Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki
2016-12-01
This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.
Mudalige, Thilak K; Qu, Haiou; Linder, Sean W
2015-11-13
Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm. Published by Elsevier B.V.
Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel
2012-07-03
In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.
Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis
NASA Astrophysics Data System (ADS)
Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.
2012-07-01
We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately andin situusing crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution.more » The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian
2016-01-01
Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; ...
2017-04-13
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less
NASA Astrophysics Data System (ADS)
Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick
2010-08-01
This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).
Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles
Baek, Miri; Chung, Hae-Eun; Yu, Jin; Lee, Jung-A; Kim, Tae-Hyun; Oh, Jae-Min; Lee, Won-Jae; Paek, Seung-Min; Lee, Jong Kwon; Jeong, Jayoung; Choy, Jin-Ho; Choi, Soo-Jin
2012-01-01
Background This study explored the pharmacokinetics, tissue distribution, and excretion profile of zinc oxide (ZnO) nanoparticles with respect to their particle size in rats. Methods Two ZnO nanoparticles of different size (20 nm and 70 nm) were orally administered to male and female rats, respectively. The area under the plasma concentration-time curve, tissue distribution, excretion, and the fate of the nanoparticles in organs were analyzed. Results The plasma zinc concentration of both sizes of ZnO nanoparticles increased during the 24 hours after administration in a dose-dependent manner. They were mainly distributed to organs such as the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender. Elimination kinetics showed that a small amount of ZnO nanoparticles was excreted via the urine, while most of nanoparticles were excreted via the feces. Transmission electron microscopy and x-ray absorption spectroscopy studies in the tissues showed no noticeable ZnO nanoparticles, while new Zn-S bonds were observed in tissues. Conclusion ZnO nanoparticles of different size were not easily absorbed into the bloodstream via the gastrointestinal tract after a single oral dose. The liver, lung, and kidney could be possible target organs for accumulation and toxicity of ZnO nanoparticles was independent of particle size or gender. ZnO nanoparticles appear to be absorbed in the organs in an ionic form rather than in a particulate form due to newly formed Zn-S bonds. The nanoparticles were mainly excreted via the feces, and smaller particles were cleared more rapidly than the larger ones. ZnO nanoparticles at a concentration below 300 mg/kg were distributed in tissues and excreted within 24 hours. These findings provide crucial information on possible acute and chronic toxicity of ZnO nanoparticles in potential target organs. PMID:22811602
NASA Astrophysics Data System (ADS)
Nurfadhilah, M.; Nolia, I.; Handayani, W.; Imawan, C.
2018-05-01
The silver nanoparticles generated by biosynthesis have a quite diverse result, both in size and shape. Structures of silver nanoparticles can be controlled by modifying the parameters of the biosynthesis such as the ratio between the precursors and reducing agents, as well as pH of the solution. In this study, the pH of Diospyros discolor (Bisbul) leaves aqueous extract was varied to 4, 7, 9, and 11. The extract then was added to 1 mM AgNO3 precursor (1:2; v/v ratio). The result of the silver nanoparticles characterized using spectrophotometer UV-Vis to find if there was any absorbance peak formed between 400 nm to 500 nm. TEM characterization was used to determine the size and shape of silver nanoparticles, and PSA was used to see their size distribution and stability. The higher pH tends to produce smaller silver nanoparticles rapidly. The synthesis parameters that were varied in this research have affected the size, size distribution patterns, and stability of silver nanoparticles.
Preparation of gold nanoparticles and determination of their particles size via different methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia
Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be preparedmore » in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.« less
Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats
Lee, Jeong-A; Kim, Mi-Kyung; Paek, Hee-Jeong; Kim, Yu-Ri; Kim, Meyoung-Kon; Lee, Jong-Kwon; Jeong, Jayoung; Choi, Soo-Jin
2014-01-01
Purpose The effects of particle size on the tissue distribution and excretion kinetics of silica nanoparticles and their biological fates were investigated following a single oral administration to male and female rats. Methods Silica nanoparticles of two different sizes (20 nm and 100 nm) were orally administered to male and female rats, respectively. Tissue distribution kinetics, excretion profiles, and fates in tissues were analyzed using elemental analysis and transmission electron microscopy. Results The differently sized silica nanoparticles mainly distributed to kidneys and liver for 3 days post-administration and, to some extent, to lungs and spleen for 2 days post-administration, regardless of particle size or sex. Transmission electron microscopy and energy dispersive spectroscopy studies in tissues demonstrated almost intact particles in liver, but partially decomposed particles with an irregular morphology were found in kidneys, especially in rats that had been administered 20 nm nanoparticles. Size-dependent excretion kinetics were apparent and the smaller 20 nm particles were found to be more rapidly eliminated than the larger 100 nm particles. Elimination profiles showed 7%–8% of silica nanoparticles were excreted via urine, but most nanoparticles were excreted via feces, regardless of particle size or sex. Conclusion The kidneys, liver, lungs, and spleen were found to be the target organs of orally-administered silica nanoparticles in rats, and this organ distribution was not affected by particle size or animal sex. In vivo, silica nanoparticles were found to retain their particulate form, although more decomposition was observed in kidneys, especially for 20 nm particles. Urinary and fecal excretion pathways were determined to play roles in the elimination of silica nanoparticles, but 20 nm particles were secreted more rapidly, presumably because they are more easily decomposed. These findings will be of interest to those seeking to predict potential toxicological effects of silica nanoparticles on target organs. PMID:25565843
Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific
NASA Astrophysics Data System (ADS)
Chen, K.-H.; Lundy, D. J.; Toh, E. K.-W.; Chen, C.-H.; Shih, C.; Chen, P.; Chang, H.-C.; Lai, J. J.; Stayton, P. S.; Hoffman, A. S.; Hsieh, P. C.-H.
2015-09-01
This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner.This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner. Electronic supplementary information (ESI) available: IF images of brain, heart, low magnification images of spleen, mouse heart rate and blood pressure post-LPS. See DOI: 10.1039/c5nr03626g
NASA Astrophysics Data System (ADS)
Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Roy, Maitreyee; Herrmann, Jan
2011-10-01
Nanoparticles and products incorporating nanoparticles are a growing branch of nanotechnology industry. They have found a broad market, including the cosmetic, health care and energy sectors. Accurate and representative determination of particle size distributions in such products is critical at all stages of the product lifecycle, extending from quality control at point of manufacture to environmental fate at the point of disposal. Determination of particle size distributions is non-trivial, and is complicated by the fact that different techniques measure different quantities, leading to differences in the measured size distributions. In this study we use both mono- and multi-modal dispersions of nanoparticle reference materials to compare and contrast traditional and novel methods for particle size distribution determination. The methods investigated include ensemble techniques such as dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS), as well as single particle techniques such as transmission electron microscopy (TEM) and microchannel resonator (ultra high-resolution mass sensor).
Synthesis and size classification of metal oxide nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Atsumi, Takashi; Jeyadevan, Balachandran; Sato, Yoshinori; Tamura, Kazuchika; Aiba, Setsuya; Tohji, Kazuyuki
2004-12-01
Magnetic nanoparticles are considered for biomedical applications, such as the medium in magnetic resonance imaging, hyperthermia, drug delivery, and for the purification or classification of DNA or virus. The performance of magnetic nanoparticles in biomedical application such as hyperthermia depends very much on the magnetic properties, size and size distribution. We briefly described the basic idea behind their use in drug delivery, magnetic separation and hyperthermia and discussed the prerequisite properties magnetic particles for biomedical applications. Finally reported the synthesis and classification scheme to prepare magnetite (Fe3O4) nanoparticles with narrow size distribution for magnetic fluid hyperthermia.
Development of flurbiprofen-loaded nanoparticles with a narrow size distribution using sucrose.
Oh, Dong Hoon; Yan, Yi-Dong; Kim, Dong Wuk; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon
2014-02-01
A novel flurbiprofen-loaded nanoemulsion which gave uniform emulsion droplets with a narrow size distribution was previously reported to be prepared using membrane emulsification method. The purpose of this study is to develop a novel flurbiprofen-loaded nanoparticle with a narrow size distribution and improved bioavailability. The nanoparticle was prepared by solidifying nanoemulsion using sucrose as a carrier via spray drying method. Its physicochemical properties were investigated using SEM, DSC and PXRD. Furthermore, dissolution and bioavailability in rats were evaluated compared to a flurbiprofen-loaded commercial product. The flurbiprofen-loaded nanoparticles with flurbiprofen/sucrose/surfactant mixture (1/20/2, weight ratio) gave good solidification and no stickiness. They associated with about 70,000-fold improved drug solubility and had a mean size of about 300 nm with a narrow size distribution. Flurbiprofen was present in a changed amorphous state in these nanoparticles. Moreover, the nanoparticles gave significantly shorter Tmax, and higher AUC and Cmax of the drug compared to the commercial product (p < 0.05). In particular, they showed about nine-fold higher AUC of the drug than did the commercial product. These flurbiprofen-loaded nanoparticles prepared with sucrose by the membrane emulsification and spray drying method would be a potential candidate for orally delivering poorly water-soluble flurbiprofen with enhanced bioavailability.
Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.
De Jong, Wim H; Hagens, Werner I; Krystek, Petra; Burger, Marina C; Sips, Adriënne J A M; Geertsma, Robert E
2008-04-01
A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the presence of gold is feasible with no background levels in the body in the normal situation. Rats were intravenously injected in the tail vein with gold nanoparticles with a diameter of 10, 50, 100 and 250 nm, respectively. After 24 h, the rats were sacrificed and blood and various organs were collected for gold determination. The presence of gold was measured quantitatively with inductively coupled plasma mass spectrometry (ICP-MS). For all gold nanoparticle sizes the majority of the gold was demonstrated to be present in liver and spleen. A clear difference was observed between the distribution of the 10 nm particles and the larger particles. The 10 nm particles were present in various organ systems including blood, liver, spleen, kidney, testis, thymus, heart, lung and brain, whereas the larger particles were only detected in blood, liver and spleen. The results demonstrate that tissue distribution of gold nanoparticles is size-dependent with the smallest 10nm nanoparticles showing the most widespread organ distribution.
Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed
2016-12-01
The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.
Thermally stable nanoparticles on supports
Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad
2012-11-13
An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.
Method for forming thermally stable nanoparticles on supports
Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad
2013-08-20
An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.
Clonazepam release from poly(DL-lactide-co-glycolide) nanoparticles prepared by dialysis method.
Nah, J W; Paek, Y W; Jeong, Y I; Kim, D W; Cho, C S; Kim, S H; Kim, M Y
1998-08-01
Aim of this work is to prepare poly(DL-lactide-co-glycolide) (PLGA) nanoparticles by dialysis method without surfactant and to investigate drug loading capacity and drug release. The size of PLGA nanoparticles was 269.9 +/- 118.7 nm in intensity average and the morphology of PLGA nanoparticles was spherical shape from the observation of SEM and TEM. In the effect of drug loading contents on the particle size distribution, PLGA nanoparticles were monomodal pattern with narrow size distribution in the empty and lower drug loading nanoparticles whereas bi- or trimodal pattern was showed in the higher drug loading ones. Release of clonazepam from PLGA nanoparticles with higher drug loading contents was slower than that with lower loading contents.
Study of physical properties of metal oxide nanoparticles obtained in acoustoplasma discharge
NASA Astrophysics Data System (ADS)
Bulychev, N. A.; Kazaryan, M. A.; Zakharyan, A. R.; Bodryshev, V. V.; Kirichenko, M. N.; Shevchenko, S. N.; Yakunin, V. G.; Timoshenko, V. Y.; Bychenko, A. B.
2018-04-01
Nanoparticles of tungsten, copper, iron, and zinc oxides were synthesized in acoustoplasma discharge. Their size distribution was studied by electron microscopy and laser correlation spectroscopy. Ultrasound was found to narrow significantly the size distribution width of zinc oxide nanoparticles. Water suspensions of zinc oxide nanoparticles showed photoluminescence in red and near infrared spectral ranges, which makes them a promising material for luminescent diagnostics of biological systems.
NASA Astrophysics Data System (ADS)
Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.
2017-04-01
Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.
NASA Astrophysics Data System (ADS)
Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.-D.; Popov, I.; Popov, O.; Kuselman, I.; Takahata, K.; Ehara, K.; Ausset, P.; Maillé, M.; Michielsen, N.; Bondiguel, S.; Gensdarmes, F.; Morawska, L.; Johnson, G. R.; Faghihi, E. M.; Kim, C. S.; Kim, Y. H.; Chu, M. C.; Guardado, J. A.; Salas, A.; Capannelli, G.; Costa, C.; Bostrom, T.; Jämting, Å. K.; Lawn, M. A.; Adlem, L.; Vaslin-Reimann, S.
2013-10-01
Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—"Properties of Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 "Techniques for characterizing size distribution of airborne nanoparticles". Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2-46.6 nm and 80.2-89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.
2009-03-15
The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
NASA Astrophysics Data System (ADS)
NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor
2014-11-01
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.
Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO
NASA Astrophysics Data System (ADS)
Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.
2013-03-01
Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.
The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourali, N.; Foroutan, G.
2015-10-15
A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which inmore » turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.« less
Carney, Randy P.; Kim, Jin Young; Qian, Huifeng; Jin, Rongchao; Mehenni, Hakim; Stellacci, Francesco; Bakr, Osman M.
2011-01-01
Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (ρP) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. PMID:21654635
Workplace exposure to nanoparticles from gas metal arc welding process
NASA Astrophysics Data System (ADS)
Zhang, Meibian; Jian, Le; Bin, Pingfan; Xing, Mingluan; Lou, Jianlin; Cong, Liming; Zou, Hua
2013-11-01
Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding ( P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000-18,000 and 560-320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace exposure to nanoparticles.
Lu, Jennifer Q; Yi, Sung Soo
2006-04-25
A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.
Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery
NASA Astrophysics Data System (ADS)
Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan
2013-11-01
A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jahangeer; Blakely, Colin K.; Bruno, Shaun R.
2012-09-15
Highlights: ► BaSnO{sub 3} and SrSnO{sub 3} nanoparticles synthesized using the reverse micelle method. ► Particle size and size distribution studied by whole powder pattern modeling. ► Nanoparticles are of optimal size for investigation in dye-sensitized solar cells. -- Abstract: Light-to-electricity conversion efficiency in dye-sensitized solar cells critically depends not only on the dye molecule, semiconducting material and redox shuttle selection but also on the particle size and particle size distribution of the semiconducting photoanode. In this study, nanocrystalline BaSnO{sub 3} and SrSnO{sub 3} particles have been synthesized using the microemulsion method. Particle size distribution was studied by whole powdermore » pattern modeling which confirmed narrow particle size distribution with an average size of 18.4 ± 8.3 nm for SrSnO{sub 3} and 15.8 ± 4.2 nm for BaSnO{sub 3}. These values are in close agreement with results of transmission electron microscopy. The prepared materials have optimal microstructure for successive investigation in dye-sensitized solar cells.« less
Montoro Bustos, Antonio R; Petersen, Elijah J; Possolo, Antonio; Winchester, Michael R
2015-09-01
Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS can be considered a mature methodology, additional work is needed to standardize this technique including an assessment of the reliability and variability of size distribution measurements and the transferability of the technique among laboratories. This paper presents the first post hoc interlaboratory comparison study of the spICP-MS technique. Measurement results provided by six expert laboratories for two National Institute of Standards and Technology (NIST) gold nanoparticle reference materials (RM 8012 and RM 8013) were employed. The general agreement in particle size between spICP-MS measurements and measurements by six reference techniques demonstrates the reliability of spICP-MS and validates its sizing capability. However, the precision of the spICP-MS measurement was better for the larger 60 nm gold nanoparticles and evaluation of spICP-MS precision indicates substantial variability among laboratories, with lower variability between operators within laboratories. Global particle number concentration and Au mass concentration recovery were quantitative for RM 8013 but significantly lower and with a greater variability for RM 8012. Statistical analysis did not suggest an optimal dwell time, because this parameter did not significantly affect either the measured mean particle size or the ability to count nanoparticles. Finally, the spICP-MS data were often best fit with several single non-Gaussian distributions or mixtures of Gaussian distributions, rather than the more frequently used normal or log-normal distributions.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less
Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum
2018-01-01
In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.
Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum
2018-01-01
In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284
Rodríguez-López, A; Cruz-Rivera, J J; Elías-Alfaro, C G; Betancourt, I; Ruiz-Silva, H; Antaño-López, R
2015-01-01
The effects of varying the surfactant concentration and the anodic pulse potential on the properties and electrochemical behaviors of magnetite nanoparticles were investigated. The nanoparticles were synthesized with an electrochemical method based on applying dissymmetric potential pulses, which offers the advantage that can be used to tune the particle size distribution very precisely in the range of 10 to 50 nm. Under the conditions studied, the surfactant concentration directly affects the size distribution, with higher concentrations producing narrower distributions. Linear voltammetry was used to characterize the electrochemical behavior of the synthesized nanoparticles in both the anodic and cathodic regions, which are attributed to the oxidation of Fe(2+) and the reduction of Fe(3+); these species are part of the spinel structure of magnetite. Electrochemical impedance spectroscopy data indicated that the reduction and oxidation reactions of the nanoparticles are not controlled by the mass transport step, but by the charge transfer step. The sample with the highest saturation magnetization was that synthesized in the presence of polyethylene glycol. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Chunfang; Li, Dongxiang; Wan, Gangqiang; Xu, Jie; Hou, Wanguo
2011-07-01
The citrate reduction method for the synthesis of gold nanoparticles (GNPs) has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM) via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of sodium hydroxide can produce uniform concentrated GNPs with low size distribution; otherwise, the largely distributed nanoparticles or instable colloids were obtained. The low reaction temperature is helpful to control the nanoparticle formation rate, and uniform GNPs can be obtained in presence of optimized NaOH concentrations. The pH values of the obtained uniform GNPs were found to be very near to neutral, and the pH influence on the particle size distribution may reveal the different formation mechanism of GNPs at high or low pH condition. Moreover, this modified synthesis method can save more than 90% energy in the heating step. Such environmental-friendly synthesis method for gold nanoparticles may have a great potential in large-scale manufacturing for commercial and industrial demand.
Sletnes, M; Maria, J; Grande, T; Lindgren, M; Einarsrud, M-A
2014-02-07
Blue-green luminescent octoxy capped Si nanoparticles were synthesized via homogeneous reduction of SiCl4 with the crown ether alkalide K(+)(15-crown-5)2K(-) in tetrahydrofuran. The Si nanoparticles were characterized with respect to size, crystal structure, morphology, surface termination, optical properties and stability. Si diamond structure nanoparticles with narrow size distributions, and average diameters ranging from 3 to 7 nm were obtained. A finite-size effect on the lattice dimensions was observed, in the form of an expansion of the [220] lattice planes of smaller Si nanoparticles. The concentration of SiCl4 was found to be the most important parameter governing the particle size and size distribution. The octoxy capped particles were stable under an ambient atmosphere for at least one month, but exposure to water made them prone to oxidation. An average radiative recombination lifetime of 8.8 ns was measured for the blue-green luminescence. The luminescence appears to originate from surface defects, rather than from quantum confinement.
In situ measurements of plasma properties during gas-condensation of Cu nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koten, M. A., E-mail: mark.koten@gmail.com; Shield, J. E.; Voeller, S. A.
2016-03-21
Since the mean, standard deviation, and modality of nanoparticle size distributions can vary greatly between similar input conditions (e.g., power and gas flow rate), plasma diagnostics were carried out in situ using a double-sided, planar Langmuir probe to determine the effect the plasma has on the heating of clusters and their final size distributions. The formation of Cu nanoparticles was analyzed using cluster-plasma physics, which relates the processes of condensation and evaporation to internal plasma properties (e.g., electron temperature and density). Monitoring these plasma properties while depositing Cu nanoparticles with different size distributions revealed a negative correlation between average particlemore » size and electron temperature. Furthermore, the modality of the size distributions also correlated with the modality of the electron energy distributions. It was found that the maximum cluster temperature reached during plasma heating and the material's evaporation point regulates the growth process inside the plasma. In the case of Cu, size distributions with average sizes of 8.2, 17.3, and 24.9 nm in diameter were monitored with the Langmuir probe, and from the measurements made, the cluster temperatures for each deposition were calculated to be 1028, 1009, and 863 K. These values are then compared with the onset evaporation temperature of particles of this size, which was estimated to be 1059, 1068, and 1071 K. Thus, when the cluster temperature is too close to the evaporation temperature, less particle growth occurs, resulting in the formation of smaller particles.« less
The effect of Au amount on size uniformity of self-assembled Au nanoparticles
NASA Astrophysics Data System (ADS)
Chen, S.-H.; Wang, D.-C.; Chen, G.-Y.; Chen, K.-Y.
2008-03-01
The self-assembled fabrication of nanostructure, a dreaming approach in the area of fabrication engineering, is the ultimate goal of this research. A finding was proved through previous research that the size of the self-assembled gold nanoparticles could be controlled with the mole ratio between AuCl4- and thiol. In this study, the moles of Au were fixed, only the moles of thiol were adjusted. Five different mole ratios of Au/S with their effect on size uniformity were investigated. The mole ratios were 1:1/16, 1:1/8, 1:1, 1:8, 1:16, respectively. The size distributions of the gold nanoparticles were analyzed by Mac-View analysis software. HR-TEM was used to derive images of self-assembled gold nanoparticles. The result reached was also the higher the mole ratio between AuCl4- and thiol the bigger the self-assembled gold nanoparticles. Under the condition of moles of Au fixed, the most homogeneous nanoparticles in size distribution derived with the mole ratio of 1:1/8 between AuCl4- and thiol. The obtained nanoparticles could be used, for example, in uniform surface nanofabrication, leading to the fabrication of ordered array of quantum dots.
NASA Astrophysics Data System (ADS)
Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim
2007-07-01
A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.
Detection limits for nanoparticles in solution with classical turbidity spectra
NASA Astrophysics Data System (ADS)
Le Blevennec, G.
2013-09-01
Detection of nanoparticles in solution is required to manage safety and environmental problems. Spectral transmission turbidity method has now been known for a long time. It is derived from the Mie Theory and can be applied to any number of spheres, randomly distributed and separated by large distance compared to wavelength. Here, we describe a method for determination of size, distribution and concentration of nanoparticles in solution using UV-Vis transmission measurements. The method combines Mie and Beer Lambert computation integrated in a best fit approximation. In a first step, a validation of the approach is completed on silver nanoparticles solution. Verification of results is realized with Transmission Electronic Microscopy measurements for size distribution and an Inductively Coupled Plasma Mass Spectrometry for concentration. In view of the good agreement obtained, a second step of work focuses on how to manage the concentration to be the most accurate on the size distribution. Those efficient conditions are determined by simple computation. As we are dealing with nanoparticles, one of the key points is to know what the size limits reachable are with that kind of approach based on classical electromagnetism. In taking into account the transmission spectrometer accuracy limit we determine for several types of materials, metals, dielectrics, semiconductors the particle size limit detectable by such a turbidity method. These surprising results are situated at the quantum physics frontier.
Computer simulation of formation and decomposition of Au13 nanoparticles
NASA Astrophysics Data System (ADS)
Stishenko, P.; Svalova, A.
2017-08-01
To study the Ostwald ripening process of Au13 nanoparticles a two-scale model is constructed: analytical approximation of average nanoparticle energy as function of nanoparticle size and structural motive, and the Monte Carlo model of 1000 particles ensemble. Simulation results show different behavior of particles of different structural motives. The change of the distributions of atom coordination numbers during the Ostwald ripening process was observed. The nanoparticles of the equal size and shape with the face-centered cubic structure of the largest sizes appeared to be the most stable.
Robustness of the far-field response of nonlocal plasmonic ensembles.
Tserkezis, Christos; Maack, Johan R; Liu, Zhaowei; Wubs, Martijn; Mortensen, N Asger
2016-06-22
Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual nanoparticles is taken into account, either through a local size-dependent damping model or through the Generalized Nonlocal Optical Response theory. The role of ensemble averaging is further explored in realistic distributions of isolated or weakly-interacting noble-metal nanoparticles, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics.
NASA Astrophysics Data System (ADS)
Plautz, G. L.; Graff, I. L.; Schreiner, W. H.; Bezerra, A. G.
2017-05-01
We investigate the physical properties of Si-based nanoparticles produced by an environment-friendly three-step method relying on: (1) laser ablation of a solid target immersed in water, (2) centrifugation and separation, and (3) laser-assisted fragmentation. The evolution of size distribution is followed after each step by means of dynamic light scattering (DLS) measurements and crosschecked by transmission electron microscopy (TEM). The as-ablated colloidal suspension of Si nanoparticles presents a large size distribution, ranging from a few to hundreds of nanometers. Centrifugation drives the very large particles to the bottom eliminating them from the remaining suspension. Subsequent irradiation of height-separated suspensions with a second high-fluence (40 mJ/pulse) Nd:YAG laser operating at the fourth harmonic (λ =266 nm) leads to size reduction and ultra-small nanoparticles are obtainable depending on the starting size. Si nanoparticles as small as 1.5 nm with low dispersion (± 0.7 nm) are observed for the uppermost part after irradiation. These nanoparticles present a strong blue photoluminescence that remains stable for at least 8 weeks. Optical absorption (UV-Vis) measurements demonstrate an optical gap widening as a consequence of size decrease. Raman spectra present features related to pure silicon and silicon oxides for the irradiated sample. Interestingly, a defect band associated with silicon oxide is also identified, indicating the possible formation of defect states, which, in turn, supports the idea that the blue photoluminescence has its origin in defects.
NASA Astrophysics Data System (ADS)
Conti, J.; De Coninck, J.; Ghazzal, M. N.
2018-04-01
The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.
Microfluidic Reactors for the Controlled Synthesis of Nanoparticles
NASA Astrophysics Data System (ADS)
Erdem, Emine Yegan
Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low temperature nanoparticle synthesis. This microreactor was fabricated by using a CO 2-laser printer, which is an inexpensive method for fabricating microfluidic devices and it is a relatively fast way compared to other fabrication techniques. Iron oxide nanoparticle synthesis was demonstrated using this reactor and size distributions with a standard deviation of 10% was obtained. The second microreactor presented in this work was designed to produce monodisperse nanoparticles by utilizing thermally isolated heated and cooled regions for separating nucleation and growth processes. This microreactor was made out of silicon and it was used to demonstrate the synthesis of TiO 2 nanoparticles. Size distributions with less than 10% standard deviation were achieved. This microreactor also provides a platform for studying the effects of temperature and residence times which is very important to understand the reaction kinetics of nanoparticle synthesis. In this work, two microfluidic techniques for retrieving nanoparticles from the microreactors were also discussed. The first method was based on trapping the aqueous droplet phase inside the microchannel and the second method was utilizing a micropost array to direct droplets from the oil solution to the pure water. As a final step, a printing technique was used to print nanoparticles synthesized inside the microreactors for future applications. This ability is important for achieving smart surfaces that can utilize the properties of nanoparticles for sensing applications in the future.
Nanoparticle size detection limits by single particle ICP-MS for 40 elements.
Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul
2014-09-02
The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were obtained using spICP-MS. The use of this methodology confirms that the observed minimum detectable sizes are consistent with the calculated Dmin values. Overall, this work identifies the elements and nanoparticles to which current spICP-MS approaches can be applied, in order to enable quantification of very small nanoparticles at low concentrations in aqueous media.
Islam, Mohammad Aminul; Barua, Sutapa; Barua, Dipak
2017-11-25
Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.
NASA Astrophysics Data System (ADS)
Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.
2018-05-01
Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.
Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.
2018-03-01
The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.
Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles
NASA Astrophysics Data System (ADS)
Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming; Lee, Byeongdu; Santos, Aaron; Podsiadlo, Paul; Tang, Zhiyong; Glotzer, Sharon C.; Kotov, Nicholas A.
2011-09-01
Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.
NASA Astrophysics Data System (ADS)
Kamaruddin, Nur Nasyita; Kassim, Syara; Harun, Noor Aniza
2017-09-01
Polymeric nanoparticles have drawn tremendous attention to researchers and have utilized in diverse fields especially in biomedical applications. Nevertheless, question has raised about the safety and hydrophilicity of the nanoparticles to be utilized in medical and biological applications. One promising solution to this problem is to develop biodegradable polymeric nanoparticles with improve hydrophilicity. This study is focusing to develop safer and "greener" polymeric nanoparticles via inverse miniemulsion polymerization techniques, a robust and convenient method to produce water-soluble polymer nanoparticles. Acrylamide (Am), acrylic acid (AA) and methacrylic acid (MAA) monomers have chosen, as they are biocompatible, non-toxic and ecological. The effect of different volumes of cyclohexane towards the formation of polymer nanoparticles, particle size, particle size distribution and morphology of polymer nanoparticles are investigated. The formation and morphology of polymer nanoparticles are determined using FTIR and SEM respectively. The mean diameters of the polymer nanoparticles were in a range of 80 - 250 nm and with broad particle size distributions as determined by dynamic light scattering (DLS). Hydrophilic polyacrylamide (pAm), poly(acrylic acid) (pAA) and poly(methacrylic acid) (pMAA) nanoparticles were successfully achieved by inverse miniemulsion polymerization and have potentiality to be further utilized in the fabrication of hybrid polymer composite nanoparticles especially in biological and medical applications.
Sanyal, Udishnu; Jagirdar, Balaji R
2012-12-03
A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.
Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan
2010-01-01
The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459
Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition
NASA Astrophysics Data System (ADS)
Hufschmid, Ryan; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.
2015-06-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular application.
Preparation of ultrafine grained copper nanoparticles via immersion deposit method
NASA Astrophysics Data System (ADS)
Abbasi-Kesbi, Fatemeh; Rashidi, Ali Mohammad; Astinchap, Bandar
2018-03-01
Today, the exploration about synthesis of nanoparticles is much of interest to materials scientists. In this work, copper nanoparticles have been successfully synthesized by immersion deposit method in the absence of any stabilizing and reducing agents. Copper (II) sulfate pentahydrate as precursor salt and distilled water and Ethylene glycol as solvents were used. The copper nanoparticles were deposited on plates of low carbon steel. The effects of copper sulfate concentrations and solvent type were investigated. X-ray diffraction, scanning electron microscopy and UV-Visible spectroscopy were taken to investigate the crystallite size, crystal structure, and morphology and size distribution and the growth process of the nanoparticles of obtained Cu particles. The results indicated that the immersion deposit method is a particularly suitable method for synthesis of semispherical copper nanoparticles with the crystallites size in the range of 22 to 37 nm. By increasing the molar concentration of copper sulfate in distilled water solvent from 0.04 to 0.2 M, the average particles size is increased from 57 to 81 nm. The better size distribution of Cu nanoparticles was achieved using a lower concentration of copper sulfate. By increasing the molar concentration of copper sulfate in water solvent from 0.04 to 0.2, the location of the SPR peak has shifted from 600 to 630 nm. The finer Cu nanoparticles were formed using ethylene glycol instead water as a solvent. Also, the agglomeration and overlapping of nanoparticles in ethylene glycol were less than that of water solvent.
NASA Astrophysics Data System (ADS)
Wu, Han; Wu, Chengping; Zhang, Nan; Zhu, Xiaonong; Ma, Xiuquan; Zhigilei, Leonid V.
2018-03-01
Laser ablation of metal targets is actively used for generation of chemically clean nanoparticles for a broad range of practical applications. The processes involved in the nanoparticle formation at all relevant spatial and temporal scales are still not fully understood, making the precise control of the size and shape of the nanoparticles challenging. In this paper, a combination of molecular dynamics simulations and experiments is applied to investigate femtosecond laser ablation of aluminum targets in vacuum and in 1 atm argon background gas. The results of the simulations reveal a strong effect of the background gas environment on the initial plume expansion and evolution of the nanoparticle size distribution. The suppression of the generation of small/medium-size Al clusters and formation of a dense layer at the front of the expanding ablation plume, observed during the first nanosecond of the plume expansion in a simulation performed in the gas environment, have important implications on the characteristics of the nanoparticles deposited on a substrate and characterized in the experiments. The nanoparticles deposited in the gas environment are found to be more round-shaped and less flattened as compared to those deposited in vacuum. The nanoparticle size distributions exhibit power-law dependences with similar values of exponents obtained from fitting experimental and simulated data. Taken together, the results of this study suggest that the gas environment may be effectively used to control size and shape of nanoparticles generated by laser ablation.
Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer
NASA Astrophysics Data System (ADS)
Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En
2009-09-01
Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.
Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats
2013-01-01
Silver nanoparticles are known to be distributed in many tissues after oral or inhalation exposure. Thus, understanding the tissue clearance of such distributed nanoparticles is very important to understand the behavior of silver nanoparticles in vivo. For risk assessment purposes, easy clearance indicates a lower overall cumulative toxicity. Accordingly, to investigate the clearance of tissue silver concentrations following oral silver nanoparticle exposure, Sprague–Dawley rats were assigned to 3 groups: control, low dose (100 mg/kg body weight), and high dose (500 mg/kg body weight), and exposed to two different sizes of silver nanoparticles (average diameter 10 and 25 nm) over 28 days. Thereafter, the rats were allowed to recover for 4 months. Regardless of the silver nanoparticle size, the silver content in most tissues gradually decreased during the 4-month recovery period, indicating tissue clearance of the accumulated silver. The exceptions were the silver concentrations in the brain and testes, which did not clear well, even after the 4-month recovery period, indicating an obstruction in transporting the accumulated silver out of these tissues. Therefore, the results showed that the size of the silver nanoparticles did not affect their tissue distribution. Furthermore, biological barriers, such as the blood–brain barrier and blood-testis barrier, seemed to play an important role in the silver clearance from these tissues. PMID:24059869
Wang, Ying-Fang; Tsai, Perng-Jy; Chen, Chun-Wan; Chen, Da-Ren; Dai, Yu-Tung
2011-12-30
The aims of the present study were set out to measure size distributions and estimate workers' exposure concentrations of oil mist nanoparticles in three selected workplaces of the forming, threading, and heat treating areas in a fastener manufacturing plant by using a modified electrical aerosol detector (MEAD). The results were further compared with those simultaneously obtained from a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS) for the validation purpose. Results show that oil mist nanoparticles in the three selected process areas were formed mainly through the evaporation and condensation processes. The measured size distributions of nanoparticles were consistently in the form of uni-modal. The estimated fraction of nanoparticles deposited on the alveolar (AV) region was consistently much higher than that on the head airway (HD) and tracheobronchial (TB) regions in both number and surface area concentration bases. However, a significant difference was found in the estimated fraction of nanoparticles deposited on each individual region while different exposure metrics were used. Comparable results were found between results obtained from both NSAM and MEAD. After normalization, no significant difference can be found between the results obtained from SMPS and MEAD. It is concluded that the obtained MEAD results are suitable for assessing oil mist nanoparticle exposures. Copyright © 2011 Elsevier B.V. All rights reserved.
Kinetics of formation of nanoparticles from first group metal carboxylates
NASA Astrophysics Data System (ADS)
Solov'ev, M. E.; Irzhak, T. F.; Irzhak, V. I.
2015-09-01
A kinetic model of the formation of metal nanoparticles via reduction of their carboxylates under conditions of clustering is proposed. It is found that the kinetics of the process is characterized by an induction period in carboxylate consumption and by almost linear growth of the average size of nanoparticles with conversion. It is shown that the maximum rate of nanoparticle formation grows along with the rate of ternary associate formation, the induction period becomes longer, and the particle size decreases. At the same time, it is characterized by a narrow size distribution.
Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone
NASA Astrophysics Data System (ADS)
Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter
2016-09-01
Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ˜100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ˜100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.
Size-focusing synthesis of gold nanoclusters with p-mercaptobenzoic acid.
Tvedte, Laura M; Ackerson, Christopher J
2014-09-18
Etching or size-focusing methods are now widespread for preparation of atomically monodisperse thiolate-protected gold nanoparticles. Size-focusing methods are not widespread, however, in the production of water-soluble gold nanoparticles. Reported here is a new method for size-focusing of large gold nanoparticles utilizing p-mercaptobenzoic acid. We observe preferential formation of three large gold nanoparticles with approximate masses of 23, 51, and 88 kDa. On the basis of the stability of these masses against further etching or growth, they appear to be especially stable sizes. These sizes are not prominent after etching challenges with organosoluble ligands, and the 51 and 88 kDa sizes appear to be novel stable thiolate-protected gold cluster sizes. The overall trend in particle size distribution over time is also unusual, with larger sizes dominating at longer time points.
Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi
2013-01-01
We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.
To determine the behavior of nanoparticles in environmental systems, methods must be developed to measure nanoparticle size. Asymmetric Flow Field Flow Fractionation (AF4) is an aqueous compatible size separation technique which is able to separate particles from 1 nm to 10 µm in...
A novel method for fabrication of size-controlled metallic nanoparticles by laser ablation
NASA Astrophysics Data System (ADS)
Choudhury, Kaushik; Singh, R. K.; Ranjan, Mukesh; Kumar, Ajai; Srivastava, Atul
2017-12-01
Time resolved experimental investigation of laser produced plasma-induced shockwaves has been carried out in the presence of confining walls placed along the lateral directions using a Mach Zehnder interferometer in air ambient. Copper was used as target material. The primary and the reflected shock waves and their effects on the evolution of medium density and the plasma density have been studied. The reflected shock wave has been seen to be affecting the shape and density of the plasma plume in the confined geometry. The same experiments were performed with water and isopropyl alcohol as the ambient liquids and the produced nanoparticles were characterised for size and size distribution. Significant differences in the size and size distribution are seen in case of the nanoparticles produced from the ablation of the targets with and without confining boundary. The observed trend has been attributed to the presence of confining boundary and the way it affects the thermalisation time of the plasma plume. The experiments also show the effect of medium density on the mean size of the copper nanoparticles produced.
Jafari, T; Simchi, A; Khakpash, N
2010-05-01
Core-shell iron-gold (Fe@Au) nanoparticles were synthesized by a facile reverse micelle procedure and the effect of water to surfactant molar ratio (w) on the size, size distribution and magnetic properties of the nanoparticles was studied. MTT assay was utilized to evaluate the cell toxicity of the nanoparticles. To functionalize the particles for MRI imaging and targeted drug delivery, the particles were coated by polyglycerol through capping with thiol followed by polymerization of glycidol. The characteristics of the particles were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). It was found that the size and size distribution of the nanoparticles increase by increasing the water to surfactant molar ratio (w). The particles were spherical in shape with a thin layer of gold. Complementary growth of the gold shell on the iron core was noticed. Meanwhile, two types of agglomeration including magnetic beads and magnetic colloidal nanocrystals clusters were observed dependent on the w-value. The magnetic measurement studies revealed the superparamagnetic behavior of the nanoparticles. MTT assay result indicated the synthesized nanoparticles are nontoxic that will be useful for biomedical applications. Copyright 2010 Elsevier Inc. All rights reserved.
Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis.
Mikheev, Vladimir B; Brinkman, Marielle C; Granville, Courtney A; Gordon, Sydney M; Clark, Pamela I
2016-09-01
Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11-25nm count median diameter) and submicron particles (96-175nm count median diameter). Each mode has comparable number concentrations (10(7)-10(8) particles/cm(3)). "Dry puff" tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations of nanoparticles and submicron particles. While vaping the e-cigarette, along with submicron particles the user is also inhaling nano-aerosol that consists of nanoparticles with attached chemicals that has not been fully investigated. The presence of high concentrations of nanoparticles requires nanotoxicological consideration in order to assess the potential health impact of e-cigarettes. The toxicological impact of inhaled nanoparticles could be significant, though not necessarily similar to the biomarkers typical of combustible tobacco smoke. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis
Brinkman, Marielle C.; Granville, Courtney A.; Gordon, Sydney M.; Clark, Pamela I.
2016-01-01
Introduction: Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. Methods: We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. Results: E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11–25nm count median diameter) and submicron particles (96–175nm count median diameter). Each mode has comparable number concentrations (107–108 particles/cm3). “Dry puff” tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. Conclusions: E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. Implications: The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations of nanoparticles and submicron particles. While vaping the e-cigarette, along with submicron particles the user is also inhaling nano-aerosol that consists of nanoparticles with attached chemicals that has not been fully investigated. The presence of high concentrations of nanoparticles requires nanotoxicological consideration in order to assess the potential health impact of e-cigarettes. The toxicological impact of inhaled nanoparticles could be significant, though not necessarily similar to the biomarkers typical of combustible tobacco smoke. PMID:27146638
Beck-Broichsitter, Moritz; Kleimann, Pia; Gessler, Tobias; Seeger, Werner; Kissel, Thomas; Schmehl, Thomas
2012-01-17
Polymeric nanoparticles meet the increasing interest for drug delivery applications and hold great promise to improve controlled drug delivery to the lung. Here, we present a series of investigations that were carried out to understand the impact of formulation variables on the nebulization performance of novel biodegradable sildenafil-loaded nanoparticles designed for targeted aerosol therapy of life-threatening pulmonary arterial hypertension. Narrowly distributed poly(D,L-lactide-co-glycolide) nanoparticles (size: ∼200 nm) were prepared by a solvent evaporation technique using poly(vinyl alcohol) (PVA) as stabilizer. The aerodynamic and output characteristics using the Aeroneb Pro nebulizer correlated well with the dynamic viscosity of the employed fluids for nebulization. The nebulization performance was mainly affected by the amount of employed stabilizer, rather than by the applied nanoparticle concentration. Nanoparticles revealed physical stability against forces generated during aerosolization, what is attributed to the adsorbed PVA layer around the nanoparticles. Sildenafil was successfully encapsulated into nanoparticles (encapsulation efficiency: ∼80%). Size, size distribution and sildenafil content of nanoparticles were not affected by nebulization and the in vitro drug release profile demonstrated a sustained sildenafil release over ∼120 min. The current study suggests that the prepared sildenafil-loaded nanoparticles are a promising pharmaceutical for the therapy of pulmonary arterial hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.
Facile method for the synthesis of gold nanoparticles using an ion coater
NASA Astrophysics Data System (ADS)
Lee, Seung Han; Jung, Hyun Kyu; Kim, Tae Cheol; Kim, Chang Hee; Shin, Chang Hwan; Yoon, Tae-Sik; Hong, A.-Ra; Jang, Ho Seong; Kim, Dong Hun
2018-03-01
Herein we report a metal nanoparticle synthesis method based on a physical vapor deposition process instead of the conventional wet process of chemical reactions in liquids. A narrow size distribution of synthesized gold nanoparticles was obtained using an ion coater on glycerin at low vapor pressure. The nanoparticle size could be modulated by controlling the sputtering conditions especially the discharge current. Due to the formation of gold nanoparticles, a surface plasmon resonance peak appeared at ∼530 nm in the absorption spectrum. The surface plasmon resonance peak exhibited red-shift with increasing size of the gold nanoparticles. Our results provide a simple, environmental friendly method for the synthesis of metal nanoparticles by combine low-cost deposition apparatus and a liquid medium, which is free from toxic reagents.
NASA Astrophysics Data System (ADS)
Jolhe, P. D.; Bhanvase, B. A.; Patil, V. S.; Sonawane, S. H.
The present work deals with the investigation of the greener route for the production of silver nanoparticles using Raphanus sativus (R. sativus) bioextract in a continuous flow tubular microreactor. The parameters affecting the particle size and distribution were investigated. From the results obtained it can be inferred that the ascorbic acid (reducing agent) present in the R. sativus bioextract is responsible for the reduction of silver ions. At optimum condition, the particle size distribution of nanoparticles is found between 18nm and 39nm. The absorbance value was found to be decreased with an increase in the diameter of the microreactor. It indicates that a number of nuclei are formed in the micrometer sized (diameter) reactor because of the better solute transfer rate leading to the formation of large number of silver nanoparticles. The study of antibacterial activity of green synthesized silver nanoparticles shows effective inhibitory activity against waterborne pathogens, Shegella and Listeria bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodaei, Azin, E-mail: Azin.Khodaei@gmail.com; Hasannasab, Malihe; Amousoltani, Narges
2016-02-15
Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of themore » condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.« less
Hu, Sixiao; Hsieh, You-Lo
2015-10-20
Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.
Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities
NASA Astrophysics Data System (ADS)
Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V.; Upadhyay, R. V.
2010-06-01
In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive ( Bacillus megaterium and Staphylococcus aureus), and three Gram negative ( Escherichia coli, Proteus vulgaris and Shigella sonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.
Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.
Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold
2016-01-01
Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.
Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems
NASA Astrophysics Data System (ADS)
Jarzębski, Maciej; Kościński, Mikołaj; Białopiotrowicz, Tomasz
2017-08-01
The size of nanoparticles is one of the most important factors for their possible applications. Various techniques for the nanoparticle size characterization are available. In this paper selected techniques will be considered base on the prepared core-shell magnetite nanoparticles. Magnetite is one of the most investigated and developed magnetic material. It shows interesting magnetic properties which can be used for biomedical applications, such as drug delivery, hypothermia and also as a contrast agent. To reduce the toxic effects of Fe3O4, magnetic core was covered by dextran and gelatin. Moreover, the shell was doped by fluorescent dye for confocal microscopy investigation. The main investigation focused on the methods for particles size determination of modified magnetite nanoparticles prepared with different techniques. The size distribution were obtained by nanoparticle tracking analysis, dynamic light scattering and transmission electron microscopy. Furthermore, fluorescent correlation spectroscopy (FCS) and confocal microscopy were used to compare the results for particle size determination of core-shell systems.
Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation.
Santos, Jose Luis; Ren, Yong; Vandermark, John; Archang, Maani M; Williford, John-Michael; Liu, Heng-Wen; Lee, Jason; Wang, Tza-Huei; Mao, Hai-Quan
2016-12-01
Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress toward clinical translation of these nanoparticle-based gene medicine. Here the authors report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation
Santos, Jose Luis; Ren, Yong; Vandermark, John; Archang, Maani M.; Williford, John-Michael; Liu, Heng-wen; Lee, Jason; Wang, Tza-Huei; Mao, Hai-Quan
2016-01-01
Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress towards clinical translation of these nanoparticle-based gene medicine. Here we report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles. PMID:27717227
Li, Xue; Salzano, Giuseppina; Zhang, Jiwen; Gref, Ruxandra
2017-01-01
Supramolecular cyclodextrin-based nanoparticles (CD-NPs) mediated by host-guest interactions have gained increased popularity because of their "green" and simple preparation procedure, as well as their versatility in terms of inclusion of active molecules. Herein, we showed that original CD-NPs of around 100 nm are spontaneously formed in water, by mixing 2 aqueous solutions of (1) a CD polymer and (2) dextran grafted with benzophenone moieties. For the first time, CD-NPs were instantaneously produced in a microfluidic interaction chamber by mixing 2 aqueous solutions of neutral polymers, in the absence of organic solvents. Whatever the mixing conditions, CD-NPs with narrow size distributions were immediately formed upon contact of the 2 polymeric solutions. In situ size measurements showed that the CD-NPs were spontaneously formed. Nanoparticle tracking analysis was used to individually follow the CD-NPs in their Brownian motions, to gain insights on their size distribution, concentration, and stability on extreme dilution. Nanoparticle tracking analysis allowed to establish that despite their non-covalent nature, and the CD-NPs were remarkably stable in terms of concentration and size distribution, even on extreme dilution (concentrations as low as 100 ng/mL). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan
2018-03-01
For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied experimentally.
