of reducing the effect by interactions, the effect of long duration use and the still questionable reduction of the potential for abuse. In general the already well-known pharmacokinetic properties of amphetamine make LDX relatively predictable, simplifying the use of LDX in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A versatile liquid chromatographic technique for pharmacokinetic estimation of curcumin in human plasma.

    PubMed

    Gugulothu, Dalapathi; Desai, Preshita; Patravale, Vandana

    2014-09-01

    A simple, rapid, sensitive and specific liquid chromatographic method was developed and validated for the determination of curcumin in human plasma. Berberine was used as the internal standard. Chromatographic separation was achieved on a Zorbax Eclipse C18 column at 40 °C, with a mobile phase consisting of 1% acetic acid (pH 3 adjusted with 50% triethanolamine): acetonitrile (55:45), at a flow rate of 1.25 mL/min. The method was validated for precision, accuracy, linearity, lower limit of quantification (LLOQ) and extraction efficiency according to the International Conference on Harmonization guidelines. The method was successfully developed with an LLOQ of 10 ng/mL and a runtime of 9 min. Linearity range was from 10 to 1000 ng/mL. Curcumin and Berberine were well separated with retention times of 8.2 ± 0.2 and 1.4 ± 0.1 min, respectively. Further, the method was successfully employed to study the pharmacokinetic parameters of curcumin, following oral administration of curcumin-loaded hydroxy propyl cellulose (HPC) nanoparticles and curcumin suspension in female Wistar rats. Curcumin-loaded HPC nanoparticles (Cmax: 106.01 ± 20.11 ng/mL) showed significant improvement in pharmacokinetic parameters when compared with curcumin suspension (Cmax: 30.13 ± 0.47 ng/mL) indicating 43.73-fold increase in relative bioavailability. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Nanoparticle Imaging of Integrins on Tumor Cells1

    PubMed Central

    Montet, Xavier; Montet-Abou, Karin; Reynolds, Fred; Weissleder, Ralph; Josephson, Lee

    2006-01-01

    Abstract Nanoparticles 10 to 100 nm in size can deliver large payloads to molecular targets, but undergo slow diffusion and/or slow transport through delivery barriers. To examine the feasibility of nanoparticles targeting a marker expressed in tumor cells, we used the binding of cyclic arginine-glycine-aspartic acid (RGD) nanoparticle targeting integrins on BT-20 tumor as a model system. The goals of this study were: 1) to use nanoparticles to image αvβ3 integrins expressed in BT-20 tumor cells by fluorescence-based imaging and magnetic resonance imaging, and, 2) to identify factors associated with the ability of nanoparticles to target tumor cell integrins. Three factors were identified: 1) tumor cell integrin expression (the αvβ3 integrin was expressed in BT-20 cells, but not in 9L cells); 2) nanoparticle pharmacokinetics (the cyclic RGD peptide cross-linked iron oxide had a blood half-life of 180 minutes and was able to escape from the vasculature over its long circulation time); and 3) tumor vascularization (the tumor had a dense capillary bed, with distances of <100 µm between capillaries). These results suggest that nanoparticles could be targeted to the cell surface markers expressed in tumor cells, at least in the case wherein the nanoparticles and the tumor model have characteristics similar to those of the BT-20 tumor employed here. PMID:16611415

  4. Pharmacokinetics and effect on the corrected QT interval of single-dose escitalopram in healthy elderly compared with younger adults.

    PubMed

    Chung, Hyewon; Kim, Anhye; Lim, Kyoung Soo; Park, Sang-In; Yu, Kyung-Sang; Yoon, Seo Hyun; Cho, Joo-Youn; Chung, Jae-Yong

    2017-01-01

    Escitalopram is the (S)-enantiomer of citalopram that has a potential QT prolonging effect. In this study, 12 healthy elderly individuals received a single oral dose of escitalopram (20 mg), and their pharmacokinetics and QT effect data were compared with data from 33 younger adults obtained in a previous study. Serial blood samples for pharmacokinetic analysis were collected and ECG was performed up to 48 h postdose. The elderly and younger adults showed similar pharmacokinetic profiles. The geometric mean ratios (90% confidence interval) of the elderly compared with the younger adults were 1.02 (0.89-1.17) and 1.01 (0.86-1.17) for the maximum plasma concentration and area under the concentration-time curve, respectively. The mean baseline-adjusted QT (dQT) time profiles were similar and the mean values of maximum dQT were not significantly different between the elderly and the younger adults. The linear mixed-effect model indicated a weak but positive relationship between the escitalopram concentration and dQT, with an estimated coefficient of concentration of 0.43-0.54. In conclusion, the pharmacokinetics and QT effect of a single dose of escitalopram observed in the elderly without comorbidities and younger adults were generally similar.

  5. Pharmacokinetics and metabolism of benzene in Zymbal gland and other key target tissues after oral administration in rats.

    PubMed Central

    Low, L K; Meeks, J R; Norris, K J; Mehlman, M A; Mackerer, C R

    1989-01-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, and mammary gland of Sprague-Dawley rats following chronic oral administration of benzene. The cause for the specificity of such lesions remains unclear, but it is possible that tissue-specific metabolism or pharmacokinetics of benzene is responsible. Metabolism and pharmacokinetic studies were carried out in our laboratory with 14C-benzene at oral doses of 0.15 to 500 mg/kg to ascertain tissue retention, metabolite profile, and elimination kinetics in target and nontarget organs and in blood. Findings from those studies indicate the following: a) the Zymbal gland is not a sink or a site of accumulation for benzene or its metabolites even after a single high dose (500 mg/kg) or after repeated oral administration; b) the metabolite profile is quantitatively different in target tissues (e.g., Zymbal gland, nasal cavity), nontarget tissues and blood; and (c) pharmacokinetic studies show that the elimination of radioactivity from the Zymbal gland is biphasic. PMID:2792043

  6. SIKVAV peptide functionalized ultra-small gold nanoparticles for selective targeting of α6β1 integrin in hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Roskamp, M.; Coulter, T.; Ding, Y.; Perrins, R.; Espinosa Garcia, C.; Pace, A.; Hale, S.; Robinson, A.; Williams, P.; Aguilera Peral, U.; Patel, K.; Palmer, D.

    2017-04-01

    Ultra-small glycan-passivated gold nanoparticles of <2nm diameter were funtionalised with a short HS-EG(8)-COOH ligand. The nanoparticles were subsequently labelled, in a stoichiometrically controllable manner, with integrin-binding peptide SIKVAV and the maytansinoid cytotoxin DM4. In vitro assays showed significantly increased integrin-mediated uptake of SIKVAV labelled nanoparticles in HepG2 cells. SIKVAV targeted nanoparticle binding was shown to be outcompeted with free SIKVAV peptide, indicating target specific uptake. DM4 was passively attached to nanoparticles via sulfhydryl ligand exchange at the gold nanoparticle surface, which rendered them highly cytotoxic (IC50 ˜1 × 10-9M). In a rat model, pharmacokinetic studies showed that nanoparticle biodistribution was strongly altered by labelling with either peptide and DM4 moieties.

  7. Population pharmacokinetics of intravenous busulfan in patients undergoing hematopoietic stem cell transplantation.

    PubMed

    Takama, H; Tanaka, H; Nakashima, D; Ueda, R; Takaue, Y

    2006-02-01

    A population pharmacokinetic analysis was performed in 30 patients who received an intravenous busulfan and cyclophosphamide regimen before hematopoietic stem cell transplantation. Each patient received 0.8 mg/kg as a 2 h infusion every 6 h for 16 doses. A total of 690 concentration measurements were analyzed using the nonlinear mixed effect model (NONMEM) program. A one-compartment model with an additive error model as an intraindividual variability including an interoccasion variability (IOV) in clearance (CL) was sufficient to describe the concentration-time profile of busulfan. Actual body weight (ABW) was found to be the determinant for CL and the volume of distribution (V) according to NONMEM analysis. In this limited study, the age (range 7-53 years old; median, 30 years old) had no significant effect on busulfan pharmacokinetics. For a patient weighting 60 kg, the typical CL and V were estimated to be 8.87 l/h and 33.8 l, respectively. The interindividual variability of CL and V were 13.6 and 6.3%, respectively. The IOV (6.6%) in CL was estimated to be less than the intraindividual variability. These results indicate high interpatient and intrapatient consistency of busulfan pharmacokinetics after intravenous administration, which may eliminate the requirement for pharmacokinetic monitoring.

  8. Hyaluronidase: its effects on HI-6 dichloride and dimethanesulphonate pharmacokinetic profile in pigs.

    PubMed

    Karasova, Jana Zdarova; Pavlik, Michal; Chladek, Jaroslav; Jun, Daniel; Kuca, Kamil

    2013-07-04

    Pigs were administered intramuscularly molar equivalents of HI-6 salts (HI-6 dichloride 10.71 mg/kg and HI-6 DMS 13.59 mg/kg) either with or without hyaluronidase (60 U/kg). Hyaluronidase is supposed to increase tissue permeability and diminishes discomfort caused by the intramuscular injection. Doses of HI-6 salts corresponded with standard HI-6 dichloride dose in one autoinjector (500 mg) and were recalculated for 1 kg of body weight. According to the results, both HI-6 salts applied in combination with hyaluronidase had increased tissue absorption and improved pharmacokinetic profile. The Cmax was significantly higher in case of HI-6 DMS plus hyaluronidase (29.6 ± 2.98 μg/ml) administration increase compared to HI-6 DMS (23.8 ± 3.04 μg/ml) and HI-6 dichloride (19.0 ± 0.93 μg/ml); both without hyaluronidase. Bioavailability calculated as AUCtotal (HI-6 DMS with hyaluronidase, 4,119 ± 647 min μg/ml) was also significantly higher compared to HI-6 DMS (2,259 ± 329 min μg/ml) and HI-6 dichloride (1,969 ± 254 min μg/ml); both without hyaluronidase. The results suggest that administration of HI-6 salt with higher solubility is the first step in the improvement of application strategy, but use some substances with spreading effect (hyaluronidase) may also leads to better absorption and better bioavailability. Improved bioavailability could to go hand in hand with increased effectiveness of therapy without the need of multiple autoinjector applications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Pharmacokinetic evaluation of lisinopril-tryptophan, a novel C-domain ACE inhibitor.

    PubMed

    Denti, Paolo; Sharp, Sarah-Kate; Kröger, Wendy L; Schwager, Sylva L; Mahajan, Aman; Njoroge, Mathew; Gibhard, Liezl; Smit, Ian; Chibale, Kelly; Wiesner, Lubbe; Sturrock, Edward D; Davies, Neil H

    2014-06-02

    Angiotensin-converting enzyme (ACE, EC 3.4.15.1) is a metallopeptidase comprised of two homologous catalytic domains (N- and C-domains). The C-domain cleaves the vasoactive angiotensin II precursor, angiotensin I, more efficiently than the N-domain. Thus, C-domain-selective ACE inhibitors have been designed to investigate the pharmacological effects of blocking the C-terminal catalytic site of the enzyme and improve the side effect profile of current ACE inhibitors. Lisinopril-tryptophan (LisW-S), an analogue of the ACE inhibitor lisinopril, is highly selective for the C-domain. In this study, we have analysed the ex vivo domain selectivity and pharmacokinetic profile of LisW-S. The IC50 value of LisW-S was 38.5 nM in rat plasma using the fluorogenic substrate Abz-FRKP(Dnp)P-OH. For the pharmacokinetics analysis of LisW-S, a sensitive and selective LC-MS/MS method was developed and validated to determine the concentration of LisW-S in rat plasma. LisW-S was administered to Wistar rats at a dose of 1 mg/kg bodyweight intravenously, 5 mg/kg bodyweight orally. The Cmax obtained following oral administration of the drug was 0.082 μM and LisW-S had an apparent terminal elimination half-life of around 3.1 h. The pharmacokinetic data indicate that the oral bioavailability of LisW-S was approximately 5.4%. These data provide a basis for better understanding the absorption mechanism of LisW-S and evaluating its clinical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Metabolite identification and pharmacokinetic profiling of PP242, an ATP-competitive inhibitor of mTOR using ultra high-performance liquid chromatography and mass spectrometry.

    PubMed

    Rashid, Md Mamunur; Lee, Hyunbeom; Jung, Byung Hwa

    2018-01-01

    PP242 is a second generation novel selective ATP-competitive inhibitor of mTOR that displayed promising anti-cancer activity over several cancer types by inhibiting both the complexes of mTOR (mTORC1 and mTORC2). The purpose of this study is to identify the possible metabolites and to evaluate the pharmacokinetic profile of PP242 after a single oral administration to Sprague-Dawley (SD) rats. Two metabolites, including one phase I and one phase II, were identified by in vitro and in vivo studies using rat liver microsomes (RLMs) as well as rat plasma, urine and feces, respectively, through ultra high-performance liquid chromatography-linear ion trap quadrupole-orbitrap-mass spectrometry (UHPLC-LTQ-Orbitrap-MS). The major biotransformation pathways of PP242 were hydroxylation and glucuronide conjugation. Additionally, a simple and rapid quantification method was developed and validated. The method recovery was within 79.7-84.6%, whereas the matrix effect was 78.1-96.0% in all three quality control (QC) concentrations (low, medium and high) including the LLOQ. Other parameters showed acceptable results according to the US food and drug administration (FDA) guidelines for bioanalytical method validation. Afterwards, pharmacokinetic parameters were evaluated in rat plasma by successfully applying the validated method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). After a single oral administration at a dose of 5mg/kg, the maximum plasma concentration (C max ) of PP242 was 0.17±0.08μg/mL, while the elimination was moderately fast (T 1/2 : 172.18±45.54min). All of the obtained information on the metabolite identification and pharmacokinetic parameter elucidation could facilitate the further development of PP242. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Genetic variation in aryl N-acetyltransferase results in significant differences in the pharmacokinetic and safety profiles of amifampridine (3,4-diaminopyridine) phosphate.

    PubMed

    Haroldsen, Peter E; Garovoy, Marvin R; Musson, Donald G; Zhou, Huiyu; Tsuruda, Laurie; Hanson, Boyd; O'Neill, Charles A

    2015-02-01

    The clinical use of amifampridine phosphate for neuromuscular junction disorders is increasing. The metabolism of amifampridine occurs via polymorphic aryl N-acetyltransferase (NAT), yet its pharmacokinetic (PK) and safety profiles, as influenced by this enzyme system, have not been investigated. The objective of this study was to assess the effect of NAT phenotype and genotype on the PK and safety profiles of amifampridine in healthy volunteers (N = 26). A caffeine challenge test and NAT2 genotyping were used to delineate subjects into slow and fast acetylators for PK and tolerability assessment of single, escalating doses of amifampridine (up to 30 mg) and in multiple daily doses (20 mg QID) of amifampridine. The results showed that fast acetylator phenotypes displayed significantly lower C max, AUC, and shorter t 1/2 for amifampridine than slow acetylators. Plasma concentrations of the N-acetyl metabolite were approximately twofold higher in fast acetylators. Gender differences were not observed. Single doses of amifampridine demonstrated dose linear PKs. Amifampridine achieved steady state plasma levels within 1 day of dosing four times daily. No accumulation or time-dependent changes in amifampridine PK parameters occurred. Overall, slow acetylators reported 73 drug-related treatment-emergent adverse events versus 6 in fast acetylators. Variations in polymorphic NAT corresponding with fast and slow acetylator phenotypes significantly affects the PK and safety profiles of amifampridine.

  12. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways.

    PubMed

    Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg

    2017-09-18

    Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this

  13. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers.

    PubMed

    Kanai, Masashi; Imaizumi, Atsushi; Otsuka, Yoshihiko; Sasaki, Hiroki; Hashiguchi, Momo; Tsujiko, Kazu; Matsumoto, Shigemi; Ishiguro, Hiroshi; Chiba, Tsutomu

    2012-01-01

    More and more preclinical studies support the idea that curcumin, a plant-derived natural polyphenol, could be a promising anticancer drug. However, poor bioavailability has limited its efficacy in clinical trials, and plasma curcumin levels remain low despite patients taking gram doses of curcumin. This study aimed to evaluate the safety and pharmacokinetics of newly developed nanoparticle curcumin with increased water solubility (named THERACURMIN). Six healthy human volunteers were recruited and received THERACURMIN at a single oral dose of 150 mg. After an interval of 2 weeks, the same subjects then received THERACURMIN at a single dose of 210 mg. Plasma curcumin levels were measured at 0, 1, 2, 4, 6, and 24 h after THERACURMIN intake using high-performance liquid chromatography (HPLC). One subject reported grade 1 diarrhea after intake of 150 mg THERACURMIN. No other toxicities were observed in this study. C (max) for THERACURMIN at 150 and 210 mg was 189 ± 48 and 275 ± 67 ng/ml (mean ± SEM), respectively, and the area under the curve for 24 h was estimated to be 2,649 ± 350 and 3,649 ± 430 ng/ml × h (mean ± SEM), respectively. The t (1/2) was estimated to be 9.7 ± 2.1 h for 150 mg and 13.0 ± 3.3 h for 210 mg. THERACURMIN can safely increase plasma curcumin levels in a dose-dependent manner at least up to 210 mg without saturating the absorption system. To the best of our knowledge, THERACURMIN is the first nanoparticle formulation of curcumin that demonstrates improved bioavailability in human subjects. We believe this compound could be a promising tool when testing the potential anticancer effects of curcumin in clinical trials.

  14. Physiologically-Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long Acting Nanoformulations for HIV

    PubMed Central

    Rajoli, Rajith KR; Back, David J; Rannard, Steve; Meyers, Caren Freel; Flexner, Charles; Owen, Andrew; Siccardi, Marco

    2014-01-01

    Background and Objectives Antiretrovirals (ARVs) are currently used for the treatment and prevention of HIV infection. Poor adherence and low tolerability of some existing oral formulations can hinder their efficacy. Long-acting (LA) injectable nanoformulations could help address these complications by simplifying ARV administration. The aim of this study is to inform the optimisation of intramuscular LA formulations for eight ARVs through physiologically-based pharmacokinetic (PBPK) modelling. Methods A whole-body PBPK model was constructed using mathematical descriptions of molecular, physiological and anatomical processes defining pharmacokinetics. These models were validated against available clinical data and subsequently used to predict the pharmacokinetics of injectable LA formulations Results The predictions suggest that monthly intramuscular injections are possible for dolutegravir, efavirenz, emtricitabine, raltegravir, rilpivirine and tenofovir provided that technological challenges to control release rate can be addressed. Conclusions These data may help inform the target product profiles for LA ARV reformulation strategies. PMID:25523214

  15. The pharmacokinetic profile of synthetic cathinones in a pregnancy model.

    PubMed

    Strange, Lauren G; Kochelek, Kerri; Keasling, Robert; Brown, Stacy D; Pond, Brooks B

    2017-09-01

    In recent years, the abuse of synthetic cathinones or 'bath salts' has become a major public health concern. Although these compounds were initially sold legally and labeled "not for human consumption", the 'bath salts' are psychostimulants, with similar structures and pharmacologic mechanisms to cocaine, the amphetamines, and 3,4 methylendioxymethamphetamine (MDMA, Molly, or Ecstasy). The reported use of these substances by women of child-bearing age highlights the necessity of studies seeking to delineate risks of prenatal exposure. Three popular drugs of this type are methylone, mephedrone, and 3, 4-methylenedioxypyrovalerone (MDPV). Unfortunately, there is currently no information available on the teratogenicity of these compounds, or of the extent to which they cross the placenta. As such, the purpose of this study was to examine the pharmacokinetic profile of the 'bath salts' in a pregnancy model. Pregnant mice (E17.5 gestation) were injected intraperitoneally with a cocktail of 5mg/kg methylone, 10mg/kg mephedrone, and 3mg/kg (MDPV) dissolved in sterile saline. Maternal brain, maternal plasma, placenta, and fetal brain were collected at 30s, 1min, 5min, 10min, 15min, 30min, 1h, 2h, 4h, and 8h following injection. Methylone, mephedrone, and MDPV were extracted from tissue by solid phase extraction, and concentrations were determined using a previously validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Interestingly, all 3 cathinones reached measurable concentrations in the placenta, as well as the fetal brain; in fact, for MDPV, the maximal concentration (Cmax) was highest in fetal brain, while mephedrone's highest Cmax value was achieved in placenta. Additionally, the total drug exposure for all 3 compounds (as represented by area under the curve, AUC) was higher in fetal matrices (placenta and fetal brain) than in maternal matrices (maternal brain and plasma), and the half-lives for the drugs were longer. Given the extensive

  16. Triple combination MPT vaginal microbicide using curcumin and efavirenz loaded lactoferrin nanoparticles.

    PubMed

    Lakshmi, Yeruva Samrajya; Kumar, Prashant; Kishore, Golla; Bhaskar, C; Kondapi, Anand K

    2016-05-06

    We report that a combination of anti-HIV-1 drug efavirenz (EFV), anti-microbial-spermicidal curcumin (Cur) and lactoferrin nanoparticles (ECNPs) act as MPT formulation. These nanoparticles are of well dispersed spherical shape with 40-70 nm size, with encapsulation efficiency of 63 ± 1.9% of Cur &61.5% ± 1.6 of EFV, significantly higher than that of single drug nanoparticles (Cur, 59 ± 1.34%; EFV: 58.4 ± 1.79). ECNPs were found to be sensitive at pH 5 and 6 and have not effected viability of vaginal micro-flora, Lactobacillus. Studies in rats showed that ECNPs delivers 88-124% more drugs in vaginal lavage as compared to its soluble form, either as single or combination of EFV and Cur. The ECNPs also shows 1.39-4.73 fold lower concentration of absorption in vaginal tissue and plasma compared to soluble EFV + Cur. Furthermore, ECNPs show significant reduction in inflammatory responses by 1.6-3.0 fold in terms of IL-6 and TNF-α in vaginal tissue and plasma compared to soluble EFV + Cur. ECNPs showed improved pharmacokinetics profiles in vaginal lavage with more than 50% of enhancement in AUC, AUMC, Cmax and t1/2 suggesting longer exposure of Cur and EFV in vaginal lavage compared to soluble EFV + Cur. Histopathological analysis of vaginal tissue shows remarkably lower toxicity of ECNPs compared to soluble EFV + Cur. In conclusion, ECNPs are significantly safe and exhibit higher bioavailability thus constitute an effective MPT against HIV.

  17. Population pharmacokinetics and maximum a posteriori probability Bayesian estimator of abacavir: application of individualized therapy in HIV-infected infants and toddlers.

    PubMed

    Zhao, Wei; Cella, Massimo; Della Pasqua, Oscar; Burger, David; Jacqz-Aigrain, Evelyne

    2012-04-01

    Abacavir is used to treat HIV infection in both adults and children. The recommended paediatric dose is 8 mg kg(-1) twice daily up to a maximum of 300 mg twice daily. Weight was identified as the central covariate influencing pharmacokinetics of abacavir in children. A population pharmacokinetic model was developed to describe both once and twice daily pharmacokinetic profiles of abacavir in infants and toddlers. Standard dosage regimen is associated with large interindividual variability in abacavir concentrations. A maximum a posteriori probability Bayesian estimator of AUC(0-) (t) based on three time points (0, 1 or 2, and 3 h) is proposed to support area under the concentration-time curve (AUC) targeted individualized therapy in infants and toddlers. To develop a population pharmacokinetic model for abacavir in HIV-infected infants and toddlers, which will be used to describe both once and twice daily pharmacokinetic profiles, identify covariates that explain variability and propose optimal time points to optimize the area under the concentration-time curve (AUC) targeted dosage and individualize therapy. The pharmacokinetics of abacavir was described with plasma concentrations from 23 patients using nonlinear mixed-effects modelling (NONMEM) software. A two-compartment model with first-order absorption and elimination was developed. The final model was validated using bootstrap, visual predictive check and normalized prediction distribution errors. The Bayesian estimator was validated using the cross-validation and simulation-estimation method. The typical population pharmacokinetic parameters and relative standard errors (RSE) were apparent systemic clearance (CL) 13.4 () h−1 (RSE 6.3%), apparent central volume of distribution 4.94 () (RSE 28.7%), apparent peripheral volume of distribution 8.12 () (RSE14.2%), apparent intercompartment clearance 1.25 () h−1 (RSE 16.9%) and absorption rate constant 0.758 h−1 (RSE 5.8%). The covariate analysis

  18. Pharmacokinetic characteristics of telaprevir in healthy Korean male subjects and comparisons with Japanese.

    PubMed

    Choi, Yewon; Yoon, Seonghae; Matsumoto, Kyoko; Ohta, Yoshiyasu; Lee, SeungHwan; Yu, Kyung-Sang; Jang, In-Jin

    2018-01-01

    Telaprevir, a reversible selective inhibitor of viral protease and a potential blocker of viral replication, is indicated for the treatment of hepatitis C virus genotype 1 infection. In this study, the pharmacokinetic profile, safety, and tolerability of telaprevir and the effect of food on telaprevir exposure were evaluated in healthy Korean subjects, and compared with data from a previous study in Japanese male subjects. The single ascending dose study was conducted in 3 dose-based groups (500, 750, and 1,250 mg, six subjects each) in a fasted state. In the multiple dose study, eight subjects in the fed state received 750 mg of telaprevir once on Day 1 and every 8 hours from Day 2 until the morning of Day 6. Serial blood samples for pharmacokinetic analysis were collected for up to 24 hours in the single ascending dose study and for 6 days in the multiple dose study. Individual pharmacokinetic parameters were calculated using a non-compartmental analysis method. Safety and tolerability profiles were evaluated throughout the study. Following multiple administrations of telaprevir, maximum plasma concentrations (C max ), area under the concentration-time curve (AUC 0-8 ), and C trough (concentration at 8 h after drug administration) increased by ~2.41-fold. Compared to fasted state values, mean C max and AUC 0-24 increased by 4.92- and 4.81-fold, respectively, after food intake. The C max and AUC inf of Korean subjects were 26%-34% higher than those of Japanese subjects; however, these differences were not clinically significant. All observed adverse events were mild and there was no discontinuation due to AEs. In conclusion, the telaprevir's pharmacokinetic characteristics were similar in Korean and Japanese subjects. Telaprevir was well tolerated in a single dose of up to 1,250 mg and in multiple doses of 750 mg.

  19. Pharmacokinetic Profiling of Conjugated Therapeutic Oligonucleotides: A High-Throughput Method Based Upon Serial Blood Microsampling Coupled to Peptide Nucleic Acid Hybridization Assay.

    PubMed

    Godinho, Bruno M D C; Gilbert, James W; Haraszti, Reka A; Coles, Andrew H; Biscans, Annabelle; Roux, Loic; Nikan, Mehran; Echeverria, Dimas; Hassler, Matthew; Khvorova, Anastasia

    2017-12-01

    Therapeutic oligonucleotides, such as small interfering RNAs (siRNAs), hold great promise for the treatment of incurable genetically defined disorders by targeting cognate toxic gene products for degradation. To achieve meaningful tissue distribution and efficacy in vivo, siRNAs must be conjugated or formulated. Clear understanding of the pharmacokinetic (PK)/pharmacodynamic behavior of these compounds is necessary to optimize and characterize the performance of therapeutic oligonucleotides in vivo. In this study, we describe a simple and reproducible methodology for the evaluation of in vivo blood/plasma PK profiles and tissue distribution of oligonucleotides. The method is based on serial blood microsampling from the saphenous vein, coupled to peptide nucleic acid hybridization assay for quantification of guide strands. Performed with minimal number of animals, this method allowed unequivocal detection and sensitive quantification without the need for amplification, or further modification of the oligonucleotides. Using this methodology, we compared plasma clearances and tissue distribution profiles of two different hydrophobically modified siRNAs (hsiRNAs). Notably, cholesterol-hsiRNA presented slow plasma clearances and mainly accumulated in the liver, whereas, phosphocholine-docosahexaenoic acid-hsiRNA was rapidly cleared from the plasma and preferably accumulated in the kidney. These data suggest that the PK/biodistribution profiles of modified hsiRNAs are determined by the chemical nature of the conjugate. Importantly, the method described in this study constitutes a simple platform to conduct pilot assessments of the basic clearance and tissue distribution profiles, which can be broadly applied for evaluation of new chemical variants of siRNAs and micro-RNAs.

  20. Population pharmacokinetics of tafenoquine during malaria prophylaxis in healthy subjects.

    PubMed

    Charles, Bruce G; Miller, Ann K; Nasveld, Peter E; Reid, Mark G; Harris, Ivor E; Edstein, Michael D

    2007-08-01

    The population pharmacokinetics of tafenoquine were studied in Australian soldiers taking tafenoquine for malarial prophylaxis. The subjects (476 males and 14 females) received a loading dose of 200 mg tafenoquine base daily for 3 days, followed by a weekly dose of 200 mg tafenoquine for 6 months. Blood samples were collected from each subject after the last loading dose and then at weeks 4, 8, and 16. Plasma tafenoquine concentrations were determined by liquid chromatography-tandem mass spectrometry. Population modeling was performed with NONMEM, using a one-compartment model. Typical values of the first-order absorption rate constant (K(a)), clearance (CL/F), and volume of distribution (V/F) were 0.243 h(-1), 0.056 liters/h/kg, and 23.7 liters/kg, respectively. The intersubject variability (coefficient of variation) in CL/F and V/F was 18% and 22%, respectively. The interoccasion variability in CL/F was 18%, and the mean elimination half-life was 12.7 days. A positive linear association between weight and both CL/F and V/F was found, but this had insufficient impact to warrant dosage adjustments. Model robustness was assessed by a nonparametric bootstrap (200 samples). A degenerate visual predictive check indicated that the raw data mirrored the postdose concentration-time profiles simulated (n = 1,000) from the final model. Individual pharmacokinetic estimates for tafenoquine did not predict the prophylactic outcome with the drug for four subjects who relapsed with Plasmodium vivax malaria, as they had similar pharmacokinetics to those who were free of malaria infection. No obvious pattern existed between the plasma tafenoquine concentration and the pharmacokinetic parameter values for subjects with and without drug-associated moderate or severe adverse events. This validated population pharmacokinetic model satisfactorily describes the disposition and variability of tafenoquine used for long-term malaria prophylaxis in a large cohort of soldiers on military

  1. Population Pharmacokinetics of Tafenoquine during Malaria Prophylaxis in Healthy Subjects▿

    PubMed Central

    Charles, Bruce G.; Miller, Ann K.; Nasveld, Peter E.; Reid, Mark G.; Harris, Ivor E.; Edstein, Michael D.

    2007-01-01

    The population pharmacokinetics of tafenoquine were studied in Australian soldiers taking tafenoquine for malarial prophylaxis. The subjects (476 males and 14 females) received a loading dose of 200 mg tafenoquine base daily for 3 days, followed by a weekly dose of 200 mg tafenoquine for 6 months. Blood samples were collected from each subject after the last loading dose and then at weeks 4, 8, and 16. Plasma tafenoquine concentrations were determined by liquid chromatography-tandem mass spectrometry. Population modeling was performed with NONMEM, using a one-compartment model. Typical values of the first-order absorption rate constant (Ka), clearance (CL/F), and volume of distribution (V/F) were 0.243 h−1, 0.056 liters/h/kg, and 23.7 liters/kg, respectively. The intersubject variability (coefficient of variation) in CL/F and V/F was 18% and 22%, respectively. The interoccasion variability in CL/F was 18%, and the mean elimination half-life was 12.7 days. A positive linear association between weight and both CL/F and V/F was found, but this had insufficient impact to warrant dosage adjustments. Model robustness was assessed by a nonparametric bootstrap (200 samples). A degenerate visual predictive check indicated that the raw data mirrored the postdose concentration-time profiles simulated (n = 1,000) from the final model. Individual pharmacokinetic estimates for tafenoquine did not predict the prophylactic outcome with the drug for four subjects who relapsed with Plasmodium vivax malaria, as they had similar pharmacokinetics to those who were free of malaria infection. No obvious pattern existed between the plasma tafenoquine concentration and the pharmacokinetic parameter values for subjects with and without drug-associated moderate or severe adverse events. This validated population pharmacokinetic model satisfactorily describes the disposition and variability of tafenoquine used for long-term malaria prophylaxis in a large cohort of soldiers on military

  2. Pharmacokinetics of escin Ia in rats after intravenous administration.

    PubMed

    Wu, Xiu-Jun; Cui, Xiang-Yong; Tian, Lian-tian; Gao, Feng; Guan, Xin; Gu, Jing-Kai

    2014-10-28

    Escin, a natural mixture of triterpene saponins, is commonly utilized for the treatment of chronic venous insufficiency, hemorrhoids, inflammation and edema. Escin Ia is the chief active ingredient in escin and plays key role in mediating its pharmacological effects. Adequate pharmacokinetic data are essential for proper application of escin agent in clinical practice. However, pharmacokinetic properties of escin Ia are still poorly understood and this conflicts with the growing use of escin agent over the years. The goal of this study is to investigate the pharmacokinetic behavior of escin Ia in rats after low, medium and high-dose intravenous administration. Wistar rats were divided into 3 groups (n=6 per group) and escin Ia was administered via the caudal vein at doses of 0.5, 1.0 and 2.0 mg/kg, respectively. Subsequently, the concentrations of escin Ia and its metabolite isoescin Ia, a positional isomer of escin Ia, in rats׳ plasma were measured by an established liquid chromatography tandem mass spectrometry (LC-MS/MS) method at various time points following the administration of the drug. Main pharmacokinetic parameters were calculated by non-compartmental analysis using the TopFit 2.0 software package (Thomae GmbH, Germany). After intravenous administration, the Cmax and AUC of escin Ia increased in a dose-proportional manner at the dose of 0.5 mg/kg and 1.0 mg/kg, while increased in a more than dose-proportional manner at the doses of 1.0 mg/kg and 2.0 mg/kg. The t₁/₂ was significantly longer with increased intravenous doses, while other parameters such as CL and Vd also exhibit disagreement among three doses. Taken together, our data showed dose-dependent pharmacokinetic profile of escin Ia in rats after intravenous administration at the doses of 0.5-2.0 mg/kg. After intravenous administration, escin Ia was rapidly and extensively converted to isoescin Ia. The results suggested dose-dependent pharmacokinetics of escin Ia at the doses of 0.5-2.0 mg

  3. Effect of cortex mori on pharmacokinetic profiles of main isoflavonoids from pueraria lobata in rat plasma.

    PubMed

    Xiao, Bingxin; Sun, Zengxian; Sun, Shu Yang; Dong, Jie; Li, Yanli; Gao, Shan; Pang, Jie; Chang, Qi

    2017-09-14

    Radix pueraria (the root of pueraria lobata (Wild.) Ohwi.), which contains a class of isoflavonoids as the main active components, as well as cortex mori (the root bark of Morus alba L), which contains abundant active alkaloids, have been employed for the treatment of diabetes in traditional Chinese medicine for centuries. In previous studies, pharmacodynamic synergistic reactions have been observed in compatible application of pueraria lobata isoflavonoids extracts (PLF) and cortex mori alkaloids extracts (CME) for inhibiting α-glycosidase activity. It has also been demonstrated that PLF can effectively slow down the absorption of active alkaloid from CME, so as to produce a higher effective concentration in small intestine for depressing the elevation of postprandial blood glucose through inhibiting α-glycosidase activity. In this study, the hypoglycemic effect of PLF, CME or CME-PLF mixture (the mixture of CME and PLF at a ratio of 1:6.3) was further evaluated through in vivo glucose tolerance studies. And the effect of CME on pharmacokinetic profiles of main isoflavonoids from PLF in rat plasma was investigated to further underlie compatibility mechanism of the two herbs. Four groups of rats received an oral dose of starch solution alone or simultaneously with drugs by gavage feeding. The blood samples were collected to determine glucose concentrations by glucose oxidase method. In addition, another two groups of rats were orally administered with PLF or CME-PLF. The plasma samples were collected and assayed using an LC/MS/MS method for comparatively pharmacokinetic studies of five main isoflavonoids. For starch loading, co-administration of CME-PLF resulted in more potent inhibition effects on glucose responses compared to those by CME or PLF in rat. The isoflavonoids from PLF were rapidly absorbed, presenting similarly low concentrations in plasma. When CME was added, the C max and AUC of all the five isoflavonoids were increased. A phenomenon of double

  4. Integrated identification, qualification and quantification strategy for pharmacokinetic profile study of Guizhi Fuling capsule in healthy volunteers

    PubMed Central

    Zhong, Yun-Xi; Jin, Xiao-Liang; Gu, Shi-Yin; Peng, Ying; Zhang, Ke-Rong; Ou-Yang, Bing-Chen; Wang, Yu; Xiao, Wei; Wang, Zhen-Zhong; Aa, Ji-Ye; Wang, Guang-Ji; Sun, Jian-Guo

    2016-01-01

    Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites, and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human. PMID:27527657

  5. Integrated identification, qualification and quantification strategy for pharmacokinetic profile study of Guizhi Fuling capsule in healthy volunteers.

    PubMed

    Zhong, Yun-Xi; Jin, Xiao-Liang; Gu, Shi-Yin; Peng, Ying; Zhang, Ke-Rong; Ou-Yang, Bing-Chen; Wang, Yu; Xiao, Wei; Wang, Zhen-Zhong; Aa, Ji-Ye; Wang, Guang-Ji; Sun, Jian-Guo

    2016-08-16

    Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites, and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human.

  6. Tolerability and pharmacokinetic profile of a sunitinib powder formulation in pediatric patients with refractory solid tumors: a Children's Oncology Group study.

    PubMed

    DuBois, Steven G; Shusterman, Suzanne; Reid, Joel M; Ingle, Ashish M; Ahern, Charlotte H; Baruchel, Sylvain; Glade-Bender, Julia; Ivy, Percy; Adamson, Peter C; Blaney, Susan M

    2012-04-01

    Sunitinib is an oral tyrosine kinase inhibitor of VEGF, PDGF, c-KIT, and flt-3 receptors. A pediatric phase I study of sunitinib capsules identified the maximum tolerated dose as 15 mg/m(2)/day. This study was conducted to evaluate sunitinib given as a powder formulation. Sunitinib 15 mg/m(2) was administered orally daily for 4 weeks on/2 weeks off to patients <21 years old with refractory solid tumors. Sunitinib capsules were opened, and the powder sprinkled onto applesauce or yogurt. Plasma levels of sunitinib and an active metabolite, SU12662, were measured, and pharmacokinetic parameters were estimated. 12 patients, median age 13 (range 4-21) years, were treated. The most common first-cycle toxicities were leucopenia (n = 6), fatigue (n = 5), neutropenia (n = 4), and hypertension (n = 4). Three patients had dose-limiting toxicities (DLTs) in cycle 1 (dizziness/back pain, hand-foot syndrome, and intratumoral hemorrhage/hypoxia). A median peak plasma sunitinib concentration of 21 (range 6-36) ng/ml was reached at a median of 4 (range 4-8) h after the first dose. The median exposure (AUC(0-48)) was 585 (range 196-1,059) h ng/l. The median half-life was 23 (range 13-36) h. The median trough concentration measured before day 14 dosing was 32 (range 12-58) ng/ml. The pharmacokinetic profile of sunitinib appears similar between a powder formulation and published data using capsules. The powder formulation allows patients unable to swallow capsules to receive sunitinib.

  7. GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS

    PubMed Central

    Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS

    2011-01-01

    Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107

  8. In-situ single pass intestinal permeability and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles.

    PubMed

    Garg, Anuj; Bhalala, Kripal; Tomar, Devendra Singh; Wahajuddin

    2017-01-10

    The present investigation aims to develop lumefantrine loaded binary solid lipid nanoparticles (LF-SLNs) to improve its poor and variable oral bioavailability. The oral bioavailability of LF is poor and variable due to its limited aqueous solubility and P-gp mediated efflux occurring in small intestine. LF-SLNs were prepared using binary lipid mixture of stearic acid and caprylic acid stabilized with TPGS (D-alpha tocopheryl polyethylene glycol 1000 succinate) and Poloxamer 188. Developed LF-SLNs were characterized for particle size distribution, zeta potential, entrapment efficiency, solid state properties and biopharmaceutical properties including in situ intestinal permeability and oral bioavailability. The particle size distribution, zeta potential and entrapment efficiency of optimized batch (LF-SLN7) was found to be 357.7±43.27nm, 25.29±1.15mV and 97.35±0.30%, respectively. DSC thermographs showed loss of crystalline nature of lumefantrine in LF-SLNs. In situ single pass intestinal permeability study (SPIP) study indicated significant enhancement in the effective intestinal permeability of LF from LF-SLN7 as compared to that of control. Pharmacokinetic study also showed significant increase in Cmax and area under curve (AUC0- ∞ ) from LF-SLN7 (3860±521ng/mL and 43181±2557h×ng/mL, respectively) as compared to that of LF-control suspension (1425±563ng/mL and 19586±1537h×ng/mL, respectively). Thus, developed LF-SLNs can be promising to overcome P-gp efflux pump and enhance the oral bioavailability of lumefantrine. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application.

    PubMed

    Chhonker, Yashpal S; Prasad, Yarra Durga; Chandasana, Hardik; Vishvkarma, Akhilesh; Mitra, Kalyan; Shukla, Praveen K; Bhatta, Rabi S

    2015-01-01

    Fungal keratitis is the major cause of vision loss worldwide. Amphotericin-B is considered as the drug of choice for fungal infections. However, its use in ophthalmic drug delivery is limited by the low precorneal residence at ocular surface as a result of blinking reflex, tear turnover and nasopharyngeal drainage. We report Amphotericin-B loaded lecithin/chitosan nanoparticles for prolonged ocular application. The prepared nanoparticles were in the size range of 161.9-230.5 nm, entrapment efficiency of 70-75%, theoretical drug loading of 5.71% with positive zeta potential of 26.6-38.3 mV. As demonstrated by antifungal susceptibility against Candida albicans and Aspergillus fumigatus, nanoparticles were more effective than marketed formulation. They exhibited pronounced mucoadhesive properties. In-vivo pharmacokinetic studies in New Zealand albino rabbit eyes indicated improved bioavailablity (∼ 2.04 fold) and precorneal residence time (∼ 3.36 fold) by nanoparticles prepared from low molecular weight chitosan as compared with marketed formulation. Copyright © 2014. Published by Elsevier B.V.

  10. Comparative pharmacokinetics/pharmacodynamics of clopidogrel besylate and clopidogrel bisulfate in healthy Korean subjects.