Task-based exposure assessment of nanoparticles in the workplace
NASA Astrophysics Data System (ADS)
Ham, Seunghon; Yoon, Chungsik; Lee, Euiseung; Lee, Kiyoung; Park, Donguk; Chung, Eunkyo; Kim, Pilje; Lee, Byoungcheun
2012-09-01
Although task-based sampling is, theoretically, a plausible approach to the assessment of nanoparticle exposure, few studies using this type of sampling have been published. This study characterized and compared task-based nanoparticle exposure profiles for engineered nanoparticle manufacturing workplaces (ENMW) and workplaces that generated welding fumes containing incidental nanoparticles. Two ENMW and two welding workplaces were selected for exposure assessments. Real-time devices were utilized to characterize the concentration profiles and size distributions of airborne nanoparticles. Filter-based sampling was performed to measure time-weighted average (TWA) concentrations, and off-line analysis was performed using an electron microscope. Workplace tasks were recorded by researchers to determine the concentration profiles associated with particular tasks/events. This study demonstrated that exposure profiles differ greatly in terms of concentrations and size distributions according to the task performed. The size distributions recorded during tasks were different from both those recorded during periods with no activity and from the background. The airborne concentration profiles of the nanoparticles varied according to not only the type of workplace but also the concentration metrics. The concentrations measured by surface area and the number concentrations measured by condensation particle counter, particulate matter 1.0, and TWA mass concentrations all showed a similar pattern, whereas the number concentrations measured by scanning mobility particle sizer indicated that the welding fume concentrations at one of the welding workplaces were unexpectedly higher than were those at workplaces that were engineering nanoparticles. This study suggests that a task-based exposure assessment can provide useful information regarding the exposure profiles of nanoparticles and can therefore be used as an exposure assessment tool.
Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A
2015-01-01
This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition. PMID:26361398
NASA Astrophysics Data System (ADS)
McLeod, Euan
2016-03-01
The sizing of individual nanoparticles and the recovery of the distributions of sizes from populations of nanoparticles provide valuable information in virology, exosome analysis, air and water quality monitoring, and nanomaterials synthesis. Conventional approaches for nanoparticle sizing include those based on costly or low-throughput laboratory-scale equipment such as transmission electron microscopy or nanoparticle tracking analysis, as well as those approaches that only provide population-averaged quantities, such as dynamic light scattering. Some of these limitations can be overcome using a new family of alternative approaches based on quantitative phase imaging that combines lensfree holographic on-chip microscopy with self-assembled liquid nanolenses. In these approaches, the particles of interest are deposited onto a glass coverslip and the sample is coated with either pure liquid polyethylene glycol (PEG) or aqueous solutions of PEG. Due to surface tension, the PEG self-assembles into nano-scale lenses around the particles of interest. These nanolenses enhance the scattering signatures of the embedded particles such that individual nanoparticles as small as 40 nm are clearly visible in phase images reconstructed from captured holograms. The magnitude of the phase quantitatively corresponds to particle size with an accuracy of +/-11 nm. This family of approaches can individually size more than 10^5 particles in parallel, can handle a large dynamic range of particle sizes (40 nm - 100s of microns), and can accurately size multi-modal distributions of particles. Furthermore, the entire approach has been implemented in a compact and cost-effective device suitable for use in the field or in low-resource settings.
Investigation of the interaction of ferromagnetic fluids with proteins by dynamic light scattering
NASA Astrophysics Data System (ADS)
Velichko, Elena; Nepomnyashchaya, Elina; Dudina, Alina; Pleshakov, Ivan; Aksenov, Evgenii
2018-04-01
In this article the interaction between ionically stabilized magnetic nanoparticles and blood serum albumin proteins in liquid medium are discussed. Some distributions of nanoparticles' agglomerate sizes in solutions of albumin molecules, magnetic nanoparticles and their mixtures both under the influence of magnetic field and free from it are presented. It is shown that magnetic nanoparticles interact with albumin molecules, forming agglomerates. It is also shown that at the influence of magnetic field sizes of agglomerates increase proportionally to the magnetic field density.
In situ SAXS study on size changes of platinum nanoparticles with temperature
NASA Astrophysics Data System (ADS)
Wang, W.; Chen, X.; Cai, Q.; Mo, G.; Jiang, L. S.; Zhang, K.; Chen, Z. J.; Wu, Z. H.; Pan, W.
2008-09-01
Poly(vinylpyrrolidone) (PVP)-coated platinum (Pt) nanoparticles were prepared in methanol-water reduction method. In situ small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) techniques were used to probe the size change of particles and crystallites with temperature. Tangent-by-tangent (TBT) method of SAXS data analysis was improved and used to get the particle size distribution (PSD) from SAXS intensity. Scherrer’s equation was used to derive the crystallite size from XRD pattern. Combining SAXS and XRD results, a step-like characteristic of the Pt nanoparticle growth has been found. Three stages (diffusion, aggregation, and agglomeration) can be used to describe the growth of the Pt nanoparticles and nanocrystallites. Aggregation was found to be the main growth mode of the Pt nanoparticles during heating. The maximum growth rates of Pt nanoparticles and Pt nanocrystallites, as well as the maximum aggregation degree of Pt nanocrystallites were found, respectively, at 250 °C, 350 °C and 300 °C. These results are helpful to understanding the growth mode of nanoparticles, as well as controlling the nanoparticle size.
Cation distribution of Ni-Zn-Mn ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Parvatheeswara Rao, B.; Dhanalakshmi, B.; Ramesh, S.; Subba Rao, P. S. V.
2018-06-01
Mn substituted Ni-Zn ferrite nanoparticles, Ni0.4Zn0.6-xMnxFe2O4 (x = 0.00-0.25 in steps of 0.05), using metal nitrates were prepared by sol-gel autocombustion in citric acid matrix. The samples were examined by X-ray diffraction and vibrating sample magnetometer techniques. Rietveld structural refinements using the XRD data were performed on the samples to consolidate various structural parameters like phase (spinel), crystallite size (24.86-37.43 nm), lattice constant (8.3764-8.4089 Å) etc and also to determine cation distributions based on profile matching and integrated intensity ratios. Saturation magnetization values (37.18-68.40 emu/g) were extracted from the measured M-H loops of these nanoparticles to estimate their magnetic moments. Experimental and calculated magnetic moments and lattice constants were used to confirm the derived cation distributions from Rietveld analysis. The results of these ferrite nanoparticles are discussed in terms of the compositional modifications, particle sizes and the corresponding cation distributions as a result of Mn substitutions.
Wang, Xiong; Zhu, Juanjuan; Liu, Yingjie
2009-11-01
As a promising candidate cathode material, spinel lithium manganese oxide nanoparticles were successfully synthesized through a novel molten salt synthesis route at relatively low temperature, using manganese dioxide nanowires as precursor. A variety of techniques were applied to characterize the spinel nanomaterial, including X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The average particle size of the resulting spinel nanoparticles was about 80 nm with narrow distribution. As cathode material for rechargeable lithium ion battery, the electrochemical properties were investigated. All the results show that the electrochemical performances of the homogeneous spinel nanoparticles were improved, which might be ascribed to large specific surface area, fairly narrow size distribution, and the unique synthesis strategy.
The reported size distribution of silver nanoparticles (AgNPs) is strongly affected by the underlying measurement method, agglomeration state, and dispersion conditions. A selection of AgNP materials with vendor-reported diameters ranging from 1 nm to 100 nm, various size distrib...
NASA Astrophysics Data System (ADS)
Shalin, A. S.
2010-12-01
The boundary problem of light reflection and transmission by a film with chaotically distributed nanoinclusions is considered. Based on the proposed microscopic approach, analytic expressions are derived for distributions inside and outside the nanocomposite medium. Good agreement of the results with exact calculations and (at low concentrations of nanoparticles) with the integral Maxwell-Garnett effective-medium theory is demonstrated. It is shown that at high nanoparticle concentrations, averaging the dielectric constant in volume as is done within the framework of the effective-medium theory yields overestimated values of the optical film density compared to the values yielded by the proposed microscopic approach. We also studied the dependence of the reflectivity of a system of gold nanoparticles on their size, the size dependence of the plasmon resonance position along the wavelength scale, and demonstrated a good agreement with experimental data.
Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.; ...
2016-05-23
The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less
Qin, G W; Pei, W L; Ren, Y P; Shimada, Y; Endo, Y; Yamaguchi, M; Okamoto, S; Kitakami, O
2011-12-01
Ni80Fe20 permalloy nanoparticles with narrow size distribution and homogeneous composition have been prepared by the polyol processing at 180 degrees C for 2 h and their particle sizes can be tunable in the size range of 20-440 nm by proper addition of K2PtCI4 agent. X-ray diffraction results show that the NiFe nanoparticles are of face centered cubic structure. The addition of K2PtCl4 does not affect the composition of NiFe NPs but decreases the particle size remarkably. Both saturation magnetization and coercivity of the as-prepared NiFe nanoparticles decrease with decreasing particle size. Annealed at 280 degrees C, however, the saturation magnetization of various sized NiFe nanoparticles increases drastically and approaches to the bulk for the -440 nm NiFe particles, and a maximum coercivity (-270 Oe) happens at a critical size of -50 nm. The magnetic property dependency of these NiFe nanoparticles on annealing has been discussed by considering the surface chemistry.
Production of nanoparticle drug delivery systems with microfluidics tools.
Khan, Ikram Ullah; Serra, Christophe A; Anton, Nicolas; Vandamme, Thierry F
2015-04-01
Nowadays the development of composite nano- and microparticles is an extensively studied area of research. This interest is growing because of the potential use of such particles in drug delivery systems. Indeed they can be used in various medical disciplines depending upon their sizes and their size distribution, which determine their final biomedical applications. Amongst the different techniques to produce nanoparticles, microfluidic techniques allow preparing particles having a specific size, a narrow size distribution and high encapsulation efficiency with ease. This review covers the general description of microfluidics, its techniques, advantages and disadvantages with focus on the encapsulation of active principles in polymeric nanoparticles as well as on pure drug nanoparticles. Polymeric nanoparticles constitute the majority of the examples reported; however lipid nanoparticulate systems (DNA, SiRNA nanocarriers) are very comparable and their formulation processes are in most cases exactly similar. Accordingly this review focuses also on active ingredient nanoparticles formulated by nanoprecipitation processes in microfluidic devices in general. It also provides detailed description of the different geometries of most common microfluidic devices and the crucial parameters involved in techniques designed to obtain the desired properties. Although the classical fabrication of nanoparticles drug delivery systems in batch is extremely well-described and developed, their production with microfluidic tools arises today as an emerging field with much more potential. In this review we present and discuss these new possibilities for biomedical applications through the current emerging developments.
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation.
Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M; Bakr, Osman M
2013-06-07
Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach.
Nakaya, Masafumi; Tanaka, Itaru; Muramatsu, Atsushi
2012-12-01
In this study, the random dope of Mn into CdS nanoparticles in zincblende phase has been carried out under the mild reaction condition. The resulting nanoparticles were characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffractometer (XRD), UV-Vis spectrometer, PL spectrometer, and SQUID. EDX showed that the compositions of Mn doped CdS nanoparticles were readily controlled. TEM showed the particle sizes were not significantly affected by the compositions, retaining to be ca. 3 nm with a narrow size distribution. UV-Vis and PL spectra of the resulting nanoparticles showed the intra-Mn level may be affected by the quantum size effect. SQUID measurement showed that the resulting nanoparticles showed diamagnetism, paramagnetism and superparamagnetism dependent on Mn content.
NASA Astrophysics Data System (ADS)
Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther
2011-06-01
Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5-24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.
Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications
Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef
2013-01-01
Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575
Size determination of gold nanoparticles in silicate glasses by UV-Vis spectroscopy
NASA Astrophysics Data System (ADS)
Ali, Shahid; Khan, Younas; Iqbal, Yaseen; Hayat, Khizar; Ali, Muhammad
2017-01-01
A relatively easier and more accurate method for the determination of average size of metal nanoparticles/aggregates in silicate glasses based on ultraviolet visible (UV-Vis) spectra fitted with the Mie and Mie-Gans models was reported. Gold ions were diffused into sodalime silicate and borosilicate glasses by field-assisted solid-state ion-exchange technique using the same experimental parameters for both glasses. Transmission electron microscopy was performed to directly investigate the morphology and distribution of the dopant nanoparticles. UV-Vis spectra of the doped glasses showed broad surface plasmon resonance peaks in their fingerprint regions, i.e., at 525 and 500 nm for sodalime silicate and borosilicate glass matrices, respectively. These spectra were fitted with the Mie model for spherical nanoparticles and the Mie-Gans model for spheroidal nanoparticles. Although both the models were developed for colloidal nanoparticles, the size of the nanoparticles/aggregates calculated was accurate to within ˜10% in both the glass matrices in comparison to the size measured directly from the transmission electron microscope images.
Imaging the Transport of Silver Nanoparticles Through Soil With Synchrotron X-ray Microtomography
NASA Astrophysics Data System (ADS)
Molnar, I. L.; Gerhard, J.; O'Carroll, D. M.; Willson, C. S.
2012-12-01
Synchrotron x-ray computed microtomography (SXCMT) offers the ability to examine the spatial distribution of contaminants within the pore space of a porous medium; examples include the distribution of nonaqueous phase liquids (NAPLs) and micro-sized colloids. Recently presented was a method, based upon the application of the Beer-Lambert law and K-edge imaging, for using SXCMT to accurately determine the distribution of silver nanoparticles in a porous medium (Molnar et al., AGU Fall Meeting, H53B-1418, 2011). By capturing a series of SXCMT images of a single sample evolving over time, this technique can study the changing distribution of nanoparticles throughout the pore-network and even within individual pores. While previous work on this method focused on accuracy, precision and its potential applications, this study will provide an in-depth analysis of the results of multiple silver nanoparticle transport experiments imaged using this new technique. SXCMT images were collected at various stages of silver nanoparticle injection into columns packed with well graded and poorly graded quartz sand, iron oxide sand and glass bead porous media. The collected images were used to explore the influences of grain type, size and shape on the transport of silver nanoparticles through soil. The results of this analysis illustrate how SXCMT can collect hitherto unobtainable data which can yield valuable insights into the factors affecting nanoparticle transport through soil.
Preparation of SiO2@Ag Composite Nanoparticles and Their Antimicrobial Activity.
Qin, Rui; Li, Guian; Pan, Liping; Han, Qingyan; Sun, Yan; He, Qiao
2017-04-01
At normal atmospheric temperature, the modified sol–gel method was employed to synthesize SiO2 nanospheres (SiO2 NSs) whose average size was about 352 nm. Silver nanoparticles (Ag NPs) were uniformly distributed on the surface of SiO2 nanospheres (SiO2 NSs) by applying chemical reduction method at 95 °C and the size of silver nanoparticles (Ag NPs) could be controlled by simply tuning the reaction time and the concentration of sodium citrate. Besides, the size, morphology, structure and optical absorption properties of SiO2@Ag composite nanoparticles were measured and characterized by laser particle size analyzer (LPSA), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and ultraviolet visible absorption spectrometer (UV-Vis), respectively. Furthermore, antimicrobial effect experiments that against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) were carried out to characterize the antibacterial activity of synthesized SiO2@Ag composite nanoparticles. The results show that the prepared SiO2@Ag composite nanoparticles have strong antimicrobial activity, which is associated with the size of silver nanoparticles.
Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin
2018-06-22
A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag + ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm 2 ) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s -1 heat-up rate at a low input power density.
NASA Astrophysics Data System (ADS)
Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin
2018-06-01
A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.
NASA Astrophysics Data System (ADS)
Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür
2017-02-01
Copper is a low cost metal and its nanoparticles have a unique optical properties such as LSPR. The location of LSPR wavelength can be tuned by controlling nanoparticles sizes and size distributions of nanoparticles, shapes and interparticle distances. This morphological changes are provided by controlling system parameters in PLD. For this work, 48000 and 36000 laser pulses from Nd:YAG laser were applied to produce Cu nanoparticle thin films. These thin films were characterised by performing UV-VIS absorption spectroscopy, Atomic Force Microscopy (AFM) analysis. When the number of laser pulse decreases, the size of Cu nanoparticles and the number of nanoparticles arriving on the substrate are reduced, and LSPR peak of thin films are red shifted depending on the geometrical shapes of the Cu nanoparticles. We have driven a conclusion in this work that LSPR properties of Cu nanoparticles can be tuned by proposed method.
Ion beam synthesis of Au nanoparticles embedded nano-composite glass
NASA Astrophysics Data System (ADS)
Varma, Ranjana S.; Kothari, D. C.; Kumar, Ravi; Kumar, P.; Santra, S. S.; Thomas, R. G.
2013-02-01
Ion beam mixing using low energy (LE) ion beams (100 keV Ar+) has been used to form Au nanoparticles in the near-surface region of fused silica glasses. Effect of swift heavy ion (SHI) irradiation (with 120 MeV Ag9+), on the nanoparticles has been studied. Diffusion length of Au after the beam mixing and the irradiation has been found to be 14nm. SHI irradiation causes the increase in the size of the nanoparticles, reduction in size-distribution and increase in number density.
Formulating nanoparticles by flash nanoprecipitation for drug delivery and sustained release
NASA Astrophysics Data System (ADS)
Liu, Ying
This dissertation provides a fundamental understanding of the process for generating nanoparticles with controlled size distribution and of predicting nanoparticle stability for drug delivery and sustained release. We developed and characterized a novel technology to generate organic and inorganic nanoparticles protected by biocompatible and biodegradable polymers with precisely controlled size and size distribution. Computational fluid mechanics (CFD) together with experimental results provided details of the micromixing in the mixer. The particle size dependence on Reynolds number and supersaturation was illustrated. The study of the fundamental mass transfer phenomena leading to Ostwald ripening enables quantitative prediction of the time evolution of nanoparticles with monodistribution and relatively broader multi-distribution using beta-carotene and polystyrene-b-poly(ethylene oxide) (PS-b-PEO) as a model system. Negatively charged latex particles were used to exam the attachment of the diblock copolymer, PS-b-PEO, on the surface. The stability provided by the Columbic repulsion was replaced by steric stabilization. The attachment of the block copolymers on the surface of the colloids depends on the flow field, i.e. Reynolds number, of the mixing process. The slow degradation of poly(epsilon-caprolactone) (PCL) and poly(gamma-methyl-epsilon-caprolactone) (PMCL) was demonstrated. The slow degradation ensures long-term stability and long-term blood circulation of the polymeric nanoparticles. As a practical application, we formulate the anti-tuberculosis drug, rifampicin, into nanoparticles by conjugation to other hydrophobic molecules (such as vitamin E, PCL and 2-ethylhexyl vinyl ether) by pH sensitive cleavable chemical bonds to increase the drug loading, return stability of the nanoparticle suspension, and control drug release. The in vitro release profiles were provided by using HPLC and E.coli growth inhibition on LB agar plates. The prodrug nanoparticle suspensions were spray dried to form low density porous micro-particles for the purpose of aerosol drug delivery. The simultaneous encapsulation of imaging agents and therapeutic agents provides a method for studying the fate of nanoparticles and for medical imaging with treatment. As another example, bifenthrin nanoparticle suspensions with various stabilizers were formulated. The pesticide, bifenthrin, was used to test whether nanoparticles provided an advantage in increasing the effectiveness of pesticide formulations. Larvae mortality with the application of nanoparticle suspension was about 2.5 times of the mortality with the application of bifenthrin mineral oil solution. Nanoparticles at very low bifenthrin concentration showed sustained release for fourteen days.
Fan, Hailong; Jin, Zhaoxia
2014-04-28
Herein we report how to control the nanostructures and sizes of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) nanoparticles via manipulating freezing in solvent-exchange. By characterizing and analyzing the distinct structural features of the obtained nanoparticles, we recognized that micelle self-assembly happens in the precipitation of PS-b-P2VP when water is added into the block copolymer (BCP) solution. Solvent properties significantly influence micelle types that are vesicles in acetone/H2O and spherical micelles in tetrahydrofuran/H2O, respectively, thus further inducing different frozen nanostructures of the obtained nanoparticles, onion-like in acetone/H2O and large compound micelles in tetrahydrofuran/H2O. By changing the concentration of the block copolymers and the Vsolvent/VH2O ratio to modify the freezing stage at which block copolymer micelles are frozen, we can further control the size of the nanoparticles. Moreover, small molecules (phosphotungstic acid, pyrene, 1-pyrenebutyric acid) can be trapped into the block copolymer nanoparticles via the freezing process. Their distribution in the nanoparticles relies not only on the solvent property, but also on their interactions with block copolymers. The hybrid nanoparticles with ordered distribution of small molecules can be further changed to partially-void nanoparticles. Our study demonstrated that manipulating the freezing of block copolymers in the solvent exchange process is a simple and controllable fabrication method to generate BCP nanoparticles with different architectures.
Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.
Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H
2013-01-11
Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP. Copyright © 2012 Elsevier B.V. All rights reserved.
Miyoshi, N.; Kundu, S. K.; Tuziuti, T.; Yasui, K.; Shimada, I.; Ito, Y.
2016-01-01
Nanoparticles have been used for many functional materials in nano-sciences and photo-catalyzing surface chemistry. The titanium oxide nanoparticles will be useful for the treatment of tumor by laser and/or ultrasound as the sensitizers in nano-medicine. We have studied the combination therapy of photo- and sono-dynamic therapies in an animal tumor model. Oral-administration of two sensitizers titanium oxide, 0.2%-TiO2 nanoparticles for sono-dynamic and 1 mM 5-aminolevulinic acid for photodynamic therapies have resulted in the best combination therapeutic effects for the cancer treatment. Our light microscopic and Raman spectroscopic studies revealed that the titanium nanoparticles were distributed inside the blood vessel of the cancer tissue (1–3 μm sizes). Among these nanoparticles with a broad size distribution, only particular-sized particles could penetrate through the blood vessel of the cancer tissue, while other particles may only exhibit the side effects in the model mouse. Therefore, it may be necessary to separate the optimum size particles. For this purpose we have separated TiO2 nanoparticles by countercurrent chromatography with a flat coiled column (1.6 mm ID) immersed in an ultrasonic bath (42 KHz). Separation was performed with a two-phase solvent system composed of 1-butanol-acetic acid-water at a volume ratio of 4:1:5 at a flow rate of 0.1 ml/min. Countercurrent chromatographic separation yielded fractions containing particle aggregates at 31 and 4400 nm in diameter. PMID:27088115
Gopika, G; Asha, A M; Sivakumar, N; Balakrishnan, A; Nair, S V; Subramanian, K R V
2015-09-01
In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.
A high-throughput label-free nanoparticle analyser.
Fraikin, Jean-Luc; Teesalu, Tambet; McKenney, Christopher M; Ruoslahti, Erkki; Cleland, Andrew N
2011-05-01
Synthetic nanoparticles and genetically modified viruses are used in a range of applications, but high-throughput analytical tools for the physical characterization of these objects are needed. Here we present a microfluidic analyser that detects individual nanoparticles and characterizes complex, unlabelled nanoparticle suspensions. We demonstrate the detection, concentration analysis and sizing of individual synthetic nanoparticles in a multicomponent mixture with sufficient throughput to analyse 500,000 particles per second. We also report the rapid size and titre analysis of unlabelled bacteriophage T7 in both salt solution and mouse blood plasma, using just ~1 × 10⁻⁶ l of analyte. Unexpectedly, in the native blood plasma we discover a large background of naturally occurring nanoparticles with a power-law size distribution. The high-throughput detection capability, scalable fabrication and simple electronics of this instrument make it well suited for diverse applications.
The effect of particle size on the toxic action of silver nanoparticles
NASA Astrophysics Data System (ADS)
Sosenkova, L. S.; Egorova, E. M.
2011-04-01
Silver nanoparticles in AOT reverse micelles were obtained by means of the biochemical synthesis. Synthesis of nanoparticles was carried out with variation of the three parameters of reverse-micellar systems: concentration of silver ions, concentration of the stabilizer (AOT) and hydration extent w = [H2O]/[AOT]. The combinations of varied parameters have been found, allowing to prepare micellar solutions of spherical silver nanoparticles with average sizes 4.6 and 9.5 nm and narrow size distribution. From micellar solution the nanoparticles were transferred into the water phase; water solutions of the nanoparticles were used for testing their biological activity. Our assay is based on negative chemotaxis, a motile reaction of cells to an unfavorable chemical environment. Plasmodium of the slime mold Physarum polycephalum used as an object is a multinuclear amoeboid cell with unlimited growth and the auto-oscillatory mode of locomotion. In researches of chemotaxis on plasmodium it is learned that silver nanoparticles of smaller size exhibit a higher biological activity (behave as stronger repellent) and this correlates with the literary data obtained in studies of silver nanoparticles interaction with other biological objects.
The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity.
Yan, Fei; Zhang, Chao; Zheng, Yi; Mei, Lin; Tang, Lina; Song, Cunxian; Sun, Hongfan; Huang, Laiqiang
2010-02-01
The aim of this work was to investigate the effect of triblock copolymer poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Docetaxel-loaded nanoparticles were prepared by oil-in-water emulsion/solvent evaporation technique using biodegradable poly(lactic-co-glycolic acid) (PLGA) with or without addition of poloxamer 188, respectively. The resulting nanoparticles were found to be spherical with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug-release profile of both nanoparticle formulations showed a biphasic release pattern. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in the docetaxel-resistant MCF-7 TAX30 human breast cancer cell line could be found in comparison with that of PLGA nanoparticles. In addition, the docetaxel-loaded PLGA/poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than that of docetaxel-loaded PLGA nanoparticles and Taxotere (P < .05). In conclusion, the results showed advantages of docetaxel-loaded PLGA nanoparticles incorporated with poloxamer 188 compared with the nanoparticles without incorporation of poloxamer 188 in terms of sustainable release and efficacy in breast cancer chemotherapy. The effects of poloxamer 188, a triblock copolymer were studied on nanoparticle morphology, size, cancer cell uptake and cytotoxicity. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in resistant human breast cancer cell line was demonstrated, resulting in a significantly higher level of cytotoxicity. Copyright 2010 Elsevier Inc. All rights reserved.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules
2015-07-14
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.
2015-11-20
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.
2017-01-03
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles
Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina
2017-01-01
The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification–solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide–polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology. PMID:28952560
Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles.
Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina
2017-09-26
The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification-solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide-polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology.
Characterization of magnetic nanoparticle by dynamic light scattering
2013-01-01
Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350
Lee, Jong-Hee; Kamada, Kai; Enomoto, Naoya; Hojo, Junichi
2007-12-15
Polyhedral gold nanoparticles below 100 nm in size were fabricated by continuously delivered HAuCl(4) and PVP starting solutions into l-ascorbic acid aqueous solution in the presence of gold seeds, and under addition of sodium hydroxide (NaOH). By continuously delivered PVP and HAuCl(4) starting solutions in the presence of gold seed, the size and shape of polyhedral gold were achieved in relatively good uniformity (particle size distribution=65-95 nm). Morphological evolution was also attempted using different growth rates of crystal facets with increasing reaction temperature, and selective adsorption of PVP.
Ornelas-Megiatto, Cátia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Fréchet, Jean M. J.; Cannon, Carolyn L.
2012-01-01
Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic): PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. PMID:23025592
Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L
2012-11-05
Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.
2010-01-01
examine the stability to oxidation of the silver nanoparticles , SERS measurements were carried out on a single dielectric ZnO nanowire core/silver...employed a simple and effective electroless (EL) plating approach to produce silver nanoparticles (NPs) on bare silicon, on dielectric ZnO nanowires (NWs...nature of silver, the Ag surface is easily oxidized in the air. Hence, it is important to understand the silver nanoparticle oxidation processes in
NASA Astrophysics Data System (ADS)
Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.
2016-01-01
The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.
Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports
NASA Astrophysics Data System (ADS)
Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R.
2017-12-01
Supported nanoparticles containing more than one metal have a variety of applications in sensing, catalysis, and biomedicine. Common synthesis techniques for this type of material often result in large, unalloyed nanoparticles that lack the interactions between the two metals that give the particles their desired characteristics. We demonstrate a relatively simple, effective, generalizable method to produce highly dispersed, well-alloyed bimetallic nanoparticles. Ten permutations of noble and base metals (platinum, palladium, copper, nickel, and cobalt) were synthesized with average particle sizes from 0.9 to 1.4 nanometers, with tight size distributions. High-resolution imaging and x-ray analysis confirmed the homogeneity of alloying in these ultrasmall nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thiago A. R. M.; Ilavsky, Jan; Hammons, Joshua
Hydroxyapatite (HAP) scaffolds with a hierarchical porous architecture were prepared by a new dual-template (corn starch and cetyltrimethylammonium bromide (CTAB) surfactant) used to cast HAP nanoparticles and development scaffolds with size hierarchical porous distribution. The Powder X-Ray diffraction (XRD) results showed that only the HAP crystalline phase is present in the samples after calcination; the Scanning Electron Microscopy (SEM) combined with Small Angle (SAXS) and Ultra-Small Angle X-ray Scattering (USAXS) techniques showed that the porous arrangement is promoted by needle-like HAP nanoparticles, and that the pore size distributions depend on the drip-order of the calcium and the phosphate solutions duringmore » the template preparation stage.« less
Size-separation of silver nanoparticles using sucrose gradient centrifugation
Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won; ...
2015-08-28
Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less
Size-separation of silver nanoparticles using sucrose gradient centrifugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won
Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less
Zelenková, Tereza; Barresi, Antonello A; Fissore, Davide
2015-01-01
This work deals with the use of a water/tert-butyl alcohol (TBA) system in the manufacturing process of poly-ε-caprolactone (PCL) nanoparticles, namely in the synthesis stage, using the solvent displacement method in a confined impinging jet mixer (CIJM), and in the following freeze-drying stage. The experimental investigation evidenced that the nanoparticles size is significantly reduced with respect to the case where acetone is the solvent. Besides, the solvent evaporation step is not required before freeze-drying as TBA is fully compatible with the freeze-drying process. The effect of initial polymer concentration, flow rate, water to TBA flow rate ratio, and quench volumetric ratio on the mean nanoparticles size was investigated, and a simple equation was proposed to relate the mean nanoparticles size to these operating parameters. Then, freeze-drying of the nanoparticles suspensions was studied. Lyoprotectants (sucrose and mannitol) and steric stabilizers (Cremophor EL and Poloxamer 388) have to be used to avoid nanoparticles aggregation, thus preserving particle size distribution and mean nanoparticles size. Their effect, as well as that of the heating shelf temperature, has been investigated by means of statistical techniques, with the goal to identify which of these factors, or combination of factors, plays the key role in the nanoparticles size preservation at the end of the freeze-drying process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
The stability of self-organized 1-nonanethiol-capped gold nanoparticle monolayer
NASA Astrophysics Data System (ADS)
Jiang, Peng; Xie, Si-shen; Yao, Jian-nian; Pang, Shi-jin; Gao, Hong-jun
2001-08-01
1-Nonanethiol-protected gold nanoparticles with the size of about 2 nm have been prepared by a wet chemical method through choosing a suitable ratio of Au:S (2.5:1). Size selective precipitation of nanoparticles has been used to narrow their size distribution, which facilitates the formation of an ordered nanoparticle close-packed structure. A Fourier transform infrared investigation provides the evidence of the encapsulation of Au nanoparticles by 1-nonanethiol while an ultraviolet-visible spectrum shows a broad absorption around 520 nm, corresponding to surface plasmon band of Au nanoparticles. X-ray photoelectron spectroscopy of the samples demonstrates the metallic state of the gold (Au0) and the existence of sulfur (S). The data from x-ray powder diffraction measurements confirm that the gold nanoparticles have the same face-centred cubic crystalline structure as the bulk gold phase. Finally, transmission electron microscopy (TEM) characterization indicates that the size of the monodisperse colloidal gold nanoparticles is about 2 nm and they can self-organize to form a two-dimensional hexagonal close-packed structure after evaporating a concentrated drop of nanoparticles-toluene solution on a carbon-coated TEM copper grid.
Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.
2009-01-01
The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.
Dexamethasone acetate encapsulation into Trojan particles.
Gómez-Gaete, Carolina; Fattal, Elias; Silva, Lídia; Besnard, Madeleine; Tsapis, Nicolas
2008-05-22
We have combined the therapeutic potential of nanoparticles systems with the ease of manipulation of microparticles by developing a hybrid vector named Trojan particles. We aim to use this new delivery vehicle for intravitreal administration of dexamethasone. Initialy, dexamethasone acetate (DXA) encapsulation into biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was optimized. Then, Trojan particles were formulated by spray drying 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), hyaluronic acid (HA) and different concentrations of nanoparticle suspensions. The effect of nanoparticles concentration on Trojan particle physical characteristics was investigated as well as the effect of the spray drying process on nanoparticles size. Finally, DXA in vitro release from nanoparticles and Trojan particles was evaluated under sink condition. SEM and confocal microscopy show that most of Trojan particles are spherical, hollow and possess an irregular surface due to the presence of nanoparticles. Neither Trojan particle tap density nor size distribution are significantly modified as a function of nanoparticles concentration. The mean nanoparticles size increase significantly after spray drying. Finally, the in vitro release of DXA shows that the excipient matrix provides protection to encapsulated nanoparticles by slowing drug release.
Bosselmann, Stephanie; Nagao, Masao; Chow, Keat T; Williams, Robert O
2012-09-01
Nanoparticles, of the poorly water-soluble drug, itraconazole (ITZ), were produced by the Advanced Evaporative Precipitation into Aqueous Solution process (Advanced EPAS). This process combines emulsion templating and EPAS processing to provide improved control over the size distribution of precipitated particles. Specifically, oil-in-water emulsions containing the drug and suitable stabilizers are sprayed into a heated aqueous solution to induce precipitation of the drug in form of nanoparticles. The influence of processing parameters (temperature and volume of the heated aqueous solution; type of nozzle) and formulation aspects (stabilizer concentrations; total solid concentrations) on the size of suspended ITZ particles, as determined by laser diffraction, was investigated. Furthermore, freeze-dried ITZ nanoparticles were evaluated regarding their morphology, crystallinity, redispersibility, and dissolution behavior. Results indicate that a robust precipitation process was developed such that size distribution of dispersed nanoparticles was shown to be largely independent across the different processing and formulation parameters. Freeze-drying of colloidal dispersions resulted in micron-sized agglomerates composed of spherical, sub-300-nm particles characterized by reduced crystallinity and high ITZ potencies of up to 94% (w/w). The use of sucrose prevented particle agglomeration and resulted in powders that were readily reconstituted and reached high and sustained supersaturation levels upon dissolution in aqueous media.
NASA Astrophysics Data System (ADS)
Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.
2018-02-01
In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.
Rogers, Hunter B.; Anani, Tareq; Choi, Young Suk; Beyers, Ronald J.; David, Allan E.
2015-01-01
Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization. PMID:26307980
Combined synthesis and in situ coating of nanoparticles in the gas phase
NASA Astrophysics Data System (ADS)
Lähde, Anna; Raula, Janne; Kauppinen, Esko I.
2008-12-01
Combined gas phase synthesis and coating of sodium chloride (NaCl) and lactose nanoparticles has been developed using an aerosol flow reactor. Nano-sized core particles were produced by the droplet-to-particle method and coated in situ by the physical vapour deposition of L-leucine vapour. The saturation of L-leucine in the reactor determined the resulting particle size and size distribution. In general, particle size increased with the addition of L-leucine and notable narrowing of the core particle size distribution was observed. In addition, homogeneous nucleation of the vapour, i.e. formation of pure L-leucine particles, was observed depending on the saturation conditions of L-leucine as well as the core particle characteristics. The effects of core particle properties, i.e. size and solid-state characteristics, on the coating process were studied by comparing the results for coated NaCl and lactose particles. During deposition, L-leucine formed a uniform coating on the surface of the core particles. The coating stabilised the nanoparticles and prevented the sintering of particles during storage.
Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia
2014-10-15
Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Osaci, M.; Cacciola, M.
2016-02-01
In recent years, the study of magnetic nanoparticles has been intensively developed not only for their fundamental theoretical interest, but also for their many technological applications, especially biomedical applications, ranging from contrast agents for magnetic resonance imaging to the deterioration of cancer cells via hyperthermia treatment. The theoretical and experimental research has shown until now that the magnetic dipolar interactions between nanoparticles can have a significant influence on the magnetic behaviour of the system. But, this influence is not well understood. It is clear that the magnetic dipolar interaction intensity is correlated with the nanoparticle concentration, volume fraction and magnetic moment orientations. In this paper, we try to understand the influence of magnetic dipolar interactions on the behaviour of magnetic nanoparticle systems, for biomedical applications. For the model, we considered spherical nanoparticles with uniaxial anisotropy and lognormal distribution of the sizes. The model involves a simulation stage of the spatial distribution and orientation of the nanoparticles and their easy axes of magnetic anisotropy, and an evaluation stage of the Néel relaxation time. To assess the Néel relaxation time, we are going to discretise and adapt, to the local magnetic field, the Coffey analytical solution for the equation Fokker-Planck describing the dynamics of magnetic moments of nanoparticles in oblique external magnetic field. There are three fundamental aspects of interest in our studies on the magnetic nanoparticles: their spatial & orientational distributions, concentrations and sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.
The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less
Chemical synthesis and structural characterization of small AuZn nanoparticles
NASA Astrophysics Data System (ADS)
Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.
2007-03-01
In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.
Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method
NASA Astrophysics Data System (ADS)
Bobadilla, L. F.; García, C.; Delgado, J. J.; Sanz, O.; Romero-Sarria, F.; Centeno, M. A.; Odriozola, J. A.
2012-11-01
The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution.
Ultrathin fiber poly-3-hydroxybutyrate, modified by silicon carbide nanoparticles
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Krutikova, A. A.; Goldshtrakh, M. A.; Staroverova, O. V.; Iordanskii, A. L.; Ischenko, A. A.
2016-11-01
The article presents the results of studies the composite fibrous material based on poly-3-hydroxybutyrate (PHB) and nano-size silicon carbide obtained by the electrospinning method. Size distribution of the silicon carbide nanoparticles in the fiber was estimated by X-ray diffraction technique. It is shown that immobilization of the SiC nanoparticles to the PHB fibers contributes to obtaining essentially smaller diameter of fibers, high physical-mechanical characteristics and increasing resistance to degradation in comparison with the fibers of PHB.
FT-IR and Zeta potential measurements on TiO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Jaiveer; Rathore, Ravi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk
2016-05-23
In the present investigation, ultrafine TiO particles have been synthesized successfully by thermal decomposition method. The sample was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. As-synthesized TiO nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), which shows that TiO nanoparticles have narrow size distribution with particle size 11.5 nm. FTIR data shows a strong peak at 1300 cm{sup −1}, assignable to the Ti-O stretching vibrations mode.
Bounds on quantum confinement effects in metal nanoparticles
NASA Astrophysics Data System (ADS)
Blackman, G. Neal; Genov, Dentcho A.
2018-03-01
Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.
Chandra, Navin; Singh, Deepesh Kumar; Sharma, Meenakshi; Upadhyay, Ravi Kant; Amritphale, S S; Sanghi, S K
2010-02-15
For the first time, single reverse microemulsion-assisted direct precipitation route has been successfully used to synthesize tetragonal zirconia nanoparticles in narrow size range. The synthesized powder was characterized using FT-IR, XRD and HRTEM techniques. The zirconia nanoparticles obtained were spherical in shape and has narrow particle size distribution in the range of 13-31nm and crystallite size in the range of 13-23nm. Copyright 2009 Elsevier Inc. All rights reserved.
Researchers Examine Nanoparticles' Impact on Fuel Emissions and Air Pollution
Nanoparticle catalysts offer an opportunity to increase fuel efficiency. While overall particle emissions may decrease, the emissions of some species may increase and changes to the particle size distribution can impact health.
Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, L.; Balakrishnan, A.; Sanosh, K.P.
2010-08-15
Silver (Ag) nanoparticles ({approx}6 nm) were synthesized using a novel dialysis process. Silver nitrate was used as a starting precursor, ethylene glycol as solvent and hydroxy propyl cellulose (HPC) introduced as a capping agent. Different batches of reaction mixtures were prepared with different concentrations of silver nitrate (AgNO{sub 3}). After the reduction and aging, these solutions were subjected to ultra-violet visible spectroscopy (UVS). Optimized solution, containing 250 mg AgNO{sub 3} revealed strong plasmon resonance peak at {approx}410 nm in the spectrum indicating good colloidal state of Ag nanoparticles in the diluted solution. The optimized solution was subjected to dialysis processmore » to remove any unreacted solvent. UVS of the optimized solution after dialysis showed the plasmon resonance peak shifting to {approx}440 nm indicating the reduction of Ag ions into zero-valent Ag. This solution was dried at 80 {sup o}C and the resultant HPC capped Ag (HPC/Ag) nanoparticles were studied using transmission electron microscopy (TEM) for their particle size and morphology. The particle size distribution (PSD) analysis of these nanoparticles showed skewed distribution plot with particle size ranging from 3 to 18 nm. The nanoparticles were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform infrared spectroscopy (FT-IR).« less
NASA Astrophysics Data System (ADS)
Shiau, Bo-Wen; Lin, Chien-Hung; Liao, Ying-Yen; Lee, Ya-Rong; Liu, Shih-Hao; Ding, Wei-Cheng; Lee, Jia-Ren
2018-05-01
In this work, the optical properties of Au nanoparticles processed by centrifugation techniques are studied. Most of the literature related to the control of nanoparticle size has focused on different preparation parameters; however, the wide size distribution is commonly an issue for follow-up investigations and further applications. Therefore, we developed a method in which specific-diameter particles can be effectively separated using different centrifugal procedures. The initial nanoparticle solution with a primary absorption peak at 534 nm is separated into discernible resonance wavelengths from 526 to 537 nm, with corresponding particle sizes from 30 to 55 nm. For the atomic force microscopy analysis of nanoparticle size, a dry cetyltrimethylammonium bromide (CTAB) film often covers the particles and interferes with the measurement; thus, CTAB has to be removed. However, if too much CTAB is removed, the surface of the Au nanoparticle becomes unstable, and the particles aggregate. Accordingly, we used UV spectroscopy to monitor the CTAB content; properly adjust the rotational speed and the number of centrifugation stages; and design a method that can effectively remove impurities, avoid clustering, and enable particle size measurement. The usually complicated procedures and high cost of preparation of specific-size Au nanoparticles are greatly simplified and reduced by the convenient extraction process proposed in this work, which would benefit related research and applications.
NASA Astrophysics Data System (ADS)
Mhin, Sung Wook; Ryu, Jeong Ho; Kim, Kang Min; Park, Gyeong Seon; Ryu, Han Wool; Shim, Kwang Bo; Sasaki, Takeshi; Koshizaki, Naoto
2009-08-01
Pulsed laser ablation (PLA) in liquid medium was successfully employed to synthesize hydroxyapatite (HAp) colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the HAp nanoparticles were investigated in detail. The obtained HAp nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were studied in terms of the explosive ejection mechanism by investigating the change of the surface morphology on target. The stoichiometry and bonding properties were studied by using XPS, FT-IR and Raman spectroscopy. A molar ratio of Ca/P of the prepared HAp nanoparticles was more stoichiometric than the value reported in the case of ablation in vacuum.
NASA Astrophysics Data System (ADS)
Sharma, Hemant; Vendamani, V. S.; Pathak, Anand P.; Tiwari, Archana
2015-12-01
Photosynthesis of silver nanoparticles is presented using bark extracts of Fraxinus paxiana var. sikkimensis. The synthesized nanoparticles are characterised by UV-Vis absorption, photoluminescence, powder X-ray diffraction and scanning and transmission electron microscopy. In addition, the bark samples are irradiated with 100 MeV silver ions and the subsequent structural modifications are analyzed. The swift heavy ion irradiated Fraxinus paxiana var. sikkimensis bark is also used for the synthesis of silver nanoparticles. It is illustrated that the irradiated bark assists in synthesizing smaller nanoparticles of homogenous size distribution as compared to when the pristine bark is used. The newly synthesized silver nanoparticles are also used to demonstrate the antimicrobial activities on Escherichia coli bacteria.
Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse
Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less
Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts
Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...
2017-10-03
Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less
NASA Astrophysics Data System (ADS)
Eidelman, K.; Gudkov, D.; Segbefia, O.; Ageev, E.; Krivonosov, A.; Matuhina, A.
2017-11-01
In this work, Si and SiO2, nanoparticles (NPs) was prepared by pulsed laser ablation (PLA) in distilled water. The radiation of a ytterbium fiber laser (repetition rate f = 50 kHz, wavelength λ = 1064 nm and pulse duration τ = 8 ns and 100 ns) at different laser intensities was utilized to ablate the Si target (99.999%, cubic, 7×7 mm2) under liquid layer to synthesize and to fragment the silicon colloidal NPs. Studies of morphology and size distribution of silica NPs were conducted using Transmission Electron Microscopy (TEM). The NPs of crystalline and amorphous phases were founded. Most of the NPs in the nano colloids were found to have dimensions less than 100 nm, and a few of them were between 100 nm and 700 nm. Dependence of average NP size on the number of laser passes was revealed. The average size of the nanoparticles obtained by TEM was confirmed by dynamic light scattering (DLS) measurements.
NASA Astrophysics Data System (ADS)
Wei, Li; Hervé, Muhr; Edouard, Plasari
2012-03-01
Magnetite nanoparticles were precipitated by the classic Massart's method in a 2.5 L stirred tank reactor where the injection of reagent solutions was effectuated by different micro-mixers (T-tube and Hartridge-Roughton rapid mixing devices). The specific surface area, the average particle size and the particle size distribution were highly influenced by changing operating parameters. Laser Diffraction, BET adsorption, Energy-Dispersive X-ray Spectroscopy (EDX), Raman spectroscopy and Transmission Electron Microscopy (TEM) were used for characterizing magnetite nanoparticles. Especially, Hartridge-Roughton micromixer appears to be the most efficient mixing device for producing magnetite nanoparticles. The average particle size of magnetite nanoparticles prepared by Hartridge-Roughton rapid mixing device was less than 10 nm and the EDX and Raman spectroscopy shows that the particle purity is quite high.
NASA Astrophysics Data System (ADS)
Alizadeh, A.; Parsafar, S.; Khodaei, M. M.
2017-03-01
A biocompatible method for synthesizing of highly disperses gold nanoparticles using Ferulago Angulata leaf extract has been developed. It has been shown that leaf extract acts as reducing and coating agent. Various spectroscopic and electron microscopic techniques were employed for the structural characterization of the prepared nanoparticles. The biosynthesized particles were identified as elemental gold with spherical morphology, narrow size distribution (ranged 9.2-17.5 nm) with high stability. Also, the effect of initial ratio of precursors, temperature and time of reaction on the size and morphology of the nanoparticles was studied in more detail. It was observed that varying these parameters provides an accessible remote control on the size and morphology of nanoparticles. The uniqueness of this procedure lies in its cleanliness using no extra surfactant, reducing agent or any capping agent.
NASA Astrophysics Data System (ADS)
Khandadash, Raz; Machtey, Victoria; Shainer, Inbal; Gottlieb, Hugo E.; Gothilf, Yoav; Ebenstein, Yuval; Weiss, Aryeh; Byk, Gerardo
2014-12-01
Biocompatible hydrogel nanoparticles are prepared by polymerization and cross-linking of N-isopropyl acrylamide in a micelle template formed by block copolymers macro-monomers at high temperature. Different monomer ratios form, at high temperature, well-defined micelles of different sizes which are further polymerized leading to nanoparticles with varied sizes from 20 to 390 nm. Physico-chemical characterization of the nanoparticles demonstrates their composition and homogeneity. The NPs were tested in vitro and in vivo biocompatibility assays, and their lack of toxicity was proven. The NPs can be labeled with fluorescent probes, and their intracellular fate can be visualized and quantified using confocal microscopy. Their uptake by live stem cells and distribution in whole developing animals is reported. On the basis of our results, a mechanism of nanoparticle formation is suggested. The lack of toxicity makes these nanoparticles especially attractive for biological applications such as screening and bio-sensing.