    PubMed

    Kim, Bo-Hyung; Kim, Jung-Ryul; Lim, Kyoung Soo; Shin, Hyun-Suk; Yoon, Seo Hyun; Cho, Joo-Youn; Jang, In-Jin; Shin, Sang-Goo; Yu, Kyung-Sang

    2012-12-01

    Clopidogrel selectively inhibits platelet aggregation. Clopidogrel bisulfate (Plavix(®)) was first developed for atherothrombosis prevention and is commonly prescribed for this indication. A new clopidogrel formulation, clopidogrel besylate (KOVIX(®)), has recently been developed. This study was designed to compare the multiple-dose pharmacokinetics/pharmacodynamics and tolerability of clopidogrel besylate with those of clopidogrel bisulfate in 40 healthy male subjects. This was an open-label, randomized-sequence, multiple-dose, two-period, two-treatment crossover study. The subjects were randomly assigned to a sequence group that received two treatments: clopidogrel besylate 75 mg followed by clopidogrel bisulfate 75 mg, or vice versa. The subjects received a 300-mg loading dose on day 1 followed by 75 mg daily for the next 4 days. Serial blood samples were collected to determine the concentrations of clopidogrel and its carboxylic acid metabolite, SR26334. Platelet aggregation and bleeding times were measured. Tolerability was evaluated throughout the study. The clopidogrel plasma concentration-time profiles of the formulations were similar. The measured pharmacokinetic parameters did not differ significantly between the clopidogrel besylate and clopidogrel bisulfate groups. The geometric mean ratios of the clopidogrel besylate group to the clopidogrel bisulfate group with respect to the maximum plasma concentration (C(max)) and the area under the concentration-time curve (AUC) from time zero to the time of last measurable concentration (AUC(last)) were 0.96 (90 % confidence interval [CI] 0.82, 1.12) and 0.95 (0.81, 1.11), respectively. Moreover, the pharmacokinetic parameters of SR26334 did not differ significantly between the two treatment groups. Furthermore, the areas under the platelet aggregation inhibition-time curves (AUIC) and the maximum inhibitory effects (I(max)) did not differ significantly between the two groups. The geometric mean ratios

  11. Pharmacokinetic properties of BAY 81-8973, a full-length recombinant factor VIII.

    PubMed

    Shah, A; Delesen, H; Garger, S; Lalezari, S

    2015-11-01

    BAY 81-8973 is a full-length recombinant factor VIII (FVIII) with the same primary amino acid sequence as sucrose-formulated recombinant FVIII (rFVIII-FS) but is produced with advanced manufacturing technologies. To analyse the pharmacokinetics (PK) of BAY 81-8973 after single and multiple dosing across different age and ethnic groups in the LEOPOLD clinical trial programme. The LEOPOLD trials enrolled patients with severe haemophilia A aged 12-65 years (LEOPOLD I and II) or ≤12 years (LEOPOLD Kids) with ≥150 (LEOPOLD I and II) or ≥50 (LEOPOLD Kids) exposure days to any FVIII product and no history of FVIII inhibitors. PK were assessed using chromogenic and one-stage assays (only chromogenic assay for LEOPOLD Kids) after a single 50-IU kg(-1) dose of BAY 81-8973 and, in a subset of patients in LEOPOLD I, after repeated dosing. Pharmacokinetic analyses were also performed based on age (18 to 65, 12 to <18, 6 to <12 and <6 years) and ethnicity (Asian and non-Asian). Pharmacokinetic assessments in the LEOPOLD I trial showed non-inferiority of BAY 81-8973 vs. rFVIII-FS. The PK of BAY 81-8973 were comparable after single and multiple dosing. Age-based analysis in the three trials showed that plasma concentrations were slightly lower for children, but similar for adolescents compared with adults. Pharmacokinetic results were similar in the different ethnic groups. Results of the LEOPOLD trials show that the BAY 81-8973 pharmacokinetic profile is non-inferior to rFVIII-FS. Similar BAY 81-8973 pharmacokinetic values were observed following single and repeated dosing and across ethnic groups. © 2015 John Wiley & Sons Ltd.

  12. Pharmacokinetic properties of tandem d-peptides designed for treatment of Alzheimer's disease.

    PubMed

    Leithold, Leonie H E; Jiang, Nan; Post, Julia; Niemietz, Nicole; Schartmann, Elena; Ziehm, Tamar; Kutzsche, Janine; Shah, N Jon; Breitkreutz, Jörg; Langen, Karl-Josef; Willuweit, Antje; Willbold, Dieter

    2016-06-30

    Peptides are more and more considered for the development of drug candidates. However, they frequently exhibit severe disadvantages such as instability and unfavourable pharmacokinetic properties. Many peptides are rapidly cleared from the organism and oral bioavailabilities as well as in vivo half-lives often remain low. In contrast, some peptides consisting solely of d-enantiomeric amino acid residues were shown to combine promising therapeutic properties with high proteolytic stability and enhanced pharmacokinetic parameters. Recently, we have shown that D3 and RD2 have highly advantageous pharmacokinetic properties. Especially D3 has already proven promising properties suitable for treatment of Alzheimer's disease. Here, we analyse the pharmacokinetic profiles of D3D3 and RD2D3, which are head-to-tail tandem d-peptides built of D3 and its derivative RD2. Both D3D3 and RD2D3 show proteolytic stability in mouse plasma and organ homogenates for at least 24h and in murine and human liver microsomes for 4h. Notwithstanding their high affinity to plasma proteins, both peptides are taken up into the brain following i.v. as well as i.p. administration. Although both peptides contain identical d-amino acid residues, they are arranged in a different sequence order and the peptides show differences in pharmacokinetic properties. After i.p. administration RD2D3 exhibits lower plasma clearance and higher bioavailability than D3D3. We therefore concluded that the amino acid sequence of RD2 leads to more favourable pharmacokinetic properties within the tandem peptide, which underlines the importance of particular sequence motifs, even in short peptides, for the design of further therapeutic d-peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Using dried blood spot sampling to improve data quality and reduce animal use in mouse pharmacokinetic studies.

    PubMed

    Wickremsinhe, Enaksha R; Perkins, Everett J

    2015-03-01

    Traditional pharmacokinetic analysis in nonclinical studies is based on the concentration of a test compound in plasma and requires approximately 100 to 200 μL blood collected per time point. However, the total blood volume of mice limits the number of samples that can be collected from an individual animal-often to a single collection per mouse-thus necessitating dosing multiple mice to generate a pharmacokinetic profile in a sparse-sampling design. Compared with traditional methods, dried blood spot (DBS) analysis requires smaller volumes of blood (15 to 20 μL), thus supporting serial blood sampling and the generation of a complete pharmacokinetic profile from a single mouse. Here we compare plasma-derived data with DBS-derived data, explain how to adopt DBS sampling to support discovery mouse studies, and describe how to generate pharmacokinetic and pharmacodynamic data from a single mouse. Executing novel study designs that use DBS enhances the ability to identify and streamline better drug candidates during drug discovery. Implementing DBS sampling can reduce the number of mice needed in a drug discovery program. In addition, the simplicity of DBS sampling and the smaller numbers of mice needed translate to decreased study costs. Overall, DBS sampling is consistent with 3Rs principles by achieving reductions in the number of animals used, decreased restraint-associated stress, improved data quality, direct comparison of interanimal variability, and the generation of multiple endpoints from a single study.

  14. Using Dried Blood Spot Sampling to Improve Data Quality and Reduce Animal Use in Mouse Pharmacokinetic Studies

    PubMed Central

    Wickremsinhe, Enaksha R; Perkins, Everett J

    2015-01-01

    Traditional pharmacokinetic analysis in nonclinical studies is based on the concentration of a test compound in plasma and requires approximately 100 to 200 µL blood collected per time point. However, the total blood volume of mice limits the number of samples that can be collected from an individual animal—often to a single collection per mouse—thus necessitating dosing multiple mice to generate a pharmacokinetic profile in a sparse-sampling design. Compared with traditional methods, dried blood spot (DBS) analysis requires smaller volumes of blood (15 to 20 µL), thus supporting serial blood sampling and the generation of a complete pharmacokinetic profile from a single mouse. Here we compare plasma-derived data with DBS-derived data, explain how to adopt DBS sampling to support discovery mouse studies, and describe how to generate pharmacokinetic and pharmacodynamic data from a single mouse. Executing novel study designs that use DBS enhances the ability to identify and streamline better drug candidates during drug discovery. Implementing DBS sampling can reduce the number of mice needed in a drug discovery program. In addition, the simplicity of DBS sampling and the smaller numbers of mice needed translate to decreased study costs. Overall, DBS sampling is consistent with 3Rs principles by achieving reductions in the number of animals used, decreased restraint-associated stress, improved data quality, direct comparison of interanimal variability, and the generation of multiple endpoints from a single study. PMID:25836959

  15. Mephedrone (4-Methylmethcathinone): Acute Behavioral Effects, Hyperthermic, and Pharmacokinetic Profile in Rats

    PubMed Central

    Šíchová, Klára; Pinterová, Nikola; Židková, Monika; Horsley, Rachel R.; Lhotková, Eva; Štefková, Kristýna; Vejmola, Čestmír; Uttl, Libor; Balíková, Marie; Kuchař, Martin; Páleníček, Tomáš

    2018-01-01

    Mephedrone (MEPH) is a synthetic cathinone derivative with effects that mimic MDMA and/or cocaine. Our study in male Wistar rats provides detailed investigations of MEPH’s and its primary metabolite nor-mephedrone’s (nor-MEPH) pharmacokinetics and bio-distribution to four different substrates (serum, brain, lungs, and liver), as well as comparative analysis of their effects on locomotion [open field test (OFT)] and sensorimotor gating [prepulse inhibition of acoustic startle reaction (PPI ASR)]. Furthermore, in order to mimic the crowded condition where MEPH is typically taken (e.g., clubs), the acute effect of MEPH on thermoregulation in singly- and group-housed rats was evaluated. Pharmacokinetics of MEPH and nor-MEPH after MEPH (5 mg/kg, sc.) were analyzed over 8 h using liquid chromatography with mass spectrometry. MEPH (2.5, 5, or 20 mg/kg, sc.) and nor-MEPH (5 mg/kg, sc.) were administered 5 or 40 min before the behavioral testing in the OFT and PPI ASR; locomotion and its spatial distribution, ASR, habituation and PPI itself were quantified. The effect of MEPH on rectal temperature was measured after 5 and 20 mg/kg, sc. Both MEPH and nor-MEPH were detected in all substrates, with the highest levels detected in lungs. Mean brain: serum ratios were 1:1.19 (MEPH) and 1:1.91 (nor-MEPH), maximum concentrations were observed at 30 min; at 2 and 4 h after administration, nor-MEPH concentrations were higher compared to the parent drug. While neither of the drugs disrupted PPI, both increased locomotion and affected its spatial distribution. The effects of MEPH were dose dependent, rapid, and short-lasting, and the intensity of locomotor stimulant effects was comparable between MEPH and nor-MEPH. Despite the disappearance of behavioral effects within 40 min after administration, MEPH induced rectal temperature elevations that persisted for 3 h even in singly housed rats. To conclude, we observed a robust, short-lasting, and most likely

  16. Pharmacokinetics, Pharmacodynamics and Population Pharmacokinetic/Pharmacodynamic Modelling of Bilastine, a Second-Generation Antihistamine, in Healthy Japanese Subjects.

    PubMed

    Togawa, Michinori; Yamaya, Hidetoshi; Rodríguez, Mónica; Nagashima, Hirotaka

    2016-12-01

    Bilastine is a novel second-generation antihistamine for the symptomatic treatment of allergic rhinitis and urticaria. The objective of this study was to evaluate the pharmacokinetics, pharmacodynamics, and tolerability of bilastine following single and multiple oral doses in healthy Japanese subjects. The pharmacokinetic and pharmacodynamic profiles were compared with those reported in Caucasian subjects. In a single-blind, randomized, placebo-controlled, parallel-group, single- and multiple-ascending dose study, bilastine tablets were administered at single doses of 10, 20, and 50 mg (Part I), and once daily for 14 days at 20 and 50 mg (Part II). After single oral doses, maximum plasma concentrations (C max ) were reached at 1.0-1.5 h postdose. Plasma exposure [C max and area under the plasma concentration-time curve (AUC)] increased dose-proportionally at single doses of 10-50 mg. In repeated-dose administration, no remarkable differences were observed between Day 1 and Day 14 for C max or AUC. For inhibitory effects on wheal and flare response, bilastine 20 and 50 mg showed significant inhibition from 1.5 h after administration as compared with placebo, and the significant effect persisted for 24 h after administration. The rates of adverse events (AEs) were comparable between bilastine and placebo in both Part I and Part II. In addition, no dose- or administration period-dependent tendency of increase in rate of AEs or worsening of severity was observed. Bilastine exhibits similar single- and multiple-dose pharmacokinetic and pharmacodynamic characteristics in healthy Japanese subjects compared with those observed in Caucasian subjects in previous studies.

  17. Tilmicosin- and florfenicol-loaded hydrogenated castor oil-solid lipid nanoparticles to pigs: Combined antibacterial activities and pharmacokinetics.

    PubMed

    Ling, Z; Yonghong, L; Junfeng, L; Li, Z; Xianqiang, L

    2018-04-01

    The combined antibacterial effects of tilmicosin (TIL) and florfenicol (FF) against Actinobacillus pleuropneumoniae (APP) (n = 2), Streptococcus suis (S. suis) (n = 2), and Haemophilus parasuis (HPS) (n = 2) were evaluated by chekerboard test and time-kill assays. The pharmacokinetics (PKs) of TIL- and FF-loaded hydrogenated castor oil (HCO)-solid lipid nanoparticles (SLN) were performed in healthy pigs. The results indicated that TIL and FF showed synergistic or additive antibacterial activities against APP, S. suis and HPS with the fractional inhibitory concentration (FIC) ranging from 0.375 to 0.75. The time-kill assays showed that 1/2 minimum inhibitory concentration (MIC) TIL combined with 1/2 MIC FF had a stronger ability to inhibit the growth of APP, S. suis, and HPS than 1 MIC TIL or 1 MIC FF, respectively. After oral administration, plasma TIL and FF concentrations could maintain about 0.1 μg/ml for 192 and 176 hr. The SLN prolonged the last time point with detectable concentrations (T last ), area under the concentration-time curve (AUC 0-t ), elimination half-life (T ½ke ), and mean residence time (MRT) by 3.1, 5.6, 12.7, 3.4-fold of the active pharmaceutical ingredient (API) of TIL and 11.8, 16.5, 18.1, 12.1-fold of the API of FF, respectively. This study suggests that the TIL-FF-SLN could be a useful oral formulation for the treatment of APP, S. suis, and HPS infection in pigs. © 2017 John Wiley & Sons Ltd.

  18. Pharmacokinetic Profile of a 2-Month Dose Regimen of Aripiprazole Lauroxil: A Phase I Study and a Population Pharmacokinetic Model.

    PubMed

    Hard, Marjie L; Mills, Richard J; Sadler, Brian M; Wehr, Angela Y; Weiden, Peter J; von Moltke, Lisa

    2017-07-01

    Aripiprazole lauroxil (AL) is a long-acting injectable medication approved for the treatment of schizophrenia. Current AL regimens are 441 mg, 662 mg, and 882 mg administered monthly (every 4 weeks [q4wk]), or 882 mg administered every 6 weeks (q6wk). We examined the feasibility of a 2-month (every 8 weeks [q8wk]) dosing interval of AL in a phase I open-label pharmacokinetic study investigating AL 1064 mg administered q8wk for 24 weeks, followed by 20 weeks of safety and pharmacokinetic measurements (ClinicalTrials.gov ID: NCT02320032). Second, a population pharmacokinetic model (referred to as the 2MPopPK model) was generated using data collected from the present trial, as well as data obtained from earlier studies. The phase I study included patients with schizophrenia or schizoaffective disorder maintained on an oral antipsychotic (n = 140) who were assigned to one of three groups: AL 441 mg q4wk, AL 882 mg q6wk, or AL 1064 mg q8wk, with a total of seven, five, or four injections administered, respectively. No oral aripiprazole lead-in supplementation was administered and patients continued on maintenance oral antipsychotics. Pharmacokinetic samples were collected at various time points during the 24-week study period and the 20-week follow-up period. Plasma concentrations obtained from the phase I study were analyzed using non-compartmental methods. Additionally, the data were combined with data collected from prior studies to develop the 2MPopPK model. Following the final injection of AL in the phase I study, maximum aripiprazole concentrations were achieved 24.4-35.2 days after the last dose and persisted for the duration of the study. The mean C avg,ss values were 125.8 ng/ml, 131.1 ng/ml, and 140.7 ng/ml for the 441 mg q4wk, 882 mg q6wk, and 1064 mg q8wk doses, respectively. The mean elimination half-life of aripiprazole following the last dose was 53.9 days for the 1064 mg dose, 55.1 days for the 882 mg dose, and 57.2 days for

  19. Fiber Bragg grating based temperature profiling in ferromagnetic nanoparticles-enhanced radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Jelbuldina, Madina; Korobeinyk, Alina V.; Korganbayev, Sanzhar; Inglezakis, Vassilis J.; Tosi, Daniele

    2018-07-01

    In this work, we report the real-time temperature profiling performed with a fiber Bragg grating (FBG) sensing system, applied to a ferromagnetic nanoparticles (NP)-enhanced radiofrequency ablation (RFA) for interventional cancer care. A minimally invasive RFA setup has been prepared and applied ex vivo on a liver phantom; NPs (with concentrations of 5 and 10 mg/mL) have been synthesized and injected within the tissue prior to ablation, in order to facilitate the heat distribution to the peripheral sides of the treated tissue. A network of 15 FBG sensors has been deployed in situ in order to detect the parenchymal temperature distribution and estimate the thermal profiles in real time during the ablation, highlighting the impact of the NPs on the RFA mechanism. The results confirm that NP-enhanced ablation with 5 mg/mL density shows a better heat penetration that a standard RFA achieving an almost double-sized lesion, while a higher density (10 mg/mL) does not improve the heat distribution. Thermal data are reported highlighting both spatial and temporal gradients, evaluating the capability of NPs to deliver sufficient heating to the peripheral sides of the tumor borders.

  20. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches.

    PubMed

    Jones, Hannah M; Mayawala, Kapil; Poulin, Patrick

    2013-04-01

    Physiologically based pharmacokinetic (PBPK) models are built using differential equations to describe the physiology/anatomy of different biological systems. Readily available in vitro and in vivo preclinical data can be incorporated into these models to not only estimate pharmacokinetic (PK) parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. They provide a mechanistic framework to understand and extrapolate PK and dose across in vitro and in vivo systems and across different species, populations and disease states. Using small molecule and large molecule examples from the literature and our own company, we have shown how PBPK techniques can be utilised for human PK and dose prediction. Such approaches have the potential to increase efficiency, reduce the need for animal studies, replace clinical trials and increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however some limitations need to be addressed to realise its application and utility more broadly.

  1. A pharmacokinetic and pharmacodynamic drug interaction between rosuvastatin and valsartan in healthy subjects.

    PubMed

    Jung, Jin Ah; Lee, Soo-Yun; Kim, Jung-Ryul; Ko, Jae-Wook; Jang, Seong Bok; Nam, Su Youn; Huh, Wooseong

    2015-01-01

    Valsartan, an angiotensin-receptor blocker, and rosuvastatin, a competitive inhibitor of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, are frequently coadministered to treat patients with hypertension and dyslipidemia. The study reported here sought to evaluate the pharmacokinetic and pharmacodynamic interactions between rosuvastatin and valsartan in healthy Korean subjects. Thirty healthy male Korean subjects were administered with rosuvastatin (20 mg/day), valsartan (160 mg/day), and both drugs concomitantly for 4 days in a randomized, open-label, multiple-dose, three-treatment, three-period crossover study. Plasma concentrations of rosuvastatin, N-desmethyl rosuvastatin, and valsartan were determined using validated high-performance liquid chromatography with tandem mass spectrometry. Lipid profiles and vital signs (systolic and diastolic blood pressure and pulse rate) were measured for the pharmacodynamic assessment. For rosuvastatin, the geometric mean ratios (90% confidence intervals [CIs]) of coadministration to mono-administration were 0.8809 (0.7873-0.9857) for maximum plasma concentration at steady state and 0.9151 (0.8632-0.9701) for area under the concentration-time curve (AUC) over a dosing interval at steady state. For valsartan, the geometric mean ratios (90% CIs) of those were 0.9300 (0.7946-1.0884) and 1.0072 (0.8893-1.1406), respectively. There were no significant differences in the metabolic ratio of N-desmethyl rosuvastatin AUC to rosuvastatin AUC between coadministration and rosuvastatin alone. No interaction was found in terms of systolic or diastolic blood pressure or lipid profiles. Combined treatment with valsartan and rosuvastatin was generally well tolerated without serious adverse events. The pharmacokinetic profiles of rosuvastatin and valsartan in combination were comparable with those of rosuvastatin and valsartan administered individually, suggesting that their individual pharmacokinetics were not affected by their

  2. Pharmacokinetics of Epsilon-Aminocaproic Acid in Neonates

    PubMed Central

    Eaton, Michael P.; Alfieris, George M; Sweeney, Dawn M; Angona, Ronald E; Cholette, Jill M; Venuto, Charles; Anderson, Brian

    2016-01-01

    Background Antifibrinolytic medications such as epsilon-aminocaproic acid (EACA) are used in pediatric heart surgery to decrease surgical bleeding and transfusion. Dosing schemes for neonates are often based on adult regimens, or are simply empiric, in part due to the lack of neonatal pharmacokinetic information. We sought to determine the pharmacokinetics of EACA in neonates undergoing cardiac surgery and to devise a dosing regimen for this population. Methods Ten neonates undergoing cardiac surgery with cardiopulmonary bypass were given EACA according to standard practice, and blood was drawn at 10 time points to determine drug concentrations. Time-concentration profiles were analyzed using nonlinear mixed effects models. Parameter estimates (standardized to a 70 kg person) were used to develop a dosing regimen intended to maintain a target concentration shown to inhibit fibrinolysis in neonatal plasma (50 mg/L). Results Pharmacokinetics were described using a two compartment model plus an additional compartment for the cardiopulmonary bypass pump. First order elimination was described with a clearance of 5.07 L/h*(WT/70) 0.75. Simulation showed a dosing regimen with a loading dose of 40 mg/kg, and an infusion of 30 mg/kg/h, with a pump prime concentration of 100 mg/L maintained plasma concentrations above 50 mg/L in 90% of neonates during cardiopulmonary bypass surgery. Conclusions EACA clearance, expressed using allometry, is reduced in neonates compared to older children and adults. Loading dose and infusion dose are approximately half those required in children and adults. PMID:25723765

  3. Prediction of Fetal Darunavir Exposure by Integrating Human Ex-Vivo Placental Transfer and Physiologically Based Pharmacokinetic Modeling.

    PubMed

    Schalkwijk, Stein; Buaben, Aaron O; Freriksen, Jolien J M; Colbers, Angela P; Burger, David M; Greupink, Rick; Russel, Frans G M

    2017-07-25

    Fetal antiretroviral exposure is usually derived from the cord-to-maternal concentration ratio. This static parameter does not provide information on the pharmacokinetics in utero, limiting the assessment of a fetal exposure-effect relationship. The aim of this study was to incorporate placental transfer into a pregnancy physiologically based pharmacokinetic model to simulate and evaluate fetal darunavir exposure at term. An existing and validated pregnancy physiologically based pharmacokinetic model of maternal darunavir/ritonavir exposure was extended with a feto-placental unit. To parameterize the model, we determined maternal-to-fetal and fetal-to-maternal darunavir/ritonavir placental clearance with an ex-vivo human cotyledon perfusion model. Simulated maternal and fetal pharmacokinetic profiles were compared with observed clinical data to qualify the model for simulation. Next, population fetal pharmacokinetic profiles were simulated for different maternal darunavir/ritonavir dosing regimens. An average (±standard deviation) maternal-to-fetal cotyledon clearance of 0.91 ± 0.11 mL/min and fetal-to-maternal clearance of 1.6 ± 0.3 mL/min was determined (n = 6 perfusions). Scaled placental transfer was integrated into the pregnancy physiologically based pharmacokinetic model. For darunavir 600/100 mg twice a day, the predicted fetal maximum plasma concentration, trough concentration, time to maximum plasma concentration, and half-life were 1.1, 0.57 mg/L, 3, and 21 h, respectively. This indicates that the fetal population trough concentration is higher or around the half-maximal effective darunavir concentration for a resistant virus (0.55 mg/L). The results indicate that the population fetal exposure after oral maternal darunavir dosing is therapeutic and this may provide benefits to the prevention of mother-to-child transmission of human immunodeficiency virus. Moreover, this integrated approach provides a tool to prevent fetal toxicity or

  4. Disposition pathways and pharmacokinetics of herbal medicines in humans.

    PubMed

    He, S-M; Li, C G; Liu, J-P; Chan, E; Duan, W; Zhou, S-F

    2010-01-01

    full understanding of their pharmacokinetic profiles. To optimize the use of herbal remedies, further clinical studies to explore their biological fate including the disposition pathways and kinetics in the human body are certainly needed.

  5. Development of a Physiologically Based Pharmacokinetic Model for Sinogliatin, a First-in-Class Glucokinase Activator, by Integrating Allometric Scaling, In Vitro to In Vivo Exploration and Steady-State Concentration-Mean Residence Time Methods: Mechanistic Understanding of its Pharmacokinetics.

    PubMed

    Song, Ling; Zhang, Yi; Jiang, Ji; Ren, Shuang; Chen, Li; Liu, Dongyang; Chen, Xijing; Hu, Pei

    2018-04-06

    The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for sinogliatin (HMS-5552, dorzagliatin) by integrating allometric scaling (AS), in vitro to in vivo exploration (IVIVE), and steady-state concentration-mean residence time (C ss -MRT) methods and to provide mechanistic insight into its pharmacokinetic properties in humans. Human major pharmacokinetic parameters were analyzed using AS, IVIVE, and C ss -MRT methods with available preclinical in vitro and in vivo data to understand sinogliatin drug metabolism and pharmacokinetic (DMPK) characteristics and underlying mechanisms. On this basis, an initial mechanistic PBPK model of sinogliatin was developed. The initial PBPK model was verified using observed data from a single ascending dose (SAD) study and further optimized with various strategies. The final model was validated by simulating sinogliatin pharmacokinetics under a fed condition. The validated model was applied to support a clinical drug-drug interaction (DDI) study design and to evaluate the effects of intrinsic (hepatic cirrhosis, genetic) factors on drug exposure. The two-species scaling method using rat and dog data (TS- rat,dog ) was the best AS method in predicting human systemic clearance in the central compartment (CL). The IVIVE method confirmed that sinogliatin was predominantly metabolized by cytochrome P450 (CYP) 3A4. The C ss -MRT method suggested dog pharmacokinetic profiles were more similar to human pharmacokinetic profiles. The estimated CL using the AS and IVIVE approaches was within 1.5-fold of that observed. The C ss -MRT method in dogs also provided acceptable prediction of human pharmacokinetic characteristics. For the PBPK approach, the 90% confidence intervals (CIs) of the simulated maximum concentration (C max ), CL, and area under the plasma concentration-time curve (AUC) of sinogliatin were within those observed and the 90% CI of simulated time to C max (t max ) was closed to that

  6. Pharmacokinetic Profile and Palatability of Atomoxetine Oral Solution in Healthy Japanese Male Adults.

    PubMed

    Nakano, Masako; Witcher, Jennifer; Satoi, Yoichi; Goto, Taro

    2016-11-01

    There is a clinical need for a liquid formulation of atomoxetine. We assessed the safety and bioequivalence of an atomoxetine oral solution. This was an open-label, randomized, crossover study. Healthy adult male Japanese subjects (n = 42) with a cytochrome P450 2D6 extensive (including intermediate and ultrarapid) metabolizer genotype were administered atomoxetine 50 mg as oral solution and capsules once each, with a washout period >5 days between doses. Blood samples were used to analyze pharmacokinetic parameters, particularly maximum observed drug concentration (C max ) and area under the concentration vs. time curve from time zero to the last time point with a measurable concentration (AUC 0-last ). Bioequivalence was concluded if the 90 % confidence interval of the ratio of geometric means between formulations for both C max and AUC 0-last were within the interval of 0.8-1.25. Safety assessments included determination of adverse events. Taste was evaluated via a five-item questionnaire immediately and 10 min after taking atomoxetine oral solution. Forty subjects completed the study. Plasma concentration-time profiles of atomoxetine oral solution and capsules were similar, and the statistical analysis of systemic exposure showed that the two formulations were bioequivalent. Adverse events were mild and similar in type and frequency between the formulations. For taste acceptability, only 7.1 % of subjects responded that the oral solution would be difficult to take every day. Atomoxetine oral solution is bioequivalent to atomoxetine capsules and potentially fulfills the need for an oral solution atomoxetine formulation that will facilitate treatment of children with attention-deficit hyperactivity disorder.

  7. A COMPREHENSIVE INSIGHT ON OCULAR PHARMACOKINETICS

    PubMed Central

    Agrahari, Vibhuti; Mandal, Abhirup; Agrahari, Vivek; Trinh, Hoang My; Joseph, Mary; Ray, Animikh; Hadji, Hicheme; Mitra, Ranjana; Pal, Dhananjay; Mitra, Ashim K.

    2017-01-01

    Eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment model of ocular drug delivery has been developed for describing the absorption, distribution and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems and routes of administration are discussed including factors affecting intraocular bioavailability. Factors such as pre-corneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, drug metabolism renders ocular delivery challenging and elaborated in this manuscript. Several compartment models are discussed those are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations. PMID:27798766

  8. Pharmacokinetic Studies of Gel System Containing Ibuprofen Solid Nanoparticles.

    PubMed

    Nagai, Noriaki; Tanino, Tadatoshi; Ito, Yoshimasa

    2016-12-01

    In the therapy of rheumatoid arthritis, ibuprofen (IBU) is widely used; however, it has been limited the clinical use by its systemic side effect, such as gastrointestinal lesions. Therefore, we prepared topical gel ointment used IBU solid nanoparticles (IBU nano -gel formulation). In addition, we demonstrated their anti-inflammatory effect by using arthritis model rat (adjuvant-induced arthritis rat, AA rat). The gel formulations were prepared using additives (Carbopol 934, 2-hydroxypropyl-β-cyclodextrin and methylcellulose) and bead mill-method. The IBU particle size in the IBU nano -gel formulation was 208 nm. The increase in inflammation of the hind feet of AA rats was attenuated by the treatment with the IBU nano -gel formulation, and preventive effect was higher than that of a gel formulation containing IBUmicroparticles (IBU micro -gel formulation, mean particle size 85.4 μm); the accumulation and permeability through the skin of IBU from the IBU nano -gel formulation were significantly larger in comparison with the IBU micro -gel formulation. Further, no gastrointestinal lesions were observed in AA rats following the repetitive administration of the 5% IBU nano -gel formulation (0.30 g) for 42 days (once a day). These results suggest that the dermal application of IBU-nanoparticles provide effective and efficient therapy that spares patients from unwanted side effects.

  9. Pharmacokinetics in Healthy Volunteers of Sumatriptan 25-mg Oral Tablet Versus 25-mg Extemporaneous Suppository.

    PubMed

    Desai, Hiral D; Shriley, Kara L; Penzak, Scott R; Strom, J Grady; Hon, Yuen Yi; Spratlin, Vicky; Jann, Michael W

    2003-01-01

    The pharmacokinetics of an extemporaneous 25-mg suppository formulation of sumatriptan were compared to those of the marketed 25-mg oral tablet. Sixteen healthy volunteers enrolled in this open-label, two-way crossover study. Fifteen subjects completed the study. The pharmacokinetics of the suppository and the oral tablet were significantly different. Tmax was observed at 0.5 hours in 12 of 15 subjects with the extemporaneous suppository, compared with the range of 0.75 hours to 1.5 hours in 13 of 15 subjects with the oral tablet. The mean Cmax and area under the plasma concentration time curve were 5.4-fold and fourfold greater for the suppository than for the oral tablet. Both formulations were well tolerated, with mild headache experienced in only three subjects. Based upon its pharmacokinetic profile, the extemporaneous suppository may represent a useful alternative therapeutic administartion route for some patients.

  10. Effect of gemfibrozil and fenofibrate on the pharmacokinetics of atorvastatin.

    PubMed

    Whitfield, Lloyd R; Porcari, Anthony R; Alvey, Christine; Abel, Robert; Bullen, William; Hartman, Daniel

    2011-03-01

    Coadministration of statins and fibrates is beneficial in some patients by allowing simultaneous reduction of triglycerides and low-density lipoprotein cholesterol alongside elevation of high-density lipoprotein cholesterol. However, the potential for drug interactions must be taken into consideration. Gemfibrozil increases systemic exposure to various different statins, whereas similar effects are not observed with fenofibrate, suggesting it may be a more appropriate choice for coadministration with statins. Gemfibrozil is reported to cause a moderate increase in the area under the curve (AUC) of atorvastatin, but the effect of fenofibrate on atorvastatin pharmacokinetics has not been described. This study compared the effects of multiple-dose administration of gemfibrozil and fenofibrate on the single-dose pharmacokinetics of atorvastatin. Gemfibrozil coadministration led to significant increases in the AUC of atorvastatin, 2-hydroxyatorvastatin, 2-hydroxyatorvastatin lactone, and 4-hydroxyatorvastatin lactone. In contrast, fenofibrate administration did not lead to clinically meaningful changes in the AUC for atorvastatin, atorvastatin lactone, 2-hydroxyatorvastatin, or 2-hydroxyatorvastatin lactone. The absence of a significant pharmacokinetic interaction between fenofibrate and atorvastatin is consistent with recent results showing no difference in safety profile between atorvastatin as monotherapy or in combination with fenofibric acid. Together, these data suggest that atorvastatin-fenofibrate combination therapy is unlikely to pose a risk to patients.

  11. Pharmacokinetics in pregnancy; clinical significance.

    PubMed

    Koren, Gideon

    2011-01-01

    In pharmacokinetics drug absorption, distribution, clearance, and bioequivalence are usually considered, but during pregnancy the most important variable is adherence or compliance. Pharmacokinetic changes during pregnancy that may lead to changes in maternal drug use are described through presentation of cases highlighting the relevance of these changes. Non-invasive methods of pharmacokinetic analysis, such as determining concentrations of drug in hair, are now being tested and used.Pharmacokinetics are important, but one needs to consider the entire pregnant state and its circumstances when treating women. One treats people, not a "volume of distribution" or a drug level. Therapy should be individualized as much as possible, addressing kinetic changes in the context of dynamic alterations and the effects of underlying medical conditions. To ensure that women are not orphaned from advances in drug therapy, much more research is needed into the determinants of pharmacokinetic and pharmacodynamic changes in pregnancy.

  12. Pharmacokinetics of 14C-isotretinoin in healthy volunteers and volunteers with biliary T-tube drainage.

    PubMed

    Colburn, W A; Vane, F M; Bugge, C J; Carter, D E; Bressler, R; Ehmann, C W

    1985-01-01

    The pharmacokinetics of isotretinoin and 4-oxoisotretinoin in blood, as well as the blood concentrations and urinary, biliary, and fecal excretion of carbon-14 were studied using liquid scintillation counting techniques and reverse phase HPLC methods following a single 80-mg oral suspension dose of 14C-isotretinoin to four healthy male subjects and two patients with biliary T-tube drainage. Approximately 80% of the dose was recovered as 14C in excreta during the course of the study of which about equal fractions were in the urine and feces. Secondary peaks in blood concentrations of 14C were observed in the healthy subjects whereas they were not seen in the patients with T-tubes. The harmonic mean apparent half-life for isotretinoin in the blood of the healthy subjects was 13.6 hr, whereas the corresponding value for the 14C was 90 hr. Although a rigorous comparison of pharmacokinetic parameters between healthy subjects and T-tube patients was not feasible due to the limited number of subjects studied, comparisons of certain trends in the pharmacokinetic profiles gave some possible insights into the role of biliary excretion and enterohepatic cycling on the disposition of isotretinoin. The data for isotretinoin and 4-oxoisotretinoin coupled with the total carbon-14 data suggest that the oral dose of 14C-isotretinoin is absorbed to a similar extent by the healthy subjects and T-tube patients, whereas T-tube patients clear the drug more rapidly. The biliary excretion and possible enterohepatic circulation of isotretinoin and its metabolites may have significant impact on the pharmacokinetic profile of isotretinoin in man.

  13. A pilot pharmacokinetic study of miroestrol and deoxymiroestrol on rabbit sera using polyclonal antibody-based icELISA analysis.

    PubMed

    Kitisripanya, Tharita; Udomsin, Orapin; Komaikul, Jukrapun; Inyai, Chadathorn; Limsuwanchote, Supattra; Yusakul, Gorawit; Putalun, Waraporn

    2018-02-01

    Miroestrol (ME) and deoxymiroestrol (DME) are the most potent phytoestrogens and bioactive markers in Pueraria candollei var. mirifica tuberous roots. To understand their pharmacokinetic profiles, a pharmacokinetic study of ME and DME, at 0.43 and 0.21 mg per kg body weight, respectively, in three rabbits was performed after orally administering a single dose of P. candollei var. mirifica enriched fraction extract. Two established polyclonal antibody-based indirect competitive enzyme-linked immunosorbent assays were validated to determine ME and DME in rabbit sera. In rabbits, the area under the 0- to 48-hr concentration-time curve of ME and DME were 854.92 and 1,692.84 ng·h/ml, respectively. The maximum concentration of ME was measured 1 hr after administration as 69.62 ± 8.28 ng/ml, and the maximum concentration of DME was measured at 3 hr as 81.8 ± 5.43 ng/ml. These results provide an initial approach for designing and studying the relationship between the ME and DME levels and their therapeutic effects based on their pharmacokinetic profiles. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Gene expression profiling in rat kidney after intratracheal exposure to cadmium-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Coccini, Teresa; Roda, Elisa; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura; Manzo, Luigi

    2012-08-01

    While nephrotoxicity of cadmium is well documented, very limited information exists on renal effects of exposure to cadmium-containing nanomaterials. In this work, "omics" methodologies have been used to assess the action of cadmium-containing silica nanoparticles (Cd-SiNPs) in the kidney of Sprague-Dawley rats exposed intratracheally. Groups of animals received a single dose of Cd-SiNPs (1 mg/rat), CdCl2 (400 μg/rat) or 0.1 ml saline (control). Renal gene expression was evaluated 7 and 30 days post exposure by DNA microarray technology using the Agilent Whole Rat Genome Microarray 4x44K. Gene modulating effects were observed in kidney at both time periods after treatment with Cd-SiNPs. The number of differentially expressed genes being 139 and 153 at the post exposure days 7 and 30, respectively. Renal gene expression changes were also observed in the kidney of CdCl2-treated rats with a total of 253 and 70 probes modulated at 7 and 30 days, respectively. Analysis of renal gene expression profiles at day 7 indicated in both Cd-SiNP and CdCl2 groups downregulation of several cluster genes linked to immune function, oxidative stress, and inflammation processes. Differing from day 7, the majority of cluster gene categories modified by nanoparticles in kidney 30 days after dosing were genes implicated in cell regulation and apoptosis. Modest renal gene expression changes were observed at day 30 in rats treated with CdCl2. These results indicate that kidney may be a susceptible target for subtle long-lasting molecular alterations produced by cadmium nanoparticles locally instilled in the lung.

  15. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kishimoto, Takashi K.; Ferrari, Joseph D.; Lamothe, Robert A.; Kolte, Pallavi N.; Griset, Aaron P.; O'Neil, Conlin; Chan, Victor; Browning, Erica; Chalishazar, Aditi; Kuhlman, William; Fu, Fen-Ni; Viseux, Nelly; Altreuter, David H.; Johnston, Lloyd; Maldonado, Roberto

    2016-10-01

    The development of antidrug antibodies (ADAs) is a common cause for the failure of biotherapeutic treatments and adverse hypersensitivity reactions. Here we demonstrate that poly(lactic-co-glycolic acid) (PLGA) nanoparticles carrying rapamycin, but not free rapamycin, are capable of inducing durable immunological tolerance to co-administered proteins that is characterized by the induction of tolerogenic dendritic cells, an increase in regulatory T cells, a reduction in B cell activation and germinal centre formation, and the inhibition of antigen-specific hypersensitivity reactions. Intravenous co-administration of tolerogenic nanoparticles with pegylated uricase inhibited the formation of ADAs in mice and non-human primates and normalized serum uric acid levels in uricase-deficient mice. Similarly, the subcutaneous co-administration of nanoparticles with adalimumab resulted in the durable inhibition of ADAs, leading to normalized pharmacokinetics of the anti-TNFα antibody and protection against arthritis in TNFα transgenic mice. Adjunct therapy with tolerogenic nanoparticles represents a novel and broadly applicable approach to prevent the formation of ADAs against biologic therapies.

  16. Pharmacokinetics and Disposition of Rilpivirine (TMC278) Nanosuspension as a Long-Acting Injectable Antiretroviral Formulation▿

    PubMed Central

    van ′t Klooster, Gerben; Hoeben, Eva; Borghys, Herman; Looszova, Adriana; Bouche, Marie-Paule; van Velsen, Frans; Baert, Lieven

    2010-01-01

    The next-generation human immunodeficiency virus type 1 (HIV-1) nonnucleoside reverse transcriptase inhibitor rilpivirine (TMC278) was administered in rats and dogs as single intramuscular (IM) or subcutaneous (SC) injections, formulated as a 200-nm nanosuspension. The plasma pharmacokinetics, injection site concentrations, disposition to lymphoid tissues, and tolerability were evaluated in support of its potential use as a once-monthly antiretroviral agent in humans. Rilpivirine plasma concentration-time profiles showed sustained and dose-proportional release over 2 months in rats and over 6 months in dogs. The absolute bioavailability approached 100%, indicating a complete release from the depot, in spite of rilpivirine concentrations still being high at the injection site(s) 3 months after administration in dogs. For both species, IM administration was associated with higher initial peak plasma concentrations and a more rapid washout than SC administration, which resulted in a stable plasma-concentration profile over at least 6 weeks in dogs. The rilpivirine concentrations in the lymph nodes draining the IM injection site exceeded the plasma concentrations by over 100-fold 1 month after administration, while the concentrations in the lymphoid tissues decreased to 3- to 6-fold the plasma concentrations beyond 3 months. These observations suggest uptake of nanoparticles by macrophages, which generates secondary depots in these lymph nodes. Both SC and IM injections were generally well tolerated and safe, with observations of a transient inflammatory response at the injection site. The findings support clinical investigations of rilpivirine nanosuspension as a long-acting formulation to improve adherence during antiretroviral therapy and for preexposure prophylaxis. PMID:20160045

  17. Tolerability and pharmacokinetic profile of a sunitinib powder formulation in pediatric patients with refractory solid tumors: a Children’s Oncology Group study

    PubMed Central

    Shusterman, Suzanne; Reid, Joel M.; Ingle, Ashish M.; Ahern, Charlotte H.; Baruchel, Sylvain; Glade-Bender, Julia; Ivy, Percy; Adamson, Peter C.; Blaney, Susan M.

    2012-01-01

    Purpose Sunitinib is an oral tyrosine kinase inhibitor of VEGF, PDGF, c-KIT, and flt-3 receptors. A pediatric phase I study of sunitinib capsules identified the maximum tolerated dose as 15 mg/m2/day. This study was conducted to evaluate sunitinib given as a powder formulation. Methods Sunitinib 15 mg/m2 was administered orally daily for 4 weeks on/2 weeks off to patients <21 years old with refractory solid tumors. Sunitinib capsules were opened, and the powder sprinkled onto applesauce or yogurt. Plasma levels of sunitinib and an active metabolite, SU12662, were measured, and pharmacokinetic parameters were estimated. Results 12 patients, median age 13 (range 4–21) years, were treated. The most common first-cycle toxicities were leucopenia (n = 6), fatigue (n = 5), neutropenia (n = 4), and hypertension (n = 4). Three patients had dose-limiting toxicities (DLTs) in cycle 1 (dizziness/back pain, hand–foot syndrome, and intratumoral hemorrhage/hypoxia). A median peak plasma sunitinib concentration of 21 (range 6–36) ng/ml was reached at a median of 4 (range 4–8) h after the first dose. The median exposure (AUC0–48) was 585 (range 196–1,059) h ng/l. The median half-life was 23 (range 13–36) h. The median trough concentration measured before day 14 dosing was 32 (range 12–58) ng/ml. Conclusions The pharmacokinetic profile of sunitinib appears similar between a powder formulation and published data using capsules. The powder formulation allows patients unable to swallow capsules to receive sunitinib. PMID:22179104

  18. Effect of hepatic impairment on the pharmacokinetics of a single dose of cilostazol.

    PubMed

    Bramer, S L; Forbes, W P

    1999-01-01

    The pharmacokinetic profiles of cilostazol and its metabolites following a single oral dose of cilostazol 100 mg were compared between individuals with impaired and normal liver function. The study was conducted as a single-centre, open-label, single dose pharmacokinetic and tolerability trial. 12 patients with impaired and compensated liver function were compared with 12 volunteers with normal liver function. Participants in each group were matched for gender, age and weight. Of the 12 patients with hepatic impairment examined in this study, 10 had mild impairment (Child-Pugh class A) and 2 had moderate impairment (Child-Pugh class B). Blood and urine were collected up to 144 hours after drug administration. Pharmacokinetics were determined by noncompartmental methods. Protein binding did not differ between the groups (95.2% healthy volunteers, 94.6% hepatically impaired patients). Mean +/- SD unbound oral clearance of cilostazol decreased by 8.6% because of hepatic impairment (3380 +/- 1400 ml/min in healthy volunteers, 3260 +/- 2030 ml/min in hepatically impaired patients). Total urinary excretion of metabolites was significantly higher in healthy volunteers (26 vs 17% of dose). Overall, the pharmacokinetics of cilostazol and its metabolites, OPC-13213 and OPC-13015, were not substantially different in those with mild and moderate hepatic disease compared with values in healthy volunteers. Except for terminal-phase disposition half-life and apparent terminal-phase volume of distribution for cilostazol, the ratios of geometric means of pharmacokinetic parameters for plasma cilostazol, OPC-13213 and OPC-13015 in those with hepatic impairment versus healthy volunteers were close to 100%. Based on the results of the pharmacokinetic analysis, dose adjustment in patients with mild hepatic impairment is not necessary. However, caution should be exercised when cilostazol is administered to patients with moderate or severe hepatic impairment.

  19. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route.

    PubMed

    Happy Agarwal; Soumya Menon; Venkat Kumar, S; Rajeshkumar, S

    2018-04-25

    A large array of diseases caused by bacterial pathogens and origination of multidrug resistance in their gene provokes the need of developing new vectors or novel drug molecules for effective drug delivery and thus, better treatment of disease. The nanoparticle has emerged as a novel drug molecule in last decade and has been used in various industrial fields like cosmetics, healthcare, agricultural, pharmaceuticals due to their high optical, electronic, medicinal properties. Use of nanoparticles as an antibacterial agent remain in current studies with metal nanoparticles like silver, gold, copper, iron and metal oxide nanoparticles like zinc oxide, copper oxide, titanium oxide and iron oxide nanoparticles. The high anti-bacterial activity of nanoparticles is due to their large surface area to volume ratio which allows binding of a large number of ligands on nanoparticle surface and hence, its complexation with receptors present on the bacterial surface. Green synthesis of Zinc Oxide Nanoparticle (ZnO NP) and its anti-bacterial application has been particularly discussed in the review literature. The present study highlights differential nanoparticle attachment to gram + and gram - bacterial surface and different mechanism adopted by nanoparticle for bacterial control. Pharmacokinetics and applications of ZnO NP are also discussed briefly. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Safety, pharmacokinetics, and pharmacodynamics of BMS-986142, a novel reversible BTK inhibitor, in healthy participants.

    PubMed

    Lee, Sun Ku; Xing, Jun; Catlett, Ian M; Adamczyk, Robert; Griffies, Amber; Liu, Ang; Murthy, Bindu; Nowak, Miroslawa

    2017-06-01

    BMS-986142 is an oral, small-molecule reversible inhibitor of Bruton's tyrosine kinase. The main objectives of our phase I studies were to characterize the safety and tolerability, pharmacokinetics, and pharmacodynamics of BMS-986142 in healthy participants, and to investigate the potential for the effect of BMS-986142 on the PK of methotrexate (MTX) in combination. In a combined single ascending dose and multiple ascending dose study, the safety, pharmacokinetics, and pharmacodynamics of BMS-986142 were assessed in healthy non-Japanese participants following administration of a single dose (5-900 mg) or multiple doses (25-350 mg, once daily for 14 days). In a drug-drug interaction study, the effect of BMS-986142 (350 mg, once daily for 5 days) on the single-dose pharmacokinetics of MTX (7.5 mg) was assessed in healthy participants. BMS-986142 was generally well tolerated, alone and in combination with MTX. BMS-986142 was rapidly absorbed with peak concentrations occurring within 2 h, and was eliminated with a mean half-life ranging from 7 to 11 h. Exposure of BMS-986142 appeared dose proportional within the dose ranges tested. A dose- and concentration-dependent inhibition of CD69 expression was observed following administration of BMS-986142. BMS-986142 did not affect the pharmacokinetics of MTX. BMS-986142 was well tolerated at the doses tested, had pharmacokinetic and pharmacodynamic profiles which support once-daily dosing, and can be coadministered with MTX without the pharmacokinetic interaction of BMS-986142 on MTX.

  1. Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: a Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use.

    PubMed

    Samkoe, Kimberley S; Gunn, Jason R; Marra, Kayla; Hull, Sally M; Moodie, Karen L; Feldwisch, Joachim; Strong, Theresa V; Draney, Daniel R; Hoopes, P Jack; Roberts, David W; Paulsen, Keith; Pogue, Brian W

    2017-08-01

    ABY-029, a synthetic Affibody peptide, Z03115-Cys, labeled with a near-infrared fluorophore, IRDye® 800CW, targeting epidermal growth factor receptor (EGFR) has been produced under good manufacturing practices for a US Food and Drug Administration-approved first-in-use human study during surgical resection of glioma, as well as other tumors. Here, the pharmacology, phototoxicity, receptor activity, and biodistribution studies of ABY-029 were completed in rats, prior to the intended human use. Male and female Sprague Dawley rats were administered a single intravenous dose of varying concentrations (0, 245, 2449, and 24,490 μg/kg corresponding to 10×, 100×, and 1000× an equivalent human microdose level) of ABY-029 and observed for up to 14 days. Histopathological assessment of organs and tissues, clinical chemistry, and hematology were performed. In addition, pharmacokinetic clearance and biodistribution of ABY-029 were studied in subgroups of the animals. Phototoxicity and ABY-029 binding to human and rat EGFR were assessed in cell culture and on immobilized receptors, respectively. Histopathological assessment and hematological and clinical chemistry analysis demonstrated that single-dose ABY-029 produced no pathological evidence of toxicity at any dose level. No phototoxicity was observed in EGFR-positive and EGFR-negative glioma cell lines. Binding strength and pharmacokinetics of the anti-EGFR Affibody molecules were retained after labeling with the dye. Based on the successful safety profile of ABY-029, the 1000× human microdose 24.5 mg/kg was identified as the no observed adverse effect level following intravenous administration. Conserved binding strength and no observed light toxicity also demonstrated ABY-029 safety for human use.

  2. Interspecies Mixed-Effect Pharmacokinetic Modeling of Penicillin G in Cattle and Swine

    PubMed Central

    Li, Mengjie; Gehring, Ronette; Tell, Lisa; Baynes, Ronald; Huang, Qingbiao

    2014-01-01

    Extralabel drug use of penicillin G in food-producing animals may cause an excess of residues in tissue which will have the potential to damage human health. Of all the antibiotics, penicillin G may have the greatest potential for producing allergic responses to the consumer of food animal products. There are, however, no population pharmacokinetic studies of penicillin G for food animals. The objective of this study was to develop a population pharmacokinetic model to describe the time-concentration data profile of penicillin G across two species. Data were collected from previously published pharmacokinetic studies in which several formulations of penicillin G were administered to diverse populations of cattle and swine. Liver, kidney, and muscle residue data were also used in this study. Compartmental models with first-order absorption and elimination were fit to plasma and tissue concentrations using a nonlinear mixed-effect modeling approach. A 3-compartment model with extra tissue compartments was selected to describe the pharmacokinetics of penicillin G. Typical population parameter estimates (interindividual variability) were central volumes of distribution of 3.45 liters (12%) and 3.05 liters (8.8%) and central clearance of 105 liters/h (32%) and 16.9 liters/h (14%) for cattle and swine, respectively, with peripheral clearance of 24.8 liters/h (13%) and 9.65 liters/h (23%) for cattle and 13.7 liters/h (85%) and 0.52 liters/h (40%) for swine. Body weight and age were the covariates in the final pharmacokinetic models. This study established a robust model of penicillin for a large and diverse population of food-producing animals which could be applied to other antibiotics and species in future analyses. PMID:24867969

  3. Influence of Panax ginseng on the Steady State Pharmacokinetic Profile of Lopinavir/Ritonavir (LPV/r) in Healthy Volunteers

    PubMed Central

    Calderón, Mónica M.; Chairez, Cheryl L.; Gordon, Lori A.; Alfaro, Raul M.; Kovacs, Joseph A.; Penzak, Scott R.

    2014-01-01

    Study Objective Panax ginseng has been shown in pre-clinical studies to modulate cytochrome P450 (CYP) enzymes involved in the metabolism of HIV protease inhibitors. Therefore, the purpose of this study was to determine the influence of Panax ginseng on the pharmacokinetics of the HIV protease inhibitor combination lopinavir/ritonavir (LPV/r) in healthy volunteers. Design Single sequence, open-label, single-center pharmacokinetic investigation. Setting Government healthcare facility. Subjects Twelve healthy human volunteers. Measurements and Main Results Thirteen healthy volunteers received LPV/r (400/100 mg) twice daily for 29.5 days. On day 15 of LPV/r administration, serial blood samples were collected over 12 hrs for determination of lopinavir and ritonavir concentrations. On study day 16, subjects began taking Panax ginseng 500 mg twice daily, which they continued for 2 weeks in combination with LPV/r. On day 30 of LPV/r administration, serial blood samples were again collected over 12 hrs for determination of lopinavir and ritonavir concentrations. Lopinavir and ritonavir pharmacokinetic parameter values were determined using noncompartmental methods and compared pre- and post-ginseng administration using a student’s t-test, where P < 0.05 was accepted as statistically significant. Conclusion Neither lopinavir nor ritonavir steady-state pharmacokinetics were altered by two weeks of Panax ginseng administration to healthy human volunteers. Thus, a clinically significant interaction between Panax ginseng and LPV/r is unlikely to occur in HIV-infected patients who choose to take these agents concurrently. It is also unlikely that Panax ginseng will interact with other ritonavir-boosted protease inhibitor combinations, although confirmatory data are necessary. PMID:25142999

  4. In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma.

    PubMed

    Ray, Sayantan; Saha, Suman; Sa, Biswanath; Chakraborty, Jui

    2017-04-01

    Considering the existing drawbacks of methotrexate (MTX) with respect to its solubility and toxicity, we incorporated it in a nanoceramic matrix, Mg-Al-layered double hydroxide (LDH) to form LDH-MTX nanoparticles, and the same was in turn encapsulated in a nontoxic and biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), to arrest the initial burst release and dose-dumping-related toxicity, already reported by our group. Our present study was designed to evaluate the pharmacokinetics, tissue distribution, survival rate of the test animals, and antitumor efficacy of the PLGA-LDH-MTX nanoparticles and its counterpart without LDH, PLGA-MTX nanoparticles compared with bare MTX. The median lethal dose (LD 50 ) of the former was higher, compared with bare MTX, using Balb/c nude mice, indicating it to be completely safe for use. Also, a comparative pharmacokinetic and antitumour efficacy study using MTX, PLGA-MTX, and PLGA-LDH-MTX nanoparticles in osteosarcoma-induced Balb/c nude mice in vivo demonstrated superiority of PLGA-LDH-MTX as compared to PLGA-MTX and bare MTX. The results suggest that PLGA-LDH-MTX nanoparticles might exhibit potential advantages over the present-day chemotherapy over bare MTX, for the possibility of treatment of osteosarcoma.

  5. Clinical efficacy and pharmacokinetics of meloxicam in Mediterranean buffalo calves (Bubalus bubalis)

    PubMed Central

    Cagnardi, Petra; Villa, Roberto; D’Andrea, Luigi; Di Loria, Antonio; Ferrante, Maria Carmela; Borriello, Giuliano; Zicarelli, Luigi; Ciaramella, Paolo

    2017-01-01

    The aims of the investigation were to establish for the first time (i) clinical efficacy and (ii) pharmacokinetic profile of meloxicam intravenously (IV) administered in male Mediterranean buffalo calves after surgical orchiectomy. The study was performed on 10 healthy buffalo calves, between 4 and 5 months old and between 127 and 135 kg of body weight (b.w.). An IV injection of 0.5 mg/kg b.w. of meloxicam was administered in six calves (treated group, TG) immediately after surgery; the other four animals were used as untreated control group (CG). The clinical efficacy of meloxicam was evaluated pre- and post-surgery by monitoring respiratory rate (RR), heart rate (HR), rectal temperature (T°C), serum cortisol levels (SCL) and pain score (PS). Significant inter-groups differences were detected at sampling times (T): 4 hour (h) for RR (P<0.05), at T1-4-6-8 h for PS (P<0.05) and at T4-6-8 h for SCL (P < 0.0001). Regarding the mean intra-group values observed pre (T0) and post-surgery (from T15 min to T72 h), significant difference between the groups were found for RR (P<0.01), PS and SCL (P<0.05). The pharmacokinetic profile was best fitted by a two-compartmental model and characterized by a fast distribution half-life and slow elimination half-life (0.09 ± 0.06 h and 21.51 ± 6.4 h, respectively) and meloxicam mean concentrations at 96 h was of 0.18 ± 0.14 μg/mL. The volume of distribution and clearance values were quite low, but reasonably homogenous among individuals (Vdss 142.31 ± 55.08 mL/kg and ClB 4.38 ± 0.95 mL/kg/h, respectively). The IV administration of meloxicam in buffalo calves shows encouraging effects represented by significant and prolonged analgesic effects, significant reduction of SCL as well as similar pharmacokinetic profile to bovine calves. PMID:29077759

  6. Safety, pharmacokinetics, and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma.

    PubMed

    Gan, Hui K; Reardon, David A; Lassman, Andrew B; Merrell, Ryan; van den Bent, Martin; Butowski, Nicholas; Lwin, Zarnie; Wheeler, Helen; Fichtel, Lisa; Scott, Andrew M; Gomez, Erica J; Fischer, JuDee; Mandich, Helen; Xiong, Hao; Lee, Ho-Jin; Munasinghe, Wijith P; Roberts-Rapp, Lisa A; Ansell, Peter J; Holen, Kyle D; Kumthekar, Priya

    2018-05-18

    We recently reported an acceptable safety and pharmacokinetic profile of depatuxizumab mafodotin (depatux-m), formerly called ABT-414, plus radiation and temozolomide in newly diagnosed glioblastoma (arm A). The purpose of this study was to evaluate the safety and pharmacokinetics of depatux-m, either in combination with temozolomide in newly diagnosed or recurrent glioblastoma (arm B) or as monotherapy in recurrent glioblastoma (arm C). In this multicenter phase I dose escalation study, patients received depatux-m (0.5-1.5 mg/kg in arm B, 1.25 mg/kg in arm C) every 2 weeks by intravenous infusion. Maximum tolerated dose (MTD), recommended phase II dose (RP2D), and preliminary efficacy were also determined. Thirty-eight patients were enrolled as of March 1, 2016. The most frequent toxicities were ocular, occurring in 35/38 (92%) patients. Keratitis was the most common grade 3 adverse event observed in 6/38 (16%) patients; thrombocytopenia was the most common grade 4 event seen in 5/38 (13%) patients. The MTD was set at 1.5 mg/kg in arm B and was not reached in arm C. RP2D was declared as 1.25 mg/kg for both arms. Depatux-m demonstrated a linear pharmacokinetic profile. In recurrent glioblastoma patients, the progression-free survival (PFS) rate at 6 months was 30.8% and the median overall survival was 10.7 months. Best Response Assessment in Neuro-Oncology responses were 1 complete and 2 partial responses. Depatux-m alone or in combination with temozolomide demonstrated an acceptable safety and pharmacokinetic profile in glioblastoma. Further studies are currently under way to evaluate its efficacy in newly diagnosed (NCT02573324) and recurrent glioblastoma (NCT02343406).

  7. Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats.

    PubMed

    Di, Xin; Wang, Xin; Di, Xin; Liu, Youping

    2015-11-10

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has been widely used as a traditional medicine and was shown to possess a multitude of health-promoting properties in pre-clinical studies, but its bioavailability was low due to the extensive glucuronidation in liver and intestine, hindering the development of emodin as a feasible chemopreventive agent. In this study, piperine, as a bioenhancer, was used to enhance the bioavailability of emodin by inhibiting its glucuronidation. The pharmacokinetic profiles of emodin after oral administration of emodin (20mg/kg) alone and in combination with piperine (20mg/kg) to rats were investigated via a validated LC/MS/MS method. As the in vivo pharmacokinetic studies had indicated, the AUC and Cmax of emodin were increased significantly after piperine treatment, and the glucuronidation of emodin was markedly inhibited. Our study demonstrated that piperine significantly improved the in vivo bioavailability of emodin and the influence of piperine on the pharmacokinetics of emodin may be attributed to the inhibition of glucuronidation of emodin. Further research is needed to investigate the detailed mechanism of improved bioavailability of emodin via its combination with piperine. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Population pharmacokinetics and maximum a posteriori probability Bayesian estimator of abacavir: application of individualized therapy in HIV-infected infants and toddlers

    PubMed Central

    Zhao, Wei; Cella, Massimo; Della Pasqua, Oscar; Burger, David; Jacqz-Aigrain, Evelyne

    2012-01-01

    AIMS To develop a population pharmacokinetic model for abacavir in HIV-infected infants and toddlers, which will be used to describe both once and twice daily pharmacokinetic profiles, identify covariates that explain variability and propose optimal time points to optimize the area under the concentration–time curve (AUC) targeted dosage and individualize therapy. METHODS The pharmacokinetics of abacavir was described with plasma concentrations from 23 patients using nonlinear mixed-effects modelling (NONMEM) software. A two-compartment model with first-order absorption and elimination was developed. The final model was validated using bootstrap, visual predictive check and normalized prediction distribution errors. The Bayesian estimator was validated using the cross-validation and simulation–estimation method. RESULTS The typical population pharmacokinetic parameters and relative standard errors (RSE) were apparent systemic clearance (CL) 13.4 l h−1 (RSE 6.3%), apparent central volume of distribution 4.94 l (RSE 28.7%), apparent peripheral volume of distribution 8.12 l (RSE14.2%), apparent intercompartment clearance 1.25 l h−1 (RSE 16.9%) and absorption rate constant 0.758 h−1 (RSE 5.8%). The covariate analysis identified weight as the individual factor influencing the apparent oral clearance: CL = 13.4 × (weight/12)1.14. The maximum a posteriori probability Bayesian estimator, based on three concentrations measured at 0, 1 or 2, and 3 h after drug intake allowed predicting individual AUC0–t. CONCLUSIONS The population pharmacokinetic model developed for abacavir in HIV-infected infants and toddlers accurately described both once and twice daily pharmacokinetic profiles. The maximum a posteriori probability Bayesian estimator of AUC0–t was developed from the final model and can be used routinely to optimize individual dosing. PMID:21988586

  9. Intra-articular administration of lidocaine in anaesthetized dogs: pharmacokinetic profile and safety on cardiovascular and nervous systems.

    PubMed

    Di Salvo, A; Bufalari, A; De Monte, V; Cagnardi, P; Marenzoni, M L; Catanzaro, A; Vigorito, V; Della Rocca, G

    2015-08-01

    The intra-articular administration of lidocaine is a frequent practice in human orthopaedic surgical procedures, but an eventual absorption of the drug into the bloodstream can lead to toxicity, mainly concerning the central nervous system and the cardiovascular systems. The purpose of this study was to determine the pharmacokinetic profile and the safety, in terms of cardiovascular and CNS toxicity, of lidocaine after intra-articular administration to anesthetized dogs undergoing arthroscopy. Lidocaine 2% was administered to eight dogs before surgery in differing amounts, depending on the volume of the joints involved, and blood samples were taken at predetermined time points. The maximum serum concentration of lidocaine ranged from 0.50 to 3.01 μg/mL (mean ± SD: 2.18 ± 0.91 μg/mL), and the time to reach it was 28.75 ± 15.74 min. No signs of cardiac toxicity were detected during the entire procedure, and possible signs of CNS toxicity were masked by the anaesthesia. However, concentrations reported in literature as responsible for neurotoxicity in dog were achieved in three of eight investigated subjects. Pending further studies, veterinarians should consider the possibility of side effects occurring following the intra-articular administration of local anaesthetics. © 2014 John Wiley & Sons Ltd.

  10. Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation

    PubMed Central

    Yasir, Mohd; Sara, Udai Vir Singh

    2014-01-01

    In the present study, haloperidol (HP)-loaded solid lipid nanoparticles (SLNs) were prepared to enhance the uptake of HP to brain via intranasal (i.n.) delivery. SLNs were prepared by a modified emulsification–diffusion technique and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release, and stability. All parameters were found to be in an acceptable range. In vitro drug release was found to be 94.16±4.78% after 24 h and was fitted to the Higuchi model with a very high correlation coefficient (R2=0.9941). Pharmacokinetics studies were performed on albino Wistar rats and the concentration of HP in brain and blood was measured by high performance liquid chromatography. The brain/blood ratio at 0.5 h for HP-SLNs i.n., HP sol. i.n. and HP sol. i.v. was 1.61, 0.17 and 0.031, respectively, indicating direct nose-to-brain transport, bypassing the blood–brain barrier. The maximum concentration (Cmax) in brain achieved from i.n. administration of HP-SLNs (329.17±20.89 ng/mL, Tmax 2 h) was significantly higher than that achieved after i.v. (76.95±7.62 ng/mL, Tmax 1 h), and i.n. (90.13±6.28 ng/mL, Tmax 2 h) administration of HP sol. The highest drug-targeting efficiency (2362.43%) and direct transport percentage (95.77%) was found with HP-SLNs as compared to the other formulations. Higher DTE (%) and DTP (%) suggest that HP-SLNs have better brain targeting efficiency as compared to other formulations. PMID:26579417

  11. Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibitor

    PubMed Central

    Yang, Lucy; Boardley, Rebecca L.; Goyal, Navin S.; Robertson, Jonathan; Baldwin, Sandra J.; Newby, David E.; Wilkinson, Ian B.; Tal‐Singer, Ruth; Mayer, Ruth J.; Cheriyan, Joseph

    2016-01-01

    Aims Endothelial‐derived epoxyeicosatrienoic acids may regulate vascular tone and are metabolized by soluble epoxide hydrolase enzymes (sEH). GSK2256294 is a potent and selective sEH inhibitor that was tested in two phase I studies. Methods Single escalating doses of GSK2256294 2–20 mg or placebo were administered in a randomized crossover design to healthy male subjects or obese smokers. Once daily doses of 6 or 18 mg or placebo were administered for 14 days to obese smokers. Data were collected on safety, pharmacokinetics, sEH enzyme inhibition and blood biomarkers. Single doses of GSK2256294 10 mg were also administered to healthy younger males or healthy elderly males and females with and without food. Data on safety, pharmacokinetics and biliary metabolites were collected. Results GSK2256294 was well‐tolerated with no serious adverse events (AEs) attributable to the drug. The most frequent AEs were headache and contact dermatitis. Plasma concentrations of GSK2256294 increased with single doses, with a half‐life averaging 25–43 h. There was no significant effect of age, food or gender on pharmacokinetic parameters. Inhibition of sEH enzyme activity was dose‐dependent, from an average of 41.9% on 2 mg (95% confidence interval [CI] –51.8, 77.7) to 99.8% on 20 mg (95% CI 99.3, 100.0) and sustained for up to 24 h. There were no significant changes in serum VEGF or plasma fibrinogen. Conclusions GSK2256294 was well‐tolerated and demonstrated sustained inhibition of sEH enzyme activity. These data support further investigation in patients with endothelial dysfunction or abnormal tissue repair, such as diabetes, wound healing or COPD. PMID:26620151

  12. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats

    PubMed Central

    Kapetanovic, Izet M.; Huang, Zhihua; Thompson, Thomas N.; McCormick, David L.

    2011-01-01

    Purpose Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a naturally occurring polyphenol with a broad range of possible health benefits, including anti-cancer activity. However, the biological activity of resveratrol may be limited by poor absorption and first-pass metabolism: only low plasma concentrations of resveratrol are seen following oral administration, and metabolism to glucuronide and sulfate conjugates is rapid. Methylated polyphenol analogs (such as pterostilbene [3,5-dimethoxy-4′-hydroxy-trans-stilbene], the dimethylether analog of resveratrol) may overcome these limitations to pharmacologic efficacy. The present study was designed to compare the bioavailability, pharmacokinetics, and metabolism of resveratrol and pterostilbene following equimolar oral dosing in rats. Methods The agents were administered orally via gavage for 14 consecutive days at 50 or 150 mg/kg/day for resveratrol and 56 or 168 mg/kg/day for pterostilbene. Two additional groups were dosed once intravenously with 10 and 11.2 mg/kg for resveratrol and pterostilbene, respectively. Plasma concentrations of agents and metabolites were measured using a high-pressure liquid chromatograph-tandem mass spectrometer system. Noncompartmental analysis was used to derive pharmacokinetic parameters. Results Resveratrol and pterostilbene were approximately 20 and 80% bioavailable, respectively. Following oral dosing, plasma levels of pterostilbene and pterostilbene sulfate were markedly greater than were plasma levels of resveratrol and resveratrol sulfate. Although plasma levels of resveratrol glucuronide exceeded those of pterostilbene glucuronide, those differences were smaller than those of the parent drugs and sulfate metabolites. Conclusions When administered orally, pterostilbene demonstrates greater bioavailability and total plasma levels of both the parent compound and metabolites than does resveratrol. These differences in agent pharmacokinetics suggest that the in vivo biological

  13. Stereoselective pharmacokinetics of moguisteine metabolites in healthy subjects.

    PubMed

    Bernareggi, A; Crema, A; Carlesi, R M; Castoldi, D; Ratti, E; Renoldi, M I; Ratti, D; Ceserani, R; Tognella, S

    1995-01-01

    We studied the pharmacokinetics of moguisteine, a racemic non-narcotic peripheral antitussive drug, in 12 healthy male subjects after a single oral administration of 200 mg. The unchanged drug was absent in plasma and urine of all subjects. Moguisteine was immediately and completely hydrolyzed to its main active metabolite, the free carboxylic acid M1. Therefore, we evaluated the kinetic profiles of M1, of its enantiomers R(+)-M1 and S(-)-M1, and of M1 sulfoxide optical isomers M2/I and M2/II by conventional and stereospecific HPLC. Maximum plasma concentrations for M1 (2.83 mg/l), M2/I (0.26 mg/l) and M2/II (0.40 mg/l), were respectively reached at 1.3, 1.6 and 1.5 h after moguisteine administration. Plasma concentrations declined after the peak with mean apparent terminal half-lives of 0.65 h (M1), 0.88 h (M2/I) and 0.84 h (M2/II). Most of the administered dose was recovered in urine within 6 h from moguisteine treatment. The systemic and renal clearance values indicated high renal extraction ratio for all moguisteine metabolites, and particularly for M1 sulfoxide optical isomers. Plasma concentration-time profiles and urinary excretion patterns for M1 enantiomers R(+)-M1 and S(-)-M1 were quite similar. Thus, for later moguisteine pharmacokinetic evaluations the investigation of the plasma concentration-time curve and the urinary excretion of the sole racemic M1 through non-stereospecific analytical methods may suffice in most cases.

  14. Personalized protein corona on nanoparticles and its clinical implications.

    PubMed

    Corbo, Claudia; Molinaro, Roberto; Tabatabaei, Mateen; Farokhzad, Omid C; Mahmoudi, Morteza

    2017-02-28

    It is now well understood that once in contact with biological fluids, nanoscale objects lose their original identity and acquire a new biological character, referred to as a protein corona. The protein corona changes many of the physicochemical properties of nanoparticles, including size, surface charge, and aggregation state. These changes, in turn, affect the biological fate of nanoparticles, including their pharmacokinetics, biodistribution, and therapeutic efficacy. It is progressively being accepted that even slight variations in the composition of a protein source (e.g., plasma and serum) can substantially change the composition of the corona formed on the surface of the exact same nanoparticles. Recently it has been shown that the protein corona is strongly affected by the patient's specific disease. Therefore, the same nanomaterial incubated with plasma proteins of patients with different pathologies adsorb protein coronas with different compositions, giving rise to the concept of personalized protein corona. Herein, we review this concept along with recent advances on the topic, with a particular focus on clinical relevance.

  15. The pharmacokinetics of enteral antituberculosis drugs in patients requiring intensive care.

    PubMed

    Koegelenberg, C F N; Nortje, A; Lalla, U; Enslin, A; Irusen, E M; Rosenkranz, B; Seifart, H I; Bolliger, C T

    2013-04-05

    There is a paucity of data on the pharmacokinetics of fixed-dose combination enteral antituberculosis treatment in critically ill patients. To establish the pharmacokinetic profile of a fixed-dose combination of rifampicin, isoniazid, pyrazinamide and ethambutol given according to weight via a nasogastric tube to patients admitted to an intensive care unit (ICU). We conducted a prospective, observational study on 10 patients (mean age 32 years, 6 male) admitted to an ICU and treated for tuberculosis (TB). Serum concentrations of the drugs were determined at eight predetermined intervals over 24 hours by means of high-performance liquid chromatography. The therapeutic maximum plasma concentration (Cmax) for rifampicin at time to peak concentration was achieved in only 4 patients, whereas 2 did not achieve therapeutic Cmax for isoniazid. No patient reached sub-therapeutic Cmax for pyrazinamide (6 were within and 4 above therapeutic range). Three patients reached sub-therapeutic Cmax for ethambutol, and 6 patients were within and 1 above the therapeutic range. Patients with a sub-therapeutic rifampicin level had a higher mean Acute Physiology and Chronic Health Evaluation II (APACHE II) score (p=0.03) and a lower estimated glomerular filtration rate (GFR) (p=0.03). A fixed-dose combination tablet, crushed and mixed with water, given according to weight via a nasogastric tube to patients with TB admitted to an ICU resulted in sub-therapeutic rifampicin plasma concentrations in the majority of patients, whereas the other drugs had a more favourable pharmacokinetic profile. Patients with a sub-therapeutic rifampicin concentration had a higher APACHE II score and a lower estimated GFR, which may contribute to suboptimal outcomes in critically ill patients. Studies in other settings have reported similar proportions of patients with 'sub-therapeutic' rifampicin concentrations.

  16. Pharmacokinetics of Escalating Doses of Oral Psilocybin in Healthy Adults.

    PubMed

    Brown, Randall T; Nicholas, Christopher R; Cozzi, Nicholas V; Gassman, Michele C; Cooper, Karen M; Muller, Daniel; Thomas, Chantelle D; Hetzel, Scott J; Henriquez, Kelsey M; Ribaudo, Alexandra S; Hutson, Paul R

    2017-12-01

    Psilocybin is a psychedelic tryptamine that has shown promise in recent clinical trials for the treatment of depression and substance use disorders. This open-label study of the pharmacokinetics of psilocybin was performed to describe the pharmacokinetics and safety profile of psilocybin in sequential, escalating oral doses of 0.3, 0.45, and 0.6 mg/kg in 12 healthy adults. Eligible healthy adults received 6-8 h of preparatory counseling in anticipation of the first dose of psilocybin. The escalating oral psilocybin doses were administered at approximately monthly intervals in a controlled setting and subjects were monitored for 24 h. Blood and urine samples were collected over 24 h and assayed by a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for psilocybin and psilocin, the active metabolite. The pharmacokinetics of psilocin were determined using both compartmental (NONMEM) and noncompartmental (WinNonlin) methods. No psilocybin was found in plasma or urine, and renal clearance of intact psilocin accounted for less than 2% of the total clearance. The pharmacokinetics of psilocin were linear within the twofold range of doses, and the elimination half-life of psilocin was 3 h (standard deviation 1.1). An extended elimination phase in some subjects suggests hydrolysis of the psilocin glucuronide metabolite. Variation in psilocin clearance was not predicted by body weight, and no serious adverse events occurred in the subjects studied. The small amount of psilocin renally excreted suggests that no dose reduction is needed for subjects with mild-moderate renal impairment. Simulation of fixed doses using the pharmacokinetic parameters suggest that an oral dose of 25 mg should approximate the drug exposure of a 0.3 mg/kg oral dose of psilocybin. Although doses of 0.6 mg/kg are in excess of likely therapeutic doses, no serious physical or psychological events occurred during or within 30 days of any dose. NCT02163707.

  17. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake

    NASA Astrophysics Data System (ADS)

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-02-01

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle ‘stealth’. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications.

  18. Biodistribution and Pharmacokinetics of EGFR-Targeted Thiolated Gelatin Nanoparticles Following Systemic Administration in Pancreatic Tumor-Bearing Mice

    PubMed Central

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-01-01

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in a subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56 %ID/mL*h in blood, 187 and 322 %ID/g*h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71 %ID/mL*h in blood and 138 %ID/g*h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models. PMID:23544877

  19. Biodistribution and pharmacokinetics of EGFR-targeted thiolated gelatin nanoparticles following systemic administration in pancreatic tumor-bearing mice.

    PubMed

    Xu, Jing; Gattacceca, Florence; Amiji, Mansoor

    2013-05-06

    The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56%ID/mL·h in blood, 187 and 322%ID/g·h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71%ID/mL·h in blood and 138%ID/g·h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models.

  20. Pharmacokinetics and Pharmacodynamics in Space

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Cintron, Nitza M.

    1990-01-01

    The Pharmacokinetics and Pharmacodynamics Panel met on 29-30 Aug. 1988 at the Lunar and Planetary Institute in Houston, Texas to discuss pharmacokinetic and pharmacodynamic implications of space flight and make recommendations for operational and research strategies. Based on the knowledge available on the physiological changes that occur during space flight, the dependence of pharmacokinetics on physiological factors, and the therapeutic requirements for future space missions, the panel made several recommendations for research. It was suggested that using medications available with a large (wide) therapeutic window will avoid unforeseen therapeutic consequences during flight. The sequence for conducting research was outlined as follows: (1) identify ground-based simulation models (e.g., antiorthostatic bed rest) for conducting pharmacokinetic and pharmacodynamic research; (2) estimate parametric changes in these models using pharmacologic agents that have different pharmacokinetic characteristics and a narrow therapeutic index; (3) verify these findings during flight; and (4) develop and identify appropriate and effective drug delivery systems, dosage forms, and regimens. The panel recommended gaining a thorough understanding of the pharmacokinetic deviations of medications that have a narrow therapeutic index (e.g. cardiovascular drugs and sedative hypnotics) in order to ensure safe and effective treatment during flight with these agents. It was also suggested that basic information on physiological factors such as organ blood flow, protein composition and binding, tissue distribution, and metabolism by hepatic enzymes must be accumulated by conducting ground-based animal and human studies using models of weightlessness. This information will be useful to construct and identify physiologically based pharmacokinetic models that can provide valuable information on the pharmacodynamic consequences of space flight and aid in identifying appropriate therapeutic

  1. Preclinical Pharmacokinetics, Tissue Distribution, and Plasma Protein Binding of Sodium (±)-5-Bromo-2-(α-Hydroxypentyl) Benzoate (BZP), an Innovative Potent Anti-ischemic Stroke Agent.

    PubMed

    Tian, Xin; Li, Hong-Meng; Wei, Jing-Yao; Liu, Bing-Jie; Zhang, Yu-Hai; Wang, Gao-Ju; Chang, Jun-Biao; Qiao, Hai-Ling

    2016-01-01

    Sodium (±)-5-bromo-2-(α-hydroxypentyl) benzoate (BZP) is a potential cardiovascular drug and exerts potent neuroprotective effect against transient and long-term ischemic stroke in rats. BZP could convert into 3-butyl-6-bromo-1(3H)-isobenzofuranone (Br-NBP) in vitro and in vivo. However, the pharmacokinetic profiles of BZP and Br-NBP still have not been evaluated. For the purpose of investigating the pharmacokinetic profiles, tissue distribution, and plasma protein binding of BZP and Br-NBP, a rapid, sensitive, and specific method based on liquid chromatography coupled to mass spectrometry (LC-MS/MS) has been developed for determination of BZP and Br-NBP in biological samples. The results indicated that BZP and Br-NBP showed a short elimination half-life, and pharmacokinetic profile in rats (3, 6, and 12 mg/kg; i.v.) and beagle dogs (1, 2, and 4 mg/kg; i.v.gtt) were obtained after single dosing of BZP. After multiple dosing of BZP, there was no significant accumulation of BZP and Br-NBP in the plasma of rats and beagle dogs. Following i.v. single dose (6 mg/kg) of BZP to rats, BZP and Br-NBP were distributed rapidly into all tissues examined, with the highest concentrations of BZP and Br-NBP in lung and kidney, respectively. The brain distribution of Br-NBP in middle cerebral artery occlusion (MCAO) rats was more than in normal rats (P < 0.05). The plasma protein binding degree of BZP at three concentrations (8000, 20,000, and 80,000 ng/mL) from rat, beagle dog, and human plasma were 98.1-98.7, 88.9-92.7, and 74.8-83.7% respectively. In conclusion, both BZP and Br-NBP showed short half-life, good dose-linear pharmacokinetic profile, wide tissue distribution, and different degree protein binding to various species plasma. This was the first preclinical pharmacokinetic investigation of BZP and Br-NBP in both rats and beagle dogs, which provided vital guidance for further preclinical research and the subsequent clinical trials.

  2. Synthetic lipid nanoparticles targeting steroid organs.

    PubMed

    Mérian, Juliette; Boisgard, Raphaël; Decleves, Xavier; Thezé, Benoît; Texier, Isabelle; Tavitian, Bertrand

    2013-11-01

    Lipidots are original nanoparticulate lipid delivery vectors for drugs and contrast agents made from materials generally regarded as safe. Here, we characterized the in vivo stability, biodistribution, and pharmacokinetics of lipidots. Lipidots 55 nm in diameter and coated with a phospholipid/poly(ethyleneglycol) surfactant shell were triply labeled with (3)H-cholesteryl-hexadecyl-ether, cholesteryl-(14)C-oleate, and the 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine infrared fluorescent dye and injected intravenously into immunocompetent Friend virus B-type mice. The pharmacokinetics and biodistribution of lipidots were analyzed quantitatively in serial samples of blood and tissue and with in vivo optical imaging and were refined by microscopic examination of selected target tissues. The plasmatic half-life of lipidots was approximately 30 min. Radioactive and fluorescent tracers displayed a similar nanoparticle-driven biodistribution, indicative of the lipidots' integrity during the first hours after injection. Lipidots distributed in the liver and, surprisingly, in the steroid-rich organs adrenals and ovaries, but not in the spleen. This tropism was confirmed at the microscopic level by histologic detection of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine. Nanoparticle loading with cholesterol derivatives increased accumulation in ovaries in a dose-dependent manner. This previously unreported distribution pattern is specific to lipidots and attributed to their nanometric size and composition, conferring on them a lipoproteinlike behavior. The affinity of lipidots for steroid hormone-rich areas is of interest to address drugs and contrast agents to lipoprotein-receptor-overexpressing cancer cells found in hormone-dependent tumors.

  3. Pharmacokinetics of penciclovir after oral administration of its prodrug famciclovir to horses.

    PubMed

    Tsujimura, Koji; Yamada, Masayuki; Nagata, Shun-ichi; Yamanaka, Takashi; Nemoto, Manabu; Kondo, Takashi; Kurosawa, Masahiko; Matsumura, Tomio

    2010-03-01

    We investigated the pharmacokinetics of penciclovir after oral administration of its prodrug famciclovir to horses. Following an oral dose of famciclovir at 20 mg/kg, maximum plasma concentrations of penciclovir occurred between 0.75 and 1.5 hr (mean 0.94 + or - 0.38 hr) after dosing and were in the range 2.22 to 3.56 microg/ml (mean 2.87 + or - 0.61 microg/ml). The concentrations of penciclovir declined in a biphasic manner after the peak concentration was attained. The mean half-life of the rapid elimination phase was 1.73 + or - 0.34 hr whereas that of the slow elimination phase was 34.34 + or - 13.93 hr. These pharmacokinetic profiles observed were similar to those of another antiherpesvirus drug, acyclovir, previously reported in horses following oral dosing of its prodrug valacyclovir.

  4. Acid-activatable oxidative stress-inducing polysaccharide nanoparticles for anticancer therapy.

    PubMed

    Yoo, Wooyoung; Yoo, Donghyuck; Hong, Eunmi; Jung, Eunkyeong; Go, Yebin; Singh, S V Berwin; Khang, Gilson; Lee, Dongwon

    2018-01-10

    Drug delivery systems have been extensively developed to enhance the therapeutic efficacy of drugs by altering their pharmacokinetics and biodistribution. However, the use of high quantities of drug delivery systems can cause toxicity due to their poor metabolism and elimination. In this study, we developed polysaccharide-based drug delivery systems which exert potent therapeutic effects and could display synergistic therapeutic effects with drug payloads, leading to dose reduction. Cinnamaldehyde, a major component of cinnamon is known to induce anticancer activity by generating ROS (reactive oxygen species). We developed cinnamaldehyde-conjugated maltodextrin (CMD) as a polymeric prodrug of cinnamaldehyde and a drug carrier. Cinnamaldehyde was conjugated to the hydroxyl groups of maltodextrin via acid-cleavable acetal linkages, allowing facile formulation of nanoparticles and drug encapsulation. CMD nanoparticles induced acid-triggered ROS generation to induce apoptotic cell death. Camptothecin (CPT) was used as a model drug to investigate the potential of CMD nanoparticles as a drug carrier and also evaluate the synergistic anticancer effects with CMD nanoparticles. CPT-loaded CMD nanoparticles exhibited significantly higher anticancer activity than empty CMD nanoparticles and CPT alone in the study of mouse xenograft models, demonstrating the synergistic therapeutic effects of CMD with CPT. Taken together, we believe that CMD nanoparticles hold tremendous potential as a polymeric prodrug of cinnamaldehyde and a drug carrier in anticancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Clinical Pharmacokinetics and Pharmacodynamics of Ledipasvir/Sofosbuvir, a Fixed-Dose Combination Tablet for the Treatment of Hepatitis C.

    PubMed

    German, Polina; Mathias, Anita; Brainard, Diana; Kearney, Brian P

    2016-11-01

    Ledipasvir/sofosbuvir (Harvoni ® ), a fixed-dose combination tablet of an NS5A inhibitor ledipasvir and an NS5B polymerase inhibitor sofosbuvir, is approved in the US, European Union, Canada, and other regions for the treatment of chronic hepatitis C virus infection in adults. Following absorption, ledipasvir reaches maximum plasma concentrations (T max ) 4-4.5 h post-dose and is eliminated with a terminal half-life (t 1/2 ) of 47 h. Sofosbuvir undergoes intracellular activation to an active triphosphate GS-461203 (not detected in plasma) and ultimately to GS-331007, a predominant circulating metabolite, which is the primary analyte of interest in clinical pharmacology studies. Sofosbuvir is rapidly absorbed and eliminated from plasma (T max : 0.8-1 h; t 1/2 : 0.5 h). The peak plasma concentrations for GS-331007 are achieved between 3.5 and 4 h post-dose; the elimination t 1/2 for GS-331007 is 27 h. Ledipasvir/sofosbuvir exhibits a favorable clinical pharmacology profile; it can be administered once daily without regard to food and does not require dose modification in hepatitis C virus-infected patients with any degree of hepatic impairment or mild to moderate renal impairment. The pharmacokinetic profiles of ledipasvir, sofosbuvir, and GS-331007 (predominant circulating metabolite of sofosbuvir) are not significantly affected by demographic variables; pharmacokinetic/pharmacodynamic analyses reveal no exposure-response relationships for efficacy or safety. The review summarizes the clinical pharmacokinetics, pharmacodynamics, and pharmacokinetic/pharmacodynamic analyses for ledipasvir/sofosbuvir.

  6. The importance of nanoparticle shape in cancer drug delivery.

    PubMed

    Truong, Nghia P; Whittaker, Michael R; Mak, Catherine W; Davis, Thomas P

    2015-01-01

    Nanoparticles have been successfully used for cancer drug delivery since 1995. In the design of commercial nanoparticles, size and surface characteristics have been exploited to achieve efficacious delivery. However, the design of optimized drug delivery platforms for efficient delivery to disease sites with minimal off-target effects remains a major research goal. One crucial element of nanoparticle design influencing both pharmacokinetics and cell uptake is nanoparticle morphology (both size and shape). In this succinct review, the authors collate the recent literature to assess the current state of understanding of the influence of nanoparticle shape on the effectiveness of drug delivery with a special emphasis on cancer therapy. This review draws on studies that have focused on the role of nonspherical nanoparticles used for cancer drug delivery. In particular, the authors summarize the influence of nanoparticle shape on biocirculation, biodistribution, cellular uptake and overall drug efficacy. By comparing spherical and nonspherical nanoparticles, they establish some general design principles to serve as guidelines for developing the next generation of nanocarriers for drug delivery. Pioneering studies on nanoparticles show that nonspherical shapes show great promise as cancer drug delivery vectors. Filamentous or worm-like micelles together with other rare morphologies such as needles or disks may become the norm for next-generation drug carriers, though at present, traditional spherical micelles remain the dominant shape of nanocarriers described in the literature due to synthesis and testing difficulties. The few reports that do exist describing nonspherical nanoparticles show a number of favorable properties that should encourage more efforts to develop facile and versatile nanoparticle synthesis methodologies with the flexibility to create different shapes, tunable sizes and adaptable surface chemistries. In addition, the authors note that there is a

  7. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies.