The synthesis and characterization of iron nanoparticles
NASA Astrophysics Data System (ADS)
Bennett, Tyler
Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.
NASA Astrophysics Data System (ADS)
Chronopoulou, Laura; Sparago, Carolina; Palocci, Cleofe
2014-11-01
Using a novel and versatile capillary microfluidic flow-focusing device we fabricated monodisperse drug-loaded nanoparticles from biodegradable polymers. A model amphiphilic drug (dexamethasone) was incorporated within the biodegradable matrix of the particles. The influence of flow rate ratio, polymer concentration, and microreactor-focusing channel dimensions on nanoparticles' size and drug loading has been investigated. The microfluidic approach resulted in the production of colloidal polymeric nanoparticles with a narrow size distribution (diameters ranging between 35 and 350 nm) and useful morphological characteristics. This technique allows the fast, low cost, easy, and automated synthesis of polymeric nanoparticles, therefore it may become a useful approach in the progression from laboratory scale to pilot-line scale processes.
Ensemble modeling of very small ZnO nanoparticles.
Niederdraenk, Franziska; Seufert, Knud; Stahl, Andreas; Bhalerao-Panajkar, Rohini S; Marathe, Sonali; Kulkarni, Sulabha K; Neder, Reinhard B; Kumpf, Christian
2011-01-14
The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.
Experimental study on the coalescence process of SiO2 supported colloidal Au nanoparticles
NASA Astrophysics Data System (ADS)
Ruffino, F.; Torrisi, V.; Grimaldi, M. G.
2015-11-01
We report on an experimental study of the coalescence-driven grow process of colloidal Au nanoparticles on SiO2 surface. Nanoparticles with 30, 50, 80, 100 nm nominal diameters on a SiO2 substrate were deposited, from solutions, by the drop-casting method. Then, annealing processes, in the 573-1173 K temperature range and 900-3600 s time range, were performed. Using scanning electron microscopy analyses, the temporal evolution of the nanoparticles sizes has been studied. In particular, for all classes of nanoparticles, the experimental-obtained diameters distributions evidenced double-peak shapes (i. e. bimodal distributions): a first peak centered (and unchanged changing the annealing temperature and/or time) at the nominal diameter of the as-deposited nanoparticles,
Mahmoodi Esfanddarani, Hassan; Abbasi Kajani, Abolghasem; Bordbar, Abdol-Khalegh
2018-06-01
High-quality colloidal silver nanoparticles (AgNP) were synthesised via a green approach by using hydroalcoholic extracts of Malva sylvestris . Silver nitrate was used as a substrate ion while the plant extract successfully played the role of reducing and stabilising agents. The synthesised nanoparticles were carefully characterised by using transmission electron microscopy, atomic-force microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. The maximum absorption wavelengths of the colloidal solutions synthesised using 70 and 96% ethanol and 100% methanol, as extraction solvents, were 430, 485 and 504 nm, respectively. Interestingly, the size distribution of nanoparticles depended on the used solvent. The best particle size distribution belonged to the nanoparticles synthesised by 70% ethanol extract, which was 20-40 nm. The antibacterial activity of the synthesised nanoparticles was studied on Escherichia coli , Staphylococcus aureus and Streptococcus pyogenes using disk diffusion, minimum inhibitory concentrations and minimum bactericidal concentrations assays. The best antibacterial activity obtained for the AgNPs produced by using 96% ethanolic extract.
Mohd Abd Ghafar, Syairah Liyana; Hussein, Mohd Zobir; Rukayadi, Yaya; Abu Bakar Zakaria, Md Zuki
2017-01-01
Calcium carbonate aragonite polymorph nanoparticles derived from cockle shells were prepared using surface functionalization method followed by purification steps. Size, morphology, and surface properties of the nanoparticles were characterized using transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, zetasizer, X-ray powder diffraction, and Fourier transform infrared spectrometry techniques. The potential of surface-functionalized calcium carbonate aragonite polymorph nanoparticle as a drug-delivery agent were assessed through in vitro drug-loading test and drug-release test. Transmission electron microscopy, field emission scanning electron microscopy, and particle size distribution analyses revealed that size, morphology, and surface characterization had been improved after surface functionalization process. Zeta potential of the nanoparticles was found to be increased, thereby demonstrating better dispersion among the nanoparticles. Purification techniques showed a further improvement in the overall distribution of nanoparticles toward more refined size ranges <100 nm, which specifically favored drug-delivery applications. The purity of the aragonite phase and their chemical analyses were verified by X-ray powder diffraction and Fourier transform infrared spectrometry studies. In vitro biological response of hFOB 1.19 osteoblast cells showed that surface functionalization could improve the cytotoxicity of cockle shell–based calcium carbonate aragonite nanocarrier. The sample was also sensitive to pH changes and demonstrated good abilities to load and sustain in vitro drug. This study thus indicates that calcium carbonate aragonite polymorph nanoparticles derived from cockle shells, a natural biomaterial, with modified surface characteristics are promising and can be applied as efficient carriers for drug delivery. PMID:28572724
NASA Astrophysics Data System (ADS)
Dyuryagina, N. S.; Yalovets, A. P.
2017-05-01
Using the Rouse-Fowler (RF) model this work studies the radiation-induced electrical conductivity of a polymer nanocomposite material with spherical nanoparticles against the intensity and exposure time of gamma-ray, concentration and size of nanoparticles. The research has found the energy distribution of localized statesinduced by nanoparticles. The studies were conducted on polymethylmethacrylate (PMMA) with CdS nanoparticles.
Baier, Grit; Cavallaro, Alex; Friedemann, Kathrin; Müller, Beate; Glasser, Gunnar; Vasilev, Krasimir; Landfester, Katharina
2014-01-01
The enzyme-triggered release of the antimicrobial agent octenidine out of poly(l-lactide)-based nanoparticles (PLLA-NPs) and their in vitro antibacterial activities in the presence of gram-positive and gram-negative bacteria are presented. The formation of the nanoparticles was achieved using a combination of the solvent evaporation and the miniemulsion approach. For the stabilization of the polymeric nanoparticles, non-ionic polymers (polyvinylalcohol [PVA], hydroxyethyl starch [HES], human serum albumin [HSA]) were successfully used for enzymatic degradation; ionic surfactants such as sodium dodecyl sulfate and cetyltrimethylammonium chloride inhibited the enzymatic degradation. The change in pH, size, size distribution and morphology during the degradation process of PLLA-NPs and the release of the antimicrobial agent was studied. The influence of the different amounts of octenidine and of the different stabilizers on the NPs' stability, size, size distribution, morphology, zeta potential and on the surface group's density is discussed. Fluorescently labeled HES-stabilized PLLA-NPs are immobilized by colloidal electrospinning. The observed data from HPLC measurements show that octenidine is released out of PLLA-NPs which are stabilized with PVA, HES or HSA. In bacteria tests the PLLA nanoparticles showed a greater ability to inhibit the growth of Staphylococcus aureus compared to Escherichia coli. This article discusses the enzyme-triggered release and antibacterial effects of octenidine from poly(l-lactide)-based nanoparticles demonstrating the viability of this approach for potential future antibacterial therapy. © 2013.
NASA Astrophysics Data System (ADS)
Avakyan, L. A.; Heinz, M.; Skidanenko, A. V.; Yablunovski, K. A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L. A.
2018-01-01
The formation of a localized surface plasmon resonance (SPR) spectrum of randomly distributed gold nanoparticles in the surface layer of silicate float glass, generated and implanted by UV ArF-excimer laser irradiation of a thin gold layer sputter-coated on the glass surface, was studied by the T-matrix method, which enables particle agglomeration to be taken into account. The experimental technique used is promising for the production of submicron patterns of plasmonic nanoparticles (given by laser masks or gratings) without damage to the glass surface. Analysis of the applicability of the multi-spheres T-matrix (MSTM) method to the studied material was performed through calculations of SPR characteristics for differently arranged and structured gold nanoparticles (gold nanoparticles in solution, particles pairs, and core-shell silver-gold nanoparticles) for which either experimental data or results of the modeling by other methods are available. For the studied gold nanoparticles in glass, it was revealed that the theoretical description of their SPR spectrum requires consideration of the plasmon coupling between particles, which can be done effectively by MSTM calculations. The obtained statistical distributions over particle sizes and over interparticle distances demonstrated the saturation behavior with respect to the number of particles under consideration, which enabled us to determine the effective aggregate of particles, sufficient to form the SPR spectrum. The suggested technique for the fitting of an experimental SPR spectrum of gold nanoparticles in glass by varying the geometrical parameters of the particles aggregate in the recurring calculations of spectrum by MSTM method enabled us to determine statistical characteristics of the aggregate: the average distance between particles, average size, and size distribution of the particles. The fitting strategy of the SPR spectrum presented here can be applied to nanoparticles of any nature and in various substances, and, in principle, can be extended for particles with non-spherical shapes, like ellipsoids, rod-like and other T-matrix-solvable shapes.
Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles
NASA Astrophysics Data System (ADS)
Arora, Ekta; Ritu, Kumar, Sacheen; Kumar, Dinesh
2016-05-01
Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.
Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Ekta; Ritu,; Kumar, Sacheen, E-mail: sacheen3@gmail.com
2016-05-06
Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM),more » UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.« less
NASA Astrophysics Data System (ADS)
Reza Barati, Mohammad; Selomulya, Cordelia; Suzuki, Kiyonori
2014-05-01
Magnetic nanoparticles with narrow size distributions have successfully been synthesized by an ultrasonic assisted co-precipitation method. The effects of particle size on magnetic properties, heat generation by AC fields, and the cell cytotoxicity were investigated for MgFe2O4 nanoparticles with mean diameters varying from 7 ± 0.5 nm to 29 ± 1 nm. The critical size for superparamagnetic to ferrimagnetic transition (DS→F) of MgFe2O4 was determined to be about 13 ± 0.5 nm at 300 K. The specific absorption rate (SAR) of MgFe2O4 nanoparticles was strongly size dependent; it showed a maximum value of 19 W/g when the particle size was 10 ± 0.5 nm at which the Néel and Brownian relaxations are the major cause of heating. The SAR value was suppressed dramatically by 46% with increasing particle size from 10 ± 0.5 nm to 13 ± 0.5 nm, where Néel relaxation slows down and SAR results primarily from Brownian relaxation loss. A further reduction in SAR value was evident when the size was increased from 13 ± 0.5 nm to 16 ± 1 nm, where the superparamagnetic to ferromagnetic transition occurs. However, SAR showed a tendency to increase with particle size again above 16 ± 1 nm where hysteresis loss becomes the dominant mechanism of heat generation. The particle size dependence of SAR in the superparamagnetic region was well described by considering the effective relaxation time estimated based on a log-normal size distribution. The clear size dependence of SAR is attributable to the high degree of monodispersity of particles synthesized here. The high SAR value of water-based MgFe2O4 magnetic suspension combined with low cell cytotoxicity suggests a great potential of MgFe2O4 nanoparticles for magnetic hyperthermia therapy applications.
Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suchomel, Petr; Kvitek, Libor; Prucek, Robert
The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less
Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity
Suchomel, Petr; Kvitek, Libor; Prucek, Robert; ...
2018-03-15
The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less
Son, Kyoung Dan; Kim, Young-Jin
2013-01-01
Hydroxyapatite (HA) nanoparticles were prepared simply in the presence of β-cyclodextrin (β-CD). Mixing sequence of ion precursors during the synthesis of HA greatly affected the morphological structure of nanoparticles. Ca-P showed only the sphere-like structure, however P-Ca exhibited the mixture of spherical and rod-like nanoparticles. The size of nanoparticles slightly decreased with increasing the content of β-CD. The HAs synthesized in the presence of β-CD agglomerated, leading to the formation of aggregates with a size of hundreds nanometer and narrow size distribution. FT-IR, XRD and XRF analyses confirmed that the HA nanoparticles could be synthesized with using β-CD, in which the Ca/P molar ratio was ranged from 1.72 to 1.70. The crystalline phase of these HA nanoparticles was similar to that of the stoichiometric HA. In addition, the content of β-CD contained in the products could influence the initial deposition rate of bone-like apatite on the surface of HA nanoparticles in simulated body fluid (SBF). Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong
2016-09-01
Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.
One-step preparation of antimicrobial silver nanoparticles in polymer matrix
NASA Astrophysics Data System (ADS)
Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.
2015-03-01
Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV-Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.
Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali
2011-01-12
Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).
Modeling the transport of engineered nanoparticles in saturated porous media - an experimental setup
NASA Astrophysics Data System (ADS)
Braun, A.; Neukum, C.; Azzam, R.
2011-12-01
The accelerating production and application of engineered nanoparticles is causing concerns regarding their release and fate in the environment. For assessing the risk that is posed to drinking water resources it is important to understand the transport and retention mechanisms of engineered nanoparticles in soil and groundwater. In this study an experimental setup for analyzing the mobility of silver and titanium dioxide nanoparticles in saturated porous media is presented. Batch and column experiments with glass beads and two different soils as matrices are carried out under varied conditions to study the impact of electrolyte concentration and pore water velocities. The analysis of nanoparticles implies several challenges, such as the detection and characterization and the preparation of a well dispersed sample with defined properties, as nanoparticles tend to form agglomerates when suspended in an aqueous medium. The analytical part of the experiments is mainly undertaken with Flow Field-Flow Fractionation (FlFFF). This chromatography like technique separates a particulate sample according to size. It is coupled to a UV/Vis and a light scattering detector for analyzing concentration and size distribution of the sample. The advantage of this technique is the ability to analyze also complex environmental samples, such as the effluent of column experiments including soil components, and the gentle sample treatment. For optimization of the sample preparation and for getting a first idea of the aggregation behavior in soil solutions, in sedimentation experiments the effect of ionic strength, sample concentration and addition of a surfactant on particle or aggregate size and temporal dispersion stability was investigated. In general the samples are more stable the lower the concentration of particles is. For TiO2 nanoparticles, the addition of a surfactant yielded the most stable samples with smallest aggregate sizes. Furthermore the suspension stability is increasing with electrolyte concentration. Depending on the dispersing medium the results show that TiO2 nanoparticles tend to form aggregates between 100-200 nm in diameter while the primary particle size is given as 21 nm by the manufacturer. Aggregate sizes are increasing with time. The particle size distribution of the silver nanoparticle samples is quite uniform in each medium. The fresh samples show aggregate sizes between 40 and 45 nm while the primary particle size is 15 nm according to the manufacturer. Aggregate size is only slightly increasing with time during the sedimentation experiments. These results are used as a reference when analyzing the effluent of column experiments.
Magnetocapacitance effect in core/shell NiO nanoparticles
NASA Astrophysics Data System (ADS)
Roy, Subir; Kambhala, Nagaiah; Angappane, S.
2018-04-01
The exchange bias and magnetocapacitance properties of nickel oxide nanoparticles of average particle size 50 nm have been studied. NiO nanoparticles of uniform size distribution were synthesized by a sol-gel method using nickel acetate and polyvinyl acetate. The magnetic measurements show the ferromagnetic like behavior exhibiting exchange bias effect indicative of the formation of core/shell structure of NiO with a antiferromagnetic core and ferromagnetic shell. An electrical double layer capacitance behavior was observed for NiO nanoparticles in the cyclic voltammetry measurement, and it was found that the value of capacitance decreased by about 26 % under the application of magnetic field of 0.1 T.
NASA Astrophysics Data System (ADS)
Kuwahata, Akihiro; Kaneko, Miki; Chikaki, Shinichi; Kusakabe, Moriaki; Sekino, Masaki
2018-05-01
The developed device with electromagnetic coils and small permanent magnets quantifies the iron contents of superparamagnetic iron oxide nanoparticles for sentinel lymph node (SLN) biopsy. To remove diamagnetic and paramagnetic components and detect only superparamagnetic components, a 2nd harmonics signal is detected by a gradiometer under a moderate AC magnetic field (1-2 mT) with the fundamental frequency (2.944 kHz) of the coils and DC magnetic field (1-2 mT) of the magnets. The detection limit with a signal-to-noise ratio of 5 is approximately 0.28 μg of iron, and the device has a wide dynamic range of 104, 0.28 μg-2.8 mg. Additional coils and permanent magnets play an important role producing the optimum distribution of AC/DC magnetic fields for an iron distribution-independent and SLN size-independent quantification. We demonstrated the quantification of the iron in phantoms, which have a size of 3-20 mm with varied iron distributions and contain magnetic nanoparticles numerically. These results indicate that the developed device is useful for quantifying the magnetic nanoparticles accumulating in SLNs.
NASA Astrophysics Data System (ADS)
Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti
2013-09-01
The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.
Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles
Huber, Dale L [Albuquerque, NM
2011-07-05
A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.
Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid
2014-01-01
Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.
NASA Astrophysics Data System (ADS)
Subara, Deni; Jaswir, Irwandi; Alkhatib, Maan Fahmi Rashid; Noorbatcha, Ibrahim Ali
2018-01-01
The aim of this experiment is to screen and to understand the process variables on the fabrication of fish gelatin nanoparticles by using quality-design approach. The most influencing process variables were screened by using Plackett-Burman design. Mean particles size, size distribution, and zeta potential were found in the range 240±9.76 nm, 0.3, and -9 mV, respectively. Statistical results explained that concentration of acetone, pH of solution during precipitation step and volume of cross linker had a most significant effect on particles size of fish gelatin nanoparticles. It was found that, time and chemical consuming is lower than previous research. This study revealed the potential of quality-by design in understanding the effects of process variables on the fish gelatin nanoparticles production.
Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.
Calzolai, Luigi; Gilliland, Douglas; Garcìa, César Pascual; Rossi, François
2011-07-08
We show that using asymmetric flow-field-flow fractionation and UV-vis detector it is possible to separate, characterize, and quantify the correct number size distribution of gold nanoparticle (AuNP) mixtures of various sizes in the 5-60 nm range for which simple dynamic light scattering measurements give misleading information. The size of the collected nanoparticles fractions can be determined both in solution and in the solid state, and their surface chemistry characterized by NMR. This method will find widespread applications both in the process of "size purification" after the synthesis of AuNP and in the identification and characterization of gold-based nanomaterials in consumer products. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia
2016-12-01
An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.
Formulation design space for stable, pH sensitive crystalline nifedipine nanoparticles.
Jog, Rajan; Unachukwu, Kenechi; Burgess, Diane J
2016-11-30
Enteric coated formulations protect drugs from degrading in the harsh environment of the stomach (acidic pH and enzymes), and promotes drug delivery to and absorption into the duodenum and/or later parts of the intestine. Four DoE models were applied to optimize formulation parameters for the preparation of pH sensitive nifedipine nanoparticles. Stability studies were performed on the optimized formulations to monitor any possible variation in particle size distribution, homogeneity index, surface charge and drug release (pH 1.2 and pH 6.8). Stability studies were performed for 3 months at 4°C, 25°C and 40°C. A combination of Eudragit ® L 100-55 and polyvinyl alcohol was determined to be the most effective in stabilizing the nanoparticle suspension. The average particle size distribution, polydispersity index and surface charge of the optimized pH sensitive nifedipine nanoparticles were determined to be 131.86±8.21nm, 0.135±0.008 and -7.631±0.146mV, respectively. Following three months storage, it was observed that the formulations stored at 4°C were stable in terms of particle size distribution, polydispersity index, surface charge, drug loading and drug release, whereas those stored at 25°C and 40°C were relatively unstable. A predictive model to prepare stable pH sensitive nifedipine nanoparticles, was successfully developed using multiple linear regression analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Poda, A R; Bednar, A J; Kennedy, A J; Harmon, A; Hull, M; Mitrano, D M; Ranville, J F; Steevens, J
2011-07-08
The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kim, Do Hyung; Kim, Min-Dae; Choi, Cheol-Woong; Chung, Chung-Wook; Ha, Seung Hee; Kim, Cy Hyun; Shim, Yong-Ho; Jeong, Young-Il; Kang, Dae Hwan
2012-01-01
Sorafenib-incoporated nanoparticles were prepared using a block copolymer that is composed of dextran and poly( DL-lactide- co-glycolide) [Dex bLG] for antitumor drug delivery. Sorafenib-incorporated nanoparticles were prepared by a nanoprecipitation-dialysis method. Sorafenib-incorporated Dex bLG nanoparticles were uniformly distributed in an aqueous solution regardless of the content of sorafenib. Transmission electron microscopy of the sorafenib-incorporated Dex bLG nanoparticles revealed a spherical shape with a diameter < 300 nm. Sorafenib-incorporated Dex bLG nanoparticles at a polymer/drug weight ratio of 40:5 showed a relatively uniform size and morphology. Higher initial drug feeding was associated with increased drug content in nanoparticles and in nanoparticle size. A drug release study revealed a decreased drug release rate with increasing drug content. In an in vitro anti-proliferation assay using human cholangiocarcinoma cells, sorafenib-incorporated Dex bLG nanoparticles showed a similar antitumor activity as sorafenib. Sorafenib-incorporated Dex bLG nanoparticles are promising candidates as vehicles for antitumor drug targeting.
First Principles Study of Nanodiamond Optical and Electronic Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raty, J; Galli, G
2004-10-21
Nanometer sized diamond has been found in meteorites, proto-planetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles appears to be peaked around 2-5 nm, and to be largely independent of preparation conditions. Using ab-initio calculations, we have shown that in this size range nanodiamond has a fullerene-like surface and, unlike silicon and germanium, exhibits very weak quantum confinement effects. We called these carbon nanoparticles bucky-diamonds: their atomic structure, predicted by simulations, is consistent with many experimental findings. In addition, we carried out calculations of the stabilitymore » of nanodiamond which provided a unifying explanation of its size distribution in extra-terrestrial samples, and in ultra-crystalline diamond films.« less
Anionic 11-mercaptoundecanoic acid capped ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Šimšíková, Michaela; Antalík, Marián; Kaňuchová, Mária; Škvarla, Jiří
2013-10-01
The anionic zinc oxide nanoparticles have been prepared at room temperature by a precipitation method using ZnCl2 and NaOH and surface modification with 11-mercaptoundecanoic acid (MUA). Atomic force microscopy (AFM) was used for definition of morphology and size of prepared nanoparticles which was proved by measurements of particle size distribution using Zetasizer. Successful coating with MUA as surfactant was acknowledged by X-ray photoelectron spectroscopy and ATR FT-IR spectroscopy. The isoelectric point (IEP) of ZnO-MUA nanoparticles was obtained by measurements of zeta potential and FT-IR dependence on pH; the obtained value was approximately 3.58. The value of exchanged protons was 2.88 which indicates a positive binding cooperativity of modified nanoparticles.
Kubiliūtė, Reda; Maximova, Ksenia A; Lajevardipour, Alireza; Yong, Jiawey; Hartley, Jennifer S; Mohsin, Abu SM; Blandin, Pierre; Chon, James WM; Sentis, Marc; Stoddart, Paul R; Kabashin, Andrei; Rotomskis, Ričardas; Clayton, Andrew HA; Juodkazis, Saulius
2013-01-01
Aqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1) fairly stable and poly size-dispersed; or (2) very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution. We show that surface-enhanced Raman scattering of rhodamine 6G on gold nanoparticles can be detected with high fidelity down to micromolar concentrations using the nanoparticles. Application potential of pure gold nanoparticles with polydispersed and nearly monodispersed size distributions are discussed. PMID:23888114
NASA Astrophysics Data System (ADS)
Ishii, Katsuhiro; Nakamura, Sohichiro; Sato, Yuki
2014-08-01
High-sensitivity low-coherence DLS apply to measurement of particle size distribution of pigments suspended in a ink. This method can be apply to extremely dense and turbid media without dilution. We show the temporal variation of particle size distribution of thixotropy and sedimentary pigments due to aggregation, agglomerate, and sedimentation. Moreover, we demonstrate the influence of dilution of ink to particle size distribution.
In Vitro Toxicity of Silver Nanoparticles in Human Lung Epithelial Cells
2009-03-01
software from the particle distributions measured and the polydispersity index (PdI) given is a measure of the size ranges present in the solution...Transmission Electron Microscopy Figure 22 shows the TEM primary particles size and distribution determined from measurement of over 100 particles from...nm uncoated. (B) Ag 80 nm uncoated. (C) Ag 10 nm coated. (D) Ag 80 nm coated Table 4 shows the TEM primary particles size and distribution
NASA Astrophysics Data System (ADS)
Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.
2012-10-01
Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical increase in moment with temperature. The second model predicts low-temperature spectra that differ significantly from the observed spectra. The anisotropy energy density K1, determined by fitting the temperature-dependent linewidths, was ˜50 kJ/m3, which is considerably larger than that of bulk maghemite. The work presented here indicates that the magnetic properties of these size-constrained nanoparticles and more generally metal oxide nanoparticles with diameters d < 5 nm are complex and that currently existing models are not sufficient for determining their magnetic resonance signatures.
An evaluation of the influence of size and radiation in silver nanoparticle toxicity
The antimicrobial properties of silver nanoparticles (AgNP) have made them popular in textile manufacturing, medical technology, and biomedical applications. Studies suggest that after ingestion, nanomaterials are distributed throughout the body to different organs, possibly incl...
Roh, Sung-Hee; Cheong, Hyeonsook; Kim, Do-Heyoung; Woo, Hee-Gweon; Lee, Byeong-Gweon; Yang, Kap-Seung; Kim, Bo-Hye; Sohn, Honglae
2013-01-01
The generation of silver nanoparticle/bis(o-phenolpropyl)silicone composites have been facilitated by the addition of sodium tetrachloroaurate or gold(Ill) chloride (< 1 wt% of NaAuCl4 or AuCl3) to the reaction of silver nitrate (AgNO3) with bis(o-phenolpropyl)silicone [BPPS, (o-phenolpropyl)2(SiMe2O)n, n = 2,3,8,236]. TEM and FE-SEM data showed that the silver nanoparticles having the size of < 20 nm are well dispersed throughout the BPPS silicone matrix in the composites. XRD patterns are consistent with those for polycrystalline silver. The size of silver nanoparticles augmented with increasing the relative molar concentration of AgNO3 added with respect to BPPS. The addition of gold complexes (1-3 wt%) did not affect the size distribution of silver nanoparticles appreciably. In the absence of BPPS, the macroscopic precipitation of silver by agglomeration, indicating that BPPS is necessary to stabilize the silver nanoparticles surrounded by coordination.
Enhanced Immunomodulatory Activity of Gelatin-Encapsulated Rubus coreanus Miquel Nanoparticles
Seo, Yong Chang; Choi, Woon Yong; Lee, Choon Geun; Cha, Seon Woo; Kim, Young Ock; Kim, Jin-Chul; Drummen, Gregor P. C.; Lee, Hyeon Yong
2011-01-01
The aim of this work was to investigate the immunomodulatory activities of Rubus coreanus Miquel extract-loaded gelatin nanoparticles. The mean size of the produced nanoparticles was 143 ± 18 nm with a bandwidth of 76 nm in the size distribution and a maximum size of ~200 nm, which allows effective nanoparticle uptake by cells. Confocal imaging confirmed this, since the nanoparticles were internalized within 30 min and heterogeneously distributed throughout the cell. Zeta-potential measurements showed that from pH = 5 onwards, the nanoparticles were highly negatively charged, which prevents agglomeration to clusters by electrostatic repulsion. This was confirmed by TEM imaging, which showed a well dispersed colloidal solution. The encapsulation efficiency was nearly 60%, which is higher than for other components encapsulated in gelatin nanoparticles. Measurements of immune modulation in immune cells showed a significant effect by the crude extract, which was only topped by the nanoparticles containing the extract. Proliferation of B-, T- and NK cells was notably enhanced by Rubus coreanus-gelatin nanoparticles and in general ~2–3 times higher than control and on average ~2 times higher than ferulic acid. R. coreanus-gelatin nanoparticles induced cytokine secretion (IL-6 and TNF-α) from B- and T-cells on average at a ~2–3 times higher rate compared with the extract and ferulic acid. In vivo immunomodulatory activity in mice fed with R. coreanus-gelatin nanoparticles at 1 mL/g body weight showed a ~5 times higher antibody production compared to control, a ~1.3 times higher production compared to the extract only, and a ~1.6 times higher production compared to ferulic acid. Overall, our results suggest that gelatin nanoparticles represent an excellent transport vehicle for Rubus coreanus extract and extracts from other plants generally used in traditional Asian medicine. Such nanoparticles ensure a high local concentration that results in enhancement of immune cell activities, including proliferation, cytokine secretion, and antibody production. PMID:22272118
NASA Astrophysics Data System (ADS)
Mefford, Olin Thompson, IV
Magnetic nanoparticles coated with polymers hold great promise as materials for applications in biotechnology. In this body of work, magnetic fluids for the treatment of retinal detachment are examined closely in three regimes; motion of ferrofluid droplets in aqueous media, size analysis of the polymer-iron oxide nanoparticles, and calculation of interparticle potentials as a means for predicting fluid stability. The macromolecular ferrofluids investigated herein are comprised of magnetite nanoparticles coated with tricarboxylate-functional polydimethylsiloxane (PDMS) oligomers. The nanoparticles were formed by reacting stoichiometric concentrations of iron chloride salts with base. After the magnetite particles were prepared, the functional PDMS oligomers were adsorbed onto the nanoparticle surfaces. The motion of ferrofluid droplets in aqueous media was studied using both theoretical modeling and experimental verification. Droplets (˜1-2 mm in diameter) of ferrofluid were moved through a viscous aqueous medium by an external magnet of measured field and field gradient. Theoretical calculations were made to approximate the forces on the droplet. Using the force calculations, the times required for the droplet to travel across particular distances were estimated. These estimated times were within close approximation of experimental values. Characterization of the sizes of the nanoparticles was particularly important, since the size of the magnetite core affects the magnetic properties of the system, as well as the long-term stability of the nanoparticles against flocculation. Transmission electron microscopy (TEM) was used to measure the sizes and size distributions of the magnetite cores. Image analyses were conducted on the TEM micrographs to measure the sizes of approximately 6000 particles per sample. Distributions of the diameters of the magnetite cores were determined from this data. A method for calculating the total particle size, including the magnetite core and the adsorbed polymer, in organic dispersions was established. These estimated values were compared to measurements of the entire complex utilizing dynamic light scattering (DLS). Better agreement was found for narrow particle size distributions as opposed to broader distribution. The stability against flocculation of the complexes over time in organic media were examined via modified Derjaguin-Landau-Verwey-Overbeek (DLVO) calculations. DLVO theory allows for predicting the total particle-particle interaction potentials, which include steric and electrostatic repulsions as well as van der Waals and magnetic attractions. The interparticle potentials can be determined as a function of separation of the particle surfaces. At a constant molecular weight of the polymer dispersion stabilizer, these calculations indicated that dispersions of smaller PDMS-magnetite particles should be more stable than those containing larger particles. The rheological characteristics of neat magnetite-PDMS complexes (i.e., no solvent or carrier fluid were present) were measured over time in the absence of an applied magnetic field to probe the expected properties upon storage. The viscosity of a neat ferrofluid increased over the course of a month, indicating that some aggregation occurred. However, this effect could be removed by shearing the fluids at a high rate. This suggests that the particles do not irreversibly flocculate under these conditions.
Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
2010-01-01
Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132
NASA Astrophysics Data System (ADS)
Cao, Shaowen; Shen, Baojia; Huang, Qian; Chen, Zhe
2018-06-01
Surface photodeposition of noble metal cocatalyst has been regarded as an effective approach to facilitate the separation of charge carriers and reduce the over-potential of water reduction, thus to enhance the photocatalytic H2-production activities of semiconductor photocatalyst. Herein, the influences of sacrificial agents used in the photodeposition process on the dispersion of noble metal nanoparticles are investigated, via a series of technique of photocatalytic hydrogen evolution test, microstructure analysis and photoelectrochemical measurement. As a result, the sacrificial agents are found to show large impact on the loading amount, particle size and distribution of different metals on the surface of g-C3N4. The real loading amount of Pt and Au is higher in methanol solution than that in triethanolamine solution. Better distribution and smaller size of Pt nanoparticles are achieved in the presence of methanol; while better distribution and smaller size of Au nanoparticles are achieved in the presence of triethanolamine. As a result, quite different charge transfer ability is achieved for the synthesized Pt and Au decorated g-C3N4, which subsequently leads to disparate photocatalytic activities of the same g-C3N4 photocatalyst under various conditions. The finding in this work indicates that the valid deposition content, particle size and distribution of metal cocatalysts should be carefully taken into account when comparing the photocatalytic activities among various samples.
NASA Astrophysics Data System (ADS)
Thiruvengadam, V.; Vitta, Satish
2016-06-01
The interparticle interactions in the magnetic nanocomposites play a dominant role in controlling phase transitions: superparamagnetic to superspin glass and to superferromagnetic. These interactions can be tuned by controlling the size and number density of nanoparticles. The aerogel composites, 0.3Ni-BC and 0.7Ni-BC, consisting of Ni nanoparticles distributed in the bacterial cellulose have been used as a model system to study these interactions. Contrary to conventional approach, size of Ni-nanoparticles is not controlled and allowed to form naturally in bacterial cellulose template. The uncontrolled growth of Ni results in the formation of nanoparticles with 3 different size distributions - <10 nm particles along the length of fibrils, 50 nm particles in the intermediate spaces between the fibrils, and >100 nm particles in voids formed by reticulate structure. At room temperature, the composites exhibit a weakly ferromagnetic behaviour with a coercivity of 40 Oe, which increases to 160 Oe at 10 K. The transition from weakly ferromagnetic state to superferromagnetic state at low temperatures is mediated by the superspin glass state at intermediate temperatures via the interparticle interactions aided by nanoparticles present along the length of fibres. A temperature dependent microstructural model has been developed to understand the magnetic behaviour of nanocomposite aerogels.
Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid
2017-03-01
Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2 *) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.
Hutchings, Graham J; Kiely, Christopher J
2013-08-20
The discovery that supported gold nanoparticles are exceptionally effective catalysts for redox reactions has led to an explosion of interest in gold nanoparticles. In addition, incorporating a second metal as an alloy with gold can enhance the catalyst performance even more. The addition of small amounts of gold to palladium, in particular, and vice versa significantly enhances the activity of supported gold-palladium nanoparticles as redox catalysts through what researchers believe is an electronic effect. In this Account, we describe and discuss methodologies for the synthesis of supported gold-palladium nanoparticles and their use as heterogeneous catalysts. In general, three key challenges need to be addressed in the synthesis of bimetallic nanoparticles: (i) control of the particle morphology, (ii) control of the particle size distribution, and (iii) control of the nanoparticle composition. We describe three methodologies to address these challenges. First, we discuss the relatively simple method of coimpregnation. Impregnation allows control of particle morphology during alloy formation but does not control the particle compositions or the particle size distribution. Even so, we contend that this method is the best preparation method in the catalyst discovery phase of any project, since it permits the investigation of many different catalyst structures in one experiment, which may aid the identification of new catalysts. A second approach, sol-immobilization, allows enhanced control of the particle size distribution and the particle morphology, but control of the composition of individual nanoparticles is not possible. Finally, a modified impregnation method can allow the control of all three of these crucial parameters. We discuss the effect of the different methodologies on three redox reactions: benzyl alcohol oxidation, toluene oxidation, and the direct synthesis of hydrogen peroxide. We show that the coimpregnation method provides the best reaction selectivity for benzyl alcohol oxidation and the direct synthesis of hydrogen peroxide. However, because of the reaction mechanism, the sol-immobilzation method gives very active and selective catalysts for toluene oxidation. We discuss the possible nature of the preferred active structures of the supported nanoparticles for these reactions. This paper is based on the IACS Heinz Heinemann Award Lecture entitled "Catalysis using gold nanoparticles" which was given in Munich in July 2012.
Penetration and distribution of PLGA nanoparticles in the human skin treated with microneedles.
Zhang, Wei; Gao, Jing; Zhu, Quangang; Zhang, Min; Ding, Xueying; Wang, Xiaoyu; Hou, Xuemei; Fan, Wei; Ding, Baoyue; Wu, Xin; Wang, Xiying; Gao, Shen
2010-12-15
This study was designed to investigate the penetration and the distribution of poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles in the human skin treated with microneedles. Fluorescent nanoparticles were prepared to indicate the transdermal transport process of the nanoparticles. Permeation study was performed on Franz-type diffusion cells in vitro. The distribution of nanoparticles was visualized by confocal laser scanning microscopy (CLSM) and quantified by high performance liquid chromatography (HPLC). CLSM images showed that nanoparticles were delivered into the microconduits created by microneedles and permeated into the epidermis and the dermis. The quantitative determination showed that (i) the permeation of nanoparticles into the skin was enhanced by microneedles, but no nanoparticle reached the receptor solution; (ii) much more nanoparticles deposited in the epidermis than those in the dermis; (iii) the permeation was in a particle size-dependent manner; and (iv) the permeation increased with the nanoparticle concentration increasing until a limit value was reached. These results suggested that microneedles could enhance the intradermal delivery of PLGA nanoparticles. The biodegradable nanoparticles would sustain drug release in the skin and supply the skin with drug over a prolonged period. This strategy would prove to be useful for topical drug administration. Copyright © 2010 Elsevier B.V. All rights reserved.
Copper Nanoparticles: Synthesis and Biological Activity
NASA Astrophysics Data System (ADS)
Satyvaldiev, A. S.; Zhasnakunov, Z. K.; Omurzak, E.; Doolotkeldieva, T. D.; Bobusheva, S. T.; Orozmatova, G. T.; Kelgenbaeva, Z.
2018-01-01
By means of XRD and FESEM analysis, it is established that copper nanoparticles with sizes less than 10 nm are formed during the chemical reduction, which form aggregates mainly with spherical shape. Presence of gelatin during the chemical reduction of copper induced formation of smaller size distribution nanoparticles than that of nanoparticles synthesized without gelatin and it can be related to formation of protective layer. Synthesized Cu nano-powders have sufficiently high activity against the Erwinia amylovora bacterium, and the bacterial growth inhibition depends on the Cu nanoparticles concentration. At a concentration of 5 mg / ml of Cu nanoparticles, the exciter growth inhibition zone reaches a maximum value within 72 hours and the lysis zone is 20 mm, and at a concentration of 1 mg / ml this value is 16 mm, which also indicates the significant antibacterial activity of this sample.
NASA Astrophysics Data System (ADS)
Liong, W. L.; Sreekantan, S.; Hutagalung, S. D.
2010-05-01
Silicon nanoparticles are synthesized by microemulsion route. Silicon tetrachloride (SiCl4) is used as a silicon source. Meanwhile, hydrazine (N2H5OH), sodium hydroxide (NaOH), and polyethylene glycol (PEG) are used as reduction agent, stabilizer, and capping agent, respectively. In this study, the effects of different solvents (methanol, 1-butanol, 2-propanol, ethanol, acetone, and toluene) on the dispersion and the stabilization of silicon nanoparticles are studied intensively. The results in this study show that ethanol solvent has given smaller particle size, better size distribution, stable suspension and well dispersion of silicon nanoparticles. The diameter of synthesized silicon nanoparticles is in the range of 30-100 nm. Moreover, the absorption edge of silicon nanoparticles in ethanol is observed at a shorter wavelength compared to the others solvent.
Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii
2016-12-01
The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.
NASA Astrophysics Data System (ADS)
Belaïd, Sarah; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Laurent, Sophie
2018-04-01
A study of the experimental conditions to synthesize monodisperse iron oxide nanocrystals prepared from the thermal decomposition of iron(III) acetylacetonate was carried out in the presence of surfactants and a reducing agent. The influence of temperature, synthesis time and surfactant amounts on nanoparticle properties is reported. This investigation combines relaxometric characterization and size properties. The relaxometric behavior of the nanomaterials depends on the selected experimental parameters. The synthesis of iron oxide nanoparticles with a high relaxivity and a high saturation magnetization can be obtained with a short reaction time at high temperature. Moreover, the influence of surfactant concentrations determines the optimal value in order to produce iron oxide nanoparticles with a narrow size distribution. The optimized synthesis is rapid, robust and reproductive, and produces nearly monodisperse magnetic nanocrystals.
Fabrication of PDMS-Based Microfluidic Devices: Application for Synthesis of Magnetic Nanoparticles
NASA Astrophysics Data System (ADS)
Thu, Vu Thi; Mai, An Ngoc; Le The Tam; Van Trung, Hoang; Thu, Phung Thi; Tien, Bui Quang; Thuat, Nguyen Tran; Lam, Tran Dai
2016-05-01
In this work, we have developed a convenient approach to synthesize magnetic nanoparticles with relatively high magnetization and controllable sizes. This was realized by combining the traditional co-precipitation method and microfluidic techniques inside microfluidic devices. The device was first designed, and then fabricated using simplified soft-lithography techniques. The device was utilized to synthesize magnetite nanoparticles. The synthesized nanomaterials were thoroughly characterized using field emission scanning electron microscopy and a vibrating sample magnetometer. The results demonstrated that the as-prepared device can be utilized as a simple and effective tool to synthesize magnetic nanoparticles with the sizes less than 10 nm and magnetization more than 50 emu/g. The development of these devices opens new strategies to synthesize nanomaterials with more precise dimensions at narrow size-distribution and with controllable behaviors.
Atomic engineering of mixed ferrite and core-shell nanoparticles.
Morrison, Shannon A; Cahill, Christopher L; Carpenter, Everett E; Calvin, Scott; Harris, Vincent G
2005-09-01
Nanoparticulate ferrites such as manganese zinc ferrite and nickel zinc ferrite hold great promise for advanced applications in power electronics. The use of these materials in current applications requires fine control over the nanoparticle size as well as size distribution to maximize their packing density. While there are several techniques for the synthesis of ferrite nanoparticles, reverse micelle techniques provide the greatest flexibility and control over size, crystallinity, and magnetic properties. Recipes for the synthesis of manganese zinc ferrite, nickel zinc ferrite, and an enhanced ferrite are presented along with analysis of the crystalline and magnetic properties. Comparisons are made on the quality of nanoparticles produced using different surfactant systems. The importance of various reaction conditions is explored with a discussion on the corresponding effects on the magnetic properties, particle morphology, stoichiometry, crystallinity, and phase purity.
NASA Astrophysics Data System (ADS)
Park, Jin-Ju; Park, Eun-Kwang; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Lee, Min-Ku
2017-09-01
Carbon steel with dispersed nano-sized TiC ceramic particles was fabricated by the ex-situ introduction of the particles into the melt, with the flow-assisted corrosion (FAC) resistance then investigated in the presence and absence of TiC nanoparticles using a once-through type of FAC loop test. From the potentiodynamic polarization curves, the current density at any given anodic potential was decreased and the open-circuit potential was increased by the addition of TiC nanoparticles. In addition, when the nano-sized TiC particles were added, the FAC rate was 1.38 times lower than that of carbon steel without TiC nanoparticles, indicating an improvement of the FAC resistance due to the homogeneous distribution of the TiC reinforcing nanoparticles.
Stylianopoulos, Triantafyllos; Economides, Eva-Athena; Baish, James W; Fukumura, Dai; Jain, Rakesh K
2015-09-01
Conventional drug delivery systems for solid tumors are composed of a nano-carrier that releases its therapeutic load. These two-stage nanoparticles utilize the enhanced permeability and retention (EPR) effect to enable preferential delivery to tumor tissue. However, the size-dependency of the EPR, the limited penetration of nanoparticles into the tumor as well as the rapid binding of the particles or the released cytotoxic agents to cancer cells and stromal components inhibit the uniform distribution of the drug and the efficacy of the treatment. Here, we employ mathematical modeling to study the effect of particle size, drug release rate and binding affinity on the distribution and efficacy of nanoparticles to derive optimal design rules. Furthermore, we introduce a new multi-stage delivery system. The system consists of a 20-nm primary nanoparticle, which releases 5-nm secondary particles, which in turn release the chemotherapeutic drug. We found that tuning the drug release kinetics and binding affinities leads to improved delivery of the drug. Our results also indicate that multi-stage nanoparticles are superior over two-stage nano-carriers provided they have a faster drug release rate and for high binding affinity drugs. Furthermore, our results suggest that smaller nanoparticles achieve better treatment outcome.
NASA Astrophysics Data System (ADS)
Mishchenko, I.; Chuev, M.; Kubrin, S.; Lastovina, T.; Polyakov, V.; Soldatov, A.
2018-05-01
Alternative explanation to the effect of disappearance of the Morin transition on hematite nanoparticles with their size decreasing is proposed basing on an idea of the predominant role of the shape anisotropy for nanosize particles. Three types of the magnetic structure of hematite nanoparticles with various sizes are found by Mössbauer spectroscopy: coexistence of the well-pronounced antiferromagnetic and weakly ferromagnetic phases for particles with average diameters of about 55 nm, non-uniform distribution of the magnetization axes which concentrate on the vicinity of the basal plane (111) for prolonged particles with cross sections of about 20 nm, and uniform distribution of the easy axes in regard to the crystalline directions for 3-nm particles. Description of the temperature evolution of experimental data within novel model of the magnetic dynamics for antiferromagnetic particles which accounts the exchange, relativistic, and anisotropy interactions is provided, and the structural as well as energy characteristics of the studied systems are reconstructed.
MBE growth of GaAs and InAs nanowires using colloidal Ag nanoparticles
NASA Astrophysics Data System (ADS)
Ilkiv, I. V.; Reznik, R. R.; Kotlyar, K. P.; Bouravleuv, A. D.; Cirlin, G. E.
2017-11-01
Ag colloidal nanoparticles were used as a catalyst for molecular beam epitaxy of GaAs and InAs nanowires on the Si(111) substrates. The scanning electron microscopy measurements revealed that nanowires obtained are uniform and have small size distribution.
Fréchette-Viens, Laurie; Hadioui, Madjid; Wilkinson, Kevin J
2017-01-15
The applicability of single particle ICP-MS (SP-ICP-MS) for the analysis of nanoparticle size distributions and the determination of particle numbers was evaluated using the rare earth oxide, La 2 O 3 , as a model particle. The composition of the storage containers, as well as the ICP-MS sample introduction system were found to significantly impact SP-ICP-MS analysis. While La 2 O 3 nanoparticles (La 2 O 3 NP) did not appear to interact strongly with sample containers, adsorptive losses of La 3+ (over 24h) were substantial (>72%) for fluorinated ethylene propylene bottles as opposed to polypropylene (<10%). Furthermore, each part of the sample introduction system (nebulizers made of perfluoroalkoxy alkane (PFA) or glass, PFA capillary tubing, and polyvinyl chloride (PVC) peristaltic pump tubing) contributed to La 3+ adsorptive losses. On the other hand, the presence of natural organic matter in the nanoparticle suspensions led to a decreased adsorptive loss in both the sample containers and the introduction system, suggesting that SP-ICP-MS may nonetheless be appropriate for NP analysis in environmental matrices. Coupling of an ion-exchange resin to the SP-ICP-MS led to more accurate determinations of the La 2 O 3 NP size distributions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abrari, Masoud; Ghanaatshoar, Majid; Hosseiny Davarani, Saied Saeed; Moazami, Hamid Reza; Kazeminezhad, Iraj
2017-05-01
A facile synthetic route has been employed to prepare tin oxide nanoparticles. The route comprises anodic dissolution of metallic tin in the presence of tetramethylammonium chloride called electrooxidation. The effect of experimental parameters was investigated with special focus on solution pH. The obtained nanostructures have been characterized by XRD, EDS, TEM, FESEM, FTIR and UV-visible studies. The results show that the solution pH has a critical influence on the nanoparticles properties. The hydrophilic feature of nanoparticles decreases with pH growth, whereas their mean size increases. On the other hand, the size distribution is much uniform for the samples prepared at low pH. Having achieved the nanoparticles by electrooxidation, the dye-sensitized solar cells based on the produced SnO_2 nanoparticles were fabricated and the influence of nanoparticles on their performance was investigated. By variation in solution pH, we prepared nanoparticles with different particle sizes and photoanodes with various dye-loading abilities. The dye absorption and consequently current density of cells increased in acidic case, and therefore, power conversion efficiency grew up by 33% in acidic synthetic environment.