    PubMed

    Fangueiro, Joana F; Calpena, Ana C; Clares, Beatriz; Andreani, Tatiana; Egea, Maria A; Veiga, Francisco J; Garcia, Maria L; Silva, Amélia M; Souto, Eliana B

    2016-04-11

    Cationic lipid nanoparticles (LNs) have been tested for sustained release and site-specific targeting of epigallocatechin gallate (EGCG), a potential polyphenol with improved pharmacological profile for the treatment of ocular pathologies, such as age-related macular edema, diabetic retinopathy, and inflammatory disorders. Cationic EGCG-LNs were produced by double-emulsion technique; the in vitro release study was performed in a dialysis bag, followed by the drug assay using a previously validated RP-HPLC method. In vitro HET-CAM study was carried out using chicken embryos to determine the potential risk of irritation of the developed formulations. Ex vivo permeation profile was assessed using rabbit cornea and sclera isolated and mounted in Franz diffusion cells. The results show that the use of cationic LNs provides a prolonged EGCG release, following a Boltzmann sigmoidal profile. In addition, EGCG was successfully quantified in both tested ocular tissues, demonstrating the ability of these formulations to reach both anterior and posterior segment of the eye. The pharmacokinetic study of the corneal permeation showed a first order kinetics for both cationic formulations, while EGCG-cetyltrimethylammonium bromide (CTAB) LNs followed a Boltzmann sigmoidal profile and EGCG-dimethyldioctadecylammonium bromide (DDAB) LNs a first order profile. Our studies also proved the safety and non-irritant nature of the developed LNs. Thus, loading EGCG in cationic LNs is recognised as a promising strategy for the treatment of ocular diseases related to anti-oxidant and anti-inflammatory pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Population pharmacokinetic model for tumescent lidocaine in women undergoing breast cancer surgery.

    PubMed

    Riff, Camille; Bourgoin, Aurélie; Marsot, Amelie; Allanioux, Laurent; Leone, Marc; Blin, Olivier; Guilhaumou, Romain

    2018-06-16

    Tumescent lidocaine anesthesia (TLA) is an opportunity to perform mastectomy for breast cancer without general anesthesia in elderly women. Few reports are available on the pharmacokinetics of lidocaine in a context of TLA during a unilateral mastectomy. The aim of this study was to describe lidocaine pharmacokinetics in elderly women undergoing breast cancer surgery after TLA and to explore the risk of the toxicity of this technique. A prospective study was conducted to examine the pharmacokinetics of lidocaine in women undergoing TLA. TLA consists of an intradermal lidocaine instillation (20 mL, 1% [200 mg]) followed by a tumescent lidocaine infiltration (100 mL of 1% lidocaine [1000 mg] and 0.5 mg epinephrine to 1 L Ringer's lactate) via an infusion pump. A population pharmacokinetic (popPK) analysis was performed using the nonlinear mixed effects model (NONMEM). The analysis included 116 observations from 17 women with a median (range) age of 83.4 (60.5-90.0). The median tumescent lidocaine dose was 800 mg (range 375-1000 mg) infused over 48.0 ± 11.0 min. A one-compartment disposition model with first order absorption, two input compartments, and a central elimination best described the pharmacokinetics of lidocaine. The estimates (between subject variability; relative standard error, %) of apparent volume, apparent clearance, tumescent absorption rate, and instillation absorption rate were 195.0 (46.3; 14.5%) L, 24.7 (48.9; 13.3%) L h -1 , 0.28 (39.6; 13.8%) h -1 , and 2.56 (135.3; 44.9%) h -1 , respectively. This is the first popPK model developed to describe kinetic profiles of TLA. These findings confirm the slow diffusion of lidocaine from the tumescent deposit.

  9. Crystal Engineering of Green Tea Epigallocatechin-3-gallate (EGCg) Cocrystals and Pharmacokinetic Modulation in Rats

    PubMed Central

    2013-01-01

    The most abundant polyphenol in green tea, epigallocatechin-3-gallate (EGCg), has recently received considerable attention due to the discovery of numerous health-promoting bioactivities. Despite reports of its poor oral bioavailability, EGCg has been included in many dietary supplement formulations. Conventional preformulation methods have been employed to improve the bioavailability of EGCg. However, these methods have limitations that hinder the development of EGCg as an effective therapeutic agent. In this study, we have utilized the basic concepts of crystal engineering and several crystallization techniques to screen for various solid crystalline forms of EGCg and evaluated the efficacy of crystal engineering for modulating the pharmacokinetics of EGCg. We synthesized and characterized seven previously undescribed crystal forms of EGCg including the pure crystal structure of EGCg. The aqueous solubility profiles of four new EGCg cocrystals were determined. These cocrystals were subsequently dosed at 100 mg EGCg per kg body weight in rats, and the plasma levels were monitored over the course of eight hours following the single oral dose. Two of the EGCg cocrystals were found to exhibit modest improvements in relative bioavailability. Further, cocrystallization resulted in marked effects on pharmacokinetic parameters including Cmax, Tmax, area under curve, relative bioavailability, and apparent terminal half-life. Our findings suggest that modulation of the pharmacokinetic profile of EGCg is possible using cocrystallization and that it offers certain opportunities that could be useful during its development as a therapeutic agent. PMID:23730870

  10. Alendronate Sodium as Enteric Coated Solid Lipid Nanoparticles; Preparation, Optimization, and In Vivo Evaluation to Enhance Its Oral Bioavailability

    PubMed Central

    Hosny, Khaled Mohamed

    2016-01-01

    Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability. PMID:27148747

  11. Alendronate Sodium as Enteric Coated Solid Lipid Nanoparticles; Preparation, Optimization, and In Vivo Evaluation to Enhance Its Oral Bioavailability.

    PubMed

    Hosny, Khaled Mohamed

    2016-01-01

    Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability.

  12. Enantioselective Pharmacokinetics of α-Lipoic Acid in Rats

    PubMed Central

    Uchida, Ryota; Okamoto, Hinako; Ikuta, Naoko; Terao, Keiji; Hirota, Takashi

    2015-01-01

    α-Lipoic acid (LA) is widely used for nutritional supplements as a racemic mixture, even though the R enantiomer is biologically active. After oral administration of the racemic mixture (R-α-lipoic acid (RLA) and S-α-lipoic acid (SLA) mixed at the ratio of 50:50) to rats, RLA showed higher plasma concentration than SLA, and its area under the plasma concentration-time curve from time zero to the last (AUC) was significantly about 1.26 times higher than that of SLA. However, after intravenous administration of the racemic mixture, the pharmacokinetic profiles, initial concentration (C0), AUC, and half-life (T1/2) of the enantiomers were not significantly different. After oral and intraduodenal administration of the racemic mixture to pyrolus-ligated rats, the AUCs of RLA were significantly about 1.24 and 1.32 times higher than that of SLA, respectively. In addition, after intraportal administration the AUC of RLA was significantly 1.16 times higher than that of SLA. In conclusion, the enantioselective pharmacokinetics of LA in rats arose from the fraction absorbed multiplied by gastrointestinal availability (FaFg) and hepatic availability (Fh), and not from the total clearance. PMID:26402669

  13. Enantioselective Pharmacokinetics of α-Lipoic Acid in Rats.

    PubMed

    Uchida, Ryota; Okamoto, Hinako; Ikuta, Naoko; Terao, Keiji; Hirota, Takashi

    2015-09-21

    α-Lipoic acid (LA) is widely used for nutritional supplements as a racemic mixture, even though the R enantiomer is biologically active. After oral administration of the racemic mixture (R-α-lipoic acid (RLA) and S-α-lipoic acid (SLA) mixed at the ratio of 50:50) to rats, RLA showed higher plasma concentration than SLA, and its area under the plasma concentration-time curve from time zero to the last (AUC) was significantly about 1.26 times higher than that of SLA. However, after intravenous administration of the racemic mixture, the pharmacokinetic profiles, initial concentration (C₀), AUC, and half-life (T1/2) of the enantiomers were not significantly different. After oral and intraduodenal administration of the racemic mixture to pyrolus-ligated rats, the AUCs of RLA were significantly about 1.24 and 1.32 times higher than that of SLA, respectively. In addition, after intraportal administration the AUC of RLA was significantly 1.16 times higher than that of SLA. In conclusion, the enantioselective pharmacokinetics of LA in rats arose from the fraction absorbed multiplied by gastrointestinal availability (FaFg) and hepatic availability (Fh), and not from the total clearance.

  14. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    EPA Science Inventory

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  15. Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers.

    PubMed

    Martin, David E; Blum, Robert; Wilton, John; Doto, Judy; Galbraith, Hal; Burgess, Gina L; Smith, Philip C; Ballow, Charles

    2007-09-01

    Bevirimat (BVM; formerly known as PA-457) is a novel inhibitor of human immunodeficiency virus (HIV) maturation that is being developed for the treatment of HIV infection. The pharmacokinetics of this agent in healthy male volunteers were studied in a randomized, double-blind study in which the participants received single oral doses of placebo (n = 8) or escalating doses of BVM at 25, 50, 100, or 250 mg (n = 6 per dose); escalation was performed only after the pharmacokinetics and safety of the preceding dose had been evaluated. Plasma was collected over 480 h after dosing and urine was collected over 48 h after dosing for determination of the values of pharmacokinetic parameters. BVM was well absorbed after oral administration, with peak plasma concentrations being achieved 1 to 3 h after dosing. The half-life was 60 to 80 h. The exposure assessed by determination of the peak concentration and the area under the concentration-time curve was dose proportional. Single oral doses of BVM were well tolerated: there were no dose-limiting toxicities, and no serious adverse events were reported. These findings suggest that that BVM offers a favorable pharmacokinetic profile, with predictable pharmacokinetics following the oral administration of single doses. The long half-life of BVM may facilitate once-daily dosing.

  16. Advantage of population pharmacokinetic method for evaluating the bioequivalence and accuracy of parameter estimation of pidotimod.

    PubMed

    Huang, Jihan; Li, Mengying; Lv, Yinghua; Yang, Juan; Xu, Ling; Wang, Jingjing; Chen, Junchao; Wang, Kun; He, Yingchun; Zheng, Qingshan

    2016-09-01

    This study was aimed at exploring the accuracy of population pharmacokinetic method in evaluating the bioequivalence of pidotimod with sparse data profiles and whether this method is suitable for bioequivalence evaluation in special populations such as children with fewer samplings. Methods In this single-dose, two-period crossover study, 20 healthy male Chinese volunteers were randomized 1 : 1 to receive either the test or reference formulation, with a 1-week washout before receiving the alternative formulation. Noncompartmental and population compartmental pharmacokinetic analyses were conducted. Simulated data were analyzed to graphically evaluate the model and the pharmacokinetic characteristics of the two pidotimod formulations. Various sparse sampling scenarios were generated from the real bioequivalence clinical trial data and evaluated by population pharmacokinetic method. The 90% confidence intervals (CIs) for AUC0-12h, AUC0-∞, and Cmax were 97.3 - 118.7%, 96.9 - 118.7%, and 95.1 - 109.8%, respectively, within the 80 - 125% range for bioequivalence using noncompartmental analysis. The population compartmental pharmacokinetics of pidotimod were described using a one-compartment model with first-order absorption and lag time. In the comparison of estimations in different dataset, the estimation of random three- and< fixed four-point sampling strategies can provide results similar to those obtained through rich sampling. The nonlinear mixed-effects model requires fewer data points. Moreover, compared with the noncompartmental analysis method, the pharmacokinetic parameters can be more accurately estimated using nonlinear mixed-effects model. The population pharmacokinetic modeling method was used to assess the bioequivalence of two pidotimod formulations with relatively few sampling points and further validated the bioequivalence of the two formulations. This method may provide useful information for regulating bioequivalence evaluation in special

  17. A pharmacokinetic and pharmacodynamic drug interaction between rosuvastatin and valsartan in healthy subjects

    PubMed Central

    Jung, Jin Ah; Lee, Soo-Yun; Kim, Jung-Ryul; Ko, Jae-Wook; Jang, Seong Bok; Nam, Su Youn; Huh, Wooseong

    2015-01-01

    Purpose Valsartan, an angiotensin-receptor blocker, and rosuvastatin, a competitive inhibitor of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, are frequently coadministered to treat patients with hypertension and dyslipidemia. The study reported here sought to evaluate the pharmacokinetic and pharmacodynamic interactions between rosuvastatin and valsartan in healthy Korean subjects. Subjects and methods Thirty healthy male Korean subjects were administered with rosuvastatin (20 mg/day), valsartan (160 mg/day), and both drugs concomitantly for 4 days in a randomized, open-label, multiple-dose, three-treatment, three-period crossover study. Plasma concentrations of rosuvastatin, N-desmethyl rosuvastatin, and valsartan were determined using validated high-performance liquid chromatography with tandem mass spectrometry. Lipid profiles and vital signs (systolic and diastolic blood pressure and pulse rate) were measured for the pharmacodynamic assessment. Results For rosuvastatin, the geometric mean ratios (90% confidence intervals [CIs]) of coadministration to mono-administration were 0.8809 (0.7873−0.9857) for maximum plasma concentration at steady state and 0.9151 (0.8632−0.9701) for area under the concentration–time curve (AUC) over a dosing interval at steady state. For valsartan, the geometric mean ratios (90% CIs) of those were 0.9300 (0.7946−1.0884) and 1.0072 (0.8893−1.1406), respectively. There were no significant differences in the metabolic ratio of N-desmethyl rosuvastatin AUC to rosuvastatin AUC between coadministration and rosuvastatin alone. No interaction was found in terms of systolic or diastolic blood pressure or lipid profiles. Combined treatment with valsartan and rosuvastatin was generally well tolerated without serious adverse events. Conclusion The pharmacokinetic profiles of rosuvastatin and valsartan in combination were comparable with those of rosuvastatin and valsartan administered individually, suggesting that their

  18. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment.

    PubMed

    Anitha, A; Deepa, N; Chennazhi, K P; Lakshmanan, Vinoth-Kumar; Jayakumar, R

    2014-09-01

    Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model. CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC. The 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4 days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU. To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo. The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Pharmacokinetics of piperaquine and safety profile of dihydroartemisinin-piperaquine co-administered with antiretroviral therapy in malaria-uninfected HIV-positive Malawian adults.

    PubMed

    Banda, Clifford G; Dzinjalamala, Fraction; Mukaka, Mavuto; Mallewa, Jane; Maiden, Victor; Terlouw, Dianne J; Lalloo, David G; Khoo, Saye H; Mwapasa, Victor

    2018-05-21

    There are limited data on the pharmacokinetic and safety profiles of dihydroartemisinin-piperaquine (DHA-PQ) among human immunodeficiency virus infected (HIV+) individuals taking antiretroviral therapy (ART). In a two step (parallel-group) pharmacokinetic trial with intensive blood sampling, we compared area under the concentration-time curve (AUC 0-28 days ) and safety outcomes of piperaquine among malaria-uninfected HIV+ adults. In step 1, half the adult dose of DHA-PQ was administered for three days as an intitial safety check in four groups (n=6/group) of HIV+ adults (age≥18 years): (i) antiretroviral-naïve, (ii) on nevirapine-based ART, (iii) on efavirenz-based ART, and (iv) on ritonavir-boosted lopinavir-based ART. In step 2, a full adult treatment course of DHA-PQ was administered to a different cohort of participants in three groups: (i) antiretroviral naïve, (ii) on efavirenz-based ART and (iii) on nevirapine-based ART (n=10-15/group). Ritonavir-boosted lopinavir-based ART group was dropped in step 2 due to limited number of participants who were on this second line ART and were eligible for recruitment. Piperaquine's AUC 0-28 days in both steps was 43% lower among participants on efavirenz-based ART compared to ART naïve participants. There were no significant differences in AUC 0-28 days between the other ART groups and the ART naïve group in each of the two steps. Furthermore, no differences in treatment-emergent clinical and laboratory adverse events were observed across the groups in steps 1 and 2. Although well tolerated at half and full standard adult treatment courses, efavirenz based antiretroviral regimen was associated with reduced piperaquine exposure which may compromise dihydroartemisinin-piperaquine's effectiveness in programmatic settings. Copyright © 2018 Banda et al.

  20. Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview

    PubMed Central

    CHAKRAVARTY, Rubel; GOEL, Shreya; DASH, Ashutosh; CAI, Weibo

    2017-01-01

    Over the last few years, a plethora of radiolabeled inorganic nanoparticles have been developed and evaluated for their potential use as probes in positron emission tomography (PET) imaging of a wide variety of cancers. Inorganic nanoparticles represent an emerging paradigm in molecular imaging probe design, allowing the incorporation of various imaging modalities, targeting ligands, and therapeutic payloads into a single vector. A major challenge in this endeavor is to develop disease-specific nanoparticles with facile and robust radiolabeling strategies. Also, the radiolabeled nanoparticles should demonstrate adequate in vitro and in vivo stability, enhanced sensitivity for detection of disease at an early stage, optimized in vivo pharmacokinetics for reduced non-specific organ uptake, and improved targeting for achieving high efficacy. Owing to these challenges and other technological and regulatory issues, only a single radiolabeled nanoparticle formulation, namely “C-dots” (Cornell dots), has found its way into clinical trials thus far. This review describes the available options for radiolabeling of nanoparticles and summarizes the recent developments in PET imaging of cancer in preclinical and clinical settings using radiolabeled nanoparticles as probes. The key considerations toward clinical translation of these novel PET imaging probes are discussed, which will be beneficial for advancement of the field. PMID:28124549

  1. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane.

    PubMed

    Tang, Chuan-Ho; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien

    2017-06-01

    Zinc oxide nanoparticles (nZnOs) released from popular sunscreens used during marine recreation apparently endanger corals; however, the known biological effects are very limited. Membrane lipids constitute the basic structural element to create cell a dynamic structure according to the circumstance. Nano-specific effects have been shown to mechanically perturb the physical state of the lipid membrane, and the cells accommodating the actions of nZnOs can be involved in the alteration of the membrane lipid composition. To gain insight into the effects of nanoparticles on coral, glycerophosphocholine (GPC) profiling of the coral Seriatopora caliendrum exposed to nZnOs was performed in this study. Increasing lyso-GPCs, docosapentaenoic acid-possessing GPCs and docosahexaenoic acid-possessing GPCs and decreasing arachidonic acid-possessing GPCs were the predominant changes responded to nZnO exposure in the coral. A backfilling of polyunsaturated plasmanylcholines was observed in the coral exposed to nZnO levels over a threshold. These changes can be logically interpreted as an accommodation to nZnOs-induced mechanical disturbances in the cellular membrane based on the biophysical properties of the lipids. Moreover, the coral demonstrated a difference in the changes in lipid profiles between intra-colonial functionally differentiated polyps, indicating an initial membrane composition-dependent response. Based on the physicochemical properties and physiological functions of these changed lipids, some chronic biological effects can be incubated once the coral receives long-term exposure to nZnOs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi

    2016-01-01

    1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.

  3. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-08

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  4. Pharmacokinetics of Intranasal Scopolamine Gel Formulation (Inscop)

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Du, Brian; Daniels, Vernie; Simmons, Rita; Buckey, Jay; Putcha, Lakshmi

    2009-01-01

    Space Motion Sickness (SMS) is commonly experienced by astronauts and often requires treatment with medications during early flight days of space missions. Orally administered scopolamine is commonly used by astronauts to prevent SMS. Bioavailability of oral (PO) SMS medications is often low and highly variable. Intranasal (IN) administration of medications achieves higher and more reliable bioavailability than from an equivalent PO dose. Methods: To test the safety and reliability of INSCOP, two clinical studies were performed, a dose escalation study and a comparison study administering INSCOP during normal ambulation and head down tilt bedrest. Efficacy was evaluated by testing INSCOP with two, different motion sickness inducing paradigms. Results: Preliminary results indicate that INSCOP demonstrates linear pharmacokinetics and a low side effect profile. In head down tilt bedrest, relative bioavailability of INSCOP was increased for females at both doses (0.2 and 0.4 mg) and for males at the higher dose (0.4 mg) but is reduced at the lower dose (0.2 mg) compared to normal ambulation. INSCOP displays gender specific differences during ABR. One of the treatment efficacy trials conducted at Dartmouth Hitchcock Medical Center demonstrated that INSCOP is efficacious at both doses (0.2 and 0.4 mg) in suppressing motion sickness symptoms as indicated by longer chair ride times with INSCOP administration than with placebo, and efficacy increases with dose. Similar results were seen using another motion sickness simulator, the motion simulator dome, at the Naval Aerospace Medical Research Laboratory, with significantly increased time in the dome in motion-susceptible subjects when using INSCOP compared to untreated controls. Conclusion: Higher bioavailability, linear pharmacokinetics, a low incidence of side effects, and a favorable efficacy profile make INSCOP a desirable formulation for prophylactic and rescue treatment of astronauts in space and military personnel on

  5. Pharmacokinetic analysis of modified-release metoprolol formulations: An interspecies comparison.

    PubMed

    De Thaye, Elien; Vervaeck, Anouk; Marostica, Eleonora; Remon, Jean Paul; Van Bocxlaer, Jan; Vervaet, Chris; Vermeulen, An

    2017-01-15

    In the current study, we investigated the metoprolol absorption kinetics of an in-house produced oral sustained-release formulation, matrices manufactured via prilling, and two commercially available formulations, ZOK-ZID ® (reservoir) and Slow-Lopresor ® (matrix) in both New Zealand White rabbits and Beagle dogs, using a population pharmacokinetic analysis approach. The aim of this study was to compare the in vivo pharmacokinetic (PK) profiles of different formulations based on metoprolol, a selective adrenergic β 1 -receptor antagonist, in dogs and rabbits and to contrast the observed differences. To that end, metoprolol (50 to 200mg) was administered to 6 Beagle dogs and 6 New Zealand White rabbits as a single intravenous (IV) bolus injection and to 8 dogs and 6 rabbits as an oral modified release formulation. To derive pharmacokinetic parameters from the data, a non-linear mixed-effects model was developed using NONMEM ® where the contribution of observations below the limit of detection (BDL, below detection limit) to the parameter estimates was taken into account in the parameter estimation procedure. In both species and for the three modified release formulations, different absorption models were tested to describe the PK of metoprolol following oral dosing. In Beagle dogs, plasma concentration-time profiles were best described using a sequential zero- and first-order absorption model. In rabbits though, the absorption phase was best described using a first-order process only. In both species, the reservoir formulation ZOK-ZID ® was behaving quite similarly. In contrast, the absorption properties of both matrix formulations were rather different between species. This study indicates that the PK of the reservoir formulation is similar in both species, even after accounting for the almost completely missed absorption phase in rabbits. The insights gained further illustrate that rabbits are not very well suited to study the PK of the current matrix

  6. The pharmacokinetics of propofol in ICU patients undergoing long-term sedation.

    PubMed

    Smuszkiewicz, Piotr; Wiczling, Paweł; Przybyłowski, Krzysztof; Borsuk, Agnieszka; Trojanowska, Iwona; Paterska, Marta; Matysiak, Jan; Kokot, Zenon; Grześkowiak, Edmund; Bienert, Agnieszka

    2016-11-01

    The aim of this study was to characterize the pharmacokinetics (PK) of propofol in ICU patients undergoing long-term sedation and to assess the influence of routinely collected covariates on the PK parameters. Propofol concentration-time profiles were collected from 29 patients. Non-linear mixed-effects modelling in NONMEM 7.2 was used to analyse the observed data. The propofol pharmacokinetics was best described with a three-compartment disposition model. Non-parametric bootstrap and a visual predictive check were used to evaluate the adequacy of the developed model to describe the observations. The typical value of the propofol clearance (1.46 l/min) approximated the hepatic blood flow. The volume of distribution at steady state was high and was equal to 955.1 l, which is consistent with other studies involving propofol in ICU patients. There was no statistically significant covariate relationship between PK parameters and opioid type, SOFA score on the day of admission, APACHE II, predicted death rate, reason for ICU admission (sepsis, trauma or surgery), gender, body weight, age, infusion duration and C-reactive protein concentration. The population PK model was developed successfully to describe the time-course of propofol concentration in ICU patients undergoing prolonged sedation. Despite a very heterogeneous group of patients, consistent PK profiles were observed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Pharmacokinetic-pharmacodynamic modelling of the antihistaminic (H1) effect of bilastine.

    PubMed

    Jauregizar, Nerea; de la Fuente, Leire; Lucero, Maria Luisa; Sologuren, Ander; Leal, Nerea; Rodríguez, Mónica

    2009-01-01

    To model the pharmacokinetic and pharmacodynamic relationship of bilastine, a new histamine H(1) receptor antagonist, from single- and multiple-dose studies in healthy adult subjects. The pharmacokinetic model was developed from different single-dose and multiple-dose studies. In the single-dose studies, a total of 183 subjects received oral doses of bilastine 2.5, 5, 10, 20, 50, 100, 120, 160, 200 and 220 mg. In the multiple-dose studies, 127 healthy subjects received bilastine 10, 20, 40, 50, 80, 100, 140 or 200 mg/day as multiple doses during a 4-, 7- or 14-day period. The pharmacokinetic profile of bilastine was investigated using a simultaneous analysis of all concentration-time data by means of nonlinear mixed-effects modelling population pharmacokinetic software NONMEM version 6.1. Plasma concentrations were modelled according to a two-compartment open model with first-order absorption and elimination. For the pharmacodynamic analysis, the inhibitory effect of bilastine (inhibition of histamine-induced wheal and flare) was assessed on a preselected time schedule, and the predicted typical pharmacokinetic profile (based on the pharmacokinetic model previously developed) was used. An indirect response model was developed to describe the pharmacodynamic relationships between flare or wheal areas and bilastine plasma concentrations. Finally, once values of the concentration that produced 50% inhibition (IC(50)) had been estimated for wheal and flare effects, simulations were carried out to predict plasma concentrations for the doses of bilastine 5, 10 and 20 mg at steady state (72-96 hours). A non-compartmental analysis resulted in linear kinetics of bilastine in the dose range studied. Bilastine was characterized by two-compartmental kinetics with a rapid-absorption phase (first-order absorption rate constant = 1.50 h(-1)), plasma peak concentrations were observed at 1 hour following administration and the maximal response was observed at approximately 4 hours

  8. The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes

    PubMed Central

    Ye, Ya-Jing; Wang, Yun; Lou, Kai-Yan; Chen, Yan-Zuo; Chen, Rongjun; Gao, Feng

    2015-01-01

    A novel biocompatible and biodegradable drug-delivery nanoparticle (NP) has been developed to minimize the severe side effects of the poorly water-soluble anticancer drug paclitaxel (PTX) for clinical use. PTX was loaded into the hydrophobic cavity of a hydrophilic cyclodextrin derivative, heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), using an aqueous solution-stirring method followed by lyophilization. The resulting PTX/DM-β-CD inclusion complex dramatically enhanced the solubility of PTX in water and was directly incorporated into chitosan (CS) to form NPs (with a size of 323.9–407.8 nm in diameter) using an ionic gelation method. The formed NPs had a zeta potential of +15.9–23.3 mV and showed high colloidal stability. With the same weight ratio of PTX to CS of 0.7, the loading efficiency of the PTX/DM-β-CD inclusion complex-loaded CS NPs was 30.3-fold higher than that of the PTX-loaded CS NPs. Moreover, it is notable that PTX was released from the DM-β-CD/CS NPs in a sustained-release manner. The pharmacokinetic studies revealed that, compared with reference formulation (Taxol®), the PTX/DM-β-CD inclusion complex-loaded CS NPs exhibited a significant increase in AUC0→24h (the area under the plasma drug concentration–time curve over the period of 24 hours) and mean residence time by 2.7-fold and 1.4-fold, respectively. Therefore, the novel drug/DM-β-CD inclusion complex-loaded CS NPs have promising applications for the significantly improved delivery and controlled release of the poorly water-soluble drug PTX or its derivatives, thus possibly leading to enhanced therapeutic efficacy and less severe side effects. PMID:26170666

  9. Population pharmacokinetics of levamisole in children with steroid-sensitive nephrotic syndrome

    PubMed Central

    Kreeftmeijer-Vegter, A R; Dorlo, T P C; Gruppen, M P; de Boer, A; de Vries, P J

    2015-01-01

    Aim The aim was to investigate the population pharmacokinetics of levamisole in children with steroid-sensitive nephrotic syndrome. Methods Non-linear mixed effects modelling was performed on samples collected during a randomized controlled trial. Samples were collected from children who were receiving 2.5 mg kg–1 levamisole (or placebo) orally once every other day. One hundred and thirty-six plasma samples were collected from 38 children from India and Europe and included in the analysis. A one compartment model described the data well. Results The apparent clearance rate (CL/F) and distribution volume (V/F) were 44 l h–1 70 kg–1 and 236 l 70 kg–1, respectively; estimated interindividual variability was 32–42%. In addition to allometric scaling of CL/F and V/F to body weight, we identified a significant proportional effect of age on CL/F (–10.1% per year). The pharmacokinetics parameters were not affected by gender, tablet strength or study centre. The median (interquartile range) maximum plasma concentration of levamisole was 438.3 (316.5–621.8) ng ml–1, and the median area under the concentration–time curve was 2847 (2267–3761) ng ml–1 h. Median tmax and t½ values were 1.65 (1.32–2.0) h and 2.60 (2.06–3.65) h, respectively. Conclusions Here, we present the first pharmacokinetic data regarding levamisole in children with steroid-sensitive nephrotic syndrome. The pharmacokinetic profile of levamisole in children was similar to findings reported in adults, although the elimination rate was slightly higher in children. PMID:25677380

  10. Pharmacokinetics of doxycycline in laying hens after intravenous and oral administration.

    PubMed

    Yang, F; Si, H B; Wang, Y Q; Zhao, Z S; Zhou, B H; Hao, X Q

    2016-08-01

    The pharmacokinetics of doxycycline in laying hens was investigated after a single intravenous (IV) or an oral (PO) dose at 20 mg/kg body weight. The concentrations of doxycycline in plasma samples were determined by high-performance liquid chromatography with an ultraviolet detector, and pharmacokinetic parameters were calculated using a compartmental model method. The disposition of doxycycline after one single IV injection was best described by a two-compartment open model and the main pharmacokinetic parameters were as follows: volume of distribution (Vd) was 865.15 ± 127.64 ml/kg, distribution rate constant (α) was (2.28 ± 0.38) 1/h, elimination rate constant (β) was 0.08 ± 0.02 1/h and total body clearance (Cl) was104.11 ± 18.32 ml/h/kg, while after PO administration, the concentration versus time curve was best described by a one-compartment open model and absorption rate constant (Ka), peak concentration (Cmax), time to reach Cmax (tmax) and absolute bioavailability (F) were 2.55 ± 1.40 1/h, 5.88 ± 0.70 μg/ml, 1.73 ± 0.75 h and 52.33%, respectively. The profile of doxycycline exhibited favourable pharmacokinetic characteristics in laying hens, such as quick absorption and slow distribution and elimination, though oral bioavailability was relatively low. A multiple-dosing regimen (a dose of 20 mg/kg/d for 3 consecutive days) of doxycycline was recommended to treat infections in laying hens. But a further study should be conducted to determine the withdrawal time of doxycycline in eggs.

  11. Pharmacodynamic and pharmacokinetic studies of agmatine after spinal administration in the mouse.

    PubMed

    Roberts, John C; Grocholski, Brent M; Kitto, Kelley F; Fairbanks, Carolyn A

    2005-09-01

    Agmatine is an endogenous decarboxylation product of arginine that has been previously shown to antagonize the N-methyl-d-aspartate (NMDA) receptor and inhibit nitric-oxide synthase. Many neuropharmacological studies have shown that exogenous administration of agmatine prevents or reverses biological phenomena dependent on central nervous system glutamatergic systems, including opioid-induced tolerance, opioid self-administration, and chronic pain. However, the central nervous system (CNS) pharmacokinetic profile of agmatine remains minimally defined. The present study determined the spinal cord pharmacokinetics and acute pharmacodynamics of intrathecally administered agmatine in mice. After a single bolus intrathecal injection, agmatine concentrations in spinal cord (cervical, thoracic, and lumbosacral) tissue and serum were quantified by an isocratic high-performance liquid chromatography fluorescence detection system. Agmatine persisted at near maximum concentrations in all levels of the spinal cord for several hours with a half-life of approximately 12 h. Initial agmatine concentrations in serum were 10% those in CNS. However, the serum half-life was less than 10 min after intrathecal injection of agmatine, consistent with previous preliminary pharmacokinetic reports of systemically administered agmatine. The pharmacodynamic response to agmatine in the NMDA-nociceptive behavior and thermal hyperalgesia tests was assessed. Whereas MK-801 (dizocilpine maleate) inhibits these two responses with equal potency, agmatine inhibits the thermal hyperalgesia with significantly increased potency compared with the nociceptive behavior, suggesting two sites of action. In contrast to the pharmacokinetic results, the agmatine inhibition of both behaviors had a duration of only 10 to 30 min. Collectively, these results suggest the existence of a currently undefined agmatinergic extracellular clearance process in spinal cord.

  12. Pharmacokinetics of Tedizolid in Plasma and Sputum of Adults with Cystic Fibrosis.

    PubMed

    Park, A Young J; Wang, Joshua; Jayne, Jordanna; Fukushima, Lynn; Rao, Adupa P; D'Argenio, David Z; Beringer, Paul M

    2018-06-18

    Over the past decade, the prevalence of infections involving Methicillin-resistant Staphylococcus aureus (MRSA) in patients with cystic fibrosis (CF) has increased significantly. Tedizolid (TZD) demonstrates excellent activity against MRSA and a favorable safety profile. The pharmacokinetics of several antibiotics has shown to be altered in CF patients. The purpose of this study was to characterize the pharmacokinetics of tedizolid in this population. Eleven patients with CF were randomized to receive tedizolid phosphate 200 mg PO or IV once daily for 3 doses, with minimum 2-day washout, followed by crossover to the remaining dosage form. Plasma and expectorated sputum were collected following the third dose of each dosage form for analysis. Population pharmacokinetics was performed using maximum-likelihood, expectation maximization method, and the disposition of TZD was described by a 2-compartment model. The sputum concentrations exceeded the unbound plasma concentrations with an estimated mean (%CV) sputum-to-unbound plasma penetration ratio of 2.88 (50.3). The estimated population mean ± standard deviation of total clearance, central volume of distribution, and bioavailability were 9.72 ± 1.62 L/h, 61.6 ± 6.94 L, and 1.04 ± 0.232 respectively. The total clearance is higher in CF patients when compared with healthy volunteers; however, it is similar to published data in patients with complicated skin and skin structure infections (cSSSI). This study demonstrates the oral bioavailability of tedizolid is excellent in patients with CF, and the plasma pharmacokinetics are similar to that reported for patients with cSSSI. Copyright © 2018 American Society for Microbiology.

  13. Enhancement of oral bioavailability of rivastigmine with quercetin nanoparticles by inhibiting CYP3A4 and esterases.

    PubMed

    Palle, Suresh; Neerati, Prasad

    2017-04-01

    Quercetin is a well-known flavonoid, has pharmacokinetic interaction with ester drugs due to its capability of esterase inhibition in the gut and liver. However, the interaction between quercetin nanoparticles (NQC) and rivastigmine has not been reported. Hence, the present study was performed to evaluate the effect of quercetin alone and its nanoparticles on the pharmacokinetics of rivastigmine in rats. NQC prepared by antisolvent precipitation method. The influence of quercetin on the pharmacokinetics of rivastigmine was evaluated by following methods i.e. in vitro inhibitory effect on esterase enzyme in rat liver microsomes and in vitro assessment of CYP3A activity using erythromycin-N-demethylase (EMD) assay. To confirm these findings, an in vivo pharmacokinetic study of orally administered rivastigmine in rats with quercetin and NQC pretreatments was performed. The size of NQC was observed below 300nm. Quercetin significantly (p<0.05) inhibited the esterase-mediated metabolism of rivastigmine. In in vitro assessment of CYP3A activity model the erythromycin-N-demethylation (EMD) levels in quercetin treated group were significantly reduced (p<0.05). C max , AUC 0-t and AUC 0- ∞ of rivastigmine were found to be increased in quercetin and NQC pretreated groups. Further, the CL/F and Vd/F of rivastigmine were significantly decreased. The results revealed that enhanced bioavailability of rivastigmine might be caused by the combination of their effects due to CYP3A and esterase inhibition, Therefore, concomitant administration of NQC influences the bioavailability of rivastigmine and also has synergetic effect in the treatment of Alzheimer's disease. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Yongfeng; Sultan, Deborah; Detering, Lisa; Luehmann, Hannah; Liu, Yongjian

    2014-10-01

    Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal biodistribution and significant renal and hepatobiliary excretion. PET imaging showed low non-specific tumor uptake, indicating its potential for active targeting of clinically relevant biomarkers in tumor and metastatic organs.Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal

  15. Pharmacokinetic characterization of three novel 4-mg nicotine lozenges
.

    PubMed

    Sukhija, Manpreet; Srivastava, Reena; Kaushik, Aditya

    2018-03-01

    Nicotine replacement therapy (NRT) increases the probability of smoking cessation. This study was conducted to determine if three prototype 4-mg nicotine lozenges produced locally in India were bioequivalent to a globally marketed reference product, Nicorette® 4-mg nicotine lozenge. Healthy adult smokers (N = 39) were treated with three prototype 4-mg nicotine lozenges in comparison with a reference 4-mg lozenge in this single-center, randomized, open-label, single-dose, 4-way crossover study. Pharmacokinetic sampling was obtained to test for bioequivalence using maximal plasma concentration (Cmax) and extent of absorption (AUC0-t). Secondarily, AUC;0-∞, time to maximal plasma concentration (tmax), half-life (T1/2), elimination rate constant (Kel), and safety of the prototype lozenges versus the reference lozenge were compared. Each prototype 4-mg nicotine lozenge was found to be bioequivalent to the reference 4-mg nicotine lozenge based on the ratio of geometric means and 90% confidence intervals for Cmax, AUC0-t, and AUC;0-∞. Although tmax; was significantly longer for prototype III, all four lozenges achieved maximum plasma nicotine concentrations at a median of 1.5 hours. The safety profiles of the three prototype 4-mg lozenges did not differ from that of the 4-mg reference product. Each prototype 4-mg nicotine lozenge was bioequivalent to the reference 4-mg nicotine lozenge and was well tolerated. Furthermore, as these bioequivalent prototypes differed in in-vitro dissolution profiles, these data suggest that performance from the in -vitro method deployed is not a firm predictor of pharmacokinetic behavior.
.

  16. In silico evaluation of gadofosveset pharmacokinetics in different population groups using the Simcyp® simulator platform.

    PubMed

    Spanakis, Marios; Marias, Kostas

    2014-12-01

    Gadofosveset is a Gd-based contrast agent used for magnetic resonance imaging (MRI). Gadolinium kinetic distribution models are implemented in T1-weighted dynamic contrast-enhanced perfusion MRI for characterization of lesion sites in the body. Physiology changes in a disease state potentially can influence the pharmacokinetics of drugs and to this respect modify the distribution properties of contrast agents. This work focuses on the in silico modelling of pharmacokinetic properties of gadofosveset in different population groups through the application of physiologically-based pharmacokinetic models (PBPK) embedded in Simcyp® population pharmacokinetics platform. Physicochemical and pharmacokinetic properties of gadofosveset were introduced into Simcyp® simulator platform and a min-PBPK model was applied. In silico clinical trials were generated simulating the administration of the recommended dose for the contrast agent (i.v., 30 mg/kg) in population cohorts of healthy volunteers, obese, renal and liver impairment, and in a generated virtual oncology population. Results were evaluated regarding basic pharmacokinetic parameters of Cmax, AUC and systemic CL and differences were assessed through ANOVA and estimation of ratio of geometric mean between healthy volunteers and the other population groups. Simcyp® predicted a mean Cmax = 551.60 mg/l, a mean AUC = 4079.12 mg/L*h and a mean systemic CL = 0.56 L/h for the virtual population of healthy volunteers. Obese population showed a modulation in Cmax and CL, attributed to increased administered dose. In renal and liver impairment cohorts a significant modulation in Cmax, AUC and CL of gadofosveset is predicted. Oncology population exhibited statistical significant differences regarding AUC when compared with healthy volunteers. This work employed Simcyp® population pharmacokinetics platform in order to compute gadofosveset's pharmacokinetic profiles through PBPK models and in silico clinical

  17. SaMpling Antibiotics in Renal Replacement Therapy (SMARRT): an observational pharmacokinetic study in critically ill patients.

    PubMed

    Roberts, Jason A; Choi, Gordon Y S; Joynt, Gavin M; Paul, Sanjoy K; Deans, Renae; Peake, Sandra; Cole, Louise; Stephens, Dianne; Bellomo, Rinaldo; Turnidge, John; Wallis, Steven C; Roberts, Michael S; Roberts, Darren M; Lassig-Smith, Melissa; Starr, Therese; Lipman, Jeffrey

    2016-03-01

    Optimal antibiotic dosing is key to maximising patient survival, and minimising the emergence of bacterial resistance. Evidence-based antibiotic dosing guidelines for critically ill patients receiving RRT are currently not available, as RRT techniques and settings vary greatly between ICUs and even individual patients. We aim to develop a robust, evidence-based antibiotic dosing guideline for critically ill patients receiving various forms of RRT. We further aim to observe whether therapeutic antibiotic concentrations are associated with reduced 28-day mortality. We designed a multi-national, observational pharmacokinetic study in critically ill patients requiring RRT. The study antibiotics will be vancomycin, linezolid, piperacillin/tazobactam and meropenem. Pharmacokinetic sampling of each patient's blood, RRT effluent and urine will take place during two separate dosing intervals. In addition, a comprehensive data set, which includes the patients' demographic and clinical parameters, as well as modality, technique and settings of RRT, will be collected. Pharmacokinetic data will be analysed using a population pharmacokinetic approach to identify covariates associated with changes in pharmacokinetic parameters in critically ill patients with AKI who are undergoing RRT for the five commonly prescribed antibiotics. Using the comprehensive data set collected, the pharmacokinetic profile of the five antibiotics will be constructed, including identification of RRT and other factors indicative of the need for altered antibiotic dosing requirements. This will enable us to develop a dosing guideline for each individual antibiotic that is likely to be relevant to any critically ill patient with acute kidney injury receiving any of the included forms of RRT. Australian New Zealand Clinical Trial Registry ( ACTRN12613000241730 ) registered 28 February 2013.

  18. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention.

    PubMed

    Krogstad, Emily A; Ramanathan, Renuka; Nhan, Christina; Kraft, John C; Blakney, Anna K; Cao, Shijie; Ho, Rodney J Y; Woodrow, Kim A

    2017-11-01

    Current approaches for topical vaginal administration of nanoparticles result in poor retention and extensive leakage. To overcome these challenges, we developed a nanoparticle-releasing nanofiber delivery platform and evaluated its ability to improve nanoparticle retention in a murine model. We individually tailored two components of this drug delivery system for optimal interaction with mucus, designing (1) mucoadhesive fibers for better retention in the vaginal tract, and (2) PEGylated nanoparticles that diffuse quickly through mucus. We hypothesized that this novel dual-functioning (mucoadhesive/mucus-penetrating) composite material would provide enhanced retention of nanoparticles in the vaginal mucosa. Equivalent doses of fluorescent nanoparticles were vaginally administered to mice in either water (aqueous suspension) or fiber composites, and fluorescent content was quantified in cervicovaginal mucus and vaginal tissue at time points from 24 h to 7d. We also fabricated composite fibers containing etravirine-loaded nanoparticles and evaluated the pharmacokinetics over 7d. We found that our composite materials provided approximately 30-fold greater retention of nanoparticles in the reproductive tract at 24 h compared to aqueous suspensions. Compared to nanoparticles in aqueous suspension, the nanoparticles in fiber composites exhibited sustained and higher etravirine concentrations after 24 h and up to 7d, demonstrating the capabilities of this new delivery platform to sustain nanoparticle release out to 3d and drug retention out to one week after a single administration. This is the first report of nanoparticle-releasing fibers for vaginal drug delivery, as well as the first study of a single delivery system that combines two components uniquely engineered for complementary interactions with mucus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Superior anticancer efficacy of curcumin-loaded nanoparticles against lung cancer.

    PubMed

    Yin, Haitao; Zhang, Hao; Liu, Baorui

    2013-08-01

    Curcumin (CM) has anticancer potential for several cancers and blocks several steps in the carcinogenesis process. However, the clinical application of CM is greatly limited due to its low effects in vivo resulted from its poor solubility and pharmacokinetics. This raises the possibility of taking CM as a novel model drug in a new nanoparticle-based delivery system. In this study, CM-loaded nanoparticles were prepared from three kinds of amphilic methoxy poly(ethylene glycol) (mPEG)-polycaprolactone (PCL) block copolymers. It was noted that CM-loaded nanoparticles prepared from mPEG10k-PCL30k showed not only the highest loading efficiency, but also the most sustained release pattern. In vitro studies showed that CM was effectively transported into A549 cells by nanoparticles and localized around the nuclei in the cytoplasm. In addition, the cytotoxicity of CM-loaded nanoparticles with mEPG10k-PCL30k as a drug carrier was in a dose- and time-dependent manner in A549 cells. Further apoptotic staining results demonstrated the superior pro-apoptotic effect of CM-loaded nanoparticles over free drug. Data in this study not only confirmed the potential of CM in treating lung cancer, but also offered an effective way to improve the anticancer efficiency of CM through the nano-drug delivery system.

  20. Investigation of the impact of sarizotan on the pharmacokinetics of levodopa.

    PubMed

    Krösser, Sonja; Neugebauer, Roland; Chassard, Didier; Kovar, Andreas

    2007-10-01

    To investigate the effect of sarizotan on the pharmacokinetics of levodopa in fixed combination with carbidopa or benserazide. In this open-label, randomized, crossover study, healthy male subjects (n=16) received levodopa 100 mg t.i.d. over two 5-day periods, alone or in combination with sarizotan 5 mg b.i.d. Levodopa was administered with a dopa-decarboxylase inhibitor (carbidopa 25 mg, n=8 or benserazide 25 mg, n=8). Pharmacokinetic parameters of levodopa were obtained on days 1 and 5. ANOVA showed the C(max) values for levodopa were not significantly different with or without sarizotan after single doses (1001 vs 1082 ng/ml; point estimate [PE] 1.10, 90% confidence intervals [CI] 0.83-1.45) or at steady-state (1549 vs 1663 ng/ml; PE 1.06, 90% CI 0.89-1.27); nor were AUC values for single doses (1661 vs 1665 ng h/ml; PE 1.01, 90% CI 0.91-1.11) or at steady-state (2462 vs 2482 ng h/ml; PE 1.01, 90% CI 0.97-1.05). Seven subjects reported adverse events of mild-to-moderate intensity; the most frequent were headaches and dizziness. Coadministration of sarizotan with levodopa, in combination with a dopa-decarboxylase inhibitor had no effect on the pharmacokinetics or adverse event profile of levodopa. (c) 2007 John Wiley & Sons, Ltd.

  1. SLC22A1-ABCB1 haplotype profiles predict imatinib pharmacokinetics in Asian patients with chronic myeloid leukemia.

    PubMed

    Singh, Onkar; Chan, Jason Yongsheng; Lin, Keegan; Heng, Charles Chuah Thuan; Chowbay, Balram

    2012-01-01

    This study aimed to explore the influence of SLC22A1, PXR, ABCG2, ABCB1 and CYP3A5 3 genetic polymorphisms on imatinib mesylate (IM) pharmacokinetics in Asian patients with chronic myeloid leukemia (CML). Healthy subjects belonging to three Asian populations (Chinese, Malay, Indian; n = 70 each) and CML patients (n = 38) were enrolled in a prospective pharmacogenetics study. Imatinib trough (C(0h)) and clearance (CL) were determined in the patients at steady state. Haplowalk method was applied to infer the haplotypes and generalized linear model (GLM) to estimate haplotypic effects on IM pharmacokinetics. Association of haplotype copy numbers with IM pharmacokinetics was defined by Mann-Whitney U test. Global haplotype score statistics revealed a SLC22A1 sub-haplotypic region encompassing three polymorphisms (rs3798168, rs628031 and IVS7+850C>T), to be significantly associated with IM clearance (p = 0.013). Haplotype-specific GLM estimated that the haplotypes AGT and CGC were both associated with 22% decrease in clearance compared to CAC [CL (10(-2) L/hr/mg): CAC vs AGT: 4.03 vs 3.16, p = 0.017; CAC vs CGC: 4.03 vs 3.15, p = 0.017]. Patients harboring 2 copies of AGT or CGC haplotypes had 33.4% lower clearance and 50% higher C(0h) than patients carrying 0 or 1 copy [CL (10(-2) L/hr/mg): 2.19 vs 3.29, p = 0.026; C(0h) (10(-6) 1/ml): 4.76 vs 3.17, p = 0.013, respectively]. Further subgroup analysis revealed SLC22A1 and ABCB1 haplotypic combinations to be significantly associated with clearance and C(0h) (p = 0.002 and 0.009, respectively). This exploratory study suggests that SLC22A1-ABCB1 haplotypes may influence IM pharmacokinetics in Asian CML patients.

  2. Gender differences in pharmacokinetics and pharmacodynamics of methadone substitution therapy.

    PubMed

    Graziani, Manuela; Nisticò, Robert

    2015-01-01

    Gender-related differences in the pharmacological effects of drug are an emerging topic. This review examines gender differences in both pharmacokinetic and pharmacodynamic aspects of methadone, a long-acting opioid agonist that is prescribed as a treatment for opioid dependence and the management of chronic pain. We performed a search in the Medline database from 1990 to 2014 in order to find published literature related to gender differences in pharmacokinetics (PK) and pharmacodynamics (PD) of methadone. None of the studies were carried out with the primary or secondary aim to identify any gender differences in the pharmacokinetic profile of methadone. Importantly; high inter-subjects variability in PK parameters was found also intra female population. The reported differences in volume of distribution could be ascribed to the physiological differences between men and women in body weight and composition, taking into account that the dose of methadone was established irrespective of body weight of patients (Peles and Adelson, 2006). On the other hand, the few studies present in literature found no gender difference in some direct pharmacodynamic parameters. Some reports have suggested that female gender is associated with an increased risk for long-QT-related cardiac arrhythmias in methadone maintenance subjects. Even though it may be too simplistic to expect variability only in one parameter to explain inter-individual variation in methadone response, we believe that a better knowledge of gender-related differences might have significant implications for better outcomes in opioid dependence substitution therapy in women.

  3. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.

    PubMed

    Cheow, Wean Sin; Hadinoto, Kunn

    2011-07-01

    Lipid-polymer hybrid nanoparticles are polymeric nanoparticles enveloped by lipid layers that combine the highly biocompatible nature of lipids with the structural integrity afforded by polymeric nanoparticles. Recognizing them as attractive drug delivery vehicles, antibiotics are encapsulated in the present work into hybrid nanoparticles intended for lung biofilm infection therapy. Modified emulsification-solvent-evaporation methods using lipid as surfactant are employed to prepare the hybrid nanoparticles. Biodegradable poly (lactic-co-glycolic acid) and phosphatidylcholine are used as the polymer and lipid models, respectively. Three fluoroquinolone antibiotics (i.e. levofloxacin, ciprofloxacin, and ofloxacin), which vary in their ionicity, lipophilicity, and aqueous solubility, are used. The hybrid nanoparticles are examined in terms of their drug encapsulation efficiency, drug loading, stability, and in vitro drug release profile. Compared to polymeric nanoparticles prepared using non-lipid surfactants, hybrid nanoparticles in general are larger and exhibit higher drug loading, except for the ciprofloxacin-encapsulated nanoparticles. Hybrid nanoparticles, however, are unstable in salt solutions, but the stability can be conferred by adding TPGS into the formulation. Drug-lipid ionic interactions and drug lipophilicity play important roles in the hybrid nanoparticle preparation. First, interactions between oppositely charged lipid and antibiotic (i.e. ciprofloxacin) during preparation cause failed nanoparticle formation. Charge reversal of the lipid facilitated by adding counterionic surfactants (e.g. stearylamine) must be performed before drug encapsulation can take place. Second, drug loading and the release profile are strongly influenced by drug lipophilicity, where more lipophilic drug (i.e. levofloxacin) exhibit a higher drug loading and a sustained release profile attributed to the interaction with the lipid coat. Copyright © 2011 Elsevier B.V. All

  4. Pharmacokinetic properties and in silico ADME modeling in drug discovery.

    PubMed

    Honório, Kathia M; Moda, Tiago L; Andricopulo, Adriano D

    2013-03-01

    The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME--absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.

  5. Clinical Pharmacokinetics and Pharmacodynamics of Biologic Therapeutics for Treatment of Systemic Lupus Erythematosus

    PubMed Central

    Yu, Tian; Enioutina, Elena Y.; Brunner, Hermine I.; Vinks, Alexander A.

    2017-01-01

    Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with potentially severe clinical manifestation that mainly affects women of childbearing age. Patients who do not respond to standard-of-care therapies, such as corticosteroids and immunosuppressants, require biologic therapeutics that specifically target a single or multiple SLE pathogenesis pathways. This review summarizes the clinical pharmacokinetic and pharmacodynamic characteristics of biologic agents that are approved, used off-label, or in the active pipeline of drug development for SLE patients. Depending on the type of target, the interacting biologics may exhibit linear (non-specific) or nonlinear (target-mediated) disposition profiles, with terminal half-lives varying from approximately 1 week to 1 month. Biologics given by subcutaneous administration, which offers dosing flexibility over intravenous administration, demonstrated a relatively slow absorption with a time to maximum concentration of approximately 1 day to 2 weeks and a variable bioavailability of 30–82 %. The population pharmacokinetics of monoclonal antibodies were best described by a two-compartment model with central clearance and steady-state volume of distribution ranging from 0.176 to 0.215 L/day and 3.60–5.29 L, respectively. The between-subject variability in pharmacokinetic parameters were moderate (20–79 %) and could be partially explained by body size. The development of linked pharmacokinetic-pharmacodynamic models incorporating SLE disease biomarkers are an attractive strategy for use in dosing regimen simulation and optimization. The relationship between efficacy/adverse events and biologic concentration should be evaluated to improve clinical trial outcomes, especially for biologics in the advanced phase of drug development. New strategies, such as model-based precision dosing dashboards, could be utilized to incorporate information collected from therapeutic drug monitoring into pharmacokinetic

  6. Clinical Pharmacokinetics and Pharmacodynamics of Biologic Therapeutics for Treatment of Systemic Lupus Erythematosus.

    PubMed

    Yu, Tian; Enioutina, Elena Y; Brunner, Hermine I; Vinks, Alexander A; Sherwin, Catherine M

    2017-02-01

    Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with potentially severe clinical manifestation that mainly affects women of child-bearing age. Patients who do not respond to standard-of-care therapies, such as corticosteroids and immunosuppressants, require biologic therapeutics that specifically target a single or multiple SLE pathogenesis pathways. This review summarizes the clinical pharmacokinetic and pharmacodynamic characteristics of biologic agents that are approved, used off-label, or in the active pipeline of drug development for SLE patients. Depending on the type of target, the interacting biologics may exhibit linear (non-specific) or non-linear (target-mediated) disposition profiles, with terminal half-lives varying from approximately 1 week to 1 month. Biologics given by subcutaneous administration, which offers dosing flexibility over intravenous administration, demonstrated a relatively slow absorption with a time to maximum concentration of approximately 1 day to 2 weeks and a variable bioavailability of 30-82 %. The population pharmacokinetics of monoclonal antibodies were best described by a two-compartment model with central clearance and steady-state volume of distribution ranging from 0.176 to 0.215 L/day and 3.60-5.29 L, respectively. The between-subject variability in pharmacokinetic parameters were moderate (20-79 %) and could be partially explained by body size. The development of linked pharmacokinetic-pharmacodynamic models incorporating SLE disease biomarkers are an attractive strategy for use in dosing regimen simulation and optimization. The relationship between efficacy/adverse events and biologic concentration should be evaluated to improve clinical trial outcomes, especially for biologics in the advanced phase of drug development. New strategies, such as model-based precision dosing dashboards, could be utilized to incorporate information collected from therapeutic drug monitoring into

  7. Improvement of pharmacokinetic and antitumor activity of layered double hydroxide nanoparticles by coating with PEGylated phospholipid membrane

    PubMed Central

    Yan, Mina; Zhang, Zhaoguo; Cui, Shengmiao; Lei, Ming; Zeng, Ke; Liao, Yunhui; Chu, Weijing; Deng, Yihui; Zhao, Chunshun

    2014-01-01

    Layered double hydroxide (LDH) has attracted considerable attention as a drug carrier. However, because of its poor in vivo behavior, polyethylene glycolylated (PEGylated) phospholipid must be used as a coformer to produce self-assembled core–shell nanoparticles. In the present study, we prepared a PEGylated phospholipid-coated LDH (PLDH) (PEG-PLDH) delivery system. The PEG-PLDH nanoparticles had an average size of 133.2 nm. Their core–shell structure was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. In vitro liposome-cell-association and cytotoxicity experiments demonstrated its ability to be internalized by cells. In vivo studies showed that PEGylated phospholipid membranes greatly reduced the blood clearance rate of LDH nanoparticles. PEG-PLDH nanoparticles demonstrated a good control of tumor growth and increased the survival rate of mice. These results suggest that PEG-PLDH nanoparticles can be a useful drug delivery system for cancer therapy. PMID:25364245

  8. Comparative pharmacokinetics of (S)-MP3950, a novel 5-HT4 receptor agonist, in normal and atropine-induced gastrointestinal motility disorders rats.

    PubMed

    Wang, Binjie; Sun, Xiaoyang; Wang, Shixiao; Guo, Ping; Li, Shujuan; Zhang, Meiyu; Zhao, Longshan; Chen, Xiaohui

    2018-08-01

    1. (S)-MP3950 is the (S)-enantiomer of active metabolite of mosapride, which exhibits higher 5-HT 4 receptor agonistic effect than mosapride. It shows promise to become a novel drug candidate for the treatment of gastrointestinal motility disorders (GMDs). However, the pharmacokinetic behavior of (S)-MP3950 in the pathological state of GMDs remains unclear. Herein, we investigated the comparative pharmacokinetics of (S)-MP3950 in normal and GMDs rats. 2. The comparative pharmacokinetics of (S)-MP3950 in normal and atropine-induced GMD rats were studied by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The validated UPLC-MS/MS method was successfully applied to investigate the pharmacokinetic profiles of (S)-MP3950 in normal and atropine-induced GMDs rats. Results showed that comparing to normal rats, C max reduced by 73.8%, AUC 0-t decreased by 57.6% and AUC 0-∞ declined by 56.8% in model rats. Additionally, the elimination half-life (t 1/2 ) and T max were prolonged slightly. 3. The pharmacokinetic results demonstrated that the atropine-induced GMDs reduced the absorption of (S)-MP3950. The pharmacokinetics research in the pathological state might provide more useful information for further study of novel gastric motility candidates.

  9. 24-hour human urine and serum profiles of Bisphenol A following ingestion in soup: Individual pharmacokinetic data and emographics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.

    Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analyticalmore » methods employed and is related to [4].« less

  10. 24-hour human urine and serum profiles of Bisphenol A following ingestion in soup: Individual pharmacokinetic data and emographics

    DOE PAGES

    Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.; ...

    2015-09-01

    Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analyticalmore » methods employed and is related to [4].« less

  11. 24-hour human urine and serum profiles of bisphenol A following ingestion in soup: Individual pharmacokinetic data and emographics

    PubMed Central

    Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.; Yang, Xiaoxia; Fisher, Jeffrey W.; Seryak, Liesel M.; Doerge, Daniel R.

    2015-01-01

    Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analytical methods employed and is related to [4]. PMID:26217767

  12. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief.

    PubMed

    Patel, Deepa; Naik, Sachin; Chuttani, Krishna; Mathur, Rashi; Mishra, Anil K; Misra, Ambikanandan

    2013-09-01

    The purpose of present investigation was to formulate and characterize the cyclobenzaprine HCl (CBZ)-loaded thiolated chitosan nanoparticles and assessment of in-vitro cell viability, trans-mucosal permeability on RPMI2650 cell monolayer, in-vivo pharmacokinetic and pharmacodynamic study of thiolated chitosan nanoparticles on Swiss albino mice after intranasal administration. A significant high permeation of drug was observed from thiolated chitosan nanoparticles with less toxicity on nasal epithelial cells. Brain uptake of the drug after (99m)Tc labeling was significantly enhanced after thiolation of chitosan. CBZ-loaded thiolated chitosan NPs significantly reverse the N-Methyl-.-Aspartate (NMDA)-induced hyperalgesia by intranasal administration than the CBZ solution. The studies of present investigation revealed that thiolation of chitosan significantly reduce trans-mucosal toxicity with enhanced trans-mucosal permeability via paracellular pathway and brain uptake of a hydrophilic drug (normally impermeable across blood brain barrier) and pain alleviation activity via intranasal route.

  13. Pharmacokinetics, safety and tolerability of rotigotine transdermal patch in healthy Japanese and Caucasian subjects.

    PubMed

    Cawello, Willi; Kim, Seong R; Braun, Marina; Elshoff, Jan-Peer; Ikeda, Junji; Funaki, Tomoo

    2014-02-01

    Rotigotine is a dopamine receptor agonist with activity across the D1 through to D5 receptors as well as select serotonergic and adrenergic sites; continuous transdermal delivery of rotigotine with replacement of the patch once daily maintains stable plasma concentrations over 24 h. Rotigotine is indicated for the treatment of early and advanced-stage Parkinson's disease and moderate-to-severe idiopathic restless legs syndrome. The pharmacokinetics and pharmacodynamics of a drug may vary between subjects of different ethnic origin. This study evaluated the pharmacokinetics, safety, and tolerability of single-dose treatment with rotigotine transdermal patch in Japanese and Caucasian subjects. In this open-label, parallel-group study, healthy male and female subjects of Japanese or Caucasian ethnic origin were matched by sex, body mass index, and age. A single transdermal patch delivering 2 mg/24 h rotigotine (patch content 4.5 mg) was applied to the ventral/lateral abdomen for 24 h. The main outcome measures were the plasma concentrations of unconjugated and total rotigotine and its desalkyl metabolites and derived pharmacokinetic parameters (area under the concentration-time curve from time zero to last quantifiable concentration [AUClast], maximum plasma concentration [Cmax], and body weight- and dose-normalized values). The pharmacokinetic analysis included 48 subjects (24 Japanese, 24 Caucasian). The mean apparent dose of rotigotine was 2.0±0.5 mg for Japanese subjects and 2.08±0.58 mg for Caucasians. Plasma concentration-time profiles of unconjugated rotigotine and of the main metabolites were similar for both ethnic groups. Parameters of model-independent pharmacokinetics, Cmax, time to Cmax (tmax), and AUClast, for unconjugated rotigotine showed no statistically significant differences between Japanese and Caucasian subjects. Values of concentration-dependent pharmacokinetic parameters were higher in female subjects; this difference was minimized after

  14. [Mucopenetrating nanoparticles: vehicles for the oral administration of paclitaxel].

    PubMed

    Zabaleta, V; Calleja, P; Espuelas, S; Corrales, L; Pío, R; Agüeros, M; Irache, J M

    2013-03-01

    Paclitaxel is an anticancer drug used as solution for perfusion for the treatment of certain types of cancers. In the last years, a number of strategies have been proposed for the development of an oral formulation of this drug. However, this task is quite complicated due to the poor aqueous solubility of paclitaxel as well as the fact that this compound is substrate of the intestinal P-glycoprotein and the cytochrome P450 enzymatic complex. In this work, we have developed pegylated nanoparticles with mucopenetrating properties in order to conduct paclitaxel onto the surface of the enterocyte. These nanoparticles displayed a size of about 180 nm and a drug loading close to 15% by weight. The pharmacokinetic study in mice has shown that these nanoparticles were capable to offer therapeutic plasma levels of paclitaxel up to 72 hours. In addition, the oral relative bioavailability of paclitaxel when loaded in nanoparticles pegylated with poly(ethylene glycol) 2000 (PEG) was found to be 85%. In a subcutaneous model of tumour in mice, these pegylated nanoparticles administered orally every 3 days have demonstrated a similar efficacy than Taxol® administered intravenously every day during 9 days. All of these results suggested that these pegylated nanoparticles were capable to cross the mucus layer of the gut and, then, reach the surface of the enterocytes. The PEG molecules would facilitate the adhesion of nanoparticles to this epithelial surface, minimise the pre-systemic metabolism of paclitaxel and, thus, promote its absorption. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Disclosure of pharmacokinetic drug results to understand nonadherence.

    PubMed

    van der Straten, Ariane; Montgomery, Elizabeth T; Musara, Petina; Etima, Juliane; Naidoo, Sarita; Laborde, Nicole; Hartmann, Miriam; Levy, Lisa; Bennie, Thola; Cheng, Helen; Piper, Jeanna; Grossman, Cynthia I; Marrazzo, Jeanne; Mensch, Barbara

    2015-10-23

    In VOICE, a phase IIB trial of daily oral and vaginal tenofovir for HIV prevention, at least 50% of women receiving active products had undetectable tenofovir in all plasma samples tested. MTN-003D, an ancillary study using in-depth interviews (IDIs) and focus group discussions (FGDs), together with retrospective disclosure of plasma tenofovir pharmacokinetic results, explored adherence challenges during VOICE. We systematically recruited participants with pharmacokinetic data (median six plasma samples), categorized as low (0%, N = 79), inconsistent (1-74%, N = 28) or high (≥75%; N = 20) on the basis of frequency of tenofovir detection. Following disclosure of pharmacokinetic results, reactions were captured and adherence challenges systematically elicited; IDIs and FGDs were audio-recorded, transcribed, coded and thematically analysed. We interviewed 127 participants from South Africa, Uganda and Zimbabwe. The most common reactions to pharmacokinetic results included surprise (41%; low pharmacokinetic), acceptance (39%; inconsistent pharmacokinetic) and happiness (65%; high pharmacokinetic). On the basis of participants' explanations, we developed a typology of adherence patterns: noninitiation, discontinuation, misimplementation (resulting from visit-driven use, variable taking, modified dosing or regimen) and adherence. Fear of product side effects/harm was a frequent concern, fuelled by stories shared among participants. Although women with high pharmacokinetic levels reported similar concerns, several described strategies to overcome challenges. Women at all pharmacokinetic levels suggested real-time drug monitoring and feedback to improve adherence and reporting. Retrospective provision of pharmacokinetic results seemingly promoted candid discussions around nonadherence and study participation. The effect of real-time drug monitoring and feedback on adherence and accuracy of reporting should be evaluated in trials.

  16. Accelerated Brain DCE-MRI Using Iterative Reconstruction With Total Generalized Variation Penalty for Quantitative Pharmacokinetic Analysis: A Feasibility Study.

    PubMed

    Wang, Chunhao; Yin, Fang-Fang; Kirkpatrick, John P; Chang, Zheng

    2017-08-01

    To investigate the feasibility of using undersampled k-space data and an iterative image reconstruction method with total generalized variation penalty in the quantitative pharmacokinetic analysis for clinical brain dynamic contrast-enhanced magnetic resonance imaging. Eight brain dynamic contrast-enhanced magnetic resonance imaging scans were retrospectively studied. Two k-space sparse sampling strategies were designed to achieve a simulated image acquisition acceleration factor of 4. They are (1) a golden ratio-optimized 32-ray radial sampling profile and (2) a Cartesian-based random sampling profile with spatiotemporal-regularized sampling density constraints. The undersampled data were reconstructed to yield images using the investigated reconstruction technique. In quantitative pharmacokinetic analysis on a voxel-by-voxel basis, the rate constant K trans in the extended Tofts model and blood flow F B and blood volume V B from the 2-compartment exchange model were analyzed. Finally, the quantitative pharmacokinetic parameters calculated from the undersampled data were compared with the corresponding calculated values from the fully sampled data. To quantify each parameter's accuracy calculated using the undersampled data, error in volume mean, total relative error, and cross-correlation were calculated. The pharmacokinetic parameter maps generated from the undersampled data appeared comparable to the ones generated from the original full sampling data. Within the region of interest, most derived error in volume mean values in the region of interest was about 5% or lower, and the average error in volume mean of all parameter maps generated through either sampling strategy was about 3.54%. The average total relative error value of all parameter maps in region of interest was about 0.115, and the average cross-correlation of all parameter maps in region of interest was about 0.962. All investigated pharmacokinetic parameters had no significant differences between

  17. Pharmacokinetics of amikacin in serum and in tissue contiguous with pressure sores in humans with spinal cord injury.

    PubMed Central

    Segal, J L; Brunnemann, S R; Eltorai, I M

    1990-01-01

    Pressure sores are a common occurrence in immobilized patients. They increase morbidity and mortality and impede rehabilitation. Antibiotics are routinely used to assist in effecting a cure when infection is present. Nevertheless, for patients with spinal cord injuries (SCI), strategies for effective therapy with antibiotics based on measurement of concentrations in tissue and pharmacokinetic behavior in extravascular spaces do not exist. By analyzing the concentration-time profile and protein binding of amikacin in the interstitial fluid (IF) in contact with pressure sores, we found that the disposition of amikacin in the tissue contiguous with pressure sores appears to be governed by simultaneous first-order and capacity-limited pharmacokinetic behavior. Amikacin disposition in IF proceeded without a simple relationship to amikacin concentrations in serum, and the time course in IF was not accurately simulated by linear models of amikacin pharmacokinetic behavior. Total amikacin clearance estimated from a pharmacokinetic model using simultaneous first-order and nonlinear intercompartmental transfer of amikacin was not significantly different from clearance calculated by us in a prior study of amikacin pharmacokinetic behavior in patients with SCI. In patients with SCI, optimal use of amikacin in the treatment of infected pressure sores is contingent upon accurate characterization of the pharmacokinetic behavior of this aminoglycoside in serum and in the IF in contact with these lesions. Only methods which quantitate amikacin concentration and protein binding in IF and incorporate a model that can simultaneously simulate nonlinear and linear disposition processes should be relied upon to influence therapeutic decision making. PMID:2386372

  18. Terahertz cascades from nanoparticles

    NASA Astrophysics Data System (ADS)

    Arnardottir, K. B.; Liew, T. C. H.

    2018-05-01

    In this article we propose a system capable of terahertz (THz) radiation with quantum yield above unity. The system consists of nanoparticles where the material composition varies along the radial direction of each nanoparticle in such a way that a ladder of equidistant energy levels emerges. By then exciting the highest level of this ladder we produce multiple photons of the same frequency in the THz range. We demonstrate how we can calculate a continuous material composition profile that achieves a high quantum yield and then show that a more experimentally friendly design of a multishell nanoparticle can still result in a high quantum yield.

  19. Construction and characterization of curcumin nanoparticles system

    NASA Astrophysics Data System (ADS)

    Sun, Weitong; Zou, Yu; Guo, Yaping; Wang, Lu; Xiao, Xue; Sun, Rui; Zhao, Kun

    2014-03-01

    This study was aimed at developing a nanoparticles system for curcumin, a widely used traditional Chinese medicine, but with the disadvantage of poor aqueous solubility. The objective was intended to improve in vitro release characteristics, enhance blood and gastrointestinal stability, increase bioavailability and pharmacological activities. Curcumin nanoparticles system (Cur-NS) was prepared by ionotropic gelation technique. Cur-NS was characterized by particle size, zeta potential, drug entrapment efficiency, drug loading, and physical stability, respectively. Cur-NS presented controlled release properties, and the release properties of Cur from NS were fit non-Fickian mechanism, controlled by the expected diffusional release and the erosion or solubilization from the crosslink layer of polymer carrier. In addition, the pharmacokinetic study in rats revealed a notable improved oral bioavailability of Cur, and the anti-tumor activity in vivo of Cur-NS on tumor growth was investigated. Cur-NS significantly inhibited tumor effect compared with non-vehicle group, thus making it a potential candidate for cancer therapy.

  20. Application of a novel liquid chromatography/tandem mass spectrometry method for the determination of antazoline in human plasma: Result of ELEPHANT-I [ELEctrophysiological, pharmacokinetic and hemodynamic effects of PHenazolinum (ANTazoline mesylate)] human pharmacokinetic study.

    PubMed

    Giebułtowicz, Joanna; Piotrowski, Roman; Baran, Jakub; Kułakowski, Piotr; Wroczyński, Piotr

    2016-05-10

    Antazoline is a first-generation antihistaminic agent with antiarrhythmic quinidine-like properties. In some countries, it is widely used for termination of cardiac arrhythmias, especially atrial fibrillation (AF). However, no human pharmacokinetic studies have been conducted with intravenous antazoline. The aim of our study was to develop and validate a novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of antazoline in human plasma: the ELEPHANT-I [ELEctrophysiological, pharmacokinetic and hemodynamic effects of PHenazolinum (ANTazoline mesylate)] human pharmacokinetic study. Antazoline was extracted from plasma using liquid-liquid extraction. The concentration of the analyte was measured by LC-MS/MS with xylometazoline as an internal standard. The method was validated for linearity, precision, accuracy, stability (freeze/thaw stability, stability in autosampler, short and long term stability), dilution integrity and matrix effect. The analyzed validation criteria were fulfilled. The method was applied to a pharmacokinetic study involving 10 healthy volunteers. Following a single intravenous dose of antazoline mesylate (100 mg), the plasma concentration profile showed a relative fast elimination with a terminal elimination half-life of 2.29 h. A relatively high volume of distribution was observed (Vss=315 L). The values of mean residence time (MRT∞), area under the curve (AUC∞) and clearance were 3.45 h, 0.91 mg h L(-1) and 80.5 L h(-1), respectively. One volunteer showed significant differences in pharmacokinetic parameters. In conclusion, the proposed new LC-MS/MS method was successfully used for the first time for the determination of antazoline in human plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Impact of impaired renal function on the pharmacokinetics of the antiepileptic drug lacosamide.

    PubMed

    Cawello, Willi; Fuhr, Uwe; Hering, Ursula; Maatouk, Haidar; Halabi, Atef

    2013-10-01

    The antiepileptic drug lacosamide is eliminated predominantly via the kidneys. Therefore, an evaluation of the impact of renal impairment on its pharmacokinetic profile is an important component of its safety assessment. The objective of this study was to evaluate the pharmacokinetic profile of lacosamide among individuals with renal impairment (mild, moderate, or severe) and among patients with end-stage renal disease (ESRD), including those on hemodialysis. This was an open-label, Phase I trial. The pharmacokinetics of a single oral 100-mg lacosamide dose were evaluated in five groups of participants: healthy controls, patients with mild, moderate, or severe renal impairment, and patients with ESRD (with and without hemodialysis). Forty participants completed the trial, eight in each group. In healthy volunteers, renal clearance accounted for approximately 30 % of total body clearance [geometric mean 0.5897 l/h (coefficient of variation 37.9 %) vs 2.13 l/h (20.8 %)]. With severe renal impairment, renal clearance was approximately 11 % of total body clearance [0.1428 l/h (31.8 %) vs 1.34 l/h (26.9 %)]. Terminal half-life and systemic exposure were increased with renal impairment, while total body clearance, renal clearance, and urinary excretion were decreased. Strong positive correlations between creatinine clearance, renal clearance, and urinary excretion were observed. Among patients with ESRD, approximately 50 % of lacosamide was cleared from systemic circulation by 4-h hemodialysis. In patients with essentially no renal clearance, nonrenal clearance was still present (1.1 l/h). Lacosamide was well tolerated by healthy volunteers and patients. In patients with mild-to-moderate renal impairment, lacosamide dose adjustment is not necessary, because total body clearance decreased by only approximately 20 %. Dose adjustment, however, is required for patients with severe renal impairment. Hemodialysis removes approximately 50 % of lacosamide from plasma; therefore

  2. Single-dose oral pharmacokinetics of three formulations of thalidomide in healthy male volunteers.

    PubMed

    Teo, S K; Colburn, W A; Thomas, S D

    1999-11-01

    Thalidomide was recently approved in the United States for the treatment of erythema nodosum leprosum, a complication of leprosy. The present study determined the bioequivalence and pharmacokinetics of Celgene's commercial and clinical trial thalidomide formulations and the Brazilian Tortuga formulation in an open-label, single-dose, three-way crossover design. Seventeen healthy subjects were given 200 mg of thalidomide on three occasions, and blood samples were collected over 48 hours. Pharmacokinetic parameters were determined using compartmental methods for the two Celgene formulations and using noncompartmental methods for all three formulations. All subjects reported adverse events, none of which was serious or unexpected. Celgene formulations were bioequivalent when comparing Cmax, tmax, and AUC. There was significant variability in plasma levels from the Tortuga formulation, giving a mean profile that was distinctly different from the two Celgene formulations with a lower Cmax value and a longer terminal phase. The lower Cmax was probably due to slower absorption. The terminal rate constant for the Tortuga formulation was significantly less, giving rise to a terminal half-life of 15 hours compared to about 5 to 6 hours for the Celgene formulations. Confidence intervals for Cmax between the Tortuga and the Celgene formulations were outside the 80% to 125% range, indicating a lack of bioequivalence. Extent of absorption, as measured by AUC0-infinity, was approximately equal for all three formulations. Terminal half-life for Tortuga was two to three times longer compared to the Celgene formulations and is clear evidence for absorption rate limitations. The two Celgene formulations showed similar pharmacokinetic parameters with profiles that were best described by a one-compartment model with first-order absorption and elimination. The authors conclude that Celgene's clinical trial and commercial thalidomide formulations are similar to each other and distinctly

  3. Evasion of the accelerated blood clearance phenomenon by coating of nanoparticles with various hydrophilic polymers.

    PubMed

    Ishihara, Tsutomu; Maeda, Taishi; Sakamoto, Haruka; Takasaki, Naoko; Shigyo, Masao; Ishida, Tatsuhiro; Kiwada, Hiroshi; Mizushima, Yutaka; Mizushima, Tohru

    2010-10-11

    The accelerated blood clearance (ABC) phenomenon is induced upon repeated injections of poly(ethylene glycol) (PEG)-coated colloidal carriers. It is essential to suppress this phenomenon in a clinical setting because the pharmacokinetics must be reproducible. In this study, we evaluated the induction of the ABC phenomenon using nanoparticles coated with various hydrophilic polymers instead of PEG. Nanoparticles encapsulating prostaglandin E1 were prepared by the solvent diffusion method from a blend of poly(lactic acid) (PLA) and block copolymers consisting of various hydrophilic polymers and PLA. Coating of nanoparticles with poly(N-vinyl-2-pyrrolidone) (PVP), poly(4-acryloylmorpholine), or poly(N,N-dimethylacrylamide) led to extended residence of the nanoparticles in blood circulation in rats, although they had a shorter half-life than the PEG-coated nanoparticles. The ABC phenomenon was not induced upon repeated injection of PVP-coated nanoparticles at various time intervals, dosages, or frequencies, whereas it was elicited by PEG-coated nanoparticles. In addition, anti-PVP IgM antibody, which is estimated to be one of the crucial factors for induction of the ABC phenomenon, was not produced after injection of PVP-coated nanoparticles. These results suggest that the use of PVP, instead of PEG, as a coating material for colloidal carriers can evade the ABC phenomenon.

  4. Time to Analgesia Onset and Pharmacokinetics After Separate and Combined Administration of Liposome Bupivacaine and Bupivacaine HCl: Considerations for Clinicians

    PubMed Central

    Gadsden, Jeffrey; Long, William J.

    2016-01-01

    Background: Liposome bupivacaine is a prolonged-release bupivacaine formulation indicated for single-dose administration into the surgical site to produce postsurgical analgesia. Methods: An overview of time to onset of analgesia observed with liposome bupivacaine in human studies is provided, as well as a summary of data from pharmacokinetic studies including those that assessed pharmacokinetics after separate versus coadministration of liposome bupivacaine and bupivacaine HCl. Results: Data from multiple studies show that local administration of liposome bupivacaine is associated with rapid onset and effective analgesia after surgery. However, the efficacy profile observed in controlled settings may not replicate the profile observed in clinical practice; time to onset may be impacted by nonpharmacologic factors, such as amount of drug given, location and relative vascularity, and variances in surgical techniques. Some clinicians coadminister or admix bupivacaine HCl and liposome bupivacaine based on the supposition that adjuvant use will result in more rapid onset of efficacy. To date, no clinical studies have been conducted comparing pain-related outcomes following coadministration versus liposome bupivacaine alone. Preclinical pharmacokinetic studies have assessed the potential impact of combined use, which resulted in predictable, additive systemic exposure without compromising the prolonged-release profile of liposome bupivacaine, and without signs of toxicity. Conclusion: Based on available data and approved package insert, in the setting of wound infiltration, clinicians have the flexibility to administer liposome bupivacaine alone, coadminister separately with bupivacaine HCl, or admix with bupivacaine HCl prior to injection, providing the bupivacaine HCl dose does not exceed 50% of the liposome bupivacaine dose. PMID:27347237

  5. Surface decorated nanoparticles as surrogate carriers for improved transport and absorption of epirubicin across the gastrointestinal tract: Pharmacokinetic and pharmacodynamic investigations.

    PubMed

    Tariq, Mohammad; Alam, Md Aftab; Singh, Anu T; Panda, Amulya K; Talegaonkar, Sushama

    2016-03-30

    Epirubicin (EPI) is a P-gp substrate antracycline analogue which elicits poor oral bioavailability. In the present work, EPI loaded poly-lactide-co-glycolic acid nanoparticles (PLGA-NPs) were prepared by double emulsion approach and superficially decorated with polyethylene glycol (EPI-PNPs) and mannosamine (EPI-MNPs). Average hydrodynamic particle size of EPI-PNPs and EPI-MNPs was found 248.63 ± 12.36 and 254.23 ± 15.16 nm, respectively. Cytotoxicity studies were performed against human breast adenocarcinoma cell lines (MCF-7) confirmed the superiority of EPI-PNPs and EPI-MNPs over free epirubicin solution (EPI-S). Further, confocal laser scanning microscopy (CLSM) and flow cytometric analysis (FACS) demonstrated enhanced drug uptake through EPI-PNPs and EPI-MNPs and elucidated dominance of caveolae mediated endocytosis for NPs uptake. Cellular transport conducted on human colon adenocarcinoma cell line (Caco-2) showed 2.45 and 3.17 folds higher permeability of EPI through EPI-PNPs and EPI-MNPs when compared with EPI-S (p<0.001) while permeability of EPI was found 5.23 and 5.67 folds higher across rat ileum, respectively. Furthermore, pharmacokinetic studies demonstrated 4.7 and 5.57 folds higher oral bioavailability through EPI-PNPs and EPI-MNPs when compared with EPI-S. In addition, both, EPI-PNPs and EMNPs showed tumor suppression comparable to indicated route (i.v. injection). EPI-MNPs showed 1.18 folds higher bioavailability and better tumor suppression than EPI-PNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of ginkgo biloba on the pharmacokinetics of raltegravir in healthy volunteers.

    PubMed

    Blonk, Maren; Colbers, Angela; Poirters, Anne; Schouwenberg, Bas; Burger, David

    2012-10-01

    Medicinal herbs may cause clinically relevant drug interactions with antiretroviral agents. Ginkgo biloba extract is a popular herbal product among HIV-infected patients because of its positive effects on cognitive function. Raltegravir, an HIV integrase inhibitor, is increasingly being used as part of combined antiretroviral therapy. Clinical data on the potential inhibitory or inductive effect of ginkgo biloba on the pharmacokinetics of raltegravir were lacking, and concomitant use was not recommended. We studied the effect of ginkgo biloba extract on the pharmacokinetics of raltegravir in an open-label, randomized, two-period, crossover phase I trial in 18 healthy volunteers. Subjects were randomly assigned to a regimen of 120 mg of ginkgo biloba twice daily for 15 days plus a single dose of raltegravir (400 mg) on day 15, a washout period, and 400 mg of raltegravir on day 36 or the test and reference treatments in reverse order. Pharmacokinetic sampling of raltegravir was performed up to 12 h after intake on an empty stomach. All subjects (9 male) completed the trial, and no serious adverse events were reported. Geometric mean ratios (90% confidence intervals) of the area under the plasma concentration-time curve from dosing to infinity (AUC(0-∞)) and the maximum plasma concentration (C(max)) of raltegravir with ginkgo biloba versus raltegravir alone were 1.21 (0.93 to 1.58) and 1.44 (1.03 to 2.02). Ginkgo biloba did not reduce raltegravir exposure. The potential increase in the C(max) of raltegravir is probably of minor importance, given the large intersubject variability of raltegravir pharmacokinetics and its reported safety profile.

  7. Effect of Ginkgo Biloba on the Pharmacokinetics of Raltegravir in Healthy Volunteers

    PubMed Central

    Colbers, Angela; Poirters, Anne; Schouwenberg, Bas; Burger, David

    2012-01-01

    Medicinal herbs may cause clinically relevant drug interactions with antiretroviral agents. Ginkgo biloba extract is a popular herbal product among HIV-infected patients because of its positive effects on cognitive function. Raltegravir, an HIV integrase inhibitor, is increasingly being used as part of combined antiretroviral therapy. Clinical data on the potential inhibitory or inductive effect of ginkgo biloba on the pharmacokinetics of raltegravir were lacking, and concomitant use was not recommended. We studied the effect of ginkgo biloba extract on the pharmacokinetics of raltegravir in an open-label, randomized, two-period, crossover phase I trial in 18 healthy volunteers. Subjects were randomly assigned to a regimen of 120 mg of ginkgo biloba twice daily for 15 days plus a single dose of raltegravir (400 mg) on day 15, a washout period, and 400 mg of raltegravir on day 36 or the test and reference treatments in reverse order. Pharmacokinetic sampling of raltegravir was performed up to 12 h after intake on an empty stomach. All subjects (9 male) completed the trial, and no serious adverse events were reported. Geometric mean ratios (90% confidence intervals) of the area under the plasma concentration-time curve from dosing to infinity (AUC0-∞) and the maximum plasma concentration (Cmax) of raltegravir with ginkgo biloba versus raltegravir alone were 1.21 (0.93 to 1.58) and 1.44 (1.03 to 2.02). Ginkgo biloba did not reduce raltegravir exposure. The potential increase in the Cmax of raltegravir is probably of minor importance, given the large intersubject variability of raltegravir pharmacokinetics and its reported safety profile. PMID:22802250

  8. [Pharmacokinetics of digoxin in hyperthyroidism. Effect of methimazole].

    PubMed

    Izbicka, Maria; Gasińska, Teresa; Dec, Renata

    2010-01-01

    Cardiovascular abnormalities may be the only manifestations of overt hyperthyroidism. In patients with heart failure and atrial fibrillation digoxin can be beneficial in controlling the symptoms and signs, but hyperthyroid patients show an impaired response or even resistance to digoxin treatment. The aim of the study is to establish: 1. Are there any differences in the pharmacokinetics of a single oral dose of digoxin between hypertyroid and euthyroid patients? 2. Does simultaneous administration of digoxin and methimazole affect the pharmacokinetics of a single oral dose of dogoxin? 3. Does methimazole-induced euthyroidism change the pharmacokinetics of a single oral dose of digoxin? The subject of the study were 28 patients with hyperthyroidism and 15 healthy persons. We evaluated the pharmacokinetics of a single oral dose of digoxin. Moreover we evaluated pharmacokinetics of a single dose of digoxin after simultaneous administration of digoxin and methimazole in 12 patients and 12 methimazole treated patients werere-assessed once they had become euthyroid. Hyperthyroid patients showed significantly lower serum digoxin concentrations, shorter T1/2 beta and a significantly smaller area under the concentration curve (AUC) that the control group. Administration of methimazole did not affect digoxin pharmacokinetics. In hyperthyroid patients: 1. the pharmacokinetics of a single oral dose of digoxin does differ from that observed in healthy subjects. 2.methimazole do not alter digoxin pharmacokinetics.