Preparation and bactericide activity of gallic acid stabilized gold nanoparticles
NASA Astrophysics Data System (ADS)
Moreno-Álvarez, S. A.; Martínez-Castañón, G. A.; Niño-Martínez, N.; Reyes-Macías, J. F.; Patiño-Marín, N.; Loyola-Rodríguez, J. P.; Ruiz, Facundo
2010-10-01
In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.
Chang, Yanjiao; Yang, Jingde; Ren, Lili; Zhou, Jiang
2018-08-15
The influence of chain length distribution of amylose on size and structure of the amylose nanoparticles (ANPs) prepared through nanoprecipitation was investigated. Amylose with different chain length distributions was obtained by β-amylase treating amylose paste for different times and measured by size exclusion chromatography (SEC) and fluorophore-assisted carbohydrate electrophoresis (FACE). ANPs prepared via precipitation were characterized by using dynamic light scattering (DLS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results showed that the β-amylase treatments led to decrease in chain length of amylose, and it was the most important factor affecting size of ANPs. When hydrolysis degree of amylose was 52.8%, mean size of ANPs decreased from 206.4 nm to 102.7 nm. All the ANPs displayed a V-type crystalline structure and the effect of amylose chain length on crystallinity of the precipitated ANPs was negligible in the investigated range. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cheviron, Perrine; Gouanvé, Fabrice; Espuche, Eliane
2014-08-08
Environmentally friendly silver nanocomposite films were prepared by an ex situ method consisting firstly in the preparation of colloidal silver dispersions and secondly in the dispersion of the as-prepared nanoparticles in a potato starch/glycerol matrix, keeping a green chemistry process all along the synthesis steps. In the first step concerned with the preparation of the colloidal silver dispersions, water, glucose and soluble starch were used as solvent, reducing agent and stabilizing agent, respectively. The influences of the glucose amount and reaction time were investigated on the size and size distribution of the silver nanoparticles. Two distinct silver nanoparticle populations in size (diameter around 5 nm size for the first one and from 20 to 50 nm for the second one) were distinguished and still highlighted in the potato starch/glycerol based nanocomposite films. It was remarkable that lower nanoparticle mean sizes were evidenced by both TEM and UV-vis analyses in the nanocomposites in comparison to the respective colloidal silver dispersions. A dispersion mechanism based on the potential interactions developed between the nanoparticles and the polymer matrix and on the polymer chain lengths was proposed to explain this morphology. These nanocomposite film series can be viewed as a promising candidate for many applications in antimicrobial packaging, biomedicines and sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metrology of airborne and liquid-borne nanoparticles: current status and future needs
NASA Astrophysics Data System (ADS)
Ehara, Kensei; Sakurai, Hiromu
2010-04-01
The current status and future needs of nanoparticle metrology are discussed, particularly with respect to measurements of size, size distribution and number concentration of airborne and liquid-borne nanoparticles. Possible classification of types of measurement standards is proposed, and the role of each type of standard, including the feasibility of its establishment, is examined. A desirable interplay between measurement standards and documentary standards in establishing the traceability chain in particle measurements is suggested. Particle-related calibration services currently provided by our laboratory at the National Institute of Advanced Industrial Science and Technology are also described.
Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael
2016-07-01
Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test aerosols might cause artifacts by counting "phantom particles." Overall, the information obtained from this study will help understand the limitations of the SMPS in measuring nanoparticles so that one can adequately interpret the results for risk assessments and exposure prevention in an occupational or ambient environment.
Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters
Mehrmohammadi, M; Yoon, KY; Qu, M; Johnston, KP; Emelianov, SY
2011-01-01
Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR. PMID:21157009
Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter
2008-09-01
The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.
Erfani, Maryam; Saion, Elias; Soltani, Nayereh; Hashim, Mansor; Wan Abdullah, Wan Saffiey B.; Navasery, Manizheh
2012-01-01
Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures. PMID:23203073
NASA Astrophysics Data System (ADS)
Kaszewski, Jarosław; Borgstrom, Emanuel; Witkowski, Bartłomiej S.; Wachnicki, Łukasz; Kiełbik, Paula; Slonska, Anna; Domino, Malgorzata A.; Narkiewicz, Urszula; Gajewski, Zdzislaw; Hochepied, Jean-François; Godlewski, Michał M.; Godlewski, Marek
2017-12-01
The use of nanoparticles in medicine is a rapidly growing research field with numerous potential applications, especially in the field of cancer diagnosis and therapy. Nanoparticles can be intrinsically diagnostic of therapeutic, or they can be conjugated with diagnostic or therapeutic compounds. Nanoparticles may also passively or actively target tumor cells specifically using the enhanced permeation and retention (EPR) effect, or the addition of targeting ligands to their surface. This may provide a diagnostic or/and therapeutic tools to target primary as well as metastatic tumors. The transport, distribution and toxicity of nanoparticles depends greatly on their size and composition, thus every new formulation needs to be extensively researched. This work was focused on the development of Tb-doped ZrO2 nanoparticles (NPs) for application in cancer imaging. Obtained nanoparticles were below 10 nm with very low influence of Tb concentration on size. Terbium stabilization of ZrO2 had influence on the luminescence properties of obtained material. Partially stabilized zirconium dioxide exhibited broad host related emission peaking at 500 nm, disappearing with the terbium content. We confirmed alimentary absorption and wide distribution of luminescent ZrO2:Tb nanoparticles in mice with their gradual accumulation in the experimentally induced mammary cancers. Furthermore, a high concentration of NPs was found within the lung metastases as opposed to healthy lung tissue, where no NPs-related signal was observed.
Koopaei, Mona Noori; Dinarvand, Rassoul; Amini, Mohsen; Rabbani, Hojatollah; Emami, Shaghayegh; Ostad, Seyed Nasser; Atyabi, Fatemeh
2011-01-01
The objective of this study was to develop pegylated poly lactide-co-glycolide acid (PLGA) immunonanocarriers for targeting delivery of docetaxel to human breast cancer cells. The polyethylene glycol (PEG) groups on the surface of the PLGA nanoparticles were functionalized using maleimide groups. Trastuzumab, a monoclonal antibody against human epidermal growth factor receptor 2 (HER2) antigens of cancer cells, used as the targeting moiety, was attached to the maleimide groups on the surface of pegylated PLGA nanoparticles. Nanoparticles prepared by a nanoprecipitation method were characterized for their size, size distribution, surface charge, surface morphology, drug-loading, and in vitro drug release profile. The average size of the trastuzumab-decorated nanoparticles was 254 ± 16.4 nm and their zeta potential was -11.5 ± 1.4 mV. The average size of the nontargeted PLGA nanoparticles was 183 ± 22 nm and their zeta potential was -2.6 ± 0.34 mV. The cellular uptake of nanoparticles was studied using both HER2-positive (SKBR3 and BT-474) and HER2-negative (Calu-6) cell lines. The cytotoxicity of the immunonanocarriers against HER2-positive cell lines was significantly higher than that of nontargeted PLGA nanoparticles and free docetaxel.
Optical and dielectric properties of NiFe2O4 nanoparticles under different synthesized temperature
NASA Astrophysics Data System (ADS)
Parishani, Marziye; Nadafan, Marzieh; Dehghani, Zahra; Malekfar, Rasoul; Khorrami, G. H. H.
In this research, NiFe2O4 nanoparticles was prepared via the simple sol-gel route, using different sintering temperature. This nanoparticle was characterized via X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), and FTIR spectra. The XRD patterns show by increasing the synthesized temperature, the intensity, and broadening of peaks are decreased so the results are more crystallization and raising the size of nanoparticles. The size distribution in the histogram of the NiFe2O4 nanoparticles is 42, 96, and 315 nm at 750 °C, 850 °C, and 950 °C, respectively. The FTIR spectra were evaluated using Kramers-Kronig method. Results approved the existing of certain relations between sintering temperatures and grain size of nanoparticles. By raising the temperature from 750 °C to 950 °C, the grain size was increased from 70 nm to 300 nm and the optical constants of nanoparticles were strongly related to synthesizing temperature as well. Since by increasing temperature, both real/imaginary parts of the refractive index and dielectric function were decreased. Consequently, the transversal (TO) and longitudinal (LO) phonon frequencies are detected. The TO and LO frequencies have shifted to red frequencies by increasing reaction temperature.
Near-field polarization distribution of Si nanoparticles near substrate
NASA Astrophysics Data System (ADS)
Reshetov, S. A.; Vladimirova, Yu. V.; Gevorkian, L. P.; Zadkov, V. N.
2017-01-01
Structure of the near-field intensity and polarization distributions, the latter is described with the generalized 3D Stokes parameters, of a spherical Si subwavelength nanoparticle in a non-magnetic and non-absorbing media near a dielectric substrate has been studied in detail with the help of the Mie theory and an extension of the Weyl's method for the calculation of the reflection of dipole radiation by a flat surface. It is shown that for the nanoparticle near the substrate the interference effects due to the scattering by the nanoparticle and interaction with the substrate play an essential role. We also demonstrate how these effects depend on the dielectric properties of the nanoparticle, its size, distance to the substrate as well as on the polarization, wavelength and incident angle of the external light field.
Zhou, Zilan; Badkas, Apurva; Stevenson, Max; Lee, Joo-Youp; Leung, Yuet-Kin
2015-06-20
A dual functional nano-scaled drug carrier, comprising of a targeting ligand and pH sensitivity, has been made in order to increase the specificity and efficacy of the drug delivery system. The nanoparticles are made of a tri-block copolymer, poly(d,l lactide-co-glycolide) (PLGA)-b-poly(l-histidine) (PHis)-b-polyethylene glycol (PEG), via nano-precipitation. To provide the nanoparticle feature of endolysosomal escape and pH sensitivity, poly(l-histidine) was chosen as a proton sponge polymer. Herceptin, which specifically binds to HER2 antigen, was conjugated to the nanoparticles through click chemistry. The nanoparticles were characterized via dynamic light scattering (DLS) and transmission electron microscopy (TEM). Both methods showed the sizes of about 100nm with a uniform size distribution. The pH sensitivity was assessed by drug releases and size changes at different pH conditions. As pH decreased from 7.4 to 5.2, the drug release rate accelerated and the size significantly increased. During in vitro tests against human breast cancer cell lines, MCF-7 and SK-BR-3 showed significantly increased uptake for Herceptin-conjugated nanoparticles, as compared to non-targeted nanoparticles. Herceptin-conjugated pH-sensitive nanoparticles showed the highest therapeutic effect, and thus validated the efficacy of a combined approach of pH sensitivity and active targeting. Copyright © 2015 Elsevier B.V. All rights reserved.
Ankamwar, Balaprasad; Pansare, Sachin; Sur, Ujjal Kumar
2017-02-01
Development of cost-efficient and eco-friendly biogenic synthetic protocols for the green synthesis of biocompatible metal nanoparticles has become popular among researchers in recent years. The biogenic synthesis of these nanoparticles and their potential biomedical applications introduces the concept of nanobiotechnology, which has become the latest fascinating area of research. The lower cost and lesser side effects as compare to chemical methods of synthesis are the main advantages of biosynthesis. In the present investigation, aqueous leaf extract of Plumbago zeylanica had been used to synthesize anisotropic gold nanoparticles. The as-synthesized gold nanoparticles were centrifuged at 5000 and 10000 rpm and compared both pellets using UV-visible spectroscopy, XRD, FTIR and TEM techniques. We have studied here the effect of speed of centrifugation on the yield, shape, size as well as size distribution of as synthesized gold nanoparticles.
Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yao; Ma, Kai; Kao, Teresa
Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less
Jin, Hong-Ying; Li, Da-Wei; Zhang, Na; Gu, Zhen; Long, Yi-Tao
2015-06-10
We demonstrated a practical method to analyze carbohydrate-protein interaction based on single plasmonic nanoparticles by conventional dark field microscopy (DFM). Protein concanavalin A (ConA) was modified on large sized gold nanoparticles (AuNPs), and dextran was conjugated on small sized AuNPs. As the interaction between ConA and dextran resulted in two kinds of gold nanoparticles coupled together, which caused coupling of plasmonic oscillations, apparent color changes (from green to yellow) of the single AuNPs were observed through DFM. Then, the color information was instantly transformed into a statistic peak wavelength distribution in less than 1 min by a self-developed statistical program (nanoparticleAnalysis). In addition, the interaction between ConA and dextran was proved with biospecific recognition. This approach is high-throughput and real-time, and is a convenient method to analyze carbohydrate-protein interaction at the single nanoparticle level efficiently.
Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling
Sun, Yao; Ma, Kai; Kao, Teresa; ...
2017-08-15
Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less
Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid
NASA Astrophysics Data System (ADS)
Małolepszy, A.; Błonski, S.; Chrzanowska-Giżyńska, J.; Wojasiński, M.; Płocinski, T.; Stobinski, L.; Szymanski, Z.
2018-04-01
The results of synthesis of the fluorescent carbon dots (CDots) from graphite target and reduced graphene oxide (rGO) nanoparticles performed by the nanosecond laser ablation in polyethylene glycol 200 (PEG200) are shown. Two-step laser irradiation (first graphite target, next achieved suspension) revealed a very effective production of CDots. However, the ablation in PEG appeared to be effective with 1064 nm laser pulse in contrast to the ablation with 355 nm laser pulse. In the case of rGO nanoparticles similar laser irradiation procedure was less efficient. In both cases, received nanoparticles exhibited strong, broadband photoluminescence with a maximum dependent on the excitation wavelength. The size distribution for obtained CDots was evaluated using the DLS technique and HRTEM images. The results from both methods show quite good agreement in nanoparticle size estimation although the DLS method slightly overestimates nanoparticle's diameter.
Preparation and characterization of silver nanoparticles homogenous thin films
NASA Astrophysics Data System (ADS)
Hegazy, Maroof A.; Borham, E.
2018-06-01
The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.
Water soluble (Ln3+) doped nanoparticle: Retention of strong luminescence
NASA Astrophysics Data System (ADS)
Attar, Tarannum Vahid; Khandpekar, Mahendra M.
2018-04-01
This paper deals with the synthesis of hexagonal nanoparticles of LaF3: Nd, Ho (LFNH) in the presence of LaCl3.7H2O and NH4F by precipitation method using deionized water as solvent. The nanoparticles have a nearly hexagonal shape with cell parameters, a = b = 7.0980 AU and c = 7.2300 AU and confirms with the JCPDS standard card (32-0483) of pure LaF3 crystals. The TEM results show that the average sizes of these nanoparticles are 15nm which is consistent with the sizes obtained from XRD measurements. The SEM image shows uniform size distribution of the nanoparticles. Detection of Second harmonic generation (SHG) signal together with the presence of wide transparency window (UV studies) makes LFNH suitable for optoelectronic applications. The Photoluminescence of the nanocrystals has been observed by excitation and emission spectra. The peak at 629nm indicates red up conversion fluorescence useful in applications like bioimaging and biolabelling.
NASA Astrophysics Data System (ADS)
Zhu, ZhengXi
Nanoparticles loaded with hydrophobic components (e.g., active pharmaceutical ingredients, medical diagnostic agents, nutritional or personal care chemicals, catalysts, dyes/pigments, and substances with exceptional magnetic/optical/electronic/thermal properties) have tremendous industrial applications. The common desire is to efficiently generate nanoparticles with a desired size, size distribution, and size stability. Recently, Flash NanoPrecipition (FNP) technique with a fast, continuous, and easily scalable process has been developed to efficiently generate hydrophobe-loaded nanoparticles. This dissertation extended this technique, optimized process conditions and material formulations, and gave new insights into the mechanism and kinetics of nanoparticle formation. This dissertation demonstrated successful generation of spherical beta-carotene nanoparticles with an average diameter of 50--100 nm (90 wt% nanoparticles below 200 nm), good size stability (maintained an average diameter below 200 nm for at least one week in saline), and much higher loading (80--90 wt%) than traditional carriers, such as micelles and polymersomes (typically <20 wt%). Moreover, the nanoparticles are amorphous and expected to have a high dissolution rate and bioavailability. To give insights into the mechanism and kinetics of nanoparticle formation, much remarkable evidence supported the kinetically frozen structures of the nanoparticles rather than the thermodynamic equilibrium micelles. Time scales of the particle formation via FNP were proposed. To optimize the material formulations, either polyelectrolytes (i.e., epsilon-polylysine, branched and linear poly(ethylene imine), and chitosan) or amphiphilic diblock copolymers (i.e., polystyrene-b-poly(ethylene glycol) (PS-b-PEG), polycarprolactone-b-poly(ethylene glycol) (PCL-b-PEG), poly(lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG)) were selectively screened to study the nanoparticle size, distribution, and stability. The effect of the molecular weight of the polymers and pH were also studied. Chitosan and PLGA-b-PEG best stabilized the beta-carotene nanoparticles. Solubility of the hydrophobic drug solute in the aqueous mixture was considered to dominate the nanoparticle stability (i.e., size and morphology) in terms of Ostwald ripening and recrystallization. The lower solubility the drug is of, the greater stability the nanoparticles have. Chemically bonding drug compounds with cleavable hydrophobic moieties to form prodrugs were used to enhance their hydrophobicity and thus the nanoparticle stability. It opened a generic strategy to enhance the stability of nanoparticles formed via FNP. beta-carotene, paclitaxel, paclitaxel prodrug, betulin, hydrocortisone, and hydrocortisone prodrug as the drugs were studied. Solubility parameter (delta), and octanol/water partition coefficients (LogP), provide hydrophobicity indicators for the compounds. LogP showed a good correlation with the nanoparticle stability. An empirical rule was built to conveniently predict particle stability for randomly selected drugs. To optimize the process conditions, two-stream confined impinging jet mixer (CIJ) and four-stream confined vortex jet mixer were used. The particle size was studied by varying drug and polymer concentrations, and flow rate (corresponding to Reynolds number (Re)). To extend the FNP technique, this dissertation demonstrated successful creation of stabilized nanoparticles by integrating an in-situ reactive coupling of a hydrophilic polymer block with a hydrophobic one with FNP. The kinetics of the fast coupling reaction was studied. This dissertation also introduced polyelectrolytes (i.e., epsilon-polylysine, poly(ethylene imine), and chitosan) into FNP to electrosterically stabilize nanoparticles.
NASA Astrophysics Data System (ADS)
Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.
2015-12-01
Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.
Synthesis of noble metal/carbon nanotube composites in supercritical methanol.
Sun, Zhenyu; Fu, Lei; Liu, Zhimin; Han, Buxing; Liu, Yunqi; Du, Jimin
2006-03-01
A simple and efficient route has been employed to deposit noble metal nanoparticles (Pt, Ru, Pt-Ru, Rh, Ru-Sn) onto carbon nanotubes (CNTs) in supercritical methanol solution. In this method, the inorganic metallic salts acted as metal precursors, and methanol as solvent as well as reductant for the precursors. The as-prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy, and X-ray photoelectron spectroscopy analyses. It was demonstrated that the CNTs were decorated by crystalline metal nanoparticles with uniform sizes and a narrow particle size distribution. The size and loading content of the nanoparticles on CNTs could be tuned by manipulating reaction parameters. Furthermore, the formation mechanism of the composites was also discussed.
Mishra, Brijeshkunvar J; Kaul, Ankur; Trivedi, Piyush
2015-02-01
Targeted delivery of drugs is still a therapeutic challenge and numerous methods have been reported for the same. In this study, emphasis was placed on developing nanoparticles loaded with 5-fluorouracil (FU) and modifying the surface of the nanoparticles by conjugation with amino acid, to improve the distribution of 5-FU in the lungs. An emulsion solvent evaporation technique was used to formulate nanoparticles of FU using Poly L-lactide and Pluronic F-68. The nanoparticles were conjugated with L-Cysteine using EDC as the activator of COOH group and were evaluated for product yield, particle size, surface morphology, amount of conjugation by Ellman's method and in vitro drug release study. The results indicated 60-65% yield with an average particle size of 242.7 ± 37.11 nm for the cysteine conjugated nanoparticle (CNP) formulation and more than 70% conjugation of cysteine. The cumulative percentage of drug released over a period of 24 h was found to be 58%. An increase in distribution of the delivery system in lungs (11.4% ID after 1 h) in mice was found indicating the role of L-Cysteine in the transport mechanism to the lungs. In vivo kinetic studies in rats revealed higher circulation time of CNP as compared to pure FU solution. The study helps in designing a colloidal delivery system for increased distribution of drugs to the lungs and may be helpful in delivery of drugs in conditions like non-small cell lung carcinomas.
Slowing of Femtosecond Laser-Generated Nanoparticles in a Background Gas
Rouleau, Christopher M.; Puretzky, Alexander A.; Geohegan, David B.
2014-11-25
The slowing of Pt nanoparticles in argon background gas was characterized by Rayleigh scattering imaging using a plume of nanoparticles generated by femtosecond laser through thin film ablation (fs-TTFA) of 20 nanometers-thick Pt films. The ablation was performed at threshold laser energy fluences for complete film removal to provide a well-defined plume consisting almost entirely of nanoparticles traveling with a narrow velocity distribution, providing a unique system to unambiguously characterize the slowing of nanoparticles during interaction with background gases. Nanoparticles of ~200 nm diameter were found to decelerate in background Ar gas with pressures less than 50 Torr in goodmore » agreement with a linear drag model in the Epstein regime. Based on this model, the stopping distance of small nanoparticles in the plume was predicted and tested by particle collection in an off-axis geometry, and size distribution analysis by transmission electron microscopy. These results permit a basis to interpret nanoparticle propagation through background gases in laser ablation plumes that contain mixed components.« less
Szakács, Zoltán; Mészáros, Tamás; de Jonge, Marien I; Gyurcsányi, Róbert E
2018-05-30
Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.
Metal nanoparticles as a conductive catalyst
Coker, Eric N [Albuquerque, NM
2010-08-03
A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.
Colored and semitransparent silver nanoparticle layers deposited by spin coating of silver nanoink
NASA Astrophysics Data System (ADS)
Yoon, Hoi Jin; Jo, Yejin; Jeong, Sunho; Lim, Jung Wook; Lee, Seung-Yun
2018-05-01
In this letter, we report on the fabrication and characterization of colored and semitransparent silver nanoparticle layers. A spin coating of silver nanoink is used to deposit silver nanoparticle layers onto substrates. The transmittance and color of the silver nanoparticle layers are significantly dependent on the spin speed and nanoink concentration, owing to variations in the size and distribution of the nanoparticles. Both color variation and efficiency improvement are achieved with the application of silver nanoparticles to semitransparent Si thin-film solar cells, which is associated with the excitation of the dipole or quadruple plasmon modes of the silver nanoparticles.
Abdelsayed, Victor; El-Shall, M Samy
2014-08-07
This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicates that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong correlation is found between the seed nanoparticle's size and the degree of the supersaturation of the condensing vapor. This result and the agreement among the calculated Kelvin diameters and the size of the nucleating Al nanoparticles determined by transmission electron microscopy provide strong proof for the development of a new approach for the separation and characterization of heterogeneous nuclei formed in organic vapors. These processes can take place in the atmosphere by a combination of several organic species including polar compounds which could be very efficient in activating charged nanoparticles and cluster ions of atmospheric relevance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelsayed, Victor; Samy El-Shall, M., E-mail: mselshal@vcu.edu
This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicatesmore » that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong correlation is found between the seed nanoparticle's size and the degree of the supersaturation of the condensing vapor. This result and the agreement among the calculated Kelvin diameters and the size of the nucleating Al nanoparticles determined by transmission electron microscopy provide strong proof for the development of a new approach for the separation and characterization of heterogeneous nuclei formed in organic vapors. These processes can take place in the atmosphere by a combination of several organic species including polar compounds which could be very efficient in activating charged nanoparticles and cluster ions of atmospheric relevance.« less
Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst.
Karousos, Dionysios S; Desdenakis, Kostantinos I; Sakkas, Petros M; Sourkouni, Georgia; Pollet, Bruno G; Argirusis, Christos
2017-03-01
Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black. Copyright © 2016 Elsevier B.V. All rights reserved.
Biological synthesis of platinum nanoparticles with apoferritin.
Deng, Q Y; Yang, B; Wang, J F; Whiteley, C G; Wang, X N
2009-10-01
A novel biological method for the synthesis of platinum nanoparticles using the horse spleen apoferritin (HSAF) is reported. When HSAF was incubated with K(2)PtCl(6) at 23 degrees C) for 48 h followed by subsequent reduction with NaBH(4) it resulted in the formation of spherical platinum nanoparticles, size 4.7 +/- 0.9 nm, with narrow particle size distribution confirmed by transmission electron microscopy and energy dispersive X-ray analysis. As the initial platinum concentration increased through 0.155, 0.31, 0.465 to 0.62 mM the efficiency of its removal from solution by the apoferritin was 99, 99, 84 and 71% respectively. The maximum uptake of platinum salt per mM apoferritin was estimated at 12.7 mmol l(-1) h(-1). These results clearly indicate that the HSAF protein cage can successfully serve as a suitable size-constrained support matrix for the biological synthesis of platinum nanoparticles.
Effenberger, Fernando B; Couto, Ricardo A; Kiyohara, Pedro K; Machado, Giovanna; Masunaga, Sueli H; Jardim, Renato F; Rossi, Liane M
2017-03-17
The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe 3 O 4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.
Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles
NASA Astrophysics Data System (ADS)
Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert
2015-03-01
The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. Dedicated to Prof. Brigitte Weiss.
NASA Astrophysics Data System (ADS)
Qamar, M.; Yamani, Z. H.; Gondal, M. A.; Alhooshani, K.
2011-09-01
The article deals with the synthesis of highly active visible-light-driven nanocomposite for the decontamination of water hazards under sunlight-type excitation. The surface of visible-light-active nanostructured photocatalyst tungsten oxide (WO 3) was modified with noble metals, such as platinum (Pt) and gold (Au) nanoparticles, and the resulting photocatalytic activity of the nanocomposites was investigated by studying the removal of Methyl Orange and 2,4-Dichlorophenoxyacetic acid (2,4-D) under sunlight-type excitation. The study revealed that the deposited noble metals are not always favorable for the enhancement of photocatalytic response of catalysts; the activity of WO 3 was enhanced manyfold (˜8 times) by depositing an optimum amount of Pt nanoparticles after certain photodeposition time whereas the presence of Au nanoparticles onto the WO 3 surface, under identical experimental conditions, affected the removal process negatively. The variation in the photocatalytic activity of nanocomposites was attributed to the size of the deposited metals; Pt nanoparticles were uniformly dispersed with narrow size distribution (2-4 nm) while the size distribution of Au nanoparticles was found to be 10-15 nm for similar preparation conditions. The effects of critical parameters, such as metal deposition time and metal contents, on the photocatalytic activity of WO 3 were investigated. Furthermore, Pt/WO 3 nanocomposites showed good stability and recyclability under the conditions studied.
Usón, Laura; Sebastian, Victor; Mayoral, Alvaro; Hueso, Jose L; Eguizabal, Adela; Arruebo, Manuel; Santamaria, Jesus
2015-06-14
In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible.
Peters, Ruud J B; van Bemmel, Greet; Herrera-Rivera, Zahira; Helsper, Hans P F G; Marvin, Hans J P; Weigel, Stefan; Tromp, Peter C; Oomen, Agnes G; Rietveld, Anton G; Bouwmeester, Hans
2014-07-09
Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the number-based size distribution of TiO2 particles present in these products. Three principally different methods have been used to determine the number-based size distribution of TiO2 particles: electron microscopy, asymmetric flow field-flow fractionation combined with inductively coupled mass spectrometry, and single-particle inductively coupled mass spectrometry. The results show that all E171 materials have similar size distributions with primary particle sizes in the range of 60-300 nm. Depending on the analytical method used, 10-15% of the particles in these materials had sizes below 100 nm. In 24 of the 27 foods and personal care products detectable amounts of titanium were found ranging from 0.02 to 9.0 mg TiO2/g product. The number-based size distributions for TiO2 particles in the food and personal care products showed that 5-10% of the particles in these products had sizes below 100 nm, comparable to that found in the E171 materials. Comparable size distributions were found using the three principally different analytical methods. Although the applied methods are considered state of the art, they showed practical size limits for TiO2 particles in the range of 20-50 nm, which may introduce a significant bias in the size distribution because particles <20 nm are excluded. This shows the inability of current state of the art methods to support the European Union recommendation for the definition of nanomaterials.
Chen, Ai-Zheng; Wang, Guang-Ya; Wang, Shi-Bin; Feng, Jian-Gang; Liu, Yuan-Gang; Kang, Yong-Qiang
2012-01-01
The supercritical CO2-based technologies have been widely used in the formation of drug and/or polymer particles for biomedical applications. In this study, nanoparticles of poly-(methyl vinyl ether-co-maleic anhydride) (PVM/MA) were successfully fabricated by a process of solution-enhanced dispersion by supercritical CO2 (SEDS). A 23 factorial experiment was designed to investigate and identify the significance of the processing parameters (concentration, flow and solvent/nonsolvent) for the surface morphology, particle size, and particle size distribution of the products. The effect of the concentration of PVM/MA was found to be dominant in the results regarding particle size. Decreasing the initial solution concentration of PVM/MA decreased the particle size significantly. After optimization, the resulting PVM/MA nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution. Fourier transform infrared spectroscopy (FTIR) spectra demonstrated that the chemical composition of PVM/MA was not altered during the SEDS process and that the SEDS process was therefore a typical physical process. The absolute value of zeta potential of the obtained PVM/MA nanoparticles was larger than 40 mV, indicating the samples’ stability in aqueous suspension. Analysis of thermogravimetry-differential scanning calorimetry (TG-DSC) revealed that the effect of the SEDS process on the thermostability of PVM/MA was negligible. The results of gas chromatography (GC) analysis confirmed that the SEDS process could efficiently remove the organic residue.
NASA Astrophysics Data System (ADS)
Martínez-Bernett, D.; Silva-Granados, A.; Correa-Torres, S. N.; Herrera, A.
2016-02-01
It was studied the green synthesis of silver nanoparticles (AgNPs) from the reduction of a silver nitrate solution (1 and 10mM) in the presence of an extract of mangifera indica leaves. Phytochemicals components present in extracts of mango leaves were determined using a GC-MS chromatograph. The results showed the presence of the phenolic compound pyrogallol (26.9% wt/5mL of extract) and oleic acid (29.1% wt/5mL of extract), which are useful for the reduction of the metallic salt AgNO3 and the stabilization of silver nanoparticles. The synthesized nanoparticles were characterized by UV visible spectroscopy (UV-vis), evidencing absorbances at wavelengths of 417nm (AgNPs-1) and 414nm (AgNPs- 10), which are characteristic peaks of this metallic nanoparticles. Scanning Electron Microscopy (SEM) was used to determine the size of the synthesized nanoparticles. A particle size of about 28±7nm was observed for the AgNPs-1 sample and 26±5nm for the AgNPs-10. This suggests the advantages of green chemistry to obtain silver nanoparticles with a narrow size distribution.
Casa, Diani Meza; Karam, Thaysa Ksiaskiewcz; Alves, Aline de Cristo Soares; Zgoda, Aline Aparecida; Khalil, Najeh Maissar; Mainardes, Rubiana Mara
2015-12-01
In this study, nanoparticles based on bovine serum albumin (BSA) containing amphotericin B (AmB) were obtained by the desolvation method and characterized with respect to size, size distribution, AmB encapsulation efficiency, AmB state of aggregation, and AmB in vitro release profile. After, the effect of nanoparticles on the cytotoxicity of human erythrocytes in vitro and efficacy over strains of Candida spp. were evaluated. The mean particle size was 156 nm and the AmB encapsulation efficiency was over 82%. The in vitro release profile revealed a sustained release of approximately 48% of AmB over 5 days. AmB is present in BSA nanoparticles as monomer. AmB-loaded nanoparticles showed very low index of hemolysis (less than 8%) in 72 h of assay compared to free AmB, which presented 100% of hemolysis in 2 h of incubation. The AmB-loaded BSA nanoparticles were as effective as free AmB against Candida albicans and Candida tropicalis, considering their sustained release profile. Thus, BSA nanoparticles are potential carriers for AmB, reducing its molecular aggregation and prolonging its release, resulting in lower cytotoxicity while maintaining its antifungal activity.
NASA Astrophysics Data System (ADS)
Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette
2017-09-01
In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.
NASA Astrophysics Data System (ADS)
Gupta, P.; Williams, G. V. M.; Hübner, R.; Vajandar, S.; Osipowicz, T.; Heinig, K.-H.; Becker, H.-W.; Markwitz, A.
2017-04-01
Mono-energetic cobalt implantation into hydrogenated diamond-like carbon at room temperature results in a bimodal distribution of implanted atoms without any thermal treatment. The ˜100 nm thin films were synthesised by mass selective ion beam deposition. The films were implanted with cobalt at an energy of 30 keV and an ion current density of ˜5 μA cm-2. Simulations suggest the implantation profile to be single Gaussian with a projected range of ˜37 nm. High resolution Rutherford backscattering measurements reveal that a bimodal distribution evolves from a single near-Gaussian distribution as the fluence increases from 1.2 to 7 × 1016 cm-2. Cross-sectional transmission electron microscopy further reveals that the implanted atoms cluster into nanoparticles. At high implantation doses, the nanoparticles assemble primarily in two bands: one near the surface with nanoparticle diameters of up to 5 nm and the other beyond the projected range with ˜2 nm nanoparticles. The bimodal distribution along with the nanoparticle formation is explained with diffusion enhanced by energy deposited during collision cascades, relaxation of thermal spikes, and defects formed during ion implantation. This unique distribution of magnetic nanoparticles with the bimodal size and range is of significant interest to magnetic semiconductor and sensor applications.
Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James
2009-12-09
A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO(3) concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).
NASA Astrophysics Data System (ADS)
Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James
2009-12-01
A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO3 concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).
Measuring nanoparticles size distribution in food and consumer products: a review.
Calzolai, L; Gilliland, D; Rossi, F
2012-08-01
Nanoparticles are already used in several consumer products including food, food packaging and cosmetics, and their detection and measurement in food represent a particularly difficult challenge. In order to fill the void in the official definition of what constitutes a nanomaterial, the European Commission published in October 2011 its recommendation on the definition of 'nanomaterial'. This will have an impact in many different areas of legislation, such as the European Cosmetic Products Regulation, where the current definitions of nanomaterial will come under discussion regarding how they should be adapted in light of this new definition. This new definition calls for the measurement of the number-based particle size distribution in the 1-100 nm size range of all the primary particles present in the sample independently of whether they are in a free, unbound state or as part of an aggregate/agglomerate. This definition does present great technical challenges for those who must develop valid and compatible measuring methods. This review will give an overview of the current state of the art, focusing particularly on the suitability of the most used techniques for the size measurement of nanoparticles when addressing this new definition of nanomaterials. The problems to be overcome in measuring nanoparticles in food and consumer products will be illustrated with some practical examples. Finally, a possible way forward (based on the combination of different measuring techniques) for solving this challenging analytical problem is illustrated.
Structural and Electronic Properties of Isolated Nanodiamonds: A Theoretical Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raty, J; Galli, G
2004-09-09
Nanometer sized diamond has been found in meteorites, proto-planetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles appears to be peaked around 2-5 nm, and to be largely independent of preparation conditions. Using ab-initio calculations, we have shown that in this size range nanodiamond has a fullerene-like surface and, unlike silicon and germanium, exhibit very weak quantum confinement effects. We called these carbon nanoparticles bucky-diamonds: their atomic structure, predicted by simulations, is consistent with many experimental findings. In addition, we carried out calculations of the stabilitymore » of nanodiamond which provided a unifying explanation of its size distribution in extra-terrestrial samples, and in ultra-crystalline diamond films. Here we present a summary of our theoretical results and we briefly outline work in progress on doping of nanodiamond with nitrogen.« less
Optical Characterization of Single Plasmonic Nanoparticles
Olson, Jana; Dominguez-Medina, Sergio; Hoggard, Anneli; Wang, Lin-Yung; Chang, Wei-Shun; Link, Stephan
2015-01-01
This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles. PMID:24979351
Distribution and Biological Effects of Nanoparticles in the Reproductive System.
Liu, Ying; Li, Hongxia; Xiao, Kai
2016-01-01
Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our understanding of biological effects of nanoparticles on the reproductive system.
Pessi, Jenni; Lassila, Ilkka; Meriläinen, Antti; Räikkönen, Heikki; Hæggström, Edward; Yliruusi, Jouko
2016-08-01
We introduce a robust, stable, and reproducible method to produce nanoparticles based on expansion of supercritical solutions using carbon dioxide as a solvent. The method, controlled expansion of supercritical solution (CESS), uses controlled mass transfer, flow, pressure reduction, and particle collection in dry ice. CESS offers control over the crystallization process as the pressure in the system is reduced according to a specific profile. Particle formation takes place before the exit nozzle, and condensation is the main mechanism for postnucleation particle growth. A 2-step gradient pressure reduction is used to prevent Mach disk formation and particle growth by coagulation. Controlled particle growth keeps the production process stable. With CESS, we produced piroxicam nanoparticles, 60 mg/h, featuring narrow size distribution (176 ± 53 nm). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Triplett, Michael D.; Rathman, James F.
2009-04-01
Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, β-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of β-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. β-Carotene entrapment efficiency averaged 40%. β-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.
Synthesis and stabilization of cobalt and copper nanoparticles by using Bombyx mori chitosan
NASA Astrophysics Data System (ADS)
Vokhidova, Noira R.; Yugay, Sergei M.; Rashidova, Sayyora Sh.; Yuldashev, Shavkat U.; Igamberdiev, Khusan T.; Yalishev, Vadim Sh.; Kang, Tae Won
2016-10-01
Cobalt and copper nanoparticles (NPs) were prepared by using 2-propanol in the presence of Bombyx mori chitosan to reduce the metals. The structural and the optical measurements show that chitosan molecules prevent the agglomeration and oxidation of the metal nanoparticles. The concentration of chitosan was shown to have a strong influence on the size and the distribution of NPs in a polymeric matrix.
Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets
NASA Astrophysics Data System (ADS)
Li, Xu; Chen, Zhigang; Taflove, Allen; Backman, Vadim
2005-01-01
We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in the nanojet. As a result, the enhanced backscattering from a nanoparticle with diameter on the order of 10 nm is well above the background signal generated by the dielectric microsphere itself. We also report that nanojet-enhanced backscattering is extremely sensitive to the size of the nanoparticle, permitting in principle resolving sub-nanometer size differences using visible light. Finally, we show how the position of a nanoparticle could be determined with subdiffractional accuracy by recording the angular distribution of the backscattered light. These properties of photonic nanojets promise to make this phenomenon a useful tool for optically detecting, differentiating, and sorting nanoparticles.
Differential Effects of Monovalent Cations and Anions on Key Nanoparticle Attributes
Understanding the key particle attributes such as particle size, size distribution and surface charge of both the nano- and micron-sized particles is the first step in drug formulation as such attributes are known to directly influence several characteristics of drugs including d...
Harmonics distribution of iron oxide nanoparticles solutions under diamagnetic background
NASA Astrophysics Data System (ADS)
Saari, Mohd Mawardi; Che Lah, Nurul Akmal; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji
2018-04-01
The static and dynamic magnetizations of low concentrated multi-core iron oxide nanoparticles solutions were investigated by a specially developed high-Tc Superconducting Quantum Interference Device (SQUID) magnetometer. The size distribution of iron oxide cores was determined from static magnetization curves concerning different concentrations. The simulated harmonics distribution was compared to the experimental results. Effect of the diamagnetic background from carrier liquid to harmonics distribution was investigated with respect to different intensity and position of peaks in the magnetic moment distribution using a numerical simulation. It was found that the diamagnetic background from carrier liquid of iron oxide nanoparticles affected the harmonics distribution as their concentration decreased and depending on their magnetic moment distribution. The first harmonic component was susceptible to the diamagnetic contribution of carrier liquid when the concentration was lower than 24 μg/ml. The second and third harmonics were affected when the peak position of magnetic moment distribution was smaller than m = 10-19 Am2 and the concentration was 10 ng/ml. A highly sensitive detection up to sub-nanogram of iron oxide nanoparticles in solutions can be achieved by utilizing second and third harmonic components.
TiO2 Nanoparticle Uptake by the Water Flea Daphnia magna via Different Routes is Calcium-Dependent.
Tan, Ling-Yan; Huang, Bin; Xu, Shen; Wei, Zhong-Bo; Yang, Liu-Yan; Miao, Ai-Jun
2016-07-19
Calcium plays versatile roles in aquatic ecosystems. In this study, we investigated its effects on the uptake of polyacrylate-coated TiO2 nanoparticles (PAA-TiO2-NPs) by the water flea (cladoceran) Daphnia magna. Particle distribution in these daphnids was also visualized using synchrotron radiation-based micro X-ray fluorescence spectroscopy, transmission electron microscopy, and scanning electron microscopy. At low ambient Ca concentrations in the experimental medium ([Ca]dis), PAA-TiO2-NPs were well dispersed and distributed throughout the daphnid; the particle concentration was highest in the abdominal zone and the gut, as a result of endocytosis and passive drinking of the nanoparticles, respectively. Further, Ca induced PAA-TiO2-NP uptake as a result of the increased Ca influx. At a high [Ca]dis, the PAA-TiO2-NPs formed micrometer-sized aggregates that were ingested by D. magna and concentrated only in its gut, independent of the Ca influx. Our results demonstrated the multiple effects of Ca on nanoparticle bioaccumulation. Specifically, well-dispersed nanoparticles were taken up by D. magna through endocytosis and passive drinking whereas the uptake of micrometer-sized aggregates relied on active ingestion.
NASA Astrophysics Data System (ADS)
Huang, Meng; Wang, Lei; Ge, Yang; Lv, Yu-zhen; Qi, Bo; Li, Cheng-rong
2018-03-01
Creeping flashover easily occurs at the interface between oil and pressboard in transformer and thus results in outage of power transmission system. Investigations have shown that creeping flashover characteristics at oil/pressboard interface can be improved by the addition of TiO2 nanoparticles, but the mechanism is still not thoroughly known. In this work, creeping flashover performance at nanofluid/pressboard interface modified by different sizes of nanoparticles were studied and the mechanism was presented as well. Nanofluids with the same concentration but with different sizes of TiO2 nanoparticles were prepared, and pressboards impregnated with them were prepared as well. After that, their creeping flashover characteristics were measured and compared. Nanoparticle's size affected the creeping flashover performance along oil/pressboard greatly under both AC and lightning impulse voltages. The highest creeping flashover voltage can be enhanced by as high as 12.2% and 32.0% respectively. The underlying electric field distribution and charge transportation behaviors were analyzed to demonstrate the influence of nanoparticle's size. By the addition of nanoparticles with a smaller size, the dielectric constant of nanofluid was increased closer to that of the pressboard, thus they were matched better. Moreover, charge was easier to dissipate from the oil/pressboard interface and electric field distortion at the interface was consequently reduced. Therefore, the electric field was more like a uniform field and the forward development of flashover was more difficult, leading to a better performance of creeping flashover of oil-impregnated pressboard.
Neradovic, D; Soga, O; Van Nostrum, C F; Hennink, W E
2004-05-01
Block copolymers of poly(ethylene glycol) (PEG) as a hydrophilic block and N-isopropylacrylamide (PNIPAAm) or poly (NIPAAm-co-N-(2-hydroxypropyl) methacrylamide-dilactate) (poly(NIPAAm-co-HPMAm-dilactate)) as a thermosensitive block, are able to self-assemble in water into nanoparticles above the cloud point (CP) of the thermosensitive block. The influence of processing and the formulation parameters on the size of the nanoparticles was studied using dynamic light scattering. PNIPAAm-b-PEG 2000 polymers were not suitable for the formation of small and stable particles. Block copolymers with PEG 5000 and 10000 formed relatively small and stable particles in aqueous solutions at temperatures above the CP of the thermosensitive block. Their size decreased with increasing molecular weight of the thermosensitive block, decreasing polymer concentration and using water instead of phosphate buffered saline as solvent. Extrusion and ultrasonication were inefficient methods to size down the polymeric nanoparticles. The heating rate of the polymer solutions was a dominant factor for the size of the nanoparticles. When an aqueous polymer solution was slowly heated through the CP, rather large particles (> or = 200 nm) were formed. Regardless the polymer composition, small nanoparticles (50-70 nm) with a narrow size distribution were formed, when a small volume of an aqueous polymer solution below the CP was added to a large volume of heated water. In this way the thermosensitive block copolymers rapidly pass their CP ('heat shock' procedure), resulting in small and stable nanoparticles.
NASA Astrophysics Data System (ADS)
Palihawadana Arachchige, Maheshika
In recent years, magnetic nanoparticles (MNPs), especially superparamagnetic Fe3O4nanoparticles, have attracted a great deal of attention because of their potential applications in biomedicine. Among the other applications, Magnetic hyperthermia (MHT), where localized heating is generated by means of relaxation processes in MNPs when subjected to a radio frequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. Specific absorption rate (SAR), which measures the efficiency of heat generation, depends on magnetic properties of the particles such as saturation magnetization (M s), magnetic anisotropy (K), particle size distribution, magnetic dipolar interactions, and the rheological properties of the target medium.We have investigated MHT in two Fe3O4 ferrofluids prepared by co-precipitation (CP) and hydrothermal (HT) synthesis methods showing similar physical particle size distribution and Ms, but very different SAR 110 W/g and 40 W/g at room temperature. This observed reduction in SAR has been explained by taking the dipolar interactions into account using the so called T* model. Our analysis reveals that HT ferrofluid shows an order of magnitude higher effective dipolar interaction and a wider distribution of magnetic core size of MNPs compared to that of CP ferrofluid. We have studied dextran coated Gd-doped Fe3O4 nanoparticles as a potential candidate in theronostics for multimodal contrast imaging and cancer treatment by hyperthermia. The effect of surfactant on the MHT efficiency and cytotoxicity on human pancreatic cancer cells was explored as well. Though further in vivo study is necessary in the future, these results imply that the dextran coated Fe3O4 dispersion could maintain their high heating capacity in physiological environments while citric acid coating require further surface modification to reduce the non-specific protein adsorption. We have also investigated the traffic, distribution, and cytotoxicity, associated with dextran functionalized FITC conjugated Fe3O4 nanoparticles, and our results demonstrate that there is a time-dependent distribution of these nanoparticles into different cellular compartments. Moreover, a novel conjugation of anti-cancer drug, Doxorubicin (Dox) with a labeling dye (FITC) onto dextran coated Fe3O4 nanoparticles was developed using existing EDC/NHS technique for specific drug targeting. The experiments on this unique drug-dye dual conjugation with human pancreatic cancer cell line (MIA PaCa-2) show that association of Dox onto the surface of nanoparticles enhances its penetration into the cancer cells as compared to the unconjugated drug while releasing Dox into the nucleus of the malignant cells.
Zhang, Chunhua; Xia, Liangjun; Lyu, Pei; Wang, Yun; Li, Chen; Xiao, Xingfang; Dai, Fangyin; Xu, Weilin; Liu, Xin; Deng, Bo
2018-05-09
Unmodified ZrO 2 nanoparticles (ZDNPs) are used for the enhancement of polyurethane (PU) films. Optimized strain and toughness of PU/ZDNP nanocomposite at 9.09 wt % ZDNPs are up to 2714.6%, and 280.8 MJ m -3 , respectively. The unique bimodal ZDNP aggregate size distribution which exploits both interfacial positively and negatively toughening mechanisms accounts mainly for the excellent mechanical property of PU/ZDNP nanocomposite. The dependence of different toughening mechanisms on three sizes of ZDNP aggregates is summarized. These findings provide a new avenue for the industrial production of nanocomposites at low cost without surface modification of inorganic nanoparticles.
Characteristics of silver nanoparticles in vehicles for biological applications.
Kejlová, Kristina; Kašpárková, Věra; Krsek, Daniel; Jírová, Dagmar; Kolářová, Hana; Dvořáková, Markéta; Tománková, Kateřina; Mikulcová, Veronika
2015-12-30
Silver nanoparticles (AgNPs) have been used for decades as anti-bacterial agents in various industrial fields such as cosmetics, health industry, food storage, textile coatings and environmental applications, although their toxicity is not fully recognized yet. Antimicrobial and catalytic activity of AgNPs depends on their size as well as structure, shape, size distribution, and physico-chemical environment. The unique properties of AgNPs require novel or modified toxicological methods for evaluation of their toxic potential combined with robust analytical methods for characterization of nanoparticles applied in relevant vehicles, e.g., culture medium with/without serum and phosphate buffered saline. Copyright © 2015 Elsevier B.V. All rights reserved.
Damasco, Jossana A; Chen, Guanying; Shao, Wei; Ågren, Hans; Huang, Haoyuan; Song, Wentao; Lovell, Jonathan F; Prasad, Paras N
2014-08-27
Hexagonal NaYbF4:Tm(3+) upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm(3+) nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd(3+)) can convert NaYbF4:Tm(3+) 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm(3+) 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd(3+) 30%/Tm(3+) 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline.
Astete, Carlos E; Dolliver, Debra; Whaley, Meocha; Khachatryan, Lavrent; Sabliov, Cristina M
2011-12-27
The goal of the study was to synthesize a surfactant made of α-tocopherol (vitamin E) and ascorbic acid (vitamin C) of antioxidant properties dubbed as EC, and to use this surfactant to make poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Self-assembled EC nanostructures and PLGA-EC nanoparticles were made by nanoprecipitation, and their physical properties (size, size distribution, morphology) were studied at different salt concentrations, surfactant concentrations, and polymer/surfactant ratios. EC surfactant was shown to form self-assembled nanostructures in water with a size of 22 to 138 nm in the presence of sodium chloride, or 12 to 31 nm when synthesis was carried out in sodium bicarbonate. Polymeric PLGA-EC nanoparticles presented a size of 90 to 126 nm for 40% to 120% mass ratio PLGA to surfactant. For the same mass ratios, the PLGA-Span80 formed particles measured 155 to 216 nm. Span80 formed bilayers, whereas EC formed monolayers at the interfaces. PLGA-EC nanoparticles and EC showed antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay measurements using UV and EPR techniques, antioxidant activity which is not characteristic to commercially available Span80. The thiobarbituric acid reactive substances (TBARS) assay for lipid peroxidation showed that PLGA nanoparticles with EC performed better as antioxidants than the EC nanoassembly or the free vitamin C. Nanoparticles were readily internalized by HepG2 cells and were localized in the cytoplasm. The newly synthesized EC surfactant was therefore found successful in forming uniform, small size polymeric nanoparticles of intrinsic antioxidant properties.
2015-01-01
Hexagonal NaYbF4:Tm3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm3+ nanoparticles with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd3+) can convert NaYbF4:Tm3+ 0.5% nanoparticles with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm3+ 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanoparticles, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of ∼2 nm on the ∼22 nm core of hexagonal NaYbF4:Gd3+ 30%/Tm3+ 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanoparticles in phosphate buffered saline. PMID:25027118
Graf, Anja; Ablinger, Elisabeth; Peters, Silvia; Zimmer, Andreas; Hook, Sarah; Rades, Thomas
2008-02-28
Two pseudo-ternary systems comprising isopropyl myristate, soybean lecithin, water, ethanol and either decyl glucoside (DG) or capryl-caprylyl glucoside (CCG) as surfactant were investigated for their potential to form microemulsion templates to produce nanoparticles as drug delivery vehicles for proteins and peptides. All microemulsion and nanoparticle compounds used were pharmaceutically acceptable and biocompatible. Phase diagrams were established and characterized using polarizing light microscopy, viscosity, conductivity, electron microscopy, differential scanning calorimetry and self-diffusion NMR. An area in the phase diagrams containing optically isotropic, monophasic systems was designated as the microemulsion region and systems therein identified as solution-type microemulsions. Poly(alkylcyanoacrylate) nanoparticles prepared by interfacial polymerisation from selected microemulsions ranged from 145 to 660nm in size with a unimodal size distribution depending on the type of monomer (ethyl (2) or butyl (2) cyanoacrylate) and microemulsion template. Generally larger nanoparticles were formed by butyl (2) cyanoacrylate. Insulin was added as a model protein and did not alter the physicochemical behaviour of the microemulsions or the morphology of the nanoparticles. However, insulin-loaded nanoparticles in the CCG containing system decreased in size when using butyl (2) cyanoacrylate. This study shows that microemulsions containing sugar-based surfactants are suitable formulation templates for the formation of nanoparticles to deliver peptides.
Chen, Xiaojie; Tieleman, D Peter; Liang, Qing
2018-02-01
The interactions between nanoparticles and lipid bilayers are critical in applications of nanoparticles in nanomedicine, cell imaging, toxicology, and elsewhere. Here, we investigate the interactions between nanoparticles coated with neutral and/or charged ligands and phase-separated lipid bilayers using coarse-grained molecular dynamics simulation. Both penetration and adsorption processes as well as the final distribution of the nanoparticles can be readily modulated by varying the ligand density and the surface charge of the nanoparticles. Completely hydrophobic (neutral) nanoparticles with larger size initially preferentially penetrate into the liquid-disordered region of the lipid bilayer and finally transfer into the liquid-ordered region; partially hydrophilic nanoparticles with low or moderate surface charge tend to either distribute in the liquid-disordered region or be adsorbed on the surface of the lipid bilayer, while strongly hydrophilic nanoparticles with high surface charge always reside on the surface of the lipid bilayer. Interactions of the nanoparticles with the lipid bilayers are affected by the surface charge of nanoparticles, hydrophobic mismatch, bending of the ligands, and the packing state of the lipids. Insight in these factors can be used to improve the efficiency of designing nanoparticles for specific applications.
Cooper, Anne Marie; Hristovski, Kiril D; Möller, Teresia; Westerhoff, Paul; Sylvester, Paul
2010-11-15
This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g(-1) dry media and ∼4 L g(-1) dry media of water contaminated with 30 μg L(-1) TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rather, Sami ullah, E-mail: rathersami@gmail.com
2014-12-15
Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough,more » all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO.« less
Ordered Array of Gold Nanoparticles Promoted by Functional Peptides
NASA Astrophysics Data System (ADS)
Matsukawa, Nozomu; Yamashita, Ichiro
2011-05-01
It was successfully demonstrated that 5-nm-diameter gold nanoparticles (GNPs) with 15% size distribution, the surface of which was modified by the synthesized peptides composed of the carbonaceous material affinity peptide (NHBP-1), linker of 11 amino acids and C-terminal cysteine, self-assembled into a two-dimensional (2D) ordered array on a silicon substrate in a spin drying process. NHBP-1 generated an attractive force large enough for the GNP to make 2D collections of GNPs in the course of the spin drying process, and the long linker of 11 amino acids cancelled out the ill effect of size distribution of GNP on the 2D ordered array formation.
Lee, Michelle Jeung-Eun; Veiseh, Omid; Bhattarai, Narayan; Sun, Conroy; Hansen, Stacey J.; Ditzler, Sally; Knoblaugh, Sue; Lee, Donghoon; Ellenbogen, Richard; Zhang, Miqin; Olson, James M.
2010-01-01
Background Recent advances in nanotechnology have led to the development of biocompatible nanoparticles for in vivo molecular imaging and targeted therapy. Many nanoparticles have undesirable tissue distribution or unacceptably low serum half-lives. Pharmacokinetic (PK) and biodistribution studies can help inform decisions determining particle size, coatings, or other features early in nanoparticle development. Unfortunately, these studies are rarely done in a timely fashion because many nanotechnology labs lack the resources and expertise to synthesize radioactive nanoparticles and evaluate them in mice. Methodology/Principal Findings To address this problem, we developed an economical, radioactivity-free method for assessing serum half-life and tissue distribution of nanoparticles in mice. Iron oxide nanoparticles coated with chitosan and polyethylene glycol that utilize chlorotoxin as a targeting molecule have a serum half-life of 7–8 hours and the particles remain stable for extended periods of time in physiologic fluids and in vivo. Nanoparticles preferentially distribute to spleen and liver, presumably due to reticuloendothelial uptake. Other organs have very low levels of nanoparticles, which is ideal for imaging most cancers in the future. No acute toxicity was attributed to the nanoparticles. Conclusions/Significance We report here a simple near-infrared fluorescence based methodology to assess PK properties of nanoparticles in order to integrate pharmacokinetic data into early nanoparticle design and synthesis. The nanoparticles tested demonstrate properties that are excellent for future clinical imaging strategies and potentially suitable for targeted therapy. PMID:20209054
Spin Polarization and Quantum Spins in Au Nanoparticles
Li, Chi-Yen; Karna, Sunil K.; Wang, Chin-Wei; Li, Wen-Hsien
2013-01-01
The present study focuses on investigating the magnetic properties and the critical particle size for developing sizable spontaneous magnetic moment of bare Au nanoparticles. Seven sets of bare Au nanoparticle assemblies, with diameters from 3.5 to 17.5 nm, were fabricated with the gas condensation method. Line profiles of the X-ray diffraction peaks were used to determine the mean particle diameters and size distributions of the nanoparticle assemblies. The magnetization curves M(Ha) reveal Langevin field profiles. Magnetic hysteresis was clearly revealed in the low field regime even at 300 K. Contributions to the magnetization from different size particles in the nanoparticle assemblies were considered when analyzing the M(Ha) curves. The results show that the maximum particle moment will appear in 2.4 nm Au particles. A similar result of the maximum saturation magnetization appearing in 2.3 nm Au particles is also concluded through analysis of the dependency of the saturation magnetization MP on particle size. The MP(d) curve departs significantly from the 1/d dependence, but can be described by a log-normal function. Magnetization can be barely detected for Au particles larger than 27 nm. Magnetic field induced Zeeman magnetization from the quantum confined Kubo gap opening appears in Au nanoparticles smaller than 9.5 nm in diameter. PMID:23989607
Yarema, Maksym; Wörle, Michael; Rossell, Marta D; Erni, Rolf; Caputo, Riccarda; Protesescu, Loredana; Kravchyk, Kostiantyn V; Dirin, Dmitry N; Lienau, Karla; von Rohr, Fabian; Schilling, Andreas; Nachtegaal, Maarten; Kovalenko, Maksym V
2014-09-03
We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12-46 nm and with excellent size distribution as small as 7-8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2-3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98-298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140-145 and 240-250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(-1), 50% higher than those achieved for bulk Ga under identical testing conditions.
2015-01-01
We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12–46 nm and with excellent size distribution as small as 7–8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2–3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98–298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140–145 and 240–250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g–1, 50% higher than those achieved for bulk Ga under identical testing conditions. PMID:25133552
Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich
2011-12-06
Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.
Shiratsu, Taisuke; Yao, Hiroshi
2018-02-07
Size-dependent magneto-optical activity in Ag nanoparticles with dimensions from 10 to 60 nm is demonstrated with magnetic circular dichroism (MCD) spectroscopy. The Ag nanoparticles are prepared on the basis of a seeded-growth strategy using sodium citrate and/or tannic acid as reducing agents in aqueous solution. The obtained nanoparticles are roughly spherical, but those larger than ∼28 nm have a slight diversity of shapes with quasi-spherical polyhedrons. They exhibit a derivative-like MCD response in the localized surface plasmon resonance (LSPR) region, which originates from two circular modes of surface magnetoplasmons. With an increase in the nanoparticle diameter, the bisignated MCD signal is strongly distorted and weakened. Such a distortion for large-sized Ag nanoparticles can be phenomenologically simulated on the basis of both spectral inhomogeneity and MCD signal lobe asymmetry. Then the maximum value of MCD amplitude (MCD max ), which is obtained by normalization of the amplitude to the LSPR peak absorbance, first increases with increasing particle diameter and then decreases with a maximum for the 23 nm nanoparticle. Interestingly, the MCD max values are inversely correlated with the spectral bandwidth of LSPR extinction. This behaviour is discussed from a viewpoint of inhomogeneous effects of both spectral and size/shape distributions. We believe the present results will advance the design and application of optical devices based on magnetoplasmonics.
Yu, Tian; Hubbard, Dallin; Ray, Abhijit; Ghandehari, Hamidreza
2012-01-01
The in vivo biodistribution and pharmacokinetics of silica nanoparticles (SiO2) with systematically varied geometries, porosities, and surface characteristics were investigated in immune-competent CD-1 mice via the intravenous injection. The nanoparticles were taken up extensively by the liver and spleen. Mesoporous SiO2 exhibited higher accumulation in the lung than nonporous SiO2 of similar size. This accumulation was reduced by primary amine modification of the nanoparticles. High aspect ratio, amine-modified mesoporous nanorods showed enhanced lung accumulation compared to amine-modified mesoporous nanospheres. Accumulation of the nanoparticles was mainly caused by passive entrapment in the discontinuous openings in the endothelium of the liver and spleen or in the pulmonary capillaries, and was highly dependent on nanoparticle hydrodynamic size in circulation. The SiO2 were likely internalized by the reticulo-endothelial system (RES) following physical sequestration in the liver and spleen. The nanoparticles that were transiently associated with the lung were re-distributed out of this organ without significant internalization. Pharmacokinetic analysis showed that all SiO2 were rapidly cleared from systemic circulation. Amine-modified or nonporous nanoparticles possessed a higher volume of distribution at steady state than their pristine counterparts or mesoporous SiO2. In all, surface characteristics and porosity played important roles in influencing SiO2 biodistribution and pharmacokinetics. Increasing the aspect ratio of amine-modified mesoporous SiO2 from 1 to 8 resulted in increased accumulation in the lung. PMID:22684119
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Li, Zhilin; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029
Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesizedmore » through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouleau, Christopher M.; Puretzky, Alexander A.; Geohegan, David B.
The slowing of Pt nanoparticles in argon background gas was characterized by Rayleigh scattering imaging using a plume of nanoparticles generated by femtosecond laser through thin film ablation (fs-TTFA) of 20 nanometers-thick Pt films. The ablation was performed at threshold laser energy fluences for complete film removal to provide a well-defined plume consisting almost entirely of nanoparticles traveling with a narrow velocity distribution, providing a unique system to unambiguously characterize the slowing of nanoparticles during interaction with background gases. Nanoparticles of ~200 nm diameter were found to decelerate in background Ar gas with pressures less than 50 Torr in goodmore » agreement with a linear drag model in the Epstein regime. Based on this model, the stopping distance of small nanoparticles in the plume was predicted and tested by particle collection in an off-axis geometry, and size distribution analysis by transmission electron microscopy. These results permit a basis to interpret nanoparticle propagation through background gases in laser ablation plumes that contain mixed components.« less
Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements
NASA Astrophysics Data System (ADS)
Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.
2012-10-01
A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by "direct" techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.
Dandekar, Prajakta P; Jain, Ratnesh; Patil, Sushant; Dhumal, Rohit; Tiwari, Dinesh; Sharma, Shobhona; Vanage, Geeta; Patravale, Vandana
2010-12-01
The present investigation involved preparation of hydrogel nanoparticles using a combination of hydroxyl propyl methyl cellulose and polyvinyl pyrrolidone. The objective was to exploit the size and hydrophilic nature of the formulated nanocarriers to enhance absorption and prolong the rapid clearance of curcumin due to possible evasion of the reticulo-endothelial system. Reproducible nanoparticles of size around 100 nm, a fairly narrow distribution and encapsulation efficiency of 72%, were produced by the solvent emulsion-evaporation technique. This optimized system was further subjected to freeze-drying. The freeze-dried product was readily reconstituted with distilled water. The reconstituted product exhibited a size and distribution similar to that before freeze-drying, drug content of greater than 99% and presence of amorphous drug when analyzed by differential scanning calorimetry (DSC) which may result in possible improved absorption of curcumin. In vivo anti-malarial studies revealed significant superior action of nanoparticles over curcumin control suggesting the possibility of the formulation being employed as an adjunct anti-malarial therapy along with the standard therapy. Acute and subacute toxicity studies confirmed the oral safety of the formulation. A battery of genotoxicity studies was conducted to evaluate the nongenotoxic potential of the developed formulation thus indicating the possibility of the formulation being employed for prolonged duration. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Fine tuning of size and morphology of magnetite nanoparticles synthesized by microemulsion
NASA Astrophysics Data System (ADS)
Singh, Pinki; Upadhyay, Chandan
2018-05-01
The synthesis parameters crucially affect the physical and chemical parameters of nanoparticles. Magnetite (Fe3O4) nanoparticles were synthesized using microemulsion method. This method does not require high temperature synthesis, nitrogen environment and/or pH regulation during synthesis process. We are presenting here a systematic study on role of different associated parameters of microemulsion synthesis method on the formation of Fe3O4 nanoparticles. From X-ray Diffraction and Transmission Electron Micoscopy data analysis the size of synthesized particles were observed to be <10 nm. The critical concentration of ferrous-ferric solution to obtain particles in single phase has been found to be ≤0.09 M and ≤0.184 M, respectively. The variation of molar concentration (0.01 M ≤x≤ 0.1 M) of CTAB leads to formation of Fe3O4 nano-scale particles of distinct morphologies e.g. nano-cubes, pentagons and spheres. The number of ferrous and ferric ions involved in the formation decides the size of the nanoparticles. The single crystallographic phase is obtained in reaction temperature range of 65° C
Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin.
He, Zhiyu; Santos, Jose Luis; Tian, Houkuan; Huang, Huahua; Hu, Yizong; Liu, Lixin; Leong, Kam W; Chen, Yongming; Mao, Hai-Quan
2017-06-01
Controlled delivery of protein would find diverse therapeutic applications. Formulation of protein nanoparticles by polyelectrolyte complexation between the protein and a natural polymer such as chitosan (CS) is a popular approach. However, the current method of batch-mode mixing faces significant challenges in scaling up while maintaining size control, high uniformity, and high encapsulation efficiency. Here we report a new method, termed flash nanocomplexation (FNC), to fabricate insulin nanoparticles by infusing aqueous solutions of CS, tripolyphosphate (TPP), and insulin under rapid mixing condition (Re > 1600) in a multi-inlet vortex mixer. In comparison with the bulk-mixing method, the optimized FNC process produces CS/TPP/insulin nanoparticles with a smaller size (down to 45 nm) and narrower size distribution, higher encapsulation efficiency (up to 90%), and pH-dependent nanoparticle dissolution and insulin release. The CS/TPP/insulin nanoparticles can be lyophilized and reconstituted without loss of activity, and produced at a throughput of 5.1 g h -1 when a flow rate of 50 mL min -1 is used. Evaluated in a Type I diabetes rat model, the smaller nanoparticles (45 nm and 115 nm) control the blood glucose level through oral administration more effectively than the larger particles (240 nm). This efficient, reproducible and continuous FNC technique is amenable to scale-up in order to address the critical barrier of manufacturing for the translation of protein nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of injected aluminum oxide nanoparticle clouds in an rf discharge
NASA Astrophysics Data System (ADS)
Krüger, Harald; Killer, Carsten; Schütt, Stefan; Melzer, André
2018-02-01
An experimental setup to deagglomerate and insert nanoparticles into a radio frequency discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles’ infrared phonon resonance has been identified.
Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.
Puniredd, Sreenivasa Reddy; Weiyi, Seah; Srinivasan, M P
2008-04-01
We report the formation of Pd-Pt nanoparticles within a dendrimer-laden ultrathin film matrix immobilized on a solid support and constructed by covalent layer-by-layer (LbL) assembly using supercritical carbon dioxide (SCCO2) as the processing medium. Particle size distribution and composition were controlled by precursor composition. The precursor compositions are optimized for Pd-Pt nanoparticles and later extended to the formation of Fe-Ni nanoparticles. As an example of the application of nanoparticles in tribology, Fe-Ni nanoparticle-laden films were observed to exhibit better tribological properties than those containing the monometallic species, thereby suggesting that combination of nanoparticles can be used to derive greater benefits.
Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt
NASA Astrophysics Data System (ADS)
Stolyar, S. V.; Yaroslavtsev, R. N.; Iskhakov, R. S.; Bayukov, O. A.; Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Ladygina, V. P.; Vorotynov, A. M.; Volochaev, M. N.
2017-03-01
Powders of undoped ferrihydrite nanoparticles and ferrihydrite nanoparticles doped with cobalt in the ratio of 5: 1 have been prepared by hydrolysis of 3 d-metal salts. It has been shown using Mössbauer spectroscopy that cobalt is uniformly distributed over characteristic crystal-chemical positions of iron ions. The blocking temperatures of ferrihydrite nanoparticles have been determined. The nanoparticle sizes, magnetizations, surface anisotropy constants, and bulk anisotropy constants have been estimated. The doping of ferrihydrite nanoparticles with cobalt leads to a significant increase in the anisotropy constant of a nanoparticle and to the formation of surface rotational anisotropy with the surface anisotropy constant K u = 1.6 × 10-3 erg/cm2.
Modulating nanoparticle superlattice structure using proteins with tunable bond distributions
McMillan, Janet R.; Brodin, Jeffrey D.; Millan, Jaime A.; ...
2017-01-25
Here, we investigate the use of proteins with tunable DNA modification distributions to modulate nanoparticle superlattice structure. Using Beta-galactosidase (βgal) as a model system, we have employed the orthogonal chemical reactivities of surface amines and thiols to synthesize protein-DNA conjugates with 36 evenly distributed or 8 specifically positioned oligonucleotides. When assembled into crystalline superlattices with AuNPs, we find that the distribution of DNA modifications modulates the favored structure: βgal with uniformly distributed DNA bonding elements results in body-centered cubic crystals, whereas DNA functionalization of cysteines results in AB 2 packing. We probe the role of protein oligonucleotide number and conjugatemore » size on this observation, which revealed the importance of oligonucleotide distribution and number in this observed assembly behavior. These results indicate that proteins with defined DNA-modification patterns are powerful tools to control the nanoparticle superlattices architecture, and establish the importance of oligonucleotide distribution in the assembly behavior of protein-DNA conjugates.« less
NASA Astrophysics Data System (ADS)
Carvalho, Karina Penedo; Martins, Nathalia Balthazar; Ribeiro, Ana Rosa Lopes Pereira; Lopes, Taliria Silva; de Sena, Rodrigo Caciano; Sommer, Pascal; Granjeiro, José Mauro
2016-08-01
Nanoparticles agglomerate when in contact with biological solutions, depending on the solutions' nature. The agglomeration state will directly influence cellular response, since free nanoparticles are prone to interact with cells and get absorbed into them. In sunscreens, titanium dioxide nanoparticles (TiO2-NPs) form mainly aggregates between 30 and 150 nm. Until now, no toxicological study with skin cells has reached this range of size distribution. Therefore, in order to reliably evaluate their safety, it is essential to prepare suspensions with reproducibility, irrespective of the biological solution used, representing the above particle size distribution range of NPs (30-150 nm) found on sunscreens. Thus, the aim of this study was to develop a unique protocol of TiO2 dispersion, combining these features after dilution in different skin cell culture media, for in vitro tests. This new protocol was based on physicochemical characteristics of TiO2, which led to the choice of the optimal pH condition for ultrasonication. The next step consisted of stabilization of protein capping with acidified bovine serum albumin, followed by an adjustment of pH to 7.0. At each step, the solutions were analyzed by dynamic light scattering and transmission electron microscopy. The final concentration of NPs was determined by inductively coupled plasma-optical emission spectroscopy. Finally, when diluted in dulbecco's modified eagle medium, melanocytes growth medium, or keratinocytes growth medium, TiO2-NPs displayed a highly reproducible size distribution, within the desired size range and without significant differences among the media. Together, these results demonstrate the consistency achieved by this new methodology and its suitability for in vitro tests involving skin cell cultures.
Modelling the Transport of Nanoparticles under Blood Flow using an Agent-based Approach.
Fullstone, Gavin; Wood, Jonathan; Holcombe, Mike; Battaglia, Giuseppe
2015-06-10
Blood-mediated nanoparticle delivery is a new and growing field in the development of therapeutics and diagnostics. Nanoparticle properties such as size, shape and surface chemistry can be controlled to improve their performance in biological systems. This enables modulation of immune system interactions, blood clearance profile and interaction with target cells, thereby aiding effective delivery of cargo within cells or tissues. Their ability to target and enter tissues from the blood is highly dependent on their behaviour under blood flow. Here we have produced an agent-based model of nanoparticle behaviour under blood flow in capillaries. We demonstrate that red blood cells are highly important for effective nanoparticle distribution within capillaries. Furthermore, we use this model to demonstrate how nanoparticle size can selectively target tumour tissue over normal tissue. We demonstrate that the polydispersity of nanoparticle populations is an important consideration in achieving optimal specificity and to avoid off-target effects. In future this model could be used for informing new nanoparticle design and to predict general and specific uptake properties under blood flow.
Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo
2016-11-04
Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPR MAX ), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dhamale, G. D.; Tak, A. K.; Mathe, V. L.; Ghorui, S.
2018-06-01
Synthesis of yttria (Y2O3) nanoparticles in an atmospheric pressure radiofrequency inductively coupled thermal plasma (RF-ICTP) reactor has been investigated using the discrete-sectional (DS) model of particle nucleation and growth with argon as the plasma gas. Thermal and fluid dynamic information necessary for the investigation have been extracted through rigorous computational fluid dynamic (CFD) study of the system with coupled electromagnetic equations under the extended field approach. The theoretical framework has been benchmarked against published data first, and then applied to investigate the nucleation and growth process of yttrium oxide nanoparticles in the plasma reactor using the discrete-sectional (DS) model. While a variety of nucleation and growth mechanisms are suggested in literature, the study finds that the theory of homogeneous nucleation fits well with the features observed experimentally. Significant influences of the feed rate and quench rate on the distribution of particles sizes are observed. Theoretically obtained size distribution of the particles agrees well with that observed in the experiment. Different thermo-fluid dynamic environments with varied quench rates, encountered by the propagating vapor front inside the reactor under different operating conditions are found to be primarily responsible for variations in the width of the size distribution.
NASA Astrophysics Data System (ADS)
Palihawadana Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman; Naik, Ratna
Magnetic hyperthermia (MHT) has a great potential as a non-invasive cancer therapy technique. Specific absorption rate (SAR) which measures the efficiency of heat generation, mainly depends on magnetic properties of nanoparticles such as saturation magnetization (Ms) and magnetic anisotropy (K) which depend on the size and shape. Therefore, MHT applications of magnetic nanoparticles often require a controllable synthesis to achieve desirable magnetic properties. We have synthesized Fe3O4 nanoparticles using two different methods, co-precipitation (CP) and hydrothermal (HT) techniques to produce similar XRD crystallite size of 12 nm, and subsequently coated with dextran to prepare ferrofluids for MHT. However, TEM measurements show average particle sizes of 13.8 +/-3.6 nm and 14.6 +/-3.6 nm for HT and CP samples, implying the existence of an amorphous surface layer for both. The MHT data show the two samples have very different SAR values of 110 W/g (CP) and 40W/g (HT) at room temperature, although they have similar Ms of 70 +/-4 emu/g regardless of their different TEM sizes. We fitted the temperature dependent SAR using linear response theory to explain the observed results. CP sample shows a larger magnetic core with a narrow size distribution and a higher K value compared to that of HT sample.
Influence of CdS nanoparticles grain morphology on laser-induced absorption
NASA Astrophysics Data System (ADS)
Ebothé, Jean; Michel, Jean; Kityk, I. V.; Lakshminarayana, G.; Yanchuk, O. M.; Marchuk, O. V.
2018-06-01
Using external illumination of a 7 nanosecond (ns) doubled frequency Nd: YAG laser emitting at λ = 532 nm with frequency repetition 10 Hz it was established a possibility of significant changes of the absorption at the probing wavelength 1150 nm of continuous wave (cw) He-Ne laser for the CdS nanoparticles embedded into the PVA polymer matrix. The effect is observed only during the two beam laser coherent treatment and this effect is a consequence of interference of two coherent beams. It is shown a principal role of the grain morphology in the efficiency of the process, which is more important than the nanoparticle sizes. The photoinduced absorption is manifested in the space distribution of the probing laser beam. The principal role of the grain interfaces between the nanoparticle interfaces and the surrounding polymer matrix is shown. The effect is almost independent of the nanoparticle sizes. It may be used for laser operation by nanocomposites.
Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu
2012-05-15
Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.
A moderate method for preparation DMSA coated Fe3O4 nanoparticles
NASA Astrophysics Data System (ADS)
Song, L. N.; Gu, N.; Zhang, Y.
2017-01-01
A moderate way to prepare water soluble magnetic Fe3O4 nanoparticles has been developed. Firstly, oleic acid coated Fe3O4 is prepared by coprecipitation. Second, oleic acid were replaced by 2,3-dimercaptosuccinnic acid (DMSA) to prepare DMSA/Fe3O4 in the mixed solution of n-hexane and acetone. After dialysis and filtration the DMSA/Fe3O4 can be transferred into distilled water to form stable Fe3O4 nanoparticle solutions. The TEM images indicated that the particles had spherical shape and the nanoparticles were found to be 12 nm with a relatively narrow size distribution with the hydrodynamic size of 30 nm. And the result of VSM shows that DMSA/Fe3O4 nanoparticles have a saturation magnetization of 31 emu/g. The IR spectra indicated that the iron oxide was located by carboxyl matrix.
Magneto-Optical Relaxation Measurements of Functionalized Nanoparticles as a Novel Biosensor
Aurich, Konstanze; Glöckl, Gunnar; Nagel, Stefan; Weitschies, Werner
2009-01-01
Measurements of magneto-optical relaxation signals of magnetic nanoparticles functionalized with biomolecules are a novel biosensing tool. Upon transmission of a laser beam through a nanoparticle suspension in a pulsed magnetic field, the properties of the laser beam change. This can be detected by optical methods. Biomolecular binding events leading to aggregation of nanoparticles are ascertainable by calculating the relaxation time and from this, the hydrodynamic diameters of the involved particles from the optical signal. Interaction between insulin-like growth factor 1 (IGF-1) and its antibody was utilized for demonstration of the measurement setup applicability as an immunoassay. Furthermore, a formerly developed kinetic model was utilized in order to determine kinetic parameters of the interaction. Beside utilization of the method as an immunoassay it can be applied for the characterization of diverse magnetic nanoparticles regarding their size and size distribution. PMID:22408511
Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors.
Saucier-Sawyer, Jennifer K; Seo, Young-Eun; Gaudin, Alice; Quijano, Elias; Song, Eric; Sawyer, Andrew J; Deng, Yang; Huttner, Anita; Saltzman, W Mark
2016-06-28
Glioblastoma multiforme (GBM) is a fatal brain tumor characterized by infiltration beyond the margins of the main tumor mass and local recurrence after surgery. The blood-brain barrier (BBB) poses the most significant hurdle to brain tumor treatment. Convection-enhanced delivery (CED) allows for local administration of agents, overcoming the restrictions of the BBB. Recently, polymer nanoparticles have been demonstrated to penetrate readily through the healthy brain when delivered by CED, and size has been shown to be a critical factor for nanoparticle penetration. Because these brain-penetrating nanoparticles (BPNPs) have high potential for treatment of intracranial tumors since they offer the potential for cell targeting and controlled drug release after administration, here we investigated the intratumoral CED infusions of PLGA BPNPs in animals bearing either U87 or RG2 intracranial tumors. We demonstrate that the overall volume of distribution of these BPNPs was similar to that observed in healthy brains; however, the presence of tumors resulted in asymmetric and heterogeneous distribution patterns, with substantial leakage into the peritumoral tissue. Together, our results suggest that CED of BPNPs should be optimized by accounting for tumor geometry, in terms of location, size and presence of necrotic regions, to determine the ideal infusion site and parameters for individual tumors. Copyright © 2016 Elsevier B.V. All rights reserved.
Geometrical effects on the electron residence time in semiconductor nano-particles.
Koochi, Hakimeh; Ebrahimi, Fatemeh
2014-09-07
We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ(r) in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r(2) model) or through the whole particle (r(3) model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW) simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ(r). It has been observed that by increasing the coordination number n, the average value of electron residence time, τ̅(r) rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ̅(r) is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ̅(r). Our simulations indicate that for volume distribution of traps, τ̅(r) scales as d(2). For a surface distribution of traps τ(r) increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.
Pharmacokinetics, Metabolism, Distribution and Permeability of Nanomedicine.
Ravindran, Selvan; Suthar, Jitendra Kumar; Rokade, Rutuja; Deshpande, Pooja; Singh, Pooja; Pratinidhi, Ashutosh; Khambadkhar, Rajeshree; Utekar, Srushti
2018-01-01
Medical application of nanotechnology is termed as Nanomedicine and is widely used in healthcare industries. Nanotechnology has helped Physicians, Scientists and Technologists to understand the changes in cellular levels to develop nanomedicines and address the challenges faced by the healthcare sectors. Nanoparticles with less than 1nm in size have been used as drug delivery and gene delivery systems to accelerate the drug action in humans. Size of nanomaterials is akin to that of biomolecules and expected to have better interactions. Hence, its utility for various biomedical applications is explored. Pharmacokinetics, metabolism, permeability, distribution and elimination studies of nanoparticles are essential to understand its potency, toxicity threshold and confirm its safe use in humans. Reports were available for toxicity studies on nanoparticles, but work on metabolism, pharmacokinetics, distribution and permeability of nanomedicine is limited. Hence, the main focus of this review article is about metabolism, pharmacokinetics, permeability and biodistribution of nanomaterials used in nanomedicine. Nanomedicine is increasingly becoming important in the treatment of diseases and diagnosis. Size of the particle plays an important role. As the particle size decreases its effect to cure the disease increases. Pharmacokinetics, bioavailability, half-life, metabolism, biodistribution and permeability of nanomedicine were found to be better than that of microsized drugs. In vitro and In vivo ADME (Absorption, Distribution, Metabolism and Excretion) studies are mandatory for pharmaceutical organic drugs. Similarly, nanomaterials should be subjected to both in vitro and in vivo ADME studies. Thus, nanomedicine can assist in the development of safe personalized medicine in humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mechanisms of resonant low frequency Raman scattering from metallic nanoparticle Lamb modes
NASA Astrophysics Data System (ADS)
Girard, A.; Lermé, J.; Gehan, H.; Margueritat, J.; Mermet, A.
2017-05-01
The low frequency Raman scattering from gold nanoparticle bimodal assemblies with controlled size distributions has been studied. Special care has been paid to determining the size dependence of the Raman intensity corresponding to the quadrupolar Lamb mode. Existing models based on a microscopic description of the scattering mechanism in small particles (bond polarizability, dipole induced dipole models) predict, for any Raman-active Lamb modes, an inelastic intensity scaling as the volume of the nanoparticle. Surprisingly experimental intensity ratios are found to be anomalously much greater than theoretical ones, calling into question this scaling law. To explain these discrepancies, a simple mechanism of Raman scattering, based on the density fluctuations in the nanoparticles induced by the Lamb modes, is introduced. This modeling, in which the nanoparticle is described as an elastic isotropic continuous medium—as in Lamb theory, successfully explains the major features exhibited by low frequency Raman modes. Moreover this model provides a unified picture for any material, suitable for handling both small and large size ranges, as well as non-resonant and resonant excitation conditions in the case of metallic species.
Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin.
Martinez, Nelida Y; Andrade, Patricia F; Durán, Nelson; Cavalitto, Sebastian
2017-10-01
In the present work, a double emulsion was developed for the encapsulation of Bovine Serum Albumin (BSA) as a model protein for the future encapsulation of viral proteins. The first emulsion polydispersity index (PDI) was studied with increasing concentrations of poly (ε-caprolactone) (PCL) as stabilizer (from 16% w/v to 5% w/v) and polyvinyl alcohol (PVA) as the surfactant in the second emulsion at 1.5% w/v. Results suggest that at decreasing concentrations of PCL the PDI of the emulsion also decrease, indicating that viscosity of the emulsion is crucial in the homogeneity of the resultant size distribution of the nanoparticles. When PVA concentration in the second emulsion was increased from 1.5% w/v to 2.5% w/v the PDI also increased. To study the relationship between the structure of the surfactant in the second emulsion and the resultant BSA encapsulation, emulsions were prepared with Pluronic F68 and PVA both at 1.5% w/v and PCL in the first emulsion at 5% w/v. Results indicated that Pluronic F68 was a better stabilizer because at the same experimental conditions encapsulation of BSA was 1.5 higher than PVA. FTIR studies confirmed the presence of BSA in the nanoparticles. SEM and TEM microscopies showed a size distribution of 300nm-500nm size of nanoparticles. Circular dichroism studies demonstrated that the secondary structure of the protein was conserved after the encapsulation into the nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Mercury removal in wastewater by iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Vélez, E.; Campillo, G. E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J. I.; Jaramillo, F.
2016-02-01
Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements.
Gold nanoparticles synthesis and biological activity estimation in vitro and in vivo.
Rieznichenko, L S; Dybkova, S M; Gruzina, T G; Ulberg, Z R; Todor, I N; Lukyanova, N Yu; Shpyleva, S I; Chekhun, V F
2012-01-01
The aim of the work was the synthesis of gold nanoparticles (GNP) of different sizes and the estimation of their biological activity in vitro and in vivo. Water dispersions of gold nanoparticles of different sizes have been synthesized by Davis method and characterized by laser-correlation spectroscopy and transmission electron microscopy methods. The GNP interaction with tumor cells has been visualized by confocal microscopy method. The enzyme activity was determined by standard biochemical methods. GNP distribution and content in organs and tissues have been determined via atomic-absorption spectrometry method; genotoxic influence has been estimated by "Comet-assay" method. The GNP size-dependent accumulation in cultured U937 tumor cells and their ability to modulate U937 cell membrane Na(+),K(+)-АТР-ase activity value has been revealed in vitro. Using in vivo model of Guerin carcinoma it has been shown that GNP possess high affinity to tumor cells. Our results indicate the perspectives of use of the synthesized GNP water dispersions for cancer diagnostics and treatment. It's necessary to take into account a size-dependent biosafety level of nanoparticles.
Mahdavi, Mahnaz; Ahmad, Mansor Bin; Haron, Md Jelas; Namvar, Farideh; Nadi, Behzad; Rahman, Mohamad Zaki Ab; Amin, Jamileh
2013-06-27
Superparamagnetic iron oxide nanoparticles (MNPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. These applications required that the MNPs such as iron oxide Fe₃O₄ magnetic nanoparticles (Fe₃O₄ MNPs) having high magnetization values and particle size smaller than 100 nm. This paper reports the experimental detail for preparation of monodisperse oleic acid (OA)-coated Fe₃O₄ MNPs by chemical co-precipitation method to determine the optimum pH, initial temperature and stirring speed in order to obtain the MNPs with small particle size and size distribution that is needed for biomedical applications. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The results show that the particle size as well as the magnetization of the MNPs was very much dependent on pH, initial temperature of Fe²⁺ and Fe³⁺ solutions and steering speed. The monodisperse Fe₃O₄ MNPs coated with oleic acid with size of 7.8 ± 1.9 nm were successfully prepared at optimum pH 11, initial temperature of 45°C and at stirring rate of 800 rpm. FTIR and XRD data reveal that the oleic acid molecules were adsorbed on the magnetic nanoparticles by chemisorption. Analyses of TEM show the oleic acid provided the Fe₃O₄ particles with better dispersibility. The synthesized Fe₃O₄ nanoparticles exhibited superparamagnetic behavior and the saturation magnetization of the Fe₃O₄ nanoparticles increased with the particle size.
Structure and optical properties of ZnO with silver nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyadov, N. M., E-mail: nik061287@mail.ru; Gumarov, A. I.; Kashapov, R. N.
Textured nanocrystalline ZnO thin films are synthesized by ion beam assisted deposition. According to X-ray diffraction data, the crystallite size is ∼25 nm. Thin (∼15 nm) ZnO layers containing Ag nanoparticles are formed in a thin surface region of the films by the implantation of Ag ions with an energy of 30 keV and a dose in the range (0.25–1) × 10{sup 17} ion/cm{sup 2}. The structure and optical properties of the layers are studied. Histograms of the size distribution of Ag nanoparticles are obtained. The average size of the Ag nanoparticles varies from 0.5 to 1.5–2 nm depending onmore » the Ag-ion implantation dose. The optical transmittance of the samples in the visible and ultraviolet regions increases, as the implantation dose is increased. The spectra of the absorption coefficient of the implanted films are calculated in the context of the (absorbing film)/(transparent substrate) model. It is found that the main changes in the optical-density spectra occur in the region of ∼380 nm, in which the major contribution to absorption is made by Ag nanoparticles smaller than 0.75 nm in diameter. In this spectral region, absorption gradually decreases, as the Ag-ion irradiation dose is increased. This is attributed to an increase in the average size of the Ag nanoparticles. It is established that the broad surface-plasmon-resonance absorption bands typical of nanocomposite ZnO films with Ag nanoparticles synthesized by ion implantation are defined by the fact that the size of the nanoparticles formed does not exceed 1.5–2 nm.« less
Kalani, Mahshid; Yunus, Robiah
2012-01-01
The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.
Kalani, Mahshid; Yunus, Robiah
2012-01-01
The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks. PMID:22619552
Mazloomi-Rezvani, Mahsa; Salami-Kalajahi, Mehdi; Roghani-Mamaqani, Hossein
2018-06-01
Different core-shell nanoparticles with Au as core and stimuli-responsive polymers such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(N-isopropylacrylamide) (PNIPAAm), poly(N,N'-methylenebis(acrylamide)) (PMBA), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) as shells were fabricated via inverse emulsion polymerization. Dynamic light scattering (DLS) was used to investigate particles sizes and particle size distributions and transmission electron microscopy (TEM) was applied to observe the core-shell structure of Au-polymer nanoparticles. Also, surface charge of all samples was studied by measurement of zeta potentials. Synthesized core-shell nanoparticles were utilized as nanocarriers of DOX as anti-cancer drug and drug release behaviors were investigated in dark room and under irradiation of near-infrared (NIR) light. Results showed that all core-shell samples have particle sizes less than 100 nm with narrow particle size distributions. Moreover, amount of drug loading decreased by increasing zeta potential. In dark room, lower pH resulted in higher cumulative drug release due to better solubility of DOX in acidic media. Also, NIR lighting on DOX-loaded samples led to increasing cumulative drug release significantly. However, DOX-loaded Au-PAA and Au-PMAA showed higher drug release at pH = 7.4 compared to 5.3 under NIR lighting. Copyright © 2018 Elsevier B.V. All rights reserved.
Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig
2012-01-01
The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721
Nanoparticle formation of deposited Agn-clusters on free-standing graphene
NASA Astrophysics Data System (ADS)
Al-Hada, M.; Peters, S.; Gregoratti, L.; Amati, M.; Sezen, H.; Parisse, P.; Selve, S.; Niermann, T.; Berger, D.; Neeb, M.; Eberhardt, W.
2017-11-01
Size-selected Agn-clusters on unsupported graphene of a commercial Quantifoil sample have been investigated by surface and element-specific techniques such as transmission electron microscopy (TEM), spatially-resolved inner-shell X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). An agglomeration of the highly mobile clusters into nm-sized Ag-nanodots of 2-3 nm is observed. Moreover, crystalline as well as non-periodic fivefold symmetric structures of the Ag-nanoparticles are evident by high-resolution TEM. Using a lognormal size-distribution as revealed by TEM, the measured positive binding energy shift of the air-exposed Ag-nanodots can be explained by the size-dependent dynamical liquid-drop model.
Magnetic nanoparticles entrapped in siliceous mesocellular foam: a new catalyst support.
Lee, Su Seong; Riduan, Siti Nurhanna; Erathodiyil, Nandanan; Lim, Jaehong; Cheong, Jian Liang; Cha, Junhoe; Han, Yu; Ying, Jackie Y
2012-06-11
γ-Fe(2)O(3) nanoparticles were formed inside the cage-like pores of mesocellular foam (MCF). These magnetic nanoparticles showed a uniform size distribution that could be easily controlled by the MCF pore size, as well as by the hydrocarbon chain length used for MCF surface modification. Throughout the entrapment process, the pore structure and surface area of the MCF remained intact. The resulting magnetic MCF facilitated the immobilization of biocatalysts, homogeneous catalysts, and nanoclusters. Moreover, the MCF allowed for facile catalyst recovery by using a simple magnet. The supported catalysts exhibited excellent catalytic efficiencies that were comparable to their homogeneous counterparts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lipinska-Kalita, Kristina E.; Krol, Denise M.; Hemley, Russell J.; Mariotto, Gino; Kalita, Patricia E.; Ohki, Yoshimichi
2005-09-01
The precipitation and growth of copper nanoparticles in an optically transparent aluminosilicate glass matrix was investigated. The size of particles in this heterophase glass-based composite was modified in a controlled manner by isothermal heat treatments. A multitechnique approach, consisting of Raman scattering spectroscopy, high-resolution transmission electron microscopy, x-ray diffraction technique, and optical absorption spectroscopy, has been used to study the nucleation and crystallization processes. Optical absorption spectroscopy revealed the presence of intense absorption bands attributed to oscillations of free electrons, known as the surface-plasmon resonance band of copper particles, and confirmed a gradual increase of the particles' mean size and density with annealing time. The Raman scattering on acoustical phonons from Cu quantum dots in the glass matrix measured for off-resonance conditions demonstrated the presence of intense, inhomogeneously broadened peaks that have been assigned to the confined acoustic eigenmodes of copper nanoparticles. The particle-size dependence of the acoustic peak energies and the relation between the size distribution and bandwidths of these peaks were derived. High-resolution transmission electron microscopy was used to monitor the nucleation of the nanoparticles and to estimate their mean size.
NASA Astrophysics Data System (ADS)
Ranjan, Amalendu P.; Zeglam, Karim; Mukerjee, Anindita; Thamake, Sanjay; Vishwanatha, Jamboor K.
2011-07-01
The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 ± 3.7 to 260 ± 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.
Flash NanoPrecipitation (FNP) for bioengineering nanoparticles to enhance the bioavailability
NASA Astrophysics Data System (ADS)
Feng, Jie; Zhang, Yingyue; McManus, Simone; Prud'Homme, Robert
2017-11-01
Nanoparticles for the delivery of therapeutics have been one of the successful areas in biomedical nanotechnology. Nanoparticles improve bioavailability by 1) the higher surface-to-volume ratios, enhancing dissolution rates, and 2) trapping drug molecules in higher energy, amorphous states for a higher solubility. However, conventional direct precipitation to prepare nanoparticles has the issues of low loading and encapsulation efficiency. Here we demonstrate a kinetically controlled and rapid-precipitation process called Flash NanoPrecipitation (FNP), to offer a multi-phase mixing platform for bioengineering nanoparticles. With the designed geometry in the micro-mixer, we can generate nanoparticles with a narrow size distribution, while maintaining high loading and encapsulation efficiency. By controlling the time scales in FNP, we can tune the nanoparticle size and the robustness of the process. Remarkably, the dissolution rates of the nanoparticles are significantly improved compared with crystalline drug powders. Furthermore, we investigate how to recover the drug-loaded nanoparticles from the aqueous dispersions. Regarding the maintenance of the bioavailability, we discuss the advantages and disadvantages of each drying process. These results suggest that FNP offers a versatile and scalable nano-fabrication platform for biomedical engineering.