  9. Influence of hepatic impairment on the pharmacokinetics and safety profile of dapagliflozin: an open-label, parallel-group, single-dose study.

    PubMed

    Kasichayanula, Sreeneeranj; Liu, Xiaoni; Zhang, Weijiang; Pfister, Marc; LaCreta, Frank P; Boulton, David W

    2011-11-01

    Dapagliflozin, a selective inhibitor of renal sodium glucose co-transporter 2, is under development for the treatment of type 2 diabetes mellitus. Dapagliflozin elimination is primarily via glucuronidation to an inactive metabolite, dapagliflozin 3-O-glucuronide. Pharmacokinetic studies are recommended in subjects with impaired hepatic function if hepatic metabolism accounts for a substantial portion of the absorbed drug. The purpose of our study was to compare the pharmacokinetics of dapagliflozin in patients with mild, moderate, or severe hepatic impairment (HI) with healthy subjects. This was an open-label, parallel-group study in male or female patients with mild, moderate, or severe HI (6 per group according to Child-Pugh classification) and in 6 healthy control subjects. The control subjects were matched to the combined HI group for age (±10 years), weight (±20%), sex, and smoking status, with no deviations from normal in medical history, physical examination, ECG, or laboratory determinations. All participants received a single 10-mg oral dose of dapagliflozin, and the pharmacokinetics of dapagliflozin and dapagliflozin 3-O-glucuronide were characterized. Dapagliflozin tolerability was also assessed throughout the study. Demographic characteristics and baseline physical measurements (weight, height, and body mass index) were similar among the 18 patients in the HI groups (58-126 kg; 151.2-190.0 cm, and 31.5-37.7 kg/m(2), respectively) and the healthy subject group (65.0-102.6 kg; 166.0-184.0 cm, and 23.3-34.3 kg/m(2), respectively). In those with mild, moderate, or severe HI, dapagliflozin mean C(max) values were 12% lower and 12% and 40% higher than healthy subjects, respectively. Mean dapagliflozin AUC(0-∞) values were 3%, 36%, and 67% higher compared with healthy subjects, respectively. Dapagliflozin 3-O-glucuronide mean C(max) values were 4% and 58% higher and 14% lower in those with mild, moderate, or severe HI compared with healthy subjects

  10. Lack of a Pharmacokinetic Interaction Between Saxagliptin and Dapagliflozin in Healthy Subjects: A Randomized Crossover Study.

    PubMed

    Vakkalagadda, Blisse; Lubin, Susan; Reynolds, Laurie; Liang, Dan; Marion, Alan S; LaCreta, Frank; Boulton, David W

    2016-08-01

    This single-dose, open-label, randomized, 3-period, 3-treatment crossover drug-drug interaction study was conducted to evaluate differences in the pharmacokinetic properties of saxagliptin and dapagliflozin when coadministered. Healthy subjects (N = 42) were randomized to receive saxagliptin 5 mg alone, dapagliflozin 10 mg alone, or saxagliptin 5 mg plus dapagliflozin 10 mg coadministered; there was a washout period of ≥6 days between treatments. Serial blood samples for determining saxagliptin, 5-hydroxy saxagliptin (5-OH saxagliptin; major active metabolite) and dapagliflozin plasma concentrations and pharmacokinetic parameters were collected before and up to 60 hours after the dose. No interaction was to be concluded if the 90% CIs for the geometric mean ratios of the combination compared with each drug given alone for Cmax and AUCinf were within 0.80 to 1.25. The results indicated that dapagliflozin had no effect on the pharmacokinetic properties of saxagliptin, 5-OH saxagliptin, or saxagliptin total active moiety and vice versa. The 90% CIs for Cmax and AUCinf for all comparisons were contained entirely within the 0.80 to 1.25 equivalence intervals. Other pharmacokinetic parameters (apparent oral clearance or half-life) of saxagliptin or dapagliflozin were similar when each medicine was administered alone or when coadministered. No safety profile or tolerability findings of concern were observed during the study. All adverse events were mild, and no serious adverse events were reported. These data indicate that coadministration of saxagliptin and dapagliflozin exhibits no pharmacokinetic interaction and is well tolerated. ClinicalTrials.gov identifier: NCT01662999. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  11. Population pharmacokinetics of caffeine in healthy male adults using mixed-effects models.

    PubMed

    Seng, K-Y; Fun, C-Y; Law, Y-L; Lim, W-M; Fan, W; Lim, C-L

    2009-02-01

    Caffeine has been shown to maintain or improve the performance of individuals, but its pharmacokinetic profile for Asians has not been well characterized. In this study, a population pharmacokinetic model for describing the pharmacokinetics of caffeine in Singapore males was developed. The data were also analysed using non-compartmental models. Data gathered from 59 male volunteers, who each ingested a single caffeine capsule in two clinical trials (3 or 5 mg/kg), were analysed via non-linear mixed-effects modelling. The participants' covariates, including age, body weight, and regularity of caffeinated-beverage consumption or smoking, were analysed in a stepwise fashion to identify their potential influence on caffeine pharmacokinetics. The final pharmacostatistical model was then subjected to stochastic simulation to predict the plasma concentrations of caffeine after oral (204, 340 and 476 mg) dosing regimens (repeated dosing every 6, 8 or 12 h) over a hypothetical 3-day period. The data were best described by a one-compartmental model with first-order absorption and first-order elimination. Smoking status was an influential covariate for clearance: clearance (mL/min) = 110*SMOKE + 114, where SMOKE was 0 and 1 for the non-smoker and the smoker respectively. Interoccasion variability was smaller compared to interindividual variability in clearance, volume and absorption rate (27% vs. 33%, 10% vs. 15% and 23% vs. 51% respectively). The extrapolated elimination half-lives of caffeine in the non-smokers and the smokers were 4.3 +/- 1.5 and 3.0 +/- 0.7 h respectively. Dosing simulations indicated that dosing regimens of 340 mg (repeated every 8 h) and 476 mg (repeated every 6 h) should achieve population-averaged caffeine concentrations within the reported beneficial range (4.5-9 microg/mL) in the non-smokers and the smokers respectively over 72 h. The population pharmacokinetic model satisfactorily described the disposition and variability of caffeine in the data

  12. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice.

    PubMed

    Kommareddy, Sushma; Amiji, Mansoor

    2007-02-01

    The objective of the present study was to modify thiolated gelatin nanoparticles with poly(ethylene glycol) (PEG) chains and examine their long circulating and tumor-targeting properties in vivo in an orthotopic a human breast adenocarcinoma xenograft model. The crosslinked nanoparticle systems were characterized to have a size of 150-250 nm with rapid payload release properties in a highly reducing environment. Upon PEG modification, the nanoparticle size increased to 300-350 nm in diameter. The presence of PEG chains on the surface was confirmed by characterization with electron spectroscopy for chemical analysis. The in vivo long-circulating potential, biodistribution and passive tumor targeting of the controls, and PEG-modified thiolated gelatin nanoparticles were evaluated by injecting indium-111 (111In)-labeled nanoparticles into breast tumor (MDA-MB-435)-bearing nude mice. Upon modification with PEG, the nanoparticles were found to have longer circulation times, with the plasma and tumor half-lives of 15.3 and 37.8 h, respectively. The results also showed preferential localization of thiolated nanoparticles in the tumor mass. The resulting nanoparticulate systems with long circulation properties could be used to target encapsulated drugs and genes to tumors passively by utilizing the enhanced permeability and retention effect of the tumor vasculature. Copyright (c) 2006 Wiley-Liss, Inc.

  13. Oral pharmacokinetics of acetaminophen to evaluate gastric emptying profiles of Shiba goats.

    PubMed

    Elbadawy, Mohamed; Sasaki, Kazuaki; Miyazaki, Yuji; Aboubakr, Mohamed; Khalil, Waleed Fathy; Shimoda, Minoru

    2015-10-01

    The pharmacokinetics of acetaminophen was investigated following oral dosing to Shiba goats in order to evaluate the properties of gastric emptying. Acetaminophen was intravenously and orally administered at 30 mg/kg body weight to goats using a crossover design with a 3-week washout period. The stability of acetaminophen in rumen juice was also assessed. Acetaminophen concentrations were measured by HPLC. Since acetaminophen was stable in rumen juice for 24 hr, the extremely low bioavailability (16%) was attributed to its hepatic extensive first-pass effect. The mean absorption time and absorption half-life were unexpectedly short (4.93 and 3.35 hr, respectively), indicating its marked absorption from the forestomach, which may have been due to its smaller molecular weight. Therefore, acetaminophen was considered to be unsuitable for evaluating gastric emptying in Shiba goats.

  14. Antimicrobial breakpoint estimation accounting for variability in pharmacokinetics.

    PubMed

    Bi, Goue Denis Gohore; Li, Jun; Nekka, Fahima

    2009-06-26

    Pharmacokinetic and pharmacodynamic (PK/PD) indices are increasingly being used in the microbiological field to assess the efficacy of a dosing regimen. In contrast to methods using MIC, PK/PD-based methods reflect in vivo conditions and are more predictive of efficacy. Unfortunately, they entail the use of one PK-derived value such as AUC or Cmax and may thus lead to biased efficiency information when the variability is large. The aim of the present work was to evaluate the efficacy of a treatment by adjusting classical breakpoint estimation methods to the situation of variable PK profiles. We propose a logical generalisation of the usual AUC methods by introducing the concept of "efficiency" for a PK profile, which involves the efficacy function as a weight. We formulated these methods for both classes of concentration- and time-dependent antibiotics. Using drug models and in silico approaches, we provide a theoretical basis for characterizing the efficiency of a PK profile under in vivo conditions. We also used the particular case of variable drug intake to assess the effect of the variable PK profiles generated and to analyse the implications for breakpoint estimation. Compared to traditional methods, our weighted AUC approach gives a more powerful PK/PD link and reveals, through examples, interesting issues about the uniqueness of therapeutic outcome indices and antibiotic resistance problems.

  15. Antimicrobial breakpoint estimation accounting for variability in pharmacokinetics

    PubMed Central

    Bi, Goue Denis Gohore; Li, Jun; Nekka, Fahima

    2009-01-01

    Background Pharmacokinetic and pharmacodynamic (PK/PD) indices are increasingly being used in the microbiological field to assess the efficacy of a dosing regimen. In contrast to methods using MIC, PK/PD-based methods reflect in vivo conditions and are more predictive of efficacy. Unfortunately, they entail the use of one PK-derived value such as AUC or Cmax and may thus lead to biased efficiency information when the variability is large. The aim of the present work was to evaluate the efficacy of a treatment by adjusting classical breakpoint estimation methods to the situation of variable PK profiles. Methods and results We propose a logical generalisation of the usual AUC methods by introducing the concept of "efficiency" for a PK profile, which involves the efficacy function as a weight. We formulated these methods for both classes of concentration- and time-dependent antibiotics. Using drug models and in silico approaches, we provide a theoretical basis for characterizing the efficiency of a PK profile under in vivo conditions. We also used the particular case of variable drug intake to assess the effect of the variable PK profiles generated and to analyse the implications for breakpoint estimation. Conclusion Compared to traditional methods, our weighted AUC approach gives a more powerful PK/PD link and reveals, through examples, interesting issues about the uniqueness of therapeutic outcome indices and antibiotic resistance problems. PMID:19558679

  16. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs.

    PubMed

    Lee, Jae-Young; Park, Ju-Hwan; Lee, Jeong-Jun; Lee, Song Yi; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-10-20

    Polyethylene glycol (PEG)-decorated chondroitin sulfate A-deoxycholic acid (CSD) nanoparticles (NPs) were fabricated for the selective delivery of doxorubicin (DOX) to ovarian cancer. CSD-PEG was synthesized via amide bond formation between the NH2 group of methoxypolyethylene glycol amine and the COOH group of CSD. CSD-PEG/DOX NPs with a 247nm mean diameter, negative zeta potential, and >90% drug encapsulation efficiency were prepared. Sustained and pH-dependent DOX release profiles from CSD-PEG NPs were observed in dissolution tests. Endocytosis of NPs by SKOV-3 cells (CD44 receptor-positive human ovarian cancer cells), based on the CSA-CD44 receptor interaction, was determined by flow cytometry and confocal laser scanning microscopy (CLSM) studies. PEGylation of NPs also resulted in reduced drug clearance (CL) in vivo and improved relative bioavailability, compared to non-PEGylated NPs, as determined by the pharmacokinetic study performed after intravenous administration in rats. Developed CSD-PEG NPs can be a promising delivery vehicle for the therapy of CD44 receptor-expressing ovarian cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Novel methodology for labelling mesoporous silica nanoparticles using the 18F isotope and their in vivo biodistribution by positron emission tomography

    NASA Astrophysics Data System (ADS)

    Rojas, Santiago; Gispert, Juan Domingo; Menchón, Cristina; Baldoví, Herme G.; Buaki-Sogo, Mireia; Rocha, Milagros; Abad, Sergio; Victor, Victor Manuel; García, Hermenegildo; Herance, José Raúl

    2015-03-01

    Nanoparticles have been proposed for several biomedical applications due to their potential as drug carriers, diagnostic and therapeutic agents. However, only a few of them have been approved for their use in humans. In order to gauge the potential applicability of a specific type of nanoparticle, in vivo biodistribution studies to characterize their pharmacokinetic properties are essential. In this regard, mesoporous silica nanoparticles (30-130 nm) have been functionalized with amino groups in order to react with N-succinimidyl 4-[18F]fluorobenzoate and thus anchor the 18F positron emission isotope by using a novel and easy labelling strategy. In vivo biodistribution was characterized in mice after intravenous administration of radiolabelled nanoparticles by positron emission tomography. Our results indicated that radiolabelled mesoporous silica nanoparticles were excreted into bile and urine and accumulated mainly in the organs of the reticuloendothelial system and lungs.

  18. Integrated pharmacokinetic, pharmacodynamic and immunogenicity profiling of an anti-CCL21 monoclonal antibody in cynomolgus monkeys.

    PubMed

    Dudal, S; Subramanian, K; Flandre, T; Law, W S; Lowe, P J; Skerjanec, A; Genin, J-C; Duval, M; Piequet, A; Cordier, A; Jarai, G; Van Heeke, G; Taplin, S; Krantz, C; Jones, S; Warren, A P; Brennan, F R; Sims, J; Lloyd, P

    2015-01-01

    QBP359 is an IgG1 human monoclonal antibody that binds with high affinity to human CCL21, a chemokine hypothesized to play a role in inflammatory disease conditions through activation of resident CCR7-expressing fibroblasts/myofibroblasts. The pharmacokinetics (PK) and pharmacodynamics (PD) of QBP359 in non-human primates were characterized through an integrated approach, combining PK, PD, immunogenicity, immunohistochemistry (IHC) and tissue profiling data from single- and multiple-dose experiments in cynomolgus monkeys. When compared with regular immunoglobulin typical kinetics, faster drug clearance was observed in serum following intravenous administration of 10 mg/kg and 50 mg/kg of QBP359. We have shown by means of PK/PD modeling that clearance of mAb-ligand complex is the most likely explanation for the rapid clearance of QBP359 in cynomolgus monkey. IHC and liquid chromatography mass spectrometry data suggested a high turnover and synthesis rate of CCL21 in tissues. Although lymphoid tissue was expected to accumulate drug due to the high levels of CCL21 present, bioavailability following subcutaneous administration in monkeys was 52%. In human disease states, where CCL21 expression is believed to be expressed at 10-fold higher concentrations compared with cynomolgus monkeys, the PK/PD model of QBP359 and its binding to CCL21 suggested that very large doses requiring frequent administration of mAb would be required to maintain suppression of CCL21 in the clinical setting. This highlights the difficulty in targeting soluble proteins with high synthesis rates.

  19. Anemarrhena asphodeloides Non-Steroidal Saponin Components Alter the Pharmacokinetic Profile of Its Steroidal Saponins in Rat.

    PubMed

    Tang, Zhishu; Li, Guolong; Yang, Jie; Duan, Jinao; Qian, Dawei; Guo, Jianming; Zhu, Zhenhua; Song, Zhongxing

    2015-06-26

    A rapid, selective and sensitive UPLC-MS/MS assay was established to determine the plasma concentrations of four steroidal saponins. Sprague-Dawley rats were allocated to four groups which were orally administered Anemarrhena asphodeloides extracts (ASE), ASE combined with macromolecular fraction (ASE-MF), ASE combined with small molecule fraction (ASE-SF) and ASE combined with small molecule and macromolecular fraction (ASE-SF-MF) containing approximately the same dose of ASE. At different time points, the concentration of timosaponin BII, anemarsaponin BIII, timosaponin AIII and timosaponin E1 in rat plasma were determined and main pharmacokinetic parameters including Cmax, Tmax, T1/2, AUC were calculated using the DAS 3.2 software package. The statistical analysis was performed using the Student's t-test with p < 0.05 as the level of significance. MF had no effect on the pharmacokinetic behaviors and parameters of four steroidal saponins. It was found that Cmax and AUC of four steroidal saponins in group ASE-SF and ASE-SF-MF, were significantly increased compared with those in group ASE. These results indicate that SF in A. asphodeloides extracts could increase the absorption and improve the bioavailability of the steroidal saponins.

  20. Pharmacokinetic profile of bilberry anthocyanins in rats and the role of glucose transporters: LC-MS/MS and computational studies.

    PubMed

    Baron, G; Altomare, A; Regazzoni, L; Redaelli, V; Grandi, S; Riva, A; Morazzoni, P; Mazzolari, A; Carini, M; Vistoli, G; Aldini, G

    2017-09-10

    The aim of the present investigation was to better understand the pharmacokinetic profile of bilberry (Vaccinium Myrtillus) anthocyanins and the role of glucose transporters (sGLT1 and GLUT2) on their absorption. In particular, the absorption of 15 different anthocyanins contained in a standardized bilberry extract (Mirtoselect ® ) was measured in rats by a validated LC-ESI-MS/MS approach. The plasma concentration peak (Cmax) of 11.1ng/mL was reached after 30min and fasting condition significantly increased the bioavailability of anthocyanins by more than 7 fold in respect to fed rats. Glucose co-administration did not interfere with the overall anthocyanin uptake. Bioavailability of each anthocyanin was then estimated by comparing the relative content in plasma vs extract. The 15 anthocyanins behaved differently in term of bioavailability and both the aglycone and the sugar moiety were found to affect the absorption. For instance, arabinoside moiety was detrimental while cyanidin enhanced bioavailability. Computational studies permitted to rationalize such results, highlighting the role of glucose transporters (sGLT1 and GLUT2) in anthocyanins absorption. In particular a significant correlation was found for the 15 anthocyanins between sGLT1 and GLUT2 recognition and absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Pharmacokinetics and pharmacodynamics of the injectable formulation of methadone hydrochloride and methadone in lipid nanocarriers administered orally to horses.

    PubMed

    Crosignani, N; Luna, S P; Dalla Costa, T; Pimenta, E L; Detoni, C B; Guterres, S S; Puoli Filho, J N; Pantoja, J C; Pigatto, M C

    2017-08-01

    We investigated the thermal, electrical and mechanical antinociceptive and physiological effects (heart rate, respiratory rate, arterial blood pressure, head height and abdominal auscultation score), and pharmacokinetics, of 0.5 mg/kg of the injectable formulation (ORAL) or nanoparticulated methadone (NANO) given orally, in six adult mares, using a crossover, blind and prospective design. Repeated-measure models were used to compare parametric data between and within treatments, followed by Tukey's test. Nonparametric data were analysed with Wilcoxon signed-rank, adjusted by Bonferroni tests. Blood samples were also collected up to 6 h after dosing for plasma drug quantification by LC-MS/MS. Methadone pharmacokinetic parameters were determined by noncompartmental and compartmental approaches. There were no differences in pharmacodynamic parameters. No statistical differences were observed in the pharmacokinetic parameters from noncompartmental analysis for both groups, except a significant decrease in peak plasma concentration, increase in apparent volume of distribution per fraction absorbed (Vd ss /F) and increased mean residence time (MRT) for NANO. One-compartment open model with first order elimination best described the pharmacokinetic profiles for both groups. Neither ORAL nor NANO administered orally to horses produced antinociception. The nanoencapsulated formulation of methadone given orally to horses did not improve methadone pharmacokinetic parameters or increased systemic body exposure to methadone. © 2017 John Wiley & Sons Ltd.

  2. Application of Physiologically-Based Pharmacokinetic Modeling for the Prediction of Tofacitinib Exposure in Japanese.

    PubMed

    Suzuki, Misaki; Tse, Susanna; Hirai, Midori; Kurebayashi, Yoichi

    2017-05-09

    Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3 -oxopropanenitrile) is an oral Janus kinase inhibitor that is approved in countries including Japan and the United States for the treatment of rheumatoid arthritis, and is being developed across the globe for the treatment of inflammatory diseases. In the present study, a physiologically-based pharmacokinetic model was applied to compare the pharmacokinetics of tofacitinib in Japanese and Caucasians to assess the potential impact of ethnicity on the dosing regimen in the two populations. Simulated plasma concentration profiles and pharmacokinetic parameters, i.e. maximum concentration and area under plasma concentration-time curve, in Japanese and Caucasian populations after single or multiple doses of 1 to 30 mg tofacitinib were in agreement with clinically observed data. The similarity in simulated exposure between Japanese and Caucasian populations supports the currently approved dosing regimen in Japan and the United States, where there is no recommendation for dose adjustment according to race. Simulated results for single (1 to 100 mg) or multiple doses (5 mg twice daily) of tofacitinib in extensive and poor metabolizers of CYP2C19, an enzyme which has been shown to contribute in part to tofacitinib elimination and is known to exhibit higher frequency in Japanese compared to Caucasians, were also in support of no recommendation for dose adjustment in CYP2C19 poor metabolizers. This study demonstrated a successful application of physiologically-based pharmacokinetic modeling in evaluating ethnic sensitivity in pharmacokinetics at early stages of development, presenting its potential value as an efficient and scientific method for optimal dose setting in the Japanese population.

  3. Application of Physiologically-Based Pharmacokinetic Modeling for the Prediction of Tofacitinib Exposure in Japanese

    PubMed Central

    SUZUKI, MISAKI; TSE, SUSANNA; HIRAI, MIDORI; KUREBAYASHI, YOICHI

    2016-01-01

    Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3 -oxopropanenitrile) is an oral Janus kinase inhibitor that is approved in countries including Japan and the United States for the treatment of rheumatoid arthritis, and is being developed across the globe for the treatment of inflammatory diseases. In the present study, a physiologically-based pharmacokinetic model was applied to compare the pharmacokinetics of tofacitinib in Japanese and Caucasians to assess the potential impact of ethnicity on the dosing regimen in the two populations. Simulated plasma concentration profiles and pharmacokinetic parameters, i.e. maximum concentration and area under plasma concentration-time curve, in Japanese and Caucasian populations after single or multiple doses of 1 to 30 mg tofacitinib were in agreement with clinically observed data. The similarity in simulated exposure between Japanese and Caucasian populations supports the currently approved dosing regimen in Japan and the United States, where there is no recommendation for dose adjustment according to race. Simulated results for single (1 to 100 mg) or multiple doses (5 mg twice daily) of tofacitinib in extensive and poor metabolizers of CYP2C19, an enzyme which has been shown to contribute in part to tofacitinib elimination and is known to exhibit higher frequency in Japanese compared to Caucasians, were also in support of no recommendation for dose adjustment in CYP2C19 poor metabolizers. This study demonstrated a successful application of physiologically-based pharmacokinetic modeling in evaluating ethnic sensitivity in pharmacokinetics at early stages of development, presenting its potential value as an efficient and scientific method for optimal dose setting in the Japanese population. PMID:28490712

  4. Pharmacokinetics of darunavir/cobicistat and etravirine alone and co-administered in HIV-infected patients.

    PubMed

    Moltó, José; Curran, Adrian; Miranda, Cristina; Challenger, Elizabeth; Santos, José Ramón; Ribera, Esteban; Khoo, Saye; Valle, Marta; Clotet, Bonaventura

    2017-12-11

    To determine the effect of etravirine on the pharmacokinetics of darunavir/cobicistat and vice versa. Safety and tolerability of this combination were also evaluated. Open-label, fixed-sequence trial in two cohorts of HIV-infected patients on therapy with darunavir/cobicistat 800/150 mg once daily (DRV cohort; n = 15) or etravirine 400 mg once daily (ETR cohort; n = 15). Etravirine or darunavir/cobicistat were added on days 1-14 and 1-7 in participants in the DRV or ETR cohort, respectively. Full pharmacokinetic profiles were obtained on days 0 and 14 in the DRV cohort, and on days 0 and 7 in the ETR cohort. Darunavir, cobicistat and etravirine pharmacokinetic parameters [AUC0-24, Cmax and trough concentrations in plasma (C24)] were calculated for each individual by non-compartmental analysis and were compared using linear mixed-effects models. Adverse events and HIV-1 RNA in plasma were monitored. Etravirine co-administration decreased cobicistat AUC0-24, Cmax and C24 by 30%, 14% and 66%, respectively. Although darunavir AUC0-24 and Cmax were unchanged by etravirine, darunavir C24 was 56% lower for darunavir/cobicistat co-administered with etravirine relative to darunavir/cobicistat alone. Etravirine pharmacokinetics were unchanged by darunavir/cobicistat. Treatments were well tolerated, and HIV-1 RNA remained undetectable in all participants. Although etravirine pharmacokinetics was unchanged by darunavir/cobicistat, there was a significant decrease in cobicistat exposure and in darunavir C24 when darunavir/cobicistat was co-administered with etravirine. Boosting darunavir with ritonavir instead of with cobicistat may be preferred if darunavir is to be combined with etravirine in clinical practice. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Pharmacokinetics of total thyroxine after repeated oral administration of levothyroxine solution and its clinical efficacy in hypothyroid dogs.

    PubMed

    van Dijl, I C; Le Traon, G; van de Meulengraaf, B D A M; Burgaud, S; Horspool, L J I; Kooistra, H S

    2014-01-01

    Oral levothyroxine (l-T4 ) supplementation is commonly used to treat hypothyroid dogs. Investigate the plasma profile and pharmacokinetics of total thyroxine (tT4 ) after PO administration of a l-T4 solution and its clinical efficacy in hypothyroid dogs. Ten dogs with naturally occurring hypothyroidism. After hypothyroidism diagnosis and supplementation with l-T4 solution PO q24h at 20 μg/kg BW for minimum 4 weeks, the plasma profile and pharmacokinetics of tT4 were determined over 34 hours and the clinical condition of the dogs was evaluated. Before dosing for pharmacokinetic evaluation, mean tT4 concentration was 23 ± 9 nmol/L. l-T4 was absorbed rapidly (tmax , 5 hours), reaching a mean maximal tT4 concentration of 56 ± 11 nmol/L. The apparent terminal half-life was 11.8 hours. Clinical signs of hypothyroidism improved or resolved in all dogs after 4 weeks of treatment. The dosage of 20 μg/kg PO q24h was judged appropriate in 5 dogs, and 4 dogs required slight increases (9-16%). Twice daily treatment, with a 30% increase in dosage, was necessary for 1 dog. The pharmacokinetics of l-T4 in hypothyroid dogs was similar to that reported in healthy euthyroid dogs. Clinical and hormonal responses to l-T4 solution were rapid in all dogs. The starting dosage of 20 μg/kg PO q24h was suitable for maintenance supplementation in 50% of the dogs, minor dosage modification was required in 4 other dogs, and treatment q12h was required in 1 dog. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  6. [Comparison of dissolution profile and plasma concentration-time profile of the thalidomide formulations made by Japanese, Mexican and British companies].

    PubMed

    Fujita, Yukiyoshi; Yamamoto, Koujirou; Aomori, Tohru; Murakami, Hirokazu; Horiuchi, Ryuya

    2008-10-01

    Thalidomide is an important advance in the treatment of multiple myeloma. In Japan thalidomide is now on the approval step for the treatment of multiple myeloma. The drug has some bothersome side effects such as defect of organogenesis, neuropathy, constipation and fatigue, but is likely more effective than standard chemotherapy and is changing multiple myeloma treatment. At this moment, Japanese patients must import the thalidomide preparations from Mexico, Britain and elsewhere, but after approval, they patients will be able to get the new Japanese thalidomide capsules. In order to determine appropriate amounts of Japanese thalidomide capsules in the treatment of multiple myeloma, we compared the dissolution profile and plasma thalidomide concentrations of Japanese and British capsules and Mexican tablets. The dissolution test was performed according to the Japanese and the United States Pharmacopoeia. The pharmacokinetic data for Japanese capsules were obtained from the clinical trial in Japanese subjects and compared with those data published for other formulations. The dissolution rate of the Japanese capsule was the fastest, followed by British and Mexican formulations. The pharmacokinetic profiles of Japanese and British capsules were similar, while the 100 mg Japanese thalidomide capsule demonstrated a 1.6-fold higher maximum plasma concentration than the 200 mg Mexican thalidomide tablet (1.7 vs. 1.1 microg/ml), greatly shortened t(max) (4.5 vs. 6.2 h), and the apparent half life was only one-third of the Mexican tablet (4.8 vs. 13.5 h). A comparison of the dissolution and the pharmacokinetic absorption profiles demonstrated a rank-order correlation. Physicians and pharmacists should be aware of the probable alteration in plasma thalidomide concentration when switching to the Japanese capsule, especially from the Mexican tablet, and should monitor clinical response carefully.

  7. Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging

    PubMed Central

    Glasgow, Micah D. K.; Chougule, Mahavir B.

    2016-01-01

    Nanotechnology and combination therapy are two major fields that show great promise in the treatment of cancer. The delivery of drugs via nanoparticles helps to improve drug’s therapeutic effectiveness while reducing adverse side effects associated with high dosage by improving their pharmacokinetics. Taking advantage of molecular markers over-expressing on tumor tissues compared to normal cells, an “active” molecular marker targeted approach would be beneficial for cancer therapy. These actively targeted nanoparticles would increase drug concentration at the tumor site, improving efficacy while further reducing chemo-resistance. The multidisciplinary approach may help to improve the overall efficacy in cancer therapy. This review article summarizes recent developments of targeted multifunctional nanoparticles in the delivery of various drugs for a combinational chemotherapy approach to cancer treatment and imaging. PMID:26554150

  8. A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior

    PubMed Central

    Thanos, Panayotis K.; Robison, Lisa S.; Steier, Jessica; Hwang, Yu Fen; Cooper, Thomas; Swanson, James M.; Komatsu, David E.; Hadjiargyrou, Michael; Volkow, Nora D.

    2015-01-01

    Most animal studies using methylphenidate (MP) do not administer it the same way it is administered clinically (orally), but rather by injection, resulting in an altered pharmacokinetic profile (i.e. quicker and higher peak concentrations). Here, we evaluated several oral-dosing regimens in rats, including dual-dose drinking, to mimic the clinical drug delivery profile. Using an 8-hour-limited-access-drinking-paradigm, MP solutions were delivered at different doses (20, 30, or 60 mg/kg/day; as well as dual-dosages of 4 and 10 mg/kg/day, 20 and 30 mg/kg/day, or 30 and 60 mg/kg/day, in which the low dose was administered in the first hour of drinking followed by 7 h of drinking the high dose). Blood was sampled and plasma was assayed for MP levels at many time points. Results showed that an 8-hour limited drinking of a dual-dosage 30/60 mg/kg MP solution achieved a pharmacokinetic profile similar to clinically administered doses of MP at the high end of the spectrum (peaking at ~30 ng/mL), while the 4/10 mg/kg MP dual-dosage produced plasma levels in the range produced by typically prescribed clinical doses of MP (peaking at ~8 ng/mL). Treatment with the higher dual-dosage (HD: 30/60 mg/kg) resulted in hyperactivity, while the lower (LD: 4/10 mg/kg) had no effect. Next, chronic effects of these dual-dosages were assessed on behavior throughout three months of treatment and one month of abstinence, beginning in adolescence. MP dose-dependently decreased body weight, which remained attenuated throughout abstinence. MP decreased food intake during early treatment, suggesting that MP may be an appetite suppressant and may also speed metabolism and/or suppress growth. Chronic HD MP resulted in hyperactivity limited during the dark cycle; decreased exploratory behavior; and increased anxiolytic behavior. These findings suggest that this dual-dosage-drinking-paradigm can be used to examine the effects of clinically relevant pharmacokinetic doses of MP, and that chronic

  9. Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles.

    PubMed

    Souza, A C O; Nascimento, A L; de Vasconcelos, N M; Jerônimo, M S; Siqueira, I M; R-Santos, L; Cintra, D O S; Fuscaldi, L L; Pires Júnior, O R; Titze-de-Almeida, R; Borin, M F; Báo, S N; Martins, O P; Cardoso, V N; Fernandes, S O; Mortari, M R; Tedesco, A C; Amaral, A C; Felipe, M S S; Bocca, A L

    2015-05-05

    The development of biocompatible polymeric nanoparticles has become an important strategy for optimizing the therapeutic efficacy of many classical drugs, as it may expand their activities, reduce their toxicity, increase their bioactivity and improve biodistribution. In this study, nanoparticles of Amphotericin B entrapped within poly (lactic-co-glycolic) acid and incorporated with dimercaptosuccinic acid (NANO-D-AMB) as a target molecule were evaluated for their physic-chemical characteristics, pharmacokinetics, biocompatibility and antifungal activity. We found high plasma concentrations of Amphotericin B upon treatment with NANO-D-AMB and a high uptake of nanoparticles in the lungs, liver and spleen. NANO-D-AMB exhibited antifungal efficacy against Paracoccidioides brasiliensis and induced much lower cytotoxicity levels compared to D-AMB formulation in vivo and in vitro. Together, these results confirm that NANO-D-AMB improves Amphotericin B delivery and suggest this delivery system as a potential alternative to the use of Amphotericin B sodium deoxycholate. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Pharmacokinetic profile of Mitoguazone (MGBG) in patients with AIDS related non-Hodgkin's lymphoma.

    PubMed

    Rizzo, J; Levine, A M; Weiss, G R; Pearce, T; Kraynak, M; Mueck, R; Smith, S; Von Hoff, D D; Kuhn, J G

    1996-01-01

    Mitoguazone is a unique chemotherapeutic agent whose activity is believed to result primarily from the competitive inhibition of S-adenosyl-methionine decarboxylase leading to a disruption in polyamine biosynthesis. Initial clinical trials demonstrated that the dose-limiting toxicities (mucositis and myelosuppression) of Mitoguazone were both dose and schedule dependent. Early pharmacokinetic studies of Mitoguazone in man revealed a prolonged half-life. Concurrent with a recent Phase II trial of Mitoguazone in patients with AIDS related non-Hodgkin's lymphoma, the single dose pharmacokinetics of Mitoguazone were characterized. Twelve patients received 600 mg/m2 of intravenous Mitoguazone over 30 minutes on an intermittent every 2 week schedule. Blood, urine, cerebrospinal fluid (CSF), pleural fluid and tissue samples were collected and analyzed by HPLC. Mitoguazone was cleared from the plasma triexponentially with a harmonic mean terminal half-life of 175 hours and a mean residence time of 192 hours. Peak plasma levels occurred immediately post-infusion, ranged from 6.47 to 42.8 micrograms/ml, and remained (for an extended period) well above the reported concentration for inhibition of polyamine biosynthesis. Plasma clearance averaged 4.73 l/hr/m2 with a relatively large apparent volume of distribution at steady-state of 1012 l/m2 indicating tissue sequestration. Renal excretion of unchanged Mitoguazone accounted for an average of 15.8% of the dose within 48 to 72 hours post-administration. Detectable levels of drug were present in random voided samples eight days post-dose. Mitoguazone levels in CSF ranged from 22 to 186 ng/ml post-dose with CSF/plasma ratios ranging from 0.6% to 7%. The pleural fluid/plasma ratio was approximately 1. Tissue levels of Mitoguazone were highest in the liver followed by lymph node, spleen and the brain.

  11. Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration.

    PubMed

    Pawar, Harish; Wankhade, Shrikant Rameshrao; Yadav, Dharmendra K; Suresh, Sarasija

    2016-09-01

    Technology for development of biodegradable nanoparticles encapsulating combinations for enhanced efficacy. To develop docetaxel (DTX) and curcumin (CRM) co-encapsulated biodegradable nanoparticles for parenteral administration with potential for prolonged release and decreased toxicity. Modified emulsion solvent-evaporation technique was employed in the preparation of the nanoparticles optimized by the face centered-central composite design (FC-CCD). The uptake potential was studied in MCF-7 cells, while the toxicity was evaluated by in vitro hemolysis test. In vivo pharmacokinetic was evaluated in male Wistar rats. Co-encapsulated nanoparticles were developed of 219 nm size, 0.154 PDI, -13.74 mV zeta potential and 67.02% entrapment efficiency. Efficient uptake was observed by the nanoparticles in MCF-7 cells with decreased toxicity in comparison with the commercial DTX intravenous injection, Taxotere®. The nanoparticles exhibited biphasic release with initial burst release followed by sustained release for 5 days. The nanoparticles displayed a 4.3-fold increase in AUC (391.10 ± 32.94 versus 89.77 ± 10.58 μg/ml min) in comparison to Taxotere® with a 6.2-fold increase in MRT (24.78 ± 2.36 versus 3.58 ± 0.21 h). The nanoparticles exhibited increased uptake, prolonged in vitro and in vivo release, with decreased toxicity thus exhibiting potential for enhanced efficacy.

  12. Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

    PubMed

    Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu

    2013-08-01

    Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.

  13. Multiple Rising Doses of Oral BI 425809, a GlyT1 Inhibitor, in Young and Elderly Healthy Volunteers: A Randomised, Double-Blind, Phase I Study Investigating Safety and Pharmacokinetics.

    PubMed

    Moschetti, Viktoria; Schlecker, Christina; Wind, Sven; Goetz, Sophia; Schmitt, Holger; Schultz, Armin; Liesenfeld, Karl-Heinz; Wunderlich, Glen; Desch, Michael

    2018-05-30

    Schizophrenia and Alzheimer's disease are characterised by abnormalities in glutamatergic pathways related to N-methyl-D-aspartate receptor hypofunction. Glycine is an N-methyl-D-aspartate receptor co-agonist; inhibition of glycine transporter 1 may improve N-methyl-D-aspartate receptor function. This phase I, randomised, two-part study evaluated the safety, tolerability and pharmacokinetic profile of BI 425809, a novel glycine transporter 1 inhibitor, in healthy male and female volunteers. Part 1 evaluated BI 425809 10, 25, 50 or 75 mg once daily or 75 mg twice daily in young subjects, and 25 mg or 50 mg once daily in elderly subjects. Each dose group comprised 12 subjects who received BI 425809 (n = 9) or placebo (n = 3) for 14 days (day 1: single dose; days 4-14: multiple dosing). Part 2 compared pharmacokinetic profiles in 12 subjects who received a single dose of BI 425809 25 mg in the morning and evening. Pharmacokinetic profiles were similarly shaped for all dose groups. Median time to maximum plasma concentration was 3.0-4.5 h with steady state being reached between days 6 and 10. Pharmacokinetic parameters demonstrated dose linearity at the predicted therapeutic exposure range of BI 425809 ≤ 25 mg once daily, but increased less than dose proportionally for ≥ 50 mg once daily. All reported adverse events were of mild-to-moderate intensity, 51/84 (61%; part 1) subjects had one or more treatment-related adverse event, no serious adverse events occurred and no dose dependency was observed. Pharmacokinetic properties support both morning and evening dosing. BI 425809 was generally well tolerated at all tested doses. CLINICALTRIALS. NCT02337283.

  14. Pharmacokinetics of oral amantadine in greyhound dogs.

    PubMed

    Norkus, C; Rankin, D; Warner, M; KuKanich, B

    2015-06-01

    This study reports the pharmacokinetics of amantadine in greyhound dogs after oral administration. Five healthy greyhound dogs were used. A single oral dose of 100 mg amantadine hydrochloride (mean dose 2.8 mg/kg as amantadine hydrochloride) was administered to nonfasted subjects. Blood samples were collected at predetermined time points from 0 to 24 h after administration, and plasma concentrations of amantadine were measured by liquid chromatography with triple quadrupole mass spectrometry. Noncompartmental pharmacokinetic analyses were performed. Amantadine was well tolerated in all dogs with no adverse effects observed. The mean (range) amantadine CMAX was 275 ng/mL (225-351 ng/mL) at 2.6 h (1-4 h) with a terminal half-life of 4.96 h (4.11-6.59 h). The results of this study can be used to design dosages to assess multidose pharmacokinetics and dosages designed to achieve targeted concentrations in order to assess the clinical effects of amantadine in a variety of conditions including chronic pain. Further studies should also assess the pharmacokinetics of amantadine in other dog breeds or using population pharmacokinetics studies including multiple dog breeds to assess potential breed-specific differences in the pharmacokinetics of amantadine in dogs. © 2014 John Wiley & Sons Ltd.

  15. Pharmacokinetic properties of intramuscular versus oral syrup paracetamol in Plasmodium falciparum malaria.

    PubMed

    Wattanakul, Thanaporn; Teerapong, Pramote; Plewes, Katherine; Newton, Paul N; Chierakul, Wirongrong; Silamut, Kamolrat; Chotivanich, Kesinee; Ruengweerayut, Ronnatrai; White, Nicholas J; Dondorp, Arjen M; Tarning, Joel

    2016-04-27

    Fever is an inherent symptom of malaria in both adults and children. Paracetamol (acetaminophen) is the recommended antipyretic as it is inexpensive, widely available and has a good safety profile, but patients may not be able to take the oral drug reliably. A comparison between the pharmacokinetics of oral syrup and intramuscular paracetamol given to patients with acute falciparum malaria and high body temperature was performed. A randomized, open-label, two-treatment, crossover, pharmacokinetic study of paracetamol dosed orally and intramuscularly was conducted. Twenty-one adult patients with uncomplicated falciparum malaria were randomized to receive a single 600 mg dose of paracetamol either as syrup or intramuscular injection on day 0 followed by a single dose administered by the alternative route on day 1. Paracetamol plasma concentrations were quantified frequently and modelled simultaneously using nonlinear mixed-effects modelling. The final population pharmacokinetic model was used for dose optimization simulations. Relationships between paracetamol concentrations with temperature and parasite half-life were investigated using linear and non-linear regression analyses. The population pharmacokinetic properties of paracetamol were best described by a two-compartment disposition model, with zero-order and first-order absorption for intramuscular and oral syrup administration, respectively. The relative bioavailability of oral syrup was 84.4 % (95 % CI 68.2-95.1 %) compared to intramuscular administration. Dosing simulations showed that 1000 mg of intramuscular or oral syrup administered six-hourly reached therapeutic steady state concentrations for antipyresis, but more favourable concentration-time profiles were achieved with a loading dose of 1500 mg, followed by a 1000 mg maintenance dose. This ensured that maximum therapeutic concentrations were reached rapidly during the first 6 h. No significant relationships between paracetamol concentrations

  16. Evaluation of folate conjugated superparamagnetic iron oxide nanoparticles for scintigraphic/magnetic resonance imaging.