NASA Astrophysics Data System (ADS)
Zhao, Yanna; Guo, Yifei; Li, Ran; Wang, Ting; Han, Meihua; Zhu, Chunyan; Wang, Xiangtao
2016-07-01
The novel methotrexate-loaded nanoparticles (MTX/PGD NPs) prepared with amphiphilic codendrimer PGD from polyamidoamine and oligothylene glycol dendrons were obtained via antisolvent precipitation method augmented by ultrasonication. Based on the excellent hydrophility of PGD, the drug-loaded nanoparticles could be investigated easily with the high drug-loading content (~85.2%, w/w). The MTX/PGD NPs possessed spherical morphology, nanoscaled particle size (approximately 182.4 nm), and narrow particle size distribution. Release of MTX from MTX/PGD NPs showed a sustained release manner and completed within 48 h. Hemolytic evaluation indicated MTX/PGD NPs presented good blood compatibility, and the cytotoxicity of nanoparticles against breast cancer cells in vitro, biodistribution in tumor tissue, and antitumor efficacy in vivo were enhanced significantly compared to MTX injection. According to the higher drug-loading content, enhanced antitumor efficacy, and appropriate particle size, MTX/PGD NPs as the drug delivery systems could have potential application for cancer chemotherapy in clinic.
Zhao, Yanna; Guo, Yifei; Li, Ran; Wang, Ting; Han, Meihua; Zhu, Chunyan; Wang, Xiangtao
2016-01-01
The novel methotrexate-loaded nanoparticles (MTX/PGD NPs) prepared with amphiphilic codendrimer PGD from polyamidoamine and oligothylene glycol dendrons were obtained via antisolvent precipitation method augmented by ultrasonication. Based on the excellent hydrophility of PGD, the drug-loaded nanoparticles could be investigated easily with the high drug-loading content (~85.2%, w/w). The MTX/PGD NPs possessed spherical morphology, nanoscaled particle size (approximately 182.4 nm), and narrow particle size distribution. Release of MTX from MTX/PGD NPs showed a sustained release manner and completed within 48 h. Hemolytic evaluation indicated MTX/PGD NPs presented good blood compatibility, and the cytotoxicity of nanoparticles against breast cancer cells in vitro, biodistribution in tumor tissue, and antitumor efficacy in vivo were enhanced significantly compared to MTX injection. According to the higher drug-loading content, enhanced antitumor efficacy, and appropriate particle size, MTX/PGD NPs as the drug delivery systems could have potential application for cancer chemotherapy in clinic. PMID:27388443
Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution
NASA Astrophysics Data System (ADS)
Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B.
2012-07-01
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO2 nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO2 in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO2 with narrow-sized distribution. Following the hydrothermal treatment at 150°C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.
Yin, Yin; Wang, Jiawei; Lu, Xueyi; Hao, Qi; Saei Ghareh Naz, Ehsan; Cheng, Chuanfu; Ma, Libo; Schmidt, Oliver G
2018-04-24
In situ generation of silver nanoparticles for selective coupling between localized plasmonic resonances and whispering-gallery modes (WGMs) is investigated by spatially resolved laser dewetting on microtube cavities. The size and morphology of the silver nanoparticles are changed by adjusting the laser power and irradiation time, which in turn effectively tune the photon-plasmon coupling strength. Depending on the relative position of the plasmonic nanoparticles spot and resonant field distribution of WGMs, selective coupling between the localized surface plasmon resonances (LSPRs) and WGMs is experimentally demonstrated. Moreover, by creating multiple plasmonic-nanoparticle spots on the microtube cavity, the field distribution of optical axial modes is freely tuned due to multicoupling between LSPRs and WGMs. The multicoupling mechanism is theoretically investigated by a modified quasipotential model based on perturbation theory. This work provides an in situ fabrication of plasmonic nanoparticles on three-dimensional microtube cavities for manipulating photon-plasmon coupling which is of interest for optical tuning abilities and enhanced light-matter interactions.
Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen
2017-09-15
High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle formation from the as-deposited Au film. The byproduct of self-catalyzed In 2 Se 3 nanoplates can be inhibited by lowering the precursors and growth temperatures.
Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
Esfandiari, Nadia; Ghoreishi, Seyyed M
2015-12-01
The micronization of ampicillin via supercritical gas antisolvent (GAS) process was studied. The particle size distribution was significantly controlled with effective GAS variables such as initial solute concentration, temperature, pressure, and antisolvent addition rate. The effect of each variable in three levels was investigated. The precipitated particles were analyzed with scanning electron microscopy (SEM) and Zetasizer Nano ZS. The results indicated that decreasing the temperature and initial solute concentration while increasing the antisolvent rate and pressure led to a decrease in ampicillin particle size. The mean particle size of ampicillin was obtained in the range of 220-430 nm by varying the GAS effective variables. The purity of GAS-synthesized ampicillin nanoparticles was analyzed in contrast to unprocessed ampicillin by FTIR and HPLC. The results indicated that the structure of the ampicillin nanoparticles remained unchanged during the GAS process.
Michen, Benjamin; Geers, Christoph; Vanhecke, Dimitri; Endes, Carola; Rothen-Rutishauser, Barbara; Balog, Sandor; Petri-Fink, Alke
2015-01-01
Standard transmission electron microscopy nanoparticle sample preparation generally requires the complete removal of the suspending liquid. Drying often introduces artifacts, which can obscure the state of the dispersion prior to drying and preclude automated image analysis typically used to obtain number-weighted particle size distribution. Here we present a straightforward protocol for prevention of the onset of drying artifacts, thereby allowing the preservation of in-situ colloidal features of nanoparticles during TEM sample preparation. This is achieved by adding a suitable macromolecular agent to the suspension. Both research- and economically-relevant particles with high polydispersity and/or shape anisotropy are easily characterized following our approach (http://bsa.bionanomaterials.ch), which allows for rapid and quantitative classification in terms of dimensionality and size: features that are major targets of European Union recommendations and legislation. PMID:25965905
Tuning of optical properties of CdS nanoparticles synthesized in a glass matrix
NASA Astrophysics Data System (ADS)
Popov, Ivan D.; Kuznetsova, Yulia V.; Rempel, Svetlana V.; Rempel, Andrey A.
2018-03-01
Attempts were made to provide the data concerning directed synthesis of semiconductor nanoparticles in a dielectric silica-based glass matrix. These attempts involve finding out the connections between the structure, size of CdS nanoparticles, and optical properties of the nanocomposites produced. High-resolution focused ion beam scanning electron microscopy images of CdS nanoparticles incorporated in glass and SAXS results confirm the formation of uniformly distributed spherical CdS nanoparticles with an average diameter of about 6.2 nm. UV-Vis measurements show that CdS composites possess a direct bandgap wider than 2.45 eV depending on the heat treatment conditions; thus, heat treatment can be used to control nanoparticle size in each selected composite. The emission spectra showed a maximum at about 603 nm and a red shift of about 100 nm with increasing annealing temperature that is associated with the presence of defect states in the nanoparticles. In addition, semiconductor phase concentration in the glass matrix was found by using optical absorption data for the first time, which allows understanding the effect of nanocomposite structure on luminescence properties.
Synthesis and characterization of arsenic-doped cysteine-capped thoria-based nanoparticles
NASA Astrophysics Data System (ADS)
Pereira, F. J.; Díez, M. T.; Aller, A. J.
2013-09-01
Thoria materials have been largely used in the nuclear industry. Nonetheless, fluorescent thoria-based nanoparticles provide additional properties to be applied in other fields. Thoria-based nanoparticles, with and without arsenic and cysteine, were prepared in 1,2-ethanediol aqueous solutions by a simple precipitation procedure. The synthesized thoria-based nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (ED-XRS), Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and fluorescence microscopy. The presence of arsenic and cysteine, as well as the use of a thermal treatment facilitated fluorescence emission of the thoria-based nanoparticles. Arsenic-doped and cysteine-capped thoria-based nanoparticles prepared in 2.5 M 1,2-ethanediol solutions and treated at 348 K showed small crystallite sizes and strong fluorescence. However, thoria nanoparticles subjected to a thermal treatment at 873 K also produced strong fluorescence with a very narrow size distribution and much smaller crystallite sizes, 5 nm being the average size as shown by XRD and TEM. The XRD data indicated that, even after doping of arsenic in the crystal lattice of ThO2, the samples treated at 873 K were phase pure with the fluorite cubic structure. The Raman and FT-IR spectra shown the most characteristics vibrational peaks of cysteine together with other peaks related to the bonds of this molecule to thoria and arsenic when present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansari, Mohd Zubair, E-mail: mhd.zubair1@gmail.com; Khare, Neeraj
Single phase Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoparticles have been synthesized by the microwave-assisted solution method in a one step process. Structural, morphological and optical characterizations of the CZTS nanoparticles have been carried out. X-ray diffraction confirms the single phase formation of CZTS nanoparticles with kesterite structure. SEM confirms the homogenous distribution of CZTS nanoparticles flower like assemblies. High resolution TEM image confirms the good crystallinity of the CZTS nanoparticles with the average grain size ~20 nm. The CZTS nanoparticles have strong optical absorption in the visible region with direct band gap as ~1.6 eV which is optimal for photovoltaic application.
Cellular delivery of PEGylated PLGA nanoparticles.
Pamujula, Sarala; Hazari, Sidhartha; Bolden, Gevoni; Graves, Richard A; Chinta, Dakshinamurthy Devanga; Dash, Srikanta; Kishore, Vimal; Mandal, Tarun K
2012-01-01
The objective of this study was to investigate the efficiency of uptake of PEGylated polylactide-co-gycolide (PLGA) nanoparticles by breast cancer cells. Nanoparticles of PLGA containing various amounts of polyethylene glycol (PEG, 5%-15%) were prepared using a double emulsion solvent evaporation method. The nanoparticles were loaded with coumarin-6 (C6) as a fluorescence marker. The particles were characterized for surface morphology, particle size, zeta potential, and for cellular uptake by 4T1 murine breast cancer cells. Irrespective of the amount of PEG, all formulations yielded smooth spherical particles. However, a comparison of the particle size of various formulations showed bimodal distribution of particles. Each formulation was later passed through a 1.2 µm filter to obtain target size particles (114-335 nm) with zeta potentials ranging from -2.8 mV to -26.2 mV. While PLGA-PEG di-block (15% PEG) formulation showed significantly higher 4T1 cellular uptake than all other formulations, there was no statistical difference in cellular uptake among PLGA, PLGA-PEG-PLGA tri-block (10% PEG), PLGA-PEG di-block (5% PEG) and PLGA-PEG di-block (10% PEG) nanoparticles. These preliminary findings indicated that the nanoparticle formulation prepared with 15% PEGylated PLGA showed maximum cellular uptake due to it having the smallest particle size and lowest zeta potential. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Solano, Eduardo; Yáñez, Ramón; Ricart, Susagna; Ros, Josep
2015-05-01
A new more efficient approach of the polyol route to generate MFe2O4 (M=Mn, Fe, Co, Ni, Cu, Zn) nanoparticles in triethylene glycol (TREG) is presented. The selected thermal procedure is based on the Fe metalorganic precursor (iron(III) acetylacetonate) decomposition in presence of an inorganic transition metal chloride salt (MCl2, M=Mn, Fe, Co, Ni, Cu, Zn) to produce high quality polar dispersible nanoparticles with lower production cost. In addition, the nanoparticles are stabilized by ionic (from the Cl-) and steric (TREG as capping ligand) effects inducing into the nanoparticles an extraordinary stability in different polar solvents. As result of this optimized methodology, the colloidal polar dispersible nanoparticles present a size around 10 nm with an adequate size dispersion demonstrated by analyzing transmission electron microscopy (TEM) images. X-ray powder diffraction (XRPD) results corroborate the absence of secondary phases and the high crystalline degree obtained for the spinel structure, fact proved by using synchrotron X-ray diffraction. The high magnetic performance at low and room temperature of the nanoparticles studied by magnetometry proves the high internal crystal order of the spinel. Parallel to this, the influence of the heating ramp and annealing time in the thermal procedure were also investigated for the CuFe2O4 case, where a relationship between these two parameters and the final size and their associated diameter distribution was found, allowing a possible size control of the final ferrite magnetic nanoparticles synthesized.
Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir
The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.
NASA Astrophysics Data System (ADS)
Li, Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.
2009-02-01
Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.
NASA Astrophysics Data System (ADS)
Rezaee, Sahar; Ghobadi, Nader
2018-06-01
The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.
Emission of nanoparticles during combustion of waste biomass in fireplace
NASA Astrophysics Data System (ADS)
Drastichová, Vendula; Krpec, Kamil; Horák, Jiří; Hopan, František; Kubesa, Petr; Martiník, Lubomír; Koloničný, Jan; Ochodek, Tadeáš; Holubčík, Michal
2014-08-01
Contamination of air by solid particles is serious problem for human health and also environment. Small particles in nano-sizes are more dangerous than same weight of larger size. Negative effect namely of the solid particles depends on (i) number, (ii) specific surface area (iii) respirability and (iv) bonding of others substances (e.g. PAHs, As, Cd, Zn, Cu etc.) which are higher for smaller (nano-sizes) particles compared to larger one. For this reason mentioned above this contribution deals with measuring of amount, and distribution of nanoparticles produced form combustion of waste city biomass in small combustion unit with impactor DLPI.
Dorati, Rossella; DeTrizio, Antonella; Spalla, Melissa; Migliavacca, Roberta; Pagani, Laura; Pisani, Silvia; Chiesa, Enrica; Modena, Tiziana; Genta, Ida
2018-01-01
Nanotechnology is a promising approach both for restoring or enhancing activity of old and conventional antimicrobial agents and for treating intracellular infections by providing intracellular targeting and sustained release of drug inside infected cells. The present paper introduces a formulation study of gentamicin loaded biodegradable nanoparticles (Nps). Solid-oil-in water technique was studied for gentamicin sulfate nanoencapsulation using uncapped Polylactide-co-glycolide (PLGA-H) and Polylactide-co-glycolide-co-Polyethylenglycol (PLGA-PEG) blends. Screening design was applied to optimize: drug payload, Nps size and size distribution, stability and resuspendability after freeze-drying. PLGA-PEG concentration resulted most significant factor influencing particles size and drug content (DC): 8 w/w% DC and 200 nm Nps were obtained. Stirring rate resulted most influencing factor for size distribution (PDI): 700 rpm permitted to obtain homogeneous Nps dispersion (PDI = 1). Further experimental parameters investigated, by 23 screening design, were: polymer blend composition (PLGA-PEG and PLGA-H), Polyvinylalcohol (PVA) and methanol concentrations into aqueous phase. Drug content was increased to 10.5 w/w%. Nanoparticle lyophilization was studied adding cryoprotectants, polyvinypirrolidone K17 and K32, and sodiumcarboxymetylcellulose. Freeze-drying protocol was optimized by a mixture design. A freeze-dried Nps powder free resuspendable with stable Nps size and payload, was developed. The powder was tested on clinic bacterial isolates demonstrating that after encapsulation, gentamicin sulfate kept its activity. PMID:29329209
NASA Astrophysics Data System (ADS)
Apriandanu, D. O. B.; Yulizar, Y.
2017-04-01
Environmentally friendly method for green synthesis of Au nanoparticles (AuNP) using aqueous leaf extract of Tinospora crispa (TLE) was reported. TLE has the ability for reducing and capping AuNP. Identification of active compounds in aqueous leaf extract was obtained by phytochemical analysis and Fourier transform infrared spectroscopy (FTIR). The AuNP-TLE growth was characterized using UV-Vis spectrophotometer. The particle size and the distribution of AuNP were confirmed by particle size analyzer (PSA). AuNP-TLE formation was optimized by varying the extract concentration and time of the synthesis process. UV-Vis absorption spectrum of optimum AuNP formation displayed by the surface plasmon resonance at maximum wavelength of λmax 536 nm. The PSA result showed that AuNP has size distribution of 80.60 nm and stable up to 21 days. TEM images showed that the size of the AuNP is ± 25 nm.
Evaluation of uptake and distribution of gold nanoparticles in solid tumors
NASA Astrophysics Data System (ADS)
England, Christopheri G.; Gobin, André M.; Frieboes, Hermann B.
2015-11-01
Although nanotherapeutics offer a targeted and potentially less toxic alternative to systemic chemotherapy in cancer treatment, nanotherapeutic transport is typically hindered by abnormal characteristics of tumor tissue. Once nanoparticles targeted to tumor cells arrive in the circulation of tumor vasculature, they must extravasate from irregular vessels and diffuse through the tissue to ideally reach all malignant cells in cytotoxic concentrations. The enhanced permeability and retention effect can be leveraged to promote extravasation of appropriately sized particles from tumor vasculature; however, therapeutic success remains elusive partly due to inadequate intra-tumoral transport promoting heterogeneous nanoparticle uptake and distribution. Irregular tumor vasculature not only hinders particle transport but also sustains hypoxic tissue kregions with quiescent cells, which may be unaffected by cycle-dependent chemotherapeutics released from nanoparticles and thus regrow tumor tissue following nanotherapy. Furthermore, a large proportion of systemically injected nanoparticles may become sequestered by the reticulo-endothelial system, resulting in overall diminished efficacy. We review recent work evaluating the uptake and distribution of gold nanoparticles in pre-clinical tumor models, with the goal to help improve nanotherapy outcomes. We also examine the potential role of novel layered gold nanoparticles designed to address some of these critical issues, assessing their uptake and transport in cancerous tissue.
NASA Astrophysics Data System (ADS)
Clement, Sandhya; Gardner, Brint; Razali, Wan Aizuddin W.; Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Goldys, Ewa M.; Herrmann, Jan; Zvyagin, Andrei
2017-11-01
The estimation of nanoparticle number concentration in colloidal suspensions is a prerequisite in many procedures, and in particular in multi-stage, low-yield reactions. Here, we describe a rapid, non-destructive method based on optical extinction and dynamic light scattering (DLS), which combines measurements using common bench-top instrumentation with a numerical algorithm to calculate the particle size distribution (PSD) and concentration. These quantities were derived from Mie theory applied to measurements of the optical extinction spectrum of homogeneous, non-absorbing nanoparticles, and the relative PSD of a colloidal suspension. The work presents an approach to account for PSDs achieved by DLS which, due to the underlying model, may not be representative of the true sample PSD. The presented approach estimates the absolute particle number concentration of samples with mono-, bi-modal and broad size distributions with <50% precision. This provides a convenient and practical solution for number concentration estimation required during many applications of colloidal nanomaterials.
2011-01-01
Background Elucidation of molecular mechanism of silver nanoparticles (SNPs) biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution) of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro) and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro) SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver nanoparticles using C. reinhardtii as a model system. PMID:22152042
NASA Astrophysics Data System (ADS)
Li, Li; Chakrabarty, Souvik; Jiang, Jing; Zhang, Ben; Ober, Christopher; Giannelis, Emmanuel P.
2016-01-01
The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07334k
Monte Carlo study of magnetic nanoparticles adsorbed on halloysite Al2Si2O5(OH) 4 nanotubes
NASA Astrophysics Data System (ADS)
Sotnikov, O. M.; Mazurenko, V. V.; Katanin, A. A.
2017-12-01
We study properties of magnetic nanoparticles adsorbed on the halloysite surface. For that a distinct magnetic Hamiltonian with a random distribution of spins on a cylindrical surface was solved by using a nonequilibrium Monte Carlo method. The parameters for our simulations, the anisotropy constant, nanoparticle size distribution, saturated magnetization, and geometrical characteristics of the halloysite template, were taken from recent experiments. We calculate the hysteresis loops and temperature dependence of the zero-field-cooling (ZFC) susceptibility, the maximum of which determines the blocking temperature. It is shown that the dipole-dipole interaction between nanoparticles moderately increases the blocking temperature and weakly increases the coercive force. The obtained hysteresis loops (e.g., the value of the coercive force) for Ni nanoparticles are in reasonable agreement with the experimental data. We also discuss the sensitivity of the hysteresis loops and ZFC susceptibilities to the change in anisotropy and dipole-dipole interaction, as well as the 3 d -shell occupation of the metallic nanoparticles; in particular we predict larger coercive force for Fe than for Ni nanoparticles.
Bräuer, Björn; Vaynzof, Yana; Zhao, Wei; Kahn, Antoine; Li, Wen; Zahn, Dietrich R T; Fernández, César de Julián; Sangregorio, Claudio; Salvan, Georgeta
2009-04-09
Ni nanoparticles with a size distribution from 2 to 6 nm, embedded in various organic matrices, were fabricated in ultrahigh vacuum. For this purpose metal free and Ni phthalocyanine, fullerene C(60), and pentacene were coevaporated with Ni. When coevaporated, Ni and H(2)Pc react, leading to the formation of NiPc and Ni nanoparticles. The molecular structure of the matrix was found to have negligible effect on the size of the nanoparticles but to influence the magnetic anisotropy of the nanoparticles: Ni nanoparticles formed in the buckyball matrix have a cubic symmetry, while nanoparticles formed in matrices consisting of planar molecules exhibit a uniaxial symmetry. After exposure to atmosphere, photoelectron spectroscopy investigations demonstrate the presence of metallic Ni nanoparticles accompanied by Ni oxide and the existence of a charge transfer from the organic matrix to the particles in all investigated systems. The oxidized Ni nanoparticles exhibit a larger magnetic anisotropy compared to the freshly prepared particles which show superparamagnetic properties above 17 K. Moreover, photoelectron spectroscopy was used to probe the oxidation process of the Ni nanoparticles in different organic matrices. It could thus be shown that a matrix consisting of spherical molecules like C(60) prevent the particles much better from oxidation compared to matrices of flat molecules.
Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, A., E-mail: ana.maria.nowak@gmail.com; Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów; Szade, J.
Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover,more » UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.« less
Shalviri, Alireza; Chan, Ho Ka; Raval, Gaurav; Abdekhodaie, Mohammad J; Liu, Qiang; Heerklotz, Heiko; Wu, Xiao Yu
2013-01-01
This work focused on the design of new pH-responsive nanoparticles for controlled delivery of anticancer drug doxorubicin (Dox). Nanoparticles of poly(methacrylic acid)-polysorbate 80-grafted starch (PMAA-PS 80-g-St) were synthesized by using a one-pot method that enabled simultaneous grafting of PMAA and PS 80 onto starch and nanoparticle formation in an aqueous medium. The particles were characterized by FTIR, (1)H NMR, TEM, DLS, and potentiometric titration. Dox loading and in vitro release from the nanoparticles were investigated. The FTIR and (1)H NMR confirmed the chemical composition of the graft terpolymer. The nanoparticles were relatively spherical with narrow size distribution and porous morphology. They exhibited pH-dependent swelling in a physiological pH range. The particle size and magnitude of phase transition were dependent on polymer composition and formulation parameters such as concentrations of surfactant and cross-linking agent and total monomer concentration. The nanoparticles with optimized compositions showed high loading capacity for Dox and sustained Dox release. The results suggest that the new pH-responsive terpolymer nanoparticles are useful in controlled drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang
2016-05-01
The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.
NASA Astrophysics Data System (ADS)
Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre
2011-05-01
A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 +/- 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 +/- 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing. Electronic supplementary information (ESI) available: Thermogravimetric analysis curve, picture of a YAG:Ce3+ thin film. See DOI: 10.1039/c0nr01000f
Palladium nanoparticles formed on titanium silicate ETS-10.
Lin, Christopher C H; Danaie, Mohsen; Mitlin, David; Kuznicki, Steven M
2011-03-01
We report that surface templated and supported palladium nanoparticles self assemble on ETS-10 type molecular sieve surfaces by simple exchange and activation procedures in the absence of a reductant. This procedure is similar to the one previously reported for silver nanoparticle self assembly on ETS-10. We observed a bimodal distribution with particle sizes ranging from 2-5 and 15-30 nm. This simple, economical method generates high concentrations (approximately 12 wt% of total composite) of uniform, metallic palladium nanoparticles that are multiply twinned and thermally stable making them potentially unique for advanced catalytic and electronic applications.
Intense generation of respirable metal nanoparticles from a low-power soldering unit.
Gómez, Virginia; Irusta, Silvia; Balas, Francisco; Santamaria, Jesus
2013-07-15
Evidence of intense nanoparticle generation from a low power (45W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10(6) particles/cm(3)) within the breathing range of the operator, with initial size distributions centered at 35-60nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe
2016-02-01
The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.
NASA Astrophysics Data System (ADS)
Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha
2010-03-01
Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and lipids (solid and liquid) inside the lipid nanoparticle systems are proposed.
Kong, Qinglu; Zhang, Lingxia; Liu, Jianan; Wu, Meiying; Chen, Yu; Feng, Jingwei; Shi, Jianlin
2014-12-25
Hydrophilic mesoporous carbon nanoparticles (MCNs) have been synthesized via an extremely facile precursor carbonization-in-hot solvent route. The synthesized MCNs show well-defined particle and pore size distribution at around 100 nm and 2.7 nm, respectively, and multicolor and upconversion photoluminescence, which endow the MCNs with multicolor/upconversion bioimaging and drug delivery properties.
Kim, Min-Soo; Song, Ha-Seung; Park, Hee Jun; Hwang, Sung-Joo
2012-01-01
The aims of this study were to identify how the solvent selection affects particle formation and to examine the effect of the initial drug solution concentration on mean particle size and particle size distribution in the supercritical antisolvent (SAS) process. Amorphous atorvastatin calcium was precipitated from seven different solvents using the SAS process. Particles with mean particle size ranging between 62.6 and 1493.7 nm were obtained by varying organic solvent type and solution concentration. By changing the solvent, we observed large variations in particle size and particle size distribution, accompanied by different particle morphologies. Particles obtained from acetone and tetrahydrofuran (THF) were compact and spherical fine particles, whereas those from N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO) were agglomerated, with rough surfaces and relatively larger particle sizes. Interestingly, the mean particle size of atorvastatin calcium increased with an increase in the boiling point of the organic solvent used. Thus, for atorvastatin particle formation via the SAS process, particle size was determined mainly by evaporation of the organic solvent into the antisolvent phase. In addition, the mean particle size was increased with increasing drug solution concentration. In this study, from the aspects of particle size and solvent toxicity, acetone was the better organic solvent for controlling nanoparticle formation of atorvastatin calcium.
Synthesis and Biological Response of Size-Specific, Monodisperse Drug-Silica Nanoconjugates
Tang, Li; Fan, Timothy M.; Borst, Luke B.; Cheng, Jianjun
2012-01-01
Drug-containing nanoparticles (NPs) with monodisperse, controlled particle sizes are highly desirable for drug delivery. Accumulating evidence suggests that NPs with sizes less than 50 nm demonstrate superior performance in vitro and in vivo. However, it is difficult to fabricate monodisperse, drug-containing NPs with discrete and incremental difference in sizes required for studying and characterizing existing relationships among particle size, biologic processing, and therapeutic functionality. Here, we report a scalable process of fabricating drug-silica conjugated nanoparticles, termed drug-silica nanoconjugates (drug-NCs), which possess monodisperse size distributions and desirable particle sizes as small as 20 nm. We found that 20-nm NCs are superior to their 50-nm and 200-nm NC analogues by 2–5 and 10–20 folds, respectively, with regard to tumor accumulation and penetration, and cellular internalization. These fundamental findings underscore the importance and necessity of further miniaturizing nanomedicine size for optimized drug delivery applications. PMID:22494403
A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.
Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng
2017-04-22
Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.
From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration
NASA Astrophysics Data System (ADS)
Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans
2009-05-01
A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.
A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles
Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng
2017-01-01
Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740
Edris, Amr E
2012-09-01
ABSTRACT The objective of the present investigation is to formulate commercial soybean lecithin as nanoparticles in solvent-free aqueous system for potential supplementary applications. A mechanical method, which involved two major steps, was used for that purpose. First, lecithin submicron particles (~ 0.5 μm) have been prepared by gradual hydration of lecithin powder using mechanical agitation. Finally, the size of these particles was further reduced to < 100 nm by using high-pressure microfluidization. The physical stability (appearance, particle size distribution, ζ-potential) and the chemical stability (lipid oxidation) of the dispersions carrying lecithin nanoparticles were assessed every 15 days during the 3-month shelf life period at two different temperatures. Results showed that the final particle size of lecithin in the freshly prepared aqueous dispersion was 79.8 ± 1.0 nm and the amount of peroxide detected was 3.5 ± 0.2 meq/kg lipid. At the end of the storage period, dispersions stored at 4°C exhibited physical and chemical stability as evident from the translucent appearance, the small change in particle size (84.1 ± 1.3 nm), and the small amount of generated peroxides (4.1 ± 0.2 meq/kg lipid). On the other hand, dispersions stored at 25°C were physically stable up to 60 days. Over that period, samples became turbid and the particle size increased to 145.0 ± 1.7 nm with a bimodal distribution pattern. This behavior was due to phospholipids (PLs) degradation and hydrolysis under acidic conditions, which proceeds faster at a relatively high temperature (25°C) than at (4°C). The outcome of this investigation may help in developing water-based dispersions carrying lecithin nanoparticles for dietary supplement of PLs.
Properties of magnetic iron oxides used as materials for wastewater treatment
NASA Astrophysics Data System (ADS)
Matei, E.; Predescu, A.; Vasile, E.; Predescu, A.
2011-07-01
The paper describes the properties of some nanopowders obtained by coprecipitation and used as adsorbent for wastewater treatment. The Fe3O4 and γ-Fe2O3 nanopowders were obtained using iron salts and NaOH as precipitation agents. D-sorbitol was used to prevent the agglomeration between the nanoparticles. The particle size and distribution were detected using a transmission electron microscopy (TEM) and a scanning electron microscope (SEM) equipped with dispersive analyze system in X radiation energy (EDS). The structure of the iron oxide nanoparticles was characterized by X-ray powder diffraction. Thus, the nanoparticles were characterized and compare in terms of particle size and chemical composition and used for adsorption studies in order to removal hexavalent chromium from waste waters.
NASA Astrophysics Data System (ADS)
Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud
2016-09-01
In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
Fadel, Maha; Kassab, Kawser; Fadeel, Doa Abdel
2010-03-01
Nanoparticles formulated from the biodegradable copolymer poly(lactic-coglycolic acid) (PLGA) were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting of zinc(II) phthalocyanine (ZnPc) for photodynamic therapy. Three ZnPc nanoparticle formulations were prepared using a solvent emulsion evaporation method and the influence of sonication time on nanoparticle shape, encapsulation and size distribution, in vitro release, and in vivo photodynamic efficiency in tumor-bearing mice were studied. Sonication time did not affect the process yield or encapsulation efficiency, but did affect significantly the particle size. Sonication for 20 min reduced the mean particle size to 374.3 nm and the in vitro release studies demonstrated a controlled release profile of ZnPc. Tumor-bearing mice injected with ZnPc nanoparticles exhibited significantly smaller mean tumor volume, increased tumor growth delay and longer survival compared with the control group and the group injected with free ZnPc during the time course of the experiment. Histopathological examination of tumor from animals treated with PLGA ZnPc showed regression of tumor cells, in contrast to those obtained from animals treated with free ZnPc. The results indicate that ZnPc encapsulated in PLGA nanoparticles is a successful delivery system for improving photodynamic activity in the target tissue.
Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles
NASA Astrophysics Data System (ADS)
Machida, Keisuke; Adachi, Kenji
2015-07-01
An ensemble inhomogeneity of non-spherical LaB6 nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB6 particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent -3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB6 with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.
Koski, Jason P; Riggleman, Robert A
2017-04-28
Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.
NASA Astrophysics Data System (ADS)
Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian
2016-04-01
The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.
Hydrodynamic fractionation of finite size gold nanoparticle clusters.
Tsai, De-Hao; Cho, Tae Joon; DelRio, Frank W; Taurozzi, Julian; Zachariah, Michael R; Hackley, Vincent A
2011-06-15
We demonstrate a high-resolution in situ experimental method for performing simultaneous size classification and characterization of functional gold nanoparticle clusters (GNCs) based on asymmetric-flow field flow fractionation (AFFF). Field emission scanning electron microscopy, atomic force microscopy, multi-angle light scattering (MALS), and in situ ultraviolet-visible optical spectroscopy provide complementary data and imagery confirming the cluster state (e.g., dimer, trimer, tetramer), packing structure, and purity of fractionated populations. An orthogonal analysis of GNC size distributions is obtained using electrospray-differential mobility analysis (ES-DMA). We find a linear correlation between the normalized MALS intensity (measured during AFFF elution) and the corresponding number concentration (measured by ES-DMA), establishing the capacity for AFFF to quantify the absolute number concentration of GNCs. The results and corresponding methodology summarized here provide the proof of concept for general applications involving the formation, isolation, and in situ analysis of both functional and adventitious nanoparticle clusters of finite size. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal
2016-02-01
Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.
Imaging TiO2 nanoparticles on GaN nanowires with electrostatic force microscopy
NASA Astrophysics Data System (ADS)
Xie, Ting; Wen, Baomei; Liu, Guannan; Guo, Shiqi; Motayed, Abhishek; Murphy, Thomas; Gomez, R. D.
Gallium nitride (GaN) nanowires that are functionalized with metal-oxides nanoparticles have been explored extensively for gas sensing applications in the past few years. These sensors have several advantages over conventional schemes, including miniature size, low-power consumption and fast response and recovery times. The morphology of the oxide functionalization layer is critical to achieve faster response and recovery times, with the optimal size distribution of nanoparticles being in the range of 10 to 30 nm. However, it is challenging to characterize these nanoparticles on GaN nanowires using common techniques such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. Here, we demonstrate electrostatic force microscopy in combination with atomic force microscopy as a non-destructive technique for morphological characterization of the dispersed TiO2 nanoparticles on GaN nanowires. We also discuss the applicability of this method to other material systems with a proposed tip-surface capacitor model. This project was sponsored through N5 Sensors and the Maryland Industrial Partnerships (MIPS, #5418).
Unni, Mythreyi; Uhl, Amanda M; Savliwala, Shehaab; Savitzky, Benjamin H; Dhavalikar, Rohan; Garraud, Nicolas; Arnold, David P; Kourkoutis, Lena F; Andrew, Jennifer S; Rinaldi, Carlos
2017-02-28
Decades of research focused on size and shape control of iron oxide nanoparticles have led to methods of synthesis that afford excellent control over physical size and shape but comparatively poor control over magnetic properties. Popular synthesis methods based on thermal decomposition of organometallic precursors in the absence of oxygen have yielded particles with mixed iron oxide phases, crystal defects, and poorer than expected magnetic properties, including the existence of a thick "magnetically dead layer" experimentally evidenced by a magnetic diameter significantly smaller than the physical diameter. Here, we show how single-crystalline iron oxide nanoparticles with few defects and similar physical and magetic diameter distributions can be obtained by introducing molecular oxygen as one of the reactive species in the thermal decomposition synthesis. This is achieved without the need for any postsynthesis oxidation or thermal annealing. These results address a significant challenge in the synthesis of nanoparticles with predictable magnetic properties and could lead to advances in applications of magnetic nanoparticles.
Simon-Deckers, A; Gouget, B; Mayne-L'hermite, M; Herlin-Boime, N; Reynaud, C; Carrière, M
2008-11-20
If released in the environment, nanomaterials might be inhaled by populations and cause damage to the deepest regions of the respiratory tract, i.e., the alveolar compartment. To model this situation, we studied the response of A549 human pneumocytes after exposure to aluminium oxide or titanium oxide nanoparticles, and to multi-walled carbon nanotubes. The influence of size, crystalline structure and chemical composition was investigated. After a detailed identification of nanomaterial physico-chemical characteristics, cells were exposed in vitro and viability and intracellular accumulation were assessed. In our conditions, carbon nanotubes were more toxic than metal oxide nanoparticles. Our results confirmed that both nanotubes and nanoparticles are able to rapidly enter into cells, and distribute in the cytoplasm and intracellular vesicles. Among nanoparticles, we demonstrate significant difference in biological response as a function of size, crystalline phase and chemical composition. Their toxicity was globally lower than nanotubes toxicity. Among nanotubes, the length did not influence cytotoxicity, neither the presence of metal catalyst impurities.
Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki
2016-06-01
Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.
Impact of solvent mixture on iron nanoparticles generated by laser ablation
NASA Astrophysics Data System (ADS)
Chakif, M.; Prymak, O.; Slota, M.; Heintze, E.; Gurevich, E. L.; Esen, C.; Bogani, L.; Epple, M.; Ostendorf, A.
2014-03-01
The present work reveals the structural and magnetic properties of iron oxide (FexOy) nanoparticles (NPs) prepared by femtosecond laser ablation. The FexOy-NPs were produced in solutions consisting of different ratios of water and acetone. Laser ablation in water yields agglomerates and that in acetone yields chain structures whereas that in water/acetone show a mixture of both. We observe significant fabrication dependent properties such as different crystallinities and magnetic behaviors. The structural characterization shows a change from iron (Fe) to a FexOy state of the NPs which depends on the solution composition. Furthermore, transmission electron microscopy measurements exhibit a broad particle size distribution in all samples but with significant differences in the mean sizes. Using magnetic measurements we show that nanoparticles fabricated in pure acetone have lower coercive fields which come along with a smaller mean particle size and therefore increasing superparamagnetic behavior.
NASA Astrophysics Data System (ADS)
Deshpande, Aniruddha S.; Khomane, Ramdas B.; Vaidya, Bhalchandra K.; Joshi, Renuka M.; Harle, Arti S.; Kulkarni, Bhaskar D.
2008-06-01
Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+ malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 and n-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5 15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.
2008-01-01
Sulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution) was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm) and narrow particle size distribution (in range of 5–15 nm) as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%). Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi) than that of colloidal sulfur.
Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles.
Hull, Matthew S; Chaurand, Perrine; Rose, Jerome; Auffan, Melanie; Bottero, Jean-Yves; Jones, Jason C; Schultz, Irvin R; Vikesland, Peter J
2011-08-01
Nanoparticles resistant to salt-induced aggregation are continually being developed for biomedical and industrial applications. Because of their colloidal stability these functionalized nanoparticles are anticipated to be persistent aquatic contaminants. Here, we show that Corbicula fluminea, a globally distributed clam that is a known sentinel of aquatic ecosystem contamination, can uptake and biodeposit bovine serum albumin (BSA) stabilized gold nanoparticles. Nanoparticle clearance rates from suspension were dictated by diameter and concentration, with the largest particles cleared most quickly on a mass basis. Particle capture facilitates size-selective 'biopurification' of particle suspensions with nanoscale resolution. Nanoparticles were retained either within the clam digestive tract or excreted in feces. Our results suggest that biotransformation and biodeposition will play a significant role in the fate and transport of persistent nanoparticles in aquatic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahata, S.; Mahato, S. S.; Nandi, M. M.
2012-07-23
Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quitemore » comparable to good anatase and rutile nanocrystallites.« less
Synthesis of nanoparticles using ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jia Xu
The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shellmore » catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a "green" chemistry method.« less
Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles
Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.
2015-01-01
Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400
Towards well-defined gold nanomaterials via diafiltration and aptamer mediated synthesis
NASA Astrophysics Data System (ADS)
Sweeney, Scott Francis
Gold nanoparticles have garnered recent attention due to their intriguing size- and shape-dependent properties. Routine access to well-defined gold nanoparticle samples in terms of core diameter, shape, peripheral functionality and purity is required in order to carry out fundamental studies of their properties and to utilize these properties in future applications. For this reason, the development of methods for preparing well-defined gold nanoparticle samples remains an area of active research in materials science. In this dissertation, two methods, diafiltration and aptamer mediated synthesis, are explored as possible routes towards well-defined gold nanoparticle samples. It is shown that diafiltration has considerable potential for the efficient and convenient purification and size separation of water-soluble nanoparticles. The suitability of diafiltration for (i) the purification of water-soluble gold nanoparticles, (ii) the separation of a bimodal distribution of nanoparticles into fractions, (iii) the fractionation of a polydisperse sample and (iv) the isolation of [rimers from monomers and aggregates is studied. NMR, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) measurements demonstrate that diafiltration produces highly pure nanoparticles. UV-visible spectroscopic and transmission electron microscopic analyses show that diafiltration offers the ability to separate nanoparticles of disparate core size, including linked nanoparticles. These results demonstrate the applicability of diafiltration for the rapid and green preparation of high-purity gold nanoparticle samples and the size separation of heterogeneous nanoparticle samples. In the second half of the dissertation, the identification of materials specific aptamers and their use to synthesize shaped gold nanoparticles is explored. The use of in vitro selection for identifying materials specific peptide and oligonucleotide aptamers is reviewed, outlining the specific requirements of in vitro selection for materials and the ways in which the field can be advanced. A promising new technique, in vitro selection on surfaces (ISOS), is developed and the discovery using ISOS of RNA aptamers that bind to evaporated gold is discussed. Analysis of the isolated gold binding RNA aptamers indicates that they are highly structured with single-stranded polyadenosine binding motifs. These aptamers, and similarly isolated peptide aptamers, are briefly explored for their ability to synthesize gold nanoparticles. This dissertation contains both previously published and unpublished co-authored material.
Modifying the visual appearance of metal nanoparticle composites by infrared laser annealing
NASA Astrophysics Data System (ADS)
Halabica, Andrej; Indrobo, J. C.; Magruder, R. H., III; Haglund, R. F., Jr.; Epp, J. M.; Rashkeev, S.; Boatner, L. A.; Pennycook, S. J.; Pantelides, S. T.
2007-03-01
It has long been known that noble-metal nanoparticles in insulators can alter their visual appearance. Many metal nanoparticle composites can be created by ion implantation and subsequent annealing to initiate phase separation, nucleation and growth of nanoparticles. The size and size distribution of the nanoparticles - and therefore the color of the composite - are determined by the chemistry and thermodynamics of the annealing process. In this paper we report that we can also alter the color of gold- and silver-implanted silica and alumina by tunable infrared laser irradiation. Essentially a variant of rapid thermal annealing, this laser treatment can shift the plasmon band of the nanoparticles by tens of nm, resulting in significantly altered visual appearance. The amount of energy delivered to the implanted layer, and the subsequent color variation, can be adjusted by changing the wavelength and fluence of the laser. This makes it possible, as we will show, to write or pattern the composite material with 200 μm linewidths. This work is partially supported by DOE (DE-AC05-00OR22725), NSF (DMR-0513048), and by Alcoa Inc.
Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract
Von White, Gregory; Kerscher, Petra; Brown, Ryan M.; Morella, Jacob D.; McAllister, William; Dean, Delphine; Kitchens, Christopher L.
2012-01-01
This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature where Allium sativum (garlic) extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the post-synthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive x-ray chemical analysis, and high performance liquid chromatography indicated that the carbohydrates present in the garlic extract are the most likely nanoparticle stabilizing chemistry. The synthesized silver nanoparticles also demonstrate potential for biomeical applications, owing to the 1) enhanced stability in biological media, 2) resistance to oxidation by the addition of H2O2, 3) ease and scalability of synthesis, and 4) lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 μg/ml, confirming that garlic extract prepared silver nanoparticles are ideal candidates for future experimentation and implementation into biomedical applications. PMID:24683414
NASA Astrophysics Data System (ADS)
Staneva, Desislava; Atanasova, Daniela; Vasileva-Tonkova, Evgenia; Lukanova, Varbina; Grabchev, Ivo
2015-08-01
Two different methods were used to obtain composite materials based on a ZnO nanoparticles-hydrogel-cotton fabric. The hydrogels, synthesized by photopolymerization, were utilized to provide uniform distribution and binding of the nanoparticles to the fiber surface and to prevent their agglomeration. N-methyldiethanolamine (MDEA) was used as a co-initiator in hydrogel photopolymerization and as an alkaline agent in the synthesis of ZnO nanoparticles. Due to the difference in size, shape and morphology of the nanoparticles, examined by a TEM and SEM, it was found that the materials have distinct photoluminescence properties, e.g. in the entire visible or UV range. The composite materials with small size nanoparticles and photoluminescence in near UV range were investigated for antibiotic activity against the bacterial strains Pseudomonas aeruginosa and Acinetobacter johnsonii known as important pathogens in clinical infections. Significantly high antibacterial effect on the bacteria tested was achieved, especially on A. johnsonii. This suggests potential application of the new formulations as effective wound dressings to control the spread of infections.
Magnetic nanoparticles: In vivo cancer diagnosis and therapy.
Lima-Tenório, Michele K; Pineda, Edgardo A Gómez; Ahmad, Nasir M; Fessi, Hatem; Elaissari, Abdelhamid
2015-09-30
Recently, significant research efforts have been devoted to the finding of efficient approaches in order to reduce the side effects of traditional cancer therapy and diagnosis. In this context, magnetic nanoparticles have attracted much attention because of their unique physical properties, magnetic susceptibility, biocompatibility, stability and many more relevant characteristics. Particularly, magnetic nanoparticles for in vivo biomedical applications need to fulfill special criteria with respect to size, size distribution, surface charge, biodegradability or bio-eliminability and optionally bear well selected ligands for specific targeting. In this context, many routes have been developed to synthesize these materials, and tune their functionalities through intriguing techniques including functionalization, coating and encapsulation strategies. In this review article, the use of magnetic nanoparticles for cancer therapy and diagnosis is evaluated addressing potential applications in MRI, drug delivery, hyperthermia, theranostics and several other domains. In view of potential biomedical applications of magnetic nanoparticles, the review focuses on the most recent progress made with respect to synthetic routes to produce magnetic nanoparticles and their salient accomplishments for in vivo cancer diagnosis and therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Xinge; Chen, Haiming; Luo, Zhigang; Fu, Xiong
2016-03-15
In this research, 1-hexadecyl-3-methylimidazolium bromide C16mimBr/butan-1-ol/cyclohexane/water ionic liquid microemulsion was prepared. The effects of n-alkyl alcohols, alkanes, water content and temperature on the properties of microemulsion were studied by dilution experiment. The microregion of microemulsion was identified by pseudo-ternary phase diagram and conductivity measurement. Then starch nanoparticles were prepared by water in oil (W/O) microemulsion-cross-linking methods with C16mimBr as surfactant. Starch nanoparticles with a mean diameter of 94.3nm and narrow size distribution (SD=3.3) were confirmed by dynamic light scattering (DLS). Scanning electron microscope (SEM) data revealed that starch nanoparticles were spherical granules with the size about 60nm. Moreover the results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) demonstrated the formation of cross-linking bonds in starch molecules. Finally, the drug loading and releasing properties of starch nanoparticles were investigated with methylene blue (MB) as drug model. This work may provide an efficient pathway to synthesis starch nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pereira, Gabriela Garrastazu; Detoni, Cassia Britto; Balducci, Anna Giulia; Rondelli, Valeria; Colombo, Paolo; Guterres, Silvia Stanisçuaski; Sonvico, Fabio
2016-02-15
Lecithin and hyaluronic acid were used for the preparation of polysaccharide decorated nanoparticles loaded with vitamin E using the cationic lipid dioctadecyldimethylammonium bromide (DODMA). Nanoparticles showed mean particle size in the range 130-350 nm and narrow size distribution. Vitamin E encapsulation efficiency was higher than 99%. These nanoparticles were incorporated in polymeric films containing Aloe vera extract, hyaluronic acid, sodium alginate, polyethyleneoxide (PEO) and polyvinylalcohol (PVA) as an innovative treatment in skin wounds. Films were thin, flexible, resistant and suitable for application on burn wounds. Additionally, in vitro occlusion study highlighted the dependence of the occlusive effect on the presence of nanoparticles. The results obtained show that the bioadhesive films containing vitamin E acetate and Aloe vera could be an innovative therapeutic system for the treatment of skin wounds, such as burns. The controlled release of the vitamin along with a reduction in water loss through damaged skin provided by the nanoparticle-loaded polymer film are considered important features for an improvement in wound healing and skin regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.
Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract.
Von White, Gregory; Kerscher, Petra; Brown, Ryan M; Morella, Jacob D; McAllister, William; Dean, Delphine; Kitchens, Christopher L
2012-01-01
This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature where Allium sativum (garlic) extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the post-synthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive x-ray chemical analysis, and high performance liquid chromatography indicated that the carbohydrates present in the garlic extract are the most likely nanoparticle stabilizing chemistry. The synthesized silver nanoparticles also demonstrate potential for biomeical applications, owing to the 1) enhanced stability in biological media, 2) resistance to oxidation by the addition of H 2 O 2 , 3) ease and scalability of synthesis, and 4) lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 μg/ml, confirming that garlic extract prepared silver nanoparticles are ideal candidates for future experimentation and implementation into biomedical applications.
NASA Astrophysics Data System (ADS)
Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A.
2016-04-01
The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging. Electronic supplementary information (ESI) available: Details on the estimations of evaporation rates and limits of detection, ESI figures and author contributions. See DOI: 10.1039/c6nr00537c
Molecular dynamical simulations of melting Al nanoparticles using a reaxff reactive force field
NASA Astrophysics Data System (ADS)
Liu, Junpeng; Wang, Mengjun; Liu, Pingan
2018-06-01
Molecular dynamics simulations were performed to study thermal properties and melting points of Al nanoparticles by using a reactive force field under canonical (NVT) ensembles. Al nanoparticles (particle size 2–4 nm) were considered in simulations. A combination of structural and thermodynamic parameters such as the Lindemann index, heat capacities, potential energy and radial-distribution functions was employed to decide melting points. We used annealing technique to obtain the initial Al nanoparticle model. Comparison was made between ReaxFF results and other simulation results. We found that ReaxFF force field is reasonable to describe Al cluster melting behavior. The linear relationship between particle size and melting points was found. After validating the ReaxFF force field, more attention was paid on thermal properties of Al nanoparticles with different defect concentrations. 4 nm Al nanoparticles with different defect concentrations (5%–20%) were considered in this paper. Our results revealed that: the melting points are irrelevant with defect concentration at a certain particle size. The extra storage energy of Al nanoparticles is proportional to nanoparticles’ defect concentration, when defect concentration is 5%–15%. While the particle with 20% defect concentration is similar to the cluster with 10% defect concentration. After melting, the extra energy of all nanoparticles decreases sharply, and the extra storage energy is nearly zero at 600 K. The centro-symmetry parameter analysis shows structure evolution of different models during melting processes.
Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B
2015-07-01
Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.
Rogers, Kim R; Navratilova, Jana; Stefaniak, Aleksandr; Bowers, Lauren; Knepp, Alycia K; Al-Abed, Souhail R; Potter, Phillip; Gitipour, Alireza; Radwan, Islam; Nelson, Clay; Bradham, Karen D
2018-04-01
Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characterization parameters included: total silver, fractionated silver (particulate and dissolved), primary particle size distribution, hydrodynamic diameter, particle number, and plasmon resonance absorbance. A high degree of variability between claimed and measured values for total silver was observed. Only 7 of the products showed total silver concentrations within 20% of their nominally reported values. In addition, significant variations in the relative percentages of particulate vs. soluble silver were also measured in many of these products reporting to be colloidal. Primary silver particle size distributions by transmission electron microscopy (TEM) showed two populations of particles - smaller particles (<5nm) and larger particles between 20 and 40nm. Hydrodynamic diameter measurements using nanoparticle tracking analysis (NTA) correlated well with TEM analysis for the larger particles. Z-average (Z-Avg) values measured using dynamic light scattering (DLS); however, were typically larger than both NTA or TEM particle diameters. Plasmon resonance absorbance signatures (peak absorbance at around 400nm indicative of metallic silver nanoparticles) were only noted in 4 of the 9 yellow-brown colored suspensions. Although the total silver concentrations were variable among products, ranging from 0.54mg/L to 960mg/L, silver containing nanoparticles were identified in all of the product suspensions by TEM. Published by Elsevier B.V.
High magnetic coercivity of FePt-Ag/MgO granular nanolayers
NASA Astrophysics Data System (ADS)
Roghani, R.; Sebt, S. A.; Khajehnezhad, A.
2018-06-01
L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.
Size effect of Au/PAMAM contrast agent on CT imaging of reticuloendothelial system and tumor tissue
NASA Astrophysics Data System (ADS)
Wang, Wei; Li, Jian; Liu, Ransheng; Zhang, Aixu; Yuan, Zhiyong
2016-09-01
Polyamidoamine (PAMAM)-entrapped Au nanoparticles were synthesized with distinct sizes to figure out the size effect of Au-based contrast agent on CT imaging of passively targeted tissues. Au/PAMAM nanoparticles were first synthesized with narrow distribution of particles size of 22.2 ± 3.1, 54.2 ± 3.7, and 104.9 ± 4.7 nm in diameters. Size effect leads no significant difference on X-ray attenuation when Au/PAMAM was ≤0.05 mol/L. For CT imaging of a tumor model, small Au/PAMAM were more easily internalized via endocytosis in the liver, leading to more obviously enhanced contrast. Similarly, contrast agents with small sizes were more effective in tumor imaging because of the enhanced permeability and retention effect. Overall, the particle size of Au/PAMAM heavily affected the efficiency of CT enhancement in imaging RES and tumors.
NASA Astrophysics Data System (ADS)
López-Miranda, A.; Viramontes-Gamboa, G.; López-Valdivieso, A.
2014-02-01
The synthesis of silver nanoparticles has been investigated using Ag(CN) 2 - species as precursor, citrate ions as reducing agent, and dodecyl sulfate ions as stabilizer, at pH 11 and 97 °C, in a batch stirred glass reactor. The role of Cu2+ ions in the synthesis was also studied. Bird- of- paradise flower-type nanostructures composed of AgCN nanowires having inside Ag and AgCN nanoparticles were produced in the absence of Cu2+ ions. The nanostructures slowly grew and transformed to AgCN nanowires with embedded Ag and AgCN nanoparticles, having a mean size of 9.7 ± 3.6 nm. The presence of Cu2+ ions in the synthesis significantly enhanced the production of the nanostructures. Nanowires having a thickness of 63 ± 33 nm and length of up to 20 μm were produced. Cu2+ ions also simultaneously lead to the synthesis of ordinary free Ag nanoparticles with a bimodal size distribution (mean sizes of 9.9 ± 3.9 and 65.5 ± 27 nm) and a low experimental formation kinetic rate constant of 1.22 × 10-4 s-1. Feasible mechanisms are presented for the origin of the AgCN nanowires, Ag and AgCN nanoparticles inside the nanowires, and for the free Ag nanoparticles. UV/Vis spectrometry was used to measure the surface plasmon resonance of the nanoparticles and the synthesis kinetic rate constant of the free Ag nanoparticles. ATR-FTIR spectroscopy, EDS-SEM, EDS-TEM, and HRTEM were used to characterize the size, crystal structure, texture, and chemical composition of the synthesis products.
2017-01-01
Polymeric nanoparticles have become indispensable in modern society with a wide array of applications ranging from waterborne coatings to drug-carrier-delivery systems. While a large range of techniques exist to determine a multitude of properties of these particles, relating physicochemical properties of the particle to the chemical structure of the intrinsic polymers is still challenging. A novel, highly orthogonal separation system based on comprehensive two-dimensional liquid chromatography (LC × LC) has been developed. The system combines hydrodynamic chromatography (HDC) in the first-dimension to separate the particles based on their size, with ultrahigh-performance size-exclusion chromatography (SEC) in the second dimension to separate the constituting polymer molecules according to their hydrodynamic radius for each of 80 to 100 separated fractions. A chip-based mixer is incorporated to transform the sample by dissolving the separated nanoparticles from the first-dimension online in tetrahydrofuran. The polymer bands are then focused using stationary-phase-assisted modulation to enhance sensitivity, and the water from the first-dimension eluent is largely eliminated to allow interaction-free SEC. Using the developed system, the combined two-dimensional distribution of the particle-size and the molecular-size of a mixture of various polystyrene (PS) and polyacrylate (PACR) nanoparticles has been obtained within 60 min. PMID:28745485
Yokel, Robert; Grulke, Eric; MacPhail, Robert
2013-01-01
This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.
Effect of aluminum and yttrium doping on zinc sulphide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A.
2016-05-06
In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Ymore » doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.« less
Ascorbic acid prevents cellular uptake and improves biocompatibility of chitosan nanoparticles.
Elshoky, Hisham A; Salaheldin, Taher A; Ali, Maha A; Gaber, Mohamed H
2018-04-11
Chitosan nanoparticles have many applications, such as gene and drug delivery, due to their biocompatibility. Chitosan nanoparticles are currently produced by dissolution in acetic acid that affects the biocompatibility at acidic pH. Here, we synthesized and characterized chitosan (CS) and ascorbate chitosan (AsCS) nanoparticles and investigated their cytotoxic effects, internalization, and distribution in the human colon carcinoma cell line using confocal laser scanning microscopy (CLSM). The CS and AsCS nanoparticles were spherical with average particle sizes of 44±8.4nm and 87±13.6nm, respectively. CS nanoparticles were taken up by the cells and showed dose-dependent cytotoxicity. By contrast, AsCS nanoparticles were not internalized and showed no cytotoxicity. Therefore, AsCS nanoparticles are more biocompatible than CS nanoparticles and may be more suitable for extracellular drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles.
Zak, A Khorsand; Razali, R; Majid, W H Abd; Darroudi, Majid
2011-01-01
Zinc oxide nanoparticles (ZnO-NPs) were synthesized via a solvothermal method in triethanolamine (TEA) media. TEA was utilized as a polymer agent to terminate the growth of ZnO-NPs. The ZnO-NPs were characterized by a number of techniques, including X-ray diffraction analysis, transition electron microscopy, and field emission electron microscopy. The ZnO-NPs prepared by the solvothermal process at 150°C for 18 hours exhibited a hexagonal (wurtzite) structure, with a crystalline size of 33 ± 2 nm, and particle size of 48 ± 7 nm. The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.
Kokila, T; Ramesh, P S; Geetha, D
2016-12-01
Waste fruit peel mediated synthesis of silver nanoparticles (AgNPs) is a green chemistry approach that links nanotechnology and biotechnology. Using biological medium such as peel extract for the biosynthesis of nanoparticles is an ecofriendly and emerging scientific trend. With this back drop the present study focused on the biosynthesis of AgNPs using Carica Papaya peel extract (CPPE) and evaluation of its antimicrobial potentials of the nanoparticles against different human pathogens and to investigate the free radical scavenging activity. Water soluble antioxidant constituents present in Carica Papaya peel extract were mainly responsible for the reduction of silver ions to nanosized Ag particles. UV-vis spectral analysis shows surface plasmon resonance band at 430nm. The presence of active proteins and phenolic groups present in the biomass before and after reduction was identified by Fourier transform infrared spectroscopy. X-ray diffraction study shows the average size of the silver nanoparticles is in the range of 28nm, as well as revealed their face centered cubic structure. Atomic force microscope image gives the 3D topological characteristic of silver nanoparticles and the particle size ranges from 10 to 30nm. The average particle size distribution of silver nanoparticles is 161nm (Dynamic light scattering) and the corresponding average zeta potential value is -20.5mV, suggesting higher stability of silver nanoparticles. Biologically synthesized nanoparticles efficiently inhibited pathogenic organisms both gram-positive and gram-negative bacteria. The biosynthesized nanoparticles might serve as a potent antioxidant as revealed by DPPH and ABT S+ assay. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.
2016-07-01
Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and coordination numbers); radial distribution functions for all O-Ti pairs over the entire data domain; comparison of coordination number distributions for dry and wet nanoparticles; dynamics of water reactivity; high-resolution electron density for the rutile NP. A movie of the simulation trajectory for the rutile (TiO2)24.30H2O system. See DOI: 10.1039/C6NR02791A
Zein/caseinate/pectin complex nanoparticles: Formation and characterization.
Chang, Chao; Wang, Taoran; Hu, Qiaobin; Luo, Yangchao
2017-11-01
In this study, pectin was used as coating material to form zein/caseinate/pectin complex nanoparticles through pH adjustment and heating treatment for potential oral delivery applications. The preparation conditions were studied by applying heating treatment at different pHs, either the isoelectric point of zein (pH 6.2) or caseinate (pH 4.6), or consecutively at both pHs. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for complex nanoparticles formed under different preparation conditions. The complex nanoparticles generally exhibited particle size smaller than 200nm with narrow distribution, spherical shape, and strong negative charge. Fourier transform infrared and fluorescence spectroscopy revealed that hydrophobic interactions and hydrogen bonds were involved in the formation of complex nanoparticles, in addition to electrostatic interactions. Fresh colloidal dispersion and freeze-dried powders varied in their morphology, depending on their preparation conditions. Our results suggested that heating pH and sequence significantly affected the morphology of complex nanoparticles, and pectin coating exerted stabilization effect under simulated gastrointestinal conditions. The present study provides insight into the formation of protein/polysaccharide complex nanoparticles under different preparation conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation
Caricato, Anna Paola; Luches, Armando; Rella, Roberto
2009-01-01
The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented. PMID:22574039
Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.
Caricato, Anna Paola; Luches, Armando; Rella, Roberto
2009-01-01
The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.
Ye, Fan; Miao, Ming; Jiang, Bo; Campanella, Osvaldo H; Jin, Zhengyu; Zhang, Tao
2017-08-15
The aim of present study was to study the medium-chain triacylglycerol-in-water (O/W) Pickering emulsion stabilized using different modified starch-based nanoparticles (octenylsuccinylation treated soluble starch nanoparticle, OSA-SSNP, and insoluble starch nanoparticle, ISNP). The major factors for affecting the system stability, rheological behaviour and microstructure of the emulsions were also investigated. The parameters of the O/W emulsions stabilized by OSA-SSNP or ISNP were selected as follows: 3.0% of starch nanoparticles concentration, 50% of MCT fraction and 7.0 of system pH. The rheological properties indicated that both emulsions displayed shear-thinning behaviour as a non-Newtonian fluid. For OSA-SSNP, the viscosities of the emulsion were higher than those of ISNP throughout shear rate range for the same condition. The plot of droplet size distribution for emulsion stabilized OSA-SSNP appeared as a single narrow peak, whereas a broader droplet size distribution with bimodal pattern was observed for emulsion stabilized ISNP. The microscopy results showed that both OSA-SSNP and ISNP were adsorbed at oil-water interface to form a barrier film and retard the phase separation. When emulsion was stored for 30d, no phase separation was detected for O/W emulsion, revealing high stability of emulsion stabilized by both OSA-SSNP and ISNP. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Jingheng; Wen, Xianghua, E-mail: xhwen@tsinghua.edu.cn; Wang, Qinian
Graphical abstract: After purification, the multi-wall carbon nanotubes (MWCNTs) act as seeds for Fe{sub 3}O{sub 4} nanoparticles heterogeneous nucleation. The Fe{sub 3}O{sub 4} nanoparticles with diameter range of 4.2–10.0 nm synthesized in situ on the MWCNTs under solvothermal condition. The formed nano Fe{sub 3}O{sub 4}-MWCNTs decolorized the Acid Orange II effectively via Fenton-like reaction. Highlights: ► The amount of water tunes size and size distribution of the Fe{sub 3}O{sub 4} nanoparticles (FNs). ► FNs are homogeneously coated on the multi-walled carbon nanotubes (MWCNTs). ► FNs have diameters in the range of 4.2–10.0 nm, average grain size of 7.4 nm. ►more » Fe{sub 3}O{sub 4}-MWCNTs are used as a Fenton-like catalyst to decompose Acid Orange II. ► Fe{sub 3}O{sub 4}-MWCNTs displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}. -- Abstract: Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes (Fe{sub 3}O{sub 4}-MWCNTs) hybrid materials were synthesized by a solvothermal process using acid treated MWCNTs and iron acetylacetonate in a mixed solution of ethylene glycol and ultrapure water. The materials were characterized using X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The results showed that a small amount of water in the synthesis system played a role in controlling crystal phase formation, size of Fe{sub 3}O{sub 4}, and the homogeneous distribution of the Fe{sub 3}O{sub 4} nanoparticles deposited on the MWCNTs. The Fe{sub 3}O{sub 4} nanoparticles had diameters in the range of 4.2–10.0 nm. They displayed good superparamagnetism at room temperature and their magnetization was influenced by the reaction conditions. They were used as a Fenton-like catalyst to decompose Acid Orange II and displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}.« less
Formulation and Evaluation of Solid Lipid Nanoparticles of Ramipril
Ekambaram, P; Abdul, Hasan Sathali A
2011-01-01
Solid lipid nanoparticles are typically spherical with an average diameter between 1 and 1000 nm. It is an alternative carrier system to tradition colloidal carriers, such as, emulsions, liposomes, and polymeric micro and nanoparticles. Ramipril is an antihypertensive agent used in the treatment of hypertension. Its oral bioavailability is 28% and it is rapidly excreted through the renal route. This drug has many side effects such as, postural hypotension, hyperkalemia, and angioedema, when given as an immediate dosage form. To overcome the side effects and to increase the bioavailability of ramipril, solid lipid nanoparticles of ramipril are prepared by using lipids (glyceryl monostearate and glyceryl monooleate) with stabilizers (tween 80, poloxamer 188, and span 20). The prepared formulations have been evaluated for entrapment efficiency, drug content, in-vitro drug release, particle size analysis, scanning electron spectroscopy, Fourier transform-infrared studies, and stability. A formulation containing glyceryl monooleate, stabilized with span 20 as surfactant showed prolonged drug release, smaller particle size, and narrow particle size distribution, as compared to other formulations with different surfactants and lipids. PMID:21897661
Loeschner, Katrin; Navratilova, Jana; Grombe, Ringo; Linsinger, Thomas P J; Købler, Carsten; Mølhave, Kristian; Larsen, Erik H
2015-08-15
Nanomaterials are increasingly used in food production and packaging, and validated methods for detection of nanoparticles (NPs) in foodstuffs need to be developed both for regulatory purposes and product development. Asymmetric flow field-flow fractionation with inductively coupled plasma mass spectrometric detection (AF(4)-ICP-MS) was applied for quantitative analysis of silver nanoparticles (AgNPs) in a chicken meat matrix following enzymatic sample preparation. For the first time an analytical validation of nanoparticle detection in a food matrix by AF(4)-ICP-MS has been carried out and the results showed repeatable and intermediately reproducible determination of AgNP mass fraction and size. The findings demonstrated the potential of AF(4)-ICP-MS for quantitative analysis of NPs in complex food matrices for use in food monitoring and control. The accurate determination of AgNP size distribution remained challenging due to the lack of certified size standards. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry
2011-02-01
The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser-nanoparticle interactions depending on laser intensity and wavelength. In particular, implantation of ions departing from the nanoparticles towards the substrate is predicted.
Li, Sining; Zhao, Yaping
2017-01-01
Nanoparticles have attracted more and more attention in the medicinal field. Zein is a biomacromolecule and can be used as a carrier for delivering active ingredients to prepare controlled release drugs. In this article, we presented the preparation of zein nanoparticles by solution-enhanced dispersion by supercritical CO 2 (SEDS) approach. Scanning electron microscopy and transmission electron microscopy were applied to characterize the size and morphology of the obtained particles. The nozzle structure and the CO 2 flow rate greatly affected the morphology and the size of the particles. The size of zein was able to be reduced to 50-350 nm according to the different conditions. The morphologies of the resultant zein were either sphere or the filament network consisted of nanoparticles. The influence of the nozzle structure and the CO 2 flow rate on the velocity field was elucidated by using computational fluid dynamics. The nozzle structure and the CO 2 flow rate greatly affected the distribution of the velocity field. However, a similar velocity field could also be obtained when the nozzle structure or the CO 2 flow rate, or both were different. Therefore, the influence of the nozzle structure and the CO 2 flow rate on the size and morphology of the particles, can boil down to the velocity field. The results demonstrated that the velocity field can be a potential criterion for producing nanoparticles with controllable morphology and size, which is useful to scale-up the SEDS process.
Geometrical effects on the electron residence time in semiconductor nano-particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koochi, Hakimeh; Ebrahimi, Fatemeh, E-mail: f-ebrahimi@birjand.ac.ir; Solar Energy Research Group, University of Birjand, Birjand
2014-09-07
We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ{sub r} in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r{sup 2} model) or through the whole particle (r{sup 3} model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW)more » simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ{sub r}. It has been observed that by increasing the coordination number n, the average value of electron residence time, τ{sup ¯}{sub r} rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ{sup ¯}{sub r} is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ{sup ¯}{sub r}. Our simulations indicate that for volume distribution of traps, τ{sup ¯}{sub r} scales as d{sup 2}. For a surface distribution of traps τ{sup ¯}{sub r} increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.« less
Effect of silver on the shape of palladium nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Dikshita, E-mail: dgmonugupta@gmail.com; Barman, P. B.; Hazra, S. K.
We report a facile route to prepare palladium-silver nanoparticles at considerably low temperature. First the controlled synthesis of palladium nanoparticles was performed via reduction of sodium tetrachloropalladate (II) in ethylene glycol in the presence of PVP(polyvinylpyrrolidone) as capping agent. The reaction was carried out at three different temperatures-80°C, 100°C and 120°C for one hour. Short reaction time and low synthesis temperature adds advantage to this method over others. Formed palladium nanoparticles were nearly spherical with the average particle size of 7.5±0.5 nm, 9.5±0.5 nm and 10.5±0.5 nm at 80°C, 100°C and 120°C respectively. Secondly, the palladium-silver nanoparticles were prepared bymore » the simultaneous reduction of palladium and silver from their respective precursors in ethylene glycol at 100°C (optimized temperature). The shape and size distribution was studied by TEM (Transmission Electron Microscopy). The role of silver in transforming the shape of palladium nanoparticles from spherical to triangular has been discussed. Spherical symmetry of palladium nanoparticles is disturbed by the interaction of silver ions on the crystal facets of palladium nanoparticles. From UV-vis spectra, the absorption maxima of palladium nanoparticles at 205 nm and absorption maxima of palladium-silver nanoparticles at 272 nm revealed the partial evidence of their formation.« less
Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul
2012-01-01
Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. The nanoparticles prepared in this study were spherical, with an average particle size of 85-424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug.
Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells
NASA Astrophysics Data System (ADS)
Cacha, Brian Joseph Gonda
Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).
Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul
2012-01-01
Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837
NASA Astrophysics Data System (ADS)
Zubkov, S. Yu.; Antonov, I. N.; Gorshkov, O. N.; Kasatkin, A. P.; Kryukov, R. N.; Nikolichev, D. E.; Pavlov, D. A.; Shenina, M. E.
2018-03-01
Nanosized films of stabilized zirconia with Au nanoparticles formed by implanting Au ions are studied by X-ray photoelectron spectroscopy and transmission electron microscopy. The effect of irradiation of films with Au ions and postimplantation annealing on the distribution of chemical elements and zirconium- containing ZrO x compounds over the depth of the films is studied. Based on the data on the dimensional shift of the Au 4 f photoelectron line, the average value of the nanoparticle size is determined.
Radiation synthesis and characterization of hyaluronan capped gold nanoparticles.
Hien, Nguyen Quoc; Van Phu, Dang; Duy, Nguyen Ngoc; Quoc, Le Anh
2012-06-20
Gold nanoparticles (AuNPs) with diameter from 4 to 10nm, capping by hyaluronan (HA) were synthesized using a γ-irradiation method. The maximum absorption wavelengths at 517-525 nm of colloidal AuNPs/HA solutions were measured by UV-vis spectroscopy. The size and size distribution of AuNPs were determined from TEM images. The influence of various factors on the size of AuNPs particularly the concentration of Au3+ and HA, and dose rate were also investigated. Results indicated that higher dose rate and HA concentration favor smaller sizes of AuNPs whereas the size increases with Au3+ concentration. The colloidal AuNPs/HA solution was fairly stable more than 6 months under storage at ambient condition. The AuNPs stabilized by biocompatible HA with the size less than 10nm as prepared can potentially be applied in biomedicines and cosmetics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interparticle interaction effects on magnetic behaviors of hematite (α-Fe2O3) nanoparticles
NASA Astrophysics Data System (ADS)
Can, Musa Mutlu; Fırat, Tezer; Özcan, Şadan
2011-07-01
The interparticle magnetic interactions of hematite (α-Fe2O3) nanoparticles were investigated by temperature and magnetic field dependent magnetization curves. The synthesis were done in two steps; milling metallic iron (Fe) powders in pure water (H2O), known as mechanical milling technique, and annealing at 600 °C. The crystal and molecular structure of prepared samples were determined by X-ray powder diffraction (XRD) spectra and Fourier transform infrared (FTIR) spectra results. The average particle sizes and the size distributions were figured out using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The magnetic behaviors of α-Fe2O3 nanoparticles were analyzed with a vibrating sample magnetometer (VSM). As a result of the analysis, it was observed that the prepared α-Fe2O3 nanoparticles did not perform a sharp Morin transition (the characteristic transition of α-Fe2O3) due to lack of unique particle size distribution. However, the transition can be observed in the wide temperature range as “a continuously transition”. Additionally, the effect of interparticle interaction on magnetic behavior was determined from the magnetization versus applied field (σ(M)) curves for 26±2 nm particles, dispersed in sodium oxalate matrix under ratios of 200:1, 300:1, 500:1 and 1000:1. The interparticle interaction fields, recorded at 5 K to avoid the thermal interactions, were found as ∼1082 Oe for 26±2 nm particles.
Achour, Amine; Saeed, Khalid; Djouadi, Mohamed Abdou
2018-01-01
In this work, we report development of hybrid nanostructures of metal nanoparticles (NP) and carbon nanostructures with strong potential for catalysis, sensing, and energy applications. First, the etched silicon wafer substrates were passivated for subsequent electrochemical (EC) processing through grafting of nitro phenyl groups using para-nitrobenzene diazonium (PNBT). The X-ray photoelectron spectroscope (XPS) and atomic force microscope (AFM) studies confirmed presence of few layers. Cobalt-based nanoparticles were produced over dip or spin coated Nafion films under different EC reduction conditions, namely CoSO4 salt concentration (0.1 M, 1 mM), reduction time (5, 20 s), and indirect or direct EC reduction route. Extensive AFM examination revealed NP formation with different attributes (size, distribution) depending on electrochemistry conditions. While relatively large NP with >100 nm size and bimodal distribution were obtained after 20 s EC reduction in H3BO3 following Co2+ ion uptake, ultrafine NP (<10 nm) could be produced from EC reduction in CoSO4 and H3BO3 mixed solution with some tendency to form oxides. Different carbon nanostructures including few-walled or multiwalled carbon nanotubes (CNT) and carbon nanosheets were grown in a C2H2/NH3 plasma using the plasma-enhanced chemical vapor deposition technique. The devised processing routes enable size controlled synthesis of cobalt nanoparticles and metal/carbon hybrid nanostructures with unique microstructural features. PMID:29702583
Oyewumi, Moses O; Yokel, Robert A; Jay, Michael; Coakley, Tricia; Mumper, Russell J
2004-03-24
The purpose of these studies was to compare the cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium (Gd) nanoparticles. Gd is a potential agent for neutron capture therapy (NCT) of tumors. Gd nanoparticles were engineered from oil-in-water microemulsion templates. To obtain folate-coated nanoparticles, a folate ligand [folic acid chemically linked to distearoylphosphatidylethanolamine (DSPE) via a PEG spacer MW 3350] was included in nanoparticle preparations. Similarly, control nanoparticles were coated with DSPE-PEG-MW 3350 (PEG-coated). Nanoparticles were characterized based on size, size distribution, morphology, biocompatibility and tumor cell uptake. In vivo studies were carried out in KB (human nasopharyngeal carcinoma) tumor-bearing athymic mice. Biodistribution and tumor retention studies were carried out at pre-determined time intervals after injection of nanoparticles (10 mg/kg). Gd nanoparticles did not aggregate platelets or activate neutrophils. The retention of nanoparticles in the blood 8, 16 and 24 h post-injection was 60%, 13% and 11% of the injected dose (ID), respectively. A maximum Gd tumor localization of 33+/-7 microg Gd/g was achieved. Both folate-coated and PEG-coated nanoparticles had comparable tumor accumulation. However, the cell uptake and tumor retention of folate-coated nanoparticles was significantly enhanced over PEG-coated nanoparticles. Thus, the benefits of folate ligand coating were to facilitate tumor cell internalization and retention of Gd-nanoparticles in the tumor tissue. The engineered nanoparticles may have potential in tumor-targeted delivery of Gd thereby enhancing the therapeutic success of NCT.
NASA Astrophysics Data System (ADS)
Lepková, K.; Clohessy, J.; Cunnane, V. J.
2007-09-01
A controlled synthesis of metal nanoparticles co-deposited in a polymer matrix at various pH conditions has been investigated at the interface between two immiscible phases. The pH value of the aqueous phase is modified, resulting in various types of reaction between the gold compound and the monomer. The types of electrochemical processes and their kinetic parameters are determined using both the method of Nicholson and a method based on the Butler-Volmer equation. Cyclic voltammetry is the experimental method used. A material analysis via transmission electron microscopy and particle size distribution calculations confirm that nanoparticles of different sizes can be synthesized by modification of the system pH. The stability of the generated nanocomposite is also discussed.
Dynamics of Receptor-Mediated Nanoparticle Internalization into Endothelial Cells
Gonzalez-Rodriguez, David; Barakat, Abdul I.
2015-01-01
Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat inflamed endothelial cells during the development of atherosclerosis. To inform the design of such therapeutic strategies, we develop a computational model of nanoparticle internalization into endothelial cells, where internalization is driven by receptor-ligand binding and limited by the deformation of the cell membrane and cytoplasm. We specifically consider the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating atherosclerosis. The model computes the kinetics of the internalization process, the dynamics of binding, and the distribution of stresses exerted between the nanoparticle and the cell membrane. The model predicts the existence of an optimal nanoparticle size for fastest internalization, consistent with experimental observations, as well as the role of bond characteristics, local cell mechanical properties, and external forces in the nanoparticle internalization process. PMID:25901833
Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul
2011-01-12
The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs.
NASA Astrophysics Data System (ADS)
Mei, Lin; Zhang, Yangqing; Zheng, Yi; Tian, Ge; Song, Cunxian; Yang, Dongye; Chen, Hongli; Sun, Hongfan; Tian, Yan; Liu, Kexin; Li, Zhen; Huang, Laiqiang
2009-12-01
Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ɛ-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere® in the MCF-7 TAX30 cell culture, but the differences were not significant ( p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere® ( p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer.
Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul
2011-01-01
The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs. PMID:21289989
Sahana, Basudev; Santra, Kousik; Basu, Sumit; Mukherjee, Biswajit
2010-09-07
The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide)-85:15 (PLGA) was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w) and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM) and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.
Excipient-assisted vinpocetine nanoparticles: experiments and molecular dynamic simulations.
Li, Cai-Xia; Wang, Hao-Bo; Oppong, Daniel; Wang, Jie-Xin; Chen, Jian-Feng; Le, Yuan
2014-11-03
Hydrophilic excipients can be used to increase the solubility and bioavailability of poorly soluble drugs. In this work, the conventional water-soluble pharmaceutical excipients hydroxypropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP), and lactose (LAC) were used as solid supports to prevent drug nanoparticles from aggregation and enhance drug dissolution. Excipient-assisted vinpocetine (VIN) nanoparticles were prepared by reactive precipitation. The analysis results indicated that HPMC was a suitable excipient to prepare VIN nanoparticles. VIN/HPMC nanoparticles had a mean size of 130 nm within a narrow distribution. The dissolution rate of VIN nanoparticles was significantly faster than those of a physical mixture of VIN/HPMC and raw VIN. VIN/HPMC nanoparticles had a higher dissolution profile than VIN/PVP and VIN/LAC nanoparticles. Besides, molecular dynamics (MD) simulation was applied to investigate the molecular interactions between VIN and excipients. The calculated results revealed that VIN interacted with excipients by Coulomb and Lennard-Jones (LJ) interactions. Few hydrogen bonds were formed between VIN and excipients. The HPMC affording smaller particle size may be a result of the stronger interactions between VIN and HPMC (mainly LJ interaction) and the property of HPMC. These characteristics may greatly influence the adsorption behavior and may be the crucial parameter for the better performance of HPMC.
Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi
2012-01-01
Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293
Analysis of Particle Distribution in Milled Al-Based Composites Reinforced by B4C Nanoparticles
NASA Astrophysics Data System (ADS)
Alihosseini, Hamid; Dehghani, Kamran
2017-04-01
In the present work, high-energy ball milling was employed to synthesize Al-(5-10 wt.%)B4C nanocomposite. To do this, two sizes of particles of 50 nm as nanoparticles (NPs) and 50 μm as coarse particles (CPs) were used. The morphology and microstructure of the milled powders were characterized using particle size analyzer, SEM, TEM and EDX techniques. It was found that milling time, B4C particles size and their content strongly affect the characteristics of powders during milling process. The breaking and cold welding of powders was recognized as two main competitive actions during the milling process that influence the microstructural evolutions. It was found that the presence of CPs led to the formation of microcracks which promote the fracture process of Al powders. The dominated mechanisms during the fabrication of composites and nanocomposites were discussed. Also, the theoretical issues regarding the changes in morphology and distribution of B4C particles in CPs and NPs are clarified.
Composition distributions in FePt(Au) nanoparticles
NASA Astrophysics Data System (ADS)
Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.
2010-08-01
Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.
NASA Astrophysics Data System (ADS)
Botcha, V. Divakar; Sutar, D. S.; Major, S. S.
2018-07-01
The modified Langmuir-Blodgett (MLB) technique has been improvised and extended to transfer GO-Cu2O nanocomposite monolayer sheets, by introducing Cu2+ ions into the subphase at room temperature. Morphological studies of as-transferred sheets revealed the presence of closely spaced GO monolayer sheets, with slightly enhanced roughness. XPS studies of as-transferred sheets confirmed the presence of copper, either as metallic Cu or Cu2O, along with significant Cu(OH)2 component, but TEM results confirmed the formation of Cu2O nanocrystallites of size (7 ± 2) nm, distributed uniformly over GO sheets. After heat treatment in vacuum at 400 °C, the nanocomposite sheets were covered with a uniform distribution of larger size nanoparticles. Based on Raman, XPS and TEM studies it has been confirmed that heat treatment at 400 °C in vacuum results in the formation of agglomerated Cu nanoparticles of size (23 ± 9) nm distributed uniformly over reduced graphene oxide (RGO) sheets. The electrical characterization of nanocomposite sheets on SiO2/Si in back-gated FET geometry revealed that the electrical conductivity of as-transferred GO-Cu2O sheets was similar to that usually observed for GO monolayer sheets. The RGO-Cu sheets also displayed electrical conductivity and field effect mobility values comparable to those reported for RGO sheets obtained by chemical/thermal reduction, and was unaffected by the presence of Cu nanoparticles.
Green synthesis of gold nanoparticles using plant extracts as reducing agents
Elia, Paz; Zach, Raya; Hazan, Sharon; Kolusheva, Sofiya; Porat, Ze’ev; Zeiri, Yehuda
2014-01-01
Gold nanoparticles (GNPs) were prepared using four different plant extracts as reducing and stabilizing agents. The extracts were obtained from the following plants: Salvia officinalis, Lippia citriodora, Pelargonium graveolens and Punica granatum. The size distributions of the GNPs were measured using three different methods: dynamic light scattering, nanoparticle-tracking analysis and analysis of scanning electron microscopy images. The three methods yielded similar size distributions. Biocompatibility was examined by correlation of L-cell growth in the presence of different amounts of GNPs. All GNPs showed good biocompatibility and good stability for over 3 weeks. Therefore, they can be used for imaging and drug-delivery applications in the human body. High-resolution transmission electron microscopy was used to view the shapes of the larger GNPs, while infrared spectroscopy was employed to characterize the various functional groups in the organic layer that stabilize the particles. Finally, active ingredients in the plant extract that might be involved in the formation of GNPs are proposed, based on experiments with pure antioxidants that are known to exist in that plant. PMID:25187704
Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren
2015-12-01
Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.
Sun, Dequan; Hussain, Hashmath I; Yi, Zhifeng; Siegele, Rainer; Cresswell, Tom; Kong, Lingxue; Cahill, David M
2014-08-01
We report the uptake of MSNs into the roots and their movement to the aerial parts of four plant species and their quantification using fluorescence, TEM and proton-induced x - ray emission (micro - PIXE) elemental analysis. Monodispersed mesoporous silica nanoparticles (MSNs) of optimal size and configuration were synthesized for uptake by plant organs, tissues and cells. These monodispersed nanoparticles have a size of 20 nm with interconnected pores with an approximate diameter of 2.58 nm. There were no negative effects of MSNs on seed germination or when transported to different organs of the four plant species tested in this study. Most importantly, for the first time, a combination of confocal laser scanning microscopy, transmission electron microscopy and proton-induced X-ray emission (micro-PIXE) elemental analysis allowed the location and quantification MSNs in tissues and in cellular and sub-cellular locations. Our results show that MSNs penetrated into the roots via symplastic and apoplastic pathways and then via the conducting tissues of the xylem to the aerial parts of the plants including the stems and leaves. The translocation and widescale distribution of MSNs in plants will enable them to be used as a new delivery means for the transport of different sized biomolecules into plants.
Preparation and Thermo-Physical Properties of Fe2O3-Propylene Glycol Nanofluids.
Shylaja, A; Manikandan, S; Suganthi, K S; Rajan, K S
2015-02-01
Iron oxide (Fe2O3) nanoparticles were prepared from ferric chloride and ferrous sulphate by precipitation reaction. Fe2O3-propylene glycol nanofluid was prepared by dispersing Fe2O3 nanoparticles in propylene glycol through stirred bead milling, shear homogenization and probe ultrasonication. The nanofluid was characterized through measurement of viscosity, particle size distribution and thermal conductivity. The interactions between Fe2O3 nanoparticles and propylene glycol on the nanoparticle surfaces lead to reduction in viscosity, the magnitude of which increases with nanoparticle concentration (0-2 vol%) at room temperature. The thermal conductivity enhancement for 2 vol% nanofluid was about 21% at room temperature, with liquid layering being the major contributor for thermal conductivity enhancement.
Beirowski, Jakob; Inghelbrecht, Sabine; Arien, Albertina; Gieseler, Henning
2012-01-01
On the basis of a previously developed formulation and process guideline for lyophilized, highly concentrated drug nanosuspensions for parenteral use, it was the purpose of this study to demonstrate that the original nanoparticle size distribution can be preserved over a minimum period of 3 months, even if aggressive primary drying conditions are used. Critical factors were evaluated that were originally believed to affect storage stability of freeze-dried drug nanoparticles. It was found that the nature and concentration of the steric stabilizer, such as Poloxamer 338 and Cremophor EL, are the most important factors for long-term stability of such formulations, independent of the used drug compound. The rational choice of an adequate steric stabilizer, namely Poloxamer 338, in combination with various lyoprotectants seems crucial to prevent physical instabilities of the lyophilized drug nanoparticles during short-term stability experiments at ambient and accelerated conditions. A 200 mg/mL concentration of nanoparticles could successfully be stabilized over the investigated time interval. In the course of the present experiments, polyvinylpyrrolidone, type K15 was found superior to trehalose or sucrose in preserving the original particle size distribution, presumably based on its surface-active properties. Lastly, it was demonstrated that lower water contents are generally beneficial to stabilize such systems. Copyright © 2011 Wiley-Liss, Inc.
2016-01-01
A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMAx–PTFEMAy nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100–1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g cm–3 for the smaller particles and 1.41 g cm–3 for the larger particles; these values are significantly lower than the solid-state density of PTFEMA (1.47 g cm–3). Since analytical centrifugation requires the density difference between the particles and the aqueous phase, determining the effective particle density is clearly vital for obtaining reliable particle size distributions. Furthermore, selected DCP data were recalculated by taking into account the inherent density distribution superimposed on the particle size distribution. Consequently, the true particle size distributions were found to be somewhat narrower than those calculated using an erroneous single density value, with smaller particles being particularly sensitive to this artifact. PMID:27478250
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, James A.; Kariuki, Nancy N.; Wang, Xiaoping
2015-08-01
The evolution of Pt nanoparticle cathode electrocatalyst size distribution in a polymer electrolyte membrane fuel cell (PEMFC) was followed during accelerated stress tests using in-operando anomalous small-angle X-ray scattering (ASAXS). This evolution was compared to that observed in an aqueous electrolyte environment using stagnant electrolyte, flowing electrolyte, and flowing electrolyte at elevated temperature to reveal the different degradation trends in the PEMFC and aqueous environments and to determine the relevance of aqueous measurements to the stability of Pt nanoparticle catalyst in the fuel cell environment. The observed changes in the particle size distributions (PSDs) were analyzed to elucidate the extentmore » and mechanisms of particle growth and corresponding mass and active surface area losses in the different environments. These losses indicate a Pt nanoparticle surface area loss mechanism controlled by Pt dissolution, the particle size dependence of Pt dissolution, the loss of dissolved Pt into the membrane and electrolyte, and, to a lesser extent, the re-deposition of dissolved Pt onto larger particles. Based on the geometric surface area loss, mass loss, and mean particle size increase trends, the aqueous environment best reflecting the fuel cell environment was found to be one in which the electrolyte is flowing rather than stagnant. Pt nanoparticle surface area loss resulting from potential cycling can be inhibited by reducing the number of particles smaller than a critical particle diameter (CPD), which was found to be similar to 3.5 to similar to 4 nm, with the CPD dependent on both the cycling protocol (square wave vs triangle wave) and the catalyst environment (fuel cell, aqueous stagnant, aqueous flowing electrolyte, or elevated temperature flowing electrolyte)« less
Liu, Yongjian; Ibricevic-Richardson, Aida; Cohen, Joel A.; Cohen, Jessica L.; Gunsten, Sean P.; Fréchet, Jean M. J.; Walter, Michael J.; Welch, Michael J.; Brody, Steven L.
2009-01-01
Polymer chemistry offers the possibility of synthesizing multifunctional nanoparticles which incorporate moieties that enhance diagnostic and therapeutic targeting of cargo delivery to the lung. However, since rules for predicting particle behavior following modification are not well defined, it is essential that probes for tracking fate in vivo are also included. Accordingly, we designed polyacrylamide-based hydrogel particles of differing sizes, functionalized with a nona-arginine cell-penetrating peptide (Arg9), and labeled with imaging components to assess lung retention and cellular uptake after intratracheal administration. Radiolabeled microparticles (1–5 µm diameter) and nanoparticles (20–40 nm diameter) without and with Arg9 showed diffuse airspace distribution by positron emission tomography imaging. Biodistribution studies revealed that particle clearance and extrapulmonary distribution was, in part, size dependent. Microparticles were rapidly cleared by mucociliary routes but unexpectedly, also through the circulation. In contrast, nanoparticles had prolonged lung retention enhanced by Arg9 and were significantly restricted to the lung. For all particle types, uptake was predominant in alveolar macrophages, and, to a lesser extent, lung epithelial cells. In general, particles did not induce local inflammatory responses, with the exception of microparticles bearing Arg9. Whereas microparticles may be advantageous for short-term applications, nano-sized particles constitute an efficient high-retention and non-inflammatory vehicle for the delivery of diagnostic imaging agents and therapeutics to lung airspaces and alveolar macrophages that can be enhanced by Arg9. Importantly, our results show that minor particle modifications may significantly impact in vivo behavior within the complex environments of the lung, underscoring the need for animal modeling. PMID:19852512
Singh, P; Nanda, A
2014-06-01
A systematic and detailed study has been designed and conducted, taking into account some of the proposed benefits such as increased efficiency, transparency, unique texture, protection of active ingredient and higher consumer compliance of cosmetics containing nano-sized metal oxides. This study also presents an in vitro method to determine sun protection factor of the investigational sunscreen cream samples containing zinc oxide and titanium dioxide with a varied range of particle size. Finally, a comparative study has been conducted between metal oxide particles, conventional as well as nanoparticles. All the skin cosmetics formulated were thermally stable with a pH ranging from 7.9 to 8.2. Moreover, the fatty acid substance content and residue were found to be analogous to the standard values in each skin cosmetic. The skin cosmetics containing the titanium or zinc oxide nanoparticles were found to have improved spreadability as compared to skin cosmetics containing conventional titanium or zinc oxide particles, respectively. All skin cosmetics were found to have uniform distribution of the particles. The sunscreen creams containing zinc oxide nanoparticles and titanium dioxide nanoparticles were found to have higher in vitro sun protection factor (SPF of 3.65 for ZnO nanoparticles and 4.93 for TiO2 nanoparticles) as compared to that of sunscreen creams containing conventional zinc oxide particles (SPF = 2.90) and conventional titanium dioxide (SPF = 1.29), clearly indicating the effect of reduction in particles size, from micro to nano, on the sun protection factor. Good texture, better spreadability and enhanced in vitro SPF proved the advantageous role of nanoparticles in cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemala, H.; Thakur, J. S.; Lawes, G.
2014-07-21
Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe{sub 3}O{sub 4} nanoparticles, subjected to external magnetic fields of various frequencies (188–375 kHz) and amplitudes (140–235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8 ± 3.1 nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6 ± 1.2 nm, and a reduced saturation magnetization (∼65 emu/g) comparedmore » to the bulk value of Fe{sub 3}O{sub 4} (∼95 emu/g). This is due to the presence of a finite surface layer (∼1 nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe{sub 3}O{sub 4} core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28 ± 2 kJ/m{sup 3}) of Fe{sub 3}O{sub 4} nanoparticles.« less
NASA Astrophysics Data System (ADS)
Kim, Jeong Hun; Kim, Jin Hyoung; Kim, Kyu-Won; Kim, Myung Hun; Yu, Young Suk
2009-12-01
The retina maintains homeostasis through the blood-retinal barrier (BRB). Although it is ideal to deliver the drug to the retina via systemic administration, it is still challenging due to the BRB strictly regulating permeation from blood to the retina. Herein, we demonstrated that intravenously administered gold nanoparticles could pass through the BRB and are distributed in all retinal layers without cytotoxicity. After intravenous injection of gold nanoparticles into C57BL/6 mice, 100 nm nanoparticles were not detected in the retina whereas 20 nm nanoparticles passed through the BRB and were distributed in all retinal layers. 20 nm nanoparticles in the retina were observed in neurons (75 ± 5%), endothelial cells (17 ± 6%) and peri-endothelial glial cells (8 ± 3%), where nanoparticles were bound on the membrane. In the retina, cells containing nanoparticles did not show any structural abnormality and increase of cell death compared to cells without nanoparticles. Gold nanoparticles never affected the viability of retinal endothelial cells, astrocytes and retinoblastoma cells. Furthermore, gold nanoparticles never led to any change in expression of representative biological molecules including zonula occludens-1 and glut-1 in retinal endothelial cells, neurofilaments in differentiated retinoblastoma cells and glial fibrillary acidic protein in astrocytes. Therefore, our data suggests that small gold nanoparticles (20 nm) could be an alternative for drug delivery across the BRB, which could be safely applied in vivo.