    PubMed

    Chauhan, Ram Prakash; Mathur, Rashi; Singh, Gurjaspreet; Kaul, Ankur; Bag, Narmada; Singh, Sweta; Kumar, Hemanth; Patra, Manoj; Mishra, Anil K

    2013-03-01

    The physical and chemical properties of the nanoparticles influence their pharmacokinetics and ability to accumulate in tumors. In this paper we report a facile method to conjugate folic acid molecule to iron oxide nanoparticles to increase the specific uptake of these nanoparticles by the tumor, which will be useful in targeted imaging of the tumor. The iron oxide nanoparticles were synthesized by alkaline co precipitation method and were surface modified with dextranto make them stable. The folic acid is conjugated to the dextran modified iron oxide nanoparticles by reductive amination process after the oxidation of the dextran with periodate. The synthesized folic acid conjugated nanoparticles were characterized for size, phase, morphology and magnetization by using various physicochemical characterization techniques such as transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy, vibrating sample magnetometry, dynamic light scattering and zetasizer etc. The quantification of the generated carbonyl groups and folic acid conjugated to the surface of the magnetic nanoparticles was done by colorimetric estimations using UV-Visible spectroscopy. The in vitro MR studies were carried out over a range of concentrations and showed significant shortening of the transverse relaxation rate, showing the ability of the nanoconjugate to act as an efficient probe for MR imaging. The biodistribution studies and the scintigraphy done by radiolabeling the nanoconjugate with 99mTc show the enhanced uptake at the tumor site showing its enhanced specificity.

  17. Polysorbate 80-coated PLGA nanoparticles improve the permeability of acetylpuerarin and enhance its brain-protective effects in rats.

    PubMed

    Sun, Deqing; Xue, Aiying; Zhang, Bin; Lou, Haiyan; Shi, Huanying; Zhang, Xiumei

    2015-12-01

    Acetylpuerarin (AP) is an acetylated derivative of puerarin (PUE). The study aimed to prepare polysorbate 80-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles to improve the permeability of AP across the blood-brain barrier (BBB) and enhance its brain-protective effects. AP-loaded PLGA nanoparticles (AP-PLGA-NPs) were prepared using a solvent diffusion methodology. The NPs were characterized. The pharmacokinetics, tissue distributions and brain-protective effects of AP-PLGA-NPs were evaluated in animals. AP-PLGA-NPs were successfully prepared with a mean particle size of 145.0 nm and a zeta potential of -14.81 mV. The in-vitro release of AP from the PLGA-NPs showed a biphasic release profile. AP was metabolized into PUE in rats. The AUC0-∞ values of AP and PUE for AP-PLGA-NPs were 2.90- and 2.29-fold as great as those for AP solution, respectively. The values of the relative targeting efficiency in the brain were 2.40 and 2.58 for AP and PUE, and the ratios of peak concentration were 1.91 and 1.89 for AP and PUE, respectively. Compared with the crude drug, AP-PLGA-NPs showed better brain-protective effects in rats. Polysorbate 80-coated PLGA-NPs can improve the permeability of AP cross the BBB and enhance its brain-protective effects in rats. © 2015 Royal Pharmaceutical Society.

  18. Pharmacokinetics and Tissue Distribution Study of Chlorogenic Acid from Lonicerae Japonicae Flos Following Oral Administrations in Rats

    PubMed Central

    Zhou, Yulu; Zhou, Ting; Pei, Qi; Liu, Shikun; Yuan, Hong

    2014-01-01

    Chlorogenic acid (ChA) is proposed as the major bioactive compounds of Lonicerae Japonicae Flos (LJF). Forty-two Wistar rats were randomly divided into seven groups to investigate the pharmacokinetics and tissue distribution of ChA, via oral administration of LJF extract, using ibuprofen as internal standard, employing a high performance liquid chromatography in conjunction with tandem mass spectrometry. Analytes were extracted from plasma samples and tissue homogenate by liquid–liquid extraction with acetonitrile, separated on a C 18 column by linear gradient elution, and detected by electrospray ionization mass spectrometry in negative selected multiple reaction monitoring mode. Our results successfully demonstrate that the method has satisfactory selectivity, linearity, extraction recovery, matrix effect, precision, accuracy, and stability. Using noncompartment model to study pharmacokinetics, profile revealed that ChA was rapidly absorbed and eliminated. Tissue study indicated that the highest level was observed in liver, followed by kidney, lung, heart, and spleen. In conclusion, this method was suitable for the study on pharmacokinetics and tissue distribution of ChA after oral administration. PMID:25140190

  19. Dose Assessment of Cefquinome by Pharmacokinetic/Pharmacodynamic Modeling in Mouse Model of Staphylococcus aureus Mastitis

    PubMed Central

    Yu, Yang; Zhou, Yu-Feng; Li, Xiao; Chen, Mei-Ren; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    This work aimed to characterize the mammary gland pharmacokinetics of cefquinome after an intramammary administration and integrate pharmacokinetic/pharmacodynamic model. The pharmacokinetic profiles of cefquinome in gland tissue were measured using high performance liquid chromatograph. Therapeutic regimens covered various dosages ranging from 25 to 800 μg/gland and multiple dosing intervals of 8, 12, and 24 h. The in vivo bacterial killing activity elevated when dosage increased or when dosing intervals were shortened. The best antibacterial effect was demonstrated by a mean 1.5 log10CFU/gland visible count reduction. On the other hand, the results showed that the percentage of time duration of drug concentration exceeding the MIC during a dose interval (%T > MIC) was generally 100% because of the influence of drug distribution caused by the blood-milk barrier. Therefore, pharmacokinetic/pharmacodynamic parameter of the ratio of area under the concentration-time curve over 24 h to the MIC (AUC0-24/MIC) was used to describe the efficacy of cefquinome instead of %T > MIC. When the magnitude of AUC0-24/MIC exceeding 16571.55 h⋅mL/g, considerable activity of about 1.5 log10CFU/g gland bacterial count reduction was observed in vivo. Based on the Monte Carlo simulation, the clinical recommended regimen of three infusions of 75 mg per quarter every 12 h can achieve a 76.67% cure rate in clinical treatment of bovine mastitis caused by Staphylococcus aureus infection. PMID:27774090

  20. Pharmacokinetics and Safety of Amenamevir in Healthy Subjects: Analysis of Four Randomized Phase 1 Studies.

    PubMed

    Kusawake, Tomohiro; Keirns, James J; Kowalski, Donna; den Adel, Martin; Groenendaal-van de Meent, Dorien; Takada, Akitsugu; Ohtsu, Yoshiaki; Katashima, Masataka

    2017-12-01

    Amenamevir (ASP2151) is a nonnucleoside antiherpesvirus compound available for the treatment of varicella-zoster virus infections. In this article we summarize the findings of four phase 1 studies in healthy participants. Four randomized phase 1 studies investigated the safety and pharmacokinetics of single and multiple doses of amenamevir, including the assessment of age group effect (nonelderly vs elderly), food effect, and the relative bioavailability of two formulations. Amenamevir was administered orally at various doses as a single dose (5-2400 mg) or daily (300 or 600 mg/day) for 7 days. Following single and multiple oral doses, amenamevir demonstrated a less than dose proportional increase in the pharmacokinetic parameters area under the plasma drug concentration versus time curve from time zero to infinity (AUC inf ) and C max . After single and multiple oral 300-mg doses of amenamevir, no apparent differences in pharmacokinetics were observed between nonelderly and elderly participants. In contrast, with the amenamevir 600-mg dose both the area under the plasma drug concentration versus time curve from time zero to 24 h and C max were slightly increased and renal clearance was decreased in elderly participants. The pharmacokinetics of amenamevir was affected by food, with AUC inf increased by about 90%. In the bioavailability study, AUC inf and C max were slightly lower following tablet versus capsule administration (decreased by 14 and 12%, respectively), with relative bioavailability of 86%. The different amenamevir doses and formulations were safe and well tolerated; no deaths or serious adverse events were reported. Amenamevir had less than dose proportional pharmacokinetic characteristics. Age may have an influence on amenamevir pharmacokinetics; however, the effect was considered minimal. The pharmacokinetics of amenamevir were affected by food, with AUC inf almost doubling when amenamevir was administered with food. The concentration versus

  1. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications

    PubMed Central

    Sosnovik, David E.; Nahrendorf, Matthias; Weissleder, Ralph

    2008-01-01

    Magnetic nanoparticles (MNP) are playing an increasingly important role in cardiovascular molecular imaging. These agents are superparamagnetic and consist of a central core of iron-oxide surrounded by a carbohydrate or polymer coat. The size, physical properties and pharmacokinetics of MNP make them highly suited to cellular and molecular imaging of atherosclerotic plaque and myocardial injury. MNP have a sensitivity in the nanomolar range and can be detected with T1, T2, T2*, off resonance and steady state free precession sequences. Targeted imaging with MNP is being actively explored and can be achieved through either surface modification or through the attachment of an affinity ligand to the nanoparticle. First generation MNP are already in clinical use and second generation agents, with longer blood half lives, are likely to be approved for routine clinical use in the near future. PMID:18324368

  2. Enhanced oral bioavailability of docetaxel by lecithin nanoparticles: preparation, in vitro, and in vivo evaluation

    PubMed Central

    Hu, Kaili; Cao, Shan; Hu, Fuqiang; Feng, Jianfang

    2012-01-01

    The aim of this research work was to investigate the potential of lecithin nanoparticles (LNs) in improving the oral bioavailability of docetaxel. Docetaxel-loaded LNs (DTX-LNs) were prepared from oil-in-water emulsions and characterized in terms of morphology, size, zeta potential, and encapsulation efficiency. The in vitro release of docetaxel from the nanoparticles was studied by using dialysis bag method. Caco-2 cell monolayer was used for the in vitro permeation study of DTX-LNs. Bioavailability studies were conducted in rats and different pharmacokinetic parameters were evaluated after oral administration of DTX-LNs. The results showed that DTX-LNs had a mean diameter of 360 ± 8 nm and exhibited spherical shape with smooth surface under transmission electron microscopy. The DTX-LNs showed a sustained-release profile, with about 80% of docetaxel released within 72 hours. The apical to basolateral transport of docetaxel across the Caco-2 cell monolayer from the DTX-LNs was 2.14 times compared to that of the docetaxel solution (0.15 × 10−5 ± 0.016 × 10−5 cm/second versus 0.07 × 10−5 ± 0.003 × 10−5 cm/second). The oral bioavailability of the DTX-LNs was 3.65 times that of docetaxel solution (8.75% versus 2.40%). These results indicate that DTX-LNs were valuable as an oral drug delivery system to enhance the absorption of docetaxel. PMID:22848177

  3. Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models From acslX to Berkeley Madonna, MATLAB, and R Language: Oxytetracycline and Gold Nanoparticles As Case Examples.

    PubMed

    Lin, Zhoumeng; Jaberi-Douraki, Majid; He, Chunla; Jin, Shiqiang; Yang, Raymond S H; Fisher, Jeffrey W; Riviere, Jim E

    2017-07-01

    Many physiologically based pharmacokinetic (PBPK) models for environmental chemicals, drugs, and nanomaterials have been developed to aid risk and safety assessments using acslX. However, acslX has been rendered sunset since November 2015. Alternative modeling tools and tutorials are needed for future PBPK applications. This forum article aimed to: (1) demonstrate the performance of 4 PBPK modeling software packages (acslX, Berkeley Madonna, MATLAB, and R language) tested using 2 existing models (oxytetracycline and gold nanoparticles); (2) provide a tutorial of PBPK model code conversion from acslX to Berkeley Madonna, MATLAB, and R language; (3) discuss the advantages and disadvantages of each software package in the implementation of PBPK models in toxicology, and (4) share our perspective about future direction in this field. Simulation results of plasma/tissue concentrations/amounts of oxytetracycline and gold from different models were compared visually and statistically with linear regression analyses. Simulation results from the original models were correlated well with results from the recoded models, with time-concentration/amount curves nearly superimposable and determination coefficients of 0.86-1.00. Step-by-step explanations of the recoding of the models in different software programs are provided in the Supplementary Data. In summary, this article presents a tutorial of PBPK model code conversion for a small molecule and a nanoparticle among 4 software packages, and a performance comparison of these software packages in PBPK model implementation. This tutorial helps beginners learn PBPK modeling, provides suggestions for selecting a suitable tool for future projects, and may lead to the transition from acslX to alternative modeling tools. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Improved Antitumor Efficacy and Pharmacokinetics of Bufalin via PEGylated Liposomes

    NASA Astrophysics Data System (ADS)

    Yuan, Jiani; Zhou, Xuanxuan; Cao, Wei; Bi, Linlin; Zhang, Yifang; Yang, Qian; Wang, Siwang

    2017-11-01

    Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

  5. Robust Synthesis of Ciprofloxacin-Capped Metallic Nanoparticles and Their Urease Inhibitory Assay.

    PubMed

    Nisar, Muhammad; Khan, Shujaat Ali; Qayum, Mughal; Khan, Ajmal; Farooq, Umar; Jaafar, Hawa Z E; Zia-Ul-Haq, Muhammad; Ali, Rashid

    2016-03-25

    The fluoroquinolone antibacterial drug ciprofloxacin (cip) has been used to cap metallic (silver and gold) nanoparticles by a robust one pot synthetic method under optimized conditions, using NaBH₄ as a mild reducing agent. Metallic nanoparticles (MNPs) showed constancy against variations in pH, table salt (NaCl) solution, and heat. Capping with metal ions (Ag/Au-cip) has significant implications for the solubility, pharmacokinetics and bioavailability of fluoroquinolone molecules. The metallic nanoparticles were characterized by several techniques such as ultraviolet visible spectroscopy (UV), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods. The nanoparticles synthesized using silver and gold were subjected to energy dispersive X-ray tests in order to show their metallic composition. The NH moiety of the piperazine group capped the Ag/Au surfaces, as revealed by spectroscopic studies. The synthesized nanoparticles were also assessed for urease inhibition potential. Fascinatingly, both Ag-cip and Au-cip NPs exhibited significant urease enzyme inhibitory potential, with IC50 = 1.181 ± 0.02 µg/mL and 52.55 ± 2.3 µg/mL, compared to ciprofloxacin (IC50 = 82.95 ± 1.62 µg/mL). MNPs also exhibited significant antibacterial activity against selected bacterial strains.

  6. [Impact of ECMO on drugs pharmacokinetics].

    PubMed

    Hasni, Nesrine; Lemaitre, Florian; Fernandez, Christine; Combes, Alain; Farinotti, Robert

    2011-01-01

    Extracorporeal membrane oxygenation (ECMO) is a life support system used in the treatment of patients of all ages with severe respiratory or cardiorespiratory failure. Despite the intensive use of drugs in the treatment of patients on ECMO, few studies have been conducted to determine the impact of this device on the pharmacokinetics of drugs. Publications in this field have shown pharmacokinetics changes resulting in an increase in volume of distribution of drugs and/or decreased clearance with consequent increase of their half-life. Reduced plasma concentrations of some drugs due to their adsorption on the different components of the circuit further complicates the determination of pharmacokinetic parameters of patients treated by ECMO. The literature published up to now on the pharmacokinetic changes associated with ECMO provide preliminary support for dosage adjustment. However, more research is needed to identify dosage strategies for this patient population. © 2011 Société Française de Pharmacologie et de Thérapeutique.

  7. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel.

    PubMed

    Zhang, Yong; Huo, Meirong; Zhou, Jianping; Xie, Shaofei

    2010-09-01

    This study presents PKSolver, a freely available menu-driven add-in program for Microsoft Excel written in Visual Basic for Applications (VBA), for solving basic problems in pharmacokinetic (PK) and pharmacodynamic (PD) data analysis. The program provides a range of modules for PK and PD analysis including noncompartmental analysis (NCA), compartmental analysis (CA), and pharmacodynamic modeling. Two special built-in modules, multiple absorption sites (MAS) and enterohepatic circulation (EHC), were developed for fitting the double-peak concentration-time profile based on the classical one-compartment model. In addition, twenty frequently used pharmacokinetic functions were encoded as a macro and can be directly accessed in an Excel spreadsheet. To evaluate the program, a detailed comparison of modeling PK data using PKSolver and professional PK/PD software package WinNonlin and Scientist was performed. The results showed that the parameters estimated with PKSolver were satisfactory. In conclusion, the PKSolver simplified the PK and PD data analysis process and its output could be generated in Microsoft Word in the form of an integrated report. The program provides pharmacokinetic researchers with a fast and easy-to-use tool for routine and basic PK and PD data analysis with a more user-friendly interface. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  9. Preparation and in vivo evaluation of multifunctional ⁹⁰Y-labeled magnetic nanoparticles designed for cancer therapy.

    PubMed

    Radović, Magdalena; Calatayud, María Pilar; Goya, Gerardo Fabián; Ibarra, Manuel Ricardo; Antić, Bratislav; Spasojević, Vojislav; Nikolić, Nadežda; Janković, Drina; Mirković, Marija; Vranješ-Đurić, Sanja

    2015-01-01

    Two different types of magnetic nanoparticles (MNPs) were synthesized in order to compare their efficiency as radioactive vectors, Fe₃O₄-Naked (80 ± 5 nm) and polyethylene glycol 600 diacid functionalized Fe₃O₄(Fe₃O₄-PEG600) MNPs (46 ± 0.6 nm). They were characterized based on the external morphology, size distribution, and colloidal and magnetic properties. The obtained specific power absorption value for Fe₃O₄-PEG600 MNPs was 200 W/g, indicated their potential in hyperthermia based cancer treatments. The labeling yield, in vitro stability and in vivo biodistribution profile of (90) Y-MNPs were compared. Both types of MNPs were (90)Y-labeled in reproducible high yield (>97%). The stability of the obtained radioactive nanoparticles was evaluated in saline and human serum media in order to optimize the formulations for in vivo use. The biodistribution in Wistar rats showed different pharmacokinetic behaviors of nanoparticles: a large fraction of both injected MNPs ended in the liver (14.58%ID/g for (90)Y-Fe₃O₄-Naked MNPs and 19.61%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) whereas minor fractions attained in other organs. The main difference between the two types of MNPs was the higher accumulation of (90)Y-Fe₃O₄-Naked MNPs in the lungs (12.14%ID/g vs. 2.00%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) due to their in vivo agglomeration. The studied radiolabeled magnetic complexes such as (90)Y-Fe₃O₄-PEG600 MNPs constitute a great promise for multiple diagnostic-therapeutic uses combining, for example, MRI-magnetic hyperthermia and regional radiotherapy. © 2014 Wiley Periodicals, Inc.

  10. Model selection for clustering of pharmacokinetic responses.

    PubMed

    Guerra, Rui P; Carvalho, Alexandra M; Mateus, Paulo

    2018-08-01

    Pharmacokinetics comprises the study of drug absorption, distribution, metabolism and excretion over time. Clinical pharmacokinetics, focusing on therapeutic management, offers important insights towards personalised medicine through the study of efficacy and toxicity of drug therapies. This study is hampered by subject's high variability in drug blood concentration, when starting a therapy with the same drug dosage. Clustering of pharmacokinetics responses has been addressed recently as a way to stratify subjects and provide different drug doses for each stratum. This clustering method, however, is not able to automatically determine the correct number of clusters, using an user-defined parameter for collapsing clusters that are closer than a given heuristic threshold. We aim to use information-theoretical approaches to address parameter-free model selection. We propose two model selection criteria for clustering pharmacokinetics responses, founded on the Minimum Description Length and on the Normalised Maximum Likelihood. Experimental results show the ability of model selection schemes to unveil the correct number of clusters underlying the mixture of pharmacokinetics responses. In this work we were able to devise two model selection criteria to determine the number of clusters in a mixture of pharmacokinetics curves, advancing over previous works. A cost-efficient parallel implementation in Java of the proposed method is publicly available for the community. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics

    PubMed Central

    Harun, Siti Norhawani; Nordin, Syafinaz Amin; Gani, Siti Salwa Abd; Shamsuddin, Ahmad Fuad; Basri, Mahiran; Basri, Hamidon Bin

    2018-01-01

    Background and aim Drugs that are effective against diseases in the central nervous system and reach the brain via blood must pass through the blood–brain barrier (BBB), a unique interface that protects against potential harmful molecules. This presents a major challenge in neuro-drug delivery. This study attempts to fabricate the cefuroxime-loaded nanoemulsion (CLN) to increase drug penetration into the brain when parenterally administered. Methods The nanoemulsions were formulated using a high-pressure homogenization technique and were characterized for their physicochemical properties. Results The characterizations revealed a particle size of 100.32±0.75 nm, polydispersity index of 0.18±0.01, zeta potential of −46.9±1.39 mV, viscosity of 1.24±0.34 cps, and osmolality of 285.33±0.58 mOsm/kg, indicating that the nanoemulsion has compatibility for parenteral application. CLN was physicochemically stable within 6 months of storage at 4°C, and the transmission electron microscopy revealed that the CLN droplets were almost spherical in shape. The in vitro release of CLN profile followed a sustained release pattern. The pharmacokinetic profile of CLN showed a significantly higher Cmax, area under the curve (AUC)0–t, prolonged half-life, and lower total plasma clearance, indicating that the systemic concentration of cefuroxime was higher in CLN-treated rats as compared to cefuroxime-free treated rats. A similar profile was obtained for the biodistribution of cefuroxime in the brain, in which CLN showed a significantly higher Cmax, AUC0–t, prolonged half-life, and lower clearance as compared to free cefuroxime solution. Conclusion Overall, CLN showed excellent physicochemical properties, fulfilled the requirements for parenteral administration, and presented improved in vivo pharmacokinetic profile, which reflected its practical approach to enhance cefuroxime delivery to the brain. PMID:29731632

  12. Comparative pharmacokinetics of swertiamarin in rats after oral administration of swertiamarin alone, Qing Ye Dan tablets and co-administration of swertiamarin and oleanolic acid.

    PubMed

    Xu, Gui-li; Li, Hong-liang; He, Jian-chang; Feng, En-fu; Shi, Pan-pan; Liu, Yue-qiong; Liu, Chang-xiao

    2013-08-26

    Qing Ye Dan is a well-known herbal drug that is widely used to treat viral hepatitis in the Yi and Hani minority regions in the Yunnan province of China. An LC-MS/MS method was developed to determine the levels of swertiamarin in rat plasma. Swertiamarin and naringin (internal standard, IS) were extracted from rat plasma using solid-phase extraction (SPE) to purify the samples. The pharmacokinetics of the following different administration methods of swertiamarin in rats were studied: oral administration of swertiamarin alone, a Qing Ye Dan tablet (QYDT) and co-administration of swertiamarin and oleanolic acid, with each method delivering approximately 20mg/kg of swertiamarin. Non-compartmental pharmacokinetic profiles were constructed by using the software DAS (version 2.1.1), and the pharmacokinetic parameters were compared using an unpaired Student's t-test. The results showed that the pharmacokinetic parameters Cmax, AUC0-∞, Vz/F and CLz/F were significantly different (P<0.05) among the three types of swertiamarin administration. The data indicate that oleanolic acid and the other ingredients present in QYDT could affect the pharmacokinetic behaviour of swertiamarin in rats. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Use of Zebrafish Larvae as a Multi-Endpoint Platform to Characterize the Toxicity Profile of Silica Nanoparticles.

    PubMed

    Pham, Duc-Hung; De Roo, Bert; Nguyen, Xuan-Bac; Vervaele, Mattias; Kecskés, Angela; Ny, Annelii; Copmans, Daniëlle; Vriens, Hanne; Locquet, Jean-Pierre; Hoet, Peter; de Witte, Peter A M

    2016-11-22

    Nanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized. In this study, we investigated the toxicity of silica nanoparticles with diameters 20, 50 and 80 nm using an in vivo zebrafish platform that analyzes multiple endpoints related to developmental, cardio-, hepato-, and neurotoxicity. Results show that except for an acceleration in hatching time and alterations in the behavior of zebrafish embryos/larvae, silica NPs did not elicit any developmental defects, nor any cardio- and hepatotoxicity. The behavioral alterations were consistent for both embryonic photomotor and larval locomotor response and were dependent on the concentration and the size of silica NPs. As embryos and larvae exhibited a normal touch response and early hatching did not affect larval locomotor response, the behavior changes observed are most likely the consequence of modified neuroactivity. Overall, our results suggest that silica NPs do not cause any developmental, cardio- or hepatotoxicity, but they pose a potential risk for the neurobehavioral system.

  14. Pharmacokinetics, safety and tolerability of a novel tocopheryl phosphate mixture/oxycodone transdermal patch system: a Phase I study.

    PubMed

    Gavin, Paul D; Simon, Lee S; Schlagheck, Thomas; Smith, Alisha J; Shakib, Sepehr

    2017-07-01

    To characterize the pharmacokinetic profile and evaluate the safety and tolerability of a transdermal oxycodone patch containing tocopheryl phosphate mixture (TPM). Eleven healthy subjects received a single application of three TPM/oxycodone patches applied to the torso for 72 h. Oxycodone was detected 8.0 ± 2.7-h postpatch administration, reaching a mean maximum plasma concentration of 3.41 ± 1.34 ng/ml at 49.3 ± 21.2 h. The safety profile was consistent with the application method and known side-effect profile of oxycodone and naltrexone. No treatment-limiting skin irritation was observed. A 3-day application of the TPM/oxycodone patch demonstrated an acceptable safety profile and was well tolerated by healthy subjects, with limited dermal irritation following application.

  15. Pharmacokinetics and antitumor effects of the drug containing TNF-α in nanoparticles.

    PubMed

    Gamaley, S G; Bateneva, A V; Sysoeva, G M; Danilenko, E D; Lebedev, L R; Masycheva, V I

    2010-09-01

    Antitumor activity of TNF-α incorporated in nanoparticles (VLP-TNF-α) and dynamics of its accumulation and elimination from the blood and tumor tissue were studied in ICR mice. The VLP-TNF-α preparation exhibited higher antitumor activity compared to free TNF-α, presumably due to longer circulation of the cytokine in the blood and its more intensive accumulation by tumor tissue.

  16. Influence of Renal Impairment on the Pharmacokinetics of Afatinib: An Open-Label, Single-Dose Study.

    PubMed

    Wiebe, Sabrina; Schnell, David; Külzer, Raimund; Gansser, Dietmar; Weber, Anne; Wallenstein, Gudrun; Halabi, Atef; Conrad, Anja; Wind, Sven

    2017-06-01

    Afatinib is an oral irreversible ErbB-Family Blocker indicated for treatment of patients with EGFR mutation positive advanced non-small cell lung cancer. This trial assessed whether renal impairment influences the pharmacokinetics and safety of afatinib. This was an open-label, single-dose study. Pharmacokinetic parameters after afatinib 40 mg were investigated in subjects with moderate (n = 8) or severe (n = 8) renal impairment (estimated glomerular filtration rate 30-59 mL/min/1.73 m 2 and 15-29 mL/min/1.73 m 2 , respectively) and healthy matched controls (n = 14). Plasma and urine samples were collected before and up to 14 days after dosing for pharmacokinetic and plasma protein-binding assessment. Primary endpoints were area under the plasma concentration-time curve from time zero to the last quantifiable concentration (AUC last ) and maximum plasma concentration (C max ) between subjects with renal impairment and healthy matched controls. Pharmacokinetic profiles and plasma protein binding were similar in all groups. The extent of exposure, as indicated by AUC last and C max , was generally similar between the matched treatment groups, with the exception of the geometric mean ratio of AUC last for subjects with severe renal impairment, which showed a trend towards a higher value compared with matched healthy subjects (150.0 % [90 % CI 105.3-213.7]) Inter-individual variability was moderate (geometric mean coefficient of variation 28-39 % for moderate impairment, 34-42 % for severe impairment). Afatinib was well tolerated and urinary excretion was minimal. Moderate-to-severe renal impairment had a minor influence on the pharmacokinetics of afatinib that was within the observed inter-individual variability, suggesting that afatinib treatment can be considered in this patient population. Registered at ClinicalTrials.gov as NCT02096718.

  17. Impact of release characteristics of sinomenine hydrochloride dosage forms on its pharmacokinetics in beagle dogs

    PubMed Central

    Sun, Jin; Shi, Jie-Ming; Zhang, Tian-Hong; Gao, Kun; Mao, Jing-Jing; Li, Bing; Sun, Ying-Hua; He, Zhong-Gui

    2005-01-01

    AIM: To investigate the effect of release behavior of sustained-release dosage forms of sinomenine hydrochloride (SM•HCl) on its pharmacokinetics in beagle dogs. METHODS: The in vitro release behavior of two SM•HCl dosage forms, including commercial 12-h sustained-release tablets and 24-h sustained-release pellets prepared in our laboratory, was examined. The two dosage forms were orally administrated to beagle dogs, and then the in vivo SM•HCl pharmacokinetics was investigated and compared. RESULTS: The optimal SM•HCl sustained-release formulation was achieved by mixing slow- and rapid-release pellets (9:1, w/w). The SM•HCl release profiles of the sustained-release pellets were scarcely influenced by the pH of the dissolution medium. Release from the 12-h sustained-release tablets was markedly quicker than that from the 24-h sustained-release pellets, the cumulative release up to 12-h was 99.9% vs 68.7%. From a pharmacokinetic standpoint, the 24-h SM•HCl sustained-release pellets had longer tmax and lower Cmax compared to the 12-h sustained-release tablets, the tmax being 2.67×0.52 h vs 9.83×0.98 h and the Cmax being 1 334.45±368.76 ng/mL vs 893.12±292.55 ng/mL, respectively. However, the AUC0-tn of two SM•HCl dosage forms was comparable and both preparations were statistically bioequivalent. Furthermore, the two preparations had good correlations between SM•HCl percentage absorption in vivo and the cumulative percentage release in vitro. CONCLUSION: The in vitro release properties of the dosage forms strongly affect their pharmacokinetic behavior in vivo. Therefore, managing the in vitro release behavior of dosage forms is a promising strategy for obtaining the optimal in vivo pharmacokinetic characteristics and safe therapeutic drug concentration-time curves. PMID:16052686

  18. Pharmacokinetics of Mirabegron, a β3-Adrenoceptor Agonist for Treatment of Overactive Bladder, in Healthy East Asian Subjects.

    PubMed

    Iitsuka, Hiromi; van Gelderen, Marcel; Katashima, Masataka; Takusagawa, Shin; Sawamoto, Taiji

    2015-05-01

    The objective of these studies was to evaluate the pharmacokinetic profile, safety, and tolerability of mirabegron, a β3-adrenoceptor agonist for the treatment of overactive bladder, including food effects (low- or high-fat meals) and sex, in healthy East Asian subjects. In total, 5 pharmacokinetic studies of mirabegron were conducted in healthy East Asian subjects. Food effects were assessed in 3 randomized, single-dose studies in young Japanese male subjects (study 1), male and female subjects (study 2), and young Taiwanese male and female subjects (study 3). In the other 2 single- and multiple-dose studies in young Chinese male and female subjects (study 4 and study 5), mirabegron was administered as a single dose under fasted conditions. After the washout period, mirabegron was administered once daily under fed conditions for 8 days. Pharmacokinetic parameters were determined using noncompartmental methods. Safety and tolerability assessments included physical examinations, vital signs, 12-lead ECG, clinical laboratory tests (biochemistry, hematology, and urinalysis), and adverse event monitoring. After administration of single oral doses of mirabegron, exposure under fed conditions was lower than under fasted conditions in Japanese and Taiwanese subjects. In Japanese subjects, a greater reduction in mirabegron Cmax and AUC0-∞ was observed after a low-fat meal compared with a high-fat meal. In Chinese subjects, Cmax was reached at approximately 4.0 hours after single oral doses. Mirabegron accumulated 2- to 3-fold on once-daily dosing of multiple-dose relative to single-dose data. Steady state was reached within 7 days. After administration of mirabegron, mean values for Cmax and AUC in female subjects were higher than those in male subjects. Mirabegron was well tolerated in Japanese, Taiwanese, and Chinese subjects. Our studies confirm the higher exposure levels of mirabegron in female compared with male East Asian subjects as found earlier in Western

  19. A pharmacokinetic study of two modified-release methylphenidate formulations under different food conditions in healthy volunteers.

    PubMed

    Haessler, F; Tracik, F; Dietrich, H; Stammer, H; Klatt, J

    2008-09-01

    Primary objective was to investigate bioequivalence of Ritalin LA(R); 40 mg compared to Medikinet retard 40 mg in healthy male volunteers under fasted and fed conditions. Secondary objectives included assessment of tolerability and determination of further pharmacokinetic parameters. The difference between the kinetic profiles of Ritalin LA(R) and Medikinet retard with respect to breakfast intake was additionally explored. 28 subjects were randomized in this open-label, four-treatment, cross-over-design study. Pharmacokinetic evaluations included AUC(0-inf), Cmax, tmax, elimination half life (t1/2) and mean residence time MRT(0-inf)). The relative bioavailability of Ritalin LA(R) and Medikinet retard and the food effect were assessed using a 90% confidence interval (CI) based on the lower and upper endpoints of the CI for the ratios of the geometric means being within the 80 - 125% equivalence criterion. 25 volunteers completed all treatment arms. Frequency of adverse events were comparable for all treatments. Under fasted condition Ritalin LA(R) showed a consistent bimodal concentration time profile with two tmax peaks. Medikinet retard showed a steady absorption with a single tmax peak. The point estimators for AUC(0-inf) and Cmax were found to be 99.7% and 85.9%, respectively. Under fed condition both Ritalin LA(R) and Medikinet retard showed a bimodal concentration time profile with two tmax peaks. The point estimators for AUC(0-inf) and Cmax were estimated as 89.8% and 68.6%, respectively. Both methylphenidate formulations were safe and well tolerated. Ritalin LA and Medikinet retard were bioequivalent in fasted state but not in fed state. Only Ritalin LA had a biphasic kinetic profile under both fasted and fed conditions. This difference in the kinetic profiles might be of clinical relevance and might offer a potential advantage of Ritalin LA.

  20. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies

    NASA Astrophysics Data System (ADS)

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2015-04-01

    here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 +/- 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical

  1. Introduction for Design of Nanoparticle Based Drug Delivery Systems.

    PubMed

    Edgar, Jun Yan Chan; Wang, Hui

    2017-01-01

    Conventional drug delivery systems contain numerous limitations such as limited targeting, low therapeutic indices, poor water solubility, and the induction of drug resistances. In order to overcome the drawbacks of conventional pathway of drug delivery, nanoparticle delivery systems are therefore designed and used as the drug carriers. Nanoparticle based drug delivery systems have been rapidly growing and are being applied to various sections of biomedicine. Drug nanocarriers based on dendrimers, liposomes, self-assembling peptides, watersoluble polymers, and block copolymer micelles are the most extensively studied types of drug delivery systems and some of them are being used in clinical therapy. In particular for cancer therapy, antineoplastic drugs are taking advantage of nanoparticulate drug carriers to improve the cure efficacy. Nanoparticle based drug carriers are capable of improving the therapeutic effectiveness of the drugs by using active targeting for the site-specific delivery, passive targeting mechanisms such as enhanced permeability and retention (EPR), de novo synthesis and uptake of low density liposome in cancer cells or by being water-soluble to improve the suboptimal pharmacokinetics in limited water-soluble delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com; Kennedy, Derek; Reed, Randall P.

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mildmore » increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV

  3. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper-Hollow Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Palanikumar, L.; Jeena, M. T.; Kim, Kibeom; Yong Oh, Jun; Kim, Chaekyu; Park, Myoung-Hwan; Ryu, Ja-Hyoung

    2017-04-01

    Combination chemotherapy has become the primary strategy against cancer multidrug resistance; however, accomplishing optimal pharmacokinetic delivery of multiple drugs is still challenging. Herein, we report a sequential combination drug delivery strategy exploiting a pH-triggerable and redox switch to release cargos from hollow silica nanoparticles in a spatiotemporal manner. This versatile system further enables a large loading efficiency for both hydrophobic and hydrophilic drugs inside the nanoparticles, followed by self-crosslinking with disulfide and diisopropylamine-functionalized polymers. In acidic tumour environments, the positive charge generated by the protonation of the diisopropylamine moiety facilitated the cellular uptake of the particles. Upon internalization, the acidic endosomal pH condition and intracellular glutathione regulated the sequential release of the drugs in a time-dependent manner, providing a promising therapeutic approach to overcoming drug resistance during cancer treatment.

  4. Pharmacokinetics and perioperative efficacy of intravenous ketorolac in dogs.

    PubMed

    Cagnardi, P; Zonca, A; Gallo, M; Villa, R; Carli, S; Beccaglia, M; Fonda, D; Ravasio, G

    2013-12-01

    Ketorolac (KET) is a nonsteroidal anti-inflammatory drug approved for the use in humans that possesses a potent analgesic activity, comparable to morphine, and could represent a useful tool to control acute pain also in animals. The clinical efficacy and pharmacokinetic profile of intravenous (IV) ketorolac tromethamine (0.5 mg/kg) were studied in 15 dogs undergoing gonadectomy. Intra-operative cardiorespiratory variables were monitored, and post-operative pain was assessed using a subjective pain score (0-24) in all dogs, whereas the pharmacokinetic profile of the drug was determined in 10 animals. During surgery, mean minimal alveolar concentration of isoflurane was 1.69 ± 0.11%, and normocapnia and spontaneous ventilation were maintained in all animals. During pain assessment, no significant differences between males and females were found, and in no case rescue analgesia was necessary. No adverse effects were reported. Serum samples were purified by solid-phase extraction and analysed by HPLC with UV-Vis detection. A large variability was observed in serum concentrations. The kinetics of ketorolac was described by a noncompartmental analysis. The elimination half-life (t½λz ) and ClB were 10.95 ± 7.06 h and 92.66 ± 84.49 mL/h/kg, respectively, and Vdss and Vz were 1030.09 ± 620.50 mL/kg and 1512.25 ± 799.13 mL/kg, respectively. AUC(0→last) and MRT(0→last) were 6.08 ± 3.28 h × μg/mL and 5.59 ± 2.12 h, respectively. The results indicate that ketorolac possess good post-operative analgesic effects until about 6 h after administration in dogs undergoing moderately painful surgery. © 2013 John Wiley & Sons Ltd.

  5. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug.

    PubMed

    Morgen, Michael; Bloom, Corey; Beyerinck, Ron; Bello, Akintunde; Song, Wei; Wilkinson, Karen; Steenwyk, Rick; Shamblin, Sheri

    2012-02-01

    To demonstrate drug/polymer nanoparticles can increase the rate and extent of oral absorption of a low-solubility, high-permeability drug. Amorphous drug/polymer nanoparticles containing celecoxib were prepared using ethyl cellulose and either sodium caseinate or bile salt. Nanoparticles were characterized using dynamic light scattering, transmission and scanning electron microscopy, and differential scanning calorimetry. Drug release and resuspension studies were performed using high-performance liquid chromatography. Pharmacokinetic studies were performed in dogs and humans. A physical model is presented describing the nanoparticle state of matter and release performance. Nanoparticles dosed orally in aqueous suspensions provided higher systemic exposure and faster attainment of peak plasma concentrations than commercial capsules, with median time to maximum drug concentration (Tmax) of 0.75 h in humans for nanoparticles vs. 3 h for commercial capsules. Nanoparticles released celecoxib rapidly and provided higher dissolved-drug concentrations than micronized crystalline drug. Nanoparticle suspensions are stable for several days and can be spray-dried to form dry powders that resuspend in water. Drug/polymer nanoparticles are well suited for providing rapid oral absorption and increased bioavailability of BCS Class II drugs.

  6. Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.

    PubMed

    Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei

    2016-08-01

    To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.

  7. Clinical pharmacokinetics and pharmacodynamics of repaglinide.

    PubMed

    Hatorp, Vibeke

    2002-01-01

    Repaglinide is a novel, fast-acting prandial oral hypoglycaemic agent developed for the treatment of patients with type 2 diabetes whose disease cannot be controlled by diet and exercise alone. Although repaglinide binds to the sulphonylurea binding sites on pancreatic beta-cells and has a similar mechanism of action, repaglinide exhibits distinct pharmacological properties compared with these agents. Following administration, repaglinide is absorbed rapidly and has a fast onset of dose-dependent blood-glucose lowering effect. The drug is eliminated rapidly via the biliary route, without accumulation in the plasma after multiple doses. Repaglinide is well tolerated in patients with type 2 diabetes, including elderly patients and patients with hepatic or renal impairment. The pharmacokinetic profile of repaglinide and the improvements in post-prandial hyperglycaemia and overall glycaemic control make repaglinide suitable for administration preprandially, with the opportunity for flexible meal arrangements, including skipped meals, without the risk of hypoglycaemia.

  8. Pharmacokinetics of ceftaroline in normal body weight and obese (classes I, II, and III) healthy adult subjects.

    PubMed

    Justo, Julie Ann; Mayer, Stockton M; Pai, Manjunath P; Soriano, Melinda M; Danziger, Larry H; Novak, Richard M; Rodvold, Keith A

    2015-07-01

    The pharmacokinetic profile of ceftaroline has not been well characterized in obese adults. The purpose of this study was to evaluate the pharmacokinetics of ceftaroline in 32 healthy adult volunteers aged 18 to 50 years in the normal, overweight, and obese body size ranges. Subjects were evenly assigned to 1 of 4 groups based on their body mass index (BMI) and total body weight (TBW) (ranges, 22.1 to 63.5 kg/m(2) and 50.1 to 179.5 kg, respectively). Subjects in the lower-TBW groups were matched by age, sex, race/ethnicity, and serum creatinine to the upper-BMI groups. Serial plasma and urine samples were collected over 12 h after the start of the infusion, and the concentrations of ceftaroline fosamil (prodrug), ceftaroline, and ceftaroline M-1 (inactive metabolite) were assayed. Noncompartmental and population pharmacokinetic analyses were used to evaluate the data. The mean plasma ceftaroline maximum concentration and area under the curve were ca. 30% lower in subjects with a BMI of ≥40 kg/m(2) compared to those <30 kg/m(2). A five-compartment pharmacokinetic model with zero-order infusion and first-order elimination optimally described the plasma concentration-time profiles of the prodrug and ceftaroline. Estimated creatinine clearance (eCLCR) and TBW best explained ceftaroline clearance and volume of distribution, respectively. Although lower ceftaroline plasma concentrations were observed in obese subjects, Monte Carlo simulations suggest the probability of target attainment is ≥90% when the MIC is ≤1 μg/ml irrespective of TBW or eCLCR. No dosage adjustment for ceftaroline appears to be necessary based on TBW alone in adults with comparable eCLCR. Confirmation of these findings in infected obese patients is necessary to validate these findings in healthy volunteers. (This study has been registered at ClinicalTrials.gov under registration no. NCT01648127.). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats.

    PubMed

    Zabela, Volha; Sampath, Chethan; Oufir, Mouhssin; Moradi-Afrapoli, Fahimeh; Butterweck, Veronika; Hamburger, Matthias

    2016-12-01

    Kaempferol is a major flavonoid in the human diet and in medicinal plants. The compound exerts anxiolytic activity when administered orally in mice, while no behavioural changes were observed upon intraperitoneal administration, or upon oral administration in gut sterilized animals. 4-Hydroxyphenylacetic acid (4-HPAA), which possesses anxiolytic effects when administered intraperitoneally, is a major intestinal metabolite of kaempferol. Pharmacokinetic properties of the compounds are currently not clear. UHPLC-MS/MS methods were validated to support pharmacokinetic studies of kaempferol and 4-HPAA in rats. Non-compartmental and compartmental analyses were performed. After intravenous administration, kaempferol followed a one-compartment model, with a rapid clearance (4.40-6.44l/h/kg) and an extremely short half-life of 2.93-3.79min. After oral gavage it was not possible to obtain full plasma concentration-time profiles of kaempferol. Pharmacokinetics of 4-HPAA was characterized by a two-compartment model, consisting of a quick distribution phase (half-life 3.04-6.20min) followed by a fast elimination phase (half-life 19.3-21.1min). Plasma exposure of kaempferol is limited by poor oral bioavailability and extensive metabolism. Both compounds are rapidly eliminated, so that effective concentrations at the site of action do not appear to be reached. At present, it is not clear how the anxiolytic-like effects reported for the compounds can be explained. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Magnetic induced heating of nanoparticle solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, S. Hunyadi; Brown, M.; Coopersmith, K.

    2016-12-02

    Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.