NASA Astrophysics Data System (ADS)
Huber, Franz J. T.; Will, Stefan; Daun, Kyle J.
2016-11-01
Inferring the size distribution of aerosolized fractal aggregates from the angular distribution of elastically scattered light is a mathematically ill-posed problem. This paper presents a procedure for analyzing Wide-Angle Light Scattering (WALS) data using Bayesian inference. The outcome is probability densities for the recovered size distribution and aggregate morphology parameters. This technique is applied to both synthetic data and experimental data collected on soot-laden aerosols, using a measurement equation derived from Rayleigh-Debye-Gans fractal aggregate (RDG-FA) theory. In the case of experimental data, the recovered aggregate size distribution parameters are generally consistent with TEM-derived values, but the accuracy is impaired by the well-known limited accuracy of RDG-FA theory. Finally, we show how this bias could potentially be avoided using the approximation error technique.
Dasari, Radhika; Robinson, Donald A; Stevenson, Keith J
2013-01-16
Here we describe a very simple, reliable, low-cost electrochemical approach to detect single nanoparticles (NPs) and evaluate NP size distributions and catalytic activity in a fast and reproducible manner. Single NPs are detected through an increase in current caused by electrocatalytic oxidation of N(2)H(4) at the surface of the NP when it contacts a Hg-modified Pt ultramicroelectrode (Hg/Pt UME). Once the NP contacts the Hg/Pt UME, Hg poisons the Pt NP, deactivating the N(2)H(4) oxidation reaction. Hence, the current response is a "spike" that decays to the background current level rather than a stepwise "staircase" response as previously described for a Au UME. The use of Hg as an electrode material has several quantitative advantages including suppression of the background current by 2 orders of magnitude over a Au UME, increased signal-to-noise ratio for detection of individual collisions, precise integration of current transients to determine charge passed and NP size, reduction of surface-induced NP aggregation and electrode fouling processes, and reproducible and renewable electrodes for routine detection of catalytic NPs. The NP collision frequency was found to scale linearly with the NP concentration (0.016 to 0.024 pM(-1)s(-1)). NP size distributions of 4-24 nm as determined from the current-time transients correlated well with theory and TEM-derived size distributions.
Airflow structures and nano-particle deposition in a human upper airway model
NASA Astrophysics Data System (ADS)
Zhang, Z.; Kleinstreuer, C.
2004-07-01
Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle suspensions behave like certain (fuel) vapors which have the same diffusivities; and (vii) new correlations for particle deposition as a function of a diffusion parameter are most useful for global lung modeling.
Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Campanini, M.; Ciprian, R.; Bedogni, E.; Mega, A.; Chiesi, V.; Casoli, F.; de Julián Fernández, C.; Rotunno, E.; Rossi, F.; Secchi, A.; Bigi, F.; Salviati, G.; Magén, C.; Grillo, V.; Albertini, F.
2015-04-01
Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates.Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00273g
Hu, Chuan; Cun, Xingli; Ruan, Shaobo; Liu, Rui; Xiao, Wei; Yang, Xiaotong; Yang, Yuanyuan; Yang, Chuanyao; Gao, Huile
2018-06-01
Chemotherapy remains restricted by poor drug delivery efficacy due to the heterogenous nature of tumor. Herein, we presented a novel nanoparticle that could not only response to the tumor microenvironment but also modulate it for deep tumor penetration and combination therapy. The intelligent nanoparticle (IDDHN) was engineered by hyaluronidase (HAase)-triggered size shrinkable hyaluronic acid shells, which were modified with NIR laser sensitive nitric oxide donor (HN), small-sized dendrimeric prodrug (IDD) of doxorubicin (DOX) as chemotherapy agent and indocyanine green (ICG) as photothermal agent into a single nanoparticle. IDDHN displayed synergistic deep penetration both in vitro and in vivo, owing to the enzymatically degradable HN shell mediated by HAase and laser-enhanced NO release triggered deep penetration upon strong hyperthermia effect of ICG under the NIR laser irradiation. The therapeutic effect of IDDHN was verified in 4T1 xenograft tumor model, and IDDHN showed a much better antitumor efficiency with few side effects upon NIR laser irradiation. Therefore, the valid of this study might provide a novel tactic for engineering nanoparticles both response to and modulate the tumor microenvironment for improving penetration and heterogeneity distribution of therapeutic agents in tumor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Min-Soo; Jin, Shun-Ji; Kim, Jeong-Soo; Park, Hee Jun; Song, Ha-Seung; Neubert, Reinhard H H; Hwang, Sung-Joo
2008-06-01
In this work, amorphous atorvastatin calcium nanoparticles were successfully prepared using the supercritical antisolvent (SAS) process. The effect of process variables on particle size and distribution of atorvastatin calcium during particle formation was investigated. Solid state characterization, solubility, intrinsic dissolution, powder dissolution studies and pharmacokinetic study in rats were performed. Spherical particles with mean particle size ranging between 152 and 863 nm were obtained by varying process parameters such as precipitation vessel pressure and temperature, drug solution concentration and feed rate ratio of CO2/drug solution. XRD, TGA, FT-IR, FT-Raman, NMR and HPLC analysis indicated that atorvastatin calcium existed as anhydrous amorphous form and no degradation occurred after SAS process. When compared with crystalline form (unprocessed drug), amorphous atorvastatin calcium nanoparticles were of better performance in solubility and intrinsic dissolution rate, resulting in higher solubility and faster dissolution rate. In addition, intrinsic dissolution rate showed a good correlation with the solubility. The dissolution rates of amorphous atorvastatin calcium nanoparticles were highly increased in comparison with unprocessed drug by the enhancement of intrinsic dissolution rate and the reduction of particle size resulting in an increased specific surface area. The absorption of atorvastatin calcium after oral administration of amorphous atorvastatin calcium nanoparticles to rats was markedly increased.
NASA Astrophysics Data System (ADS)
Varadavenkatesan, Thivaharan; Vinayagam, Ramesh; Selvaraj, Raja
2017-11-01
Nanobiotechnology has rapidly become a critical facet of nanotechnology. The green synthesis of silver nanoparticles, making use of the hull of black gram (Vigna mungo), paves the way for a simple and eco-friendly utilization of a domestic waste to a product with antioxidant and anticoagulant activities. The emergence of silver nanoparticles was characterized by a variety of methods UV-visible spectrophotometry, scanning electron microscopy added to energy dispersive spectroscopy, X-ray diffractometry, particle size distribution and FT-IR spectroscopy analyses. A discrete band at 421 nm was obtained from UV-visible spectroscopy of the silver nanoparticle suspension. The extract sourced from the hull of black gram showed evidence of the presence of a variety of functional moieties of phytochemicals using FTIR spectroscopy. These were also deemed responsible for maintaining the stability of silver nanoparticles. SEM and EDAX techniques combined, proved that the zero-valent silver nanoparticles were lesser than 100 nm in size. The crystallinity of the nanoparticles was confirmed, as deduced by the (1 1 1) plane, from XRD analysis. The potential of the phytochemicals in maintaining the steadiness of nanoparticles was implied by the zeta potential value that stood at -30.3 mV. In the current study, we have endeavored to comprehend the antioxidant and anticoagulant nature of the green-synthesized benign silver nanoparticles.
Microbial synthesis of Flower-shaped gold nanoparticles.
Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun
2016-09-01
The shape of nanoparticles has been recognized as an important attribute that determines their applicability in various fields. The flower shape (F-shape) has been considered and is being focused on, because of its enhanced properties when compared to the properties of the spherical shape. The present study proposed the microbial synthesis of F-shaped gold nanoparticles within 48 h using the Bhargavaea indica DC1 strain. The F-shaped gold nanoparticles were synthesized extracellularly by the reduction of auric acid in the culture supernatant of B. indica DC1. The shape, size, purity, and crystalline nature of F-shaped gold nanoparticles were revealed by various instrumental techniques including UV-Vis, FE-TEM, EDX, elemental mapping, XRD, and DLS. The UV-Vis absorbance showed a maximum peak at 536 nm. FE-TEM revealed the F-shaped structure of nanoparticles. The EDX peak obtained at 2.3 keV indicated the purity. The peaks obtained on XRD analysis corresponded to the crystalline nature of the gold nanoparticles. In addition, the results of elemental mapping indicated the maximum distribution of gold elements in the nanoproduct obtained. Particle size analysis revealed that the average diameter of the F-shaped gold nanoparticles was 106 nm, with a polydispersity index (PDI) of 0.178. Thus, the methodology developed for the synthesis of F-shaped gold nanoparticles is completely green and economical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eskelsen, Jeremy R.; Xu, Jie; Chiu, Michelle Y.
The dissolution of metal sulfides, such as ZnS, plays an important role in the fate of metal contaminants in the environment. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, the biogenic ZnS nanoparticles were produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium, whereas the abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H 2S-rich gas or Na 2S solution. For biogenic synthesis, we prepared two types of samples, in the presence or absence of trace silver (Ag). Themore » size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were primarily examined using high-resolution transmission electron microscopy coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ~10 nm) than the abiogenic ones (i.e., ~3–5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ~3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell coupled to a transmission electron microscope (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m 2) have a significantly higher surface energy than the abiogenic ZnS nanoparticles (γ = 0.277 J/m 2), suggesting that larger defect-bearing ZnS nanoparticles may be more reactive than the smaller quantum-dot-sized ZnS nanoparticles. These findings provide new insight into the factors that govern the dissolution of metal sulfide nanoparticles in relevant natural and engineered scenarios, and have implication for tracking the fate of zinc at contaminated sites. Moreover, our study exemplified the use of an in situ method (i.e., LCTEM) to investigate nanoparticle behavior (e.g., dissolution) in aqueous solutions.« less
Venturinil, C G; Bruinsmann, A; Oliveira, C P; Contri, R V; Pohlmann, A R; Guterres, S S
2016-02-01
An innovative nanocapsule formulation for parenteral administration using selected vegetable oils (mango, jojoba, pequi, oat, annatto, calendula, and chamomile) was developed that has the potential to encapsulate various drugs. The vegetable oil-loaded nanocapsules were prepared by interfacial deposition and compared with capric/caprylic triglyceride-loaded lipid core nanocapsules. The major objective was to investigate the effect of vegetable oils on particle size distribution and physical stability and to determine the hemolytic potential of the nanocapsules, considering their applicability for intravenous administration. Taking into account the importance of accurately determining particle size for the selected route of administration, different size characterization techniques were employed, such as Laser Diffraction, Dynamic Light Scattering, Multiple Light Scattering, Nanoparticle Tracking Analysis, and Transmission Electronic Microscopy. Laser diffraction studies indicated that the mean particle size of all nanocapsules was below 300 nm. For smaller particles, the laser diffraction and multiple light scattering data were in agreement (D[3,2]-130 nm). Dynamic light scattering and nanoparticle tracking analysis, two powerful techniques that complement each other, exhibited size values between 180 and 259 nm for all nanoparticles. Stability studies demonstrated a tendency of particle creaming for jojoba-nanocapsules and sedimentation for the other nanoparticles; however, no size variation occurred over 30 days. The hemolysis test proved the hemocompatibility of all nanosystems, irrespective of the type of oil. Although all developed nanocapsules presented the potential for parenteral administration, jojoba oil-loaded nanocapsules were selected as the most promising nanoformulation due to their low average size and high particle size homogeneity.
NASA Astrophysics Data System (ADS)
Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael
2012-05-01
Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.
Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael
2013-01-01
Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707
Effect of Zn-doping on structural and magnetic properties of copper ferrite nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gautam, Nisha; Thirupathi, Gadipelly; Singh, Rajender
2016-05-23
The nanoparticles of CuFe{sub 2}O{sub 4} (CF) and Cu{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (CZF) were synthesized using co-precipitation method to study the effect of Zn doping in Cu-ferrite. The X-ray diffraction (XRD) patterns were well fitted with two-phase structure using Rietveld analysis as Fd-3 m space group (spinel system) and C12/c1 space group (monoclinic system CuO-phase). The average crystallite size of the CF and CZF nanoparticles for spinel structure are 6 and 7 nm respectively. The spinel phase fraction is increased from 56% to 71% with Zn-doping of 20% in CF. The transmission electron micrograph analysis showed the narrow size distribution formore » CZF nanoparticles. The magnetization plots as a function of magnetic field (M (H)) of CF and CZF nanoparticles indicate superparamagnetic behavior. The magnetization is increased with Zn-doping in CF. The stable spinel Cu-ferrite can be obtained with Zn-doping in CF.« less
NASA Astrophysics Data System (ADS)
Martínez-Tong, Daniel E.; Sanz, Mikel; Ezquerra, Tiberio A.; Nogales, Aurora; Marco, José F.; Castillejo, Marta; Rebollar, Esther
2017-10-01
Suspensions of poly(bisphenol A carbonate) (PBAC) nanoparticles of varying size and shape have been produced by ablation of a PBAC target in liquid media with the fourth harmonic of a Q-switched Nd:YAG laser (wavelength 266 nm, full width at half maximum 4 ns, repetition rate 10 Hz). The polymer target was placed at the bottom of a rotating glass vessel filled with around a 10 mm column of liquid. Laser ablation in water leads to spherical nanoparticles with diameters of several tens of nanometers for fluences close to 1 J/cm2. Ablation at lower fluences, around 0.1 J/cm2, results in the production of nanoparticles of smaller diameters and also of non-spherical nanoparticles. Additional irradiations at the fluence of 0.1 J/cm2 were performed in several liquid media with different properties, in terms of density, viscosity, thermal conductivity, boiling temperature, isothermal compressibility and polarity. The different size distributions observed were related to the thermal conductivity of the systems, while their viscosity seems to be responsible for the development of nanostructures with different morphologies.
Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles.
Guo, Qianqian; Zhang, Tianqi; An, Jinxia; Wu, Zhongming; Zhao, Yu; Dai, Xiaomei; Zhang, Xinge; Li, Chaoxing
2015-10-12
To explore the effect of polymer structure on their self-assembled aggregates and their unique characteristics, this study was devoted to developing a series of amphiphilic block and random phenylboronic acid-based glycopolymers by RAFT polymerization. The amphiphilic glycopolymers were successfully self-assembled into spherically shaped nanoparticles with narrow size distribution in aqueous solution. For block and random copolymers with similar monomer compositions, block copolymer nanoparticles exhibited a more regular transmittance change with the increasing glucose level, while a more evident variation of size and quicker decreasing tendency in I/I0 behavior in different glucose media were observed for random copolymer nanoparticles. Cell viability of all the polymer nanoparticles investigated by MTT assay was higher than 80%, indicating that both block and random copolymers had good cytocompatibility. Insulin could be encapsulated into both nanoparticles, and insulin release rate for random glycopolymer was slightly quicker than that for the block ones. We speculate that different chain conformations between block and random glycopolymers play an important role in self-assembled nanoaggregates and underlying glucose-sensitive behavior.
NASA Astrophysics Data System (ADS)
Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.
2012-03-01
Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.
Optical and superparamagnetic behavior of ZnFe2O4 nanoparticles
NASA Astrophysics Data System (ADS)
Lal, Ganesh; Punia, Khushboo; Dolia, S. N.; Kumar, Sudhish
2018-05-01
Nanoparticles of zinc ferrite have been synthesized using a low temperature citrate sol-gel route and characterized by powder X-ray diffraction (XRD), Raman & UV-Vis-NIR spectroscopic and SQUID magnetometry measurements. Analysis of XRD pattern and Raman spectrum confirmed that the synthesized ZnFe2O4 sample crystallizes in single phase fcc spinel ferrite structure and the average particle size of nanoparticles is estimated to 24nm. Optical absorption study shows that maximum photo absorption take place in the visible band and peaking in UV band at 206nm and the band gap energy is estimated to Eg = 2.1eV. Zero Field Cooled (ZFC) and Field Cooled (FC) modes of magnetization down to 5K and in fields up to 20kOe shows that ZnFe2O4 nanoparticles exhibits superparamagnetism with high magneto-crystalline anisotropy and high magnetization. Small difference of 9K between the separation temperature TS=˜30K and blocking temperature TB= 21K are suggestive of the formation of ferromagnetic clusters and a narrow particle size distribution of the nanoparticles in superparamagnetic ZnFe2O4 nanoparticles.
Carta, D; Marras, C; Loche, D; Mountjoy, G; Ahmed, S I; Corrias, A
2013-02-07
The structural properties of zinc ferrite nanoparticles with spinel structure dispersed in a highly porous SiO(2) aerogel matrix were compared with a bulk zinc ferrite sample. In particular, the details of the cation distribution between the octahedral (B) and tetrahedral (A) sites of the spinel structure were determined using X-ray absorption spectroscopy. The analysis of both the X-ray absorption near edge structure and the extended X-ray absorption fine structure indicates that the degree of inversion of the zinc ferrite spinel structures varies with particle size. In particular, in the bulk microcrystalline sample, Zn(2+) ions are at the tetrahedral sites and trivalent Fe(3+) ions occupy octahedral sites (normal spinel). When particle size decreases, Zn(2+) ions are transferred to octahedral sites and the degree of inversion is found to increase as the nanoparticle size decreases. This is the first time that a variation of the degree of inversion with particle size is observed in ferrite nanoparticles grown within an aerogel matrix.
Survival of Verwey transition in gadolinium-doped ultrasmall magnetite nanoparticles.
Yeo, Sunmog; Choi, Hyunkyung; Kim, Chul Sung; Lee, Gyeong Tae; Seo, Jeong Hyun; Cha, Hyung Joon; Park, Jeong Chan
2017-09-28
We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.
Li, Sining; Zhao, Yaping
2017-01-01
Nanoparticles have attracted more and more attention in the medicinal field. Zein is a biomacromolecule and can be used as a carrier for delivering active ingredients to prepare controlled release drugs. In this article, we presented the preparation of zein nanoparticles by solution-enhanced dispersion by supercritical CO2 (SEDS) approach. Scanning electron microscopy and transmission electron microscopy were applied to characterize the size and morphology of the obtained particles. The nozzle structure and the CO2 flow rate greatly affected the morphology and the size of the particles. The size of zein was able to be reduced to 50–350 nm according to the different conditions. The morphologies of the resultant zein were either sphere or the filament network consisted of nanoparticles. The influence of the nozzle structure and the CO2 flow rate on the velocity field was elucidated by using computational fluid dynamics. The nozzle structure and the CO2 flow rate greatly affected the distribution of the velocity field. However, a similar velocity field could also be obtained when the nozzle structure or the CO2 flow rate, or both were different. Therefore, the influence of the nozzle structure and the CO2 flow rate on the size and morphology of the particles, can boil down to the velocity field. The results demonstrated that the velocity field can be a potential criterion for producing nanoparticles with controllable morphology and size, which is useful to scale-up the SEDS process. PMID:28496324
Synthesis of silver nanoparticles by silver salt reduction and its characterization
NASA Astrophysics Data System (ADS)
Muzamil, Muhammad; Khalid, Naveed; Danish Aziz, M.; Aun Abbas, S.
2014-06-01
The wet chemical method route by metal salt reduction has been used to synthesize nanoparticles, using silver nitrate as an inorganic salt, aldehyde as a reducing agent and amino acid as a catalyst. During the reaction aldehyde oxidizes to carboxylic acid and encapsulates the silver nanoparticles to prevent agglomeration and provide barrier in the growth of particle. The existing work produces particles using lab grade chemical, here the presented work is by using industrial grade chemicals to make the process more cost & time effective. The nano silver powder has been studied for their formation, particle size, shape & compositional analysis using Scanning Electron Microscope (SEM) equipped with EDS. The particles size distributions were analyzed by Laser Particle Analyzer (LPA), structure & morphological analysis using x-ray diffraction (XRD) and Fourier-transform-infrared Spectroscopy (FTIR) confirmed the stabilization of particles by coating of carboxylic group. These studies infer that the particles are mostly spherical in shape and have an average size between 70 to 350 nm.
Application of a novel new multispectral nanoparticle tracking technique
NASA Astrophysics Data System (ADS)
McElfresh, Cameron; Harrington, Tyler; Vecchio, Kenneth S.
2018-06-01
Fast, reliable, and accurate particle size analysis techniques must meet the demands of evolving industrial and academic research in areas of functionalized nanoparticle synthesis, advanced materials development, and other nanoscale enabled technologies. In this study a new multispectral particle tracking analysis (m-PTA) technique enabled by the ViewSizer™ 3000 (MANTA Instruments, USA) was evaluated using solutions of monomodal and multimodal gold and polystyrene latex nanoparticles, as well as a spark eroded polydisperse 316L stainless steel nanopowder, and large (non-Brownian) borosilicate particles. It was found that m-PTA performed comparably to the DLS in evaluation of monomodal particle size distributions. When measuring bimodal, trimodal and polydisperse solutions, the m-PTA technique overwhelmingly outperformed traditional dynamic light scattering (DLS) in both peak detection and relative particle concentration analysis. It was also observed that the m-PTA technique is less susceptible to large particle overexpression errors. The ViewSizer™ 3000 was also found to be successful in accurately evaluating sizes and concentrations of monomodal and bimodal sinking borosilicate particles.
Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre
2011-05-01
A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 ± 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing. © The Royal Society of Chemistry 2011
Makama, Sunday; Kloet, Samantha K; Piella, Jordi; van den Berg, Hans; de Ruijter, Norbert C A; Puntes, Victor F; Rietjens, Ivonne M C M; van den Brink, Nico W
2018-03-01
In literature, varying and sometimes conflicting effects of physicochemical properties of nanoparticles (NPs) are reported on their uptake and effects in organisms. To address this, small- and medium-sized (20 and 50 nm) silver nanoparticles (AgNPs) with specified different surface coating/charges were synthesized and used to systematically assess effects of NP-properties on their uptake and effects in vitro. Silver nanoparticles were fully characterized for charge and size distribution in both water and test media. Macrophage cells (RAW 264.7) were exposed to these AgNPs at different concentrations (0-200 µg/ml). Uptake dynamics, cell viability, induction of tumor necrosis factor (TNF)-α, ATP production, and reactive oxygen species (ROS) generation were assessed. Microscopic imaging of living exposed cells showed rapid uptake and subcellular cytoplasmic accumulation of AgNPs. Exposure to the tested AgNPs resulted in reduced overall viability. Influence of both size and surface coating (charge) was demonstrated, with the 20-nm-sized AgNPs and bovine serum albumin (BSA)-coated (negatively charged) AgNPs being slightly more toxic. On specific mechanisms of toxicity (TNF-α and ROS production) however, the AgNPs differed to a larger extent. The highest induction of TNF-α was found in cells exposed to the negatively charged AgNP_BSA, both sizes (80× higher than control). Reactive oxygen species induction was only significant with the 20 nm positively charged AgNP_Chit.
NASA Astrophysics Data System (ADS)
Chen, Sheng-Chieh; Wang, Jing; Fissan, Heinz; Pui, David Y. H.
2013-10-01
Nuclepore filter collection with subsequent electron microscopy analysis for nanoparticles was carried out to examine the feasibility of the method to assess the nanoparticle exposure. The number distribution of nanoparticles collected on the filter surface was counted visually and converted to the distribution in the air using existing filtration models for Nuclepore filters. To search for a proper model, this paper studied the overall penetrations of three different nanoparticles (PSL, Ag and NaCl), covering a wide range of particle sizes (20-800 nm) and densities (1.05-10.5 g cm-3), through Nuclepore filters with two different pore diameters (1 and 3 μm) and different face velocities (2-15 cm s-1). The data were compared with existing particle deposition models and modified models proposed by this study, which delivered different results because of different deposition processes considered. It was found that a parameter associated with flow condition and filter geometry (density of fluid medium, particle density, filtration face velocity, filter porosity and pore diameter) should be taken into account to verify the applicability of the models. The data of the overall penetration were in very good agreement with the properly applied models. A good agreement of filter surface collection between the validated model and the SEM analysis was obtained, indicating a correct nanoparticle number distribution in the air can be converted from the Nuclepore filter surface collection and this method can be applied for nanoparticle exposure assessment.
Electrospray methodologies for characterization and deposition of nanoparticles
NASA Astrophysics Data System (ADS)
Modesto Lopez, Luis Balam
Electrospray is an aerosolization method that generates highly charged droplets from solutions or suspensions and, after a series of solvent evaporation -- droplet fission cycles, it results in particles carrying multiple charges. Highly charged particles are used in a variety of applications, including particle characterization, thin film deposition, nanopatterning, and inhalation studies among several others. In this work, a soft X-ray photoionization was coupled with an electrospray to obtain monodisperse, singly charged nanoparticles for applications in online size characterization with electrical mobility analysis. Photoionization with the soft X-ray charger enhanced the diffusion neutralization rate of the highly charged bacteriophages, proteins, and solid particles. The effect of nanoparticle surface charge and nanoparticle agglomeration in liquids on the electrospray process was studied experimentally and a modified expression to calculate the effective electrical conductivity of nanosuspensions was proposed. The effective electrical conductivity of TiO2 nanoparticle suspensions is strongly dependent on the electrical double layer and the agglomeration dynamics of the particles; and such dependence is more remarkable in liquids with low ionic strength. TiO2 nanoparticle agglomerates with nearly monodisperse sizes in the nanometer and submicrometer ranges were generated, by electrospraying suspensions with tuned effective electrical conductivity, and used to deposit photocatalytic films for water-splitting. Nanostructured films of iron oxide with uniform distribution of particles over the entire deposition area were formed with an electrospray system. The micro-Raman spectra of the iron oxide films showed that transverse and longitudinal optical modes are highly sensitive to the crystallize size of the electrospray-deposited films. The fabrication of films of natural light-harvesting complexes, with the aim of designing biohybrid photovoltaic devices, was explored with an electrospray. The ability to charge chlorosomes with large number of charges allowed their ballistic deposition onto TiO2 nanostructured columnar films simultaneously maintaining their light-harvesting properties. Single units of natural light-harvesting complexes were isolated in charged electrospray droplets for subsequent size characterization. The charge distribution of natural light-harvesting complexes, aerosolized with a collision nebulizer, was determined with tandem differential mobility analysis. It was found that nebulized light-harvesting complexes were multiply charged; hence they have potential applications in the deposition of functional films using electric fields. The studies conducted as part of this dissertation addressed fundamental issues in the characterization and deposition of nanoparticle suspensions and elucidated applications of the electrospray technique, particularly for solar energy utilization.
Catalytic Degradation of Dichlorvos Using Biosynthesized Zero Valent Iron Nanoparticles.
Mehrotra, Neha; Tripathi, Ravi Mani; Zafar, Fahmina; Singh, Manoj Pratap
2017-06-01
The removal of dichlorvos contamination from water is a challenging task because of the presence of direct carbon to phosphorous covalent bond, which makes them resistant to chemical and thermal degradation. Although there have been reports in the literature for degradation of dichlorvos using nanomaterials, those are based on photocatalysis. In this paper, we report a simple and rapid method for catalytic degradation of dichlorvos using protein-capped zero valent iron nanoparticles (FeNPs). We have developed an unprecedented reliable, clean, nontoxic, eco-friendly, and cost-effective biological method for the synthesis of uniformly distributed FeNPs. Yeast extract was used as reducing and capping agent in the synthesis of FeNPs, and synthesized particles were characterized by the UV-visible spectroscopy, X -ray diffraction, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). TEM micrographs reveal that the nanoparticles size is distributed in the range of 2-10 nm. Selected area electron diffraction pattern shows the polycrystalline rings of FeNPs. The mean size was found to be 5.006 nm from ImageJ. FTIR spectra depicted the presence of biomolecules, which participated in the synthesis and stabilization of nanoparticles. As synthesized, FeNPs were used for the catalytic degradation of dichlorvos in aqueous medium. The degradation activity of the FeNPs has been investigated by the means of incubation time effect, oxidant effect, and nanoparticle concentration effect. The ammonium molybdate test was used to confirm the release of phosphate ions during the interaction of dichlorvos with FeNPs.
Synthesizing nanoparticles by mimicking nature | Science ...
As particulate matter with at least one dimension that is less than 100 nm, nanoparticles are the minuscule building blocks of new commercial products and consumer materials in the emerging field of nanotechnology. Nanoparticles are being discovered and introduced in the marketplace at a very fast pace. Also, commercial interest in nanotechnology has significantly increased, translating into more than a multibillion-dollar investment from public and private sources. Among several unique properties, nanoparticles have an exceptionally large surface area–to-volume ratio, which is the most important of the characteristics that are responsible for their widespread use in an array of industries. Unfortunately, their small size and corresponding high surface area often create a number of problems. For instance, the outer layer of atoms may have a different composition, and therefore a different chemistry, from the rest of the particle. Furthermore, nanoparticle surfaces are sensitive to changes in redox conditions, pH, ionic strength, and the types of microorganisms present. The synthesis of metal nanoparticles has been the subject of intense research, primarily because of their unique properties and their potential applications from a technological point of view. The optical, magnetic, electronic, and catalytic properties of these materials depend on their morphology and size distribution. Noble-metal nanoparticles are of particular interest because of their close-
Patil, Kishor S; Mahajan, Prasad G; Patil, Shivajirao R
2017-01-05
The fluorescent 2-[(E)-(2-phenylhydrazinylidene)methyl]phenol nanoparticles (PHPNPs) were prepared by a simple reprecipitation method. The prepared PHPNPs examined by Dynamic Light Scattering show narrower particle size distribution having an average particle size of 93.3nm. The Scanning Electron Microphotograph shows distinct spherical shaped morphology of nanoparticles. The blue shift in UV-absorption and fluorescence spectra of PHPNPs with respect to corresponding spectra of PHP in acetone solution indicates H- aggregates and Aggregation Induced Enhanced Emission (AIEE) for nanoparticles. The nanoparticles show selective tendency towards the recognition of Sn(2+) ions by enhancing the fluorescence intensity preference to Cu(2+), Fe(3+), Fe(2+), Ni(2+), NH4(+), Ca(2+), Pb(2+), Hg(2+) and Zn(2+) ions, which actually seem to quench the fluorescence of nanoparticles. The studies on Langmuir adsorption plot, fluorescence lifetime of PHPNPs, DLS-Zeta sizer, UV-visible and fluorescence titration with and without Sn(2+) helped to propose a suitable mechanism of fluorescence enhancement of nanoparticles by Sn(2+) and their binding ability during complexation. The fluorescence enhancement effect of PHPNPs induced by Sn(2+) is further used to develop an analytical method for detection of Sn(2+) from aqueous medium in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Patil, Kishor S.; Mahajan, Prasad G.; Patil, Shivajirao R.
2017-01-01
The fluorescent 2-[(E)-(2-phenylhydrazinylidene)methyl]phenol nanoparticles (PHPNPs) were prepared by a simple reprecipitation method. The prepared PHPNPs examined by Dynamic Light Scattering show narrower particle size distribution having an average particle size of 93.3 nm. The Scanning Electron Microphotograph shows distinct spherical shaped morphology of nanoparticles. The blue shift in UV-absorption and fluorescence spectra of PHPNPs with respect to corresponding spectra of PHP in acetone solution indicates H- aggregates and Aggregation Induced Enhanced Emission (AIEE) for nanoparticles. The nanoparticles show selective tendency towards the recognition of Sn2 + ions by enhancing the fluorescence intensity preference to Cu2 +, Fe3 +, Fe2 +, Ni2 +, NH4+, Ca2 +, Pb2 +, Hg2 + and Zn2 + ions, which actually seem to quench the fluorescence of nanoparticles. The studies on Langmuir adsorption plot, fluorescence lifetime of PHPNPs, DLS-Zeta sizer, UV-visible and fluorescence titration with and without Sn2 + helped to propose a suitable mechanism of fluorescence enhancement of nanoparticles by Sn2 + and their binding ability during complexation. The fluorescence enhancement effect of PHPNPs induced by Sn2 + is further used to develop an analytical method for detection of Sn2 + from aqueous medium in environmental samples.
Development and characterization of voriconazole loaded nanoparticles for parenteral delivery.
Füredi, Petra; Kovács, Kristóf; Ludányi, Krisztina; Antal, István; Klebovich, Imre
2016-08-20
Human serum albumin (HSA) has attracted the most attention in the last decades as a new nanocarrier system of active pharmaceutical ingredients (API) due to its biocompatibility and high binding capacity to hydrophobic drugs. Voriconazole (VCZ), an antifungal agent with low water solubility, was selected to produce albumin based nanoparticles using nanoparticle albumin-bound technology (nab™-technology). Aim of our study was to study the development process of VCZ-loaded nanoparticles for parenteral drug delivery, such as homogenizing pressure, homogenizing cycle number and drug loading capacity. The main characters of nanoparticles such as particle size distribution and polydispersity index (PDI) were determined by dynamic light scattering. Six homogenization cycles at 1800bar were ensured the acceptable PDI value (lower than 0.3) of the VCZ content nanoparticles. Optimized formulation process produced 81.2±1nm average particle size which meets the requirements of intravenous administration. Furthermore, the encapsulated concentration of VCZ was 69.7±4.2% and the water solubility was over 2 times greater than the API itself which were determined by the developed HPLC method. The in vivo release behavior can be predicted from our applied in vitro dissolution study. Almost 50% of VCZ was liberated from the nanoparticles in the first 60min. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing
2016-01-26
Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.
Study of the growth of CeO2 nanoparticles onto titanate nanotubes
NASA Astrophysics Data System (ADS)
Marques, Thalles M. F.; Ferreira, Odair P.; da Costa, Jose A. P.; Fujisawa, Kazunori; Terrones, Mauricio; Viana, Bartolomeu C.
2015-12-01
We report the study of the growth of CeO2 nanoparticles on the external walls and Ce4+ intercalation within the titanate nanotubes. The materials were fully characterized by multiple techniques, such as: Raman spectroscopy, infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The ion exchange processes in the titanate nanotubes were carried out using different concentrations of Ce4+ in aqueous solution. Our results indicate that the growth of CeO2 nanoparticles grown mediated by the hydrolysis in the colloidal species of Ce and the attachment onto the titanate nanotubes happened and get it strongly anchored to the titanate nanotube surface by a simple electrostatic interaction between the nanoparticles and titanate nanotubes, which can explain the small size and even distribution of nanoparticles on titanate supports. It was demonstrated that it is possible to control the amount and size of CeO2 nanoparticles onto the nanotube surface, the species of the Ce ions intercalated between the layers of titanate nanotubes, and the materials could be tuned for using in specific catalysis in according with the amount of CeO2 nanoparticles, their oxygen vacancies/defects and the types of Ce species (Ce4+ or Ce3+) present into the nanotubes.
Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol
2014-01-01
A facile one-pot approach for synthesis of gold nanoparticles with narrow size distribution and good stability was presented by reducing chloroauric acid with a polysaccharide, konjac glucomannan (KGM) in alkaline solution, which is green and economically viable. Here, KGM served both as reducing agent and stabilizer. The effects of KGM on the formation and stabilization of as-synthesized gold nanoparticles were studied systematically by a combination of UV-visible (UV-vis) absorption spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering, and Fourier transform infrared spectroscopy. Furthermore, the gold nanoparticles exhibited a notable catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol. PMID:25177220
NASA Astrophysics Data System (ADS)
Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F.; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael
2017-09-01
The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.
Supramolecular core-shell nanoparticles for photoconductive device applications
NASA Astrophysics Data System (ADS)
Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong
2016-08-01
We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.
Moreno-Trejo, Maira Berenice; Sánchez-Domínguez, Margarita
2016-01-01
The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability that exceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple. PMID:28773938
Burst nucleation by hot injection for size controlled synthesis of ε-cobalt nanoparticles.
Zacharaki, Eirini; Kalyva, Maria; Fjellvåg, Helmer; Sjåstad, Anja Olafsen
2016-01-01
Reproducible growth of narrow size distributed ε-Co nanoparticles with a specific size requires full understanding and identification of the role of essential synthesis parameters for the applied synthesis method. For the hot injection methodology, a significant discrepancy with respect to obtained sizes and applied reaction conditions is reported. Currently, a systematic investigation controlling key synthesis parameters as injection-temperature and time, metal to surfactant ratio and reaction holding time in terms of their impact on mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameter using dichlorobenzene (DCB), Co2(CO)8 and oleic acid (OA) as the reactant matrix is lacking. A series of solution-based ε-Co nanoparticles were synthesized using the hot injection method. Suspensions and obtained particles were analyzed by DLS, ICP-OES, (synchrotron)XRD and TEM. Rietveld refinements were used for structural analysis. Mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameters were calculated with basis in measurements of 250-500 particles for each synthesis. 95 % bias corrected confidence intervals using bootstrapping were calculated for syntheses with three or four replicas. ε-Co NPs in the size range ~4-10 nm with a narrow size distribution are obtained via the hot injection method, using OA as the sole surfactant. Typically the synthesis yield is ~75 %, and the particles form stable colloidal solutions when redispersed in hexane. Reproducibility of the adopted synthesis procedure on replicate syntheses was confirmed. We describe in detail the effects of essential synthesis parameters, such as injection-temperature and time, metal to surfactant ratio and reaction holding time in terms of their impact on mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameter. The described synthesis procedure towards ε-Co nanoparticles (NPs) is concluded to be robust when controlling key synthesis parameters, giving targeted particle diameters with a narrow size distribution. We have identified two major synthesis parameters which control particle size, i.e., the metal to surfactant molar ratio and the injection temperature of the hot OA-DCB solution into which the cobalt precursor is injected. By increasing the metal to surfactant molar ratio, the mean particle diameter of the ε-Co NPs has been found to increase. Furthermore, an increase in the injection temperature of the hot OA-DCB solution into which the cobalt precursor is injected, results in a decrease in the mean particle diameter of the ε-Co NPs, when the metal to surfactant molar ratio [Formula: see text] is fixed at ~12.9.
Snovski, Ron; Grinblat, Judith; Margel, Shlomo
2011-09-06
Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres. © 2011 American Chemical Society
Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong
2016-01-01
Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately −16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy. PMID:26625203
Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong
2016-01-19
Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.
Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles
NASA Astrophysics Data System (ADS)
Mandiwana, Vusani; Kalombo, Lonji; Venter, Kobus; Sathekge, Mike; Grobler, Anne; Zeevaart, Jan Rijn
2015-09-01
Developing nanoparticulate delivery systems that will allow easy movement and localization of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge in nanomedicine. The aim of this study was to evaluate the biodistribution of poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([153Sm]Sm2O3) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear reactor to produce radioactive 153Sm-loaded-PLGA nanoparticles. The nanoparticles were characterized for size, zeta potential, and morphology. The nanoparticles were orally and intravenously (IV) administered to rats in order to trace their uptake through imaging and biodistribution studies. The 153Sm-loaded-PLGA nanoparticles had an average size of 281 ± 6.3 nm and a PDI average of 0.22. The zeta potential ranged between 5 and 20 mV. The [153Sm]Sm2O3 loaded PLGA nanoparticles, orally administered were distributed to most organs at low levels, indicating that there was absorption of nanoparticles. While the IV injected [153Sm]Sm2O3-loaded PLGA nanoparticles exhibited the highest localization of nanoparticles in the spleen (8.63 %ID/g) and liver (3.07 %ID/g), confirming that nanoparticles are rapidly removed from the blood by the RES, leading to rapid uptake in the liver and spleen. From the biodistribution data obtained, it is clear that polymeric nanoscale delivery systems would be suitable for improving permeability and thus the bioavailability of therapeutic compounds.
Zhang, Yangqing; Tang, Lina; Sun, Leilei; Bao, Junbo; Song, Cunxian; Huang, Laiqiang; Liu, Kexin; Tian, Yan; Tian, Ge; Li, Zhen; Sun, Hongfan; Mei, Lin
2010-06-01
Multidrug resistance (MDR) of tumor cells is a major obstacle to the success of cancer chemotherapy. Poloxamers have been used in cancer therapy to overcome MDR. The objective of this research is to test the feasibility of paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 (PCL/Poloxamer 188) nanoparticles to overcome MDR in a paclitaxel-resistant human breast cancer cell line. Paclitaxel-loaded nanoparticles were prepared by a water-acetone solvent displacement method using commercial PCL and self-synthesized PCL/Poloxamer 188 compound, respectively. PCL/Poloxamer 188 nanoparticles were found to be of spherical shape and tended to have a rough and porous surface. The nanoparticles had an average size of around 220nm, with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a clear biphasic release pattern. There was an increased level of uptake of PCL/Poloxamer 188 nanoparticles (PPNP) in the paclitaxel-resistant human breast cancer cell line MCF-7/TAX, in comparison with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxol in the MCF-7/TAX cell culture, but the differences were not significant. However, the PCL/Poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than both of PCL nanoparticle formulation and Taxol(R), indicating that paclitaxel-loaded PCL/Poloxamer 188 nanoparticles could overcome MDR in human breast cancer cells and therefore could have considerable therapeutic potential for breast cancer. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Inphonlek, Supharat; Pimpha, Nuttaporn; Sunintaboon, Panya
2010-06-01
The core-shell nanoparticles possessing poly(methyl methacrylate) (PMMA) core coated with chitosan (CS), polyethyleneimine (PEI), and chitosan-mixed-polyethyleneimine (CS/PEI) shells were synthesized in this work. The emulsifier-free emulsion polymerization triggered by a redox initiating system from t-butylhydroperoxide (TBHP) and amine groups on CS and/or PEI was used as a synthetic method. In the CS/PEI systems, the amount of CS was kept constant (0.5g), while the amount of PEI was varied from 0.1 to 0.5g. The surface and physico-chemical properties of prepared nanoparticles were then examined. FTIR spectra indicated the presence of grafted PMMA on CS and/or PEI, and the weight fraction of incorporated PEI in the CS/PEI nanoparticles. All nanoparticles were spherical in shape with uniform size distribution illustrated by scanning electron microscopy (SEM). The introduction of PEI to CS nanoparticles yielded the higher monomer conversion, grafting efficiency, and grafting percentage compared with the CS nanoparticles. The size of CS/PEI nanoparticles was smaller than the original CS and PEI nanoparticles, and tended to decrease with increasing amount of PEI introduced. The introduction of PEI also brought the higher colloidal stability to the nanoparticles as indicated by zeta-potential measurement and isoelectric point analysis. The nanoparticles exhibited a promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The nanoparticle-bacteria interaction was studied via SEM. The results suggested that they would be useful as effective antibacterial agents. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep
2016-07-01
For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.
2017-01-01
The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ablation in liquids. The simulations of bulk Ag targets irradiated in water are performed with an advanced computational model combining a coarse-grained representation of liquid environment and an atomistic description of laser interaction with metal targets. For the irradiation conditions that correspond to the spallation regime in vacuum, the simulations predict that the water environment can prevent the complete separation of the spalled layer from the target, leading to the formation of large subsurface voids stabilized by rapid cooling and solidification. The subsequent irradiation of the laser-modified surface is found to result in a more efficient ablation and nanoparticle generation, thus suggesting the possibility of the incubation effect in multipulse laser ablation in liquids. The simulations performed at higher laser fluences that correspond to the phase explosion regime in vacuum reveal the accumulation of the ablation plume at the interface with the water environment and the formation of a hot metal layer. The water in contact with the metal layer is brought to the supercritical state and provides an environment suitable for nucleation and growth of small metal nanoparticles from metal atoms emitted from the hot metal layer. The metal layer itself has limited stability and can readily disintegrate into large (tens of nanometers) nanoparticles. The layer disintegration is facilitated by the Rayleigh–Taylor instability of the interface between the higher density metal layer decelerated by the pressure from the lighter supercritical water. The nanoparticles emerging from the layer disintegration are rapidly cooled and solidified due to the interaction with water environment, with a cooling rate of ∼2 × 1012 K/s observed in the simulations. The computational prediction of two distinct mechanisms of nanoparticle formation yielding nanoparticles with different characteristic sizes provides a plausible explanation for the experimental observations of bimodal nanoparticle size distributions in laser ablation in liquids. The ultrahigh cooling and solidification rates suggest the possibility for generation of nanoparticles featuring metastable phases and highly nonequilibrium structures. PMID:28798858
Haase, A; Mantion, A; Graf, P; Plendl, J; Thuenemann, A F; Meier, W; Taubert, A; Luch, A
2012-07-01
Silver nanoparticles (SNPs) are among the most commercialized nanoparticles worldwide. Often SNP are used because of their antibacterial properties. Besides that they possess unique optic and catalytic features, making them highly interesting for the creation of novel and advanced functional materials. Despite its widespread use only little data exist in terms of possible adverse effects of SNP on human health. Conventional synthesis routes usually yield products of varying quality and property. It thus may become puzzling to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles applied. Here, we applied a novel synthesis approach to obtain SNP of well-defined colloidal and structural properties. Being stabilized by a covalently linked small peptide, these particles are nicely homogenous, with narrow size distribution, and form monodisperse suspensions in aqueous solutions. We applied these peptide-coated SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages while being exposed against these particles. Gold nanoparticles of similar size and coating (Au20Pep) were used for comparison. The cytotoxicity of particles was assessed by WST-1 and LDH assays, and the uptake into the cells was confirmed via transmission electron microscopy. In summary, our data demonstrate that this novel type of SNP is well suited to serve as model system for nanoparticles to be tested in toxicological studies in vitro.
NASA Astrophysics Data System (ADS)
Sharova, A. S.; Maklygina, YU S.; Lisichkin, G. V.; Mingalev, P. G.; Loschenov, V. B.
2016-08-01
The spectroscopic properties of potentially perspective nanostructure: diamond nanoparticles with a surface layer of IR-photosensitizer, bacteriochlorin, were experimentally investigated in this study. Such specific structure of the object encourages enhancement of the drug tropism to the tumor, as well as increasing of photodynamic penetration depth. The size distribution spectra of diamond nanoparticles; diamond nanoparticles, artificially covered with bacteriochlorin molecules layer, in aqueous solution, were obtained during the study. Based on the absorption and fluorescence spectra analysis, the benefits of functional nanostructure as a drug for deep-lying tumor diagnostics and therapy were reviewed.
Luminescent nanocomposites of conducting polymers and in-situ grown CdS quantum dots
NASA Astrophysics Data System (ADS)
Borriello, C.; Masala, S.; Bizzarro, V.; Nenna, G.; Re, M.; Pesce, E.; Minarini, C.; Di Luccio, T.
2010-06-01
Luminescent PVK:CdS and P3HT:CdS nanocomposites with enhanced electrooptical properties have been synthesized. The nucleation and growth of CdS nanoparticles have been obtained by the thermolysis of a single Cd and S precursor dispersed in the polymers. The size distribution and morphology of the nanoparticles have been studied by TEM analyses. Monodispersive and very small nanoparticles of diameter below 3 nm in PVK and 2 nm in P3HT, have been obtained. The application of such nanocomposites as emitting layers in OLED devices is discussed.
Luminescent nanocomposites of conducting polymers and in-situ grown CdS quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borriello, C.; Masala, S.; Nenna, G.
2010-06-02
Luminescent PVK:CdS and P3HT:CdS nanocomposites with enhanced electrooptical properties have been synthesized. The nucleation and growth of CdS nanoparticles have been obtained by the thermolysis of a single Cd and S precursor dispersed in the polymers. The size distribution and morphology of the nanoparticles have been studied by TEM analyses. Monodispersive and very small nanoparticles of diameter below 3 nm in PVK and 2 nm in P3HT, have been obtained. The application of such nanocomposites as emitting layers in OLED devices is discussed.