  11. An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson's disease and restless legs syndrome.

    PubMed

    Elshoff, Jan-Peer; Cawello, Willi; Andreas, Jens-Otto; Mathy, Francois-Xavier; Braun, Marina

    2015-04-01

    This narrative review reports on the pharmacological and pharmacokinetic properties of rotigotine, a non-ergolinic D₃/D₂/D₁ dopamine receptor agonist approved for the treatment of early- and advanced-stage Parkinson's disease (PD) and moderate to severe restless legs syndrome (RLS). Rotigotine is formulated as a transdermal patch providing continuous drug delivery over 24 h, with a plasma concentration profile similar to that of administration via continuous intravenous infusion. Absolute bioavailability after 24 h transdermal delivery is 37 % of the applied rotigotine dose. Following a single administration of rotigotine transdermal system (24-h patch-on period), most of the absorbed drug is eliminated in urine and feces as sulphated and glucuronidated conjugates within 24 h of patch removal. The drug shows a high apparent volume of distribution (>2500 L) and a total body clearance of 300-600 L/h. Rotigotine transdermal system provides dose-proportional pharmacokinetics up to supratherapeutic dose rates of 24 mg/24 h, with steady-state plasma drug concentrations attained within 1-2 days of daily dosing. The pharmacokinetics of rotigotine transdermal patch are similar in healthy subjects, patients with early- or advanced-stage PD, and patients with RLS when comparing dose-normalized area under the plasma concentration-time curve (AUC) and maximum plasma drug concentration (Cmax), as well as half-life and other pharmacokinetic parameters. Also, it is not influenced in a relevant manner by age, sex, ethnicity, advanced renal insufficiency, or moderate hepatic impairment. No clinically relevant drug-drug interactions were observed following co-administration of rotigotine with levodopa/carbidopa, domperidone, or the CYP450 inhibitors cimetidine or omeprazole. Also, pharmacodynamics and pharmacokinetics of an oral hormonal contraceptive were not influenced by rotigotine co-administration. Rotigotine was generally well tolerated, with an adverse event profile

  12. No effect of the novel antidiabetic agent nateglinide on the pharmacokinetics and anticoagulant properties of warfarin in healthy volunteers.

    PubMed

    Anderson, Denise M; Shelley, Sarah; Crick, Nina; Buraglio, Mauro

    2002-12-01

    The novel hypoglycemic agent nateglinide is pharmacologically distinct from oral hypoglycemic agents such as sulfonylureas and repaglinide. The present study investigated the effects in healthy volunteers of multiple doses of nateglinide on the pharmacokinetics and pharmacodynamics of warfarin. The study comprised a randomized two-group, two-way crossover, open-label design in 12 healthy male subjects. One group of 6 subjects initially received a single oral dose of warfarin 30 mg and then, after a 7- to 14-day washout, received both warfarin and nateglinide (120 mgnateglinide, 10 min before meals for 4 days and a single dose of 30 mg warfarin on the second day). The alternate group of 6 subjects received treatments in the opposite order. Pharmacokinetic profiles were derived from plasma warfarin and nateglinide concentrations. Prothrombin measurements were evaluated in both periods as a measure of warfarin activity. When administered alone or in combination, there were no statistically significant differences in mean warfarin (R- and S-enantiomers) or nateglinide pharmacokinetic parameters. The concurrent administration of nateglinide and warfarin did not affect the maximal change in prothrombin time that follows warfarin administration. In this study, there was no evidence of an effect of coadministration of nateglinide on the pharmacodynamic action of warfarin or any pharmacokinetic interaction between warfarin and nateglinide.

  13. Fentanyl Buccal Tablet for the Treatment of Breakthrough Pain: Pharmacokinetics of Buccal Mucosa Delivery and Clinical Efficacy

    PubMed Central

    Darwish, Mona; Hamed, Ehab; Messina, John

    2010-01-01

    The treatment of breakthrough pain (BTP), a transitory exacerbation of pain that occurs on a background of otherwise-controlled, persistent pain, requires an opioid formulation and/or method of administration that can provide rapid and extensive systemic exposure. Fentanyl buccal tablet (FBT; FENTORA®, Cephalon, Inc.) employs OraVescent® drug delivery technology, which enhances the rate and extent of fentanyl absorption. OraVescent technology enhances the oral dissolution and buccal absorption of fentanyl, which facilitates rapid uptake of fentanyl into the bloodstream, reducing gastrointestinal absorption and minimizing extensive first-pass metabolism. The resulting pharmacokinetic profile of FBT is characterized by greater bioavailability and a higher early systemic exposure compared with the earlier oral transmucosal fentanyl citrate formulation. In clinical studies of opioid-tolerant patients with cancer-related and noncancer-related BTP, FBT has provided consistent and clinically relevant improvements in pain intensity and pain relief relative to placebo, with a safety and tolerability profile that is generally typical of that observed with other potent opioids. The pharmacokinetic properties of FBT allow for meaningful clinical efficacy, with an onset of action that closely matches the onset of BTP. PMID:20634985

  14. Toxicity Profile and Pharmacokinetic Study of A Phase I Low-Dose Schedule-Dependent Radiosensitizing Paclitaxel Chemoradiation Regimen for Inoperable Non-Small-Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuhchyau; Pandya, Kishan J.; Feins, Richard

    Purpose: We report the toxicity profile and pharmacokinetic data of a schedule-dependent chemoradiation regimen using pulsed low-dose paclitaxel for radiosensitization in a Phase I study for inoperable non-small-cell lung cancer. Methods and Materials: Paclitaxel at escalating doses of 15 mg/m{sup 2}, 20 mg/m{sup 2}, and 25 mg/m{sup 2} were infused on Monday, Wednesday, and Friday with daily chest radiation in cohorts of 6 patients. Daily radiation was delayed for maximal G2/M arrest and apoptotic effect, an observation from preclinical investigations. Plasma paclitaxel concentration was determined by high-performance liquid chromatography. Results: Dose-limiting toxicities included 3 of 18 patients with Grade 3more » pneumonitis and 3 of 18 patients with Grade 3 esophagitis. There was no Grade 4 or 5 pneumonitis or esophagitis. There was also no Grade 3 or 4 neutropenia, thrombocytopenia, anemia or neuropathy. For Dose Levels I (15 mg/m{sup 2}), II (20 mg/m{sup 2}), and III (25 mg/m{sup 2}), the mean peak plasma level was 0.23 {+-} 0.06 {mu}mol/l, 0.32 {+-} 0.05 {mu}mol/l, and 0.52 {+-} 0.14 {mu}mol/l, respectively; AUC was 0.44 {+-} 0.09 {mu}mol/l, 0.61 {+-} 0.1 {mu}mol/l, and 0.96 {+-} 0.23 {mu}mol/l, respectively; and duration of drug concentration >0.05 {mu}mol/l (t > 0.05 {mu}mol/l) was 1.6 {+-} 0.3 h, 1.9 {+-} 0.2 h, and 3.0 {+-} 0.9 h, respectively. Conclusion: Pulsed low-dose paclitaxel chemoradiation is associated with low toxicity. Pharmacokinetic data showed that plasma paclitaxel concentration >0.05 {mu}mol/l for a minimum of 1.6 h was sufficient for effective radiosensitization.« less

  15. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world's children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability.

  16. Pharmacokinetic evaluation of β-caryophyllene alcohol in rats and beagle dogs.

    PubMed

    He, Jiake; Zhou, Sufeng; Li, Xiaonan; Wang, Chunfeng; Yu, Yang; Chen, Xijing; Lu, Yang

    2017-09-11

    1. β-caryophyllene alcohol (BCPA) has shown therapeutic promise in the treatment of asthma and inflammation with low toxicity. The aim of the current study was to report the pharmacokinetic profiles of BCPA in rats and dogs. 2. Following intravenous administration, BCPA exhibited moderate volumes of distribution (V z ) ranging from 5.63 to 8.97 L/kg in rats and low V z (2.89 ± 1.12 L/kg) in dogs. Systemic plasma clearance was high in both species, resulting in a short elimination half-life ranging from 29.6 to 48.3 min. In rats, the intravenous pharmacokinetics was dose dependent. The measured oral bioavailability was low in rats for BCPA solution (1.17 ± 0.78%), suspension (1.21 ± 0.33%) and PEG formulation (6.22 ± 2.63%). The bioavailability was lower in dogs for BCPA solution (0.12 ± 0.05%) and PEG formulation (0.25 ± 0.07%), indicating significant species difference. However, treatment of plasma samples with β-glucuronidase increased the systematic exposure of BCPA as assessed from AUC (0-∞) by 24.7- or 2.62-fold in rats and dogs, respectively, which suggested glucuronidation was a significant metabolic pathway for BCPA possibly due to first-pass metabolism. 3. In summary, this was the first preclinical pharmacokinetic investigation of BCPA in animals, providing vital knowledge for further preclinical research and subsequent clinical trials.

  17. [Pharmacokinetic research strategies of compatibilities and synergistic effects of classical Danshen herb pairs based on pharmacokinetics of "Danshen-Bingpian" and "Danshen-Honghua"].

    PubMed

    Zhang, Cui-Ying; Ren, Wei-Guang

    2017-06-01

    Herb pairs are usual clinical compatibility forms and one of compound prescription sources in Chinese medicine. Pharmacokinetic research in vivo is one of the important items in elucidating the mechanism for synergistic and attenuated mechanisms of herb pairs. The paper comprehensively summarized and systemized the pharmacokinetic researches of marker-ingredients about Danshen-Honghua and Danshen-Bingpian in order to elucidate the rationality and scientificity of herb pairs and provide some feasible suggestions on the pharmacokinetics of drugs in the future. In view of complicated system of Traditional Chinese medicines and a chemical system that is not separated from its natural state, comparative pharmacokinetic researches on marker-ingredients from the herb pairs are reasonable to elucidate the synergistic and attenuated mechanisms of monarch-subjects compatible herbs and monarch-guide compatible herbs. Such pharmacokinetic research can better explain the mechanism of drug compatibility, while the pharmacokinetic researches based on the monomer chemical compositions and marker-ingredients that have been separated from complex chemical environment of traditional Chinese Medicine are still unreasonable and should be discussed deeply. Copyright© by the Chinese Pharmaceutical Association.

  18. Single-dose pharmacokinetic study of 13-cis-retinoic acid in man.

    PubMed

    Besner, J G; Leclaire, R; Band, P; Meloche, S; Deschamps, M; Mailhot, S; Moisan, R; Diorio, G

    1985-03-01

    A pharmacokinetic study of 13-cis-retinoic acid was performed in nine patients following administration of a single oral dose of 80 mg. An average lag time of 1.2 hours was observed, followed by fast absorption, with a mean half-life of 0.5 hour. Peak plasmatic concentration of 733 ng/ml occurred at 2.3 hours. The disposition profile showed a rapid distribution half-life of 1.3 hours and a terminal elimination half-life of 24.7 hours. No 13-cis-retinoic acid was detected unchanged in urine. An important interpatient variability was noted.

  19. Pharmacokinetic and pharmacodynamic properties of cholinesterase inhibitors donepezil, tacrine, and galantamine in aged and young Lister hooded rats.

    PubMed

    Goh, Catherine W; Aw, Chiu Cheong; Lee, Jasinda H; Chen, Christopher P; Browne, Edward R

    2011-03-01

    Physiological alterations that may change pharmacological response accompany aging. Pharmacokinetic/pharmacodynamic properties of cholinesterase inhibitors (ChEIs) used in the treatment of Alzheimer's disease, donepezil, tacrine, and galantamine, were investigated in an aged Lister hooded rat model. Intravenous and oral 6-h blood sampling profiles in old (30 months old) and young (7 months old) rats revealed pharmacokinetic changes similar to those in humans with an approximately 40% increase in C(max) of galantamine and prolonged t(1/2) (1.4-fold) and mean residence time (1.5-fold) of donepezil. Tacrine disposition was maintained with age, and area under the concentration-time curve and clearance in old rats were similar to those in young rats for all drugs tested as was bioavailability. Old rats showed a trend of increased pharmacodynamic sensitivity (<20%) to ChEIs in cholinesterase activity assays, which was attributed to pharmacokinetic effects because a trend of higher blood and brain concentrations was seen in the old rats although brain/blood ratios remained unaffected. Enhanced cholinergic-mediated behaviors such as tremor, hypothermia, salivation, and lacrimation were also observed in the old rats, which could not be accounted for by a similar magnitude of change in pharmacokinetics. A decrease in expression of muscarinic acetylcholine receptor subtype 2 detected in old rat brains was postulated to play a role. Greater age effects in both pharmacokinetics and pharmacodynamics of donepezil and tacrine were seen in previous studies with Fischer 344 rats, indicating a potential risk in overreliance on this rat strain for aging studies.

  20. Propofol pharmacokinetics in a dwarfism patient.

    PubMed

    Tsubokawa, T; Yamamoto, K; Komuro, A; Ishizuka, S; Kobayashi, T

    2003-04-01

    Pharmacokinetic information is important to control anesthetic depth. However, there are few available pharmacokinetic data of propofol in dwarfism patients. We anesthetized a dwarfism patient who underwent spinal decompression, and investigated the pharmacokinetics of propofol. The patient was a 40-year-old man suffering from muscle weakness and numbness in the arms. The operation consisted of two stages; anterior approach in the supine position and posterior approach in the prone position. We also obtained arterial blood for pharmacokinetic analysis. Distribution volume at steady-state and clearance in the supine position was 180 and 0.92 l min- 1, respectively, and in the prone position 127 and 0.74 l min- 1, respectively, in spite of a continuous infusion of dopamine. The data in the supine position were well predicted by Gepts' parameters (used in Diprifusor Zeneca Ltd, Cheshire, UK), which means the target-controlled infusion (TCI) technique can be available in the supine position, while attention is necessary to avoid overdosing when a patient is placed in the prone position.

  1. Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo

    PubMed Central

    Choi, Nak Won; Verbridge, Scott S.; Williams, Rebecca M.; Chen, Jin; Kim, Ju-Young; Schmehl, Russel; Farnum, Cornelia E.; Zipfel, Warren R.; Fischbach, Claudia; Stroock, Abraham D.

    2012-01-01

    We present the development and characterization of nanoparticles loaded with a custom phosphor; we exploit these nanoparticles to perform quantitative measurements of the concentration of oxygen within three-dimensional (3-D) tissue cultures in vitro and blood vessels in vivo. We synthesized a customized ruthenium (Ru)-phosphor and incorporated it into polymeric nanoparticles via self-assembly. We demonstrate that the encapsulated phosphor is non-toxic with and without illumination. We evaluated two distinct modes of employing the phosphorescent nanoparticles for the measurement of concentrations of oxygen: 1) in vitro, in a 3-D microfluidic tumor model via ratiometric measurements of intensity with an oxygen-insensitive fluorophore as a reference, and 2) in vivo, in mouse vasculature using measurements of phosphorescence lifetime. With both methods, we demonstrated micrometer-scale resolution and absolute calibration to the dissolved oxygen concentration. Based on the ease and customizability of the synthesis of the nanoparticles and the flexibility of their application, these oxygen-sensing polymeric nanoparticles will find a natural home in a range of biological applications, benefiting studies of physiological as well as pathological processes in which oxygen availability and concentration play a critical role. PMID:22240511

  2. Combined use of crystalline sodium salt and polymeric precipitation inhibitors to improve pharmacokinetic profile of ibuprofen through supersaturation.

    PubMed

    Terebetski, Jenna L; Cummings, John J; Fauty, Scott E; Michniak-Kohn, Bozena

    2014-10-01

    To maximize the pharmacological effect of a pain reliever such as ibuprofen, early onset of action is critical. Unfortunately, the acidic nature of ibuprofen minimizes the amount of drug that can be solubilized under gastric conditions and would be available for immediate absorption upon entry into the intestine. Although the sodium salt of ibuprofen has higher solubility, rapid conversion from the salt to the poorly soluble free acid phase occurs under gastric conditions. Therefore, the combination of the highly soluble sodium salt form of ibuprofen with polymers was evaluated as an approach to prolong supersaturation of ibuprofen during the disproportionation of the salt. Binary combinations of ibuprofen sodium with polymers resulted in the identification of several formulations that demonstrated high degrees and extended durations of supersaturation during in vitro dissolution experiments. These formulations included HPMC, polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA64), methylcellulose (MC), and hydroxypropyl cellulose (HPC). The in vitro supersaturation observed with these ibuprofen-polymer formulations translated to an increase in Cmax and an earlier Tmax for the PVP-VA64, MC, and HPC formulations relative to ibuprofen only controls when administered orally to rats under fasted conditions. Based on these observations, combining ibuprofen sodium with polymers such as PVP-VA64, MC, or HPC is a viable formulation approach to prolong supersaturation in the stomach and enable an optimized pharmacokinetic profile in vivo where rapid onset of action is desired.

  3. Randomized clinical trial: pharmacokinetics and safety of multimatrix mesalamine for treatment of pediatric ulcerative colitis

    PubMed Central

    Cuffari, Carmen; Pierce, David; Korczowski, Bartosz; Fyderek, Krzysztof; Van Heusen, Heather; Hossack, Stuart; Wan, Hong; Edwards, Alena YZ; Martin, Patrick

    2016-01-01

    Background Limited data are available on mesalamine (5-aminosalicylic acid; 5-ASA) use in pediatric ulcerative colitis (UC). Aim To evaluate pharmacokinetic and safety profiles of 5-ASA and metabolite acetyl-5-ASA (Ac-5-ASA) after once-daily, oral administration of multimatrix mesalamine to children and adolescents with UC. Methods Participants (5–17 years of age; 18–82 kg, stratified by weight) with UC received multi-matrix mesalamine 30, 60, or 100 mg/kg/day once daily (to 4,800 mg/day) for 7 days. Blood samples were collected pre-dose on days 5 and 6. On days 7 and 8, blood and urine samples were collected and safety was evaluated. 5-ASA and Ac-5-ASA plasma and urine concentrations were analyzed by non-compartmental methods and used to develop a population pharmacokinetic model. Results Fifty-two subjects (21 [30 mg/kg]; 22 [60 mg/kg]; 9 [100 mg/kg]) were randomized. On day 7, systemic exposures of 5-ASA and Ac-5-ASA exhibited a dose-proportional increase between 30 and 60 mg/kg/day cohorts. For 30, 60, and 100 mg/kg/day doses, mean percentages of 5-ASA absorbed were 29.4%, 27.0%, and 22.1%, respectively. Simulated steady-state exposures and variabilities for 5-ASA and Ac-5-ASA (coefficient of variation approximately 50% and 40%–45%, respectively) were similar to those observed previously in adults at comparable doses. Treatment-emergent adverse events were reported by ten subjects. Events were similar among different doses and age groups with no new safety signals identified. Conclusion Children and adolescents with UC receiving multimatrix mesalamine demonstrated 5-ASA and Ac-5-ASA pharmacokinetic profiles similar to historical adult data. Multimatrix mesalamine was well tolerated across all dose and age groups. ClinicalTrials.gov Identifier: NCT01130844. PMID:26893546

  4. Randomized clinical trial: pharmacokinetics and safety of multimatrix mesalamine for treatment of pediatric ulcerative colitis.

    PubMed

    Cuffari, Carmen; Pierce, David; Korczowski, Bartosz; Fyderek, Krzysztof; Van Heusen, Heather; Hossack, Stuart; Wan, Hong; Edwards, Alena Y Z; Martin, Patrick

    2016-01-01

    Limited data are available on mesalamine (5-aminosalicylic acid; 5-ASA) use in pediatric ulcerative colitis (UC). To evaluate pharmacokinetic and safety profiles of 5-ASA and metabolite acetyl-5-ASA (Ac-5-ASA) after once-daily, oral administration of multimatrix mesalamine to children and adolescents with UC. Participants (5-17 years of age; 18-82 kg, stratified by weight) with UC received multi-matrix mesalamine 30, 60, or 100 mg/kg/day once daily (to 4,800 mg/day) for 7 days. Blood samples were collected pre-dose on days 5 and 6. On days 7 and 8, blood and urine samples were collected and safety was evaluated. 5-ASA and Ac-5-ASA plasma and urine concentrations were analyzed by non-compartmental methods and used to develop a population pharmacokinetic model. Fifty-two subjects (21 [30 mg/kg]; 22 [60 mg/kg]; 9 [100 mg/kg]) were randomized. On day 7, systemic exposures of 5-ASA and Ac-5-ASA exhibited a dose-proportional increase between 30 and 60 mg/kg/day cohorts. For 30, 60, and 100 mg/kg/day doses, mean percentages of 5-ASA absorbed were 29.4%, 27.0%, and 22.1%, respectively. Simulated steady-state exposures and variabilities for 5-ASA and Ac-5-ASA (coefficient of variation approximately 50% and 40%-45%, respectively) were similar to those observed previously in adults at comparable doses. Treatment-emergent adverse events were reported by ten subjects. Events were similar among different doses and age groups with no new safety signals identified. Children and adolescents with UC receiving multimatrix mesalamine demonstrated 5-ASA and Ac-5-ASA pharmacokinetic profiles similar to historical adult data. Multimatrix mesalamine was well tolerated across all dose and age groups. ClinicalTrials.gov Identifier: NCT01130844.

  5. Pharmacokinetics and Pharmacodynamics of Oximes in Unanesthetized Pigs

    DTIC Science & Technology

    1991-04-01

    D-A234 036 U.S. ARMY MEDICAL RESEARCH p INSTITUTE OF CHEMICAL DEFENSE USAMRICD-TR-91-07 PHARMACOKINETICS AND PHARMACODYNAMICS OF OXIMES IN...SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP 2-PAM Cl, ICD 467, MMB-4, Pharmacokinetics ...Cardiovascular 06 15 Pharmacodynamics, Oximes06 15 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The pharmacokinetics and

  6. Population Pharmacokinetic Analyses of Lithium: A Systematic Review.

    PubMed

    Methaneethorn, Janthima

    2018-02-01

    Even though lithium has been used for the treatment of bipolar disorder for several decades, its toxicities are still being reported. The major limitation in the use of lithium is its narrow therapeutic window. Several methods have been proposed to predict lithium doses essential to attain therapeutic levels. One of the methods used to guide lithium therapy is population pharmacokinetic approach which accounts for inter- and intra-individual variability in predicting lithium doses. Several population pharmacokinetic studies of lithium have been conducted. The objective of this review is to provide information on population pharmacokinetics of lithium focusing on nonlinear mixed effect modeling approach and to summarize significant factors affecting lithium pharmacokinetics. A literature search was conducted from PubMed database from inception to December, 2016. Studies conducted in humans, using lithium as a study drug, providing population pharmacokinetic analyses of lithium by means of nonlinear mixed effect modeling, were included in this review. Twenty-four articles were identified from the database. Seventeen articles were excluded based on the inclusion and exclusion criteria. A total of seven articles were included in this review. Of these, only one study reported a combined population pharmacokinetic-pharmacodynamic model of lithium. Lithium pharmacokinetics were explained using both one- and two-compartment models. The significant predictors of lithium clearance identified in most studies were renal function and body size. One study reported a significant effect of age on lithium clearance. The typical values of lithium clearance ranged from 0.41 to 9.39 L/h. The magnitude of inter-individual variability on lithium clearance ranged from 12.7 to 25.1%. Only two studies evaluated the models using external data sets. Model methodologies in each study are summarized and discussed in this review. For future perspective, a population pharmacokinetic

  7. Alginate/cashew gum nanoparticles for essential oil encapsulation.

    PubMed

    de Oliveira, Erick F; Paula, Haroldo C B; de Paula, Regina C M

    2014-01-01

    Alginate/cashew gum nanoparticles were prepared via spray-drying, aiming at the development of a biopolymer blend for encapsulation of an essential oil. Nanoparticles were characterized regarding to their hydrodynamic volume, surface charge, Lippia sidoides essential oil content and release profile, in addition to being analyzed by infrared spectroscopy (FT-IR), thermal analysis (TGA/DSC) and X-ray diffractometry. Nanoparticles in solution were found to have averaged sizes in the range 223-399 nm, and zeta potential values ranging from -30 to -36 mV. Encapsulated oil levels varied from 1.9 to 4.4% with an encapsulation efficiency of up to 55%. The in vitro release profile showed that between 45 and 95% of oil was released within 30-50h. Kinetic studies revealed that release pattern follow a Korsmeyer-Peppas mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Applied Pharmacokinetics: Course Description and Retrospective Evaluation.

    ERIC Educational Resources Information Center

    Beck, Diane E.

    1984-01-01

    An applied course designed to allow students to formulate pharmacokinetic recommendations individually for actual patient data and compare their recommendations to those of a pharmacokinetic consulting service is described and evaluated, and an objective student evaluation method is outlined. (MSE)

  9. Bovine Serum Albumin Nanoparticles Containing Amphotericin B: Characterization, Cytotoxicity and In Vitro Antifungal Evaluation.

    PubMed

    Casa, Diani Meza; Karam, Thaysa Ksiaskiewcz; Alves, Aline de Cristo Soares; Zgoda, Aline Aparecida; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    In this study, nanoparticles based on bovine serum albumin (BSA) containing amphotericin B (AmB) were obtained by the desolvation method and characterized with respect to size, size distribution, AmB encapsulation efficiency, AmB state of aggregation, and AmB in vitro release profile. After, the effect of nanoparticles on the cytotoxicity of human erythrocytes in vitro and efficacy over strains of Candida spp. were evaluated. The mean particle size was 156 nm and the AmB encapsulation efficiency was over 82%. The in vitro release profile revealed a sustained release of approximately 48% of AmB over 5 days. AmB is present in BSA nanoparticles as monomer. AmB-loaded nanoparticles showed very low index of hemolysis (less than 8%) in 72 h of assay compared to free AmB, which presented 100% of hemolysis in 2 h of incubation. The AmB-loaded BSA nanoparticles were as effective as free AmB against Candida albicans and Candida tropicalis, considering their sustained release profile. Thus, BSA nanoparticles are potential carriers for AmB, reducing its molecular aggregation and prolonging its release, resulting in lower cytotoxicity while maintaining its antifungal activity.

  10. Isolation, characterization, and in rats plasma pharmacokinetic study of a new triterpenoid saponin from Dianthus superbus.

    PubMed

    Ren, Yina; Xu, Xiaobao; Zhang, Qianlan; Lu, Yongzhuang; Li, Ximin; Zhang, Lin; Tian, Jingkui

    2017-02-01

    One new oleanolic acid triterpenoid saponin, 3-O-β-D-glucopyranosyl olean-11, 13(18)-diene-23,28-dioic acid, (hereafter referred to as DS-1) was isolated from the traditional Chinese medicinal plant Dianthus superbus (D. superbus). DS-1 plays an important role in the bioactivity of D. superbus. Thus, a sensitive, reliable and accurate reversed-phased liquid chromatography with tandem mass spectrometry (LC-MS/MS) in negative ion mode was developed and validated for the quantification and pharmacokinetic study of DS-1 in rats plasma. The pharmacokinetic profile showed that DS-1 was rapidly absorbed and eliminated in plasma, indicating that significant accumulation of the compound in biological specimen is unlikely. In addition, poor absorption into systemic circulation was observed after oral administration of DS-1, resulting in low absolute bioavailability (0.92 %).

  11. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity.

    PubMed

    Jabir, Rafid Salim; Naidu, Rakesh; Annuar, Muhammad Azrif Bin Ahmad; Ho, Gwo Fuang; Munisamy, Murali; Stanslas, Johnson

    2012-12-01

    Interindividual variability in drug response and the emergence of adverse drug effects are the main causes of treatment failure in cancer therapy. Functional membrane drug transporters play important roles in altering pharmacokinetic profile, resistance to treatment, toxicity and patient survival. Pharmacogenetic studies of these transporters are expected to provide new approaches for optimizing therapy. Taxanes are approved for the treatment of various cancers. Circulating taxanes are taken up by SLCO1B3 into hepatocytes. The CYP450 enzymes CYP3A4, CYP3A5 and CYP2C8 are responsible for the conversion of taxanes into their metabolites. Ultimately, ABCB1 and ABCC2 will dispose the metabolites into bile canaliculi. Polymorphisms of genes encoding for proteins involved in the transport and clearance of taxanes reduce excretion of the drugs, leading to development of toxicity in patients. This review addresses current knowledge on genetic variations of transporters affecting taxanes pharmacokinetics and toxicity, and provides insights into future direction for personalized medicine.

  12. Raltegravir in HIV-1-Infected Pregnant Women: Pharmacokinetics, Safety, and Efficacy.

    PubMed

    Blonk, Maren I; Colbers, Angela P H; Hidalgo-Tenorio, Carmen; Kabeya, Kabamba; Weizsäcker, Katharina; Haberl, Annette E; Moltó, José; Hawkins, David A; van der Ende, Marchina E; Gingelmaier, Andrea; Taylor, Graham P; Ivanovic, Jelena; Giaquinto, Carlo; Burger, David M

    2015-09-01

    The use of raltegravir in human immunodeficiency virus (HIV)-infected pregnant women is important in the prevention of mother-to-child HIV transmission, especially in circumstances when a rapid decline of HIV RNA load is warranted or when preferred antiretroviral agents cannot be used. Physiological changes during pregnancy can reduce antiretroviral drug exposure. We studied the effect of pregnancy on the pharmacokinetics of raltegravir and its safety and efficacy in HIV-infected pregnant women. An open-label, multicenter, phase 4 study in HIV-infected pregnant women receiving raltegravir 400 mg twice daily was performed (Pharmacokinetics of Newly Developed Antiretroviral Agents in HIV-Infected Pregnant Women Network). Steady-state pharmacokinetic profiles were obtained in the third trimester and postpartum along with cord and maternal delivery concentrations. Safety and virologic efficacy were evaluated. Twenty-two patients were included, of which 68% started raltegravir during pregnancy. Approaching delivery, 86% of the patients had an undetectable viral load (<50 copies/mL). None of the children were HIV-infected. Exposure to raltegravir was highly variable. Overall area under the plasma concentration-time curve (AUC) and plasma concentration at 12 hours after intake (C12h) plasma concentrations in the third trimester were on average 29% and 36% lower, respectively, compared with postpartum: Geometric mean ratios (90% confidence interval) were 0.71 (.53-.96) for AUC0-12h and 0.64 (.34-1.22) for C12h. The median ratio of raltegravir cord to maternal blood was 1.21 (interquartile range, 1.02-2.17; n = 9). Raltegravir was well tolerated during pregnancy. The pharmacokinetics of raltegravir showed extensive variability. The observed mean decrease in exposure to raltegravir during third trimester compared to postpartum is not considered to be of clinical importance. Raltegravir can be used in standard dosages in HIV-infected pregnant women. NCT00825929. © The Author

  13. Pharmacokinetics of cotinine in rats: a potential therapeutic agent for disorders of cognitive function

    PubMed Central

    Li, Pei; Beck, Wayne D.; Callahan, Patrick M.; Terry, Alvin V.; Bartlett, Michael G.

    2016-01-01

    Background Attention has been paid to cotinine (COT), one of the major metabolites of nicotine (NIC), for its pro-cognitive effects and potential therapeutic activities against Alzheimer's Disease (AD) and other types of cognitive impairment. In order to facilitate pharmacological and toxicological studies on COT for its pro-cognitive activities, we conducted a pharmacokinetic (PK) study of COT in rats, providing important oral and intravenously (IV) PK information. Methods In this study, plasma samples were obtained up to 48 hours after COT was dosed to rats orally and IV at a dose of 3 mg/kg. Plasma samples were prepared and analyzed using a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) bioanalytical method, providing concentration profiles of COT and metabolites after oral and IV administrations. Results The data were fitted into a one-compartment model and a two-compartment model for the oral and IV groups, respectively, providing important PK information for COT including PK profiles, half-life, clearance and bioavailability. The results suggested fast absorption, slow elimination and high bioavailability of COT in rats. Conclusions Several important facts about the PK properties in rats suggested COT could be a potential pro-cognitive agent. Information about the pharmacokinetics of COT in rats revealed in this study is of great importance for the future studies on COT or potential COT analogues as agents for improving cognition. PMID:25933960

  14. Pharmacokinetics of a Sustained-release Formulation of Meloxicam After Subcutaneous Administration to Hispaniolan Amazon Parrots (Amazona ventralis).

    PubMed

    Guzman, David Sanchez-Migallon; Court, Michael H; Zhu, Zhaohui; Summa, Noémie; Paul-Murphy, Joanne R

    2017-09-01

    Meloxicam has been shown to have a safe and favorable pharmacodynamic profile with individual variability in Hispaniolan Amazon parrots (Amazona ventralis). In the current study, we determined the pharmacokinetics of a sustained-release formulation of meloxicam after subcutaneous administration to Hispaniolan Amazon parrots. Twelve healthy adult parrots, 6 males and 6 females, were used in the study. Blood samples were collected before (time 0) and at 0.5, 1, 2, 6, 12, 24, 48, 72, 96, and 120 hours after a single dose of the sustained-release meloxicam formulation (3 mg/kg SC). Plasma meloxicam concentrations were measured by high-pressure liquid chromatography. Pharmacokinetic parameters were determined by noncompartmental analysis. Plasma concentrations reached a mean C max of 23.4 μg/mL (range, 14.7-46.0 μg/mL) at 1.8 hours (range, 0.5-6 hours), with a terminal half-life of 7.4 hours (range, 1.4-40.9 hours). Individual variation was noticeable, such that some parrots (4 of 12 birds) had very low plasma meloxicam concentrations, similar to the high variability reported in a previous pharmacokinetic study of the standard meloxicam formulation in the same group of birds. Two birds developed small self-resolving scabs at the injection site. On the basis of these results, the sustained-release meloxicam formulation could be administered every 12 to 96 hours in Hispaniolan Amazon parrots to manage pain. Because of these highly variable results, the use of this formulation in this species cannot be recommended until further pharmacokinetic, safety, and pharmacogenomic evaluations are performed to establish accurate dosing recommendations and to understand the high pharmacokinetic variability.

  15. The effects of oil-in-water nanoemulsion polyethylene glycol surface density on intracellular stability, pharmacokinetics, and biodistribution in tumor bearing mice.

    PubMed

    Hak, Sjoerd; Garaiova, Zuzana; Olsen, Linda Therese; Nilsen, Asbjørn Magne; de Lange Davies, Catharina

    2015-04-01

    Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range. Here, the effects of high and a broad range of PEG surface densities on the in vivo performance of lipid-based nanoparticles were studied. Oil-in-water nanoemulsions were prepared with PEG surface densities of 5-50 mol%. Confocal microscopy was used to assess intracellular disintegration in vitro. In vivo pharmacokinetics and biodistribution in tumor bearing mice were studied using a small animal optical imager. PEG surface density did not affect intracellular nanoemulsion stability. Surprisingly, circulation half-lives decreased with increasing PEG surface density. A plausible explanation was that nanoemulsion with high (50 mol%) PEG surface density activated the complement in a whole blood assay, whereas nanoemulsion with low (5 mol%) PEG density did not. In vivo, nanoemulsion with low PEG surface density was mostly confined to the tumor and organs of the mononuclear phagocyte system, whereas nanoemulsion with high PEG density accumulated throughout the mouse. Optimal PEG surface density of lipid-based nanoparticles for tumor targeting was found to be below 10 mol%.

  16. A multi-center, open-label trial to compare the efficacy and pharmacokinetics of Artemether-Lumefantrine in children with severe acute malnutrition versus children without severe acute malnutrition: study protocol for the MAL-NUT study.

    PubMed

    Denoeud-Ndam, Lise; Dicko, Alassane; Baudin, Elisabeth; Guindo, Ousmane; Grandesso, Francesco; Sagara, Issaka; Lasry, Estrella; Palma, Pedro Pablo; Parra, Angeles M Lima; Stepniewska, Kasia; Djimde, Abdoulaye A; Barnes, Karen I; Doumbo, Ogobara K; Etard, Jean-François

    2015-06-12

    Malnutrition and malaria frequently coexist in sub-Saharan African countries. Studies on efficacy of antimalarial treatments usually follow the WHO standardized protocol in which severely malnourished children are systematically excluded. Few studies have assessed the efficacy of chloroquine, sulfadoxine-pyrimethamine and quinine in severe acute malnourished children. Overall, efficacy of these treatments appeared to be reduced, attributed to lower immunity and for some antimalarials altered pharmacokinetic profiles and lower drug concentrations. However, similar research on the efficacy and pharmacokinetic profiles of artemisinin-combination therapies (ACTs) and especially artemether-lumefantrine in malnourished children is currently lacking. The main objective of this study is to assess whether artemether-lumefantrine is less efficacious in children suffering from severe acute malnutrition (SAM) compared to non-SAM children, and if so, to what extent this can be attributed to a sub-optimal pharmacokinetic profile. In two sites, Ouelessebougou, Mali and Maradi, Niger, children with uncomplicated microscopically-confirmed P. falciparum malaria aged between 6 and 59 months will be enrolled. Two non-SAM children will be enrolled after the enrolment of each SAM case. Children with severe manifestations of malaria or complications of acute malnutrition needing intensive treatment will be excluded. Treatment intakes will be supervised and children will be followed-up for 42 days, according to WHO guidance for surveillance of antimalarial drug efficacy. Polymerase Chain Reaction genotyping will be used to distinguish recrudescence from re-infection. SAM children will also benefit from the national nutritional rehabilitation program. Outcomes will be compared between the SAM and non-SAM populations. The primary outcome will be adequate clinical and parasitological response at day 28 after PCR correction, estimated by Kaplan-Meier analysis. To assess the pharmacokinetic

  17. Single-dose pharmacokinetics of repaglinide in subjects with chronic liver disease.

    PubMed

    Hatorp, V; Walther, K H; Christensen, M S; Haug-Pihale, G

    2000-02-01

    Repaglinide is a novel insulin secretagogue developed in response to the need for a fast-acting, oral prandial glucose regulator for the treatment of type 2 (non-insulin-dependent) diabetes mellitus. Repaglinide is metabolized mainly in the liver; its pharmacokinetics may therefore be altered by hepatic dysfunction. This open, parallel-group study compared the pharmacokinetics and tolerability of a single 4 mg dose of repaglinide in healthy subjects (n = 12) and patients with chronic liver disease (CLD) (n = 12). Values for AUC and Cmax were significantly higher in CLD patients compared with healthy subjects, and the MRT was prolonged in CLD patients. Values for tmax did not differ between the groups, but t1/2 was significantly prolonged in CLD patients compared with previously determined values in healthy subjects. AUC was inversely correlated with caffeine clearance in CLD patients but not in healthy subjects. Blood glucose profiles were similar in both groups. Adverse events (principally hypoglycemia) were similar in the two groups; none was serious. Repaglinide clearance is significantly reduced in patients with hepatic impairment; the agent should be used with caution in this group.

  18. Radioprotective cerium oxide nanoparticles: Molecular imaging investigations of conps' pharmacokinetics, efficacy, and mechanisms of action

    NASA Astrophysics Data System (ADS)

    McDonagh, Philip Reed Wills, III

    Cerium oxide nanoparticles (CONPs) are being investigated for several anti-oxidant applications in medicine. One of their most promising applications is as a radioprotective drug, an area of research in need due to the severe side effects from radiation therapy. In this work, the potential of CONPs as a radioprotective drug is examined using four criteria: favorable biodistribution/pharmacokinetics, low toxicity, ability to protect normal tissue from radiation damage, and lack of protection of tumor. The mechanisms of action of CONPs are also studied. Biodistribution was determined in radiolabeled CONPs with surface coatings including citrate, dextran T10-amine (DT10-NH2), dextran T10-polyethylene glycol (DT10-PEG), dextran T10-sulfobetaine (DT10-SB) and poly(acrylic acid) (PAA), and compared to uncoated. 89Zr was incorporated into CONPs for positron emission tomography (PET) imaging and ex vivo tissue analysis in tumor bearing mice. Compared to uncoated [ 89Zr]CONPs, coated [89Zr]CONPs showed improved biodistribution, including significantly enhanced renal clearance of PAA- [89Zr]CONPs. The toxicity of CONPs was evaluated in vitro and in vivo, with low toxicity at therapeutic doses. After clinically mimetic radiation therapy, pre-treatment of mice with coated and uncoated CONPs showed greater than 50% reduction of cell death in normal colon tissue, comparable to the clinically available radioprotective drug amifostine. Tumor control after irradiation of spontaneous colon tumors was unchanged with PAA-CONP pre-treatment, while citrate, DT10-PEG, and uncoated CONP pre-treatment had slightly less tumor control. Xenograft tumors were irradiated after pH normalizing treatment with sodium bicarbonate and PAA-CONP pre-treatment. Treatment of these tumors showed slightly less tumor control than irradiation alone or PAA-CONP plus irradiation, demonstrating that the acidic pH of the tumor microenvironment may be the basis of preventing CONPs' radioprotective properties in

  19. The pharmacokinetics of a B-domain truncated recombinant factor VIII, turoctocog alfa (NovoEight®), in patients with hemophilia A.

    PubMed

    Jiménez-Yuste, V; Lejniece, S; Klamroth, R; Suzuki, T; Santagostino, E; Karim, F A; Saugstrup, T; Møss, J

    2015-03-01

    Turoctocog alfa (NovoEight(®)) is a human recombinant coagulation factor VIII (rFVIII) for the treatment of patients with hemophilia A. To evaluate the pharmacokinetics of turoctocog alfa in all age groups across clinical trials. Data from previously treated patients with severe hemophilia A (FVIII activity level of ≤ 1%) with no history of FVIII inhibitors, in a non-bleeding state, were included. The pharmacokinetics were assessed following a wash-out period and a subsequent single intravenous 50 IU kg(-1) dose of turoctocog alfa. Blood was sampled during a 48-h period postdose. Standard pharmacokinetic (PK) parameters were estimated on the basis of plasma FVIII activity vs. time (PK profiles) with non-compartmental methods. Furthermore, a population PK analysis was conducted. Data from 76 patients (aged 1-60 years) enrolled globally across six clinical trials were included, totaling 105 turoctocog alfa PK profiles. Single-dose PK results 3-6 months after the first dose of turoctocog alfa were comparable with the results obtained after the first dose. Similar PK characteristics were shown for different lots and strengths of the drug product. Overall, area under the plasma concentration (activity) curve from administration to infinity (AUC) and t1(/2) tended to increase with increasing age, with lower AUC and shorter t(1/2) being seen in children than in adolescents and adults. The PK profiles of turoctocog alfa and other commercially available plasma-derived FVIII and rFVIII products were similar in all age groups. The PK characteristics of turoctocog alfa have been thoroughly studied, and shown to be consistent over time, reproducible between different lots and strengths of drug product, and similar to those observed for other FVIII products. © 2014 International Society on Thrombosis and Haemostasis.

  20. Improving maraviroc oral bioavailability by formation of solid drug nanoparticles.

    PubMed

    Savage, Alison C; Tatham, Lee M; Siccardi, Marco; Scott, Trevor; Vourvahis, Manoli; Clark, Andrew; Rannard, Steve P; Owen, Andrew

    2018-05-17

    Oral drug administration remains the preferred approach for treatment of HIV in most patients. Maraviroc (MVC) is the first in class co-receptor antagonist, which blocks HIV entry into host cells. MVC has an oral bioavailability of approximately 33%, which is limited by poor permeability as well as affinity for CYP3A and several drug transporters. While once-daily doses are now the favoured option for HIV therapy, dose-limiting postural hypotension has been of theoretical concern when administering doses high enough to achieve this for MVC (particularly during coadministration of enzyme inhibitors). To overcome low bioavailability and modify the pharmacokinetic profile, a series of 70 wt% MVC solid drug nanoparticle (SDN) formulations (containing 30 wt% of various polymer/surfactant excipients) were generated using emulsion templated freeze-drying. The lead formulation contained PVA and AOT excipients ( MVC SDN PVA/AOT ), and was demonstrated to be fully water-dispersible to release drug nanoparticles with z-average diameter of 728 nm and polydispersity index of 0.3. In vitro and in vivo studies of MVC SDN PVA/AOT showed increased apparent permeability of MVC, compared to a conventional MVC preparation, with in vivo studies in rats showing a 2.5-fold increase in AUC (145.33 vs. 58.71 ng h ml -1 ). MVC tissue distribution was similar or slightly increased in tissues examined compared to the conventional MVC preparation, with the exception of the liver, spleen and kidneys, which showed statistically significant increases in MVC for MVC SDN PVA/AOT . These data support a novel oral format with the potential for dose reduction while maintaining therapeutic MVC exposure and potentially enabling a once-daily fixed dose combination product. Copyright © 2018. Published by Elsevier B.V.